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A B S T R A C T

In this paper we develop a finite deformation micromechanical framework for modeling rate-
dependent failure in unidirectional composites under off-axis loading. The model performance is
compared with original experiments on thermoplastic carbon/PEEK composites tested at differ-
ent strain-rates and off-axis angles. To achieve quantitative agreement with the experiments, a
microcrack initiation criterion based on the local stress and the local rate of deformation state
in the polymer matrix is proposed. Microcracking is represented by a cohesive zone model,
with special attention to the inclusion of geometric nonlinearity in the formulation. In this
regard, the cohesive geometric nonlinearity is based on extension of an existing formulation to
three-dimensional space. Beside microcracking, the Representative Volume Element (RVE) also
accounts for viscoplasticity in the polymer matrix. A recently introduced dedicated arclength
control method is utilized to impose a strain-rate on the micromodel. Accordingly, kinematic
relations governing the RVE deformation allow for the change in orientation of the micromodel
in the loading process. This change in orientation of the microstructure has an important
implication on the apparent material strength.

. Introduction

Continuous fiber reinforced polymer (FRP) composites are used in many load-carrying applications that require high performance,
specially in the transportation industry. They offer the possibility for a substantial reduction in weight of structural components
nd better resistance to corrosion compared to metallic alternatives [1]. In addition to this, thermoplastic composites provide an
pportunity for welding, and also recycling by melting the material. However, the melting process limits the viscosity of the material
uch that thermoplastics are not immediately suitable for large structures, when the resin cannot be pushed through the whole
omponent even applying high pressures [1]. Furthermore, the viscous nature of the polymer matrix and the inherent heterogeneous
tructure of FRP composites make prediction of the material behavior under the time-dependent loading conditions a rather difficult
ask.

Historically, different scales of observation have been utilized in modeling the mechanical response of composites. Many studies
o predict failure of the material have been conducted on the ply level or mesoscale where the polymer matrix and carbon fibers are
epresented in a homogenized way, making this approach computationally efficient. Classical mesoscale failure theories that account
or interaction between different homogenized stress components in a ply are those by Azzi and Tsai [2] that led to definition of
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the Tsai–Hill failure criterion, and by Tsai and Wu [3], which are frequently used to this date. Hashin and Rotem [4] realized
the necessity to distinguish between fiber and matrix failure that gave rise to failure-mode-based criteria. Following this idea new
theories have been proposed including that by Puck and Schürmann [5] and Dávila et al. [6]. Camanho et al. [7] introduced a three-
dimensional (3D) invariant-based failure criteria where the preferred material directions are accounted for by means of structural
tensors. Once defined, mesoscale failure criteria can be readily used in laminate analysis of different composite systems. However,
one general issue with mesoscale formulations is the difficulty to explicitly include additional physical influences such as strain-rate
effects in a failure criterion.

On the other hand, micromechanical modeling offers more information about the material structure and, therefore, a more
uitable environment to develop physics-based models, although this advantage comes along with higher computational cost.
egarding material failure, by means of microscale simulations the ply level failure criteria may be checked and refined or new

heories can be proposed. In this way, Sun et al. [8] derived failure envelopes from Representative Volume Element (RVE) simulations
long with a comparison with classical mesoscale failure theories. Totry et al. [9] compared micromechanical failure prediction with
xperiments on a carbon/polyetheretherketone (C/PEEK) system subjected to transverse compression and longitudinal shear [10].
aughan and McCarthy [11] introduced a micromechanical model to study fracture under transverse shear and normal loading.
harma et al. [12] showed that an RVE model calibrated at uniaxial loading cases is able to predict biaxial failure of a lamina. An
mage-based RVE from an actual microstructure was developed by Bhuiyan et al. [13] to examine the effect of geometrical features
uch as the distribution and morphology of fibers on the biaxial transverse strength. A new rate- and temperature-dependent material
odel for polymers was proposed by Bai et al. [14], and applied to analysis of kink band formation under longitudinal compression

f a composite material. In a multiscale reduced order modeling approach Gao et al. [15] incorporated the RVE microstructure in
redicting failure of a 10◦ off-axis composite laminate. The rate- and temperature-dependent failure under transverse tension of
nidirectional (UD) composites was studied by Sato et al. [16] and compared with the three-point bending experiments.

The majority of the micromechanical modeling does not account for an arbitrary off-axis loading of the composite material.
xceptions among the mentioned papers are the work of Bai et al. [14] and Gao et al. [15], but they do not consider different
train-rates in the failure process. Govaert et al. [17] do account for rate-dependent failure under an arbitrary off-axis loading, but
n a regular distribution of fibers inside the matrix and with a failure criterion based on a local equivalent shear strain in a single
oint in the micromodel.

