
Stereoscopic Clustered Light Shading
by

Mick van Gelderen

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday 14 February 2020 at 16:00.

Student number 4091566
Project duration April 2018 - February 2020
Thesis committee Prof. Elmar Eisemann (supervisor) CGV, TU Delft

Dr. David Tax PRB, TU Delft
Dr. Markus Billeter (daily supervisor) CGV, TU Delft

2

Abstract
Real-time realistic rendering requires the evaluation of the influence of many light sources. In case of
dynamic geometry or light sources, this evaluation must be performed every frame. In this thesis I
present enclosed clustering: an adaptation of Clustered Light Shading to stereoscopic rendering which
cuts the per-eye cost of light assignment in half. To achieve this, clustering is performed once with a
clustering camera frustum that encloses both of the eye camera frusta. Decoupling of the clustering
camera from the rendering camera gives way to two alternative ways of constructing the clustering:
orthographic clustering and displaced perspective clustering. Orthographic clustering uses a uniform
world-space grid and has been traditionally dismissed. Displaced perspective clustering uses a decoupled
clustering camera to reduce the number of small clusters near the camera. These techniques can be
applied to both monoscopic and stereoscopic rendering.

Keywords: Real-Time Graphics, Clustered Light Shading, Stereoscopic Rendering, Virtual Reality,
Light Culling.

ii

Preface
Silly as it may be, completing this thesis was one of the hardest things I have done in my life. I consider
myself lucky to be able to say my life has been smooth sailing, especially in terms of education. My
master thesis however, was different. At the beginning I didn’t even know where to start. I would be
working on this project for almost a year and deciding on “the right” subject, when there are so many
interesting subjects to pick, seemed important. Additionally, it felt almost impossible to produce a thesis
which makes a proper scientific contribution, something I understood to be essential for a high-quality
master thesis, as I was competing with developers and researchers with many years of experience. After
drifting around in the sea of project proposals for some time, I finally found an understandable project
with a clear goal thanks to my supervisor, Elmar Eisemann, and got really exited.

At the very start of the project, I decided I would develop my own renderer. I imagined myself
knowing what I wanted to achieve, but unable to figure out how to actually do it in some existing
rendering engine. I would much rather learn what goes into creating an engine, than to learn how
to use one. Obviously, this decising was going to, and definitely did, cost me dearly in terms of time
and effort. In the end however, I am happy I did. I am very proud of the renderer I wrote, as it
is performant and has many useful features like automatic shader and configuration reloading, state
recovery on restart, proper profiling, the ability to record and replay user input, fast model loading, and
more. As the renderer is somewhat complex and developed over a year without previous experience, a
lot of maintenance work was involved as I needed to refactor the code frequently to keep it performant
and extensible. Of course, corners were cut and the resulting code has rough edges. For example, adding
a new shader programs or a new shader variable requires changes in multiple places which creates an
unnecessary barrier to experimentation. In the past year I gained a lot of experience and also a lot of
appreciation for existing rendering engines like Unity and Unreal Engine.

Working on the renderer consistently was a challenge. I can take a set-back or two, but when my
screen is completely black for the third time, my willpower is challenged. If I can’t find the problem
after re-reading both the code and the documentation multiple times, it becomes really easy to give
up. Fortunately, one of the most knowledgeable and kind people I know, Markus Billeter, was there
to support me when I needed it the most. I also want to thank Nestor Salamon, Leonardo Scandolo,
Mijael Bueno Perez, Baran Usta, Ahmad Nasikun, and many others from the Computer Graphics and
Visualisation group at TU Delft for their general support. I will always remember the fun and helpful
conversations we have had and the reassurance you gave me. I also want to thank my friends Oliver
Lee, Olivier Hokke, Diego Valdivia and my family for their support in rough times, I love you guys.
Without these and many more people than reasonably fit on this page, this thesis would have never
seen the light of day.

Speaking of light...

Mick van Gelderen Delft, February 2020

iv

Contents
1 Introduction 1

1.1 Real-Time Graphics . 1
1.2 Physically-based Rendering . 1
1.3 Virtual Reality . 3
1.4 Contributions and Structure . 3

2 Background and Related Work 5
2.1 Geometry, Lights and Cameras . 5
2.2 Rasterization Pipeline . 6
2.3 Forward Rendering . 6
2.4 Deferred Rendering . 6
2.5 Many-Light Rendering . 7

2.5.1 Light Culling . 7
2.5.2 Global Illumination . 8

2.6 Utilizing Coherency in Stereoscopic Rendering . 8
2.7 Alternative Projections . 8

3 Clustered Light Shading 9
3.1 Cluster Space Construction . 9
3.2 Cluster Visibility . 11
3.3 Light Assignment . 12
3.4 Shading . 13

4 Methods 15
4.1 Enclosed Clustering . 16

4.1.1 Enclosed clustering camera construction . 16
4.1.2 Revised cluster index computation . 19

4.2 Orthographic Clustering . 19
4.3 Displaced Perspective Clustering . 20
4.4 Multi-View Rendering . 21
4.5 Summary . 21

5 Implementation 23
5.1 Cluster Space Construction . 24
5.2 Cluster Visibility . 24

5.2.1 Precision Considerations . 25
5.2.2 Transparency . 25
5.2.3 Multi-Sample Anti-Aliasing . 25

5.3 Light Assignment . 26
5.4 Shading . 26

vi CONTENTS

6 Results and Discussion 29
6.1 Evaluation Method . 29

6.1.1 Profiling . 29
6.1.2 Scenes . 30
6.1.3 Camera Configuration . 30
6.1.4 Lighting Conditions . 30
6.1.5 Machine . 30

6.2 Cluster Construction Method Parameters . 31
6.3 Enclosed Clustering . 35
6.4 Orthographic- and Displaced Perspective Clustering . 37

7 Conclusion 43
7.1 Enclosed Clustering . 43
7.2 Orthographic Clustering . 43
7.3 Displaced Perspective Clustering . 43
7.4 Future Work . 44

A Choosing a light attenuation function 47
A.1 Function parameters . 47
A.2 Considered functions . 48
A.3 Evaluation . 49

B Global Illumination 53

C Sun Temple results 57

D Prefix Sum 61
D.1 Motivation . 61
D.2 Stream compaction . 62
D.3 Parallel prefix-sum . 63

E Orthographic and Perspective Projection 65
E.0.1 Projection Matrices . 66

1
Introduction

Computer graphics is the science of generating images with the aid of computers. It has applications
in many industries. For example: animators use computer graphics to create animated movies, doctors
look at 3D colored visualisations generated from raw medical scan data, and realistic renders of products
are used for marketing purposes. Because of the variety in applications, there are many different fields
within computer graphics. Sections 1.1 through 1.3 introduce real-time graphics, rendering and virtual
reality, guiding the reader to the area of interest for this thesis. Section 1.4 describes my contributions
and the structure of this thesis.

1.1 Real-Time Graphics
We can categorize the time-frame within which an image needs to be produced into offline-, interactive-,
and real-time methods. Offline methods are used in, for example, the movie industry. There exist
so called render farms, where many computers together render high-quality images and animations.
Interactive methods are capable of producing images in a few seconds. These are seen in visualizations
in the medical domain and previews generated by 3D modelling software. Real-time methods is the
most constrained category. The time in which an image must be produced is so small that we perceive
it as instantaneous. This is important for many games, but also for immersive training simulations used
in the training of, for example, firemen and doctors.

The work in this thesis is concerned with real-time graphics. Real-time means that we can generate
a new image at the display’s refresh rate, which has traditionally been around 60 times per second.
Commercial displays with even higher frame rates are starting to show up, like 90Hz for the HTC Vive
(where we have to generate two images) and 240Hz for some gaming displays. The higher the frame
rate, the less time there is to compute a new image.

1.2 Physically-based Rendering
Physically-based rendering, within the context of computer graphics, is the act of generating an image
that resembles reality. Without light we can not see anything. It follows naturally that when we render
images of virtual worlds, light plays an important role. In fact, when we render an image, we are
actually simulating light.

To render an image we need geometry, light sources and a camera. The geometry in a scene is
usually modelled as a collection of triangles. The light sources illuminate the scene. The camera is a

2 CHAPTER 1. INTRODUCTION

description of an observer in the scene. It defines how each pixel in the to be rendered image is affected
by incoming light.

There are two different approaches to rendering: ray-tracing and rasterization. Ray tracing is based
on the direct simulation of light rays travelling through the scene. This has to be done intelligently
because of the many possible paths light can take. Rasterization instead determines what geometry is
visible and then computes the contribution of light. Rasterization has better performance but effects like
shadows and reflections are far from trivial to compute. While ray-tracing is growing in popularity, the
majority of real-time applications still use only rasterization or a combination of the two techniques. The
work in this thesis is evaluated using a rasterization based renderer. However, the discussed techniques
can also be applied to ray-tracing.

In this thesis we are especially interested in how we represent and efficiently compute the contribution
of each light source on all visible surfaces. Imagine that we have a display of 1920 by 1080 pixels. We
have to compute for every pixel what piece of geometry can be seen. For each visible piece of geometry
we must compute how much light we can see bouncing off of it. This means that for each of the
2 million pixels we must compute the contribution of each light source. With enough light sources
this computation becomes too slow for real-time applications, even when not considering light that is
bouncing between scene elements (indirect illumination).

For static scenes and lights, the light contributions can be pre-computed for all the geometry in the
scene. This has been explored in depth and yields great looking results. However, this so-called static
lighting no longer works if we start to move the geometry or lights around because it relies on their
positions always being the same. The number of dynamic light sources used in scenes has typically
been very limited. The work in this thesis assumes that it must be possible to change the lights and
geometry freely at any time.

(a) Unlimited Influence (b) Limited Influence (c) Light Influence Volumes

Figure 1.1: By limiting the influence of of lights we can improve rendering times. However, when
doing so light emitted from the light sources no longer travels as far as it should. Figure 1.1a shows what
the scene looks like without limiting the light influence. In Figure 1.1b the contribution of each light
is limited to a small sphere centered on the light. Figure 1.1c shows these spheres. The spheres were
intentionally chosen to be smaller than usual to clearly illustrate the consequences of this approximation.
Unfortunately, (specular) reflections of a light on surfaces outside of its influence volume vanish (yellow
circles). Additionally, the combined contribution of many small lights on distant surfaces is lost (blue
circles). Regardless of these consequences, this approximation is used in real-time applications to keep
shading times low.

Most light sources only contribute to a small region in the scene. Rather than evaluating the
contribution of all light sources everywhere, we limit the influence of each light to an influence volume
as illustrated in Figure 1.1. This volume is necessarily smaller than the real influence volume, which
is theoretically unbounded. For point lights, which emit light equally in all directions, we choose the
influence volume to be a sphere centered on the point light. When evaluating the contribution of light
sources on a point of a surface (shading), we can now only consider the lights of which the influence
volume covers the point on the surface. There are multiple ways in which this can be done as discussed
in Chapter 2. The work in this thesis builds on a specific variant called Clustered Light Shading (CLS)

1.3. VIRTUAL REALITY 3

[OBA12]. The basic idea of CLS is to determine a list of relevant lights for groups of points on visible
surfaces. To shade a surface points, the list of relevant lights is retrieved and processed than all lights
in the scene. CLS will be explained in detail in Chapter 3.

1.3 Virtual Reality
Virtual Reality (VR) has applications in for example 3D modelling [RRS19], museum experiences
[Woj+04] and, even back in 1993, the training of surgeons [Sat93]. Recently, VR has become more
popular due to affordable consumer-ready Head-Mounted Displays (HMDs). To create a VR experi-
ence, we must at the minimum consider one specific property of the human visual system: binocular
vision. Binocular vision is a type of vision where the brain of an organism is able to construct a per-
ception of our three-dimensional environment by combining the images seen by its left and right eye.
The images of the both eyes together are called a stereoscopic image. An example is shown in Figure
1.2. This means that for VR applications, we must render two images instead of one. The displays of
VR headsets also require a higher-than-usual framerate for a comfortable viewing experience. Since we
are already pushing the limits of our computers to generate a single image at the display’s refresh rate,
generating twice as many is difficult. Fortunately, the images of each eye are almost the same. This
similarity opens up the possibility of intelligent re-use of rendering computations.

Figure 1.2: The stereoscopic image pair of the left and right eye shown side by side. The similarity,
or coherence, between the images of each eye can be exploited to accelerate rendering in various ways.

1.4 Contributions and Structure
In this thesis I heavily build on CLS: a light culling technique presented in “Clustered Deferred and
Forward Shading” [OBA12]. I propose enclosed clustering, which aims to reduce the cost of clustering
for stereoscopic rendering. I achieve this performing light assignment (one of the steps involved in CLS)
only once for both eyes, rather than for each eye separately. I expect this to save time because each eye
covers mostly the same space.

Additionally, I propose two variations of the construction of the clustering grid: orthographic clus-
tering and displaced perspective clustering which may improve rendering times for certain applications
compared to the traditional perspective clustering. These alternative constructions can be combined
with enclosed clustering.

In summary, I make the following contributions.

• I propose enclosed clustering, and show that it allows CLS to be used for stereoscopic rendering
at close to half the cost,

• I present two variations on how the clusters are defined for CLS, orthographic clustering and
displaced perspective clustering, and show that they can outperform traditional perspective clus-
tering.

4 CHAPTER 1. INTRODUCTION

• I provide an in-depth comparison between the presented and traditional methods and insight on
how to choose between them.

This thesis is structured as follows. Chapter 2 provides background information and introduces
related work. Chapter 3 describes CLS in detail because it is central to the work in this thesis. Chapter
4 explains enclosed-, orthographic-, and displaced perspective clustering. Chapter 5 provides details on
the implementation of these methods. Chapter 6 presents and discusses the results obtained through
elaborate profiling. Chapter 7 presents the conclusions and provides some directions for future work.

Appendix A explores a number of light attenuation function and motivates the function used in the
renderer. Appendix B shows the application of CLS to simulating global illumination using virtual point
lights. This is more of an experimental result and therefore not covered in the main text. Appendix C
contains results that did not fit in the main text. Appendix D explains a practical use of prefix-sums
and how they are implemented on the GPU. Prefix-sums are used to implement CLS but also in other
places in the renderer. Appendix E gives a little more detail on the uncommon parameterization of
orthographic- and perspective projections used in this thesis which I think should be the standard.

