

Delft University of Technology

Single and Multi-objective Test Cases Prioritization for Self-driving Cars in Virtual
Environments

Birchler, Christian ; Khatiri, Sajad ; Derakhshanfar, P.; Panichella, Sebastiano; Panichella, A.

DOI
10.1145/3533818
Publication date
2023
Document Version
Final published version
Published in
ACM Transactions on Software Engineering and Methodology

Citation (APA)
Birchler, C., Khatiri, S., Derakhshanfar, P., Panichella, S., & Panichella, A. (2023). Single and Multi-
objective Test Cases Prioritization for Self-driving Cars in Virtual Environments. ACM Transactions on
Software Engineering and Methodology, 32(2), 1-30. Article 28. https://doi.org/10.1145/3533818

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3533818
https://doi.org/10.1145/3533818

28

Single and Multi-objective Test Cases Prioritization for

Self-driving Cars in Virtual Environments

CHRISTIAN BIRCHLER, Zurich University of Applied Science

SAJAD KHATIRI, Zurich University of Applied Science & Software Institute - USI, Lugano

POURIA DERAKHSHANFAR, Delft University of Technology

SEBASTIANO PANICHELLA, Zurich University of Applied Science

ANNIBALE PANICHELLA, Delft University of Technology

Testing with simulation environments helps to identify critical failing scenarios for self-driving cars (SDCs).
Simulation-based tests are safer than in-field operational tests and allow detecting software defects before
deployment. However, these tests are very expensive and are too many to be run frequently within limited
time constraints.

In this article, we investigate test case prioritization techniques to increase the ability to detect SDC regres-
sion faults with virtual tests earlier. Our approach, called SDC-Prioritizer , prioritizes virtual tests for SDCs
according to static features of the roads we designed to be used within the driving scenarios. These features
can be collected without running the tests, which means that they do not require past execution results. We in-
troduce two evolutionary approaches to prioritize the test cases using diversity metrics (black-box heuristics)
computed on these static features. These two approaches, called SO-SDC-Prioritizer and MO-SDC-Prioritizer ,
use single-objective and multi-objective genetic algorithms (GA), respectively, to find trade-offs between
executing the less expensive tests and the most diverse test cases earlier.

Our empirical study conducted in the SDC domain shows that MO-SDC-Prioritizer significantly (P-
value <= 0.1e − 10) improves the ability to detect safety-critical failures at the same level of execution time
compared to baselines: random and greedy-based test case orderings. Besides, our study indicates that multi-
objective meta-heuristics outperform single-objective approaches when prioritizing simulation-based tests
for SDCs.

MO-SDC-Prioritizer prioritizes test cases with a large improvement in fault detection while its overhead
(up to 0.45% of the test execution cost) is negligible.

CCS Concepts: • Software and its engineering→ Search-based software engineering; Software testing

and debugging;

Additional Key Words and Phrases: Autonomous systems, software simulation, test case prioritization

We gratefully acknowledge the Horizon 2020 (EU Commission) support for the project COSMOS (DevOps for Complex
Cyber-physical Systems), Project No. 957254-COSMOS.
Authors’ addresses: C. Birchler and S. Panichella, Zurich University of Applied Science, Switzerland; emails: {birc,
panc}@zhaw.ch; S. Khatiri, Zurich University of Applied Science, Gertrudstrasse 15, 8401 Winterthur, Switzerland and Soft-
ware Institute - USI Lugano, Via la Santa 1, 6962 Viganello, Switzerland; email: mazr@zhaw.ch; P. Derakhshanfar and A.
Panichella, Delft University of Technology, 2628 CD Delft, Netherlands; emails: {p.derakhshanfar, a.panichella}@tudelft.nl.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1049-331X/2023/03-ART28
https://doi.org/10.1145/3533818

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://orcid.org/0000-0003-3987-0276
https://orcid.org/0000-0003-0354-9747
https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0003-4120-626X
https://orcid.org/0000-0002-7395-3588
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3533818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533818&domain=pdf&date_stamp=2023-04-04

28:2 C. Birchler et al.

ACM Reference format:

Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano Panichella, and Annibale Panichella. 2023.
Single and Multi-objective Test Cases Prioritization for Self-driving Cars in Virtual Environments. ACM Trans.

Softw. Eng. Methodol. 32, 2, Article 28 (March 2023), 30 pages.
https://doi.org/10.1145/3533818

1 INTRODUCTION

Self-driving cars (SDCs) are autonomous systems that collect, analyze, and leverage sensor data
from the surrounding environment to control physical actuators at run-time [3, 13]. Testing au-
tomation for SDCs is vital to ensure their safety and reliability [49, 50], but it presents several
limitations and drawbacks: (i) the limited ability to repeat tests under the same conditions due
to ever-changing environmental factors [50]; (ii) the difficulty to test the systems in safety-critical
scenarios (to avoid irreversible damages caused by dreadful outcomes) [43, 47, 80]; (iii) not being
able to guarantee the system’s reliability in its operational design domain due to a lack of testing
under a wide range of execution conditions [49].

The usage of virtual simulation environments addresses several of the challenges above for SDCs
testing practices [1, 14, 16, 30]. Hence, simulation environments are used in industry in multiple
development stages of Cyber-physical Systems (CPSs) [76], including model (MiL), software
(SiL), and hardware in the loop (HiL). As a consequence, multiple open-source and commercial
simulation environments have been developed for SDCs, which can be more effective and safer
than traditional in-field testing methods [4].

Adequate testing for SDCs requires writing (either manually or assisted by generation tools
[2, 37]) a very large number of driving scenarios (test cases) to assess that the system behaves
correctly in many possible critical and corner cases. The large running time of simulation-based
tests and the large size of the test suites make regression testing particularly challenging for SDCs
[35, 84]. In particular, regression testing requires running the test suite before new software re-
leases to assess that the applied software changes do not impact the behavior of the unchanged
parts [64, 86].

The goal of this article is to investigate and propose black-box test case prioritization (TCP)
techniques for SDCs. TCP methods sort (prioritize) the test cases with the aim to run the fault-
revealing tests as early as possible [86]. While various black-box heuristics have been proposed
for traditional systems and CPSs, they cannot be applied to SDCs as is. Black-box approaches
for “traditional” systems sort the tests based on their diversity, computed on the values of the in-
put parameters [52] and the sequence of method calls [19]. However, SDC simulation scenarios
(e.g., with road shape, weather conditions) do not consist of sequences of method calls as in tra-
ditional tests [2, 37]. Approaches targeting CPSs measure test distance based on signal [9], and
fault-detection capability [12]. However, this data is unknown up-front without running the SDC
tests.

The main challenges to address when designing black-box TCP methods for SDCs concern
(i) the definition of features that can characterize SDC safety-critical scenarios in virtual tests; and
(ii) design optimization algorithms that successfully prioritize the test cases based on the selected
features. Therefore, to address these challenges, we formulated the following research questions:

— RQ1: To what extent is it possible to prioritize safety-critical tests in SDCs in virtual environ-
ments prior to their execution?

We designed and computed 16 static features for driving scenarios in SDCs virtual tests, such
as the length of the road, the number of left and right turns, and so on. These features are

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://doi.org/10.1145/3533818

Single and Multi-objective Test Cases Prioritization for SDCs 28:3

extracted from the test scenarios prior to their execution, and for them, we investigated which ones
are non-collinear (see Section 4.2.1) according to Principal Component Analysis (PCA). Hence,
we introduce SDC-Prioritizer , a TCP approach based on GA that prioritizes test cases of SDCs by
leveraging these features. This article introduces two variants of the SDC-Prioritizer , namely SO-
SDC-Prioritizer and MO-SDC-Prioritizer . The former variant utilizes a single-objective GA for test
prioritization. The latter variant leverages a well-known and commonly used multi-objective GA,
called NSGA-II [27], to achieve this goal. Any search-based technique needs to balance between
exploitation and exploration [25]. Exploitation refers to the ability of the search process to visit
regions of the search space within the neighborhood of previously generated solutions (here, test
execution orders). Exploration refers to the ability to generate entirely new solutions that are differ-
ent from the current solutions. Poor exploration ability of the search process leads to low diversity
between the generated solution, and thereby the search process may easily be trapped in local
optima [25]. The rationale behind introducing MO-SDC-Prioritizer beside the SO-SDC-Prioritizer
is to avoid the lack of exploration ability in SDC-Prioritizer . The NSGA-II algorithm, utilized in
MO-SDC-Prioritizer , provides well-distributed Pareto fronts and thereby brings sufficient diversity
into the generated solutions.

— RQ2: What is the cost-effectiveness of SDC-Prioritizer compared to baseline approaches?

To answer RQ2, we conducted an empirical study with three different datasets and composed
of test scenarios that target the lane-keeping features of SDCs. In this context, fault-revealing tests
are virtual test scenarios in which a self-driving car would not respect the lane tracking safety re-
quirement [38]. We targeted BeamNG by BeamNG.research [14] (detailed in Section 2) as a reference
simulation environment, which has been recently used in the Search-Based Software Testing

(SBST) tool competition1 [66]. The test scenarios for this environment have been produced with
by SDC-Scissor [15] (which integrates also AsFault [37]), an open-source project that generates
test cases to assess SDCs behavior (detailed in Section 2).

By comparing SO-SDC-Prioritizer and MO-SDC-Prioritizer with two baselines—namely random
search, and the greedy algorithm—on these three benchmarks, we analyze the performance of our
techniques in terms of its ability to detect more faults while incurring a lower test execution cost.

Finally, we assess whether SDC-Prioritizer techniques can be used in practical settings, i.e., it
does not add a too large computational overhead to the regression testing process:

— RQ3: What is the overhead introduced by SDC-Prioritizer?

The results of our empirical study show that MO-SDC-Prioritizer is the best performing tech-
nique in terms of identifying more safety-critical scenarios in less time. On average, this tech-
nique reduces the time required to identify more safety-critical scenarios by 6%, 25.5%, and 3%
compared to SO-SDC-Prioritizer , random test case orders (“default” baselines for search-based ap-
proaches [76, 86]), and the greedy algorithm for TCP, respectively. It also shows that MO-SDC-
Prioritizer leads to an increase of detected faults (about 63 more) in the first 20% of the test execu-
tion time compared to the greedy test prioritization (i.e., second best technique according to our
assessments). Furthermore, SDC-Prioritizer approaches do not introduce significant computational
overhead in the SDCs simulation process, which is of critical importance to SDC development in
industrial settings.

The contributions of this article are summarized as follows:

(1) We designed static features that can be used to characterize safe and unsafe test scenarios
prior to their execution in the SDC domain.

1https://sbst21.github.io/tools/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://sbst21.github.io/tools/

28:4 C. Birchler et al.

(2) We introduce SO-SDC-Prioritizer and MO-SDC-Prioritizer , two black-box TCP approaches
that leverage single and multi-objective GA, respectively, to achieve cost-effective regression
testing with SDC tests in virtual environments.

(3) A comprehensive and publicly available replication package available on Zenodo [21], in-
cluding all data used to run the experiments as well as the prototype of SDC-Prioritizer , to
help other researchers reproduce the study results.

Article Structure. In Section 2, we summarize the related work, while in Section 3, we outline
the approach we have designed and implemented to answer our research questions. In Section 4,
we present our methodology and empirical studies performed to answer our research questions.
In Section 5, we report the study results, while in Section 6, we detail the threats to validity of our
study. Finally, Section 7 concludes our study, outlining directions for future work.

2 BACKGROUND AND RELATED WORK

This section discusses the literature concerning (i) test prioritization approaches in traditional
systems; and (ii) studies closely related to test prioritization practices in the context of CPSs .
Finally, the section describes the background on the SDC virtual environment adopted in this
study.

2.1 Test Prioritization

Approaches aiming at reducing the cost of regression testing can be classified into three main
categories [87]: test suite minimization [70], test case selection [20], and TCP [71]. Test case min-
imization approaches tackle the regression problem by removing test cases that are redundant
according to selected testing criteria (e.g., branch coverage). Test case selection aims to select a
subset of the test suite according to the software changes, coverage criteria, and execution cost.
TCP, which is the main focus of our article, sorts the test cases to maximize some desired proper-
ties (e.g., code coverage, requirement coverage) that lead to detecting regression faults as early as
possible. A complete overview of regression testing approaches can be found in the survey by Yoo
and Harman [87].

2.1.1 Prioritization Heuristics. Approaches proposed in the literature to guide the prioritization
of the test cases can be grouped into white-box and black-box heuristics [87]. White-box TCP uses
past coverage data (e.g., branch, line, and function coverage) and iteratively selects the test cases
that contribute to maximizing the chosen code coverage metrics.

