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Abstract

The study of the dynamics of large, complex networks is generally very hard. Analytical solutions are
rarely available and numerical solutions require immense computation times. Recently, Gao et al. [1]
have proposed a new theoretical approach to analyse the average behaviour of complex networks. In this
research we discuss the derivation of the mean field approximation and the resulting one dimensional, so
called, ”effective” equation. We offer an alternative derivation. We also give an expression for the error
in the form of a differential equation. Applying noise to a model of plants and pollinators uncovers
a weak point in the given formalism, the effective equation does not correctly predict the average
behaviour of the network. For lower dimensional systems, projecting the synchronization manifold
on a phase plot reveals why the mean field approximation works well in the specific case. Finally,
the theory is applied to some existing models. First, the Generalized Lotka-Volterra model, where it
struggles in specific cases where the network has no stable fixed points but the theory does predict one.
Second, the Kuramoto model, where a synchronization state of the oscillators is correctly predicted
by the theory, and third, a one dimensional array of Josephson junctions where synchronization is also
correctly predicted along with the correct stability criteria.
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Chapter 1

Introduction

The interaction between ports through cargo ship movements [2], the internet [3] and gene regulatory
systems [4] are all examples of complex networks. Complex networks consisting of many interacting
agents obey hard to derive dynamics that we are far from understanding in full. Currently, the dynamics
are generally modeled by relations between pairs of agents in the network, where the strength of
interactions between any two agents is denoted by an adjacency matrix. This method is suitable for
low dimensional systems with few interacting parts since the computation time becomes a restraining
factor as the size of the networks increase. The stability or resilience of complex networks is of rising
interest, it tells us the ability of a network to withstand and/or recover from the influence of external
perturbations that act upon the system. Human health [5], the economy [6, 7], ecological networks [8]
and systems such as the internet [9] are just some of the many fields where the phenomenon of resilience
is an open area of research. The collapse of resilience can have detrimental effects on ecological systems
-leading to extinction- and economical systems -resulting in economical collapse-,but can rarely be
predicted, let alone prevented. Recently, Gao et al. [1] proposed new analytical tools with which to
handle large scale complex networks and predict their resilience patterns. Their work consists of a
mean field approximation and is based on reducing the multidimensional problem into a 1D, so called,
”effective” equation that embodies the entire complex network’s dynamics and its stability properties.
The topology of the network is summarized by a 1D control parameter. They tested their methods
on multiple mutualistic (ie. only positive interactions between pairs of agents are present) networks
containing cellular regulation networks, ecological systems and power grids. Tu et al. [10] have shown
in response that networks do not need to be mutualistic per se for the method to work. In this report
we will review the derivation of Gao et al.’s theory and derive an expression for the error involved
with the approximation, we will then highlight some issues with stochastic perturbations and, finally,
connect the method to a range of existing models including an array of Josephson junctions and the
Kuramoto model. In Chapter 2 the basis of the problem at hand will be mapped out and the derivation
of Gao et al. will be presented, after which we will do our own attempt in Chapter 3. In Chapter 4
the connection with Plant-Pollinator ecosystems will be shown. After that, the influence of stochastic
perturbations will be analyzed in Chapter 5. Then, in Chapter 6 a steady state analysis ensues for low
dimensional systems. Finally, in Chapters 7-9 the framework will be connected to some better known
models. First, Lotka-Volterra systems will be discussed briefly. Afterwards, the Kuramoto model and
Josephson junctions, two closely related topics, will be analyzed and connected to the theory that Gao
et al. provided us with.

2



Chapter 2

Complex Networks in General

In networks that consist of many non-linearly interacting nodes it is generally very hard to predict the
overall behavior. For simple network structures and interactions an analytic solution can sometimes be
found. If the networks are more complex (think about ecosystems, transportation networks or particle
physics), however, the problem is extremely hard to tackle. Therefore it is useful to have a technique
to still be able to determine the behavior of such a network, or at least a good approximation of
such behavior. Investigating the stability of large systems is essential to predicting what kind of effect
perturbations on these systems will have. Predicting the collapse of plant-pollinator or predator-prey
populations, power grids, or the behavior of the alignment of spin particles in solids can be used for a
wide range of practical applications.

Lets take a look at an arbitrary network of N nodes that are somehow interacting through some coupling
between the nodes. Let us say that the behaviour xi of node i is governed by some differential equation
of the form

ẋi = Fi(xi) +
∑
j

AijGi(xi, xj) (2.1)

where the self-dynamics of xi are captured in some function Fi(xi) and the coupling interaction
between nodes i and j is determined by a function Gi that depends on both nodes’ behaviour. A is an
adjacency matrix that captures the coupling strength between two nodes, where the coupling strength
of the interaction that xi undergoes as a result of xj is given by Aij .

For simplicity we will start by assuming that dynamics do not change per node, that is, every node
interacts in the same way (Fi(xi) = F (xi), Gi(xi, xj) = G(xi, xj)). This says that every node (e.g.
every bee or every particle) acts in the same way if it were in the same situation. This simplification is
exact or very precise for many systems we consider in physics. For indistinguishable particles interacting
through a pair potential the assumption is perfectly satisfied. There are however a lot of examples where
the simplification does not hold at all. If we’re dealing with populations of conscious, or even irrationally
thinking species, or systems where particles have different masses or charges the assumption gives a
very distorted image of reality. Even though this assumption excludes a large amount of interesting
systems from this study, we’ll have to assume something in order to get anywhere at all. Hence we
start from the following simplified equation

ẋi = F (xi) +
∑
j

AijG(xi, xj) (2.2)

In this case it seems natural to also assume the matrix A to be symmetrical since all nodes behave
according to the same laws, the interactions should also be symmetrical. Interchanging two nodes
should not change anything because the nodes should behave the same way when in the same situation.
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Typically, F and G are nonlinear functions and for large systems the problem remains hard to solve.
For large systems we can however introduce a mean field approximation.

2.1 A mean field Approximation

Here we repeat the steps proposed by Gao et al to obtain the mean field equation.

Assuming that the system can be described by some order parameter xeff that reflects the behaviour
of an effective (or average) node of the system. Gao et al. provide us with a mean field approximation
that embodies a weighted average over all xi’s [1].

They propose a linear operator L that is defined in order to obtain xeff is such that it takes the weighted
average over a vector where the weight of a node is determined by the local coupling interaction with
the rest of the system.

L(w) ≡ 1TAw

1TA1
(2.3)

Here 1 is the vector of ones, effectively summing over the adjacency matrix A. Applying L to the
vector x gives us the effective parameter that will have a central role throughout this work

xeff ≡ L(x) =
1TAx

1TA1
(2.4)

Using this in Eq. (2.2) gives us

ẋeff =

∑N
i=1

∑N
j=1Aij ẋj∑N

i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1AijF (xeff)∑N

i=1

∑N
j=1Aij

+

∑N
i=1

∑N
j=1Aij

∑N
k=1AjkG(xeff, xeff)∑N

i=1

∑N
j=1Aij

= F (xeff) + βeffG(xeff, xeff) (2.5)

where the ”effective” parameter βeff describes the average coupling interaction strength in the system
and is given by

βeff =

∑N
i=1

∑N
j=1Aijs

in
j∑N

i=1

∑N
j=1Aij

(2.6)

Here sin
j is the in degree of node j, with sin

j =
∑N
k=1Ajk.