2
Background and

Related Work
The computation of light contributions is a computationally expensive step within the context of real-
time rasterization, particularly when the number of light sources is large. In case of stereoscopic
rendering, the rasterization work is increased compared to common monoscopic monitors due to a higher
total pixel count and frame-rate. Fortunately, the views from the left and right eye are largely coherent
allowing for the re-use of computations. This chapter briefly recapitulates virtual scene descriptions in
Section 2.1 and the rasterization pipeline in Section 2.2. Forward and deferred rendering are covered
in Sections 2.3 and 2.4. In Section 2.5 CLS and other real-time fully dynamic many-light rendering
techniques are introduced. To cope with increased rendering work due to high pixel counts and frame
rates imposed by virtual reality displays, techniques exploiting the coherency between stereoscopic
images are discussed in Section 2.6. Finally, Section 2.7 relates clustering grid construction using a
decoupled camera projection to other work.

2.1 Geometry, Lights and Cameras
This section briefly recapitulates scene and camera descriptions which are the inputs to the rendering
process. For a complete introduction to the various parts of rendering I refer the reader to [Scr20].

A virtual scene commonly consists of a description of surfaces and of light sources. These surfaces
are collectively called the geometry of the scene and are modeled by geometric primitives. The most
common geometric primitive is a triangle, but lines and points are also used. Implicit surfaces can
also be used when modeling a scene but, unlike with ray tracing, rasterization does not support them
directly: they must be tesselated into geometric primitives. The vertices of geometric primitives have
data associated with them, called vertex attributes, like their 3D position, the normal, binormal and
tangent of the modelled surface, and texture coordinates. The vertex position is necessary to determine
visibility and the other attributes are used in the computation of the surface color. The light sources in
a virtual scene are commonly modeled by directional-, point-, or spotlights. A directional light eminates
light in a parallel fashion while point- and spotlights eminate light from a single point. A spotlight is
similar to a point light but additionally focuses light in a cone.

What is visible in each pixel of an image is determined by a camera model. The camera model
defines a coordinate frame and a projection which maps 3D points onto the image plane. There are

6 CHAPTER 2. BACKGROUND AND RELATED WORK

two basic types of projection: perspective projection and orthographic projection. With perspective
projection all view rays go through a single point and with orthographic projection all view rays have
the exact same direction.

2.2 Rasterization Pipeline
The rasterization pipeline available on GPUs allows very fast rendering of scenes with a high geometric
complexity. The pipeline consists of the following steps.

1. Transform all vertices into clip space (Vertex Shader).

2. Generate fragments (Rasterization).

3. Shade fragments (Fragment Shader).

In the first step, the vertices of the geometric primitives are transformed into camera clip space.
Usually the vertex positions are defined local to the modeled object. They need to be transformed
from the object’s coordinate frame to the camera’s coordinate frame, usually by going through a world
coordinate frame which connects the two. Then the vertex positions are represented as homogeneous
coordinates and projected into the camera clip space. The GPU then performs the perspective division
yielding the vertex positions in normalized device coordinates. All geometric primitives falling in a by
the driver pre-defined box are visible.

The second step clips all visible geometric primitives and generates a fragment for each sample
position in each pixel covered by the clipped geometric primitives. A fragment therefore represents a
point on a surface in the scene and corresponds to a single pixel. In case of multi-sampling there can
be multiple fragments per pixel.

In the final step each fragment is processed by the fragment shader and produces a final color
value. The fragment shader receives the vertex attributes (optionally) interpolated by the fragment’s
barycentric coordinate weights. These attributes are used to directly, or indirectly through texture maps,
model properties of the surface like its albedo, roughness and metalness. Usually the fragment shader
evaluates the contribution of light sources on the point on the surface that the fragment represents.
The color values produced by all fragments in a pixel are stored in a framebuffer which is essentially a
layered image.

On modern GPUs, the vertex- and fragment shader are programmable meaning they can be cus-
tomized to perform any desired computation. The rasterization step however is still largely fixed. Given
the rasterization pipeline, there are still multiple ways in which we can arrive at the final image. These
ways can be loosely categorized as forward- or deferred rendering.

2.3 Forward Rendering
Forward rendering is, as the name suggests, only moving forward in terms of the rendering steps. The
geometry is rendered, fragments are generated and each fragment passing a depth test is shaded. The
depth test ensures only fragments closer to the camera than any previously generated fragments are
shaded. The depth test maintains a depth map which contains the closest fragment depth value for every
pixel. In case a fragment passes the depth test, the previous fragment is overwritten. The overwritten
fragment therefore does not, and should not since it is occluded, contribute to the final image. The
shading computations performed for fragments that are later overwritten are wasted. This unnecessary
shading is called overshading. One way to prevent overshading is by rendering the scene twice: first to
obtain the complete depth map and then a second time to shade only the actually visible fragments.

2.4 Deferred Rendering
Contrary to forward rendering, deferred rendering [ST90] defers shading until after visibility has been
resolved. This is achieved by storing all surface properties required by the used shading model in a
stack of images collectively called the Geometry Buffer (G-Buffer). Examples of surface properties are

2.5. MANY-LIGHT RENDERING 7

albedo, metallness, roughness, position and normal. To compute the final image for each light a simple
mesh is drawn covering its influence volume. The light volume mesh can be a low-poly 3D triangle mesh
or a simple camera-aligned quad, as long as it generates a fragment everywhere the light is considered to
have substantial influence. The generated fragments then read the G-Buffer, compute the contribution
of the light on the surface and write the contribution to the output pixel. Since all surface information
is available for each sample, only a single geometry pass is required to compute the final image. The
benefits of deferred rendering are:

• the elimination of overshading,

• accurate light culling, and

• the evaluation of a single light at a time which allows memory re-use.

The downsides are:

• the large memory requirements of the G-Buffer,

• for each generated sample in a pixel the surface properties must be read and the result must be
blended into the framebuffer resulting in high bandwidth requirements,

• only a single surface can be visible in each pixel which precludes the use of transparent materials.

2.5 Many-Light Rendering
To render realistic images we often need a large number of light sources. The evaluation of all light
sources for all fragments is costly. There has been a lot of research on rendering many-light scenes
in real-time and offline settings. I would like to refer the reader to [Dac+14] for an overview of these
method up to 2014. The work in this thesis is restricted to fully dynamic real-time methods and this
section gives a brief history of these methods.

2.5.1 Light Culling
Tile-Based Shading (TBS) [OA11] is a light culling technique which can be combined with either forward
or deferred rendering. The method was originally meant to better utilize the Synergystic Processing
Units in the PlayStation 3 [Swo09], but proved to be useful in a broader context. The same idea is also
published in a short paper under the name Forward+ [HMY12] but I refer to this technique as TBS as
that paper is more complete. Every frame the camera frustum is divided into a grid of screen space
aligned tiles. Naively, each tile would cover the entire camera depth range. The extend of each tile
can be limited by computing the min and max depth of all fragments in the tile. These values can be
found efficiently through a min and max reduction of the depth map. For each tile in the grid, the list
of relevant lights is computed. A light is relevant to a tile when its influence volume intersects the tile.
For each pixel, the tile that the pixel lies in is determined and the associated lights are used to compute
its final color. When applied to deferred shading, the G-Buffer textures need to be read only once and
the output is written to only once, solving the bandwidth problem. TBS is not robust with respect
to large depth discontinuities. When fragments close to the camera and far away from the camera fall
into the same tile, the resulting volume of the tile becomes very large. The tile is then likely intersect a
larger number of lights, even though many of those lights may not actually affect any of the fragments
in the tile. The inclusion of unnecessary lights negatively impacts the shading time.

A natural extension of TBS to overcome this problem is to additionally divide each tile along the
depth dimension, which is exactly what CLS [OBA12] does. The fragments are clustered in the most
basic sense by partitioning space into a grid of clusters. To deal with the potentially large number of
clusters for which a light list needs to be computed, they first determine for each cluster if its light
list will actually be used. For each of these visible clusters a light list is computed which requires
intersection cluster volumes with light volumes. A Bounding Volume Hierarchy (BVH) is built over
the light volumes and used to accelerate the light assignment. CLS can be used with both forward
rendering, allowing the rendering of transparent geometry, and with deferred rendering and its benefits.
One potential advantage of deferred rendering is that the lights are evaluated one by one, allowing

8 CHAPTER 2. BACKGROUND AND RELATED WORK

for example the re-use of the memory for a shadow map texture. This potential advantage is lost
when using CLS, because the shading of a sample iterates over all relevant lights in a single shader
invocation and the data associated each light must therefore be available simultaneously. GPUs process
pixels in small groups. We speak of execution divergence when the pixels in these groups must execute
different code paths due to data-dependent conditional branches. Since CLS can lead to different lights
being processed in a single wavefront, execution divergence may occur. To reduce execution divergence,
binning and sorting strategies can be applied to TBS [SG16; Dro17] which may prove better than using
CLS.

[Ört15] performs the light assignment for all clusters using conservative rasterization. The influence
volume of each light is rasterized, storing the min and max depth per tile. For each light, for each
tile, for each cluster in the tile covered by the light, the light index is appended to a linked list of
lights stored per cluster. To take advantage of the flexibility in representing light influence volumes as
meshes, Drobot suggests generating the light meshes from their shadow map so as not to assign lights
to occluded clusters [Dro17].

2.5.2 Global Illumination
Real-time global illumination remains a challenge because we need to compute not only the direct
illumination from light sources, but also the indirect illumination caused by light bouncing off all
surfaces. Instead of simulating light bounces directly, many-light methods approximate the indirect
illumination by placing many virtual light sources and computing their direct illumination instead
[Kel97]. Later techniques focus on keeping the virtual light sources temporally stable to avoid artifacts
in animations and so that visibility information can be reused [DS06; Lai+07; HKL16]. Unfortunately,
to get good results many virtual light sources that individually have a small effect are needed. Together
they should contribute to far away surfaces but since CLS assigns a small influence volume to lights
with a small intensity, the far away contributions are lost. Using a larger radius is inefficient since that
drastically increases the number of lights per sample. Instead, clusters of virtual light sources can be
replaced by representative lights when shading far away surfaces [Lau+16]. In Appendix B I show my
results of using CLS to render global illumination effects through virtual point lights.

2.6 Utilizing Coherency in Stereoscopic Rendering
A recent method allows the rendering of a scene from many viewpoints in real-time [Kol+19]. Sublinear
scaling in terms of view and scene complexity is achieved through shared rendering of samples generated
by iterating over pairs of nodes from two trees (one tree over the views and one tree over the geometry),
pruning branches where no more detail is required. The idea of shared rendering is far from new and
has been applied to stereoscopic rendering [Neh+07]. The shaded samples from one eye are reprojected
to the other eye. Missing information and view dependent effect like specular reflections introduce error
and need to be dealt with. In this thesis I exploit the coherence between views to perform the light
assignment step of CLS only once rather than per eye.

2.7 Alternative Projections
Performing the clustering once requires the decoupling the clustering camera frustum from the rendering
camera frustum. This decoupling opens up possibilities in the construction of the clustering grid. I
present a technique called displaced perspective clustering which gives finer control over the shape and
distribution of clusters. A similar idea is used in [WSP04] where the geometry gets transformed by
an additional perspective projection to achieve a more even distribution of shadow map resolution in
screen space.

3
Clustered Light Shading
This chapter explains CLS as described in “Clustered Deferred and Forward Shading” by Olsson, Bil-
leter, and Assarsson. CLS can be divided into four steps: 1) determine the clustering space, 2) compute
cluster visibility, 3) assign lights to visible clusters and 4) shade fragments using these light lists. Sec-
tions 3.1 - 3.4 go over these steps in order. The first three steps together will be referred to as performing
clustering and the resulting data as a clustering.

3.1 Cluster Space Construction
As was mentioned in the introduction, many real-time applications limit the influence of light sources to
a relatively small region where the light is considered to contribute significantly. Outside of this influence
volume, the light is ignored which saves lighting computations at the loss of (specular) reflections of
far-away lights and combined contributions of multiple far-away lights. To make use of these bounded
light sources, CLS groups shading samples into clusters and computes the relevant lights per cluster.
The relevant lights are computed for groups of samples rather than per sample for various reasons. One
of the reasons is that we would have to store a list of lights for each sample which even for a small
number of lights would require a large amount of memory. Another reason is that the time gained over
naively evaluating the contribution of all lights must outweigh the time spent pre-computing which
would be difficult to achieve when computing a list per sample. This section describes how the samples
are clustered in [OBA12].

Clustering Scheme

The clustering scheme must be very efficient because we have a large number of samples and the
clustering is performed every frame. CLS employs a simple space partitioning scheme as this is both
fast and it provides predictable cluster sizes. This partitioning can be performed by 3D position but
also by normal direction. I only discuss and explore position-based partitioning to limit the scope of
this thesis.

A common way to partition space is to use a simple uniform world-space grid [GL10]. This parti-
tioning is dismissed in [OBA12] for the following reasons:

1. selecting the size of the grid cells requires manual tweaking,

2. depending on the size of the grid, the cluster index may require a very large number of bits, and

10 CHAPTER 3. CLUSTERED LIGHT SHADING

3. clusters far away from camera become very small under perspective projection which leads to
excessive light list computations.

Instead, the rendering camera frustum is divided, or quantized, into a grid of sub-frusta. The grid
divides the frustum in post-projective space evenly along the X- and Y-axis, and exponentially along
the Z-axis as shown in Figure 3.1c. The exponential subdivision stems from the desire to make the
clusters as cubical as possible [Llo+06].

(a) Uniform Z Post-Projective (b) Uniform Z Pre-Projective (c) Exponential Z Pre-Projective

Figure 3.1: Distributing clusters linearly in post-projective space (a) or pre-projective space(b) leads
to a undesirable distribution of clusters. Instead we make clusters as cubical as possible by distributing
their depths exponentionally in pre-projective space (c). Images from [OBA12].

Z

X

d

1

zn znd

zn(1 + d) zn(1 + d)d

| || ||
|

|
||

|||

0 1 2

Figure 3.2: Three clusters with Z-indices 0, 1 and 2 are shown. The width and depth of each cluster
are kept equal leading to a geometric sequence and thus an exponential distribution of their near plane
Z-coordinates. The parameter d is the length of the line intersecting the frustum at Z = −1.

