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TECHNICAL NOTE

Gauging the ungauged: estimating rainfall in a West African urbanized river basin 
using ground-based and spaceborne sensors
Linda Bogerd a,b, Rose B. Pinto a, Hidde Leijnse b, Jan Fokke Meirink c, Tim H.M. van Emmerik a 

and Remko Uijlenhoet d

aHydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, The Netherlands; bR&D Observations and Data Technology, 
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; cR&D Satellite Observations, Royal Netherlands Meteorological Institute 
(KNMI), De Bilt, The Netherlands; dDepartment of Water Management, Delft University of Technology, Delft, The Netherlands

ABSTRACT
Accurate precipitation observations are crucial for hydrological forecasts, notably over rapidly responding 
urban areas. This study evaluated the accuracy of three gridded spaceborne rainfall products (Integrated Multi- 
satellitE Retrievals for GPM (IMERG), Meteosat Second Generation Visible (MSG-VIS), and MSG-Infrared (MSG- 
IR)) and the non-governmental Trans-African Hydro-Meteorological Observatory (TAHMO) gauges across the 
Odaw catchment (Accra, Ghana) from January 2020-July 2022. IMERG is hardly able to capture the strong 
spatial variability of rainfall required for flood forecasting, but agrees in annual sums with TAHMO and MSG-IR. 
MSG-IR has difficulties during the wet season. MSG-VIS, only available during daylight, shows limited accuracy 
and gives high estimates while other products do not detect rain. TAHMO gauges effectively record high- 
intensity events and their strong spatial variability, although some (daily) accumulations are doubtful and data 
gaps exist due to technical issues. These findings assist hydrological modelers in selecting appropriate datasets 
at suitable spatiotemporal resolutions for their research.
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1 Introduction

The water cycle is expected to intensify as a consequence of global 
warming (Held and Soden 2006, Hirmas et al. 2018, Yu et al.  
2020). Subsequently, rainfall events are projected to become more 
intense (Wentz et al. 2007, Burt et al. 2016). The risk of pluvial 
flooding is therefore expected to increase in many parts of the 
world. Pluvial flooding is especially relevant in urban areas, where 
impenetrable, paved surfaces result in lower infiltration capacity 
and even shorter hydrological response times to extreme rainfall 
events than in rural or natural areas (Johnson et al. 2016, Cristiano 
et al. 2017). Urban floods are identified as one of the major 
challenges society will face in the 21st century because of their 
increasing probability of occurrence and their potentially severe 
consequences (Gasper et al. 2011, Jha et al. 2012, Pörtner et al.  
2022, van Hateren et al. 2023).

Additional flood risk in urban areas is caused by the accumula
tion of natural and plastic debris within urban drainage systems 
(Roebroek et al. 2021), which may result in the blockage of those 
drainage systems (Honingh et al. 2020). High-resolution models 
that are able to simulate hydrology, hydrodynamics, and debris 
transport through urban catchments are required for accurate 
forecasting and protection against floods. These high-resolution 
models need accurate forcing data for realistic outcomes 
(Lobligeois et al. 2014). Rainfall represents the main input of 
such models, requiring accurate observations at high spatial and 
temporal resolutions due to its strong spatiotemporal variability 

and the sensitivity of the hydrological system to this variability 
(Rudolf et al. 1994, Chaubey et al. 1999, Berne et al. 2004, 
Chambon et al. 2013, Paschalis et al. 2014).

Because of its urgency and significant social and economic 
impact, the study of (extreme) precipitation data in urban areas 
is a rapidly developing field of research (Chen and 
Chandrasekar 2015, Ochoa-Rodriguez et al. 2015, Rios Gaona 
et al. 2017, Cifelli et al. 2018, de Vos et al. 2018). The majority of 
such studies have focused on Europe and the United States 
thanks to the availability of reliable precipitation measurements 
for these areas. “Traditional” ground-based measurements, such 
as those from weather radar and raingauges, are accurate but do 
not cover substantial parts of Africa, Asia, and Southern 
America (Lorenz and Kunstmann 2012, Saltikoff et al. 2019). 
At the same time, these areas suffer from extreme precipitation 
events and floods with a large societal, economic, and environ
mental impact (Jonkman 2005, Douben 2006, Douglas et al.  
2008, Mirza 2011, Tellman et al. 2021, Clarke et al. 2022).

The Odaw catchment (270 km2) in Accra, the capital of Ghana, 
is a densely populated area vulnerable to pluvial floods resulting 
from extreme precipitation. During the past three decades Accra 
has been challenged with floods (Smith 2015, Ackom et al. 2020), 
and an estimated 30% of residents live in areas vulnerable to (the 
impact of) floods (Marinetti et al. 2016). Furthermore, plastic 
debris blocking the drainage system in Accra is a major concern 
(Tulashie et al. 2020, Dasgupta et al. 2022), resulting in increased 
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flood risk. As explained before, this relationship can only be 
explored with hydrological models requiring high-resolution pre
cipitation estimates. Although the spatial variability of precipita
tion over the Odaw catchment has been investigated using 
raingauges of the Ghana Meteorological Agency (Ackom et al.  
2020), the number of official raingauges was limited to three.

