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Lattice translation symmetry gives rise to a large class of “weak” topological insulators (TIs), characterized
by translation-protected gapless surface states and dislocation bound states. In this work we show that space
group symmetries lead to constraints on the weak topological indices that define these phases. In particular, we
show that screw rotation symmetry enforces the Hall conductivity in planes perpendicular to the screw axis to be
quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that
certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice
and by glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates in the
experimental and numerical search for topological materials, based on the crystal structure alone.

DOI: 10.1103/PhysRevB.96.035115

I. INTRODUCTION

The discovery of topological insulators and superconduc-
tors is one of the most important breakthroughs of condensed-
matter physics in the past decades [1–3]. The key principle
underlying the existence of these novel topological phases
is that the presence of a symmetry, such as time-reversal
symmetry (T ), can lead to a quantized bulk topological
invariant and robust gapless surface states. In a gapped
fermion system, this invariant cannot change unless the gap
closes, defining a stable quantum phase and protecting the
existence of gapless boundary states. After the discovery of
three-dimensional topological insulators, which are protected
by T , it was shown that other global symmetries in the
Altland-Zirnbauer (AZ) classes [4], such as charge conjugation
(C) and spin rotational symmetries, can also give rise to
topological phases, leading to the periodic table [5,6] of
topological insulators and superconductors.

It was realized early on that additional topological
phases can be obtained from invariants defined on a lower-
dimensional slice of the Brillouin zone (BZ) [7]. Since this
definition requires the discrete translational symmetry of the
lattice, it was initially thought that these phases would not
survive generic disorder and were termed “weak” topological
insulators. The lower-dimensional topological invariants are
therefore known as weak indices. However, further efforts then
showed that weak topological phases have robust topological
surface states even in the presence of impurities [8–12], and
lattice dislocations therein host protected gapless modes that
originate from the weak indices [13–16]. Recently it was also
proposed that strong interactions can lead to novel topological
orders on the surface of weak TIs [17–19]. Most of these
theoretical predictions remain untested due to the difficulty
of finding materials realizing these weak topological phases
[20–22], though several candidates have been predicted in
ab initio studies [23–26].

*Present address: Rudolf Peierls Centre for Theoretical Physics,
Oxford University, United Kingdom.

The consideration of a perfect lattice with translational
symmetry immediately raises the question of whether the
space group symmetries of this lattice may also have an
impact on the topological properties. The addition of a
space group often leads to the emergence of novel phases,
generally termed topological crystalline insulators [27–44],
with different properties from weak TIs. Here we address a
complementary question: What are the restrictions brought by
space group symmetries on possible topological phases, in
particular, the weak topological phases?

In this work, we show that the nonsymmorphic elements
of the space group lead to additional strong constraints for the
weak indices beyond those derived from the point group. First,
we show that for three-dimensional (3D) magnetic insulators in
class A there is a nontrivial quantization condition on the Hall
conductivity tensor in the presence of a nonsymmorphic screw
symmetry. We derive this condition from band theory and
then provide a general proof of its applicability to interacting
systems. Second, we turn to time-reversal-invariant insulators
in class AII and show how nonsymmorphic screw and glide
symmetries can make the weak indices vanish in a particular
direction. While enumerating every AZ symmetry class and
dimensionality is beyond the scope of this paper, we present
the necessary formalism to generalize our results to topological
superconductors with a few examples in Appendix C .

II. CHERN NUMBER AND HALL CONDUCTIVITY
(CLASS A)

A. Hall conductivity of a 3D insulator

A simple example of weak indices in a three-dimensional
system is the quantized Hall conductivity of an insulator, which
in proper units is given by integer-valued Chern numbers
of 2D slices of the BZ. Even though these indices do not
rely on translation invariance for topological protection, we
also term these weak indices, as they are inherited from a
lower-dimensional view on the system. Being off-diagonal
elements of the conductivity tensor, these Chern numbers
transform like an axial vector under point group operations.
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Here we show that a nonsymmorphic screw symmetry further
imposes an important constraint on the integer-valued Hall
conductivity. As we show below, this constraint holds gen-
erally for interacting systems, as long as the ground state is
a nonfractionalized 3D insulator which preserves the screw
symmetry. We also expect that the constraint remains valid in
disordered systems that do not break the symmetry on average
[8–10,16].