At this point we should take a step back and note two key things. First, the assumption that the
state and behavior of a network can be modeled by a single effective parameter is quite a stretch and
limits the range of networks these assumptions are valid for. In general the assumptions are only valid
for mutualisic networks [11], networks where all the interaction strengths between nodes are positive.
We can make this intuitively acceptable by thinking of a competitive network of two nodes that will
drive apart as time goes on, the effective node in this case will be the average of the two and thus
stay somewhere in between the values of the competing nodes, not displaying what is going on in the
system at all. We still remain with a broad class of networks that are definitely worth investigating.
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Second, it should be noted that we got here by applying a linear operator L on x and A, or, if we want
to be precise, rather applying it to ẋ. If we want to write our system in the form of Eq. (2.5) we have
three options. The first option is that we only take into account systems in which F and G are linear
in xi as well as xj , this however really limits the scope of the potential practical applications since
these systems are most likely solvable analytically thus we don’t need this method in the first place.

The second option we have is that we be content with this being an inequality, or rather, assuming

L(F (xi)) ≈ F (L(xi)) = F (xeff), (2.7)

and

L
(∑

j

AijG(x, xj)
)
≈ L

(∑
j

Aij

)
G(L(x),L(x)) = βeffG(xeff, xeff) (2.8)

These approximations are numerically tested by Gao et al. for a range of networks but the validity of
the assumptions has been questioned [11] and requires some mathematical justification.

Intuitively the idea of an order parameter defined as above makes a lot of sense. However, the
mathematical derivation seems lacking. The main problems are a missing expression for the error made
by assuming x = xeff and the assumptions made in Eq. (2.7) and Eq. (2.8). Therefore we will explore
the third option, a new derivation, in depth in the following chapter. First we will take a look at an
example of a network to see why a mean field approximation could be useful int he first place.

2.2 An Example: Gene Regulatory Networks

We’ll follow Gao et al. by looking at a gene regulatory network governed by the Michaelis-Menten
equation [12]

ẋi = −Bxli +

N∑
j=1

Aij
xhj

xhj + 1
(2.9)

where the self-dynamics F (xi) = −Bxli describe degradation for l = 1 or dimerization for l = 2 and
the coupling term G(xi, xj) = xhj /(x

h
j + 1) embodies genetic activation. h is the Hill coefficient and

captures the level of cooperation in the gene regulation.

We can immediately see that for a large amount of genes and a possibly complex coupling A the
system of equations is hard to solve, even numerically. When in a stable equilibrium, it is also difficult
to see which parameter changes will have which consequences. We’ll take B = l = h = 1. If we now
apply Gao’s formalism we obtain the one dimensional effective equation that should solve the above
problems.

ẋeff = −Bxeff + βeff
xeff

xeff + 1
(2.10)

where the assumption (2.7) is exact in this case, it is however not clear at all if (2.8) holds.

The new equation is claimed to describe the average behaviour of the system and reduces the topology
of the system into the effective parameter βeff. This equation is easily solved numerically and possibly
even analytically, thereby allowing much more detailed analysis of the equilibria and the impact that
the parameters have.
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Chapter 3

Derivation of the Mean Field
Equation and the Error

So far we have not convincingly derived Gao’s mean field equations. Therefore here is a new attempt.
We start from

ẋi = F (xi) +

N∑
j=1

AijG(xi, xj) (3.1)

We will make 2 assumptions (A1,A2) that should be satisfied in order to be able to validate the newly
derived equation. The first assumption is:

A1. xj in Eq. (3.1) can be replaced by
∑
j Aijxj/

∑
k Aik. This physically amounts to a mean field

assumption in the sense that the sum of interactions between node i and a number of nodes j
is replaced by an average interaction.

If we rewrite Eq. (3.1) using assumption (A1) we obtain

ẋi = F (xi) + sin
i G

xi, N∑
j=1

Aijxj/

N∑
k=1

Aik

 , (3.2)

where the in-degree of node i, denoted as sin
i =

∑N
j=1Aij (note that the function G no longer depends

on xj which lets us take it outside of the sum).

Now we make the second approximation (A2):

A2. Another averaging procedure is performed. The local average over the xj is approximately equal
to the global average:

∑N
j=1Aijxj∑N
j=1Aij

=

∑N
j,i=1Aijxj∑N
j,i=1Aij

− δi

The δi determines how much the global average differs from the local average around node i and is
assumed to be small, that is δi → 0 in some sense.

This immediately defines a quantity xeff
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xeff ≡
∑N
j,i=1Aijxj∑N
j,i=1Aij

(3.3)

So after applying assumption (A2) we arrive at

ẋi = F (xi) + sin
i G (xi, xeff − δi) (3.4)

This non-linear differential equation (3.4) should be solved in the limit of δi→0. From the expression
for xi(t) in terms of (integrals containing) the unknown function xeff(t), we can next calculate xeff

using definition (3.3). The requirement of a self-consistent solution then leads to an equation for
xeff(t), whose solution is equivalent to Gao’s.

Let us illustrate how this works by considering the example of the gene network. In that case our
equations read

ẋi = −Bxi +

N∑
j=1

Aij
xj

1 + xj
(3.5)

Applying the assumptions (A1,A2) to Eq. (3.5) results in equation

ẋi = −Bxi + sin
i

xeff − δi
1 + xeff − δi

(3.6)

We can solve these equations in the limit of δi→0, which gives

xi(t) = xi(0)e−Bt + sin
i

∫ t

0

e−B(t−t′) xeff(t′)

1 + xeff(t′)
dt′ (3.7)

Using now the definition for xeff(t) (Eq. 3.3) gives

xeff(t) =

∑
i,j Aijxj(0)e−Bt +

∑
ij Aijs

in
j e
−Bt ∫ t

0
eBt

′ xeff(t′)
1+xeff(t′) dt

′∑
i,j Aij

(3.8)

First multiplying by eBt and next differentiating gives exactly

ẋeff = −Bxeff + βeff
xeff

1 + xeff
, (3.9)

where βeff =
∑

ij Aijs
in
j∑

ij Aij
. If we solve Eq. (3.9) we know the dynamics of all nodes provided the

assumptions imposed are valid.

This example works so well because the function F (x) is linear in x. Let’s now try this for more general
functions. In this case it is no longer possible to directly find an expression for xi in terms of xeff(t),
so we need to deal with the differential equation itself. We can derive a differential equation for xeff
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from its definition

ẋeff =

∑N
i=1

∑N
j=1Aij ẋj∑N

i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1AijF (xj)∑N

i=1

∑N
i=j Aij

+

∑N
i=1

∑N
j=1Aijs

in
j G(xj , xeff − δj)∑N

i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1AijF (xj)∑N

i=1

∑N
j=1Aij

+

∑N
i=1

∑N
j=1Aijs

in
j G(xj , xeff)∑N

i=1

∑N
j=1Aij

−
∑N
i=1

∑N
j=1Aijs

in
j δj

∂G
∂x2

(xj , xeff)∑N
i=1

∑N
j=1Aij

(3.10)

We’ll now explore the three terms we’ve ended up with separately, first

∑N
i=1

∑N
j=1AijF (xj)∑N

i=1

∑N
j=1Aij

(3.11)

where we should note that, since we are summing over terms of Aij , any error we get when applying
(A1) and (A2) and thus switching from xj to xeff should be interpreted as an error in the local average
around node i. We end up with

∑N
i=1

∑N
j=1AijF (xj)∑N

i=1

∑N
j=1Aij

≈
∑N
i=1 s

in
i F (xeff − δi)∑N

i=1

∑N
j=1Aij

≈ F (xeff)−
∑N
i=1 s

in
i δi∑N

j=1

∑N
i=1Aij

∂F

∂x
(xeff) (3.12)