Here, we analyse four non-traditional precipitation datasets 
over the Odaw catchment in Ghana. This can be seen as a first 
step to increase our understanding of the interaction between 
(extreme) precipitation and floods in urban catchments that also 
suffer from plastic debris accumulation (Pinto et al. 2023). 
Precipitation estimates retrieved from satellites and non- 
governmental low-cost raingauges are used. The aim of this 
study is not to validate the satellite rainfall observations as such. 
Instead, the results of this study will assist future hydrological 
modellers in their choice of a non-traditional observation that 
best fits the aim of their study. Additionally, this study provides 
insights into the precipitation dynamics within the Odaw 
catchment.

2 Methods and data

2.1 Study site

The Odaw drainage basin is located in the Greater Accra 
region in the south of Ghana (Fig. 1). The Odaw catchment 
lies within the most urbanized and densely populated area in 
this region. The catchment covers an area of 270 km2 and 
drains the major urbanized areas of Accra (Larmie 2019).

The southern part of Ghana has two rainy seasons: the 
major one from April to the beginning of July and the minor 
one from September to the end of October (Manzanas et al.  
2014). The average annual rainfall in the basin is 730 mm 
(Larmie 2019). Rain events over the catchment are often 
short but intense, occasionally resulting in local flooding 
(Amoako and Frimpong Boamah 2015, Andreasen et al. 2022).

2.2 Study period

The study was conducted from January 2020 until July 2022. 
Furthermore, three days with reported floods, which were selected 
using Lexis Nexis (an online archive with newspapers varying in 
scope from local to international), were studied in more detail. 
The three flood events – 9 June 2020 (Tarlue 2020a), 
10 October 2020 (Tarlue 2020b), and 21 May 2022 (Okertchiri  
2022) – were selected because they all occurred after heavy rainfall 
and were reported to have a large social impact such as destruction 
of houses, blocked roads, and even multiple deaths.

2.3 Data

The specifications of the datasets used in this study are presented 
in Table 1. Many other spaceborne precipitation products exist, 
such as Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN) 
(Nguyen et al. 2018), CPC MORPHing technique (CMORPH) 
(Wu 2018), Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) (Funk et al. 2015), and Global Satellite 
Mapping of Precipitation (GSMaP) (Kubota et al. 2020). The three 

satellite products employed in this study were selected because of 
their high temporal resolution (30 min or higher), their availability 
over the studied area and during the studied period, and because 
the products are based on different types of orbits. Two of the 
evaluated products are based on observations retrieved from 
geostationary satellites. One of the two is based on all channels, 
resulting in limited temporal availability, while the other product 
is based on only infrared (IR) channels, resulting in a continuous 
availability. The third product Integrated Multi-satellitE Retrievals 
for GPM (IMERG) is a merged product based on polar orbiting 
satellites. Each dataset is briefly discussed in the following 
subsections.

2.3.1 Ground-based rainfall estimates: TAHMO gauge 
network
The number of gauges maintained by the Ghana 
Meteorological Agency in the study area is limited and the 
highest available time resolution is daily. However, the pre
sented research purposes require a higher resolution. The 
Trans-African Hydro-Meteorological Observatory (TAHMO) 
operates raingauges across Sub-Saharan Africa (van de Giesen 
et al. 2014) with a temporal resolution of 15 min and a latency 
of 1 h. In total, 12 TAHMO stations, all equipped with ATMOS 
41 Sensors electronic drop-counting gauges (K. Duah, perso
nal communication, February 2023; METER Group 2021), 
were selected. Nine of these stations are located within the 
catchment. The other three are within 5 km of the catchment. 
The locations of the TAHMO stations are shown in Fig. 1 and 
summarized in the Appendix (Table A1). Three stations were 
not available during the studied rainfall period: TA00691 (not 
available before 2020), TA00314 (defunct for a large part of 
2020), and TA00652 (defunct since 14 May 2022).

2.3.2 Space-based rainfall estimates from combined 
sources: IMERG-L V06B
This study used the most recent version (V06B) of the gridded 
precipitation product from the Global Precipitation Measurement 
mission (GPM): the Integrated Multi-satellitE Retrievals for GPM 
(IMERG) (Huffman et al. 2019). IMERG combines radiometer 
observations from a constellation of various low earth orbit (LEO) 
satellites. In case the time between two subsequent satellite over
passes over a certain location is more than 30 min, the most recent 
observation is morphed forward in time with help of motion 
vectors calculated from reanalysis data (Modern-Era 
Retrospective Analysis for Research and Applications, version 2 
(MERRA-2) or Goddard Earth Observing System Forward 
Processing (GEOS-FP), depending on the latency of the IMERG 
product). Combining and morphing yields a global precipitation 
product with continuous coverage in both space and time (char
acteristics can be found in Table 1). More information about 
IMERG is provided in Tan et al. (2019), Huffman et al. (2020), 
and references therein.