Black-box prioritization techniques rely on diversity metrics and prioritize the most diverse
test cases within the test suites (e.g., [5, 34, 52]). Widely-used diversity metrics include input
and output set diameter [34], or the Levenstein distance computed on the input data [52] and
method sequence [19]. Further heuristics include topic modeling [81], or models of the system [44].
Miranda et al. [62] proposed fast methods to speed up the pair-wise distance computation, namely
shingling and locality-sensitive hashing. Recently, Henard et al. [45] empirically compared many
white-box and black-box prioritization techniques. Their results showed a large overlap between
the regression faults that can be detected by the two categories of techniques and that black-box
techniques are highly recommended when the source code is not available [45], e.g., in the case
of third-party components. CPSs (including SDCs) are typical instances of systems with many
third-party components [76].

Prioritization heuristics for CPSs differ from those used for traditional software [8]. We elaborate
more in detail on the related work on TCP for CPSs in Section 2.2.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:5

2.1.2 Optimization Algorithms. Given a set of heuristics (either white-box or black-box), opti-
mization algorithms are applied to find a test case order that optimizes the chosen heuristics. As
shown by Yoo et al. [87] TCP (and regression testing in general) is inherently a multi-objective
problem because test quality (e.g., code coverage, input diversity) and execution resources are con-
flicting in nature. The challenge is choosing balanced trade-offs that favor lower execution cost
over higher code coverage or test diversity depending on the time constraints and resource avail-
ability (e.g., in continuous delivery or integration servers).

Cost-cognizant greedy algorithms are well-known deterministic algorithms introduced for the
set-cover problem and adapted to regression testing [20]. The greedy algorithm first selects
the test case with the most code coverage (white-box) or the most diverse one (black-box). Then,
the algorithm iteratively selects the test case that increases coverage the most or that is the most
diverse w.r.t. previously selected test cases [87].

Meta-heuristics have been shown to be very competitive, sometimes outperforming greedy algo-
rithms [54, 57, 64, 81]. Marchetto et al. [57] used multi-objective GA to optimize trade-offs between
cumulative code coverage, cumulative requirement coverage, and execution cost. Besides, GA have
been widely used to optimize test case diversity [81] for black-box TCP.

This article uses greedy algorithm, single-objective GA, and multi-objective GA to prioritize
simulation-based test cases for SDCs. This is because each type of algorithm has been shown to
outperform its counterparts in different domains and programs [12, 54].

2.2 Regression Testing for CPSs

Regression testing is particularly critical for CPSs, which are characterized by interactions with
simulation and hardware environments. Testing with simulation environments is a de facto stan-
dard for CPSs, and it is typically performed at three different levels [59]: MiL, SiL, and HiL. During
model in the loop (MiL), the controller (cars) and the environments (e.g., roads) are both represented
by models, and testing aims to assess the correctness of the control algorithms. During software in
the loop (SiL), the controller model is replaced by its actual code (software), and its testing phase
aims to assess the correctness of the software and its conformance to the model used in the MiL.
Finally, during hardware in the loop (HiL), the controller is fully deployed while the simulation is
performed with real-time computers that simulate the physical signals. The testing phase for the
HiL aims to assess the integration of hardware and software in more realistic environments [59].

Regression testing for CPSs is more challenging as the execution time of the test cases is much
longer due to the simulation [12]. Hence, researchers have proposed different regression testing
techniques that are specific to CPSs. Shin et al. [77] proposed a bi-objective approach based on
GA to prioritize acceptance tests for a satellite system. Their approach prioritizes the test cases
according to the hardware damage risks it can expose (first objective) and maximizes the number
of test cases that can be executed within a given time budget (second objective). Arrieta et al.
[12] used both greedy algorithms and meta-heuristics to prioritize test cases for CPS product lines
and with different test levels. In further studies, Arrieta et al. [10] focused on multiple objectives
to optimize for both test case generation and TCP for CPSs. The objectives include requirement
coverage, test case similarity, and test execution times. While test similarity for non-CPS systems
is computed based on the lexicographic similarity for the method calls and test input, Arrieta
et al. measured the similarity between the test cases based on the signal values for all the states
in the simulation-based test case. Test case similarity computed at the signal-level has also been
investigated in the context of test case selection for CPS [9, 11].

Our paper differs from the papers above w.r.t. the application domain and the optimiza-
tion objectives. In particular, we focus on prioritized simulation-based test cases to assess the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:6 C. Birchler et al.

lane-keeping features of SDCs. Instead, prior work focused on different domains, such as satel-
lite [76], electric windows [9], industrial tanks [10, 12], and cruise controller [10]. In our context,
test cases consist of driving test scenarios with virtual roads (e.g., see Figure 1) and aim at assessing
whether the simulated cars violate the lane-keeping requirements.

Another important difference is related to the objectives (or heuristics) to optimize for regression
testing. Prior works for CPS prioritize the test cases based on fault-detection capabilities [12], and
diversity measured for simulation signals [9–11]. However, the fault-detection capability of the
test cases is unknown a prior (i.e., without running the tests). Signal analysis requires knowing
the states of the simulated objects in each simulated time step, which is also unknown before the
actual simulation. Furthermore, a driving scenario (in our context) is not characterized by signals
but only by the initial state of the car and the actual characteristics (e.g., shape) of the roads. Hence,
we define features and diversity metrics that consider only the (static) characteristics of the roads
that are used for the simulation. Unlike fault-detection capability and signals, our features can be
derived from the driving scenario before the actual test execution.

2.3 Background on SDCs Simulation

2.3.1 Main Simulation Approaches. Simulation environments have been developed to support
developers in various stages of design and validation. In the SDC domain, developers rely mainly
on basic simulation models [41, 78], rigid-body [55, 88], and soft-body simulations [36, 69].

Basic simulation models, such as MATLAB/Simulink models [41, 78], implement fundamental
signals but target mostly non-real-time executions and generally lack photo-realism. Consequently,
while they are utilized for model-in-the-loop simulations and Hardware/Software co-design, they
are rarely used for integration and system-level software testing.

Rigid-body simulations approximate the physics of static bodies (or entities), i.e., by modeling
them as undeformable bodies. Basic simulation bodies consist of three-dimensional objects such as
cylinders, boxes, and convex meshes [2].

Soft-body simulations can simulate deformable and breakable objects and fluids; hence, they can
be used to model a wide range of simulation scenarios. Specifically, the finite element method

(FEM) is the main approach for solid body simulations, while the finite volume method (FVM)
and finite difference method (FDM) are the main strategies for simulating fluids [60].

Rigid-body vs. Soft-body simulations Both rigid- and soft-body simulations can be effectively com-
bined with powerful rendering engines to implement photo-realistic simulations [14, 16, 30, 83].
However, soft-body simulations can simulate a wider variety of physical phenomena compared
to rigid-body simulations. Soft-body simulations are a better fit for implementing safety-critical
scenarios (e.g., car incidents [36]), in which a high simulation accuracy is of key importance. As fol-
lows, we describe the soft-body environment we used in our research investigation, i.e., BeamNG
[14].

2.3.2 BeamNG and AsFault. Creating adequate test scenario suites for SDCs is a hard and labo-
rious task. To tackle this issue, Gambi et al. [38] developed and proposed a tool called AsFault [37]
to generate driving scenarios for testing SDCs automatically. From a high-level point of view, As-
Fault combines procedural content generation and search-based testing in order to automatically
create virtual scenarios for testing the lane-keeping behavior in SDC software. Specifically, AsFault
leverages a GA to iteratively refine virtual road networks towards those which cause the ego-car

(the simulated car controlled by the SDC software under test) to move away from the center of
the lane. The virtual roads are generated inside a driving simulator called BeamNG [14], which
can generate photo-realistic, but synthetic, images of roads. Given such characteristics, BeamNG
[14] has also been used as the main simulation platform in the 2021 edition of the SBST tool

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:7

Fig. 1. Sample driving scenarios generated by SDC-Scissor [15] (which integrates also AsFault [38]).

competition [66]. Lane-keeping systems (described in the next sections) continuously track the
striped and solid lane markings of the road ahead using advanced image processing, deep learning,
or machine learning techniques and triggers needed control mechanisms (e.g., steering, braking,
and speeding) to keep the car at the proper location regarding the road structure.

To evaluate the criticality of generated test cases, the road networks are instantiated in a driving
simulation, during which the ego-car is instructed to reach a target location following a naviga-
tion path selected by AsFault. During the simulation, AsFault traces the position of the ego-car at
regular intervals such that it can identify Out of Bound Episodes (OBEs), i.e., lane departures.
An out-of-bound incident is defined as “the case when the car went more than two meters out of
the lane center”. In our experiments, we use this information to label test scenarios as safe (causing
no OBEs) or unsafe (causing at least one OBE).

Figure 1 illustrates a sample test scenario generated and executed by AsFault [38]. It includes
start and target points for the ego-car on the map, the whole road network, the selected driving
path (colored in yellow), and the detected OBE locations during the execution of the scenario by
the ego-car. Hence, each generated test scenario by AsFault consists of a JSON file generated by
AsFault, which reports multiple nodes and their connections, and form a road network, with the
start and destination point and the driving path of the ego-car [38].

2.3.3 SDC Software Use-cases. AsFault supports two AI engines as test subjects while gener-
ating test cases, which we use to generate our test suites. These two test subjects allow to drive
the ego-car by computing an ideal driving trajectory, which places the ego-car in the center of the
lane while driving within a configurable speed limit:

— BeamNG.AI.2 BeamNG.research ships with a driving AI that we refer to as BeamNG.AI.
BeamNG.AI can be parameterized with an “aggression” factor which controls the amount
of risk the driver takes in order to reach the destination faster. BeamNg.research developers
say that low aggression factors (e.g., 0.7) result in a smooth driving whereas high aggression
factors (e.g., 1.2 and above) lead the car to edgy driving and might cut corners [38].

— Driver.AI.3 Driver.AI is a trajectory planner shipped with AsFault [38]. AsFault leverages
an extension of Driver.AI, which monitors the quality of its predictions at run-time. Hence,

2https://wiki.beamng.com/Enabling_AI_Controlled_Vehicles#AI_Modes.
3https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://wiki.beamng.com/Enabling_AI_Controlled_Vehicles#AI_Modes
https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py

28:8 C. Birchler et al.

differently from BeamNG.AI, Driver.AI analyzes the road geometry and plans the trajectory
of the car by computing, for each turn, the maximum safe driving speed (v) using the refer-
ence formula for centripetal force on flat roads with static friction (μ) [22]:

v =
√
μ × r × д, (1)

where r is the turn radius and д is the free-fall acceleration. It is important to note that, we
use BeamNG since:
– BeamNG can be easily used by developers via Python APIs for creating scenarios
– BeamNG can access to sensor data, Camera, Lidar, IMU
– the BeamNG AI engine can simulate:
∗ the aggressive driving style
∗ Balanced driving style
∗ Calm driving style

3 APPROACH

This section describes the investigated test scenario features and prioritization strategies intro-
duced by SDC-Prioritizer and a greedy algorithm in the SDC domain.

3.1 SDC Road Features

In the context of SDC, we target the definition of features (or metrics) that characterize SDC tests
in virtual environments according to the following requirements: the features (1) can be extracted
before the actual execution of the virtual tests; and (2) these features can characterize (or identify)
safe and unsafe scenarios without executing them. In the following, we describe how the SDC
features have been designed and measured considering the BeamNG as the targeted SDC virtual
environment.

In the context of BeamNG, it is possible to compute static features concerning the actual road
characteristics of SDC virtual tests. Specifically, as illustrated in Figure 1, each virtual test scenario
generated by AsFault (virtual roads), consists of multiple nodes and their connections (i.e., road
segments) forming a so-called road network, along with the start and destination points and the
driving path of the ego-car. This allows us to compute what we call Road Features, i.e., features
or characteristics of the road that will be used during the simulation within the BeamNG virtual
environment.

From the road data reported by AsFault, we extract various features for each test scenario (as
described in the following paragraph), and we investigate ways to leverage these features to deter-
mine the criticality of the test scenarios (as described in Section 4).

Road Features extraction. To extract the features corresponding to each of the generated test
scenarios, we leverage the JSON file generated as output by AsFault. These files, as explained
before, consist of multiple nodes and their connections, and form a road network, with the start and
destination point and the driving path of the ego-car. Hence, we extract two sets of road features,
the general road characteristics, and the road segment statistics. The general road characteristics
are attributes that refer to the road as a whole, e.g., direct distance and road length between the
start and destination points, the total number of turns to left or right. For each road segment (see
Figure 1), we can extract individual metrics such as road angle and pivot radius. For the segment
statistics features, we apply aggregation functions (e.g., minimum, maximum, and average) on
these individual segment metrics for all road segments in the scenario path. Table 1 reports the
features extracted from the original fields in AsFault JSON (i.e., F1–16 features), specifying their

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:9

Table 1. Road Characteristics Features

ID Feature Description Type Range

F1 Direct Distance Euclidean distance between start and finish float [0-490]
F2 Road Distance Total length of the road float [56-3,318]
F3 Num. Left Turns Number of left turns on the test track int [0-18]
F4 Num. Right Turns Number of right turns on the test track int [0-17]
F5 Num. Straight Number of straight segments on the test track int [0-11]
F6 Total Angle Total angle turned in road segments on the test track int [105-6,420]
F7 Median Angle Median of angle turned in road segment on the test track float [30-330]
F8 Std Angle Standard deviation of angled turned in road segment on the test track int [0-150]
F9 Max Angle The maximum angle turned in road segment on the test track int [60-345]
F10 Min Angle The minimum angle turned in road segment on the test track int [15-285]
F11 Mean Angle The average angle turned in road segment turned on the test track float [5-47]
F12 Median Pivot Off Median of radius of road segment on the test track float [7-47]
F13 Std Pivot Off Standard deviation of radius of turned in road segment on the test track float [0-23]
F14 Max Pivot Off The maximum radius of road segment on the test track int [7-47]
F15 Min Pivot Off The minimum radius of road segment on the test track int [2-47]
F16 Mean Pivot Off The average radius of road segment turned on the test track float [7-47]

Fig. 2. An overview of GA.

description, type, and expected range of values for each feature. In the next sections, we described
how the designed features are used as inputs to TCP strategies.