In this paper we develop a 3D micromechanical framework for modeling off-axis failure in UD composites subjected to a
rescribed strain-rate. The model is defined in the finite deformation framework, accounting for viscoplasticity in the matrix, as
ell as for microcracking by means of a cohesive zone (CZ) model. The geometrically nonlinear formulation for the cohesive zones

s based on the work of Reinoso and Paggi [18], which is generalized to 3D. Cohesive segments are added on the fly [19], when
microcrack initiation criterion is satisfied. A new initiation criterion is proposed based on the local stress and the local rate of

eformation in the polymer matrix. A constant global strain-rate is imposed on the RVE following kinematic relations introduced by
ovačević and Van der Meer [20], that are in accordance with the finite deformation requirement of the model. The model behavior

s compared with experimental results on a UD C/PEEK composite system, exposed to a range of strain-rates at different off-axis
ngles and room temperature conditions. The nearly homogeneous stress states in these tests allows for direct comparison between
he experimental response and results obtained from single scale micromechanical simulations up to failure.

The developed framework is envisioned to contribute to better understanding of the long-term behavior of thermoplastic
omposites. In the first place, the model estimates failure of the material under rate-dependent off-axis loading. Potentially the
VE can also be used in multiscale simulations to take the place of mesoscale constitutive models.

The layout of the paper is as follows: the experimental benchmark is introduced in the next section. Then the requirements
f a microscale analysis are defined, followed by the homogenized kinematics description of the RVE. After that, the variational
ormulation of the equilibrium equation is presented, with special attention for the linearization of the cohesive contribution to
he internal force vector. The explanation of constitutive models used to represent the polymer matrix and the carbon fibers
ollows. Subsequently a mixed-mode damage cohesive law is introduced, together with the microcrack initiation criterion. Next,
he simulation results are compared with the experiment and the paper ends with some concluding remarks.

. Experimental benchmark

The micromechanical modeling of the rate-dependent failure is compared with experiments on UD C/PEEK composite material.
arbon fiber reinforced UD tapes with PEEK matrix, specifically made for this research work, were provided by Solvay. The tapes
ere 103 mm wide with a nominal thickness of 0.25 mm. Previous work suggested that using commercial UD tapes with a higher

iber volume ratio leads to high variation in experimental results [21]. Hence, to have better repeatability in data, tapes with the
iber volume ratio 𝑉𝑓 = 0.4 with more matrix than in commercial UD tapes were prepared. The quoted 𝑉𝑓 of 0.4 was also verified
y microscopy and measuring the fiber weight after burning off the resin in consolidated laminates. UD composite laminates were
repared from these tapes using the Pinette P.E.I press at the ThermoPlastic composites Research Centre (TPRC) in a two stage
rocess.

UD plies of 390 × 390 mm dimensions were prepared from the prepreg tapes and were stacked in [0]4s layup. They were then
laced between 1 mm thick stainless steel caul sheets, coated with Marbocote 227CEE release agent, in a picture frame. The plies
ere first heated to 385 ◦C (beyond the melting temperature of PEEK) at a rate of 5 ◦C/min under 2 bar pressure. The consolidation
rocess was then carried out for 20 min under a pressure of 20 bar. Finally, the consolidated laminate was cooled down to room

◦

2

emperature at a uniform cooling rate of 5 C/min.
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Fig. 1. Schematic representation of test coupons used for uniaxial tension experiments; all dimensions are in mm.

Fig. 2. Fractured UD composite laminates for different off-axis angles.

The consolidated laminates were cut into 4 smaller laminates of 190 × 190 mm dimension. They were then heated using an IR
oven to 400 ◦C in 2 min and flat formed between 2 flat steel plates maintained at 175 ◦C, in order to isothermally crystallize the
PEEK matrix. The flat formed laminates were then manually cut to rectangular tensile test coupons using a diamond saw. Water
was used as a coolant to prevent any heating during the cutting process. The test coupons have a gauge length of 120 mm, width
of 15 mm and thickness of 1.8 mm, as shown in Fig. 1, with grip length of either 20 mm or 25 mm depending on the clamp type.
Sandpaper tabs were used to avoid failure in the clamping region. 𝜒 is the angle between the fibers and loading direction, which is
often referred to as the off-axis angle.

A Zwick Z100 universal tensile tester equipped with a 50 kN load cell was used to perform the experiments. Constant strain-rate
experiments on off-axis UD test coupons were performed at room temperature using constant crosshead speeds corresponding to
strain-rates ranging between 10−6∕s and 10−3∕s. A clip-on extensometer with a gauge length of 25 mm was used to record the
stress–strain relationship for some specimens. Specifically, the extensometer was used for all the experiments performed on 90◦

loaded samples, whereas at other loading angles it was used only at the strain-rate of 10−4∕s. The exception is 𝜒 = 15◦ in which
case the extensometer was never used. A set of the broken specimens is shown in Fig. 2, indicating a matrix-dominated failure
mechanism with a straight crack parallel to the fibers for all off-axis angles. The authors acknowledge that the rectangular shape of
specimens in combination with the gripping effect will cause global inhomogeneity in the deformation for off-axis angles other than
90◦. This effect could be monitored using Digital Image Correlation (DIC) [22], but that was not part of this study. An alternative
approach to alleviate the potential inhomogeneity in the specimen response would be the application of the oblique end tabs [23].