In a 2D system, the Hall conductance (or conductivity) σxy

characterizes the transverse current response to an in-plane
electric field: jx = σxyEy . Using the Kubo formula, one finds
[45,46] that the Hall conductivity, in units of e2/h, is given by
the integral of the Berry curvature for the occupied bands over
the BZ,

σxy = e2

h
C, C = 1

2π

∫
BZ

d2k Tr
occ.

Fk, (1)

where Trocc. is the trace over occupied bands and F is the
Berry curvature matrix. In an insulator with a bulk gap between
valence and conduction bands, the total Berry flux over the BZ
is quantized to be an integer, known as the Chern number C,
and hence σxy is also quantized.

In a 3D insulator the Hall conductivity becomes an
antisymmetric tensor and can be cast in terms of an axial
vector [46] � as

σij = e2

2πh
εijl�l, �i = εij l

4π

∫
BZ

d3k Tr
occ.

F j l

k , (2)

where repeated indices are summed over implicitly. In band
insulators this “Hall vector” is always a reciprocal lattice vector
[47] and can be expressed as � = ∑3

i=1 GiCi , where Gi are
an independent set of primitive reciprocal lattice vectors, and
Ci ∈ Z is the Chern-number for a cut of the BZ spanned by the
other two reciprocal lattice vectors and oriented towards Gi .
The weak topological invariant associated with 3D insulators
in symmetry class A is such a “Chern vector” �C ∈ Z3. In
Appendix A we prove that the “Hall vector” transforms as
an axial vector even for nonsymmorphic symmetries. This
shows that lattice symmetry severely constrains its allowed
values, as it has to stay invariant under every orthogonal
transformation in the point group. Typically, nonzero values
are allowed only with low-enough symmetry. For example,
two (improper) rotations with intersecting axes are sufficient
to force vanishing Hall conductance [28].

Let us impose periodic boundary condition with Nz unit
cells in the direction of an arbitrary primitive lattice vector az.
Using the bulk formula, the Hall conductance of the resulting
2D system in the plane normal to az is

σxy = 1

2
(Nzaz)mεmnlσnl = Nz

e2

2πh
� · az = e2

h
NzCz. (3)

Adding one extra unit cell along the az direction will increase
the normal Hall conductance by exactly the Chern number
Cz in units of e2/h. In an anisotropic limit the 3D insulator
can be viewed as a stack of 2D layers with a quantized Hall
conductance σL

xy = e2

h
Cz each. Therefore, the Hall conductivity

tensor (2) is nothing but the Hall conductance per unit cell
layer, σL

xy , which can be defined as the difference between the
Hall conductances of the Nz and the Nz + 1 layers. As will

FIG. 1. (a) Brillouin zone of an insulator with fourfold screw
symmetry. The perpendicular plane through the BZ center (blue)
contains four high-symmetry points; we use the formula relating the
Chern number to rotation eigenvalues at these points. There are four
invariant lines in the direction of the screw axis (red). (b),(c) The screw
eigenvalues λ evolve into each other along the fourfold (twofold)
screw-invariant lines through � and M (X and Y ). The values trace
spirals as the function of kz, the complex phase also illustrated by
color code. (d) Intuitive real-space picture of the screw operation and
a symmetric insulator as a stack of integer Chern insulator layers
related by the screw. The unit cell contains four layers, so the Hall
conductance per transverse unit cell is a multiple of 4.

become clear later, this difference σL
xy does not depend on Nz

as long as Nz is much larger than the correlation length, so we
adopt this definition for our interacting proof.

In the following we show that, with a nonsymmorphic
n-fold screw symmetry, the Hall conductance per unit cell
layer along the screw-axis direction cannot be an arbitrary
integer (in units of e2/h) for a gapped 3D insulator without
fractionalization. Instead, it must be a multiple of n, as
enforced by the screw symmetry.