3.2 Single-Objective Genetic Algorithm

Several prior studies have utilized evolutionary algorithms (particularly GA) for test prioritization
to reduce regression testing costs in different types of systems [54]. A typical GA starts with gener-

ating a population of randomly generated individuals (box 1 in Figure 2). Each individual can be
described as a sequence of parameters, called the chromosome, which encodes a potential solution
to a given problem. This encoding can be performed in many forms (such as string, binary, etc.).
After generating the first population, this algorithm determines the “fitness” of the individuals ac-

cording to a fitness function (box 2 in Figure 2). Then, in the Selection phase (box 3 in Figure 2),
a subset of individuals are selected according to their fitness values to be used as parents for mating.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:10 C. Birchler et al.

Next, two genetic operators are applied to generate the next population using the selected parents:

Crossover and Mutation. The former (box 4 in Figure 2) operator combines two parents to pro-

duce new individuals (called offspring). The latter (box 5 in Figure 2) operator alters one or more
elements in the offspring to explore nearby solutions in the search space. Finally, the newly gener-

ated individuals are saved in a new population (box 6 in Figure 2). The process of generating a
new population of individuals from the previous one will continue until either the search objective
is fulfilled or when the algorithm reaches the maximal number of generations (iterations).

This section introduces a single-objective GA called SO-SDC-Prioritizer that prioritizes the most
diverse tests (according to their corresponding feature vectors) per unit of cost in SDCs. The fol-
lowing subsections describe detailed information regarding the encoding, operators, and fitness
function used in the SDC-Prioritizer .

3.2.1 Encoding. Since the solution for the test prioritization is an ordered sequence of tests,
SDC-Prioritizer uses a permutation encoding. Assuming that, in our problem, we seek to order the
execution of N tests, our approach encodes each chromosome as an N-sized array containing inte-
gers that denote the position of a test in the order. For example, let τ = 〈t1, t2, t3〉 be a chromosome
for a test suite with three test cases; then, test case t1 will be executed first, followed by t2 and t3
during regression testing.

3.2.2 Partially-Mapped Crossover (PMX). In the crossover, an offspring o is formed from two
selected parents p1 and p2 , with the size of N, as follows: (i) select a random position c in p1 as the
cut point; (ii) the first c elements of p1 are selected as the first c elements of o; (iii) extract the N −c
elements in p2 that are not in o yet and put them as the last N − c elements of o.

3.2.3 Mutation Operators. A chromosome p can be mutated one or more times according to
the given mutation probability. In each round of mutation, one of the three following mutation
operators [75] is selected randomly with an equal chance of 0.33% to perform the mutation:

— SWAP mutation: This mutation operator randomly selects two positions in a chromosome
p and swaps the index of two genes (test case indexes in the order) to generate a new off-
spring.

— INVERT mutation: This mutation operator randomly selects a segment (with a random
size) of the given chromosome p. Then, it reverses the selected segment end to end and
reattaches it to generate a new offspring.

— INSERT mutation: This mutation randomly selects a gene in the chromosomep and moves
it to another index in the solution to generate a new offspring.

We consider the three operators above since prior studies [75] showed that using multiple muta-
tion operators for permutation-based optimization problems increases the likelihood of escaping
from solutions that are locally optimal under one mutation operator. This procedure used for the
mutation is the same in both of the SDC-Prioritizer variants introduced in this article.

3.2.4 Fitness Function in SO-SDC-Prioritizer. Our goal is to promote (1) the diversity of the
selected test cases and (2) minimize the execution cost. Hence, the ultimate goal is to run the most
diverse test within a given time constraint. Hence, we define a fitness function that incorporates
both test diversity and execution cost. This is in line with current practice in the literature, which
combines surrogate metrics for test effectiveness (e.g., code coverage) with execution cost [53, 64,
85]. More specifically, let τ = 〈t1, . . . , tn〉 be a given test case ordering, its “fitness” (quality) is

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:11

measured using the following equation:

max f (τ) =

n∑
i=2

diversity (ti)

cost (ti) × i

=

n∑
i=2

distance (ti , ti−1)

cost (ti) × i , (2)

where n is the number of test cases; ti is the ith test in the ordering τ ; cost (ti) is the execution cost
(simulation time) of the test case ti ; and distance (ti , ti−1) measures the Euclidean distance between
the test cases ti and ti−1. In other words, each test case in position i positively contributes to the
overall fitness (to be maximized) based on its distance to the prior test ti−1 in the order τ . Since we
want to have as many diverse tests as possible in the same amount of time, the diversity score of
each test ti is divided by its execution cost (to be minimized) and its position i in τ . The factor i in
the denominator of Equation (2) promotes solutions where test cases with the best diversity-cost
ratio are prioritized early, i.e., they appear early within the order τ .

The distance between two tests ti and tj is measured using the Euclidean distance and computed
on the feature vectors described in Table 1. It is important to highlight that the different features
have different ranges and scales, as reported in Table 1. Hence, the distance values computed
using the Euclidean distance might be biased toward the features with larger ranges. To remove
this potential bias, we normalized the features using z-score normalization, which is a well-known
method to address outliers and to re-scale a set of features with different ranges and scales [39]. The
z-score normalization scale the features using the formula x−μ

σ
, where x is the feature to re-scale,

μ is its arithmetic mean, and σ is the corresponding standard deviation [39].
The execution cost of each test case ti is estimated based on the past execution cost gathered

from previous test runs, as recommended in the literature [32, 86]. This estimation is accurate for
SDC since the cost of running simulation-based tests is proportional to the length of the road and
the cost of rendering the simulation, which are fixed simulation elements.

3.2.5 Selection in SO-SDC-Prioritizer. The fitness function defined in Section 3.2.4 allows GAs
to determine the fittest individual (permutations in our case) that should have higher chances to
be selected for mating. The selection is made using the roulette wheel selection [40], which assigns
a selection probability to each of the individuals according to their fitness values (calculated by a
fitness function). Assuming that our problem is a maximization problem, the selection probability
of an individual pi is calculated as follows:

P (pi) =
f (pi)∑N

j=1 f (pj)
, (3)

where N is the number of individuals in the population and fi is the fitness value of pi .
After allocating selection probability to individuals, the algorithm randomly selects some indi-

viduals according to their selection chance. Each individual with a lower fitness value has a lower
allocated selection probability and thereby has a lower chance of transferring its genetic material
to the next generation.

3.3 Multi-objective Genetic Algorithm

This article also proposes MO-SDC-Prioritizer , a multi-objective variant of SDC-Prioritizer that
considers the execution cost and test case diversity as two different objectives to optimize simul-
taneously. Assume that τ = 〈t1, . . . , tn〉 is a solution (i.e., test execution order) generated by the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:12 C. Birchler et al.

Fig. 3. Graphical representation of Pareto dominance for our two objectives, namely (1) test diversity (to

maximize) and test cost (to minimize). In the example, points A, B, and C do not dominate one another,

while point B dominates both D end E.

search process. The first goal to optimize is computed using the following equation:

max f1 (τ) =
n∑

i=2

distance (ti , ti−1)

i
, (4)

where distance (ti , ti−1) denotes the distance between a test ti and its predecessor t (i − 1) in the
ordering. The contribution of each test case ti to the cumulative diversity is divided by its position
i in the ordering τ . In other words, this objective promotes solutions where the most diverse test
cases are executed earlier.

The second objective in MO-SDC-Prioritizer measures how steadily the cumulative cost in-
creases when executing the tests with a given order τ :

min f2 (τ) =
n∑

i=1

cost (ti)

i
, (5)

where cost (ti) denotes the cost of executing the test case ti in τ . The contribution of each test case
ti to the cumulative cost is divided by its position i in the ordering τ , with the goal of promoting
solutions where the least expensive test cases are executed earlier. Notice that this objective should
be minimized.

Different from SO-SDC-Prioritizer , finding optimal solutions for problems with multiple criteria
requires trade-off analysis. Given the conflicting nature of our two objective,4 it is not possible
to obtain one single solution that optimizes both objectives at the same time [24]. Hence, we are
interested in finding the set of solutions that are optimal compromises between the two objectives.
For multi-objective problems, the concept of optimality is based on concepts of Pareto dominance,
as explained in Figure 3, and Pareto optimality [24]. In particular, a solution τA dominates another
solution τB (τA <p τB) if and only if at the same level of diversity, τA has a lower cost than τB .
Alternatively, τA dominates τB if and only if, at the same level of cost, τA has a larger diversity
than τB . Among all possible solutions, we are interested in finding those that are not dominated by

4Diverse tests are not necessarily the least expensive to run.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:13

Fig. 4. Graphical representation of a Pareto front (in blue), the utopia (black point), and the knee point (red

point).

any other possible solution (Pareto optimality). Pareto optimal solutions form the so-called Pareto
optimal set while the corresponding objective values form the Pareto front.

Figure 4 provides a graphical example of Pareto optimality and non-dominance. All solutions
in the grey rectangle (including B) dominate D since they achieve both lower cost and higher
diversity. Instead, all solutions in the blue rectangle (including D and E) are dominated by B, since
B achieves higher diversity with lower execution cost. Finally, A, B, and C do not dominate one
another while D and E are dominated solutions.

3.3.1 NSGA-II. To find Pareto optimal solutions, MO-SDC-Prioritizer uses NSGA-II [27]. This
GA provides well-distributed Pareto fronts and performs best when dealing with two or three
search objectives [27]. NSGA-II shares the main loop of the GA depicted in Figure 2. Thus, it shares
the same encoding schema as well as mutation and crossover operators discussed in Section 3.2.
However, it differs on how parents are selected for reproduction and how the new population is
formed for the next generation. Parents are selected using the binary tournament selection, which
compares pairs of solutions in tournaments and selects the “fittest” solution from each pair for
reproduction. Finally, the population for the next generation is obtained by selecting the “fittest”
solutions among parent and offspring solutions (elitism).

In NGSA-II, the “fitness” of the solutions is determined using the fast non-dominated sorting
algorithm and the concept of crowding distance [26]. The former ranks the solutions according to
their dominance relations. All non-dominated solutions within a given population are inserted in
the first front F1 (rank r = 1); the subsequent front F2 (rank r = 2) contains all solutions that are
dominated only by the solutions in F1; and so on. Hence, solutions in the fronts with lower rank
are “fitter” according to the Pareto optimality.

Instead, the crowding distance aims at promoting more diverse (isolated) solutions within each
dominance rank. The crowding distance for a given solution is computed as the sum of the dis-
tances between such an individual and all the other individuals with the same rank. This heuristics
is put in place to avoid selecting individuals that are too similar to each other.

3.3.2 Choosing a Pareto Optimal Solution. As explained in Section 3.3.1, NSGA-II returns a set
of non-dominated solutions at the end of the search process. Hence, the next step is to decide
which Pareto optimal solution (best trade-off) among the many different alternatives. The necessity
of this decision-making approach is also experienced in other optimization methods for various

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:14 C. Birchler et al.

engineering problems [58]. Researchers have suggested considering various points of interest in
the Pareto front, such as the knee points [17], mid points [63], or the extreme of the Pareto front [65].

One of the common techniques to select solutions from the Pareto front is to identify knee
points [17, 61], which are the solutions that minimize the distance to a point in the vector of the
objective function, called Utopia Point [58]. The utopia point is a (usually unreachable) point with
the most-optimum observed value for each objective function. Assume that MO-SDC-Prioritizer
returns a set of solutions S = S1, S2, ..., Si as the final answer. These solutions are non-dominated
according to two search objective functions diversity (f1 (τ) in Equation (4)) and test execution cost
(f2 (τ) in Equation (5)). In this case, the Utopia PointU is the following point in the two-dimensional
objective functions vector:

U = (maximum({ f1 (s) |s ∈ S }),maximum({ f2 (s) |s ∈ S }), (6)

Since the utopia point usually does not exist in the returned solutions, we select the closest non-
dominated solution to this point as the trade-off to select for regression testing.