3. Micromechanical framework

The RVE model aims at simulating failure of UD composite material under a constant strain-rate as depicted in Fig. 3, such that
failure of the micromodel corresponds to the macroscopic crack formation. The micromodel is defined in the local coordinate system
aligned with the fibers, providing that one side is parallel to the reinforcement. This allows for representing three-dimensional stress
states in a micromodel of only a thin slice of the material. There is no restriction on the strain magnitude in the material, meaning
that the local coordinate frame may change orientation from the angle 𝜃0 = 90◦ − 𝜒 to a new angle 𝜃1, see Fig. 3. The state of the
micromodel must be equivalent to the deformation and stress state of the material shown in Fig. 3. This means that in a homogenized
sense the stresses acting on the RVE, see Fig. 4(left), must be equal to the Cauchy stresses in Fig. 3(right), and the deformation pattern
of the RVE should correspond to the strain-rate applied in the global 𝑦-direction. In order to satisfy these requirements, a dedicated
strain-rate based arclength formulation was derived [20]. The detailed derivation of the model is presented in [20], while here only
the main equations are summarized.

3.1. Homogenized kinematics

An RVE with periodic boundary conditions is considered [24]. Kinematic relations are calculated from displacements on the
master nodes of the RVE. The active master node displacements are shown in Fig. 4(right), accompanied by the unit force components
3
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Fig. 3. Constant strain-rate applied on unidirectional composite material (left); finite deformation of the material (middle); Cauchy stress components in local
coordinate system (right).

Fig. 4. Homogenized stress state of the RVE (left); active displacements and applied unit force components on master nodes of the RVE (right).

of the arclength model. Master node displacements not indicated in the figure are fully restrained. With such defined boundary
conditions, the homogenized deformation gradient of the RVE is:

�̄� =
⎡

⎢

⎢

⎣

𝐹11 𝐹12 0
0 𝐹22 0
0 0 𝐹33

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝑢11
𝑙01

𝑢21
𝑙02

0

0 1 + 𝑢22
𝑙02

0

0 0 1 + 𝑢33
𝑙03

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑢𝑖𝑗 is the displacement on master node 𝑖 in direction 𝑗 and 𝑙0𝑖 is the initial length of the RVE in direction 𝑖. The constraint
equation of the arclength control method enforces that the RVE deforms according to the strain-rate prescribed in the analysis:

(

1 +
𝑢11
𝑙01

)

𝑠0𝑠1 +

(

1 +
𝑢22
𝑙02

)

𝑐0𝑐1 +
𝑢21
𝑙02

𝑐0𝑠1 − exp(𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡) = 0 (2)

In this equation 𝑠𝑖 and 𝑐𝑖 stand for sin(𝜃𝑖) and cos(𝜃𝑖) respectively, where 𝑖 is either 0 or 1. The new angle 𝜃1, see Fig. 3, is calculated
as 𝜃1 = 𝜃0 + 𝜙, in which the angle 𝜙 represents the change in orientation of the RVE due to the finite deformation and is defined
as:

𝜙 = arctan

(

−𝐹11𝑐0𝑠0 + 𝐹12𝑠20 + 𝐹22𝑐0𝑠0
𝐹11𝑐20 − 𝐹12𝑐0𝑠0 + 𝐹22𝑠20

)

(3)

In order to maintain a uniaxial stress state in the material at finite strains, the unit force vector of the arclength method is updated
accordingly:

𝑓11 = 𝐴0
1𝐽

(

𝑠21
𝐹11

− 𝑐1𝑠1
𝐹12

𝐹11𝐹22

)

𝑓21 = 𝐴0
2𝐽

𝑐1𝑠1
𝐹22

𝑓22 = 𝐴0
2𝐽

𝑐21

(4)
4

𝐹22
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Here, 𝐴0
𝑖 is the initial surface of the RVE on which a corresponding stress component is acting, and 𝐽 is the determinant of the

RVE homogenized deformation gradient, Eq. (1). When multiplied with the load factor 𝜆 of the arclength method, the unit force
components produce the desired homogenized stress state in the RVE, see Fig. 4. For this problem, the load factor is the same as
the applied stress in the global loading direction, i.e., 𝜆 = 𝜎𝑦𝑦. Eventually, the simulation is performed on the RVE as depicted in
Fig. 4(right), following the analysis steps as explained in [20].

3.2. Variational formulation

In this section the equilibrium equation between the internal and external force vector of a cracked body in the finite deformation
framework is derived. The presence of cracks in the body is accounted for by means of a cohesive surface methodology. Special
attention is dedicated to accurately represent geometric nonlinear effects of the cohesive zone. This problem has been treated in
the literature in different contexts. Wells et al. [25] derived necessary equations in the XFEM framework to model delamination in
laminated composites. Zhi et al. [26] tackled the problem of matrix cracking and delamination in composites and included the CZ
geometric nonlinearity in the floating node method. In this work the CZ geometric nonlinearity is based on the idea introduced by
Ortiz and Pandolfi [27], and further elaborated for 2D problems by Reinoso and Paggi [18]. We extend the work of Reinoso and
Paggi [18] to 3D.