B. Screw symmetry enforced constraints

Below we will show the Chern number for a cut perpen-
dicular to an n-fold screw axis is quantized to a multiple of
n. Consider an essential n-fold screw in the z direction; by
essential screw we mean a space group (SG) operation that
leaves no point in space invariant up to lattice translations
[48]. We assume that the translation part is 1/n of the
primitive lattice vector parallel to the n-fold rotational axis
[49], g = {Cn|az/n}. We invoke results [28,40,50] that allow
calculation of the Chern number in the presence of n-fold
rotational symmetry in 2D as a product of rotation eigenvalues
of occupied bands at high-symmetry points of the BZ. For
example, with C4 symmetry [Fig. 1(a)],

exp

(
2πi

C

4

)
=

∏
m∈occ.

ξ�
m(C4)ξM

m (C4)ξX
m

(
C−2

4

)
, (4)
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where ξk
m(O) is the rotation eigenvalue of O in band m at

momentum k. Similar formulas can be derived for rotations
C2, C3, and C6.

When restricted to the 2D cut of the BZ through �, a screw
acts the same way as a symmorphic Cn rotation, so the formula
can be applied. Now consider the high-symmetry lines in the
BZ, parallel to the screw axis [vertical lines in Fig. 1(a)].
As the nth power of the screw gn = (−1)F {1|az} is a pure
translation up to fermion parity, the eigenvalues of screw g take
values of λ = exp (ik · az/n + 2πim/n + πiF/n) for m ∈
Zn [Figs. 1(b) and 1(c)]. When restricted to the perpendicular
plane with k · az = 0, the eigenvalues are simply the nth roots
of fermion parity (−1)F . Increasing kz by 2π changes the
eigenvalue of g by a factor of e2πi/n, leading to an n-multiplet
of occupied bands at each screw-invariant momentum. This
shows that the product of screw eigenvalues at high-symmetry
points is always 1 for every gapped band structure. This
immediately proves that

σL
xy

e2/h
= Cz ≡ 0 mod n. (5)

In the following we show that this result is not a peculiarity
of band theory for free electrons, but holds for any gapped
unique ground state preserving n-fold screw symmetry, even
in the presence of interactions. The proof is based on
the following cut-and-glue procedure. We start with a slab
containing Nz + m/n unit cells along the z direction, which
is parallel to the screw axis. While this number of unit cells
is not integer, screw symmetry allows us to identify the top
and bottom surfaces using a boundary condition twisted by
a Cn rotation [51], which results in a screw symmetric bulk
without boundaries [Fig. 2(a)]. To take the thermodynamic
limit, we assume the size of the system is much larger than
the correlation length of the gapped bulk. To define the
Hall conductance σxy in this geometry, we invoke the Streda

X

FIG. 2. The process used in the general proof for the Hall
conductance constraint (5), illustrated in the case of a twofold screw.
(a) A thick slab with half-integer thickness and twisted periodic
boundary condition in the z direction. As we open the boundary
condition in the z direction, the Hall conductance may change by
a surface contribution −σS

xy . (b) We combine two slabs; the screw
axis makes it possible to arrange these such that the interfaces are
guaranteed to be identical: A top surface (F) meets a bottom surface
(G) with the same orientation. Gluing the two interfaces together each
contributes +σS

xy . (c) The resulting system has periodic boundary
conditions in all three directions with odd thickness, while the Hall
conductance is an even multiple of the conductance quantum.

formula [52], whereby the Hall conductance is given by the
charge bound to a localized 2π flux threaded through the
system. Unless the charge captured is an integer, the system is
fractionalized and has degenerate ground states, contradicting
our initial assumption.

Next we cut the system open in the z direction. During
this process we change the Hall conductance by a surface
contribution of −σS

xy . σS
xy can depend on the thickness, but

should saturate to a thickness-independent constant, as long
as Nz is much larger than the correlation length of the gapped
bulk. We then take n copies of this open system and arrange
them along the z direction related by Cn rotations such that
all the interfaces are symmetry related [Fig. 2(b)]. Gluing
the surfaces together by restoring the screw symmetric bulk
Hamiltonian changes the Hall conductance by σS

xy at each
interface, as the separation between them is much larger than
the bulk correlation length. The resulting system [Fig. 2(c)]
has periodic boundary conditions in all three directions with
a thickness of nN + m unit cells and Hall conductance of
n(σxy − σS

xy) + nσS
xy = nσxy . Thus, we proved that a sample

with arbitrary integer thickness has a Hall conductance which
is a multiple of n times the conductance quantum.