IMERG is available in the form of two near-real-time 
(NRT) products (Early, IMERG-E and Late, IMERG-L) and 
one post-real-time product (Final, IMERG-F). IMERG-F has 
a higher accuracy than the two NRT runs due to monthly 
corrections based on raingauges of the Global Precipitation 
Climatology Centre (GPCC) (Huffman et al. 2019, Tapiador 
et al. 2019, Hosseini-Moghari and Tang 2020, Li et al. 2021). 
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The effect of these raingauge adjustments is largest over den
sely gauged areas, while Ghana is largely ungauged. 
Additionally, monthly adjustments might not be sufficient 
for the precipitation variability within this area (Echeta et al.  
2022). Furthermore, IMERG-F only becomes available after 
a couple of months due to this inclusion of the raingauges, 
while the latency is reduced to 4 h and 14 h for IMERG-E and 
IMERG-L, respectively.

The aforementioned studies also revealed that IMERG-L 
outperforms IMERG-E. This is attributed to (1) the inclusion 
of additional data that is not available within the latency of 
IMERG-E and (2) the propagation of observations both 
forward and backward in time in IMERG-L, while IMERG- 
E only comprises forward extrapolation. Hence, IMERG-L is 
selected for this study because of the combination of higher 
accuracy compared to IMERG-E, the presumably limited 

Figure 1. Location of the Odaw River basin (black outline) with locations of TAHMO stations (red dots), the channel network (blue), and population density within 
a district (colour scale). The population density is highest in the downstream part of the catchment and close to the coast. At least one TAHMO station is situated in 
each district. The dashed line at 5.7°N indicates the boundary used in this study to divide the catchment into the upstream (north of the line) versus downstream (south 
of the line) parts.

HYDROLOGICAL SCIENCES JOURNAL 3



effect of the GPCC gauge correction over Accra, and the 
shorter latency compared to IMERG-F. The IMERG-L V06B 
product is referred to as IMERG in the remainder of this 
paper.

2.3.3 Space-based rainfall estimates from geostationary 
satellites: MSG-SEVIRI
The Meteosat Second Generation (MSG) is a series of geos
tationary satellites. Each satellite carries the Spinning 
Enhanced Visible (VIS) and InfraRed (IR) Imager 
(SEVIRI) aboard, an imager with 12 narrow-band channels 
in the VIS to IR spectral range. The Royal Netherlands 
Meteorological Institute (KNMI) has developed two algo
rithms to estimate precipitation from SEVIRI observations. 
Both algorithms were used in this study and are briefly 
described below.

The Cloud Physical Properties (CPP) algorithm is used to 
retrieve cloud optical thickness, particle size, and condensed 
water path from SEVIRI VIS and near-IR observations. These 
cloud properties are derived for satellite pixels identified as 
cloudy and based on the thermodynamic phase (liquid or ice). 
A more extensive description of the algorithm and determina
tion of the thermodynamic phase is provided in Benas et al. 
(2017). As a next step, the cloud properties are converted to 
precipitation rates using an empirical approach outlined by 
Roebeling et al. (2012) and Roebeling and Holleman (2009). 
This precipitation product is only available during daytime 
(for solar zenith angles below 84°) since it requires measure
ments of reflected sunlight. The CPP product is referred to as 
MSG-VIS in the remainder of this paper.

The Night-time IR Precipitation Estimation (NIPE) algo
rithm uses brightness temperatures measured by the indivi
dual MSG-SEVIRI IR channels as well as brightness 
temperature differences between channels to estimate precipi
tation rates. The retrieval relies on relations established 
between SEVIRI IR measurements and precipitation observa
tions from an independent spaceborne radar (the same radar 
that is used within GPM). These relations are a function of 
cloud type. Detailed information about the NIPE algorithm is 
given by Brasjen and Meirink (2015). Since NIPE uses only IR 
channels, it can be applied during day and night. The product 
is referred to as MSG-IR in the remainder of this paper.

2.4 Data pre-processing

To directly compare the four different precipitation products, we 
performed spatiotemporal matching. The temporal matching was 
straightforward: two subsequent time steps of MSG and TAHMO 
were averaged to match IMERG’s 30 min resolution. All time 

references within this paper are in UTC, but it should be noted 
that UTC and Local Standard Time (LST) are the same in Ghana. 
The spatial matching was done using a nearest-neighbour 
approach, by allocating TAHMO stations to the pixel (either 
IMERG or MSG) with the shortest distance from the pixel centre. 
In case two or more TAHMO stations were allocated to one pixel, 
their arithmetic mean was used. MSG pixels were spatially aver
aged to the IMERG resolution. When focusing on individual 
TAHMO stations, the pixel closest to the station was selected. 
As the spatial resolution of IMERG is coarser than that of MSG, an 
IMERG pixel is more likely than an MSG pixel to comprise 
a TAHMO raingauge. Hence, in addition to the MSG product at 
its native resolution, the MSG product resampled to IMERG 
resolution was included in the analysis. The number of pixels 
and the percentage exceeding the wet/dry threshold are shown 
in the Appendix (Table A2). All MSG pixels and TAHMO stations 
that fall within the eight selected IMERG pixels are used to 
calculate the spatial average.