One common way to measure the distance between two points is using the Euclidean distance
N (x), which is defined as:

N (x) =

√√√
k∑

i=1

(fi (x) −Ui)2, (7)

where fi is the value of the Pareto optimal solution x for each objective. Here, MO-SDC-Prioritizer
has f1 and f2, as explained in Section 3.3.Ui is also the value of the utopia point for the ith objective
fitness function.

It is notable that if the fitness functions have different units, the Euclidean norm becomes insuf-
ficient to represent the closeness [58]. This is the case in MO-SDC-Prioritizer as the execution cost
and the test diversity have different units. To tackle this issue, we need to normalize the values to
make them dimensionless. The most robust technique to perform this normalization is [51, 58, 68]:

norm(fi (x)) =
fi (x) −Ui

max (fi) −Ui
, (8)

where fi (x) is the fitness actual value of solution x according to search objective fitness function
fi , andmax (fi) is the maximum fitness value of generated solutions for fi .

3.4 Black-box Greedy Algorithm

Greedy algorithms are well-known deterministic algorithms that iteratively build a solution (tests
ordering) based on greedy steps. Greedy algorithms have been widely used in regression testing
for both white- and black-box TCP [81, 86]. Hence, we adapt the greedy algorithm to our context
and use the set of features we have designed for SDCs (see Section 3.1).

The greedy algorithm first computes the pairwise distance among all test cases in the given
test suite. Similarly to GAs, the distance between two test cases ti and tj is computed using the
Euclidean distance between the corresponding feature vectors. These features are normalized up-
front using the z-score normalization as done for GA as well. Then, the greedy algorithm computes
the diversity per unit cost of each test ti using the following equation:

score (ti) =
distance (ti ,τ)

cost (ti))
, (9)

where distance (ti ,τ) measures the distance between ti and the tests tj ∈ τ selected in the previous
iterations of the algorithm. In this equation, a higher score for a test means that it has the highest
dissimilarity to previously selected tests with the lowest execution cost.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:15

The greedy algorithm initializes the test order τ by selecting the test with the largest ratio
between (1) its average distance to all other tests in the suite and (2) its execution cost. Then, the
algorithm iteratively finds the test case (among the non-selected ones) with the largest average
(mean) score to the (already selected) test cases in τ . This selection step corresponds to the greedy
heuristic. Suppose multiple tests have the same average score to τ . In that case, the tie is broken
by randomly choosing one of the equally distant test cases. This process is repeated until all test
cases are prioritized.

4 STUDY DESIGN

Study design overview. Our empirical study is steered by the following research questions:

— RQ1: To what extent is it possible to prioritize safety-critical tests in SDCs in virtual environ-
ments prior to their execution?

— RQ2: What is the cost-effectiveness of SDC-Prioritizer compared to baseline approaches?
— RQ3: What is the overhead introduced by SDC-Prioritizer?

In Section 3.1, we have introduced multiple static features to virtual driving scenarios (see
Table 1), some of which might be collinear or not useful for prioritizing test cases in a cost-effective
way. Hence, our first research question (RQ1) aims to determine which features to consider, by
leveraging statistical methods based on collinearity analysis [29, 89]. Our second research question
(RQ2) aims to assess the extent to which test case orders produced by SDC-Prioritizer techniques
(SO-SDC-Prioritizer and MO-SDC-Prioritizer) can detect more faults (effectiveness) and with lower
execution cost (efficiency) with respect to a naive random search. Specifically, as elaborated in de-
tail later, a random search is a critical baseline for search-based solutions since it is a “sanity-check”
to assess whether more “sophisticated” techniques are needed for a given domain [76]. In RQ2, we
compare the internal search algorithms discussed in Section 3, namely the greedy algorithm, single-
objective and multi-objective GA. With our last research question (RQ3), we want to measure the
overhead required to prioritize SDC test cases in virtual environments with SDC-Prioritizer tech-
niques. This is an important aspect to investigate since a critical constraint in regression testing is
that the cost of prioritizing test cases should be smaller than the time needed to run the test suite
[86]. Therefore, fast approaches are fundamental from a practical point of view to enable rapid and
continuous test iterations during SDC development [62].

4.1 Benchmark Datasets

The benchmark used in our study consists of three experiments performed on corresponding
datasets. For each experiment, virtual test scenarios are generated and labeled as safe or unsafe
by SDC-Scissor [15] (which integrates also AsFault). As described in Table 2, the first experiment
leverages a dataset (referred to as BeamNG.AI.AF1) that includes 1,178 virtual test scenarios gener-
ated with respect to BeamNG.AI with an aggression factor set to 1. Since this is a cautious driving
setup for BeamNG.AI, this dataset includes mostly safe scenarios, with about 26% of the scenarios
being unsafe (causing OBEs). For the second experiment, we created a new dataset (referred to as
BeamNG.AI.AF1.5) where we configured BeamNG.AI to drive in a more aggressive driving style.
This resulted in 5,638 test scenarios among which 45% are unsafe.

To increase the level of reliability and applicability of our results, we used another SDC driv-
ing AI, namely Driver.AI, to generate the dataset of our last experiment. This last experiment
was needed because using test scenarios with Driver.AI allows drawing a direct comparison with
BeamNG.AI and investigating if the features we investigate are limited to BeamNG.AI or can be
applied to other driving AIs. Thus, we used SDC-Scissor [15] (which integrates also AsFault) to

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:16 C. Birchler et al.

Table 2. Datasets Composition

Dataset
Number of Test Scenarios Running

Unsafe Safe Total Time

BeamNG.AI.AF1 312 (26%) 866 (74%) 1,178 16h
BeamNG.AI.AF1.5 2,543 (45%) 3,095 (55%) 5,638 28h

Driver.AI 1,045 (19%) 4,585 (81%) 5,630 106h

re-run the test scenarios in BeamNG.AI.AF1.5 with Driver.AI, resulting in a more cautious driving
with only 19% of the scenarios being unsafe.

4.2 Analysis Method

4.2.1 RQ1: Feature Analysis. In a real scenario, we do not determine the tests’ safety without
executing all of them. Hence, we do not include the feature that indicates if a test is safe or unsafe
in this research question. So, to answer our first research question, we analyze the orthogonality of
the other 16 different features introduced in Section 3.1. In particular, we use the PCA to statistically
assess whether all features are useful for TCP or whether certain features are multi-collinear. A
group of features is said to be collinear if they are linearly related and implicit measures of the
same phenomenon (road characteristics in our case). Addressing data collinearity is vital to avoid
distance measurements being skewed toward the collinear features [29]. Besides, distance metrics
(including the Euclidean distance) might not truly represent the extent to which the data points
(test cases) are truly diverse when using a large number of features [31].

PCA is a well-founded, analytical, and established technique that allows to identify the orthog-
onal dimensions (principal components) in the data and measure the contributions of the differ-
ent features to such components. Features that contribute to the same principal components are
collinear and can be removed via dimensionality reduction. In particular, the PCA decomposes
each dataset M (e.g., BeamNG.AI.AF1) in two matrices: M

m×n
≈ S

m×n
∗ V

n×k
In this equation, m is

the number of test cases; n is the number of original features; k is the number of principal com-
ponents; S denotes the features-to-component score matrix. More specifically, S contains each
feature’s scores (contributions) to the latent components identified by the PCA. In an ideal dataset
with zero collinearity, the features should exclusively contribute to different principal components.

PCA can be used not only to detect but also to alleviate collinearity via dimensionality reduc-
tion [31]. In particular, a lower-dimensional matrix can be obtained by choosing the top h < k
principal components and reconstructing the matrix as:

M ′
m×h
≈ S

m×n
∗ V

n×h
. (10)

Notice that M ′ will contain new (non-collinear) features that are built as a combination of the old
ones. This process is widely known in machine learning as feature extraction [39].

To answer RQ1, we use PCA to detect (eventual) multi-collinearity among the different road
features. In the case multi-collinearity is detected, we use PCA for dimensionality reduction and
feature extraction by selecting the top k principal components corresponding to 98% of the original
data variance, as recommended in the literature [39]. The selected, relevant features in RQ1 (dis-
cussed in Section 5.1) are then considered to investigate RQ2 and RQ3 and applied for all search
algorithms, i.e., for both greedy and evolutionary algorithms.

4.2.2 RQ2: Cost-effectiveness of SDC-Prioritizer Compared to Baseline Approaches. To assess the
effectiveness of TCP techniques introduced in this study, we look at the rate of fault detection (i.e.,
how fast faults are detected during the test execution process). Hence, a better technique provides

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:17

a test execution order that detects more faults while executing fewer tests. To indicate the rate
of fault detection in our evaluation, we use a well-known metric in TCP, called Cost cognizant
Average Percentage of Fault Detection (APFDc) [32, 33, 48, 56, 72]. In this metric, higher APFDc

means a higher fault detection rate. Since there is no technique introduced for measuring the fault
severity in the SDC domain, we consider the same severity for all of the faults. Hence, in our case,
APFDc can be formally defined as follows:

APFDc =

∑m
i=1

(∑n
j=T Fi

tj − 1
2tT Fi

)
∑n

j=1 tj ×m
, (11)

where T is the list of tests that need to be sorted for execution; tj is the execution time required
to run the test positioned as the jth test; n and m are the number of tests and faults, respectively;
andTFi is the position in the given test permutation that detect fault i . We also assessed whether
there is no significant variation in execution time (simulation time) of the simulation-based tests
by executing them multiple times. In particular, we randomly selected 50 tests from our dataset
and ran them ten times each. As a result, the average standard deviation of test execution time is
1.67s (less than 1% variation) and the average coefficient of variance is 0.01.

To draw a statistical comparison between SO-SDC-Prioritizer , MO-SDC-Prioritizer , random
search, and greedy algorithm, we use Vargha-Delaney Â12 statistic [82] to assess the effect size
of differences between the APFDc values achieved by these approaches. A value Â12 > 0.5 for a
pair of factors (A, B) confirms that A has a higher fault detection rate and vice versa. Furthermore,
to examine if the differences are statistically significant, we use the non-parametric Wilcoxon Rank
Sum test, with α = 0.05 for Type I error.

4.2.3 RQ3: Overhead Introduced by SDC-Prioritizer. For RQ3, we monitor the running time
needed by SO-SDC-Prioritizer , MO-SDC-Prioritizer , and the greedy algorithm to prioritize the test
cases. This analysis aims to verify whether the extra overhead introduced by SDC-Prioritizer tech-
niques, on average, leads to a disruption in the testing process or is negligible compared to the
total time needed to run the entire test suite. To have a more reliable estimation of the running
time, we run both SO-SDC-Prioritizer and MO-SDC-Prioritizer 30 times and using the parameter
values discussed in Section 4.2.4. Then, we measure the overhead of the different algorithms as the
average running time over the 30 runs.

4.2.4 Parameter Setting. We used the default parameter values of the GA as used in previous
studies on TCP (e.g., [33, 64, 81]). In particular, we use the following parameter values:

— Population size: we used a pool of 100 test permutations.
— Crossover operator : we used the partially-mapped crossover (PMX) for permutation problems

(see Section 3.2) with a crossover probability pc = 0.80. This corresponds to the default value
in Matlab and it is inline with the recommended range 0.45 ≤ pc ≤ 0.95 [18, 23].

— Mutation operator : we used the hybrid mutation operator, introduced in Section 3.2.3, with
a mutation probability pm = 1/n, where n is the number of the test cases to prioritize. This
choice is in line with the recommendations from previous studies [18, 74] that showed how
pm values proportional to the chromosome length produce better results.

— Stopping criterion: the search ends after 4,000 generations (or equivalently 400K fitness eval-
uations). We opted for a larger number of generations compared to prior studies in TCP (e.g.,
[12, 28, 54]) since the test suites in our benchmark are much larger than those used in prior
studies in TCP for traditional software (e.g., the programs in the SIR dataset [46]).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:18 C. Birchler et al.