III. WEAK TI INDICES (CLASS AII)

A. Constraints from Bravais lattice

We now consider time-reversal symmetric insulators
in class AII. To calculate the weak Z2 invariants, we
evaluate [7]

νi = 1

2π
Tr
occ.

(∫
1
2 T 2

Fkd
2k −

∮
∂ 1

2 T 2
Ak · dk

)
mod 2, (6)

where A and F are the Berry curvature and connection,
respectively, and the integral is over the interior and boundary
of half of the time-reversal-invariant 2D cut of the BZ
spanned by the two reciprocal lattice vectors other than
Gi and offset from the � point by Gi/2. Expanding the
momentum vector in a primitive reciprocal lattice vector basis
as k = 1

2π

∑3
j=1 kj Gj , these planes are defined by ki = π and

form a face of the parallelepipedal reciprocal unit cell centered
around �. The weak indices define a k-space vector, pointing
to one of the eight TR-invariant momenta (TRIM):

Gν = 1

2
νiGi . (7)

This vector is independent of the choice of the unit cell [38] and
transforms under space group operations as k-space vectors
(see Appendix A). One can enumerate the allowed values of
Gν by inspecting tables for Wyckoff positions of the reciprocal
space groups: Gν can only take values at points with half-
integer Miller indices that are invariant under the point group
up to reciprocal lattice vectors. For example, a face-centered
cubic lattice (as realized in the diamond structure [54]) cannot
support nontrivial weak indices without breaking point group
symmetries, simply because no TRIM is left invariant under
the point group except �. These types of constraints, enforced
only by the type of Bravais lattice [55], are listed in Table I.

These results can also be rationalized from the band
inversion point of view. To get a nontrivial weak index, we
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TABLE I. Constraints on possible weak indices based on the
Bravais lattice in time-reversal-invariant insulators. The allowed
values of Gν are labeled according to the convention for high-
symmetry momenta in International Tables for Crystallography (ITA)
[53]; “all” means all the eight possible values are allowed.

Crystal system Centering Allowed values of Gν

Triclinic P All

P All
Monoclinic

C �, Y , A, M

P All
C �, Y , T , Z

Orthorhombic
I �, X

F �, Y , T , Z

P �, Z, M , A
Tetragonal

I �, M

P �, A
Trigonal

I �, T

Hexagonal P �, A

P �, R

Cubic I �, H

F �

need an odd number of band inversions among the four TRIMs
located on a plane offset by Gi/2 (defined as above), and
only the band inversions at the four TRIMs here contribute
to the weak index νi . However, point group symmetry relates
some of these TRIMs, and band inversion has to occur on all
symmetry related points simultaneously. For example, in the
bcc reciprocal crystal TRIMs are symmetry equivalent in such
a fashion that there is an even number of related points in any
of these offset planes, explaining the lack of nontrivial weak
TIs. On the other hand, a strong TI is possible with any SG, as
the � point is always of maximal symmetry and it is possible
to have a band inversion only at � (see Appendix D ).

B. Constraints from nonsymmorphic symmetries

The presence of nonsymmorphic symmetries leads to
further constraints on the weak indices. We now show that
in the presence of an essential twofold screw in the z direction,
the weak index must be trivial in this direction. First we note
that a twofold screw {C2|az/2} with az a primitive lattice
vector, squares to {−1|az}, represented at kz = π as +1, which
commutes with T . For now we assume the other two primitive
lattice vectors are perpendicular to az and in the kz = π plane
the screw acts like a proper inversion in a 2D system. We
use the known result to evaluate the weak index by counting
inversion eigenvalues [27]; it is given by the total number of
occupied Kramers pairs with −1 inversion eigenvalue at the
four TRIMs’ modulo 2. In this plane Kramers partners have
the same screw eigenvalues, as required.