3 Results

3.1 Daily and annual rainfall cycles

First, the daily and seasonal cycles of rainfall over the Odaw 
catchment and the ability of the different rainfall products to 
capture these cycles are discussed. Fig. 2 shows the average 
daily cycle based on TAHMO, IMERG, MSG-IR, and MSG- 
VIS, for the dry (November–March, July–August) and wet 
(April–June, September–October) seasons. The estimates 
from MSG-VIS during the dry season are higher compared 
to the other three products, especially between 2.00pm and 
6.00pm, when the estimates are 4–5 times higher compared to 
the other products. When the dry season is divided into two 
parts (first dry season: November, December, January, 
February; second dry season: July, August), it is evident the 
overestimation occurs particularly during the first dry season 
(Fig. A1).

The dependency of MSG-VIS on daylight hours is especially 
limiting during the wet season (Table 2). About 35–50% of the 
rainfall events are at night during this season, so MSG-VIS is 
expected to miss a considerable share of the rain. The percentage 
of rain during the night decreases with increasing threshold (the 
threshold was varied from 0.1 to 5 mm/h; not shown). However, 
even when implementing a threshold of 5 mm/h, the three pro
ducts have a minimum rainfall fraction of 30% during the night. 
MSG-IR has the largest day/night difference among the three 
continuously available products, especially during the wet season.

Fig. 3 shows that IMERG, MSG-IR, and TAHMO are 
able to capture the wet and dry seasons. MSG-IR gives 

Table 1. The characteristics of the four rainfall products used in this study. These four products are: Meteosat Second 
Generation Infrared (MSG-IR), Meteosat Second Generation Visible (MSG-VIS), Integrated Multi-satellitE Retrievals for 
GPM (IMERG), and the non-governmental Trans-African Hydro-Meteorological Observatory (TAHMO) rain gauges.

Name MSG-IR MSG-VIS IMERG TAHMO

Spatial resolution 3 km × 3 km 3 km × 3 km 10 km × 10 km Point
Time resolution 15 min 15 min 30 min 15 min
Availability Continuous Daytime Continuous Continuous
Point vs pixel Pixel Pixel Pixel Point
Remote vs in situ Space Space Space Ground
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higher rainfall amounts, especially in May and June 
(respectively 174 mm and 222 mm, about 1.5 times higher 
than TAHMO and IMERG). MSG-VIS is less capable of 
distinguishing the different seasons. In general, estimates 
retrieved from MSG-VIS are much higher than those from 
the other three products, despite the product being only 
available during daylight. During April (begin wet season) 
and December (dry season), MSG-VIS estimates are more 
than 3 times higher compared to the other three products.

3.2 Spatial rainfall variation

The differences between MSG-VIS and the other products are 
even more apparent when evaluating the spatial variation of 

the seasonally averaged precipitation (Fig. 4). Although MSG- 
VIS is able to capture the north–south gradient of rainfall 
within the catchment during the dry season (the farther 
north, the wetter the catchment), its estimates are high com
pared to the other products. During the dry season, the dis
crepancy is especially large in the north of the catchment. 
MSG-VIS gives around 10 mm/d in the north, while the 
other products give a maximum of 3 mm/d. During the wet 
season, MSG-VIS estimates are twice as high as the other 
products. All products are able to capture the spatial variation 
in the dry season and the reduced spatial gradient in the wet 
season.

3.3 Probability distribution of rainfall intensities

Fig. 5 shows the cumulative distribution functions of the 
occurrence of rainfall intensities (CDF, left panels) and of 
their contribution to the total rainfall volume (CDFv, right 
panels). The estimates are spatially averaged over the 
upstream (north of 5.7°N, black dashed line in Fig. 1) or 
downstream (south of 5.7°N) part of the catchment. The 
difference between upstream and downstream, both in 
terms of occurrence and in terms of rainfall sums, is most 

Figure 2. Spatially and temporally averaged daily cycle of precipitation according to TAHMO, IMERG, MSG-IR and MSG-VIS. The spatial average is based on all MSG 
pixels and TAHMO stations that fall within an IMERG pixel. (a) Dry season; (b) wet season. All observations, i.e. both wet and dry moments, are included. The x-axis ticks 
indicate the beginning of each time interval.

Table 2. Distribution of observations exceeding the threshold of 0.1 mm/h over 
daytime and night-time for three of the considered products (expressed as 
percentages).