We desire the clusters to be as cubical as possible because that will give us a similar cluster resolution
in all directions in world space, which is likely to effectively cull the light sources. We cannot make each
cluster perfectly cubical, but we can get close by forcing each cluster to be as long as it is wide and
high. Given the length d, the clustering camera near plane zn and the previous constraints as visualized
in Figure 3.2, we can derive a sequence zi giving the Z-coordinate of the near plane of a cluster with
Z-index i:

z0 = −zn (3.1)
zi = zi−1 + zi−1d

= zi−1(1 + d) (3.2)
zi = −zn(1 + d)i (3.3)

Given the angles αl and αr made by the camera frustum’s left and right side planes with the X = 0
plane and the dimensions of the cluster grid D where Dx is the number of clusters along the X-axis of

3.2. CLUSTER VISIBILITY 11

the grid, we can compute d:

tan(αl) =
x0

−1
tan(αr) =

x1

−1
∆x = x1 − x0

d =
∆x

Dx

The equations above only consider the XZ plane, but we are working in three dimensions. When the
camera frustum and screen have the same aspect ratio, and the desired pixels per cluster is square
(Px = Py), the value found for d in the XZ plane will be the same as the value for d in the YZ plane.
In practice, we can settle on a value for d by choosing either or taking the average:

d =
1

2

(
∆x

Dx
+

∆y

Dy

)
. (3.4)

Cluster Grid Dimensions

Since we are using a grid, we need to somehow determine its dimensions D. We determine the dimensions
Dx and Dy from the screen dimensions S and a desired number of pixels per cluster P :

Da =

⌈
Sa

Pa

⌉
for a ∈ {x, y} (3.5)

Using Equation 3.3, we can determine the dimensions Dz from d and the camera’s depth range (zn, zf):

Dz =

⌈
ln1+d

zf
zn

⌉
(3.6)

Computing a Cluster Index

To compute a cluster index for a point pcam in camera (view) space, we compute the position of
this point in cluster space. Cluster space is the space in which the cluster grid is defined. The XY-
coordinates of the cluster space position pclu are computed using the clustering camera’s perspective
projection mapped to the range (0, D) rather than the usual clip-space range. The Z-coordinate of pclu
is computed using Equation 3.3 rewritten as follows:

pclu,z = ln
(
pcam,z

−zn

)
(3.7)

The cluster index is then:

(ix, iy, iz) = ⌊pclu⌋ (3.8)

3.2 Cluster Visibility
The idea of CLS is to compute a list of relevant lights per cluster to be used during shading. While
we could compute a light list for all clusters, doing so would be wasteful. Only the light lists of the
clusters that have visible fragments in them are actually used, where a visible fragment is a fragment
that contributes to the final color of its pixel. I refer to clusters containing visible fragments as visible
clusters.

To mark clusters as visible, we have to determine the cluster indices of the visible fragments. We
need 1 bit to represent whether a cluster is visible or not. In [OBA12], two strategies are presented.
The first strategy computes the cluster index for each pixel, then computes the unique cluster indices
for each screen space tile of clusters and finally computes a global list of all unique cluster indices.
The second strategy virtually allocates a bit for each cluster in the cluster grid using page tables as
the virtual allocation method. In this thesis I omit the page table scheme and simply allocate enough

12 CHAPTER 3. CLUSTERED LIGHT SHADING

memory for the entire grid. A page table scheme would allow the use of a higher grid resolution, but
the need for such a fine grid did not arise.

For opaque geometry, where only one fragment is visible per pixel, this can be done by performing
a depth pre-pass. The fragment positions and therefore cluster indices can be reconstructed from the
depth value at each pixel. The depth buffer can be re-used during subsequent rendering.

At this point, we know for each cluster if it is visible or not. To facilitate performing computations for
the visible clusters only, we compute a contiguous list of indices of the visible clusters. This compaction
of visible cluster indices is computed using the parallel prefix sum described in Appendix D. The light
list meta-data will be computed and stored for visible clusters only, so we also need to store the reverse
mapping; for each cluster we store its visible cluster index incremented by one if it is visible and zero
otherwise.

3.3 Light Assignment

At this point we have a list of visible clusters. Each visible cluster knows its cluster index which, given
the cluster frustum and dimensions, tells us the volume that it describes in cluster camera space. The
number of lights ending up in each cluster can vary, so we count how many lights each visible cluster
intersects. We then compute for each cluster, an offset into a global list of light indices. These offsets
are found by computing the prefix sum over the light counts. A second pass intersecting each visible
cluster with the lights then writes the light indices into the global list using the computed offsets.

Cluster-Light Intersections

To determine if a cluster is affected by a light, we must compute if the cluster volume and the light’s
influence volume intersect. We can perform the intersection test before or after perspective projection
[MM12]. Before perspective projection volume of a cluster is described by a frustum and, since I have
limited myself to point lights, the influence volume of a light is described by a sphere. Instead of
a frustum, an axis-aligned bounding box or sphere can be used to describe the volume of a cluster
[Wro17]. This may be helpful for certain kinds of light like spotlights which are described by cones.
By performing perspective projection frusta become axis-aligned boxes and spheres become ellipsoids.
I only consider computing frustum-sphere intersections in pre-projective space because they are easier
to reason about and exploring post-projective is outside of the scope of this thesis.

Accurate frustum-sphere intersection tests require analyzing many different cases. In practice an
enlarged frustum-point test is used instead. The frustum is enlarged by moving the frustum planes
along their normals scaled by the sphere’s radius. We then test if the sphere’s center lies within this
enlarged frustum. Because the frustum has the same origin and orientation as the clustering camera,
we can simplify the enlarged frustum-point.

The enlarged frustum-point is conservative and therefore has a false positive volume. The false
positive volume equal to the difference between enlarged-frustum and the Minkowski sum of the frustum
and sphere. Usually, for example when doing mesh culling, the frustum is a lot larger than the sphere
under test. In this case the false-positive volume is relatively small. However, for us the frusta are small
compared to the light influence spheres [Per13]. This leads to a large false-positive volume and thus to
lights being included in light lists where they should not.

The intersection tests are performed in the light counting and light assignment passes of CLS. The
performance of these passes are partially determined by the used intersection test. For conservative
intersection tests the light count may be higher than strictly necessary. This has direct influence on the
performance of the shading pass. Selecting an appropriate intersection test is orthogonal to the work in
this thesis and therefore I only consider the point in enlarged-frustum test. Note however that a more
efficient or accurate intersection test decreases the light assignment and shading time respectively, and
this should be kept in mind when viewing the results presented in this thesis. I expect however that
the chosen simple intersection test is common in practice and represents a reasonable amount of work
and culls efficiently enough.

3.4. SHADING 13

3.4 Shading
With the pre-computation out of the way, CLS is easy to integrate. A fragment shader needs to take
the following additional steps:

1. Compute the fragment position in cluster space.

2. Discretize the fragment position to obtain its 3D index in the cluster grid.

3. Compute the 1D cluster index from the 3D index using the cluster grid dimensions.

4. Look up the potential visible cluster index associated with the cluster index.

5. Assuming the visible cluster index exists, look up the light list offset and count.

After obtaining the list of relevant lights, the shader computes the sample’s color by evaluating the
contribution of the relevant lights only, rather than all lights in the scene.

14 CHAPTER 3. CLUSTERED LIGHT SHADING

4
Methods

The real-time rendering of realistic images with many light sources requires efficient light culling strate-
gies such as CLS which was explained in the previous chapter. When rendering stereoscopic images
for display in VR headsets, the amount of rendering work is increased substantially compared to an
average monoscopic desktop display. While CLS can be applied to both the left and the right eye
individually, this thesis presents enclosed clustering in Section 4.1: a method which seeks to reduce the
computational cost of CLS for stereoscopic rendering. Specifically, I make use of the fact that the space
covered by the left and right eye largely overlap and attempt to perform the light assignment step only
once rather than twice.

To realize the single light assignment, the clustering camera has to be decoupled from the rendering
camera. This decoupling opens a window to various ways of constructing the clustering camera in a
stereoscopic, but also in a monoscopic setting. In Section 4.2 I explore orthographic clustering where
the clustering camera uses a orthographic projection. This leads to the originally dismissed [OBA12]
idea of using a uniform grid of clusters in a pre-projective space, for example world- or camera space.
The main reason for the dismissal of this idea is that far-away clusters become very small when viewed
under perspective projection which in the worst case means we compute a light list per pixel. While this
is a valid concern, the traditional perspective clustering leads to very large clusters which likely contain
many lights leading to long shading times. Rather than making a prediction, I explore orthographic
clustering regardless of the mentioned concerns and evaluate how both strategies compare in practice.

A second alternative clustering strategy for mono- and stereoscopic rendering uses the traditional
perspective clustering, but moves the origin of the clustering camera backwards. This displaced perspec-
tive clustering, discussed in Section 4.3, provides a mix between orthographic and perspective clustering
based on the displaced distance. In practice, the first layers of clusters closest to the camera may be
smaller than necessary. As a solution, distribution of of clusters along the Z-axis is modeled as a piece-
wise function [Per13] ending with the exponential distribution from [OBA12] where the first few depths
are specified by hand. Displaced perspective clustering solves the same problem, albeit at the cost of
decoupling the clustering camera from the rendering camera.

The idea of performing the light assignment once for multiple cameras can be extended to generic
multi-view rendering. Multi-view rendering simply means a scene is rendered multiple times from
different perspectives. Examples of multi-view rendering occur in the rendering of reflections, physically
correct depth of field and motion blur [Rag+11; LD12; Vai+12], and global illumination [Kol+19]. While
we can combine the light assignment for any number of cameras, any benefits must come from the fact
that at least some of the cameras cover the same space. The application of CLS to multi-view rendering
is discussed in Section 4.4.

16 CHAPTER 4. METHODS

4.1 Enclosed Clustering

Figure 4.1: Illustration of a possible clustering camera frustum (yellow) enclosing the two rendering
camera frusta (green) of the left and right eye. In practice, we would like the enclosing camera frustum
to be as tight as possible to make the best use of the clustering grid resolution.

As mentioned in the introduction of this chapter, enclosed clustering seeks to reduce the cost of
the light assignment step of CLS in a stereoscopic rendering setting. When CLS is applied to each
eye individually, most of the light assignment work is done twice unnecessarily as the clusters from
both cameras occupy mostly the same space. What enclosed clustering proposes is that we construct
a clustering camera from the rendering cameras in such a way that the rendering camera frusta are
completely enclosed by the clustering camera frustum as shown in Figure 4.1. Samples from the left
and right eye can be transformed to the clustering camera space to determine cluster visibility and later
to retrieve the relevant light list. The differences in the rendering pipeline between performing CLS
per-camera and the proposed enclosed clustering are shown in Figure 4.2.

1. Construct clustering camera (both)

2. Mark visible clusters (both)

3. Assign lights to visible clusters (both)

4. Shade samples (both)

(a) Per-camera clustering

1. Construct enclosing clustering camera (once)

2. Mark visible clusters∗ (both)

3. Assign lights to visible clusters (once)

4. Shade samples∗ (both)

(b) Enclosed clustering

Figure 4.2: The difference between enclosed clustering and per-camera clustering. We save com-
putation time by performing the light assignment once instead of twice. The computational cost of
construction of the clustering camera is insignificant. The steps marked by the ∗ symbol are slightly
modified to now reproject samples into the enclosed clustering camera space instead of the rendering
camera space. Note that with per-camera clustering, the rendering process is completely independent
allowing memory re-use. For enclosed clustering however, some information, like the depth buffers used
to determine cluster visibility, may need to be kept for usage in further rendering and therefore must be
stored simultaneously increasing the memory required by the rendering pipeline.

Section 4.1.1 explains how I construct the enclosing camera. Because we change the clustering
space, the computation of the cluster index changes. The revised cluster index computation is detailed
in Section 4.1.2.

4.1.1 Enclosed clustering camera construction
The enclosing clustering camera should tightly enclose both rendering camera frusta. Based on common
virtual reality headsets, we can make assumptions on how the left and right eye cameras are set up.
This narrows the amount of variation we have to consider when constructing an enclosing frustum.
In the presented construction, I assume that the collection of far-plane corners of the to-be-enclosed

4.1. ENCLOSED CLUSTERING 17

camera frusta and the collection of near-plane corners can be separated by a plane orthogonal to the
Z-axis.

left frustum

overlap

right frustum

near corners

far corners

L

R

Z

X

Figure 4.3: A left and right camera frusta with origins L and R drawn in cluster camera space. The
near corners set contains all near-plane corners from all cameras, and similar for the far corners set.
In this illustration, no rotations have been applied to the left and right eye. The left and right frusta
are also symmetric. In reality slight rotations and assymetric frusta may occur. The proposed method
is robust under these variations.

A simple camera configuration is given in Figure 4.3. To construct the enclosing camera I first
transform the near and far corners of both frusta into head space. The head space is defined by the
average origin and orientation of the left and right eye. Then I iterate over all possible combinations
near and far corners. I project the line between each combination of corners onto the XZ and YZ planes.
For each line where all other corners are on only one side of the line, I calculate its intersection with the
Z-axis. The intersection with the largest z-component becomes the new origin. Using the new origin,
I compute the minimum and maximum tangents that the far plane corners make with the new origin
in the XY and YZ planes. The minimum and maximum tangent in the XZ and YZ planes define the
left, right, bottom and top side planes of the new frustum respectively. The displacement of the origin
along the Z-axis is subtracted from the old near and far plane depths to obtain the new near and far
planes.

For perspective clustering, the cluster grid dimensions D are parameterized by a desired width
and height in pixels P in screen space, the screen dimensions S and the camera depth-range (n, f).
However, the enclosing camera does not have a screen associated with it, so we cannot compute the
cluster dimensions from the desired number of pixels per cluster. There are multiple options for how
to determine the cluster grid dimensions D for the enclosing clustering. We need to somehow combine
the dimensions that the left and right eye would have, for example by taking the average. Taking the
average however leads to stretched clusters. Instead, I compute the new cluster grid dimensions from
a desired average cluster volume Vc. The desired Vc is calculated as the average of: the average cluster
volumes of both eyes that would be used in case of per-camera clustering.

Definition of the average cluster volume

We can compute the average volume of a single cluster cluster Vc by dividing the volume of the frustum
VF by the total number of clusters N = Dx ·Dy ·Dz. In order to derive the formula for the volume of
a perspective projection frustum, we first define the frustum paramters.

18 CHAPTER 4. METHODS

Definition 4.1. The frustum of a perspective projection camera can be described by the matrix F :

F =

 l
n

r
n

b
n

t
n

−f −n

The parameters l, r, b, t, n and f are the conventional left, right, bottom, top, near and far values. We
divide l, r, b and t by n so that they are independent from n which simplifies many equations. These
values are equal to the tangent of the angle between the respective side plane with the Z-axis divided
by −1. Each row describes the parameters for a different axis. The entries of the first row referred to
as Fx,0 and Fx,1 and similar for the other rows. The shorthand F∆x is equal to Fx,1−Fx,0. When clear
from the context the entries may simply be referred to as x0, x1, ∆x, et cetera to reduce notational
clutter.