However, this situation in a 3D system with screw is differ-
ent from a 2D system with a symmorphic inversion symmetry
in that the screw requires an equal number of both screw eigen-

values below the gap, as shown earlier. Specifically at kz = π

at each high-symmetry point the number of occupied +1 and
−1 eigenvalues must be equal, and as the number of occupied
bands is constant, the total number of occupied −1 bands is a
multiple of 4, leading to a trivial Z2 index in this plane.

In general, a weak vector in the presence of an essential
screw {C2|az/2} is allowed only if

Gν · az ≡ 0 mod 2π. (8)

We analogously argue [31,32] that an essential glide forbids
nontrivial weak index in the direction parallel to the the
translational part of the glide. Again, a diagonal glide is
never essential, and the constraint follows from Bravais-lattice
considerations. In general, an essential glide with in-plane
translation az/2 allows a weak vector only if Gν · az ≡ 0
(mod 2π ), consistent with the analysis of the “hourglass”
surface states [37,40].

IV. CONCLUSION

In summary, we derived a set of constraints on weak
topological indices in 3D insulators from nonsymmorphic and
symmorphic space group symmetries. We showed that in the
presence of n-fold screw rotation, Hall conductivity must be
quantized as a multiple of n for any 3D nonfractionalized
insulator preserving screw symmetry. This condition is gener-
ally proved for interacting systems. We also showed certain
3D weak indices for TIs (class AII) are forbidden by the
Bravais lattice and glide or even-fold screw symmetries. These
Bravais-lattice constraints can also be applied to weak indices
in topological superconductors; see Appendix C . These results
put strong constraints on the candidates for weak topological
phases in the ongoing experimental and numerical efforts to
find physical realizations of these novel topological phases.

ACKNOWLEDGMENTS

The authors are grateful to T. Morimoto and H. C. Po
for helpful conversations. This work is supported by NSF
Grant No. DMR-1206515 (D.V. and F.dJ.), the Netherlands
Organization for Scientific Research (NWO), the Foundation
for Fundamental Research on Matter (FOM) (D.V.), the
European Research Council Advanced Grant (Contract No.
290846) (F.dJ.), and startup fund at Ohio State University
(Y.-M.L.).

APPENDIX A: PROOF FOR TRANSFORMATION
PROPERTIES OF WEAK INDICES

First we review the representations of space group opera-
tions in k space [40,41]. We use the convention (Appendix B)
with Bloch basis functions |χxl

k 〉 = ∑
R eik(R+x)|φl

R+x〉, where
we split the orbital index a = (x,l), x labels the sites of the
unit cell by their real-space position and l is an on-site orbital
index accounting for spin, orbital angular momentum, etc.
(the values l can take may depend on x). A useful property
of this basis is that it is periodic in the real-space coordinate;
i.e., |χ (x+R)l

k 〉 = |χxl
k 〉 for any lattice vector R. We emphasize

that our treatment is not specific to tight-binding models; the
same can be told in the continuum, where x is the continuous

035115-4



SPACE GROUP CONSTRAINTS ON WEAK INDICES IN . . . PHYSICAL REVIEW B 96, 035115 (2017)

index for position in the unit cell and l stands for the spin
only. To go to the tight-binding approximation, we restrict the
Hilbert space to a finite set of orbitals per unit cell; the only
assumption we make is that orbitals centered on different sites
span orthogonal subspaces.

Consider a general space group operation g = {O|t} acting
on one of the basis states,

g
∣∣φl

R+x

〉 = Ull′
x

∣∣φl′
g(R+x)

〉 = Ull′
x

∣∣φl′
O(R+x)+t

〉
, (A1)

where U is the site and g-dependent unitary representation
on the local orbitals, a double representation if the model is
spinful. Applying this to the Bloch basis functions, with simple
algebra we find

g
∣∣χxl

k

〉 = e−i(gk)tUll′
x

∣∣χgx,l′
gk

〉
, (A2)

with gk = Ok and gx = Ox + t that is understood as a permu-
tation of sites at the same Wyckoff position. Grouping indices
back together, this can be written as g|χa

k 〉 = e−i(gk)tUba|χb
gk〉.