Dry season Wet season

Day Night Day Night

IMERG 53 47 55 45
TAHMO 52 48 53 47
MSG-IR 58 42 62 37

HYDROLOGICAL SCIENCES JOURNAL 5



apparent during the dry season. During this season, IMERG 
seems biased towards lower rainfall intensities: 40% of rain
fall observed by IMERG has an intensity above 0.4 mm/h, 
while for the other products at least 55% has an intensity 
above 0.4 mm/h. IMERG attributes 55% of the total precipi
tation during the dry season to the upstream part of the 
catchment, compared to 73% according to TAHMO. Yet 
IMERG can capture the difference in rainfall intensity during 
the wet and dry season. The highest intensities and sums are 
provided by MSG-VIS: 471 mm during the dry season and 
996 mm during the wet season, almost 1.5 times higher than 
the sums observed by the other three products.

3.4 Detection of high rainfall intensities

From all TAHMO observations with a minimum 30 min rainfall 
intensity of 0.1 mm/h, the 5% highest rainfall intensities were 
selected. Estimates from the other products were matched to the 
selected TAHMO observations. The corresponding rainfall 
intensities are shown in Fig. 6 (upper panels). While 50% of 
the selected TAHMO intervals corresponds to more than 
15 mm/30 min of rain, MSG-IR and IMERG do not even 
retrieve rainfall sums above 15 mm/30 min. In this respect, 
MSG-VIS is in better correspondence with TAHMO. 
However, the suitability of MSG-VIS in relation to flooding 
remains limited as a significant amount of intense rain occurs 

Figure 3. Spatially averaged monthly rainfall accumulations according to TAHMO, IMERG, MSG-IR and MSG-VIS for 2020 and 2021 (2022 is removed because only the 
first half of the year is covered within the research period). MSG-VIS estimates are based on daytime only: all values during the night are set to 0 mm/month. The blue 
areas correspond to the wet season.

Figure 4. Seasonally averaged precipitation estimates for the entire study period (January 2020–July 2022), distinguishing dry season (upper panels) and wet season 
(lower panels). Note that the colour bar is season dependent.

6 L. BOGERD ET AL.



during the night. When reducing the temporal resolution and 
focusing on 3 h time intervals, the differences become even more 
apparent (Fig. 6, lower panels). MSG-IR and IMERG do not 
provide rainfall sums exceeding 80 mm/3 h, while according to 
TAHMO and MSG-VIS 80 mm/3 h corresponds to 90% or 30%, 
respectively, of the total volume. The difference between MSG at 
IMERG or native resolution shows that, as expected, the occur
rence and contribution of high intensities decreases with resolu
tion. For instance, MSG-VIS at native resolution gives 
intensities up to 130 mm/3 h, while MSG-VIS at IMERG resolu
tion does not yield sums higher than 90 mm/3 h.

3.5 Case studies

The spatial distributions of daily sums during three selected case 
studies are shown in Fig. 7. In case 1 (6 June 2020), a precipitation 
system entered the catchment in the north in the late evening of 
5 June. The event moved in a southward direction and crossed the 
catchment in 5 h. Case 2 (10 October 2020) was a longer rainfall 

event over the entire catchment. It started in the early morning 
and lasted until the afternoon. Case 3 (5 May 2022) moved from 
the north to the south of the catchment in 3 h. In the south, 
intensities up to 120 mm/h were measured by TAHMO (after 
sunset, explaining the low sums measured by MSG-VIS).

Fig. 8 shows that both MSG products have a large range of 
observed rainfall intensities, which is in agreement with Fig. 5 and 
highlights the high space-time variability of rainfall. The range 
indicated by the whiskers is smallest for IMERG for all cases and 
largest for the MSG products. This can be partly attributed to 
MSG’s higher spatial resolution (resulting in less smoothing) 
compared to IMERG. IMERG’s coarser resolution reduces the 
observed precipitation variability. To demonstrate this, the MSG 
estimates resampled to IMERG resolution are also included. The 
range between the whiskers in case 1 decreases from 0.15–6 mm/h 
to 0.18–3 mm/h when resampling MSG-IR to IMERG resolution. 
IMERG and MSG-IR (native resolution) do not capture the high 
rainfall intensities during case 1: the 95th percentile is 2 mm/h 
according to IMERG, while it is 35 mm/h according to TAHMO. 

Figure 5. Cumulative distribution functions of rainfall occurrence (CDF; left) and volume (CDFv; right) for the entire study period (January 2020–July 2022). All products 
are spatially averaged over the upstream (north of 5.7°N, dashed lines) or downstream (south of 5.7°N, solid lines) area of the catchment. Only spatially averaged 
estimates exceeding the dry/wet threshold (1 mm/h) are included. The CDFs are calculated with a logarithmically spaced bin width. Note that the rainy season consists 
of five months, while the dry season consists of the other seven months.
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Both IMERG and MSG-IR do, however, detect higher intensities 
for the other two cases. IMERG especially detects the intense rates 
for case 3. Yet its 95th percentile is an intensity of 20 mm/h while 
the 95th percentiles of the other products range from 30 to 
60 mm/h. The overestimation of MSG-VIS products, discussed 
earlier in the Results (subsection 3.1), seems limited, but this can 
be attributed at least partly to the fact that cases 1 and 3 occur 
largely during night-time hours.