The formula for VF is found by subtracting the volume of the pyramid described by the origin and
the near plane from the pyramid described by the origin and the far plane. The length along the X-axis
at depth z is given by −z∆x and similar for Y. The formula for the pyramid at depth z is therefore:

V (z) =
1

3
(−z∆x)(−z∆y)(−z) = −1

3
z3∆x∆y (4.1)

We can now compute the volume of the frustum with:

VF = V (z0)− V (z1)

VF =
1

3
∆x∆y(z31 − z30) = NVc (4.2)

Computing dimensions from a desired average cluster volume

The cluster grid dimensions Dx and Dy can be computed from a desired cluster width and height d
at Z = −1 and ∆x and ∆y from the clustering camera frustum F . The depth dimension Dz can be
found using Equation 3.6 which requires d, z0 and z1 from the clustering camera frustum F . To keep
the clusters as cubical as possible, we use the same value d for the width, height and depth giving the
following constraints:

Dx =
∆x

d
Dy =

∆y

d
Dz = ln1+d

(
z0
z1

)
(4.3)

We can find a value for d by combining Equations 4.2 and 4.3 from the clustering camera frustum F
and the desired average cluster volume Vc:

VF = NVc

= DxDyDzVc

1

3
∆x∆y(z31 − z30) =

∆x

d

∆y

d
ln1+d (z0/z1)Vc

d2 ln (1 + d) =
3 ln (z0/z1)Vc

z31 − z30
(4.4)

I estimate d in Equation 4.4 numerically using a small number of Newton-Raphson iterations. To
compute the initial guess for d, I substitute ln (1 + d) with d in Equation 4.4 and solve. The computation
should converge quickly since the function is monotonically increasing and the initial guess positive.

The cluster dimensions are then found by computing and ceiling Dx, Dy and Dz using equation 4.3.
After ceiling, we can optionally recompute d as d′ to fit the clusters exactly into the frustum along the
depth dimension using Equation 4.5:

z0 = z1(1 + d′)⌈Dz⌉

d′ =
⌈Dz⌉

√
z0
z1

− 1 (4.5)

4.2. ORTHOGRAPHIC CLUSTERING 19

4.1.2 Revised cluster index computation
Decoupling the clustering camera from the rendering camera changes the computation of the cluster
index from a sample position. In traditional perspective clustering, the clusters nicely tile the screen
in the XY-plane. The X- and Y cluster index can therefore be given by the screen space position of a
sample. Because we necessarily moved the origin of the clustering camera with respect to the rendering
camera (Figure 4.3), such a tiling becomes impossible as shown in Figure 4.4.

R

C

Figure 4.4: By moving the origin of the clustering camera from R to C, the screen space tiles of C
(green) no longer tile the screen space of the rendering camera R (blue).

To find the cluster index we must compute the sample position in clustering camera space which
can be done in the vertex shader or in the fragment shader. After doing so, we find the cluster index by
transforming it into the clustering camera space and projecting by the clustering camera projection. The
Z-coordinate is found from the clustering camera space through the exponential distribution described
by Equation 3.3. The computation of the Z-coordinate is non-linear and therefore must be computed
per sample; it can not be linearly interpolated from values computed per vertex.

4.2 Orthographic Clustering
The arguably simplest partitioning of 3D space is to divide it into a grid of cubes. This is exactly what
orthographic clustering does. This idea is not new, in fact it was intentionally avoided for a couple of
reasons. The most important reason is that orthographic clusters can become very small when viewed
under perspective projection. When we have many small clusters we must compute many light lists.
The computation of the light list may not outweigh the shadings in saving time if the list is only used by
a very small number of pixels. Additionally, it is likely detrimental to performance when neighbouring
pixels access different light lists due to potential cache misses and execution divergence. On the flip side,
the large far-away clusters produced by traditional perspective clustering may not cull lights effectively.
Far-away samples may need to consider many more lights than strictly necessary.

To construct a grid of cubes we first need to choose a coordinate frame. Note that because the grid
is uniform in pre-projective space, the orientation of the grid does not matter much. Regardless, I have
chosen to do construct the grid in camera space as shown in Figure 4.5. By constructing the grid in
camera space, we can make the grid fit the camera frustum so that “only” 2

3 of the clustering space is
wasted. Instead of using the rendering camera space, we could consider using world space. Using world
space would eliminate the need to compute light positions in cluster camera space.

Z

X

Figure 4.5: The clustering grid is established using the bounding box (orange) of the rendering camera
(green).

20 CHAPTER 4. METHODS

To find the dimensions D of the cluster grid I first determine the side lengths sx, sy and sz of a
single cluster. Instead of specifying the side lengths individually, I assume we want the cluster to be a
cube and compute a common side length s = sx = sy = sz from a desired cluster volume Vc by solving:

sxsysz = s3 = Vc (4.6)
s = 3

√
Vc (4.7)

Then, I compute bounding box B of the rendering camera frustum in clustering camera space. The
dimensions D are then found by dividing the lengths of the sides of the bounding box B∆x, B∆y and
B∆z by the lenghts of the sides of a cluster and ceiling the result:

Dx =

⌈
B∆x

sx

⌉
Dy =

⌈
B∆y

sy

⌉
Dz =

⌈
B∆z

sz

⌉
(4.8)

To make the clusters divide up the bounding box perfectly, the actual lengths of the sides of a cluster
s′x, s′y and s′z can be recomputed from the found dimensions and the bounding box B. When doing so
the clusters likely end up not being perfect cubes.

This construction works for any number of cameras as long as we can settle on a common coordinate
frame like world space. Orthographic clustering is therefore easily applied to enclosed clustering and
even to multi-view rendering. In multi-view rendering there may not be a common orientation between
the cameras which makes the construction of an enclosing perspective projection-based frustum difficult.

To find the cluster index of a sample we simply linearly interpolate the sample’s position in the
bounding box B to the range (0, Da) along each axis a. This is of course an orthographic projection
which can be combined with any other transformations and executed in the vertex shader.

Each cluster in the clustering grid is an axis-aligned box in the cluster camera space. Because the
clusters are axis-aligned boxes instead of frusta, we can use the more efficient axis-aligned box versus
sphere intersection test. This test does not generate false positives like the point in enlarged frustum
test.

4.3 Displaced Perspective Clustering
The goal of traditional perspective clustering is to keep the amount of clustering work per pixel consistent
across the camera depth. As a result, the number of clusters close to the camera may be larger than
necessary. Persson suggests using a manually tweaked distribution of clusters close to the camera, rather
than the geometric distribution. Instead of a piecewise function, I suggest displacing the clustering
camera origin as shown in Figure 4.6. This modification comes for free in case of enclosed clustering
since the clustering camera is already decoupled from the rendering camera.

d⃗

Z

X

Figure 4.6: We displace the origin along the central Z axis of the frustum. By increasing the
displacement the clustering becomes more like ortographic clustering.

In order to construct the displaced camera frustum we simply translate the origin. Then we compute
new tangents in such a way that the displaced camera’s far plane matches up with the rendering camera’s
far plane. As we increase the displacement, the clusters become more cube-like. However, if the frustum
is assymetric the clusters become skewed cubes. To solve this, we could re-orient the frustum so that it
is symmetric. Re-orienting the clustering camera frustum is not explored further in this thesis.

4.4. MULTI-VIEW RENDERING 21

Displaced perspective clustering decouples the clustering camera from the rendering camera. There-
fore I use the same method as described in Section 4.1.2 to compute the cluster index from the sample
position.

The ideal cluster-light intersection test depends on the final shape of the clusters. For a large
displacement and a symmetric frustum, the clusters become cubes. When the clusters are similar to
cubes, an enlarged axis-aligned box versus sphere test can be used. Otherwise, the usual enlarged
frustum versus point test from perspective clustering can be used.

4.4 Multi-View Rendering
The idea of re-using the clustering for stereoscopic rendering can be extended to any number of views. In
fact, stereoscopic rendering is just one of many applications of multi-view rendering. Other applications
include rendering soft-shadows, realistic motion and defocus blur, reflections and indirect illumination
[Kol+19]. The implementation for enclosed clustering can, apart from the construction of the enclosing
clustering camera which is a small part and probably happens on the CPU, be used as-is for multi-
view rendering. Doing so is only helpful when the rendering frusta overlap, otherwise we might as well
perform the clustering per camera as there are no duplicated light assignment calculations.

front
frustum

rear
frustum

Figure 4.7: Enclosed clustering for a front and rear view calls for orthographic clustering. The shape
of the enclosing frustum becomes like a box and we would want to divide the depth linearly in camera
space.

For some of the applications, like reflections and indirect illumination, there is little coherency
between the orientation of the views. Figure 4.7 illustrates such a scenario. The mirror camera faces in
the opposite direction of the main camera. It is not clear how to choose an appropriate orientation for the
construction of an enclosing perspective clustering camera. Unlike perspective clustering, orthographic
clustering does not require a common direction and is therefore more easily applied to CLS for multi-
view rendering.

4.5 Summary
In this chapter I presented three methods: enclosed clustering, orthographic clustering and displaced
perspective clustering. Enclosed clustering performs the light assignment step of CLS once instead
of twice when rendering a stereoscopic image by choosing a common enclosing clustering camera in
which the clustering grid is constructed. Orthographic clustering and displaced perspective clustering
are two alternative clustering grid construction methods which can be applied to both monoscopic and
stereoscopic rendering. The different clustering camera construction techniques applied to monoscopic
rendering are shown in Figure 4.8.

22 CHAPTER 4. METHODS

(a) Render Front (b) Persp. Front (c) Displ. Persp. Front (d) Ortho. Front

(e) Render Bird’s (f) Persp. Bird’s (g) Displ. Persp. Bird’s (h) Ortho. Bird’s

Figure 4.8: The Bistro Exterior scene rendered with different clustering strategies. The front view
determines the clustering camera. The bird’s eye view simply takes a different perspective and does
not affect the clustering camera. The clustering strategies are visualized by using the 3D cluster index
modulo 3 mapped to each color channel for each pixel. The magenta color in the renders indicate that
no cluster is available for that pixel which can happen in the bird’s eye view. Fragments outside of the
clustering space were discarded. The rendering camera frusta are drawn in green. Clustering camera
frusta are drawn in red. The clusters produced by displaced perspective- and orthographic clustering do
not nicely tile the screen like traditional perspective clustering does because the clustering and rendering
are decoupled and do not share their origin. Notice how displaced perspective clustering is a mix between
perspective- and orthographic clustering.

5
Implementation

I implemented the CLS variations described in Section 4 in a renderer built specifically to support the
work presented in this thesis. The renderer is implemented in Rust and makes use of OpenGL and some
basic utility libraries like cgmath for 3D math, image for image processing and rand for random number
generation. I built the render from scratch, which I knew would be a time consuming endeavour, to gain
a good understanding of the entire rendering pipeline and to appreciate the work put into modern game
engines. The complete source code is publicly available at github.com/mickvangelderen/clustered-light-
shading. An overview of the implemented variations is given in Table 5.1.

Name Description
Indi Individual clustering: The whole clustering is performed for each rendering

camera individually.
Encl Enclosed clustering: Multiple rendering cameras re-use a single clustering. The

clustering is computed using a clustering camera that encloses all the rendering
cameras.

Persp P Perspective clustering: Traditional CLS where the clustering camera and the
rendering camera are the same. The desired width and height of clusters in
screen space is given by P .

Ortho S Orthographic clustering: Clusters are given by a uniform grid in camera (view)
space. Each cluster is a cube with side length S.

Displ P D Displaced perspective clustering: The clustering camera decoupled from the
rendering camera by displacing the origin backwards by D along the frustum’s
central forward axis. The clustering grid is constructed with using the tradi-
tional perspective based method. The cluster grid dimensions are determined
from a desired average cluster volume Vc. The desired cluster volume Vc is
found by computing the volume that would occur in case of Persp P .

Table 5.1: An overview of the CLS variations considered in this thesis. The name is the short-hand
used to reference each variant. The parameters P , S and D are omitted when irrelevant. Indi or Encl
can be combined with any of Persp, Ortho or Displ.

In [OBA12], various alterations of CLS are compared with traditional deferred shading, and deferred-
and forward tiled-based shading. The overall best performing CLS variation is ClusteredDeferredPt and
the runner-up is ClusteredForward. The base CLS implementation I used is most similar to Clustered-

https://github.com/mickvangelderen/clustered-light-shading
https://github.com/mickvangelderen/clustered-light-shading

24 CHAPTER 5. IMPLEMENTATION

Forward. Forward shading gives use maximum flexibility because it allows shader changes in between
draw calls, transparency and Multi-Sampling Anti-Aliasing (MSAA). Other variations from [OBA12]:
computing visible clusters by sorting and compacting a screen space buffer of cluster indices instead of
using page tables, partitioning based on normals and computing explicit cluster bounds did not yield
increases in overal rendering time and are therefore not used.

5.1 Cluster Space Construction
The clustering camera and cluster grid dimensions are determined as described in Chapter 4 on the
CPU where all the parameters are available. This computation is linear in the number of cameras per
cluster, which very low, and its cost is therefore mostly insignificant. It is possible to have multiple
clusterings per frame, for example in case of stereoscopic rendering with Indi clustering.

For perspective clustering, the transformation between camera and cluster grid space is non-linear
for the z-component. I pre-compute all required coefficients for the forward and reverse transformation
and upload them to the GPU so that. For orthographic clustering the transformation from object to
cluster index space can be merged into a single matrix.

5.2 Cluster Visibility
One step in the CLS involves determining which clusters are visible so that we need to perform the light
assignment only for a small fraction of the clusters in the clustering grid. The original paper describes
two methods:

1. Render the cluster index per sample to a buffer and then compute a contiguous array of all unique
indices in the buffer.

2. First (virtually) allocate a bit per cluster. For each visible sample mark its corresponding cluster
as visible. Compact the indices of visible clusters into a contiguous array.

Rather than finding unique values globally, the first method makes use of the fact that cluster indices are
already unique per screen space XY tile and finds the unique values locally per tile before compaction.
Since this assumption is no longer valid when the clustering and rendering cameras are decoupled, which
is true when using any of the variations presented in this thesis, I use the second method.

Because I am not partitioning based on normals, the required memory for a reasonably sized clus-
tering grid can be allocated at once. For example, a grid with 128 clusters per side using 1-bit per
cluster requires only 2MiB of memory. The relatively low memory requirements eliminate the need for
a paging scheme. My implementation however uses 32-bits per cluster instead of 1-bit. For the previous
example the required memory is then 64MiB which is non-trivial but acceptable for a modern desktop
computer. The reason for doing so is that we also need to store the index in the list of visible clusters
(if present) for each cluster so that we may look up the light lists during shading. Since the cluster
indices are 32-bits in my implementation, we require 32-bits per cluster. The same memory can be used
for visibility marking and subsequently to store the mapping since they are required at different times.
Since we have 32-bits available per cluster, instead of marking whether or not a cluster is visible, I
instead count the number of visible fragments per cluster. The visible fragment counts per cluster were
helpful during debugging and are used to generate a histogram when profiling. The histogram gives a
sense of the distribution of fragment counts per cluster which can help explain obtained timings for the
various stages of the rendering pipeline.