The key observation is that in this basis the k dependence
decouples as a single factor proportional to the identity. Con-
sider the transformation of a Bloch eigenstate in the nth band,
|nk〉 = na

k|χa
k 〉. The symmetry transformation results in a state

at gk; the coefficients transform as (gn)agk = e−i(gk)tUabnb
k

or in a compact notation g(nk) = (gn)gk = e−i(gk)tUnk. As
g is a symmetry operation, the transformed state is again an
eigenstate of the Bloch Hamiltonian with the same energy, but
at gk. As a consequence, the transformation of occupied band
projector operator Pk = ∑

n∈occ. nkn
†
k reads

(gP)gk =
∑

n∈occ.

(gn)gk(gn)†gk = UPkU
†. (A3)

So if g is a symmetry, such that (gP)k = Pk, any gauge-
invariant quantity that can be expressed through Pk is invariant
if the k-space coordinates are transformed accordingly. Exam-
ples include [41] the Berry curvature F = iPdP ∧ dPP and
closed loop integrals of the Berry connection A (see below).

The “Hall vector” as defined in Eq. (2) may be cast in a
coordinate free form, as

� = 1

2π

∫
TrF ∧ dk. (A4)

To see that it is equal to
∑3

i=1 GiCi , it is sufficient to check
that ai · � is the same in the two cases for all lattice vectors.
Simple substitution shows that this vector transforms as an
axial vector under all SG operations [i.e., even under inversion,
� → (det O)O�], as stated in the main text.

For completeness we derive the transformation properties of
A and F under the basis change corresponding to switching
between conventions and show that invariants calculated in
either convention give the same result. (For details about the
two conventions, see Appendix B.) We feel this is necessary
because, while the Berry connection for the Bloch basis |χ̃ a

k 〉
vanishes and one can safely use the coefficients, for the basis
|χa

k 〉 it is nonzero, Aab
χ = i〈χa

k |d|χb
k 〉 = iδabeikta tadk. This

means that one may worry that the formulas in terms of the
components in this basis may be missing some terms coming
from the derivatives of the basis vectors.

For generality, we consider a transformation Uk acting on
the coefficients, it may either be a basis transformation or a
physical one, and let n′

k = Uknk. We find

Tr
occ.

A′ =
∑

n

in′†dn′ = Tr
occ.

A + i Tr(PU †dU ), (A5)

Tr
occ.

F ′ = Tr
occ.

dA′ = Tr
occ.

F + id Tr(PU †dU ), (A6)

where Trocc.(·) = ∑
n(·)nn is the trace over occupied bands,

while Tr(·) = ∑
a(·)aa is the trace over the entire Hilbert-space

of the unit cell. We see that as long as PU †dU is unit
cell periodic, which is the case for the basis transformation,
Uab

k = Wab
k = δabeikra if P = P̃ (BZ periodic convention).

The change in Trocc.
∫
S
F is fully compensated by the change

in Trocc.
∫
∂S

A in the formula for theZ2 invariants and vanishes
for Chern numbers.

We note that the expression for Trocc.
∮
A along a noncon-

tractible loop in terms of the projector is modified in the |χ〉
basis,

Tr
occ.

∮
A = i ln det+

⎛⎝W−G

k0−G∏
k=k0

Pk

⎞⎠, (A7)

where det+ is the pseudodeterminant of the matrix, which
is defined as the product of all nonzero eigenvalues. This is
equivalent to calculating the determinant of the restriction to
the local occupied space at k0; i.e., we evaluate −i ln det+ as
the sum of the complex phases of the nonzero eigenvalues.
The reason WG appears is the mismatch of the basis at k0 and
k0 + G.

APPENDIX B: CONVENTIONS FOR BLOCH FUNCTIONS

There are two widely used conventions to define the Bloch
basis functions. When appropriate we use the convention
where we define Bloch basis functions |χ̃ a

k 〉 in terms of the
orbitals of the unit cell |χ̃ a

k 〉 = ∑
R eikR|φa

R〉, where R is the
unit cell coordinate and a the orbital index. Note the absence
of phase factors corresponding to the position of the orbitals
within the unit cell, so the basis functions are strictly periodic
in the BZ. While in this convention the information about
the position of the orbitals is lost; thus, the polarizations
computed via Berry vector potential integrals do not equal
the true Wannier center positions. The Bloch Hamiltonian is
BZ periodic, making some derivations more transparent.