Table 3. Results of the PCA for BeamNG.AI.AF1

Features C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
Direct Distance −0.331 0.249 0.874 −0.068 0.218 −0.068 −0.074 −0.032 0.037 −0.003 −0.004 −0.001 0.003 0.017 0.007 −0.001
Road Distance 0.223 −0.129 0.187 0.315 0.013 −0.049 0.810 −0.148 0.275 −0.008 0.106 −0.019 0.000 0.179 0.004 0.002

Num. Left Turns 0.421 −0.033 0.189 0.127 −0.098 −0.213 −0.137 0.014 −0.233 0.040 0.063 −0.224 0.002 −0.076 −0.329 −0.687
Num. Right Turns 0.242 −0.333 0.199 0.103 −0.113 −0.193 −0.131 −0.003 −0.171 −0.113 −0.138 0.580 0.072 0.008 0.552 −0.075

Num. Straight 0.196 −0.144 −0.121 0.059 0.956 −0.012 −0.059 0.002 −0.063 −0.002 −0.005 0.011 0.013 −0.031 0.004 0.002
Total Angle 0.388 0.797 −0.089 −0.016 0.034 0.016 0.035 0.041 0.084 −0.318 −0.080 0.293 0.028 0.028 −0.005 0.006

Median Angle 0.437 −0.041 0.200 0.134 −0.107 −0.224 −0.147 0.018 −0.243 0.063 0.067 −0.217 0.013 −0.086 −0.169 0.718

Std Angle 0.151 0.299 −0.034 −0.021 0.012 0.020 0.008 −0.059 −0.046 0.534 0.092 −0.384 −0.034 0.006 0.656 −0.081
Max Angle 0.119 −0.073 0.025 0.199 −0.020 0.090 −0.448 0.015 0.419 −0.036 0.235 −0.058 0.056 0.702 0.005 0.002
Min Angle 0.147 −0.007 0.055 0.122 −0.021 0.126 −0.170 −0.119 0.484 0.556 −0.089 0.367 −0.155 −0.372 −0.230 0.015

Mean Angle −0.065 0.107 −0.056 −0.163 0.026 −0.069 0.157 −0.041 −0.425 0.512 −0.085 0.344 0.150 0.508 −0.273 0.024
Median Pivot Off −0.273 0.159 −0.121 0.656 0.007 −0.076 −0.115 −0.414 −0.246 −0.053 −0.170 0.004 −0.412 0.060 0.002 0.004

Std Pivot Off −0.234 0.127 −0.089 0.486 0.005 −0.091 −0.035 0.168 −0.013 0.084 0.225 0.057 0.736 −0.212 −0.003 −0.009
Max Pivot Off 0.061 −0.009 0.111 0.096 −0.017 0.633 0.028 0.085 −0.328 −0.023 0.610 0.196 −0.198 −0.085 0.002 −0.002
Min Pivot Off 0.029 −0.018 0.096 0.300 −0.009 0.322 0.060 0.698 −0.052 0.078 −0.516 −0.104 −0.108 0.094 0.006 −0.001

Mean Pivot Off −0.165 0.072 −0.109 0.033 0.036 −0.559 0.054 0.512 0.081 0.079 0.399 0.151 −0.426 −0.005 0.013 −0.003
Importance 31.35% 25.72% 13.76% 9.00% 6.14% 3.96% 3.32% 2.14% 1.71% 1.10% 0.54% 0.48% 0.41% 0.22% 0.12% 0.01%

Values in Boldface Indicate the Features that Contribute the Most to the Main Components (Cs) Extracted by PCA.

Table 4. Results of the PCA for BeamNG.AI.AF1.5

Features C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
Direct Distance −0.3013 0.1697 0.9106 −0.0966 0.1742 −0.0920 −0.0470 −0.0146 0.0191 −0.0007 −0.0079 0.0009 −0.0012 0.0171 −0.0009 0.0005
Road Distance 0.2283 −0.0926 0.1635 0.3187 −0.0731 −0.0344 0.7700 −0.1680 0.3680 0.0025 0.0910 0.0113 0.0069 0.1987 0.0034 0.0055

Num. Left Turns 0.4457 0.0213 0.1532 0.0835 −0.1044 −0.2147 −0.0823 0.0475 −0.2461 0.0502 0.0436 −0.2968 0.0148 −0.0031 −0.3152 −0.6722
Num. Right Turns 0.3084 −0.3444 0.1755 0.0794 −0.1146 −0.2337 −0.0905 0.0292 −0.2168 −0.1006 −0.0110 0.6109 0.0538 −0.1288 0.4669 −0.0667

Num. Straight 0.1994 −0.0987 −0.0950 0.0410 0.9622 −0.0499 0.0662 0.0004 −0.0797 −0.0093 −0.0120 −0.0006 0.0081 −0.0209 0.0028 −0.0021
Total Angle 0.3007 0.8304 −0.0566 −0.0104 0.0210 0.0450 0.0081 0.0032 0.0601 −0.3113 −0.0037 0.3348 0.0019 −0.0334 −0.0194 0.0092

Median Angle 0.4437 0.0118 0.1536 0.0829 −0.1033 −0.2171 −0.0836 0.0501 −0.2489 0.0641 0.0356 −0.2888 0.0202 −0.0315 −0.1391 0.7306

Std Angle 0.1117 0.2956 −0.0191 −0.0040 0.0119 0.0229 −0.0105 −0.0115 0.0170 0.4787 −0.0104 −0.3483 −0.0090 0.0480 0.7329 −0.0916
Max Angle 0.1514 −0.0713 0.0231 0.1558 0.0425 −0.0111 −0.5247 −0.0747 0.4051 0.0470 0.1824 0.0978 0.1140 0.6640 −0.0328 0.0174
Min Angle 0.1366 0.0091 0.0453 0.1147 0.0176 0.0329 −0.1839 −0.1109 0.4188 0.5555 0.0046 0.2402 −0.1757 −0.5312 −0.2520 0.0159

Mean Angle −0.0962 0.1302 −0.0554 −0.1244 −0.0040 −0.0033 0.2201 0.0609 −0.4133 0.5867 −0.0663 0.3854 0.1786 0.3766 −0.2459 0.0294
Median Pivot Off −0.2875 0.1305 −0.0771 0.6761 0.0135 −0.1822 −0.1126 −0.3885 −0.2939 −0.0136 −0.1116 0.0198 −0.3706 0.0589 0.0060 0.0017

Std Pivot Off −0.2112 0.0925 −0.0489 0.4256 0.0189 −0.1034 −0.0374 0.1325 0.0158 0.0081 0.1811 −0.0445 0.7980 −0.2478 0.0013 −0.0070
Max Pivot Off 0.0913 −0.0493 0.1334 0.1354 0.0043 0.6999 −0.0222 −0.0839 −0.2883 0.0017 0.6017 0.0295 −0.0778 −0.0576 0.0177 0.0008
Min Pivot Off 0.0551 −0.0323 0.1066 0.3956 −0.0009 0.3609 −0.0222 0.6912 0.0343 0.0069 −0.4418 0.0097 −0.1319 0.0746 −0.0047 −0.0006

Mean Pivot Off −0.1854 0.0752 −0.1024 0.0329 0.0233 −0.4151 0.0758 0.5394 0.0562 0.0419 0.5899 0.0507 −0.3506 0.0126 0.0164 0.0010
Importance 30.96% 24.23% 13.80% 9.35% 5.74% 5.18% 3.38% 2.41% 1.81% 1.21% 0.70% 0.52% 0.34% 0.23% 0.10% 0.01%

Values in boldface indicate the features that contribute the most to the main components (Cs) extracted by PCA.

Notice that we did not fine-tune the parameters but opted for the default values. This choice is mo-
tivated by recent studies that showed that default values are a reasonable choice in search-based
software engineering [7, 73]. Indeed, parameter tuning is a quite laborious and expensive process
that does not assure better performances when using meta-heuristics. Our initial experiments con-
firm this finding as default values already provide good results in our case.

5 RESULTS

This section reports, for each research question, the obtained results and main findings.

5.1 RQ1: SDC Features Analysis

Tables 3, 4, and 5 show the results of the PCA for datasets BeamNG.AI.AF1, BeamNG.AI.AF1.5,
and Driver.AI, respectively. As we can observe, for each dataset, PCA identifies 16 (independent)
principal components, whose relative importance is reported on the last (bottom) row of the cor-
responding Table. As these rows indicate, the importance of components in all of the tables (i.e.,
datasets) are similar: the first component (C1) covers about 30% of the variance in the data (impor-
tance), followed by the second components (C2) with about 25%, and so on. Moreover, in all of the
datasets, the last six principal components are negligible as they contribute to less than 1% of the
total variance.

Looking at the scores achieved for the different features, we can observe that they contribute to
different (orthogonal) latent components. Hence, the features capture different characteristics of
the road segments in the test scenarios. Individual features exclusively capture certain components.
For example, in Table 3, C2 (which corresponds to 26% of the proportion) is fully captured by the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:19

Table 5. Results of the PCA for Driver.AI

Features C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
Direct Distance −0.1570 0.2939 0.8788 −0.0933 0.3088 −0.0926 −0.0499 −0.0153 −0.0294 0.0084 −0.0092 0.0064 0.0011 0.0173 −0.0012 −0.0003
Road Distance 0.1532 −0.1709 0.1659 0.3213 −0.0573 −0.0128 0.7938 −0.0402 −0.3669 0.0512 0.0751 0.0055 0.0020 0.1961 −0.0046 0.0027

Num. Left Turns 0.3838 −0.1879 0.1669 0.1319 −0.1174 −0.2410 −0.0898 −0.0012 0.2592 −0.0025 0.0384 −0.2417 0.0110 −0.0283 −0.3206 −0.6793
Num. Right Turns 0.0943 −0.3614 0.1681 0.1273 −0.1083 −0.2190 −0.0707 −0.0137 0.1842 −0.1474 −0.0088 0.5874 0.0922 −0.1185 0.5677 −0.0751

Num. Straight 0.1414 −0.2220 −0.2185 0.1112 0.9269 −0.0774 0.0262 0.0017 0.0606 −0.0221 −0.0078 −0.0069 0.0142 −0.0191 0.0005 −0.0009
Total Angle 0.6742 0.5909 −0.0893 −0.0497 0.0323 0.0720 0.0043 0.0011 −0.1245 −0.2761 −0.0155 0.2941 0.0234 −0.0214 −0.0070 0.0069

Median Angle 0.3858 −0.1979 0.1719 0.1352 −0.1190 −0.2465 −0.0922 −0.0011 0.2679 0.0111 0.0378 −0.2360 0.0154 −0.0419 −0.1552 0.7250

Std Angle 0.2334 0.2013 −0.0285 −0.0177 0.0139 0.0190 0.0112 0.0044 0.0838 0.4907 0.0118 −0.4344 −0.0506 0.0610 0.6736 −0.0807
Max Angle 0.0801 −0.1131 0.0146 0.1994 −0.0055 −0.0443 −0.5054 −0.0193 −0.4072 0.1097 0.1743 0.0810 0.1024 0.6764 −0.0111 0.0062
Min Angle 0.1119 −0.0437 0.0299 0.1272 0.0011 0.0117 −0.1629 −0.0436 −0.3222 0.6446 0.0343 0.3028 −0.1618 −0.5037 −0.2181 0.0148

Mean Angle −0.0180 0.1361 −0.0565 −0.1477 0.0191 0.0074 0.2188 0.0212 0.5247 0.4732 −0.0530 0.3907 0.1923 0.4074 −0.2220 0.0220
Median Pivot Off −0.2307 0.3422 −0.1052 0.6554 −0.0080 −0.1726 −0.0473 −0.4003 0.2179 −0.0509 −0.0995 0.0373 −0.3643 0.0513 0.0027 0.0011

Std Pivot Off −0.1630 0.2366 −0.0680 0.3908 −0.0040 −0.0959 −0.0200 0.1901 −0.0124 0.0239 0.1577 −0.0874 0.7919 −0.2322 0.0001 −0.0037
Max Pivot Off 0.0615 −0.0875 0.1406 0.2016 0.0269 0.7212 −0.0486 −0.0572 0.2615 −0.0544 0.5681 0.0246 −0.0673 −0.0476 0.0085 −0.0011
Min Pivot Off 0.0280 −0.0266 0.0891 0.3459 −0.0095 0.3006 −0.0711 0.6949 0.0570 −0.0001 −0.5096 0.0150 −0.1592 0.0626 −0.0064 0.0009

Mean Pivot Off −0.1191 0.1603 −0.1018 −0.0265 0.0076 −0.4015 0.0712 0.5591 0.0349 −0.0167 0.5824 0.0687 −0.3527 0.0128 0.0091 0.0003
Importance 29.97% 25.43% 12.33% 9.34% 7.09% 5.25% 3.60% 2.32% 1.67% 1.18% 0.77% 0.49% 0.38% 0.24% 0.10% 0.01%

Values in boldface indicate the features that contribute the most to the main components (Cs) extracted by PCA.

feature F6 (i.e., number of turns) with a score greater than 79%. Similar observations can be made
for other components: C3 (14% of importance) is captured by F1 (direct end-to-end distance) with
an 87% score; C5 (6% of importance) is exclusively related to F5 (number of straight segments) with
96% score; and so on. Similar results can also be observed in Tables 4 and 5.

Closely looking at C1, C9, and C10, in Table 3, (or C1, C4 in Table 4 and C8 and C10 in Table 5)
we can observe that there are at least two features that equally contribute to them. In other words,
some road features show some degree of collinearity. Finally, Features F3 (number of left turns)
and F7 (median angle of turns in the road) both contributed about 40% to the first components
(C1), which is the most important component according to PCA.

Therefore, we can conclude that the designed road features show some level of multi-collinearity,
which is limited to a few features and for a few latent components. Hence, we use PCA for dimen-
sionality reduction and feature extraction as described in Section 4.2.1. In particular, we select the
top h = 10 principal components as they correspond to (cumulatively) 98% of the original data
variance. According to the PCA Tables, the last six components are negligible as together account
for less than 2% of the data variance in all of the datasets.