The virtual work of a cracked body, neglecting the body forces, can be written in the reference configuration as:

∫𝛺0

(𝛁𝐗𝛿𝐮) ∶ 𝐏𝑑𝛺0 + ∫𝛤c0

𝛿[[𝐮]] ⋅ 𝐭0𝑑𝛤0 = ∫𝛤u0

𝛿𝐮 ⋅ 𝐭p0𝑑𝛤0 (5)

where 𝛿𝐮 is the virtual displacement, 𝐏 is the first Piola–Kirchhoff stress, 𝐭0 is the nominal traction acting on a cohesive surface,
𝛿[[𝐮]] is the virtual displacement jump of the cohesive zone, and 𝐭p0 is the nominal traction prescribed on the boundary of the body.
𝛁𝐗 represents the gradient operator with respect to the initial coordinates 𝐗. In order to derive the equilibrium equation between
the internal end external forces in the current configuration, Eq. (5) is pushed forward. First, 𝐏 is written as the product of the
deformation gradient 𝐅 and the second Piola–Kirchhoff stress 𝐒:

∫𝛺0

(𝛁𝐗𝛿𝐮) ∶ (𝐅𝐒)𝑑𝛺0 + ∫𝛤c0

𝛿[[𝐮]] ⋅ (𝐅𝐒𝐧0)𝑑𝛤0 = ∫𝛤u0

𝛿𝐮 ⋅ 𝐭p0𝑑𝛤0 (6)

in which the nominal traction on the cohesive surface is replaced with 𝐭0 = 𝐏𝐧0 = 𝐅𝐒𝐧0, 𝐧0 being the vector normal to the cohesive
surface in the initial configuration. The following relations from e.g. [25] are considered:

𝛁𝐗𝛿𝐮 = (𝛁𝐱𝛿𝐮)𝐅

𝐧0 =
1

det(𝐅)
𝐅T𝐧 𝑑𝛤

𝑑𝛤0

𝑑𝛺0 =
1

det(𝐅)
𝑑𝛺

(7)

where 𝛁𝐱 is the gradient operator with respect to the deformed coordinates 𝐱, and 𝐧 is the normal vector in the current configuration.
After substituting Eq. (7) in Eq. (6) and recognizing the relation between the Cauchy stress 𝝈 and 𝐒 of the form:

𝝈 = 1
det(𝐅)

𝐅𝐒𝐅T (8)

the virtual work of the system in the current configuration emerges as:

∫𝛺
(𝛁𝐱𝛿𝐮) ∶ 𝝈𝑑𝛺 + ∫𝛤c

𝛿[[𝐮]] ⋅ (𝝈𝐧)𝑑𝛤 = ∫𝛤u

𝛿𝐮 ⋅ 𝐭p𝑑𝛤 (9)

The further derivation is expressed in Voigt notation, and the current traction on the cohesive surface 𝐭 = 𝝈𝐧, such that:

∫𝛺
(𝛁𝐱𝛿𝐮)T𝝈𝑑𝛺 + ∫𝛤c

𝛿[[𝐮]]T𝐭𝑑𝛤 = ∫𝛤u

𝛿𝐮T𝐭p𝑑𝛤 (10)

The displacement field is discretized by means of the following relation:

𝐮 = 𝐍𝗮 (11)

where 𝐍 is the shape function matrix, and 𝗮 is the vector of nodal displacements. Similarly, the displacement jump is defined as:

[[𝐮]] = �̃�𝗮 =
[

𝐍cz −𝐍cz
]

[

𝗮top
𝗮bottom

]

(12)

where 𝐍cz is the shape function matrix defined over the cohesive surface, while the vector of nodal displacements is partitioned
in the part corresponding to the top and bottom bulk finite elements of the cohesive zone, see Fig. 5. Upon transformation of the
displacement jump from global to local frame of reference by means of the transformation matrix 𝐐, the displacement jump in local
frame is written as:

̄ ̃
5

[[𝐮]] = 𝐐𝐍𝗮 (13)
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w

Fig. 5. Wedge-shaped bulk finite elements in decohesion process defined by displacement jump [[�̄�]]; cohesive segment represented as mid-surface between the
two bulk elements.

Replacing Eqs. (11) and (12) in Eq. (10) in terms of their virtual counterparts, and expressing the cohesive zone contribution by
means of the quantities defined in local frame, the discretized weak equilibrium equation in the current configuration becomes:

∫𝛺
[𝛁𝐱𝛿(𝐍𝗮)]T𝝈𝑑𝛺 + ∫𝛤c

𝛿(𝐐�̃�𝗮)T �̄�𝑑𝛤 = ∫𝛤u

𝛿(𝐍𝗮)T𝐭p𝑑𝛤 (14)

where �̄� is the current cohesive traction in local coordinate system. Taking the first variation of Eq. (14) with respect to virtual
nodal displacements yields the following expression:

𝛿𝗮T
∫𝛺

(𝛁𝐱𝐍)T𝝈𝑑𝛺 + 𝛿𝗮T
∫𝛤c

(

𝐐�̃� + 𝜕𝐐
𝜕𝗮

�̃�𝗮
)T

�̄�𝑑𝛤 = 𝛿𝗮T
∫𝛤u

𝐍T𝐭p𝑑𝛤 (15)

hich holds for any kinematically admissible variation in the nodal displacements 𝛿𝗮. Therefore:

∫𝛺
(𝛁𝐱𝐍)T𝝈𝑑𝛺 + ∫𝛤c

(

𝐐�̃� + 𝜕𝐐
𝜕𝗮

�̃�𝗮
)T

�̄�𝑑𝛤 = ∫𝛤u

𝐍T𝐭p𝑑𝛤 (16)

This equation represents the equilibrium between the internal and external forces:

𝐟 int
bulk + 𝐟 int

cz = 𝐟ext (17)

where the internal force vector consists of two parts. The bulk part is:

𝐟 int
bulk = ∫𝛺

(𝛁𝐱𝐍)T𝝈𝑑𝛺 = ∫𝛺
𝐁T𝝈𝑑𝛺 (18)

in which 𝐁 is the strain-nodal displacement matrix. The CZ part is:

𝐟 int
cz = ∫𝛤c

(

𝐐�̃� + 𝜕𝐐
𝜕𝗮

�̃�𝗮
)T

�̄�𝑑𝛤 (19)

Compared to the small displacement theory that would only account for the material contribution, Eq. (19) also features the
geometric contribution to the internal force vector. This geometric contribution emerges as a consequence of the change in the
transformation matrix with nodal displacements.

3.3. Linearization

The computational framework for the RVE model is based on the updated Lagrangian formulation [28]. Accordingly, the
linearization can be done in the initial reference configuration, where the volume (or the cohesive surface) does not depend on
the displacement field. Subsequently, in every iteration the current configuration is taken as the reference for the linearization,
while all quantities are computed with respect to the current coordinates. Hence, although the integration domain for the internal
force is changing from one iteration to the next, linearization does not require an additional term that accounts for this change.

The linearization of the bulk internal force vector leads to the following expressions for the global tangent stiffness matrix [28]:

𝐊 =
𝜕𝐟 int

bulk = 𝐊mat +𝐊geo (20)
6

bulk 𝜕𝗮 bulk bulk
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Fig. 6. 𝐧, 𝐬, 𝐭 orthonormal vector triad derived from unit vectors 𝐬 and 𝐭′ in direction of parametric curves 𝜉 and 𝜂, respectively.

where the material contribution to the tangent stiffness is:

𝐊mat
bulk = ∫𝛺

𝐁T𝐂𝐁𝑑𝛺 (21)

with 𝐂 being the bulk constitutive matrix in the deformed configuration. The geometric contribution to the tangent stiffness relating
degrees of freedom of nodes 𝐼 and 𝐽 is:

𝐊geo
bulk,𝐼𝐽 = 𝐈∫𝛺

𝐁T
𝐼𝝈𝐁𝐽𝑑𝛺 (22)

where the quantity inside the integral is a scalar and 𝐈 is the unit matrix.
The linearization of the CZ internal force vector is more involved and treated here in more detail. The CZ tangent stiffness matrix

includes the material and the geometric part:

𝐊cz =
𝜕𝐟 int

cz
𝜕𝗮

= 𝐊mat
cz +𝐊geo

cz (23)

The material part is defined as:

𝐊mat
cz = ∫𝛤

(

𝐐�̃�
)T �̄�𝐐�̃�𝑑𝛤 (24)

where �̄� is the material tangent stiffness operator that provides mapping between the displacement jump and the traction vector in
the local frame. In the linearization process the second derivative of the transformation matrix with respect to nodal displacements
is neglected. Therefore, the geometric part of the tangent stiffness comprises four terms:

𝐊geo
cz = 𝐊g1 +𝐊g2 +𝐊g3 +𝐊g4 (25)

𝐊g1 = 2∫𝛤

(

𝜕𝐐
𝜕𝗮

�̃�
)T

�̄�𝑑𝛤

𝐊g2 = ∫𝛤

(

𝜕𝐐
𝜕𝗮

�̃�𝗮
)T

�̄� 𝜕𝐐
𝜕𝗮

�̃�𝗮𝑑𝛤

𝐊g3 = ∫𝛤

(

𝐐�̃�
)T �̄� 𝜕𝐐

𝜕𝗮
�̃�𝗮𝑑𝛤

𝐊g4 = ∫𝛤

(

𝜕𝐐
𝜕𝗮

�̃�𝗮
)T

�̄�𝐐�̃�𝑑𝛤

(26)

To account for the CZ geometric contribution in both the internal force vector and the tangent stiffness matrix, it is necessary to
ompute the 3D array 𝜕𝐐∕𝜕𝗮. For this, we need to express every component of 𝐐 in terms of nodal displacements. The transformation
atrix derives from the orthonormal basis 𝐧, 𝐬, 𝐭, that is associated with any point of the cohesive surface, see Fig. 6, such that:

𝐐 =
⎡

⎢

⎢

⎣

𝑛𝑥 𝑛𝑦 𝑛𝑧
𝑠𝑥 𝑠𝑦 𝑠𝑧
𝑡𝑥 𝑡𝑦 𝑡𝑧

⎤

⎥

⎥

⎦

(27)