In the other convention we define |χa
k 〉 = ∑

R eik(R+ra )|φa
R〉,

where ra is the position of the ath orbital in the unit cell.
The two conventions are related by the operator Wk with

Wab
k = δabe−ikra such that |χa

k 〉 = (W−1
k )

ab|χ̃ b
k 〉 so the coef-

ficients of Bloch wave functions transform as na
k = Wab

k ñab
k .

Consequently, operators expanded in this basis (including
the Bloch Hamiltonian) satisfy Ok+G = WGOkW

−1
G , where

G is a primitive reciprocal lattice vector. WG : Hk → Hk+G
is acting between the Hilbert spaces of the coefficients of
the wave functions in this basis. This convention, using the
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coefficients only (e.g., Anm = in†dm), is usually assumed in
formulas for electromagnetic response, as the naive Peierls
substitution k → k + A only gives the correct phase factor
for hopping in this case. The two conventions give equivalent
results for quantized topological indices in most symmorphic
cases, provided there is a continuous, symmetry-preserving
deformation of the lattice, such that all the orbitals are brought
to the same point in the unit cell. In nonsymmorphic lattices,
however, this is never possible, as the shortest orbit of a point in
the unit cell under the symmetry group modulo lattice vectors
is longer than one; there is no crystal with one site per unit
cell obeying a nonsymmorphic symmetry. For example, with
an n-fold screw translating in the z direction one needs at least
n lattice sites that can be arranged such that the positions
are ra = aza/n for a = 1, . . . ,n, so Wab

Gz
= δabe2πia/n and

WG = 1 for perpendicular directions.
We remark that in both bases global antiunitary transfor-

mations, such as T = Kσy , act as constant operators in k
space. To switch conventions, one must transform them same
as other operators, T̃ = W−kT W−1

k = T , where we used that
W−1

k = W−k = W ∗
k , as W is diagonal and proportional to the

identity in spin space.

APPENDIX C: WEAK TOPOLOGICAL
SUPERCONDUCTORS (CLASS C AND D)

Weak indices are also present in other symmetry classes
[14,16,29,58], and our considerations can be extended to
topological superconductors. In 3D there are analogous 2D Z
and 2Z indices in classes D and C, respectively; these are Chern
numbers of the Bogoliubov–de Gennes (BdG) Hamiltonians,
and the same reasoning applies as in class A detailed in Sec. II.

In other cases, however, the presence of charge conjugation
symmetry (C) has a more important role. We briefly review
class D in two dimensions as an example. In class D there are
1D Z2 indices that serve as d − 1-dimensional weak indices
in a 2D system,

νi = 1

π

∮
TrA (mod 2), (C1)

where the integration contour is along an invariant line on
the edge of the BZ, parametrized as Gi/2 + tεij Gj , t ∈ [0,1].
Similarly to the weak Z2 in 3D TIs, the value ν ′

i on a parallel
invariant line through the � point (tεij Gj , t ∈ [0,1]) is not
independent; it is related through the 2D strong index C ∈ Z
such that C ≡ (νi + ν ′

i) (mod 2). The weak vector

Gν = 1

2

∑
i

νiGi (C2)

also transforms as k-space vectors under all space group
operations. This shows that 2D crystals with rhombic and
square lattices only allow Gν = ( 1

2 , 1
2 ) (in primitive basis)

and three- or sixfold rotational symmetry does not allow any
nontrivial weak vector. This known result [29] is generalized
here and applies to arbitrary nonsymmorphic space group
symmetries with the same point group part.

In order to prove the transformation properties of the
1D weak Z2 indices in class D, we have to switch to the
BZ periodic convention, as Trocc.

∮
A is quantized only in a

periodic basis and gauge. A space group operation g in this
basis is represented as Uab = Uac

0 δcbe−ikδRb , where δRa is the
lattice vector of the unit cell in which site a of the unit cell at
R = 0 ends up after the application of g. U0 is k independent
and we set it to the identity without loss of generality. The
set δRa depends on the choice of the unit cell, and a basis
transformation redefining the unit cell has the same form with
δRa showing the change of unit cell position to which site a is
assigned. Now we are in a position to prove two things at once:
The 1D Z2 indices in class D transform in a simple fashion
under SG operations and are insensitive to the choice of the
real-space unit cell.