Here we took a first order Taylor expansion, this holds as long as the errors δ are small enough. On to
the next term, we start from

∑N
i=1

∑N
j=1Aijs

in
j G(xj , xeff)∑N

i=1

∑N
j=1Aij

(3.13)

Here we should again interpret these contributions as errors in the local average around node i, con-
sequently resulting in the errors δi. Also using both (A1) and (A2) and a first order Taylor expansion
nets us

∑N
i=1

∑N
j=1Aijs

in
j G(xj , xeff)∑N

i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1Aijs

in
j G(xeff − δi, xeff)∑N

i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1Aijs

in
j∑N

i=1

∑N
j=1Aij

G(xeff, xeff)

−
∑N
i=1

∑N
j=1Aijs

in
j δi∑N

i=1

∑N
j=1Aij

∂G

∂x1
(xeff, xeff)

= βeffG(xeff, xeff)−
∑N
i=1

∑N
j=1Aijs

in
j δi∑N

i=1

∑N
j=1Aij

∂G

∂x1
(xeff, xeff)(3.14)
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Which is where we will get our βeffG(xeff, xeff) term from in the δ → 0 limit. Now the last term
remains, we’ll apply the same steps here to obtain

∑N
i=1

∑N
j=1Aijs

in
j δj

∂G
∂x2

(xj , xeff)∑N
i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1Aijs

in
j δj

∂G
∂x2

(xeff − δi, xeff)∑N
i=1

∑N
j=1Aij

≈
∑N
i=1

∑N
j=1Aijs

in
j δj∑N

i=1

∑N
j=1Aij

∂G

∂x2
(xeff, xeff)

−
∑N
i=1

∑N
j=1Aijs

in
j δjδi∑N

i=1

∑N
j=1Aij

∂2G

∂x2∂x1
(xeff, xeff) (3.15)

These three together result in a differential equation for xeff

ẋeff ≈ F (xeff) + βeffG(xeff, xeff)

−
∑N
i=1 s

in
i δi∑N

j=1

∑N
i=1Aij

∂F

∂x
(xeff)−

∑N
i=1

∑N
j=1Aijs

in
j δi∑N

i=1

∑N
j=1Aij

∂G

∂x1
(xeff, xeff)−

∑N
i=1

∑N
j=1Aijs

in
j δj∑N

i=1

∑N
j=1Aij

∂G

∂x2
(xeff, xeff) +

∑N
i=1

∑N
j=1Aijs

in
j δjδi∑N

i=1

∑N
j=1Aij

∂2G

∂x2∂x1
(xeff, xeff)(3.16)

Where for small δ we can drop the very last term as it is quadratic in δ whereas the rest of the terms
(with δ in them) obey a linear dependence. If the terms involving δi → 0 as in assumption (A2) then
we find again the Gao mean field equation. However, in the general case it is not clear that this will
always be the case.

In order to find an expression for the errors δ we have to evaluate the right-hand side of the assumption
in a similar fashion. Taking the same steps as before we end up with a slightly different expression, as
expected
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∑N
j=1Aij ẋj∑N
j=1Aij

=

∑N
j=1AijF (xj) +

∑N
k=1AjkG(xj , xk)∑N

j=1Aij

≈ F (xeff − δi) +

∑N
j=1Aijs

in
j G(xj , xeff − δi)∑N
j=1Aij

≈ F (xeff)− δi
∂F

∂x
(xeff)

+

∑N
j=1Aijs

in
j G(xj , xeff)∑N

j=1Aij
−
∑N
j=1Aijs

in
j δj∑N

j=1Aij

∂G

∂x2
(xj , xeff)

≈ F (xeff)− δi
∂F

∂x
(xeff)

+

∑N
j=1Aijs

in
j G(xeff − δi, xeff)∑N
j=1Aij

−
∑N
j=1Aijs

in
j δj∑N

j=1Aij

∂G

∂x2
(xeff − δi, xeff)

≈ F (xeff)− δi
∂F

∂x
(xeff)

+

∑N
j=1Aijs

in
j∑N

j=1Aij
G(xeff, xeff)−

∑N
j=1Aijs

in
j δi∑N

j=1Aij

∂G

∂x1
(xeff, xeff)

−
∑N
j=1Aijs

in
j δj∑N

j=1Aij

∂G

∂x2
(xeff, xeff) +

∑N
j=1Aijs

in
j δiδj∑N

j=1Aij

∂2G

∂x1∂x2
(xeff, xeff) (3.17)

where again, we could leave out the last term as it is quadratic in the error. After having done all this
work we can now simply fill in the definition of δi and differentiate it with respect to time. We find

δ̇i =
∂F

∂x
(xeff)

[
δi −

∑N
j=1 s

in
i δi∑N

i=1

∑N
j=1Aij

]
+G(xeff, xeff)

[
βeff −

∑N
j=1Aijs

in
j∑N

j=1Aij

]

+
∂G

∂x1
(xeff, xeff)

[
βeffδi −

∑N
i=1

∑N
j=1Aijs

in
j δi∑N

i=1

∑N
j=1Aij

]

+
∂G

∂x2
(xeff, xeff)

[∑N
j=1Aijs

in
j δj∑N

j=1Aij
−
∑N
i=1

∑N
j=1Aijs

in
j δj∑N

i=1

∑N
j=1Aij

]
(3.18)

where we have now dropped higher order terms in δ. Eqs. (3.16) and (3.18) together determine the
evolution of xeff and hence of xi. We remark that the partial derivatives are to be evaluated at xeff(t).
The way to solve this system of equations is to suppose δj to be small, solve the mean field equation
and next substitute the value obtained for xeff in the equation (3.18) for δi and (numerically) integrate.
If it turns out that δ stays small over time, the assumptions work well and the mean field approximation
holds.
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Chapter 4

Plants and Pollinators

An example of a mutualistic network is one that is an ecosystem that consists of plants an pollinators
that contribute to each others abundance. This is also used as an example by Gao et al. Here xi tracks
the abundance of a plant species i:

ẋi = Bi + xi

(
1− xi

Ki

)(
xi
Ci
− 1

)
+
∑
j

Aij
xixj

Di + Eixi +Hjxj
, (4.1)

where the first term resembles constant migration, the second describes logistic growth where the cubic
growth model resembles the Allee effect. The Allee effect [13] correlates population size and mean
individual fitness, population growth is skewed negatively for low population sizes. The effect can for
example be witnessed in fish populations that have been over-fished, these populations might never
recover from the damage that has been done to their species and thus live on in a low abundance
state or go extinct. The third term resembles the interaction between plants j and i. The adjacency
matrix A encompasses the strength of the interaction that plant j has on plant i. Note that the plants
are not directly connected, they are part of a bipartite network of plants and pollinators in which the
plants only have connections to pollinators and vice versa. To illustrate this, on the left is the bipartite
network and on the right the resulting network.

11



Figure 4.1: The bipartite network on the left, with corresponding matrix M . The resulting network is
given on the right, with corresponding matrix A.

The interaction between two plants is stronger the more pollinators they share, but weaker the more
plants the shared pollinators pollinate. The adjacency matrix is therefore constructed as

Aij =

m∑
k=1

MikMjk∑n
s=1Msk

, (4.2)

where M is a matrix with ones and zeroes that describes which pollinators pollinate which plants.
To get an idea what kind of behaviour Eq. (4.1) resembles we’ll show the relationship between the
population growth of a species and it’s population size for some common values for the parameters
and a fixed environment
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Figure 4.2: The abundance growth of a plant depicted versus its abundance. For low population sizes
we can clearly see the Allee effect take place, resulting in negative growth. For larger abundances the
growth grows accordingly. If the abundance becomes too large we see some over population effect take
place so that the growth decays very quickly and turns negative. The values of the parameters are:
B = 0.1,K = 5,C = 1,D = 5,E = 0.9,H = 0.1 [1], these values will be used throughout this study.