Given the results above, we used the lower-dimensional M ′ matrix produced by the PCA with
h = 10 to compute the Euclidean distances and the fitness function used by SDC-Prioritizer and
greedy-based test prioritization in RQ2 and RQ3. In particular, we use the new set of (non-collinear)
features obtained with Equation (10).

Finding 1. The designed road features show some level of multi-collinearity. The first ten prin-
cipal components produced by PCA allowed the identification of the ten meta-features, repre-
senting 98% of the original datasets’ variance, to consider for experimenting with prioritization
strategies (i.e., RQ2).

5.2 RQ2: Cost-effectiveness of SDC-Prioritizer Compared to Baseline Approaches

This section compares SO-SDC-Prioritizer , MO-SDC-Prioritizer , random and greedy-based test pri-
oritizations in terms of APFDc . For both SDC-Prioritizer and the greedy-based approach, we use the
first 10 principal components produced by PCA (detailed in Section 5.1). This allows us to perform
an unbiased evaluation. We do not use these features nor the PCA for random search since (unlike
SDC-Prioritizer and greedy) it does not require features to measure the distance between two tests.
Figure 5 depicts the APFDc values achieved by SO-SDC-Prioritizer , MO-SDC-Prioritizer , greedy-
based, and random test prioritization approaches. As we can see in this figure, the best perform-
ing test prioritization in all of the datasets is MO-SDC-Prioritizer . In each dataset, the minimum
APFDc achieved by MO-SDC-Prioritizer is higher than the maximum APFDc achieved by other test

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

5.1

28:20 C. Birchler et al.

Fig. 5. APFDc achieved by SO-SDC-Prioritizer , MO-SDC-Prioritizer , and greedy approach with ten features

and random test prioritization. The diamond (�) denotes the arithmetic mean, and the bold line (—) is the

median.

prioritization configurations. In all three datasets, the minimum APFDc achieved by MO-SDC-
Prioritizer is at least 2%, 4%, 30% is higher than the highest APFDc produced by greedy, SO-SDC-
Prioritizer , and random test prioritization, respectively. On average, MO-SDC-Prioritizer reaches
about 3%, 6%, and 25.5% higher APFDc than Greedy, SO-SDC-Prioritizer , and random test prioriti-
zation, respectively. The second-best test prioritization technique is the greedy search (achieving
an average APFDc of 79.5%), followed by SO-SDC-Prioritizer (with an average APFDc of 76.5%) and
random test prioritization (with an average APFDc of 49.9%).

Moreover, as reported in Table 6, MO-SDC-Prioritizer significantly (P-values < 1.0e − 10) out-
performs (as all Â12 values are all higher than 0.5) both random and greedy test prioritization in
terms of APFDc score. The magnitude of the difference (effect size) is large in all datasets. Same as
MO-SDC-Prioritizer , SO-SDC-Prioritizer significantly outperforms random test prioritization. How-
ever, this test prioritization technique achieves significantly lower APFDc values in comparison
with greedy-based test prioritization in all datasets. Similar to the pairwise comparison of SDC-
Prioritizer variants with baselines, MO-SDC-Prioritizer significantly achieves higher APFDc than
SO-SDC-Prioritizer in all datasets (P-values < 1.0e−10, Â12 = 1, and large magnitude of effect sizes).

To provide more insights into these results, we graphically compare the cumulative number of
faults detected by the different approaches when running the test cases incrementally according
to the test prioritizations they produced. For each dataset, we took a more detailed look at the
permutations generated by each SDC-Prioritizer variant that achieve an APFDc value equal to
the median of the APFDc values delivered by all applications of that SDC-Prioritizer variant on a
specific dataset. Specifically, for each of the SO-SDC-Prioritizer and MO-SDC-Prioritizer , we sam-
pled three permutations generated by these techniques for each of the datasets. For each dataset,
we compare the sampled permutations against the best output of random (i.e., the permutation
generated by random that gains the best APFDc) and greedy strategies. For this comparison, we

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:21

Table 6. Comparison of APFDc Score Achieved by SO-SDC-Prioritizer and MO-SDC-Prioritizer Against

the Baselines, for each of the Datasets Used in this Study

GA Config. Dataset Vs. Random Vs. Greedy

Â12 p Magnitude Â12 p Magnitude
BeamNG.AI.AF1 1.0 3.016e-11 large 1.0 1.21e-12 large

MO-SDC-Prioritizer BeamNG.AI.AF1.5 1.0 3.016e-11 large 1.0 1.211e-12 large
DeepDriving 1.0 2.113e-11 large 1.0 7.602e-13 large
BeamNG.AI.AF1 1.0 3.018e-11 large 0.0 1.211e-12 large

SO-SDC-Prioritizer BeamNG.AI.AF1.5 1.0 3.018e-11 large 0.0 1.212e-12 large
DeepDriving 1.0 3.018e-11 large 0.0 1.211e-12 large

p-values for Wilcoxon tests, Vargha Delaney’s estimates (Â12), and magnitudes are reported.

Fig. 6. Cost-effectiveness curves produced by the different TPC methods. Each curve depicts the cumulative

number of detected faults the cumulative test execution costs yielded by the TCPs.

analyze the rate of fault occurrences during the execution of tests, according to the generated
permutations.

Figure 6 depicts this comparison for each dataset. As we can see from the figure, in all of the
benchmarks, running the tests using the test case orders generated by MO-SDC-Prioritizer leads
to a higher rate of fault occurrence in a shorter time. As a concrete example, in this figure, we
highlighted the number of faults that occurred with the first 20% of the test execution. In the
dataset BeamNG.AI.AF1 (Figure 6(a)), the permutation generated by MO-SDC-Prioritizer leads to
the detection of 234 faults in the first 20% of test execution time. This value reduces for greedy
(203), SO-SDC-Prioritizer (176), and random (87) test prioritization approaches. Similarly, in the
second dataset (Figure 6(b)), MO-SDC-Prioritizer generates a permutation, which is able to detect
469 faults in the first 20% of the test execution. Also, in this case, this number is lower for the
other approaches: 394, 335, and 154 faults detected by the greedy, SO-SDC-Prioritizer , and random
approaches, respectively. The same trend is observed in the dataset of Driver.AI (Figure 6(c)), in
which, the sampled permutation from MO-SDC-Prioritizer can detect 845 faults, i.e., +85, +126, and
+620 more faults compared to greedy, SO-SDC-Prioritizer , and random algorithms, respectively.

Finding 2. MO-SDC-Prioritizer increases the APFDc score on average compared with random
and greedy approaches. The improvement achieved by SDC-Prioritizer , in terms of fault detection
rate, is statistically significant. Unlike MO-SDC-Prioritizer , which is the best performing test
prioritization technique in terms of fault detection capability, SO-SDC-Prioritizer only achieves
higher APFDc than random approach. This observation stems from the lack of exploration ability
in this single-objective meta-heuristic, which drives the search process to trap local optima.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:22 C. Birchler et al.

Fig. 7. Percentage of non-dominated solutions generated by MO-SDC-Prioritizer that achieve a higher

APFDc compared to greedy-based test prioritization.

5.2.1 Pareto Fronts in MO-SDC-Prioritizer. As explained in Section 3, same as any other multi-
objective approaches, MO-SDC-Prioritizer returns a set of non-dominated solutions in output. To
answer RQ2, we selected the closest non-dominated solution to the utopia point (explained in
Section 3.3.2). Results presented by this section indicated that this solution has higher APFDc com-
pared to the test execution orders generated by other techniques. However, we perform a more
in-depth analysis to understand whether other non-dominated solutions could be selected from
the Pareto front. To this aim, we compare the Pareto fronts (i.e., non-dominated test orders) gen-
erated by each MO-SDC-Prioritizer’s run with the APFDc achieved by the second-best technique
(i.e., greedy-based test prioritization) in terms of fault detection capability. Figure 7 presents the
percentage of non-dominated solutions generated by MO-SDC-Prioritizer that achieves a higher
APFDc compared to the Greedy approach. On average, about 94% of non-dominated solutions gen-
erated by MO-SDC-Prioritizer can detect more unsafe tests than Greedy and in shorter times (i.e.,
they have higher APFDc). Even in the worst scenario (17th execution of MO-SDC-Prioritizer on
BeamNG.AI.AF1 dataset), more than 61% of generated solutions in the final Pareto front produced
by MO-SDC-Prioritizer has higher APFDc compared to Greedy. The highest performance of MO-
SDC-Prioritizer can be observed when this test prioritization technique is utilized to prioritize tests
for the DeerDriving dataset in which, on average, 99.7% of solutions have higher APFDc than the
ones generated by Greedy test prioritization.

To better understand the impacting factors that lead the generated non-dominated solutions
to achieve a high APFDc , we manually analyzed the APFDc values of Pareto fronts generated by
MO-SDC-Prioritizer in each dataset. In all of the cases, we observed the same trend as the sample,
presented in Figure 8. This figure is a two-dimensional vector in which each dimension indicates
one of the MO-SDC-Prioritizer’s search objectives (diversity and execution cost). As we can see, all
solutions with the lowest APFDc (red points in the Pareto front) are the extreme points with the
maximum diversity and maximum test execution costs. In addition, the solution with the highest
APFDc (the orange diamond point) is not in the extreme parts of the Pareto front (i.e., it has a good
balance between the diversity and execution cost). As we can observe, the knee point selected
by MO-SDC-Prioritizer is among the middle points in the front with the largest APFDc . Besides,
it is very close to the best point (in terms of APFDc) within the Pareto front. This observation
empirically supports the technique we used for selecting the final test order (the yellow diamond
point).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:23

Fig. 8. A sample of Pareto front generated by MO-SDC-Prioritizer in BeamNG.AI.AF1.5 dataset. Each circle

point represents one of the non-dominated solutions in the Pareto front. The blue points are the solutions

with an APFDc score larger than the one produced by the greedy algorithm. The orange and yellow diamond

points indicate the solution with the highest APFD and the closest solution to the utopia point, respectively.

Finding 3. On average, the majority (94%) of the solutions generated by MO-SDC-Prioritizer
has higher APFDc than Greedy (the second-best test prioritization technique for detecting faults
in a shorter time). By taking a deeper look at non-dominated solutions generated by MO-SDC-
Prioritizer , we can see that the few solutions with lower APFDc are at the extremes of the Pareto
front. Moreover, the solutions with the highest APFDc values are the ones that have a balance
between tests diversity and test execution cost.

5.3 RQ3: Overhead of SDC-Prioritizer

Figure 9 illustrates the distribution of the time consumed by SO-SDC-Prioritizer , MO-SDC-Prioritiz-
er , and greedy test prioritization. As this figure shows, on average, SO-SDC-Prioritizer and MO-
SDC-Prioritizer require about 12.5 and 11.5 minutes to finish the search process with 4,000 gen-
erations, respectively. Practically, this amount of time is negligible if we consider the total 16 to
106 hours needed to run the entire set of tests, and that both variants of SDC-Prioritizer do not
negatively impact the performance (e.g., on fault detection) of testing practices. In fact, the overall
overhead accounts for 0.38% (for Driver.AI) and a maximum of 0.45% (for BeamNG.AI.AF1.5) of
the cost needed to run the entire test suites.

Finding 4. The overhead introduced by each SDC-Prioritizer variants is less than 13 minutes and
is imperceptible for an SDC simulation pipeline used by developers to test the SDCs behavior in
critical scenarios.

Figure 9 shows that (right side of the Figure) the average time required by the greedy approach is
about five times shorter than what SO-SDC-Prioritizer or MO-SDC-Prioritizer needs. Even though
MO-SDC-Prioritizer is slower than greedy (i.e., it needs about 10 minutes more time), it performs
better in terms of APFDc score (as shown by Section 5.2).

Finding 5. On average, MO-SDC-Prioritizer needs about 10 minutes more than the greedy test
prioritization. However, this negligible extra overhead significantly increases the APFDc values
achieved by the subsequently generated test prioritization.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:24 C. Birchler et al.

Fig. 9. Running time of the different TCP approaches.

Finally, it is worth mentioning that SDC-Prioritizer techniques include two main parts: (i) pair-
wise comparison of distances between every two tests (using Euclidean distance), and (ii) running
the GA. The former is a one-time task (i.e., by one execution, we can run the GA multiple times)
with the time complexity of O (n2), where n is the number of tests. Since the latter part uses the
values calculated in pairwise distance calculation for fitness function evaluation, the complexity
of this task is O (n) (this complexity is due to the search for the most diverse test). Also, the time
complexities of mutation and crossover operators are O (n). Hence, SDC-Prioritizer has O (n2) one-
time cost (for calculating the distances) and O (n ×m) for the whole search process, where n is
the number of tests, and m is the number of fitness evaluations. According to this information,
we can confirm that SDC-Prioritizer scales for a large-size test set. Similarly, the test suites used
in our study are much larger than the other ones reported in prior studies on regression testing
[71]. Our largest test suite (Driver.AI) contains 5,630 tests. On average, SDC-Prioritizer approaches
performed the test prioritization for this test suite in less than 25 minutes.