Under certain circumstances, for example on more memory constrained computers like consoles or
when using a larger number of clusters, a page table may become necessary. The implementation of a
page table may also decrease the cost of visible cluster indices compaction as entire pages of clusters
may be skipped, however the compaction has a very low computational cost. The lack of utilization of
page tables or another method that creates a hierarchy of clusters is a limitation in the work presented
in this thesis.

Since the number of visible clusters is a lot smaller than the total number of clusters, we can more
easily associate data with them. Because determining cluster visibility and the compaction happens on
the GPU, we can not know how many visible clusters a frame will contain on the CPU side without

5.2. CLUSTER VISIBILITY 25

synchronization. I use a fixed maximum capacity for data associated visible clusters. On the CPU side,
implementations should monitor the number of visible clusters asynchronously and report it when there
is insufficient capacity. As usual, the GPU side should be careful not to write past buffer boundaries.

5.2.1 Precision Considerations
We need the cluster index, which is computed from the sample’s position in cluster space, to be exactly
the same during visibility marking and during shading. During the visibility pass, the fragment position
is reconstructed from the depth buffer generated by a depth pre-pass. This means that during shading,
we should also use the sample’s depth, which is given by gl_FragCoord.z, to compute the cluster index.
Initially I tried to compute the cluster index from the sample position in cluster camera space which
can be computed in the vertex shader and interpolated by the hardware for the sample. However,
computing the cluster index this way sometimes resulted in a different cluster index due to limited
precision as shown in Figure 5.1. Computing the cluster index using the sample depth in both the
visibility pass and when shading makes this a non-issue.

Figure 5.1: Pixels for which the corresponding visible cluster index is missing are colored magenta.
This is true for some samples in the hallway to the left of the center pillar.

5.2.2 Transparency
In the presence of transparent geometry, more than one sample can be visible per pixel. However, a
standard depth buffer can only hold one depth value per pixel. This means that we cannot reconstruct
the sample positions of transparent geometry from the depth buffer to mark clusters as visible. To
support transparent geometry, I first fill the depth buffer by rendering all opaque and masked geometry,
and then I render all transparant geometry. For each generated transparent geometry sample, I mark
its corresponding cluster as visible directly from the fragment shader.

5.2.3 Multi-Sample Anti-Aliasing
MSAA is an anti-aliasing technique which decouples visibility sampling from shading. Visibility is
sampled at multiple locations within each pixel. If any of the samples within a pixel are covered by
the triangle, all these samples together are shaded once as shown in Figure 5.2. This is different from
super-sampling, which simply increases the sampling resolution.

26 CHAPTER 5. IMPLEMENTATION

Sample Positions

Pixel Center

Figure 5.2: A pixel (black) with sampling locations (circles) partially covered by a triangle (blue).
In this scenerio the fragment shader would be invoked once and the resulting color applied only to the
bottom left sample.

As before, to correctly determine the visible clusters using the depth buffer, we must be sure that
the computed sample positions are the same during the cluster visibility pass and during shading. For
a multi-sampled depth buffer we need to know that the depth value stored for each sample is the same
as the gl_FragCoord.z passed to the fragment shader during the shading pass. Unfortunately, the
OpenGL specification is a bit loose with regards to how MSAA needs to work exactly. This is likely
intentional so that GPU vendors have some flexibility in their implementation but it makes it hard to
guarantee that the computation of the cluster index is using the same data during the visibility pass
and during shading in a cross-GPU-vendor manner. The GLSL qualifier centroid can help by forcing
the evaluation of vertex attributes at the pixel center (12 ,

1
2).

The performance of the visibility marking pass is directly related to the sample count. For 16x
multi-sampling we read 16 depth values per pixel and perform 16 atomic writes. We could try to
deduplicate the number of atomic writes by finding unique depth values per pixel or even per group
of pixels. Alternatively we could determine which pixels are simple, in the sense that they can be
represented by a single sample, or complex [NVi19]. Then we process simple and complex pixels in two
separate passes. The exploration of further improvements to this method falls outside of the scope of
this thesis.

The original motivation for reconstructing visible samples from the depth buffer was that doing so
is faster than rendering a second full geometry pass after filling the depth buffer. For a multi-sampled
depth buffer, doing a second geometry pass may actually be faster because the hardware then invokes the
fragment shader only once for multiple samples. In order to not have the GPU disable the early fragment
test in the presence of atomic operations, we must declare layout(early_fragment_tests) in; in our
fragment shader. Normally, forcing early-z is problematic for masked geometry is problematic because
depth and stencil values will be written regardless of a discard in the fragment shader. However, since
we already have the depth buffer available we can disable depth writes with glDepthMask(GL_FALSE).

5.3 Light Assignment
We must compute for each visible cluster the list of lights of which the influence volumes intersect
the cluster’s volume. I have implemented this with a two-intersection-passes method. In the first
intersection pass, I compute for each visible cluster how many lights intersect it. The partial sums of
these lengths are then computed with a parallel prefix-sum yielding starting offsets for each list. A
second intersection pass then uses these offsets to actually write the lists of light indices.

Unlike Olsson, Billeter, and Assarsson, I do not use a bounding volume hierarchy over the light
sources to accelerate the cluster-light intersection tests. Unfortunately accelerating the light assignment
was not implemented due to time constraints. This is an important limitation of this thesis as the cost
of light assignment grows linearly with the number of lights in my implementation, while sub-linear
scaling is possible. A large light assignment cost means that more time is saved with enclosed clustering,
thereby showing larger benefits than would occur in a complete CLS implementation.

5.4 Shading
The renderer uses a simple Physically-Based Rendering shading model adopted from [Vri20]. The
implementation has not been particularly optimized, but should be sufficient to represent the amount

5.4. SHADING 27

of work performed in production-ready applications.
Since CLS requires limiting the influence region of lights, the light attenuation function must be

modified so that it smoothly transitions to zero at the boundaries of this region. Appendix A ex-
plores various options for the attenuation function of point lights. The chosen attenuation function,
parameterized by a light intensity I, an intensity cut-off I0 and the distance d is:

a(d) =
I

d2
− I20

d2

I
(5.1)

28 CHAPTER 5. IMPLEMENTATION

6
Results and Discussion

In the previous chapters I have introduced enclosed clustering, orthographic clustering and displaced
perspective clustering. Table 5.1 gives an overview of the implemented methods along with the names
used to refer to them. This chapter describes the evaluation method in Section 6.1. Then I proceed
to find good parameters for Persp, Ortho and Displ clustering by considering them individually in
Section 6.2. These parameters are established so that we may use them when comparing Indi with
Encl clustering in Section 6.3 and when comparing Persp, Ortho and Displ clustering with each other
in Section 6.4.

6.1 Evaluation Method
As mentioned in Chapter 5, I developed a OpenGL based renderer in Rust with the specific goal of
evaluating the work in this thesis. This section describes the exact method of evaluation and common
configuration values used to obtain the results presented in the remainder of this chapter.

6.1.1 Profiling
The renderer can record the initial camera state and all subsequent user input. I obtain profiling results
by replaying these recordings and taking various measurements every frame. These measurements can
be either time sensitive or not. Time sensitive, or temporal, measurements require a different approach
than atemporal measurements.

Temporal Profiling

For the evaluation of the computational performance I record the time elapsed on both the CPU and
GPU for various sections of the rendering process. Because the obtained values are dependent on time,
I call this type of profiling temporal profiling. The only CLS computation happening on the CPU is the
construction of the clustering space. The time spent doing so per frame is insignificant. All significant
CLS computations happen on the GPU and all timings shown in this chapter represent time elapsed
on the GPU. Since the profiling was executed on a time-sharing operating system, our renderer does
not have exclusive access to the GPU. This means that we may measure time spans that include not
only our computations, but also work caused by other applications, making the time span larger. The
replayed simulations are deterministic, which allows replaying the same capture multiple times to obtain

30 CHAPTER 6. RESULTS AND DISCUSSION

multiple measurements of the same computation. I take the minimum of each sample across multiple
runs to estimate the best-case timings.

Atemporal Profiling

There are a number of useful measurements we can take that depend only on the simulation and not
on the execution time. For example, the sequence of rendered frames should be the same for any run
because the simulation and rendering is deterministic. To record this information I perform an single
atemporal profiling run for each profiling configuration. Atemporal measurements are disbled during
temporal profiling runs so as not to influence temporal measurements.

6.1.2 Scenes
Two different scenes were used for profiling: the Amazon Lumberyard Bistro Exterior scene [Lum17]
and the UE4 Sun Temple scene [Gam17]. Table 6.1 gives an overview of the scenes and some of their
details. The results of both scenes ended up being very similar so I have chosen to only show the results
from the Bistro scene in line with the text. The Bistro scene is the more demanding scene. The
results gathered using the Suntem scene are included in Appendix C.

Name Triangles Transparency
Bistro 3.0M yes
Suntem 1.6M no

Table 6.1: Overview of the scenes used in profiling.

6.1.3 Camera Configuration
The far plane is set to 100 units for the rendering camera. For monoscopic rendering the field of view
is set to 90 deg. For stereoscopic rendering I use the frustum tangents provided by the HTC-Vive. The
camera far plane and field of view are not varied in the following experiments. The effects are these
parameters are clear:

• A larger depth range leads to more clusters for any of the described methods.

• A larger field of view leads to more clusters in case of Ortho and Displ, but not in case of Persp.

Having a larger cluster grid means more clusters may be visible which means more light assignment
work. Care must be taken, especially for Ortho as it is very sensitive to the depth range and field of
view, that the dimensionality of the grid doesn’t become so large that we can no longer allocate 32-bits
per cluster.

6.1.4 Lighting Conditions
Applications have varying requirements on the number of lights that need to be supported. To get an
idea of how the number of light affect the performance of various methods I use three different light
configurations: 1000, 10.000 and 100.000 lights. These lights are randomly placed in the bounding box
of the scene. Each light is simulated to fall down in a manner similar to rain, except no collisions occur.
Lights reaching the bottom of the bounding box are recreated randomly at the top of the bounding
box. Regardless of the total number of lights in the scene, the number of lights that can be considered
at most per pixel is very much determined by the processing power of the used hardware. To keep the
frame times reasonable, I use chose the light volume radius (denoted by R1) in such a way that the
number of lights per pixel are similar between the light configurations.

6.1.5 Machine
The profiling was performed on a desktop computer sporting a GeForce GTX 1070 Ti. The rendering
resolution was 1280x720. The operating system was the linux-based Ubuntu.

6.2. CLUSTER CONSTRUCTION METHOD PARAMETERS 31

6.2 Cluster Construction Method Parameters
The exploration space of the proposed methods and their parameters is very large. To reduce the
exploration space, I determine close-to-optimal parameters for each cluster construction technique indi-
vidually. This is done for all scenes and lighting conditions, as the differences in geometry and lighting
may require different parameters.

(a) Frame 300 (b) Frame 580

Figure 6.1: Two frames from the Bistro scene replay. From left to right: 1000, 10000 and 100000
lights. The reason that the images get increasingly dark despite a higher light count is that the light
radii were chosen to be smaller to keep the average number of lights per pixel similar. The radii are
shrunk by decreasing the light intensity. The larger light count but diminished intensity together produce
a smaller total illumination due to the used attenuation function. Note that in frame 580, most of the
the visible geometry is fairly far from the camera. For Ortho, this leads to a large number of visible
clusters. For Persp, this leads to large clusters with many lights.

From a shading perspective, we would like to iterate over the smallest possible number of lights.
To achieve this, we need high clustering resolution (a large number of clusters in the clustering grid)
so that we precisely cull the lights. From a clustering perspective however, a fine clustering resolution
means that we must compute the light lists for many clusters. In this section we essentially try to
establish a cluster size for each method such that the total frame computation time is minimal. There
is no reason to find exact optima as small changes to the scene, the lighting conditions, or even the
replay can change the optimum number dramatically. As long as we are largely in the right ballpark,
we can make reasonable comparisions. Figures 6.2, 6.3 and 6.4 show profiling results for Persp, Ortho
and Displ clustering gathered with the Bistro scene replay. The plots show the total frame time
along with various temporal and atemporal profiling measurements for each frame of the replay. By
inspecting the plots visually, I judged that Persp 64, Ortho 4 and Displ 64 32 had the best overall
frame-time performance.

32 CHAPTER 6. RESULTS AND DISCUSSION

0

5000

10000

15000

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Persp 16

Persp 32

Persp 64

Persp 96

Persp 128

0

5000

10000

15000

10000 lights (R1 = 6.32)

0

5000

10000

15000

100000 lights (R1 = 1.41)

1

2

3

4

C
lu

st
er

in
g

(m
s)

0

5

10

15

0

50

100

150

frame

2

4

6

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

frame

2

4

×107

frame
0

2

4

6

8
×107

2

4

6

8

10

S
h

a
d

in
g

T
im

e
(m

s)

2

4

6

8

0

5

10

15

20

0 200 400 600

4

6

8

10

12

T
o
ta

l
T

im
e

(m
s)

0 200 400 600

5

10

15

20

0 200 400 600

0

50

100

150

Figure 6.2: The profiling results of the Bistro scene using Persp clustering. Through visual inspec-
tion, I judge Persp 64 to perform the best among the tested sizes. Around frame 580 only a small part
of the render contains visible geometry and the geometry is far away from the camera origin. This,
as is to be expected, leads to only a small number of clusters being marked as visible. The low visible
cluster count consequently explains the low clustering time. Each of these clusters, however, covers a
large amount of space. Since the lights were distributed uniformly over the bounding box of the scene,
more lights are assigned to each cluster. Even through there are less fragments being rendered around
frame 580 (because more of the black background is visible), the overall shading time is increased due
to a large number of lights per cluster.

6.2. CLUSTER CONSTRUCTION METHOD PARAMETERS 33

0

2000

4000

6000

8000

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Ortho 1.0

Ortho 2.0

Ortho 4.0

Ortho 8.0

Ortho 16.0

0

2000

4000

6000

8000

10000 lights (R1 = 6.32)

0

2000

4000

6000

8000

100000 lights (R1 = 1.41)

1

2

C
lu

st
er

in
g

(m
s)

2

4

6

8

0

20

40

60

frame
0.00

0.25

0.50

0.75

1.00

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×108

frame
0.0

0.5

1.0

×108

frame

0

1

2

3

×108

5

10

S
h

a
d

in
g

T
im

e
(m

s)

5

10

15

20

0

10

20

30

40

0 200 400 600

5

10

15

T
o
ta

l
T

im
e

(m
s)

0 200 400 600

5

10

15

20

0 200 400 600

0

20

40

60

Figure 6.3: The profiling results of the Bistro scene using Ortho clustering. Through visual inspec-
tion, I judge Ortho 4.0 to perform the best among the tested sizes. As is to be expected, the clustering
time is the largest around frame 580 where the visible geometry is far away from the camera, leading
to a large number of visible clusters. The shading time actually decreases around that time because a
large part of the render doesn’t contain any geometry at all: only the black background is showing.