Applying the mean field approximation gives us the following 1D effective differential equation for the
effective abundance of the plants

ẋeff = B + xeff

(
1− xeff

K

)(
xeff

C
− 1

)
+ βeff

x2
eff

D + (E +H)xeff
(4.3)

At this point we should throw in a bifurcation diagram. A bifurcation diagram shows us where the fixed
points of the network lie and how this changes with parameter values. In this case we are interested to
see where the fixed points of the effective equation lie as a function of the effective parameter βeff. This
lets us understand in which regions the dynamics of the network behave in what way. The resilience
of a network is its resistance against perturbations, its capability to return to its original state after
being perturbed. When a system is in a stable equilibrium, it will correct for small perturbations acting
upon it. If, however, the system is heavily disturbed, this change can force the system to go to another
stable equilibrium.
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Figure 4.3: The bifurcation diagram for the effective equation where the order parameter xeff is plotted
versus the effective parameter βeff. The upper and lower curves represent stable equilibria of the
effective system. The branch in between is an unstable equilibrium. The point indicated with βeff,critical

marks the value for βeff from where only one stationary solution exists for the effective equation. We
only show the physically relevant area where xeff, βeff ≥ 0.

When we find the system in its low abundance stable steady state, a perturbation can force it over
the unstable steady state. The system will from there move toward the high abundance stable state.
From there it is much harder for a perturbation to go back to the low abundance stable state since
the perturbation will have to force the system all the way back over the unstable equilibrium, which is
much further away from the high abundance, stable state. We should also note that for large values of
βeff the effective system no longer has three equilibrium points, it only has one high abundance stable
steady state. The effective system will for large βeff always converge to this state if given enough time.

Following up on this, it would be interesting to see how this critical value of the effective parameter
depends on the size of the network it is trying to describe. What happens to the network and its mean
field approximation when the link strength between nodes is perturbed by some external influence? We
can simulate this perturbation by introducing a parameter p ∈ (0, 1) and scale A linearly with p, that
is Ã = pA. The resilience of the network is its ability to withstand the perturbation, it is determined
by the effective parameter βeff. This means that the critical value for p, the one where the network
will remain in a low abundance state when it starts there, scales as

βeff =
1Ã21

1Ã1
∼ (pN)2

pN
= pN (4.4)

pcrit ∼
βeff,crit

N
(4.5)

This result can be viewed in the figure below as well. We performed numerical simulations in MATLAB,
giving us a value for the critical point of the effective parameter as βeff,crit = 6.9± 0.1. When using a
low initial condition, this is the turning point of β for which the system either goes to one or the other
stable state instead of always going to the high abundance state (for large βeff).
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Figure 4.4: In blue are the critical values of p that we found with numerical, fitted against in red,
the curve c/N where c is just a constant. After all, we only have a proportional relationship between
pcrit and N . The network size versus the critical perturbation at which the system collapses to a low
abundance state.

The figure shows an inverse proportionality between the network size N and the perturbation at which
the system can only go to a high abundance state, indicating that Eq. (4.5) is indeed correct. The
fact that the critical perturbation strength is dependant on the size of the network is an important
observation. This implies that for large values of the effective parameter βeff we should expect a
less significant influence from perturbations such as noise that effects the system. These stochastic
contributions will be discussed in the following chapter.
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Chapter 5

Stochastic Perturbations

Many systems in reality are constantly perturbed by a wide range of effects such as thermal fluctuations
in physics, a small change in global temperature or sudden rain in ecological systems or even the
infamous Mondays for human behaviour. It is therefore important to see what happens to the resilience
of the system and the resilience of the mean field approximation (and importantly, the difference
between the two) when small perturbations act upon the system. These small changes of circumstances
are often modelled as a stochastic variable as they are extremely hard to predict. We want to know
what happens mathematically when we add a noise term to the equation. We will look at what happens
when we add zero mean Gaussian noise to the self dynamics of each node i whose behavior will be
described as

ẋi = Bi + xi

(
1− xi

Ki

)(
xi
Ci
− 1

)
+
∑
j

Aij
xixj

Di + Eixi +Hjxj
+ ζi (5.1)

with ζi the perturbation in the behaviour of node i. We can imagine that for small variances in the
noise not so much will change. However, if the perturbation of the noise is so high that xi can use it to
cross over to another stable solution, it might stay there indefinitely. As for the effective parameter, we
are obliged to carry out our old recipe and apply our linear operator L on ζ to obtain some ’effective
disturbance’ in the system.

We know that ζi ∼ N(0, σ2) so we can say something about ζeff. Note that ζeff is the weighted sum of
normally distributed variables with zero mean and variance σ2. The average of these variables still has
zero mean. The variance of the average of normally distributed variables is σ2/N . So, as expected,
for large systems the effective disturbance ζeff will have next to no influence on the system as a whole
if the system is in a stable state, after all, if a system is in one of its stable states the stability requires
the system to recover from small perturbations. If, however, a system is not in a stable state, a small
perturbation can make the difference from going to one stable state instead of another. When this
one node goes to lets say a high state, it can drag the others there as well (due to the mutualistic
nature of the network), making the entire network go to a state it wouldn’t have gone to without the
perturbation present.

Let us look at an example of this behavior. First we should remember that a system will go to a high
abundance state if the effective parameter βeff is higher than it’s critical value of around 6.9. Therefore,
if we construct a network that has βeff ≈ 6.9, the perturbations could really make a difference. We have
constructed such a network with 15 nodes and a chance of 1

3 of a plant connecting to a pollinator. We
found a network that has βeff = 5.1 and solved Eq. (5.1) numerically with the Euler Forward method in
MATLAB. The initial state that the network was brought into was a low abundance state. The noise
applied was such that ζi ∼ N(0, 25).
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Figure 5.1: A network where the perturbation has a deciding influence on the behavior of the network.
The blue, dashed line is the approximated behaviour obtained after applying the linear operator. The
red lines are the actual nodes’ abundances.

As we can see, the value of βeff isn’t enough to get xeff to the high abundance state, but combined
with the perturbation, it is enough to make first one, and then all xi make the climb. Since the
perturbation of xeff is much smaller, it doesn’t have enough influence on the behavior of xeff in order
to keep approximating the system properly.

If we make similar networks where βeff is not close to it’s critical value however, the approximation
works way better.

a b c

Figure 5.2: The blue, dashed line is the approximated value after applying the linear operator L. The
red lines are all of the actual nodes’ abundances. a) The approximated xeff remains in a low state of
abundance, just like the actual abundances of the nodes. Note that the vertical scale indicates low
values at all times. b) For this higher value of βeff, the system goes into a high state of abundance as
predicted by the approximation. It does take longer for xeff to reach the high abundance state however,
this is indicated by the double arrow. c) For even bigger βeff, xeff goes to the high abundance state
just as fast as the actual nodes, the approximation excels here.