6 THREATS TO VALIDITY

Threats to construct validity concern the relationship between theory and observation. In this
case, threats can be mainly due to the imprecision in simulation realism as well as the automated
classification of safe and unsafe scenarios. We mitigated both threats by leveraging BeamNG (used
in this year‘s SBST tool competition [66]) as a soft-body simulation environment (which ensures a
high simulation accuracy in safety-critical scenarios) and SDC-Scissor [15] (which integrates also
AsFault) as a technological reference solution to generate and execute test cases, as detailed in
Section 4. Furthermore, to address the potential threat to have high variability in execution time
of the executed tests, we selected a sample of 50 test cases (using a stratified random sampling,
equal distribution of safe and unsafe tests) and executed them 10 times each. As mentioned in
Section 4.2.2, the standard deviation of the execution time is negligible.

Threats to internal validity may concern, as for previous work [38], the relationships between
the technologies used to generate the scenarios and the realism of simulation results. Specifically,
we did not recreate all the elements that can be found on real roads (e.g., weather conditions

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

Single and Multi-objective Test Cases Prioritization for SDCs 28:25

and light conditions). However, to increase our internal validity, we focused on the usage of both
BeamNG.AI and Driver.AI as test subjects. This allows us to assess the cost-effectiveness of our
approach by experimenting with different driving styles and driving risk levels. Both BeamNG.AI
and Driver.AI leverage a good knowledge of the roads, which means that they do not suffer from
limitations of vision-based lane-keeping systems. However, since with BeamNG.AI it is possible
to adjust the driving risk level, a higher amount of unsafe test scenarios can be observed. Hence,
an AI implemented in physical SDC might be much more conservative in its driving style, which
is something we plan to investigate for future work.

Finally, threats to external validity concern the generalization of our findings. The number of
experimented test case scenarios in our study is larger than in previous studies [38] and we exper-
imented with different AI engines. However, our results could not generalize with the universe of
general open-source CPS simulation environments used in other domains. Therefore, further stud-
ies considering more SDC data, other CPS domains, and different safety requirements are expected.
To minimize potential external validity in our evaluation setting, we followed the guidelines by
Arcuri et al. [6]: we compared the results of SDC-Prioritizer with randomized test generation al-
gorithms (the baseline approaches described in Section 4) presented and repeated the experiment
30 times. Finally, we applied sound non-parametric statistical tests and statistics to analyze the
achieved results.

7 CONCLUSIONS & FUTURE WORK

Regression testing for SDCs is particularly expensive due to the cost of running many test driving
scenarios (test cases) that interact with simulation engines. To improve the cost-effectiveness of
regression testing, we introduced two black-box TCP approaches, called SO-SDC-Prioritizer and
MO-SDC-Prioritizer . These approaches rely on a set of static road features and are suitably designed
for SDCs. These features can be extracted from the driving scenarios prior to running the tests.
Both of these techniques utilize GAs to prioritize the test cases based on their distances (diversity)
computed using the proposed road features and test execution costs. SO-SDC-Prioritizer performs
a single-objective optimization to fulfill this task (i.e., both test diversity and execution costs are
included in a single fitness function), while MO-SDC-Prioritizer leverages one of the common multi-
objective GA (NSGA-II) to prioritize tests according to two search objectives (one for differences
of tests and the other one for test execution costs).

We empirically investigated the performances of SO-SDC-Prioritizer and MO-SDC-Prioritizer
and compared it with two baselines: random search and greedy algorithms. Finally, we assessed
whether these proposed techniques do not introduce a too large computational overhead to the re-
gression testing process. Our results show that MO-SDC-Prioritizer is more cost-effective than the
baseline approaches. Specifically, the single solution provided by MO-SDC-Prioritizer dominates
the solutions provided by SO-SDC-Prioritizer and the baselines in terms of test execution time and
fault detection capability. Moreover, both SDC-Prioritizer techniques successfully prioritize the
test cases independently of which AI engine is used (i.e., Driver.AI and BeamNG.AI) or different
risk levels (i.e., different driving styles). Interestingly, looking at the running time, we can observe
that the overhead required by SO-SDC-Prioritizer and MO-SDC-Prioritizer in prioritizing the test
scenarios is negligible with regards to the overall test execution cost.

We plan to replicate our study on further SDC AIs and additional SDC features as future work.
Moreover, we plan to perform new empirical studies on further CPS domains to investigate addi-
tional safety criteria concerning new types of faults different from those investigated in this work.
Specifically, important for this is to investigate approaches that are more human-oriented or are
able to integrate humans into-the-loop [42, 67, 79, 80]. Moreover, we want to investigate different
meta-heuristics in addition to the GA used in this article. Complementary, we aim to investigate

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

28:26 C. Birchler et al.

different distance functions to measure the diversity of the test cases (e.g., graph-based distances
over feature-vector-based distances). Finally, we plan to integrate the proposed solution based on
the experimented simulation environments to prioritize devise signals into industrial context such
as AICAS context,5 involved in the COSMOS H2020 project.6

REFERENCES

[1] 2020. NVIDIA DRIVE Constellation. Retrieved 16 June 2022 from https://developer.nvidia.com/drive/drive-
constellation.

[2] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018. Testing au-
tonomous cars for feature interaction failures using many-objective search. In Proceedings of the IEEE/ACM Inter-

national Conference on Automated Software Engineering. IEEE, 143–154.
[3] Academies of Sciences. 2017. A 21st Century Cyber-Physical Systems Education. National Academies Press.
[4] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher S. Timperley. 2020. A study on the challenges of

using robotics simulators for testing. CoRR, arXiv:2004.07368. Retrieved from https://arxiv.org/abs/2004.07368.
[5] Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte Lochau, and Gunter Saake. 2014. Similarity-based prioritiza-

tion in software product-line testing. In Proceedings of the 18th International Software Product Line Conference, Stefania
Gnesi, Alessandro Fantechi, Patrick Heymans, Julia Rubin, Krzysztof Czarnecki, and Deepak Dhungana (Eds.). ACM,
197–206. DOI: https://doi.org/10.1145/2648511.2648532

[6] Andrea Arcuri and Lionel C. Briand. 2014. A Hitchhiker’s guide to statistical tests for assessing randomized algorithms
in software engineering. Software Testing Verification and Reliability 24, 3 (2014), 219–250. DOI: https://doi.org/10.1002/
stvr.1486

[7] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An empirical investigation in search-
based software engineering. Empirical Software Engineering 18, 3 (2013), 594–623.

[8] Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria, and Justyna Zander. 2016. Automatic generation of test system
instances for configurable cyber-physical systems. Software Quality Journal 25, 3 (Sept. 2016), 1041–1083. DOI: https:
//doi.org/10.1007/s11219-016-9341-7

[9] Aitor Arrieta, Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2018. Multi-
objective black-box test case selection for cost-effectively testing simulation models. In Proceedings of the Genetic and

Evolutionary Computation Conference. 1411–1418.
[10] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2018. Employing multi-objective

search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE

Transactions on Industrial Informatics 14, 3 (2018), 1055–1066. DOI: https://doi.org/10.1109/TII.2017.2788019
[11] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Search-based test case selection of cyber-

physical system product lines for simulation-based validation. In Proceedings of the 20th International Systems and

Software Product Line Conference, Hong Mei (Ed.). ACM, 297–306. DOI: https://doi.org/10.1145/2934466.2946046
[12] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2019. Search-based test case prioritization for

simulation-Based testing of cyber-Physical system product lines. Journal of Systems and Software 149 (2019), 1–34.
DOI: https://doi.org/10.1016/j.jss.2018.09.055

[13] Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The Impact of Control Technology 12, 1 (2011), 161–
166.

[14] BeamNG.research. [n.d.]. BeamNG GmbH, “BeamNG.research – BeamNG.” Retrieved April 2021 from https://beamng.
gmbh/research/.

[15] Christian Birchler, Nicolas Ganz, Sajad Khatiri, Alessio Gambi, and Sebastiano Panichella. 2022. Cost-effective
simulation-based test selection in self-driving cars software with SDC-scissor. 2022. In Proceedings of the 29th IEEE

International Conference on Software Analysis, Evolution, and Reengineering. To appear.
[16] Elizabeth Bondi, Debadeepta Dey, Ashish Kapoor, Jim Piavis, Shital Shah, Fei Fang, Bistra Dilkina, Robert Hannaford,

Arvind Iyer, Lucas Joppa, and Milind Tambe. 2018. AirSim-W: A simulation environment for wildlife conservation
with UAVs. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, Ellen W. Zegura
(Ed.). ACM, 40:1–40:12. DOI: https://doi.org/10.1145/3209811.3209880

[17] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. 2004. Finding knees in multi-objective opti-
mization. In Proceedings of the 8th International Parallel Problem Solving from Nature LNCS, Vol. 3242. Springer, Berlin,
722–731.

5https://www.aicas.com/wp/.
6https://www.cosmos-devops.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://developer.nvidia.com/drive/drive-constellation
https://arxiv.org/abs/2004.07368
https://doi.org/10.1145/2648511.2648532
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1007/s11219-016-9341-7
https://doi.org/10.1109/TII.2017.2788019
https://doi.org/10.1145/2934466.2946046
https://doi.org/10.1016/j.jss.2018.09.055
https://beamng.gmbh/research/
https://doi.org/10.1145/3209811.3209880
https://www.aicas.com/wp/
https://www.cosmos-devops.org/

Single and Multi-objective Test Cases Prioritization for SDCs 28:27

[18] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. 2006. Using genetic algorithms for early schedulability analysis
and stress testing in real-time systems. Genetic Programming and Evolvable Machines 7, 2 (2006), 145–170.

[19] Jinfu Chen, Lili Zhu, Tsong Yueh Chen, Dave Towey, Fei-Ching Kuo, Rubing Huang, and Yuchi Guo. 2018. Test case
prioritization for object-oriented software: An adaptive random sequence approach based on clustering. Journal of

Systems and Software 135 (2018), 107–125.
[20] Tsong Yueh Chen and Man Fai Lau. 1996. Dividing strategies for the optimization of a test suite. Information Processing

Letters 60, 3 (Nov. 1996), 135–141.
[21] Birchler Christian, Khatiri Sajad, Derakhshanfar Pouria, Panichella Sebastiano, and Panichella Annibale. 2021. Dataset

of the paper “Automated Test Cases Prioritization for Self-driving Cars in Virtual Environments”. DOI: https://doi.org/
10.5281/zenodo.5771017

[22] OpenStax CNX. 2021. OpenStax University Physics. Retrieved 16 June 2022 from http://cnx.org/contents/d50f6e32-
0fda-46ef-a362-9bd36ca7c97d@10.16.

[23] Helen G. Cobb and John J. Grefenstette. 1993. Genetic Algorithms for Tracking Changing Environments. Technical
Report. Naval Research Lab Washington DC.

[24] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. 2006. Evolutionary Algorithms for Solving

Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[25] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and exploitation in evolutionary algorithms: A

survey. ACM computing surveys 45, 3 (2013), 1–33.
[26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2000. A fast elitist multi-objective genetic algo-

rithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2000), 182–197.
[27] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 2 (2002), 182–197.
[28] Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea De Lucia. 2018. A test case prioritization genetic

algorithm guided by the hypervolume indicator. IEEE Transactions on Software Engineering 46, 6 (2018), 674–696.
[29] Carsten F. Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R. García Mar-

quéz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leitao, and Munkemuller T. 2013. Collinearity: A review of methods
to deal with it and a simulation study evaluating their performance. Ecography 36, 1 (2013), 27–46.

[30] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and Vladlen Koltun. 2017. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning. PMLR, 1–16. Retrieved from
http://proceedings.mlr.press/v78/dosovitskiy17a.html.

[31] Mingjing Du, Shifei Ding, and Hongjie Jia. 2016. Study on density peaks clustering based on k-nearest neighbors and
principal component analysis. Knowledge-Based Systems 99 (2016), 135–145.

[32] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating varying test costs and fault sever-
ities into test case prioritization. In Proceedings of the 23rd International Conference on Software Engineering. IEEE,
329–338.

[33] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015. Empirical evaluation of pareto efficient
multi-objective regression test case prioritisation. In Proceedings of the 2015 International Symposium on Software

Testing and Analysis. ACM, 234–245.
[34] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test set diameter: Quantifying the diversity of sets

of test cases. In Proceedings of the 2016 IEEE International Conference on Software Testing, Verification and Validation.
IEEE, 223–233.