Finally, Fig. 9 shows example time series for one IMERG pixel 
and the available TAHMO stations within that pixel for the three 
selected cases. Hence, it shows the rainfall variability within one 
IMERG pixel. The first case is completely missed by IMERG (pixel 
with centre 0.15°W, 5.65°N). For the second case, IMERG’s esti
mates are much smoother than TAHMO. The total amount at the 
end of the time interval, however, seems correct. In the last case, 
although the two stations are within one IMERG pixel, the timing 
of the event is different for each station. This illustrates the 
limitation of both IMERG and a limited gauge network to repre
sent spatial and temporal rainfall variability.

4 Discussion

Monthly, seasonal, and annual precipitation accumulations of 
TAHMO and IMERG are found to be comparable (annual 

estimates of 910 mm). MSG-IR reports drier dry seasons 
(namely 214 mm, compared to 295 mm according to IMERG 
and 338 mm compared to TAHMO) and wetter wet seasons 
(namely 765 mm, compared to 675 mm according to IMERG 
and 669 mm according to TAHMO). MSG-VIS greatly over
estimates precipitation accumulations, despite its limited avail
ability (only during daylight hours). All products provide 
higher annual accumulations (Fig. 3) than the estimate of 
730 mm (Larmie 2019) mentioned in section 2.1. However, 
the characteristics of the input data used by Larmie (2019), 
such as observation method and studied year, are unknown. 
The studied year(s) can greatly affect the (averaged) yearly 
total. For instance, the rainfall accumulation of 2020 and 
2021 already differed by at least 120 mm, depending on the 
product (not shown). Furthermore, other studies focusing on 
floods showed that the annual rainfall estimates over the Odaw 
catchment can vary between 700 and 1200 mm (e.g. Amoako 
and Frimpong Boamah 2015, Ackom et al. 2020). Even com
pared to this range, MSG-VIS observations for the study per
iod are unrealistically high, as its average annual sum is 
1339 mm (Fig. 3).

IMERG is able to correctly capture daily rainfall sums, in 
agreement with other validation studies in this area (Dezfuli 
et al. 2017, Echeta et al. 2022). MSG-VIS overestimates the 
amount of rainfall, especially during the dry season in the 

Figure 6. Cumulative distribution functions of rainfall occurrence (CDF; left) and volume (CDFv; right) of the 5% highest rainfall sums in 30 min (upper) and 3 h (lower) 
time intervals. Selection of time intervals is based on TAHMO observations corresponding to non-exceedance probabilities of 95–100%. For comparison, MSG is 
resampled to the IMERG grid (labeled with [IM]) to show the effect of resolution (dashed lines). CDFs are calculated with a 2 mm bin width. The total number of TAHMO 
observations (n) is shown in the lower right corner of each graph.
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afternoon. This overestimation is particularly present during 
November, December, January, and February (Fig. A1(a)), 
while it is absent in July and August (Fig. A1(b)). A possible 
source of error might be related to evaporation below the cloud 
base. Although MSG-VIS may correctly identify clouds as 
precipitating, it cannot observe whether the precipitation actu
ally reaches the ground surface or whether it has evaporated 
along the way (Dinku et al. 2011, Hobouchian et al. 2017). 
Additionally, several other sources of error may play a role due 
to the indirect retrieval of precipitation via sensors based on 
geostationary satellites (Bennartz et al. 2010).

Evaporation of precipitation before reaching the ground 
might be stronger in the first dry period, when 
a phenomenon called “Harmattan dust” occurs over Ghana. 
The Harmattan dust is a very dry and dust-laden wind that 
blows at 3 km height (Breuning-Madsen and Awadzi 2005, He 
et al. 2007). Since the air (and surface) is very dry, evaporation 
below the cloud-base might be more apparent in the first dry 
season compared to the second dry season. An additional 
source of error might be the incorrect classification of the 
Harmattan dust as clouds. However, in that case we would 
expect a larger precipitation area, while the precipitation areas 
considered in this study appeared to be more convective (not 
shown). Additionally, the MSG-VIS algorithm is tuned on the 
Dutch weather radars. This may lead to the false identification 
of rain due to climatological differences.