In the middle figure we can witness a remarkable phenomenon. The time it takes for the effective x to
go to the high abundance state is much larger than for the actual nodes. A guess to why this happens
is that the perturbation in xeff is the weighted average over perturbations, thus having not as much
influence as the noise that applies to the actual nodes of the system itself. The noise firsts ”pushes”
one of the nodes closer to the high abundance state. This node then works as a catalyst for the other
nodes to go to their high abundance states. The mean field equation does not correctly encompass
these mutual dynamics when noise is applied. In the other cases the approximation seems to hold just
fine. As figure 5.1 indicates, there are situations where the combination of noise and connectedness of
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the network result in failure of the approximation. When does this failure occur? And when does the
approximation display the behaviour as witnessed in 5.2b? We will next inspect for which combinations
of noise amplitude and network size these phenomena occur.

Using a network of 15 nodes, let us vary the amplitude of the noise and the value of βeff. We know
that for large values of βeff the method does find the correct solution so we tried a range from 2 to 9,
the entire adjacency matrix was scaled to obtain these values. The amplitude of the noise was ranged
from 0.005 to 0.200. We let the system make 150 time steps using the Euler forward method. Since
the noise is a stochastic process, an average was taken over 50 trials.

Figure 5.3: The color indicates how many time steps, on average, it took xeff longer than the average of
the abundances of the nodes, to go to the high abundance state. In other words, the more yellow, the
longer it took for the method to converge to the actual value that is being approximated. In the right
blue region we have a resemblance of the most right figure in 5.2, xeff converges to the high abundance
state at the same time as the actual nodes do so. In the left blue region we have a depiction of what
we saw in the most left figure in 5.2, xeff and the actual nodes both stay in the low abundance state.
The middle, the yellow ”ridge” resembles an area where the actual nodes do go to the high abundance
state, but xeff does not. On the left side of the yellow region we see that xeff stays in the low abundance
state while the actual nodes do go to the high abundance state some of the time. On the right of the
yellow region we see that the time it takes for xeff to catch up to the actual nodes and go to the high
abundance state becomes less and less as βeff increases. The total run time is 150 time steps and it
takes some small amount of time steps before the actual nodes converge to the high abundance state.
Since the most yellow region corresponds to a time difference of about 120 steps, we can conclude
that the approximation does not converge to the correct value at all. It may be the case that this is
due to a cut-off time. For large noise amplitudes and low values for βeff we see that the actual nodes’
abundances go to the high abundance state quickly, but xeff stays in the low abundance state forever.
As βeff increases, xeff also ”benefits” from the noise in that it goes to the high abundance state even
if it wouldn’t have done so in the case of no noise.

Only if the entire graph were blue, indicating that there is no time difference between the real network
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going to the high abundance state and the mean field approximation going to the high abundance
state, we could conclude that the two are both influenced in the same way by stochastic perturbations.
This is however not the case. From the middle part of the graph we can even conclude that in some
situations, when βeff ≈ βeff,crit, the mean field approximation does not approximate the real network at
all. The two converge to two different values. The mean field approximation in this case stays in the
low abundance state, whereas the the network is perturbed enough to go to the high abundance state.
To better understand this behaviour we will have a closer look at the equilibria in the next chapter.
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Chapter 6

Equilibria Investigated

To examine the method some further, we are going to look at the different steady state situations the
model can find itself in. If we wait for the model to go to one of the steady state situations every time
we run it (and this is indeed what we do), we should investigate whether the only stable solutions are
in phase solutions (defined by x1 = x2 = ... = xN ), which is basically what is assumed by Gao et al.
when we look at the effective equation for xeff.

To find all time independent solutions we have to compute all x for which

ẋ = 0. (6.1)

This means that we should find zeroes of

0 = Bi + xi

(
1− xi

Ki

)(
xi
Ci
− 1

)
+
∑
j

Aij
xixj

Di + Eixi +Hjxj
, for i = 1, 2, ..., N (6.2)

Finding exact solutions to this equation will be next to impossible for N > 2 since no closed form
solutions exist for polynomials of order 5 or more. We must therefore resort to a numerical approach.
The space in which these solutions live has a dimension equal to N , so determining zeroes becomes
computationally harder rapidly for many-node-systems. Note that all the equations are coupled, so
we cant solve them separately and we are stuck with the multidimensional problem. For 2, 3 and 4
dimensions we can still find all the solutions to these equations within acceptable computation time.
For simplicity (and to keep some symmetry in the problem) we took Aij = 1 for all i, j, so βeff = N−1.
For the two dimensional case we find the following zeros using MATLABS’s built in ”fsolve” function,
that uses a trust-region-dogleg algorithm by default, on a N dimensional grid that is finer spaced than
the zeros that it found

Table 6.1: All of the steady state solutions of the two dimensional problem with stability qualifications
for each point. The synchronization manifold contains two stable solutions and one unstable solution,
the other solutions are saddle points. The two saddle points in this case are mirrored in the line
x1 = x2.

x1 x2 Qualification
0.1196 0.1196 Stable
0.1500 0.8234 Saddle
0.8234 0.1500
0.6912 0.6912 Unstable
5.5941 5.5941 Stable
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In the three dimensional case we find some more zeros than we do in the two dimensional case. They
are listed below

Table 6.2: All of the steady state solutions for the three dimensional case. Again we find that two
stable solutions and one unstable solution lie on the line x1 = x2 = x3, all the other solutions are
saddle points.

x1 x2 x3 Qualification
0.1241 0.1241 0.1241 Stable
0.7834 0.1573 0.1573 Saddle
0.1573 0.7834 0.1573
0.1573 0.1573 0.7834
0.5709 0.5709 0.5709 Unstable
0.1878 0.6524 0.6524 Saddle
0.6524 0.1878 0.6524
0.6524 0.6524 0.1878
6.0944 6.0944 6.0944 Stable

For the case of N = 4 we see that this trend continues:

Table 6.3: All of the steady state solutions for the four dimensional case. Once more we find that the
solutions on the synchronization manifold are either stable or unstable, the two furthest apart being
the stable solutions and the one in between the unstable one. Again, all other solutions are saddle
points, this time in four dimensional space.

x1 x2 x3 x4 Qualification
0.1295 0.1295 0.1295 0.1295 Stable
0.7377 0.1667 0.1667 0.1667 Saddle
0.1667 0.7377 0.1667 0.1667
0.1667 0.1667 0.7377 0.1667
0.1667 0.1667 0.1667 0.7377
0.4790 0.4790 0.4790 0.4790 Unstable
0.2314 0.5276 0.5276 0.5276 Saddle
0.5276 0.2314 0.5276 0.5276
0.5276 0.5276 0.2314 0.5276
0.5276 0.5276 0.5276 0.2314
0.6068 0.6068 0.2017 0.2017 Saddle
0.6068 0.2017 0.6068 0.2017
0.2017 0.6068 0.6068 0.2017
0.6068 0.2017 0.2017 0.6068
0.2017 0.6068 0.2017 0.6068
0.2017 0.2017 0.6068 0.6068
6.5470 6.5470 6.5470 6.5470 Stable

We will look some deeper into the two dimensional case for now, as this provides insight while it is still
easy to display in this two dimensional paper. Next up we should see what these saddle points look like.
In what direction are they attractive and in what direction are they repulsive? When do solutions end up
in the low abundance stable solution, and when in the high abundance one? Below, two phase plots are
displayed The figures show us the synchronization manifold of the system of equations. Synchronization
is a very important topic in systems governed by coupled differential equations and is widely used to
describe e.g. coupled oscillators, which we will encounter later on. The synchronization manifold is
simply put the region in phase space where synchronization (ẋ1 = ... = ẋN ) occurs. The fixed points
of a system must by definition lie on the synchronization manifold (since ẋ1 = ... = ẋN = 0), which
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a b