Computationally, the cohesive surface is represented as a mid-surface between two adjacent bulk finite elements, involved in
he decohesion process. Since the bulk elements are wedge-shaped with 12 nodes, in order to ensure the compatibility in the
iscretization, the cohesive element is also a 12-node element, connecting two 6-node quadrilateral faces, see Fig. 5. The position
7

ector 𝐱 of any node of the mid-surface in the current configuration points to the half-distance between two corresponding bulk
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nodes:

𝐱A = 1
2
(𝐱1 + 𝐱7), 𝐱D = 1

2
(𝐱4 + 𝐱10)

𝐱B = 1
2
(𝐱2 + 𝐱8), 𝐱E = 1

2
(𝐱5 + 𝐱11)

𝐱C = 1
2
(𝐱3 + 𝐱9), 𝐱F = 1

2
(𝐱6 + 𝐱12)

(28)

he utilized 6-node quadrilateral shape that parametrizes the mid-surface features the isoparametric formulation, such that the
hape functions are defined in the parent 𝜉 − 𝜂 coordinate system as follows:

𝑁A = 1
4
(1 − 𝜂)(𝜉2 − 𝜉), 𝑁D = 1

4
(1 + 𝜂)(𝜉2 + 𝜉)

𝑁B = 1
2
(1 − 𝜂)(1 − 𝜉2), 𝑁E = 1

2
(1 + 𝜂)(1 − 𝜉2)

𝑁C = 1
4
(1 − 𝜂)(𝜉2 + 𝜉), 𝑁F = 1

4
(1 + 𝜂)(𝜉2 − 𝜉)

(29)

Following the principles of the isoparametric formulation, the position vector of any point of the cohesive surface, see Fig. 6, emerges
as:

𝐱 = 𝑁A𝐱A +⋯ +𝑁F𝐱F (30)

Given the position vector in Eq. (30), it is possible to define the unit vectors associated with the parametrized directions 𝜉 and 𝜂 in
the current configuration, see Fig. 6:

𝐬 =
𝜕𝐱∕𝜕𝜉

‖𝜕𝐱∕𝜕𝜉‖
= �̃�

‖�̃�‖
(31)

𝐭′ =
𝜕𝐱∕𝜕𝜂

‖𝜕𝐱∕𝜕𝜂‖
= 𝐭′

‖𝐭′‖
(32)

With the unit vectors 𝐬 and 𝐭′, the unit vector normal to the cohesive surface is calculated as:

𝐧 = 𝐬 × 𝐭′ =
⎡

⎢

⎢

⎢

⎣

𝑠𝑦𝑡′𝑧 − 𝑠𝑧𝑡′𝑦
𝑠𝑧𝑡′𝑥 − 𝑠𝑥𝑡′𝑧
𝑠𝑥𝑡′𝑦 − 𝑠𝑦𝑡′𝑥

⎤

⎥

⎥

⎥

⎦

(33)

In the general deformation process the cohesive surface can be distorted such that the unit vectors 𝐬 and 𝐭′ are not perpendicular.
In order to form the orthonormal basis, vectors 𝐧 and 𝐬 are employed to calculate the vector 𝐭, see Fig. 6:

𝐭 = 𝐧 × 𝐬 =
⎡

⎢

⎢

⎣

𝑛𝑦𝑠𝑧 − 𝑛𝑧𝑠𝑦
𝑛𝑧𝑠𝑥 − 𝑛𝑥𝑠𝑧
𝑛𝑥𝑠𝑦 − 𝑛𝑦𝑠𝑥

⎤

⎥

⎥

⎦

(34)

In order to compute 𝜕𝐐∕𝜕𝗮, it is necessary to find the derivative of every component of the transformation matrix, Eq. (27), with
respect to nodal displacements:

𝜕𝐐
𝜕𝗮

=
⎡

⎢

⎢

⎣

𝑛𝑥,𝗮 𝑛𝑦,𝗮 𝑛𝑧,𝗮
𝑠𝑥,𝗮 𝑠𝑦,𝗮 𝑠𝑧,𝗮
𝑡𝑥,𝗮 𝑡𝑦,𝗮 𝑡𝑧,𝗮

⎤

⎥

⎥

⎦3×3×36(ndof)

(35)

derivation of these derivatives is shown in Appendix.

. Constitutive models

In this section the viscoplastic constitutive model used for the matrix is described. Then, the material model for carbon fibers is
riefly outlined, and finally the cohesive law to represent microcracking in the matrix is introduced.

.1. The Eindhoven Glassy Polymer constitutive model

In order to include viscous and plasticity effects in the polymer matrix we choose the Eindhoven Glassy Polymer (EGP) model.
nlike many material models used to represent inelastic behavior of engineering materials, the EGP does not feature a yield surface.

nstead it follows the Eyring flow theory [29] to describe the deformation kinetics of polymer materials. In the EGP an Eyring-based
iscosity function reduces as a consequence of the stress applied on the material, such that the plastic flow at yield is regarded as
he stress induced melting [30]. In this paper, only equations needed to define the model parameters are shown, whereas an in
epth derivation can be found in, e.g., [30,31].