34 CHAPTER 6. RESULTS AND DISCUSSION

0

500

1000

1500

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Displ 64 1

Displ 64 4

Displ 64 32

Displ 64 256

0

500

1000

1500

10000 lights (R1 = 6.32)

0

500

1000

1500

100000 lights (R1 = 1.41)

0.5

1.0

1.5

C
lu

st
er

in
g

(m
s)

1

2

3

5

10

frame

2

4

6

8

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

frame
1

2

3

4

5

×107

frame

1

2

3

4

×107

2

4

6

8

10

S
h

a
d

in
g

T
im

e
(m

s)

2

4

6

8

2

4

6

0 200 400 600

5.0

7.5

10.0

12.5

T
o
ta

l
T

im
e

(m
s)

0 200 400 600

4

6

8

10

0 200 400 600

5

10

15

Figure 6.4: The profiling results of the Bistro scene using Displ clustering. Through visual inspec-
tion, I judge Persp 64 32 to perform the best among the tested sizes.

6.3. ENCLOSED CLUSTERING 35

6.3 Enclosed Clustering
CLS can be used for stereoscopic rendering by simply applying the technique to both eyes individually
(Indi). Enclosed clustering (Encl) adapts CLS to stereoscopic rendering and performs the light as-
signment step of CLS only once for both eyes together, instead of twice. This requires decoupling the
clustering camera from the rendering camera which incurs extra computational costs. In this section I
show that the time gained by reducing the number of light assignments by almost half easily outweighs
the time lost due to this decoupling.

Figure 6.5 compares the profiling results for Indi and Encl using Persp and Ortho with the param-
eters found in the previous section. The Displ clustering method was left out since it is a mix between
Persp and Ortho and would only clutter the graphs. As described in Section 4.1.1, the dimensions of
the cluster grid are determined using the desired cluster volume. Because the enclosing frustum covers
more space than either the left or right eye’s camera frustum alone, the dimensions of the grid are also
larger. The total number of clusters in the grid is therefore not exactly halved. However, because we
keep the resolution of the clustering grid somewhat constant by increasing the dimensions of the grid
based on the desired cluster volume, the total number of visible clusters should be close to halved.

36 CHAPTER 6. RESULTS AND DISCUSSION

0

500

1000

1500
V

is
ib

le
C

lu
st

er
s

1000 lights (R1 = 14.14)

Individual Persp 64

Enclosed Persp 64

Individual Ortho 4.0

Enclosed Ortho 4.0

10000 lights (R1 = 6.32) 100000 lights (R1 = 1.41)

0

5

10

15

C
lu

st
er

in
g

(m
s)

2

4

6

8

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

0

5

10

15

20

S
h

a
d

in
g

T
im

e
(m

s)

0 200 400 600

frame

10

20

T
o
ta

l
T

im
e

(m
s)

0 200 400 600

frame

0 200 400 600

frame

Figure 6.5: Profiling results of Indi and Encl clustering for the Bistro scene. The total visible cluster
count is halved as expected. This translates into a lower clustering time, especially in case of many lights
(100.000 and lack of acceleration structure) or clusters (Ortho with far-away geometry around frame
580). When put in perspective of the total frame time, the performance gains are marginal because
the light assignment is already a relatively small step in the entire rendering process. Interestingly,
the number of lighting computations seems to actually decrease for Persp. This observation actually
inspired the Displ method. What I expect is happening is that due to the origin of the enclosing camera
being moved backwards, the clusters near the camera become bigger. The distribution of the density,
or resolution, of clusters in camera space essentially shifts from being very focused at the near plane,
to a more equal spread over the depth range. Having a smaller number of very small clusters near the
camera benefits the clustering, and having more resolution far away from the camera benefits the culling
and therefore shading.

6.4. ORTHOGRAPHIC- AND DISPLACED PERSPECTIVE CLUSTERING 37

6.4 Orthographic- and Displaced Perspective Clustering
The development of Encl clustering opened up a path to alternative ways of constructing the clustering
camera and grid. In this section we compare traditional perspective based clustering (Persp) with,
the traditionally dismissed, uniform world-space grid clustering (Ortho) and with, the in this thesis
introduced, diplaced perspective clustering (Displ). Decent cluster size parameters were found for each
method individually in Section 6.2. Figure 6.6 contains the profiling results obtained for the tuned
methods with the Bistro scene. More detailed timing information on is presented in Figures 6.7 and
6.8.

The distribution of clusters with respect to the number of lights they intersect and the number of
fragments they contain are presented in Figures 6.9 and Figure 6.10 respectively. The distributions are
recorded as histograms for every frame and visualized as a heatmap.

It is difficult to discuss the potential of the presented methods for real applications as the light
assignment step is not accelerated. In other work they actively try to retain the tiling of TBS in CLS
approaches to minimize execution divergence. Decoupling the clustering camera from the rendering
camera, as we must for Ortho and Displ, makes such a screen space tiling impossible. Regardless,
there seems to be some wasted precision close to the near plane for Persp. When rendering scenes with
uniform light distribution, a relatively small camera depth range, and large depth discontinuities within
this range, Ortho and particularly Displ are worth exploring. Once the decoupling of the clustering
camera from the rendering camera is implemented, supporting all of the variations explored in this
thesis requires little additional implementation work.

38 CHAPTER 6. RESULTS AND DISCUSSION

0

500

1000

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Persp 64

Ortho 4.0

Displ 64 32

0

500

1000

10000 lights (R1 = 6.32)

0

500

1000

100000 lights (R1 = 1.41)

0.5

1.0

1.5

C
lu

st
er

in
g

(m
s)

0.5

1.0

1.5

2.0

2.5

5

10

frame

2

4

6

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

frame

1

2

3

4

×107

frame

0.5

1.0

1.5

2.0

×107

2

4

6

8

S
h

a
d

in
g

T
im

e
(m

s)

2

3

4

5

1

2

3

4

0 200 400 600

4

6

8

10

T
o
ta

l
T

im
e

(m
s)

0 200 400 600

4

6

8

0 200 400 600

5

10

15

Figure 6.6: The profiling results of the Bistro scene using the tuned Persp 64, Ortho 4, and Displ
64 32. Displ seems to deliver a more stable frame time than either Persp or Ortho alone. It is able to
deal with the visible geometry being both close-by and far-away. However, these results are specific to the
scene and lighting conditions. When far-away lights are fewer with larger radii, Persp may be a much
better choice still. On the other hand, Ortho will benefit greatly from accelerating the light assignment
[OBA12].

6.4. ORTHOGRAPHIC- AND DISPLACED PERSPECTIVE CLUSTERING 39

0

5

10

15

P
e
r
s
p

6
4

G
P

U
ti

m
e

(m
s)

1000 lights (R1 = 14.14)

Shading

Clustering

Miscellaneous

10000 lights (R1 = 6.32) 100000 lights (R1 = 1.41)

0

5

10

15

O
r
t
h
o

4
.0

G
P

U
ti

m
e

(m
s)

0 200 400 600

frame

0

5

10

15

D
i
s
p
l

6
4

3
2

G
P

U
ti

m
e

(m
s)

0 200 400 600

frame

0 200 400 600

frame

Figure 6.7: Frame breakdown, Bistro scene. The miscellaneous category captures GPU work unrelated
to either clustering or shading. Examples of this work are culling, filling indirect draw buffers, light
simulation, and framebuffer blitting.

40 CHAPTER 6. RESULTS AND DISCUSSION

0

5

10

P
e
r
s
p

6
4

G
P

U
ti

m
e

(m
s)

1000 lights (R1 = 14.14)

Visibility

Count Lights

Assign Lights

Miscellaneous

10000 lights (R1 = 6.32) 100000 lights (R1 = 1.41)

0

5

10

O
r
t
h
o

4
.0

G
P

U
ti

m
e

(m
s)

0 200 400 600

frame

0

5

10

D
i
s
p
l

6
4

3
2

G
P

U
ti

m
e

(m
s)

0 200 400 600

frame

0 200 400 600

frame

Figure 6.8: Clustering breakdown, Bistro scene. The Visibility category includes the depth pass and
counting visible fragments. The miscellaneous category captures uploading and transforming lights,
computing prefix sums and other small work.

0

200

B
in

n
ed

b
y

L
ig

h
t

C
o
u

n
t

Persp 64 Ortho 4.0 Displ 64 32

0 200 400 600

Frame

0

500

1000

T
o
ta

l
C

lu
st

er
C

o
u

n
t

0 200 400 600

Frame

0 200 400 600

Frame

0

1

4

16

64

256

1024

Cluster
Count

Figure 6.9: The distribution of clusters with a certain light count. As we move the camera away from
the visible geometry (frames 400 - 600), the visible clusters become bigger for Persp and as a result
contain more lights. For Ortho however, all clusters are the same size but more of them are visible.

6.4. ORTHOGRAPHIC- AND DISPLACED PERSPECTIVE CLUSTERING 41

0

200

B
in

n
ed

b
y

b8
lo

g
2
(F

ra
g
.

C
n
t.

)c Persp 64 Ortho 4.0 Displ 64 32

0 200 400 600

Frame

0

500

1000

T
o
ta

l
C

lu
st

er
C

o
u

n
t

0 200 400 600

Frame

0 200 400 600

Frame

0

1

4

16

64

256

1024

Cluster
Count

Figure 6.10: The distribution of clusters with a certain fragment count. We see that a cluster can
contain at most 642 fragments per cluster for Persp 64 as we only take 1 sample per pixel.

42 CHAPTER 6. RESULTS AND DISCUSSION

7
Conclusion

The main contribution of this thesis is enclosed clustering (Encl) which improves CLS in a stereo-
scopic rendering context by reducing the amount of light assignment work. Besides enclosed clustering
I presented orthographic (Ortho) and displaced perspective clustering (Displ) which construct the
clustering camera and grid in a slightly different way. These methods and their implementation were
explained in detail in Chapters 4 and 5. In Chapter 6 I presented and discussed temporal and atemporal
performance metrics obtained through extensive and careful profiling of the presented, and existing,
methods. This chapter briefly discusses the results of each presented method and closes with possible
directions for future work.

7.1 Enclosed Clustering
Enclosed clustering should always be used for stereoscopic rendering. The decreased total number of
light lists to be computed outweighs the costs introduced by decoupling the clustering from the rendering
camera. For unaligned views, orthographic clustering can be used. This enables using more lights in
scenes with mirrors or other reflections where the same space is viewed from multiple directions.

7.2 Orthographic Clustering
Orthographic clustering is a competitive way of defining your clusters. It lends itself well to enclosed
clustering, even if the views are not aligned. Implementation is simple because clusters are axis aligned
bounding boxes. It is possible to use the world space orientation for this clustering which may eliminate
computations such as transforming the lights into cluster camera space.

The use of orthographic clustering can lead to a large number of visible clusters. This is problematic
because light assignment has to be performed for every visible cluster. Using a large camera depth range
or field of view is therefore a challenge. Decreasing the cost of light assignment greatly benefits this
technique.

7.3 Displaced Perspective Clustering
Perspective clustering is an established technique. However, the importance of clusters being formed
by dividing screen space XY tiles along the Z-axis and the resulting screen space alignment may be less

44 CHAPTER 7. CONCLUSION

important today. Letting go of this desire allows us to deal with an unnecessarily high cluster resolution
close to the camera near plane by moving the origin of the clustering camera backwards. Doing so allows
us to get the good parts of both ortographic and perspective, clustering. This technique is more robust
with respect to the expected frame time when varying the distance to visible geometry than either
technique alone. For enclosed clustering, the clustering camera is already decoupled from the rendering
camera making this technique come at no additional cost.

7.4 Future Work
The renderer written to support the work in this thesis has, although the performance is good, a number
of shortcomings due to time constraints. The most obvious and painful one being the lack of acceleration
of the light assignment. This section describes some of these practical improvements and some more
open directions for future work.

Reoriented displaced perspective clustering

In Section 4.3 I displace the camera by the central axis of the frustum. Doing so with a large displacement
leaves the resulting frusta looking like skewed boxes when the camera frustum is assymetric. To make
the boxes symmetric, we can re-orient the enclosing frustum to be symmetric. This is similar to the
reorientation of shadow mapping camera frusta in [WSP04].

Per-tile clustering

Following the previous suggestions, we could eliminate the skew of clusters around the edges of the
clustering camera frustum by using a frustum per XY tile of clusters. We would need to figure out
how to efficiently implement the frustum-light intersections. Increasing the cluster grid resolution to
infinity, we would be looking at a sort of spherical projection, rather than perspective projection.

Support more kinds of light sources

Currently I have described only point light sources. To support more light sources, we have to find
appropriate frustum-light intersection tests and an attenuation function satisfying the requirements set
in Appendix A.

Cascaded or Hierarchical Orthographic Clustering

For aligned views, we could use a cascade of clustering sizes. For unaligned views, we could use a
hierarchical data structure. Efficiently implementing visibilty marking for a hierarchical data structure
is challenging because we probably cannot allocate enough memory to hold an implicit tree. A practical
implementation would involve dynamic memory allocation.

By using a hierarchical data structure, it would also be possible to aggregate far-away light contri-
butions by merging point lights. Because of the cut-off intensity I0, many small lights do not contribute
to far-away surfaces individually. When merged together, the larger intensity increases the influence
radius. Blending between the contribution of the individual light sources and the merged representation
will be challenging. Several techniques for merginging lights are described in [Dac+14].

Adaptive Cluster Size

Stability is important for real-time graphics. It would be interesting to try and figure out a way to
find the optimal clustering technique and parameters at run time. There are many parameters that can
be varied. For example the displacement distance of displacement perspective clustering or the cut-off
intensity I0 from the light attenuation.

Accelerate Light Assignment

Orthographic and displaced perspective clustering should be re-evaluated after accelerating the light
counting and assignment. In the case of many clusters and many lights, it may be useful to employ a
dual tree algorithm like the one described in [Kol+19].

7.4. FUTURE WORK 45

Improving Specular Highlights

Specular highlights are visible far outside of the light’s influence radius. Currently they are diminished
because of the attenuation function. To increase realism, it would be interesting to try to use cluster
normals [OBA12] and view direction to include lights in the specular lobe. Finding a method that is
temporally stable will be challenging.

46 CHAPTER 7. CONCLUSION

A
Choosing a light

attenuation function
What is commonly known as the brightness or intensity of a light source is more accurately defined by
the radiant intensity Ie,Ω in watt per steradian (W/sr). You can think of it as the amount of energy
emitted or received per second over 1

4π th of the surface of the unit sphere.
Point lights emit light in all directions equally. The total power emitted does not change as we move

further away from the light, but the surface of the sphere it is spread over does. In fact, if we define I
to be the power received by the unit sphere. Then the power received per area by a sphere with radius
d is I · d−2, because the area grows by a factor d2.

aphy =
I

d2
(A.1)

The function aphy has two issues. First of all limd→0 aphy = ∞ . When the distance to the light
source becomes very small, the intensity becomes very large. Very large intensities lead to precision
problems and require a high-dynamic range rendering pipeline.