Figure 6.1: Here we see the phase plot in two dimensions. In each case the derivatives have been
plotted as a vector (ẋ1, ẋ2) as functions of the specific point in this 2D space. Since it is hard to see
what is going on for small x the right figure zooms in on the lower left area of the left graph. The
zeroes listed in table 6.1 are marked. The circles represent the stable fixed points, the star represents
the unstable fixed point and the triangles represent saddle points. We can see that the zeros in the
table are classified correctly by looking at the behaviour around the markers. We also see some strange
behavior around the points (5, 0) and (0, 5). This is due to non-physical zeros (ones that are not
within the first quadrant), saddle points, that lie close to the axes. The red points are points on the
synchronization manifold. This is the set of points where ẋ1 = ẋ2.

we see happens in the figures above. We see, as suspected, in 4.3 that for small enough βeff we find
three fixed points on the line x1 = x2 = xeff. Two of these are stable fixed points, they are also the
only stable fixed points of the system. The saddle points that lie outside of the first quadrant are
of no interest to us, they are non-physical solutions since no negative population sizes exist and with
physical initial conditions the system will never go to one of those fixed points. Two more fixed points
are found in the form of saddle points. There is only a closed set of points for the initial condition so
that the system converges to these saddle points. In this two dimensional, symmetrical case, the phase
plot and the synchronization manifold help us understand that the mean field approximation works in
these scenarios and correctly finds in-phase solutions.
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Chapter 7

Generalized Lotka-Volterra systems

In [11] it was argued that the method of an average abundance based solely on an average parameter
does not work for Lotka-Volterra systems. It was also argued[10] that in some cases the method
does not work for the General Lotka-Volterra model. To understand these claims in terms of the
dynamical systems approach we investigate the ordinairy Lotka-Volterra, and the Generalized Lotka-
Volterra systems in this section, starting with the oridnary Lotka-Volterra model.

This, as before, only encompasses the two dimensional case, where x1 represents a prey population
and x2 describes a predator population. The Lotka-Volterra equations model these populations with
the following equations

ẋ1 = αx1 − βx1x2, (7.1)

ẋ2 = δx1x2 − γx2, (7.2)

where α,β,γ,δ are all real, positive integers describing the interaction between the two species. We
can solve the fixed points exactly, resulting in the points (0, 0), (γδ ,

α
β ). Here the origin of course

corresponds to a zero-abundance state, or extinction. The stability of these points requires us to work
with the Jacobian matrix, given as

J(x1, x2) =

[
α− βx2 δx2

−βx1 δx1 − γ

]
Computing stability of the two zeros by entering them into the Jacobian gives:

J(0, 0) =

[
α 0
0 −γ

]
with eigenvalues α and −γ. Since the parameters are all real and positive we can conclude the origin to
be a saddle point. The eigenvector belonging to the eigenvalue α is x̂1 and the eigenvector belonging
to the eigenvalue −γ is x̂2, so the origin is repulsive toward the x1 axis and attractive toward the x2

axis. The other fixed point

J(
γ

δ
,
α

β
) =

[
0 δα

β

−βγδ 0

]
with eigenvalues ±i√αγ. These eigenvalues are purely imaginary, thus we can conclude the fixed point
to be elliptic. Now we can finally understand why the method of Gao et al. is no good when analyzing
this system. The assumption of being on the synchronization manifold is a dubious one in this case
and does not describe the system whatsoever.
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We next turn to the Generalised Lotka-Volterra dynamics, where the traditional equations are rewritten
such that they are in the form of Eq. (2.2). The equations read

ẋi = αxi + xi
∑
j

Aijxj . (7.3)

So that we can write F (x) = αx and G(xi, xj) = xixj . As stated by Tu et al. the analytic solution
for the stationary state x = −A−1α is easily obtained if A is invertible. It is however not clear if the
system has stable solutions.

By applying Barabasi’s formalism we find the one dimensional effective equation

ẋeff = αxeff + βx2
eff, (7.4)

where the stationary point xeff = −αβ is stable with eigenvalue −α. The point xeff = 0 is also a fixed
point of the system with eigenvalue α and is therefore unstable.

The fact that for any value of βeff and thus for any adjacency matrix A we can find a stable fixed
point for the 1D effective equation is worrying, as pointed out by Tu et al. There may very well be
combinations of matrix entries for which the system has no stable stationary solutions. In those cases,
Gao et al’s framework gives a flat out wrong indication of the resilience of the network. Otherwise, the
formalism will correctly predict stable solutions.
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Chapter 8

The Kuramoto Model and
Synchronization

The Kuramoto model describes a system of N coupled phase oscillators. The change of phase of
oscillator vi is described by[14]

θ̇i = ωi +
κ

N

N∑
j=1

sin(θj − θi) (8.1)

where each oscillator has its own natural frequency ωi distributed with some probability density function
g(ω) which is assumed to be normalized, is coupled to the other oscillators with some coupling constant
κ and the coupling strength is normalized. In this case the function Fi 6= F , it is different for each
oscillator. The coupling function G takes the form of a sine. This form of the Kuramoto model can
be solved exactly in the N →∞ limit by using a mean field transformation of the form

reiψ =
1

N

N∑
j=1

eiθj , (8.2)

where r and ψ are order parameters, r represents the phase-coherence of the oscillators and ψ represents
the average phase. Substituting this into Eq. (8.1) gives us the equation

θ̇i = ωi + κr sin(ψ − θi). (8.3)

This equation is no longer directly coupled to the other oscillators’ equations. Furthermore, when
spacial topology allows for it, a rotating frame of reference is usually taken so that ψ = 0. In that
case, the equation reduces to

θ̇i = ωi − κr sin(θi). (8.4)

Let us continue to write Eq. (8.2) in another way:

reiψ =

∫ π

−π
eiθ
(

1

N

N∑
j=1

δ(θ − θj)
)

dx (8.5)

For the limit where N goes to infinity we may assume that the oscillators are distributed according to
a probability density function ρ(θ, ω, t) given some ω which is on its own turn distributed by g(ω), as
mentioned above. The mean in Eq. (8.2) is now replaced by an average over phase and frequency

reiψ =

∫ π

−π

∫ ∞
−∞

eiθρ(θ, ω, t)g(ω)dωdθ. (8.6)
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We’ll have to assume the function ρ(θ, ω, t) to be normalized, resulting in∫ π

−π
ρ(θ, ω, t)dθ = 1. (8.7)

Next we should introduce a very handy relationship, the continuity equation. Noting that the angular
or drift velocity of the oscillators is vi = wi + κr sin(ψ − θi) we find

∂ρ

∂t
+

∂

∂θ

[(
ω + κr sin(ψ − θ)

)
ρ(θ, ω, t)

]
= 0 (8.8)

where the right-hand side equals zero because there can be no production or dissipation of oscillators.
Let us first consider some limit cases. A trivial solution is quickly found by setting ρ = 1/2π, there
we find r = 0, corresponding to an incoherence state. All the oscillators run around freely and no
synchronization occurs whatsoever. In the strong coupling limit, where κ goes to infinity, we expect
all oscillators to have the same phase θi = ψ. The density is concentrated in one place, so we find

reiψ =

∫ π

−π
eiθδ(ψ − θ)

∫ ∞
−∞

g(ω)dωdθ =

∫ π

−π
eiθδ(ψ − θ)dθ = eiψ, (8.9)

giving our order parameter as r = 1, global synchronization, or a total coherence state. Most interesting
is perhaps the middle ground. The system where we have some finite r where some of the oscillators
are locked and some roam without ever being caught in synchronization. An oscillator with drift (or
angular) velocity v = ω + κr sin(ψ − θ) will be locked if ω = κr sin(θ − ψ). For oscillators with
|ω| > κr the natural frequency of the oscillator is too large for the oscillator to be locked in, here we
can use the continuity equation to obtain the steady state result

ρ(θ, ω, t) =
C

ω + κr sin(ψ − θ)
, (8.10)

where C is the integration constant and can be found later with the use of the normalization condition.
For oscillators with a natural frequency |ω| < κr the oscillators will be locked in at an angle θ − ψ −
sin−1( wκr ). This locking is only stable if −π/2 ≤ θ − ψ ≤ π/2 so we obtain a stable steady state of

ρ(θ, ω, t) =

{
δ(θ − ψ − sin−1( wκr ))H(cos(θ)) if |ω| < κr

C
ω+κr sin(ψ−θ) else.