The EGP is an isotropic, elasto-viscoplastic material model that accounts for the finite strains in polymer material. The model
uilds upon the multiplicative decomposition of the deformation gradient into the elastic and the plastic part:
8

𝐅 = 𝐅e ⋅ 𝐅p (36)



Engineering Fracture Mechanics 276 (2022) 108884D. Kovačević et al.

m

w

i

T
o
p

H
m
r

w
t

w
r

w
T

Fig. 7. Mechanical analog for a single process (𝛼), multi-mode driving stress in the EGP model.

The change in volume is purely elastic, such that:

𝐽 = det(𝐅) = det(𝐅e) (37)

The Cauchy stress is additively decomposed in three components:

𝝈 = 𝝈h + 𝝈r + 𝝈s (38)

Here 𝝈h is the hydrostatic stress, 𝝈r the hardening stress, and 𝝈s is the driving stress. The hydrostatic stress depends on the bulk
odulus 𝜅:

𝝈h = 𝜅(𝐽 − 1)𝐈 (39)

here 𝐈 is the second order unit tensor. The hardening stress is defined as [30]:

𝝈r = 𝐺r�̃�d (40)

n which 𝐺r is the hardening modulus and �̃�d is the isochoric, deviatoric, left Cauchy–Green deformation tensor:

�̃�d =
(

�̃� ⋅ �̃�T)d = 𝐽−2∕3 (𝐅 ⋅ 𝐅T)d (41)

he driving stress introduces viscoplasticity in the model. This stress component allows for thermorheologically complex behavior
f the material, meaning that more than one relaxation process may govern the material response [32]. In the case of two relaxation
rocesses, 𝛼 and 𝛽, the driving stress reads:

𝝈s = 𝝈𝛼 + 𝝈𝛽 (42)

owever, in this paper only 𝛼 process is considered, such that 𝝈s = 𝝈𝛼 . The 𝛼 relaxation process is represented by a Maxwell
odel with shear modulus on the elastic spring and viscosity on the dashpot. In order to improve the accuracy in the pre-yield

egime Van Bremen et al. [30] considered a spectrum of relaxation times. This way, the 𝛼 process consists of a number of Maxwell
elements connected in parallel, with different shear moduli and viscosities, see Fig. 7. Let 𝐺𝛼,𝑗 be the shear modulus of 𝑗th Maxwell
element of the process 𝛼, and �̃�d

e𝛼,𝑗 be the elastic part of the isochoric, deviatoric left Cauchy–Green deformation tensor describing
the deformation on spring of Maxwell element 𝑗. Then the driving stress is:

𝝈s =
𝑞
∑

𝑗=1
𝝈𝛼,𝑗 =

𝑞
∑

𝑗=1
𝐺𝛼,𝑗 �̃�d

e𝛼,𝑗 (43)

ith 𝑞 the number of modes for the process 𝛼. In order to calculate �̃�d
e𝛼,𝑗 in Eq. (43), it is necessary to solve for �̃�e𝛼,𝑗 by integrating

he corresponding rate equation:
̇̃𝐁e𝛼,𝑗 =

(

�̃� − 𝐃p𝛼,𝑗
)

⋅ �̃�e𝛼,𝑗 + �̃�e𝛼,𝑗 ⋅
(

�̃�T − 𝐃p𝛼,𝑗
)

(44)

here �̃� is the isochoric velocity gradient. At this point it is necessary to define a constitutive relation for the plastic part of the
ate of deformation tensor in Eq. (44), which is introduced in the form of a non-Newtonian flow rule:

𝐃p𝛼,𝑗 =
𝝈𝛼,𝑗

2𝜂𝛼,𝑗 (𝜏𝛼 , 𝑝, 𝑆𝛼)
(45)

𝜂𝛼,𝑗 is the viscosity of Maxwell element 𝑗. It depends on the equivalent stress 𝜏𝛼 , the hydrostatic pressure 𝑝 = −tr(𝝈)∕3, and the
thermodynamic state parameter 𝑆𝛼 :

𝜂𝛼,𝑗 = 𝜂0𝛼,𝑗
𝜏𝛼∕𝜏0𝛼

sinh(𝜏𝛼∕𝜏0𝛼)
exp

(

𝜇𝛼𝑝
𝜏0𝛼

)

exp(𝑆𝛼) (46)

here 𝜂0𝛼,𝑗 is the corresponding initial viscosity, 𝜏0𝛼 is the characteristic shear stress, and 𝜇𝛼 is the pressure dependency parameter.
he equivalent stress has the following form:

𝜏 =
√

1𝝈 ∶ 𝝈 (47)
9
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Table 1
Relaxation spectrum of the EGP model.
𝑗 𝐺𝛼,𝑗 [MPa] 𝜂0𝛼,𝑗 [MPa⋅s] 𝑗 𝐺𝛼,𝑗 [MPa] 𝜂0𝛼,𝑗 [MPa⋅s]