In general, IMERG provides the lowest rainfall intensities, 
followed by MSG-IR, TAHMO, and MSG-VIS measuring the 

highest intensities (Fig. 6). The high estimates observed from 
MSG-VIS are in agreement with previous findings over West 
Africa, including Ghana (Wolters et al. 2011), which supports 
our finding that MSG-VIS overestimates the amount of rainfall 
over the Odaw catchment. IMERG has been reported to 
underestimate the amount of rainfall during high-intensity 
events (Saltikoff et al. 2019, Maranan et al. 2020, Becker et al.  
2021, Li et al. 2022). The spatial contrast between the upstream 
and downstream parts of the Odaw catchment observed by 
MSG-VIS is in agreement with the TAHMO stations during 
the dry season, while this distinction is less visible for IMERG 
and MSG-IR.

Case 1 is almost entirely missed by IMERG. It should be 
noted that we are comparing point and pixel estimates, although 
the event was unlikely to be very local for this case. The event 
was reported to move from north to south, and multiple stations 
measured intense rainfall. Intense events have been reported to 
be underestimated by IMERG-E and IMERG-L (Yu et al. 2021). 
IMERG-F provided better estimates, but only over areas where 
the GPCC gauge network has good coverage. Because the cover
age is limited for the Odaw catchment, the IMERG-L is the best 
IMERG product to use. Additionally, limited performance and 
ability to capture the variability of precipitation during the rainy 
season in Africa are also reported by Maranan et al. (2020), 
although they also found that the performance of IMERG is 
related to precipitation type. Strong convective events with 
a short duration (maximum of 80 min of uninterrupted rain
fall), such as case 1, were found to be underestimated by IMERG 

Figure 7. Daily rainfall sums according to the four products during three case studies. Each row depicts one case. Yellow represents pixels that fall below the lower 
threshold. Grey represents dry pixels/points.
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(Maranan et al. 2020). The other two events, with a slightly 
longer duration, were better captured by IMERG, although still 
underestimated.

Even though TAHMO observations are in general consid
ered to be reliable (Anand and Molnar 2018, Dombrowski 
et al. 2021, Schunke et al. 2021), subject to quality control 
(van de Giesen et al. 2014), and are even used as a reference to 
evaluate spaceborne products (Dezfuli et al. 2017, Macharia 
et al. 2022), they are prone to inaccuracies. The accuracy of 
the ATMOS-41 drop-counting raingauges is, for instance, 
dependent on the assumption of a constant drop size pro
duced inside the gauge. A calibration offset could result in 
bias. However, this bias is expected to be limited (Norbury 
and White 1971, Stagnaro et al. 2021) compared to the bias of 
satellite products. Gauges are also vulnerable to technical 
issues resulting in time periods without observations, which 
was the case for three raingauges within this study area and 
period. When observing ambiguous rainfall estimates, other 
stations and rainfall products can be used as additional 
sources of rainfall information to identify false alarms and 
assess the reliability of the observations (de Vos et al. 2019). 
A similar cross-calibration is also implemented within the 
TAHMO measurement network (van de Giesen et al. 2014).

Questionable TAHMO observations were detected while 
analysing the data. For instance, intensities of 120 mm/h 
were measured by the same station on two different days, 
while the other stations and the satellite products did not 
detect rainfall. Although rainfall is known to exhibit strong 
variability, such contrasting values for only one station are 
questionable. Additionally, observations with a high daily 

sum (continuously measuring 6 mm/h for one or two days 
while the other stations did not report rain) were found. Note 
that these values were not discarded in this study but were used 
as-is.

Among the four considered rainfall products, however, 
TAHMO observations are considered to be most reliable dur
ing extreme rainfall events in the research area. Additionally, 
their latency is small (1 h) compared to IMERG-L (14 h). In 
cases where a lower resolution is sufficient, such as hydrologi
cal observations over a longer time period and/or larger area, 
IMERG could be a suitable option.

The use of MSG-IR might give some additional insights 
during high-intensity events with strong spatial variability 
when TAHMO stations are not available or when the spatial 
domain is too large and the TAHMO stations might not be 
representative for the entire area. In these cases, IMERG could 
serve as a basis while MSG-IR could indicate the variability 
within an IMERG pixel. After addressing the bias present in 
MSG-VIS, for instance by tuning the algorithm based on data 
representative for the local climate, MSG-VIS could also be 
used to assess the variability within an IMERG pixel. 
Additionally, MSG-VIS could assist IMERG to distinguish 
wet from dry but cloudy situations during daytime hours.

5 Conclusion

Currently, large parts of South America, Africa, and Asia are 
not covered by traditional precipitation measurements due to 
limited available budgets or unsuitable technology. Sufficient 
measurements are necessary for accurate flood predictions that 

Figure 8. Box plots for each case study for the relevant time interval (case 1: 12.00am to 7.00am, case 2: 3.00am to 1.00pm, case 3: 4.00pm to 10.00pm). All pixels and 
stations within an IMERG pixel are included. The whiskers correspond to the 5th and 95th data percentiles, the boxes to the 25th and 75th percentiles. The black line 
represents the median, the green triangle the mean. Case 1 for the MSG-VIS at IMERG resolution (MSG-VIS[IM]) is not shown due to the limited number of data points. 
Note the y-axis is logarithmic. Rainfall intensities are measured over a 30 min time interval.
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can be used to reduce societal and economic damage. Non- 
traditional measurement techniques could be used to increase 
the coverage of precipitation observations. This study pre
sented an analysis of three gridded satellite products, MSG- 
VIS, MSG-IR, and IMERG, and one non-governmental rain
gauge network, TAHMO, over the Odaw catchment (Accra, 
Ghana) during January 2020–July 2022. To the best of our 
knowledge, this is the first study to assess these products on 
such a small scale for the African continent.