(8.11)

Calculating C with the use of Eq. (8.7) results in C =
√
ω2−κ2r2

2π . From this we can express our order
parameter in terms of Eq. (8.11)

reiψ =

∫ π/2

−π/2

∫ ∞
−∞

δ(θ − ψ − sin−1(
ω

κr
))g(ω)dωdθ +

∫ π

−π

∫
|ω|>κr

Cg(ω)

ω + κr sin(ψ − θ)
dωdθ. (8.12)

At this point we’re going to have to assume a density g(ω) if we would want to continue our analysis.

8.1 Connection to Gao et al.’s work

What happens if we try to describe this model in terms of an effective parameter the way that Gao
et al. do? First we’ll do a naive approach to see what happens. Lets call our effective parameter θeff

and use that L(G(θ)) ≈ G(θeff) we should note that the function G(θeff, θeff) = 0 for all values of θeff.
This means that the effective parameter θeff in this case is never influenced by the coupling constant κ.
The system it tries to describe is however greatly influenced by this constant as it determines to what
length the system will be in a coherent or incoherent state. If we use a rotating frame of reference at
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a radial frequency of ωeff, Eq. (8.1) does not provide us with any information about the system. If we
however do not claim that the sine function is linear and we use a tailor expansion we get

L(sin(θj − θi)) =
(
L(θi)− L(θj)

)
−
L
(
(θi − θj)3

)
3!

+ L(h.o.t.) (8.13)

=
1

3!

(
L(θ3

j )− 3L(θ2
j θi) + 3L(θjθ

2
i )− L(θ3

i )
)

+ L(h.o.t.), (8.14)

the linear term vanishes as discussed above. If we were to introduce another operator, one we could
apply to higher order polynomials we still have a problem here. The symmetry of these uneven powers
that the sine function gives us is such that any operator that works the same for θi as it does for θj
always yields us no coupling contribution as all terms cancel by symmetry after the operator is applied
to both phases. This method of approximation is inherently useless in the Kuramoto model stated
above.

Let us now consider a different approach to the problem. We’ll work with the order parameter r as
Kuramoto defines in Eq. (8.2) and use our only degree of freedom to set ψ = 0. From now on we will
use j for our subscripts by default as i will be the imaginary unit. We next introduce the variable xj(t)
as

xj = eiθj (8.15)

for all j, so that

r =

∑N
j=1 1 · xj∑N
j=1 1

= xeff (8.16)

is in the form of Gao’s effective parameter. The differential equations for the xj ’s are

dxj(t)

dt
=
d(eiθi)

dt
= ieiθj

dθj
dt

(8.17)

= ixj
(
ωj −Kr sin(θj)

)
(8.18)

= iωjxj −
Kr

2

(
e2iθj − 1

)
(8.19)

= iωjxj +
K

2
(1− x2

j )r (8.20)

= iωjxj +

N∑
l=1

K

2N
(1− x2

j )xl (8.21)

= Fj(xj) +

N∑
l=1

Aj,lG(xj , xl). (8.22)

Where Fj(xj) = iωjxj , Aj,l = 1/N for j 6= l and G(xj , xl) = K/2 · (1 − x2
j )xl. This is very

close to the desired form where the only thing missing is that the self dynamics are node dependent
(Fj(xj) = F (xj)). We should, despite this, still try for a 1D effective equation that describes the
system using Gao’s framework. Let us simply differentiate the definition of the effective parameter.

ẋeff =
1

N

N∑
j=1

ẋj (8.23)

=
1

N

N∑
j=1

(
iωjxj +

Kxeff

2
(1− x2

j )
)

(8.24)
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We should keep track of the error in order to keep going without losing too much information when
applying approximations. Defining δj so that xj = xeff − δj ,

ẋeff =
i

N

N∑
j=1

ωjxj +
Kxeff

2N

N∑
j=1

(1− x2
j ) (8.25)

= iω̄xeff −
i

N

N∑
j=1

ωjδj +
Kxeff

2N

N∑
j=1

(
1− (xeff − δj)2

)
(8.26)

where ω̄ = 1/N ·
∑N
j=1 ωj is the average of the frequencies ω.

ẋeff = iω̄xeff +
Kxeff

2
(1− x2

eff)− i

N

N∑
j=1

ωjδj −
Kxeff

2N

N∑
j=1

δ2
j (8.27)

So for small errors δ we throw away any higher order terms and get

ẋeff = iω̄xeff +
Kxeff

2
(1− x2

eff)− i

N

N∑
j=1

ωjδj , (8.28)

by only keeping first order terms in the error δ. In the limit δ → 0 the one dimensional effective
equation becomes

ẋeff = iω̄xeff +
Kxeff

2
(1− x2

eff) (8.29)

where we should note that the effective parameter βeff we had before is now equal to 1 as we have all
to all coupling with a constant coupling strength.

We now turn to the rotating frame of reference where x̂eff ≡ xeffe
−iω̄t so that

˙̂xeff =
d

dt
(xeffe

−iω̄t) = ẋeffe
iω̄t − iω̄xeffe

iω̄t (8.30)

and we obtain a differential equation for x̂eff in the form of

˙̂xeff =
K

2
x̂eff(1− x̂2

effe
2iω̄t) (8.31)

where we find stationary points at x̂eff = 0 and x̂eff = ±e−iω̄t. The fixed point at 0 has eigenvalue
K/2 and is unstable. The other fixed points have negative eigenvalues of −K, which makes them
stable equilibria. These points translate to fixed points for xeff at xeff = 0 and xeff = ±1.

The physical meaning for these is that the order parameter has, as expected, real fixed points. The
fixed point where xeff = 0 corresponds to a non-coherence state where the oscillators are distributed
equally over phase space. We expect this state to be unstable because a small perturbation in this
symmetry would cause for the oscillators to be attracted in the direction of the perturbation even more.
The state where xeff = 1 corresponds to complete synchronization. All the phases add up in Eq. (8.16)
when we let time run.

Interesting would be to investigate what happens to the synchronization and the resilience of the
model if we add a static phase θ0 in the coupling term in Eq. (8.1) so that the coupling term becomes
Ĝ(θi, θj) = sin(θi− θj + θ0). Surprisingly, we will see this in the following chapter when investigating
arrays of Josephson junctions.
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Chapter 9

Josephson Junctions and
Synchronization

Next we will turn our focus towards the Josephson junction. A Josephson junction consists of two
superconducting plates with a thin insulator in between them. The Josephson effect can be witnessed
in this configuration, a supercurrent can flow from one superconductor to the other without feeling
any resistance. Often Josephson junctions are connected in parallel with other electrical components
such as resistors, capacitors and inductors. We will first concentrate on a single Josephson junction.
The governing equations are

V (t) =
~
2e

dφ

dt
(9.1)

I(t) = Ic sin(φ) (9.2)

where V (t) is the externally applied voltage over the junction, I(t) the current through the junction,
Ic the critical current of the junction and 0 ≤ φ < 2π the phase difference across the junction. For a
DC voltage V0 we get that the phase difference across the voltage goes linear with time and assumes
all of its possible values. Phase space is a cylinder, 0 ≤ φ < 2π,∞ < φ̇ <∞. The DC voltage results
in a constant change of phase, thus giving a perpendicular cross section of the phase space. With
φ = V02e

~ t+ φ0 and I = Ic sin(V02e
~ t).