Secondly, we want lights to have a limited radius of influence. This means that we need the atten-
uation to be 0 at this radius. However, aphy ̸= 0 for finite d. We would like the light’s radius to be as
small as possible so that we reduce the number of lights we need to compute the contribution for.

This chapter explains how I arrived at the attenuation function used in the renderer. I start by defin-
ing intuitive parameters. Using these parameters I define a variety of candidate attenuation functions.
These functions are compared visually. Finally, I motivate the selection of the attenuation function
used in the remainder of this thesis.

A.1 Function parameters
The attenuation function given in Equation A.2 is commonly seen in computer graphics, for example in
the 3D modelling software Blender. Apart from the intensity I, the function is parameterized by three
coefficients (c0, c1 and c2).

aclq =
I

c0 + c1d+ c2d2
(A.2)

48 APPENDIX A. CHOOSING A LIGHT ATTENUATION FUNCTION

With the right coefficients aclq can be made smooth and reasonable. Tuning these three coefficients
is not intuitive, so we take a step back to try and find more intuitive parameters.

To limit the maximum attenuation, we define a near-radius R0 which we use as the minimum d. If
we take R0 = 1 then the maximum intensity should be I. Choosing the right R0 depends on the scene
and the light that is being modeled.

Rather than directly defining the light’s outer radius R1, we parameterize our equations by a cut-off
intensity I0. We then find R1 by solving aphy(R1) = I0 which gives R1 =

√
I
I0

. Choosing a smaller I0

leads to a larger R1. The cut-off I0 directly determines how accurately you want to approximate aphy
and is independent of the light intensity I.

A.2 Considered functions
We want the attenuation to be zero at R1. There are many ways of achieving this. The simplest would
be to simply subtract I0 from aphy. We call this the “reduced” attenuation function ared.

ared = aphy − I0

To ensure a smooth transition from lit to unlit, we can force both the attenuation and its derivative
to zero. We solve for two coefficients c0 and c1.

asmo(d) = aphy + c0 · d+ c1 asmo(R1) = a′smo(R1) = 0

asmo(d) = aphy +
2I

R3
1

· d− 3I

R2
1

asmo(d) = aphy +
2I0
R1

· d− 3I0

We can interpolate between attenuation functions to generate more options. We do this using t1
and t2 as defined below. If only the squared distance is available, t2 has an advantage over t1 since it
does not require computing d.

t1 =
d

R1
t2 =

d2

R2
1

ai,j,n = (1− tn) · ai + tn · aj

We can use tn = tn1 to create an even sharper transition between the two interpolated functions.
Sharp transitions can introduce an inflection point in the attenuation function which is undesirable.
For this reason I only consider interpolation u sing t1 and t2.

Since ared and asmo incorporate aphy, we can simplify the resulting functions. Lets say aj = ai+a∗j ,
then we can simplify ai,j,n.

ai,j,n = (1− tn)ai + tn(ai + a∗j)

= ai − tnai + tnai + tna
∗
j

= ai + tna
∗
j

aphy,red,1 =
I

d2
− I0

d

R1
aphy,smo,1 =

I

d2
+ 2I0

d2

R2
1

− 3I0
d

R1

aphy,red,2 =
I

d2
− I0

d2

R2
1

aphy,smo,2 =
I

d2
+ 2I0

d3

R3
1

− 3I0
d2

R2
1

A.3. EVALUATION 49

0.5 R0 1 R1

0

I0

I

aphy
ared
aphy−red−1

aphy−red−2

asmo
aphy−smo−1

aphy−smo−2

Figure A.1: Basic attenuation functions for different light intensities. R0 = 0.75, I0 = 0.25, I = 1.00 .
This figure shows that we must make a trade-off between a smooth transition to zero at R1, and staying
true to aphy.

The attenuation functions we have defined have the desired property that limI0→0 a = aphy. This
means that the smaller we make I0, the closer we get to the correct attenuation. However, R1 simul-
taneously grows to infinity which means all clusters will contain all lights, defeating the purpose of
clustered light shading.

For completeness, we also define a linear attenuation function alin and a step attenuation function
astp. These functions are useful for debugging and illustration.

alin = I ∗ R1 − d

R1

astp = I ∗ step(d,R1)

A.3 Evaluation
We want each light that we do calculations for to contribute significantly to the scene. Figure A.2 shows
the results for alin. While this function does make every light contribute a lot to the scene, I think
that with physically based rendering and current hardware the attenuation function of choice should
resemble aphy as much as possible.

In Figure A.3 we see that the effect of “cutting off” our light influence volumes at R1 is very noticable.
When I0 is high, a lot of brightness in the scene is lost and far-from-the-light specular reflections are
lost.

While the idea of having a smooth attenuation function is reasonable, the light contribution is
much less than that of ared for example. Figure A.4 compares three functions which we consider good
representatives of all functions we have considered.

For the remainder of this thesis, I use aphy,red,2 because I think it looks good and it is cheap to

50 APPENDIX A. CHOOSING A LIGHT ATTENUATION FUNCTION

(a) alin with I0 = 1.00 (b) astp with I0 = 1.00 (c) astp with I0 = 0.25

Figure A.2: Linear and step attenuation. The limited light radius is especially clear when we look
at the specular reflections. Notice how I0 affects the light radii. Using I0 = 0 would result in physical
attenuation.

compute. The attenuation function needs to be evaluated for each directional light source and therefore
affects the shading time. Studying this effect is out of the scope of this thesis.

A.3. EVALUATION 51

(a) aphy with I0 = 0.00 (b) aphy with I0 = 1.00 (c) Debug view

Figure A.3: Physical attenuation with different influence radii. In A.3b we use clustered light shading.
The light assignment was done using the light radii R1. Since aphy(R1) ̸= 0, the cluster boundaries are
visible.

(a) ared with I0 = 0.25 (b) asmo with I0 = 0.25 (c) aphy,red,2 with I0 = 0.25

Figure A.4: Comparing a selection of our limited radius attenuation functions. All functions decrease
the overall brightness compared to aphy. Out of them, aphy−red−2 maintains most of the brighness
without any noticable edges.

52 APPENDIX A. CHOOSING A LIGHT ATTENUATION FUNCTION

B
Global Illumination

As mentioned in [Dac+14], CLS can be used to accelerate rendering with virtual point lights.

Figure B.1: Bistro scene with 5000 virtual point lights. Many of the lights do not contribute signifi-
cantly.

I attenuate the point lights by max(0.0, (̇light_normal, frag_to_light)
1
2) and use a fairly large

minimum distance of 1.0 for the point light attenuation. The VPL’s are generated by rendering a RSM
cube map and sampling it in pseudo random directions.

54 APPENDIX B. GLOBAL ILLUMINATION

Figure B.2: Color bleeding is visible near the vegetation and red objects.

Figure B.3: Sun Temple scene with 1000 VPLs.

55

Figure B.4: Virtual point lights as hemispherical lights, using the normal for color. Hemispherical
lights create hard edges. Some of the green VPLs unintenionally illumintate the surface they are on.
This can be fixed by offsetting the light positions and/or using a small zero-influence radius.

56 APPENDIX B. GLOBAL ILLUMINATION

C
Sun Temple results

Figures C.1 and C.2 show frame 250 and 680 of a fly-through of the Sun Temple scene under various
lighting conditions.

Figure C.1: Frame 250 of the Sun Temple scene replay. From left to right: 1000, 10000 and 100000
lights.

Figures C.3 and C.4 show that the Sun Temple scene leads to the same preferred sizes for ortho-
graphic and perspective clustering as the Bistro scene.

58 APPENDIX C. SUN TEMPLE RESULTS

Figure C.2: Frame 680 of the Sun Temple scene replay. From left to right: 1000, 10000 and 100000
lights.

59

0

5000

10000

15000

20000

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Ortho 1.0

Ortho 2.0

Ortho 4.0

Ortho 8.0

Ortho 16.0

0

5000

10000

15000

20000

10000 lights (R1 = 6.32)

0

5000

10000

15000

20000

100000 lights (R1 = 1.41)

1

2

3

C
lu

st
er

in
g

(m
s)

0

5

10

15

20

0

50

100

150

frame

1

2

3

4

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

frame
0.0

0.5

1.0

×108

frame

0

1

2

3

×108

1

2

3

4

S
h

a
d

in
g

T
im

e
(m

s)

2.5

5.0

7.5

10.0

0

10

20

30

0 250 500 750

2

3

4

5

T
o
ta

l
T

im
e

(m
s)

0 250 500 750

5

10

15

20

0 250 500 750

0

50

100

150

Figure C.3: Orthographic clustering, Sun Temple scene.

60 APPENDIX C. SUN TEMPLE RESULTS

0

5000

10000

V
is

ib
le

C
lu

st
er

s

1000 lights (R1 = 14.14)

Persp 16

Persp 32

Persp 64

Persp 96

Persp 128

0

5000

10000

10000 lights (R1 = 6.32)

0

5000

10000

100000 lights (R1 = 1.41)

0.5

1.0

1.5

2.0

C
lu

st
er

in
g

(m
s)

0

5

10

0

25

50

75

100

frame

1.0

1.5

2.0

2.5

3.0

L
ig

h
ti

n
g

C
o
m

p
u

ta
ti

o
n

s

×107

frame

1

2

3

4

×107

frame

0.00

0.25

0.50

0.75

1.00

×108

2

3

S
h

a
d

in
g

T
im

e
(m

s)

2

4

6

0

5

10

15

0 250 500 750

2

3

4

5

T
o
ta

l
T

im
e

(m
s)

0 250 500 750

5

10

15

0 250 500 750

0

25

50

75

100

Figure C.4: Perspective clustering, Sun Temple scene.

D
Prefix Sum

The prefix-sum [Ble89] is a useful tool in computer science that can help construct a compact repre-
sentation of nested data with a dynamic size. I discuss the need for such a representation in sections
D.1. The basic prefix-sum operation is described in Section D.2 and Section D.3 covers the paralellized
computation.

D.1 Motivation
Let’s say you are writing some cards to your friends. There is this one friend which you have not spoken
to in a long time. For his card, you have more text to write than there is space on the card. You will
probably try to compress your message or maybe send multiple or a bigger card. Having an unknown
number of lines, or more abstractly items, is a common problem in computer science. One way to tackle
it is by allocating probably enough space, which is what the card manufacturer did. Determining what
is probably enough is only guesswork, a safe choice is likely to reserve a lot of unused space.

The common way of dealing with this is to have what is called a dynamic memory allocator which
reserves large chunks of the available memory and intelligently hands out smaller pieces to applications
based on their current need. This allocator also needs to be able to reclaim pieces of memory that are
no longer needed. The repeated acquisition and releasing of memory can lead to fragmentation and
designing an efficient generic allocator is hard [BZM02; Mic04] .

offset
count

item 0
item 1

...
item n

Figure D.1: A dynamically sized array. The left depicts the array’s meta-data. The right shows the
items in the array which are laid out contiguously in memory.

A dynamically sized array needs to keep track of where its items are located and how many there
are (see Figure D.1). Instead of allocating exactly the number of items required, implementations

62 APPENDIX D. PREFIX SUM

usually over-allocate slightly. This helps to reduce the number of re-allocations which usually involves
copying all current data to a different location in memory. These implementations have a third variable
called the capacity which defines the maximum number of items that could fit in the memory that was
allocated.

a0 a1 a2 a3 b0 b1 b2

Figure D.2: Possible memory layout of a ragged array.

We can now represent our data with an array of arrays, a so called ragged array, as shown in
Figure D.2. While this is conceptually simple, it is not always an appropriate choice. To read a
specific item from the nested array, we need to first look up the address of the nested array, then the
address of the item and then the item. The indirection causes an extra memory read, which are slow
compared to computations. Processors try to hide the latency of memory reads but having multiple
loads in succession makes that difficult. Additionally, the items of the nested arrays can be anywhere
in memory, leading to bad data locality when iterating over all the nested arrays in sequence. Bad data
locality means that techniques like pre-fetching and caching are less effective.

D.2 Stream compaction

a0 a1 a2 a3 b0 b1 b2

Figure D.3: Compact layout. The array meta-data for the offsets and counts are omitted.

We can rearrange the data from Figure D.2 to be more compact as shown in Figure D.3. To build the
data in this way, we first have to determine counti for all nested arrays i. Then, the offset offseti of
nested array i is equal to the total number of items in the nested arrays preceding it.

offseti =
i−1∑
j=0

countj

Computing the offsets for all i can be done efficiently by realizing that we can re-use the previous
offset (Equation D.1) as illustrated in Figure D.4.

offseti = offseti−1 + counti−1 (D.1)

0

1 2 0 4

1 3 3 7Starting offset

Counts

Offsets

Figure D.4: Sequential prefix-sum

D.3. PARALLEL PREFIX-SUM 63

To actually allocate and write the data in the desired manner, we need to first determine counti
for all i. Then we can compute the offsets offseti. With the offsets available, we iterate over our input
again. This time we know we should write each item in nested array i at offset offseti+ current_counti.
At the cost of a second pass over our input to compute the counts, we have a compact data layout.

D.3 Parallel prefix-sum

To create ragged arrays on the GPU, we could use a generic memory allocator. Using a generic memory
allocator on the GPU does not make much sense if we know exactly what we are going to do. In our
case, we know that we can use the prefix-sum to calculate the offsets of each nested array. To compute
a prefix-sum on the GPU efficiently, we must try to utilize its many processors in parallel.

1 6 4 3 5 1 3 2

7 10 7 8 6 4 5

11 14 18 13 12 11

19 20 23 25

1 7 11 14 19 20 23 25
(a) Reduction efficient parallel prefix-sum. The to-
tal number of additions is 17 and they happen in 3
reduction steps.

1 6 4 3 5 1 3 2

7 7 6 5

11 14 11

19 20 25

23

1 7 11 14 19 20 23 25
(b) Work efficient parallel prefix-sum. The total num-
ber of additions is 11 and they happen in 4 reduction
steps.

Figure D.5: Work efficient and reduction efficient parallel prefix-sum. The arrows indicate the sources
for the additions involved in the computation of the 7th value (23).

Given as many processors as there are elements to process, we can optimize the computation in two
ways. We can minimize the number of addition operations that are performed. Alternatively we can
minimize the number of reduction steps that need to be taken. Both methods are shown in Figure D.5.
Having fewer reduction steps is more important to us than minimizing the work, so we will use the
reduction efficient variant.