[35] Erik Flores-García, Goo-Young Kim, Jinho Yang, Magnus Wiktorsson, and Sang Do Noh. 2020. Analyzing the charac-
teristics of digital twin and discrete event simulation in cyber physical systems. In Proceedings of the Advances in Pro-

duction Management Systems. Towards Smart and Digital Manufacturing, Bojan Lalic, Vidosav D. Majstorovic, Ugljesa
Marjanovic, Gregor von Cieminski, and David Romero (Eds.). Springer, 238–244. DOI: https://doi.org/10.1007/978-3-
030-57997-5_28

[36] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test cases for self-driving cars from police
reports. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM,
257–267. DOI: https://doi.org/10.1145/3338906.3338942

[37] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. AsFault: Testing self-driving car software using search-based
procedural content generation. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engi-

neering: Companion Proceedings. IEEE. DOI: https://doi.org/10.1109/icse-companion.2019.00030
[38] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-driving cars with search-based

procedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing

and Analysis. ACM, New York, NY, 318–328. DOI: https://doi.org/10.1145/3293882.3330566

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://doi.org/10.5281/zenodo.5771017
http://cnx.org/contents/d50f6e32-0fda-46ef-a362-9bd36ca7c97d@10.16
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1007/978-3-030-57997-5_28
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1109/icse-companion.2019.00030
https://doi.org/10.1145/3293882.3330566

28:28 C. Birchler et al.

[39] Aurélien Géron. 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Tech-

niques to Build Intelligent Systems. O’Reilly Media.
[40] David E. Goldberg. 2006. Genetic Algorithms. Pearson Education India.
[41] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand, and Yago Isasi. 2018. Enabling model testing

of cyber-physical systems. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems. ACM, New York, NY, 176–186. DOI: https://doi.org/10.1145/3239372.3239409
[42] Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio Palomba, and Harald Gall. 2018. Exploring the in-

tegration of user feedback in automated testing of Android applications. In Proceedings of the International Conference

on Software Analysis, Evolution and Reengineering.
[43] The Guardian. 2018. Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian. Retrieved 16

June 2022 from https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-
tempe.

[44] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving scalable model-based testing through test case
diversity. ACM Transactions on Software Engineering and Methodology 22, 1 (2013), 6.

[45] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Comparing white-box and
black-box test prioritization. In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering.
IEEE, 523–534.

[46] Sebastian G. Elbaum Hyunsook Do and Gregg Rothermel. 2005. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering 10 (2005), 405–435.

[47] Félix Ingrand. 2019. Recent trends in formal validation and verification of autonomous robots software. In Proceedings

of the 3rd IEEE International Conference on Robotic Computing. 321–328.
[48] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. 2009. Adaptive random test case prioritization. In Proceed-

ings of the 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 233–244.
[49] Nidhi Kalra and Susan Paddock. 2016. Driving to safety: How many miles of driving would it take to demonstrate

autonomous vehicle reliability? Transportation Research Part A: Policy and Practice 94 (Dec. 2016), 182–193. DOI: https:
//doi.org/10.1016/j.tra.2016.09.010

[50] Jiseob Kim, Sunil Chon, and Jihwan Park. 2019. Suggestion of testing method for industrial level cyber-physical system
in complex environment. In Proceedings of the 2019 IEEE International Conference on Software Testing, Verification and

Validation Workshops. IEEE. DOI: https://doi.org/10.1109/icstw.2019.00043
[51] Juhani Koski and Risto Silvennoinen. 1987. Norm methods and partial weighting in multicriterion optimization of

structures. Internaternational Journal for Numerical Methods in Engineering 24, 6 (1987), 1101–1121.
[52] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012. Prioritizing test cases with string dis-

tances. Automated Software Engineering 19, 1 (2012), 65–95.
[53] Hong Li, Yong-Chang Jiao, Li Zhang, and Ze-Wei Gu. 2006. Genetic algorithm based on the orthogonal design for

multidimensional knapsack problems. Advances in Natural Computation 4221 (2006), 696–705.
[54] Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search algorithms for regression test case prioritization. IEEE

Transactions on Software Engineering 33, 4 (2007), 225–237. DOI: https://doi.org/10.1109/TSE.2007.38
[55] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. 2020. Deep drone racing: From

simulation to reality with domain randomization. IEEE Transactions on Robotics 36, 1 (2020), 1–14.
[56] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, and Sebastian Elbaum. 2006. Cost-cognizant Test Case

Prioritization. Technical Report. Technical Report TR-UNL-CSE-2006-0004, University of Nebraska-Lincoln.
[57] Alessandro Marchetto, Md Mahfuzul Islam, Waseem Asghar, Angelo Susi, and Giuseppe Scanniello. 2015. A multi-

objective technique to prioritize test cases. IEEE Transactions on Software Engineering 42, 10 (2015), 918–940.
[58] R. T. Marler and J. S. Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and

Multidisciplinary Optimization 26 (2004), 369–395.
[59] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude Poull. 2013. Automated model-in-the-

loop testing of continuous controllers using search. In Proceedings of the International Symposium on Search Based

Software Engineering. Springer, 141–157.
[60] Jaruwan Mesit and Ratan K. Guha. 2011. A general model for soft body simulation in motion. In Proceedings of the

Winter Simulation Conference, S. Jain, Roy R. Creasey Jr., Jan Himmelspach, K. Preston White, and Michael C. Fu 0001
(Eds.). IEEE, 2690–2702. Retrieved from http://dl.acm.org/citation.cfm?id=2431518.

[61] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and Raimondas Sasnauskas. 2018. A search-
based approach for accurate identification of log message formats. In Proceedings of the 26th Conference on Program

Comprehension. 167–177.
[62] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. 2018. Fast approaches to scalable

similarity-based test case prioritization. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Soft-

ware Engineering (ICSE). IEEE, 222–232.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://doi.org/10.1145/3239372.3239409
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1109/icstw.2019.00043
https://doi.org/10.1109/TSE.2007.38
http://dl.acm.org/citation.cfm?id=2431518

Single and Multi-objective Test Cases Prioritization for SDCs 28:29

[63] Réka Nagy, Mihai A. Suciu, and Dumitru Dumitrescu. 2012. Lorenz equilibrium: Equitability in non-cooperative games.
In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 489–496.

[64] Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea De Lucia. 2020. A test case prioritization genetic
algorithm guided by the hypervolume indicator. IEEE Transactions on Software Engineering 46, 6 (2020), 674–696. DOI:
https://doi.org/10.1109/TSE.2018.2868082

[65] Annibale Panichella, Fitsum M. Kifetew, and Paolo Tonella. 2015. Reformulating branch coverage as a many-objective
optimization problem. In Proceedings of the 8th IEEE International Conference on Software Testing, Verification and

Validation. IEEE, Piscataway, NJ, 1–10.
[66] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio. 2021. SBST tool competition 2021. In

Proceedings of the International Conference on Software Engineering, Workshops, 2021. ACM.
[67] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo Canfora, and Harald C.

Gall. 2015. How can i improve my app? Classifying user reviews for software maintenance and evolution. In Proceed-

ings of the International Conference on Software Maintenance and Evolution, Rainer Koschke, Jens Krinke, and Martin P.
Robillard (Eds.). IEEE Computer Society, 281–290. DOI: https://doi.org/10.1109/ICSM.2015.7332474

[68] Singiresu S. Rao and TI Freiheit. 1991. A modified game theory approach to multiobjective optimization. Journal of

Mechanical Design 113, 3 (1991), 286–291.
[69] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning

system testing. In Proceedings of the ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 13 pages. DOI: https://doi.org/10.1145/3368089.3409730
[70] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An empirical study of the effects of

minimization on the fault detection capabilities of test suites. In Proceedings of the International Conference on Software

Maintenance. IEEE CS Press, 34–44.
[71] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. 1999. Test case prioritization: An empirical study. In

Proceedings of the IEEE International Conference on Software Maintenance. 179–188. DOI: https://doi.org/10.1109/ICSM.
1999.792604

[72] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999. Test case prioritization: An empir-
ical study. In Proceedings of the IEEE International Conference on Software Maintenance. IEEE, 179–188.

[73] Abdel Salam Sayyad, Katerina Goseva-Popstojanova, Tim Menzies, and Hany Ammar. 2013. On parameter tuning in
search based software engineering: A replicated empirical study. In Proceedings of the 2013 3rd International Workshop

on Replication in Empirical Software Engineering Research. IEEE, 84–90.
[74] J. David Schaffer, Rich Caruana, Larry J. Eshelman, and Rajarshi Das. 1989. A study of control parameters affecting

online performance of genetic algorithms for function optimization. In Proceedings of the 3rd International Conference

on Genetic Algorithms. 51–60.
[75] Martin Serpell and James E. Smith. 2010. Self-adaptation of mutation operator and probability for permutation repre-

sentations in genetic algorithms. Evolutionary Computation 18, 3 (Sep. 2010), 491–514. DOI: https://doi.org/10.1162/
EVCO_a_00006

[76] Seung Yeob Shin, Karim Chaouch, Shiva Nejati, Mehrdad Sabetzadeh, Lionel C. Briand, and Frank Zimmer. 2018.
HITECS: A UML profile and analysis framework for hardware-in-the-loop testing of cyber physical systems. In Pro-

ceedings of the International Conference on Model Driven Engineering Languages and Systems. ACM, 357–367.
[77] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Lionel C. Briand, and Frank Zimmer. 2018. Test case prioritization

for acceptance testing of cyber physical systems: A multi-objective search-based approach. In Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis, Frank Tip and Eric Bodden (Eds.). ACM,
49–60. DOI: https://doi.org/10.1145/3213846.3213852

[78] Sebastian Sontges and Matthias Althoff. 2018. Computing the drivable area of autonomous road vehicles in dynamic
road scenes. IEEE Transactions on Intelligent Transportation Systems 19, 6 (2018), 1855–1866. DOI: https://doi.org/10.
1109/TITS.2017.2742141

[79] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Corrado Aaron Visaggio, Gerardo
Canfora, and Harald C. Gall. 2016. What would users change in my app? summarizing app reviews for recommending
software changes. In Proceedings of the International Symposium on Foundations of Software Engineering, Thomas Zim-
mermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 499–510. DOI:https://doi.org/10.1145/2950290.2950299

[80] The-Washington-Post. 2019. Uber’s radar detected Elaine Herzberg nearly 6 seconds before she was fatally struck,
but “the system design did not include a consideration for jaywalking pedestrians” so it didn’t react as if she were a
person. Retrieved 16 June 2022 from https://mobile.twitter.com/faizsays/status/1191885955088519168.

[81] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein. 2014. Static test case prioritization
using topic models. Empirical Software Engineering 19, 1 (2014), 182–212.

[82] András Vargha and Harold D. Delaney. 2000. A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1145/3368089.3409730
https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1162/EVCO_a_00006
https://doi.org/10.1145/3213846.3213852
https://doi.org/10.1109/TITS.2017.2742141
https://doi.org/10.1145/2950290.2950299
https://mobile.twitter.com/faizsays/status/1191885955088519168

28:30 C. Birchler et al.

[83] Jiaxuan Xu, Qi Luo, Kecheng Xu, Xiangquan Xiao, Siyang Yu, Jiangtao Hu, Jinghao Miao, and Jingao Wang. 2019.
An automated learning-based procedure for large-scale vehicle dynamics modeling on baidu apollo platform. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 5049–5056. DOI:
https://doi.org/10.1109/IROS40897.2019.8968102

[84] Rajaa Vikhram Yohanandhan, Rajvikram Madurai Elavarasan, Premkumar Manoharan, and Lucian Mihet-Popa. 2020.
Cyber-physical power system (CPPS): A review on modeling, simulation, and analysis with cyber security applications.
IEEE Access 8 (2020), 151019–151064. DOI: https://doi.org/10.1109/ACCESS.2020.3016826

[85] Shin Yoo. 2010. A novel mask-coding representation for set cover problems with applications in test suite minimisation.
In Proceedings of the 2nd International Symposium on Search-Based Software Engineering. IEEE.

[86] Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation.
Journal of Systems and Software 83, 4 (2010), 689–701.

[87] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Software Testing,

Verification and Reliability 22, 2 (March 2012), 67–120.
[88] Eleni Zapridou, Ezio Bartocci, and Panagiotis Katsaros. 2020. Runtime verification of autonomous driving systems in

CARLA. In Proceedings of the Runtime Verification, Jyotirmoy Deshmukh and Dejan Ničković (Eds.). Springer Interna-
tional Publishing, Cham, 172–183.

[89] Béla Újházi, Rudolf Ferenc, Denys Poshyvanyk, and Tibor Gyimóthy. 2010. New conceptual coupling and cohesion
metrics for object-oriented systems. In Proceedings of the 2010 10th IEEE Working Conference on Source Code Analysis

and Manipulation. 33–42. DOI: https://doi.org/10.1109/SCAM.2010.14

Received 13 July 2021; revised 21 December 2021; accepted 27 April 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 28. Pub. date: March 2023.

https://doi.org/10.1109/IROS40897.2019.8968102
https://doi.org/10.1109/ACCESS.2020.3016826
https://doi.org/10.1109/SCAM.2010.14