This is all very interesting, but what is perhaps more interesting is what happens when we add an extra
electrical component. When we add a resistor in parallel with the Josephson junction, as shown below,

Figure 9.1: A Jospehson junction in parallel with a resistor of resistance R, with external current I.

we can use the Kirchhoff equations to obtain
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I = IJ + IR = Ic sin(φ) +
V

R
(9.3)

= Ic sin(φ) +
~

2eR
φ̇ (9.4)

where R is the resistance of the resistor, IJ the current through the Josephson junction and IR the
current through the resistor. This is a first order nonlinear differential equation for φ.

To obtain a second order derivative, an electrical component that relates the current to the derivative
of the voltage is used.

Figure 9.2: A Josephson junction in parallel with a resistor of resistance R and a capacitor with
capacitance C, with external current I.

Adding a capacitor in parallel with the junction and the resistor we obtain yields this

I = IJ + IR + IC = Ic sin(φ) +
V

R
+ CV̇ (9.5)

= Ic sin(φ) +
~

2eR
φ̇+

~C
2e
φ̈ (9.6)

with IC the current through the capacitor of capacitance C. This equation is similar to that of a
damped pendulum [15] with a constant driving force, there the phase ψ of the pendulum is given by

ψ̈ + δψ̇ + κ2 sin(ψ) =
K

I
(9.7)

with δ the damping constant, κ the frequency, K the torque acting on the pendulum and I the moment
of inertia.

9.1 Resistively Shunted Junctions in a One Dimensional Array

In the context of this research however, it is more interesting to leave the capacitor for now and instead
look at an array of Josephson junctions, all of which are individually in parallel with a resistor. Lets
also apply a load with a resistor, capacitor and an inductor in series. The setup is schematically drawn
below.

This corresponds to the following set of coupled, first order differential equations of the form

~
2eR

ψ̇i + IC sin(ψi) = I − Q̇ (9.8)
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Figure 9.3: An array of Josephson junctions, all separately in parallel with a resistor of resistance r,
with external current I and an RLC load. Figure taken from [16] and slightly adapted.

where Q̇ is the current through the load. The equations of motions are completed by equating the
voltage over the load and the voltage over the array of junctions

LQ̈+ rQ̇+
Q

C
=

~
2e

N∑
i=1

ψ̇i (9.9)

switching to a uniformly rotating phase [17] in the shape of

φi = 2 arctan

(√
I − IC
I + IC

tan

(
ψi
2

+
π

4

))
(9.10)

Pikovski [15] derives a differential equation for these phases

φ̇i = ω0 +
ε

N

N∑
j=1

sin(φj − φi − α) (9.11)

where ω0 would be the rotational frequency if no coupling would be present, ε is given as

ε = N
2eR2Iω0/~−Rω2

0√
(1/C + Lω2

0)2 + (r +NR)2ω2
0

and alpha is implicitly given as

cos(α) =
Lω2

0 − 1/C√
(1/C − Lω2

0)2 + (r +NR)2ω2
0

. (9.12)

The system has been thoroughly investigated [18, 19, 16]. We will however turn to the effective
parameter to see whether this displays the same criteria for synchronization.

Let us once again introduce the order parameter, as in the previous section, reiφ̄ given by

reiφ̄ =
1

N

N∑
j=1

eiφj (9.13)

and variables xj where
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xj ≡ eiφj , (9.14)

ẋj = ixj φ̇j = iω0xj +
εr

2
(e−iα − eiαx2

j ) (9.15)

so that for φ̄ = 0

r =
1

N

N∑
j=1

xj (9.16)

where r is now again the effective parameter in the sense of Gao’s framework. A differential equation
for r is easily obtained by differentiating the xj ’s

ṙ = iω0r +
εr

2
(e−iα − eiαr2 − eiα

N∑
j=1

δ2
j ) (9.17)

Here we use a transformation to a constantly rotating frame of reference and we take the limit of
δ → 0

r̂ = re−iω0t (9.18)

so that this has the property

˙̂r =
εr̂

2
(e−iα − ei(α+2ω0t)r̂2) (9.19)

and we find fixed points at r̂ = 0 with eigenvalue εeiα/2 and r̂ = ±e−i(α+ω0t) with eigenvalue −εeiα.
The stability criteria for the coherent and incoherent states thus depend on the sign of ε cos(α), as
was also found separately [17]. By definition of α in Eq. (9.12) we find that ‖ω0‖ < 1/

√
LC has to

hold in order for the coherent state to be stable.
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Chapter 10

Conclusions

At the beginning of this work, in chapter 2, the problem at hand was explained and the derivation
of Gao’s mean field approximation was shown. It was then argued that the assumptions on the self-
dynamics and the interaction term were not trivially satisfied and a more thorough analysis of the error
should be formulated. This was done in chapter 3, where a differential equation of the effective node
and of the error were both derived. These can both be solved, be it numerically, after which the results
can be used to solve the now uncoupled system of equations that remain.

In chapters 4 and 5 we have seen that in the case of the plants and pollinators, the effective equation
describes the average behaviour very well as long as betaeff is far away from its critical value. The
region around the critical value of βeff, however, is the interesting region. It is the region where the
equilibrium behaviour of the system suddenly changes as the amount of fixed points of the effective
equation changes at the critical value of the effective parameter. Moreover, the formalism fails to
predict the correct behaviour around the critical value when noise is added to the system. When the
system is pushed to the high equilibrium state by the noise, the effective equation predicts that this
does not happen, a serious shortcoming. This behaviour is also expected to get worse as the size of
the network increases since the ”effective” noise, which is a weighted average of the noises on each
node, will cancel out even more.

The equilibria of the low dimensional systems that were analyzed in chapter 6 give insight as to why
the mean field approximation works in those cases. As expected (because of the all to all coupling),
the stable fixed points are both in-phase solutions, resulting in a perfect prediction by the mean field
approximation. It would be interesting to see how this develops as the dimension of the system
increases and the interactions are no longer as simple as was assumed in this research. This is however
increasingly harder to calculate or even display this as the amount of dimensions increases.

As for the Generalized Lotka-Volterra model, it was shown that the mean field approximation might
give a wrong indication of the network dynamics. Even when the system has no stable fixed point, the
effective equation always seems to find one, regardless of the network topology.

In chapter 8 the formalism was applied to the Kuramoto model. It correctly predicted a coherent and
incoherent state but did not take into account the difference in self-dynamics of the oscillators while
doing so. We should note that the Kuramoto model is not in the assumed form where the self-dynamics
of the nodes are not node dependant. Since the mean field approximation assumes an average drift
velocity of each node, it predicts either a fully coherent, or fully incoherent stationary state.

Finally, when applying the theory to an array of resistively shunted Josephson junctions, the formalism
correctly predicts the stationary states. It also finds the correct stability criteria, depending on the sign
of cos(α). For this final application the theory seems to work very well.
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