We introduce the band-flattened Hamiltonian, Q = 1 −
2P; it has the same properties as H except all particle/hole-
like bands have energy ±1. Charge conjugation symmetry
C = τxK imposes Qk = −τxQ∗

−kτx ; for P it means Pk =
1 − τxP∗

−kτx . The particle- and hole-like states are related
by Hermitian conjugation. This, in general, implies Uk =
τxU

∗
−kτx ; for the diagonal form we use this means every Ra

has to appear twice. This is a consequence of double counting
degrees of freedom; the creation and annihilation operators
of the same state must live one the same lattice site. We
remark that our proof relies on the assumption that charge
conjugation is strictly local. While this is always true for BdG
Hamiltonians, it may not be valid in insulators with effective
particle-hole symmetry that exchanges lattice sites [58]. We
find

i

∮ G

0
Tr(PU †dU ) = − i

2

∮ G

0
Tr(U †dU ) (C3)

= −1

2

∮ G

0

∑
a

dkδRa = −1

2

∑
a

GδRa, (C4)

where G is the reciprocal lattice vector along which the
integration contour for Trocc.

∮
A is oriented. Because of the

doubling of orbitals, the right-hand side of the equation is
always an integer multiple of 2π . Comparing with (A5), we see
that a change of the unit cell or a space group operation (with
the appropriate transformation on k space) does not change
the value of Trocc.

∮
A, which is only defined modulo 2π .

APPENDIX D: NO CONSTRAINTS ON STRONG TI’S

In general, a topological phase from Kitaev’s periodic table,
protected by a global symmetry of the ten AZ classes is robust
against breaking lattice symmetry, such as strong TI in 3D. If a
phase is compatible with a group G, then it is also compatible
with any space group that is a subgroup of G. This is simply
true because the topological protection does not rely on G. All
the symmetry restrictions in G can do is to rule out certain
phases in the original classification. A subgroup cannot rule
out more phases, as it poses less restrictions. Of course, it is
possible to have phases that are protected by G (and the global
symmetry); then breaking G down to a subgroup can either
allow more phases or protect less. For example, as we saw,
nonsymmorphic symmetry can give interesting results about
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weak indices, because they rely on the translation part of the
space group for protection.

As every crystallographic space group is a subgroup of
either SG #229 (Im3m) or #191 (P 6/mmm), finding examples
of strong TIs in both of these crystal structures proves that
crystal symmetry cannot forbid strong TIs: Starting from either
of these maximally symmetric examples and weakly breaking
some of the lattice symmetries, one can produce a system with
any SG without leaving the strong TI phase.

In our tight-binding examples we have a single site per unit
cell with two orbitals, four bands in total. One of the orbitals
is a spinful s orbital, transforming under rotations with the
canonical SU(2) representation and even under inversion. The
other orbital transforms the same way under proper rotations,
but odd under inversion; such orbitals naturally arise through
crystal-field splitting of p orbitals in a spin-orbit coupled ion.
We introduce the Pauli matrices τ to act on the space of the
two orbitals; now proper rotations by angle n are represented
as exp ( i

2 n · σ ), inversion as τz and time-reversal as T = σyK.
Both minimal models have the same form that guarantees that

they are invariant under the full symmetry group,

H (k) =
∑

δ

{sin (k · δ)(δ · σ )τx + [m − cos (k · δ)]τz},

(D1)

where the sum runs over nearest-neighbor vectors. By tuning
m we can enter the strong TI phase. This can be easily checked
by counting inversion eigenvalues.

This result is expected based on the band inversion picture.
The � point is always of maximal symmetry; it is possible
to have a band inversion only at the � point, resulting in a
strong TI with trivial weak indices. We can also rationalize
this result from the effective field theory point of view. The
strong TI phase is characterized by the topological θ term
in the long-wavelength electromagnetic action, a theory that
possesses continuous translation and rotation symmetries.
While a microscopic theory with full Galilean invariance is
not possible, we showed that the maximally symmetric crystal
structures are all compatible with this emergent behavior.
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