We have a fixed number of processors over which we would like to distribute the work. We divide
the elements over the processors and have them compute a local prefix sum giving the local offsets. We
then sum the local offsets to obtain global offsets. Finally, we compute a local prefix sum again but
this time we have the global offsets available. This method is illustrated in Figure D.6.

64 APPENDIX D. PREFIX SUM

0

1 2 0 4

1 3 3 7 0

5 4 4 0

5 9 13 13 0

5 4 1 6

5 9 10 16

0

7 13 16

7 20 36

0

1 2 0 4

1 3 3 7 7

5 4 4 0

12 16 20 20 20

5 4 1 6

25 29 30 36

P0 P1 P2

Figure D.6: Parallel prefix-sum using (left to right) three processors P0, P1 and P2. The three passes
(top to bottom), are implemented in terms of sequential prefix-sums. The first two passes compute the
starting offset (Figure D.4) for the third pass. The number of starting offsets computed in the second
pass is related to the number of available processors and therefore usually relatively small. The first and
last block need only be computed once but this is not shown because we do not utilize this optimization
on the GPU.

E
Orthographic and

Perspective Projection

X

Y

Z
X

Y

Z

Figure E.1: Ortographic and perspective projection frusta in 3D.

In this thesis I am interested in orthographic and perspective camera frusta. This section describes both
frusta and describes the definitions of their parameters used throughout this thesis. Figures E.2 and
E.3 illustrate the orthographic and perspective projection frusta shown from above. When necessary I
use fx,0 to refer to x0 of f and similar for the other parameters.

66 APPENDIX E. ORTHOGRAPHIC AND PERSPECTIVE PROJECTION

X

Z

(x0, z1) (x1, z1)

(x0, z0) (x1, z0)

z0 = −far z1 = −near

x0 = −left x1 = right

y0 = −bottom y1 = top

f =

x0 x1

y0 y1
z0 z1

Figure E.2: The orthographic projection camera frustum is actually an axis-aligned box. I therefore
use the same definition for axis-aligned boxes throughout this thesis.

X

Z

(x0,−1) (x1,−1)

(−z1x0, z1) (−z1x1, z1)

(−z0x0, z0) (−z0x1, z0)

far

near

1

z0 = −far z1 = −near

x0 = − left

near
x1 =

right

near

y0 = −bottom

near
y1 =

top

near

f =

x0 x1

y0 y1
z0 z1

Figure E.3: The perspective projection camera frustum is a frustum with a near and far plane
orthogonal to the Z-axis, a left and right side plane containing the Y-axis, and a bottom and top side
plane containing the X-axis. I define a camera frustum in terms of the signed tangents of the side planes
and a near and far plane. I find having the tangents available directly convenient.

E.0.1 Projection Matrices
In my experience, the derivation of the projection matrices is usually unnecessarily hard. The above
definitions lead to a very symmetric and simple derivation, which is why I have included them. I do
not explain projection here as it is not essential to understanding the work in this thesis, but in essence
we map each point in the frustum f to an axis-aligned box r. When projecting to normalized device
coordinates for OpenGL, we would use the range ri = (−1, 1). Given frustum f and the range r,
we calculate the linear interpolation coefficients ai and bi for i ∈ {x, y, z} with Equation E.1 where
∆ri = ri,1 − ri,0 and analogous for ∆fi.

ai =
∆ri
∆fi

bi =
ri,0 · fi,1 − ri,1 · fi,0

∆fi
(E.1)

For the perspective projection, the z-component is computed by linearly interpolating 1
−z from 1

−z0

to 1
−z1

instead. Through simplification we arrive at Equation E.2. for these coefficients.

a′z =
∆rz · fz,0 · fz,1

∆fz
b′z =

rz,1 · fz,1 − rz,0 · fz,0
∆fz

(E.2)

67

Using the computed interpolation coefficients, we can easily define the orthographic and perspective
projection matrices as shown in Equation E.3. These matrices expect homogeneous coordinates.

Portho =

ax bx

ay by
az bz

1

 Ppersp =

ax −bx

ay −by
−b′z a′z
−1

 (E.3)

68 APPENDIX E. ORTHOGRAPHIC AND PERSPECTIVE PROJECTION

Bibliography
[Ble89] G. E. Blelloch. “Scans as Primitive Parallel Operations”. In: IEEE Trans. Comput. 38.11

(Nov. 1989), pp. 1526–1538. issn: 0018-9340. doi: 10.1109/12.42122.
[ST90] Takafumi Saito and Tokiichiro Takahashi. “Comprehensible Rendering of 3-D Shapes”. In:

Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’90. Dallas, TX, USA: Association for Computing Machinery, 1990,
pp. 197–206. isbn: 0897913442. doi: 10.1145/97879.97901.

[Sat93] Richard M Satava. “Virtual reality surgical simulator”. In: Surgical endoscopy 7.3 (1993),
pp. 203–205.

[Kel97] Alexander Keller. “Instant Radiosity”. In: Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’97. USA: ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 49–56. isbn: 0897918967. doi: 10.1145/258734.258769.

[BZM02] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. “Reconsidering Custom
Memory Allocation”. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA ’02. Seattle, Wash-
ington, USA: Association for Computing Machinery, 2002, pp. 1–12. isbn: 1581134711. doi:
10.1145/582419.582421.

[Mic04] Maged M. Michael. “Scalable Lock-Free Dynamic Memory Allocation”. In: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation.
PLDI ’04. Washington DC, USA: Association for Computing Machinery, 2004, pp. 35–46.
isbn: 1581138075. doi: 10.1145/996841.996848.

[WSP04] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. “Light space perspective shadow
maps”. In: Rendering Techniques 2004 (2004), 15th.

[Woj+04] Rafal Wojciechowski et al. “Building virtual and augmented reality museum exhibitions”. In:
Proceedings of the ninth international conference on 3D Web technology. 2004, pp. 135–144.

[DS06] Carsten Dachsbacher and Marc Stamminger. “Splatting Indirect Illumination”. In: Proceed-
ings of the 2006 Symposium on Interactive 3D Graphics and Games. I3D ’06. Redwood City,
California: Association for Computing Machinery, 2006, pp. 93–100. isbn: 159593295X. doi:
10.1145/1111411.1111428.

[Llo+06] D. Brandon Lloyd et al. “Warping and partitioning for low error shadow maps”. In: Pro-
ceedings of the Eurographics Workshop/Symposium on Rendering, EGSR. Ed. by Tomas
Akenine-Möller and Wolfgang Heidrich. Nikosia, Cyprus: Eurographics Association, June
2006, pp. 215–226.

[Lai+07] Samuli Laine et al. “Incremental Instant Radiosity for Real-Time Indirect Illumination”.
In: Proceedings of the 18th Eurographics Conference on Rendering Techniques. EGSR’07.
Grenoble, France: Eurographics Association, 2007, pp. 277–286. isbn: 9783905673524.

[Neh+07] Diego Nehab et al. “Accelerating Real-Time Shading with Reverse Reprojection Caching”.
In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware. GH ’07. San Diego, California: Eurographics Association, 2007, pp. 25–35. isbn:
9781595936257.

https://doi.org/10.1109/12.42122
https://doi.org/10.1145/97879.97901
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/582419.582421
https://doi.org/10.1145/996841.996848
https://doi.org/10.1145/1111411.1111428

70 BIBLIOGRAPHY

[Swo09] Matt Swoboda. “Deferred lighting and post processing on playstation 3”. In: Game Developer
Conference. 2009.

[GL10] Kirill Garanzha and Charles Loop. “Fast Ray Sorting and Breadth-First Packet Traversal
for GPU Ray Tracing”. In: Comput. Graph. Forum 29 (May 2010), pp. 289–298. doi: 10.
1111/j.1467-8659.2009.01598.x.

[OA11] Ola Olsson and Ulf Assarsson. “Tiled shading”. In: Journal of Graphics, GPU, and Game
Tools 15.4 (2011), pp. 235–251.

[Rag+11] Jonathan Ragan-Kelley et al. “Decoupled Sampling for Graphics Pipelines”. In: ACM Trans.
Graph. 30.3 (2011). issn: 0730-0301. doi: 10.1145/1966394.1966396.

[HMY12] Takahiro Harada, Jay McKee, and Jason C. Yang. “Forward+: Bringing Deferred Lighting
to the Next Level”. In: Eurographics 2012 - Short Papers. Ed. by Carlos Andujar and Enrico
Puppo. The Eurographics Association, 2012. doi: 10.2312/conf/EG2012/short/005-008.

[LD12] Gábor Liktor and Carsten Dachsbacher. “Decoupled Deferred Shading for Hardware Ras-
terization”. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. I3D ’12. Costa Mesa, California: Association for Computing Machinery, 2012,
pp. 143–150. isbn: 9781450311946. doi: 10.1145/2159616.2159640.

[MM12] Michael Mara and Morgan McGuire. “2D polyhedral bounds of a clipped, perspective-
projected 3D sphere”. In: JCGT. in submission 5 (2012).

[OBA12] Ola Olsson, Markus Billeter, and Ulf Assarsson. “Clustered Deferred and Forward Shad-
ing”. In: Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics. EGGH-HPG’12. Paris, France: Eurographics Association, 2012, pp. 87–
96. isbn: 9783905674415.

[Vai+12] Karthik Vaidyanathan et al. “Adaptive Image Space Shading for Motion and Defocus Blur”.
In: Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics. EGGH-HPG’12. Paris, France: Eurographics Association, 2012, pp. 13–
21. isbn: 9783905674415.

[Per13] Emil Persson. “Practical clustered shading”. In: SIGGRAPH Course: Advances in Real-Time
Rendering in Games (2013).

[Dac+14] Carsten Dachsbacher et al. “Scalable Realistic Rendering with Many-Light Methods”. In:
Comput. Graph. Forum 33.1 (Feb. 2014), pp. 88–104. issn: 0167-7055. doi: 10.1111/cgf.
12256.

[Ört15] Kevin Örtegren. Clustered Shading: Assigning arbitrarily shaped convex light volumes using
conservative rasterization. 2015.

[HKL16] Peter Hedman, Tero Karras, and Jaakko Lehtinen. “Sequential Monte Carlo Instant Radios-
ity”. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. I3D ’16. Redmond, Washington: Association for Computing Machinery, 2016,
pp. 121–128. isbn: 9781450340434. doi: 10.1145/2856400.2856406.

[Lau+16] Gilles Laurent et al. “Forward Light Cuts: A Scalable Approach to Real-Time Global Illu-
mination”. In: Computer Graphics Forum 35.4 (2016), pp. 79–88. doi: 10.1111/cgf.12951.

[SG16] Tiago Sousa and Jean Geffroy. The devil is in the details: idTech 666. 2016. url: https:
//advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf.

[Dro17] Michal Drobot. Improved Culling for Tiled and Clustered Rendering. 2017. url: https://
advances.realtimerendering.com/s2017/2017_Sig_Improved_Culling_final.pdf.

[Gam17] Epic Games. Unreal Engine Sun Temple, Open Research Content Archive (ORCA). Oct.
2017. url: http://developer.nvidia.com/orca/epic-games-sun-temple.

[Lum17] Amazon Lumberyard. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA).
July 2017. url: http://developer.nvidia.com/orca/amazon-lumberyard-bistro.

[Wro17] Bart Wronski. Cull that cone! Improved cone/spotlight visibility tests for tiled and clustered
lighting. 2017. url: https://bartwronski.com/2017/04/13/cull-that-cone/.

https://doi.org/10.1111/j.1467-8659.2009.01598.x
https://doi.org/10.1111/j.1467-8659.2009.01598.x
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.2312/conf/EG2012/short/005-008
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1111/cgf.12256
https://doi.org/10.1111/cgf.12256
https://doi.org/10.1145/2856400.2856406
https://doi.org/10.1111/cgf.12951
https://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
https://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
https://advances.realtimerendering.com/s2017/2017_Sig_Improved_Culling_final.pdf
https://advances.realtimerendering.com/s2017/2017_Sig_Improved_Culling_final.pdf
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://bartwronski.com/2017/04/13/cull-that-cone/

BIBLIOGRAPHY 71

[Kol+19] Timothy R. Kol et al. “MegaViews: Scalable Many-View Rendering with Concurrent Scene-
View Hierarchy Traversal”. In: Computer Graphics Forum 38.1 (2019), pp. 235–247.

[NVi19] NVidia. Antialiased Deferred Rendering. 2019. url: https://docs.nvidia.com/gameworks/
content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.
htm.

[RRS19] Enrique Rosales, Jafet Rodriguez, and ALLA SHEFFER. “SurfaceBrush: From Virtual Re-
ality Drawings to Manifold Surfaces”. In: ACM Trans. Graph. 38.4 (July 2019). issn: 0730-
0301. doi: 10.1145/3306346.3322970.

[Scr20] Scratchapixel. Learn Computer Graphics From Scratch! 2020. url: https://www.scratchapixel.
com/.

[Vri20] Joey de Vries. Learn OpenGL: Physically-Based Rendering. 2020. url: https://learnopengl.
com/PBR/Theory.

https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://doi.org/10.1145/3306346.3322970
https://www.scratchapixel.com/
https://www.scratchapixel.com/
https://learnopengl.com/PBR/Theory
https://learnopengl.com/PBR/Theory

	Introduction
	Real-Time Graphics
	Physically-based Rendering
	Virtual Reality
	Contributions and Structure

	Background and Related Work
	Geometry, Lights and Cameras
	Rasterization Pipeline
	Forward Rendering
	Deferred Rendering
	Many-Light Rendering
	Light Culling
	Global Illumination

	Utilizing Coherency in Stereoscopic Rendering
	Alternative Projections

	Clustered Light Shading
	Cluster Space Construction
	Cluster Visibility
	Light Assignment
	Shading

	Methods
	Enclosed Clustering
	Enclosed clustering camera construction
	Revised cluster index computation

	Orthographic Clustering
	Displaced Perspective Clustering
	Multi-View Rendering
	Summary

	Implementation
	Cluster Space Construction
	Cluster Visibility
	Precision Considerations
	Transparency
	Multi-Sample Anti-Aliasing

	Light Assignment
	Shading

	Results and Discussion
	Evaluation Method
	Profiling
	Scenes
	Camera Configuration
	Lighting Conditions
	Machine

	Cluster Construction Method Parameters
	Enclosed Clustering
	Orthographic- and Displaced Perspective Clustering

	Conclusion
	Enclosed Clustering
	Orthographic Clustering
	Displaced Perspective Clustering
	Future Work

	Choosing a light attenuation function
	Function parameters
	Considered functions
	Evaluation

	Global Illumination
	Sun Temple results
	Prefix Sum
	Motivation
	Stream compaction
	Parallel prefix-sum

	Orthographic and Perspective Projection
	Projection Matrices