Raingauges provide only point measurements, but the cov
erage of TAHMO stations within the catchment (12 stations 
close to or within the catchment) is relatively high. In general, 
the TAHMO network appears to be able to capture the spatial 
variability of rainfall. Although IMERG rainfall estimates are 
found to be comparable with TAHMO observations on seaso
nal and daily time scales, IMERG shows a limited skill in 
detecting rainfall variability and high-intensity events.

MSG-IR estimates show a variable performance. Compared 
to IMERG, MSG-IR performs worse in terms of total amount 
of precipitation but has a slightly better representation of high 
intensities. The use of MSG-VIS estimates is limited in this 

area due to the occurrence of (intense) rainfall during the 
night. Furthermore, it seems MSG-VIS estimates are affected 
by non-precipitation-related phenomena in the dry season. 
This study indicated possible origins, such as the Harmattan 
dust and evaporation of precipitation before it reaches the 
ground, but more in-depth research is needed to be conclusive.

TAHMO observations are considered the most reliable of 
the four studied products, especially during high-intensity 
rainfall events. Additionally, their latency is small (1 h, 
compared to 4–12 h for the IMERG products). TAHMO’s 
disadvantages are the limited spatial coverage, especially in 
the upstream part of the catchment (although the gauge 
network density is high compared to the governmental 
gauge network), and the risk of data unavailability due to 
technical deficiencies or unreliable measurements, also 
shown in this study. Hence, although the most reliable, the 
observations retrieved from TAHMO stations should be 
employed with caution. IMERG products are considered 
suitable for studies and applications that require rainfall 
accumulations on a daily or larger time scale or rainfall 
estimates representative for a larger spatial area. In general, 

Figure 9. Comparison of precipitation time series from IMERG and TAHMO for the three considered events. One IMERG pixel and the various stations within that pixel 
are plotted for each case study. The dashed line represents the average of the selected TAHMO stations. The time interval varies per case study.
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this study has shown the value of various non-traditional 
precipitation products over regions not covered by dedicated 
measurements.
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Appendix

Table A1. Geographical locations of Trans-African Hydro-Meteorological Observatory (TAHMO) stations within or close to 
the Odaw catchment. See Fig. 1 for the map locations of these stations in the catchment.

Station code Longitude (W) Latitude (N) Elevation (m) Upstream/downstream

TA00016 −0.24447 5.573022 57 Downstream
TA00098 −0.16452 5.651103 19 Downstream
TA00126 −0.22172 5.758029 330 Upstream
TA00127 −0.23144 5.627022 39 Downstream
TA00128 −0.21800 5.561000 55 Downstream
TA00391 −0.23122 5.760172 355 Upstream
TA00567 −0.19425 5.597071 63 Downstream
TA00647 −0.19043 5.659788 82 Downstream
TA00651 −0.17917 5.675314 67 Downstream
TA00652 −0.26375 5.525557 15 Downstream
TA00314 −0.19444 5.815483 314 Upstream
TA00691 −0.21625 5.815008 123 Upstream

Table A2. Number of observations per precipitation product for both the wet and dry seasons 
(at 30-min intervals) over the area within the eight selected Integrated Multi-satellite Retrievals 
for GPM (IMERG) pixels and per time step. The number of TAHMO and Meteosat Second 
Generation (MSG, either from visible (VIS) or infrared (IR) channels) observations at IMERG 
resolution do not equal the number of IMERG observations due to time gaps or defect TAHMO 
stations.

Product No.# observations % dry

Season Dry Wet Dry Wet

IMERG 131 328 218 880 96 91
TAHMO 190 621 304 272 99 97
MSG-VIS 10 784 564 18 657 428 96 90
MSG-IR 24 573 297 40 866 000 99 95
IMERG MSG-VIS 57 525 99 404 95 90
IMERG MSG-IR 131 058 217 952 98 93
IMERG TAHMO 10 841 167 472 99 96
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Figure A1. Spatially and temporally averaged daily cycle of precipitation according to TAHMO, IMERG, MSG-IR and MSG-VIS. The spatial average is based on all MSG 
pixels, IMERG pixels and TAHMO stations that fall within the eight IMERG pixels. (a) represents the first dry season (November, December, January, February; months 
with Harmattan dust), (b) the second dry season (July and August). March is excluded as the month is in between the rainy months and the Harmattan dust. All 
observations (including dry moments) are included.
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