1 1045.52 7.590 ⋅ 1021 9 50.61 9.198 ⋅ 1010

2 400.03 8.502 ⋅ 1016 10 83.94 2.272 ⋅ 1010

3 46.06 2.570 ⋅ 1014 11 77.28 8.756 ⋅ 108

4 87.28 1.843 ⋅ 1013 12 60.61 2.874 ⋅ 107

5 72.43 5.912 ⋅ 1012 13 56.67 1.127 ⋅ 106

6 63.03 1.992 ⋅ 1012 14 4.64 3.851 ⋅ 104

7 45.46 5.520 ⋅ 1011 15 53.03 1.840 ⋅ 103

8 42.43 1.987 ⋅ 1011 16 3.42 4.961 ⋅ 101

Table 2
Material parameters of the EGP model.
𝜅 [MPa] 𝐺r [MPa] 𝜏0𝛼 [MPa] 𝜇𝛼 𝑆a𝛼 𝑟0𝛼 𝑟1𝛼 𝑟2𝛼
2600 14.2 1.386 0.08 3 0.95 1 −5

The state parameter 𝑆𝛼 represents the thermodynamical history of the material as a function of the equivalent plastic strain �̄�p:

𝑆𝛼(�̄�p) = 𝑆a𝛼𝑅𝛾𝛼(�̄�p) (48)

It accounts for two interacting mechanisms: the physical aging 𝑆a𝛼 and mechanical rejuvenation modeled by the softening function
𝑅𝛾𝛼(�̄�p). While the aging process increases the yield stress of the material, the presence of mechanical load tends to reverse this
process and bring it to the (mechanically) rejuvenated state. The softening function in the EGP model is a modified Carreau–Yasuda
function [33]:

𝑅𝛾𝛼(�̄�p) =

{

1 + [𝑟0𝛼 exp(�̄�p)]𝑟1𝛼

1 + 𝑟𝑟1𝛼0𝛼

}

𝑟2𝛼−1
𝑟1𝛼

(49)

The equivalent plastic strain �̄�p in Eq. (49) is calculated by integrating the evolution law:

̇̄𝛾p =
𝜏𝛼,1
𝜂𝛼,1

, 𝜏𝛼,1 =
√

1
2
𝝈𝛼,1 ∶ 𝝈𝛼,1 (50)

which depends on the equivalent stress and the viscosity of a mode with the highest initial viscosity, that is mode 1. The relaxation
spectrum for the process 𝛼 is presented in Table 1. The other material model parameters are specified in Table 2. The starting point
o determine parameters in Tables 1 and 2 was the data set describing the behavior of PEEK obtained according to [30]. However,
he corresponding relaxation spectrum led to inaccurate behavior of the composite RVE when compared with the experimental
esults. A reason for this inaccuracy might be a different crystallinity of neat polymer and the polymer matrix in the composite.
herefore, the original relaxation spectrum was modified as follows: the highest viscosity was calibrated to achieve the stress level
orresponding to the plateau of the 𝜒 = 45◦ experiment at �̇�𝑦𝑦 = 10−4∕s; the rest of the spectrum was shifted such that the nonlinear

part prior to the plateau of the 𝜒 = 45◦ experiment is properly captured, resulting in the data shown in Table 1.

4.2. Transversely isotropic material model for carbon fibers

No failure is assumed to take place in the carbon fibers, therefore the reinforcement behaves elastically in the RVE. The material
model chosen to describe the behavior of the fibers is the hyperelastic transversely isotropic constitutive model formulated by Bonet
and Burton [34]. In this paper only the part of formulation related to the stress calculation is shown. The Cauchy stress is decomposed
in an isotropic and a transversely isotropic stress contribution:

𝝈 = 𝝈iso + 𝝈tri (51)

The isotropic stress tensor reads:

𝝈iso =
𝜇
𝐽
(𝐁 − 𝐈) + �̄�

𝐽
ln(𝐽 )𝐈 (52)

his stress component slightly differs from the original paper [34] and is the same as in [20]. The transversely isotropic contribution
s defined as:

𝝈tri = 𝐽−1{2𝛽(𝐼4 − 1)𝐁 + 2[𝛼 + 𝛽(𝐼1 − 3) + 2𝛾(𝐼4 − 1)]𝒂⊗ 𝒂 − 𝛼(𝐁𝒂⊗ 𝒂 + 𝒂⊗ 𝐁𝒂)} (53)

n Eqs. (52) and (53), 𝐁 is the left Cauchy–Green deformation tensor, 𝐽 is the determinant of the deformation gradient 𝐅, and 𝐈
s the second order unit tensor. The vector 𝒂 is the preferential stiffness direction of the material in the deformed configuration,
10
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Table 3
Material parameters of the transversely isotropic constitutive model.
𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 [GPa] 𝜈12 𝜈23
125 15 45 0.05 0.3

obtained as 𝒂 = 𝐅𝑨, where 𝑨 is the preferential stiffness direction in the initial configuration. The invariants 𝐼1 and 𝐼4 are defined
as:

𝐼1 = tr(𝐁)
𝐼4 = 𝒂 ⋅ 𝒂

(54)

The other material parameters in Eqs. (52) and (53): �̄�, 𝜇, 𝛼, 𝛽, 𝛾 are adopted according to [20]:

𝑛 =
𝐸1
𝐸2

𝑚 = 1 − 𝜈23 − 2𝑛𝜈212

�̄� =
𝐸2(𝜈23 + 𝑛𝜈212)
𝑚(1 + 𝜈23)

𝜇 =
𝐸2

2(1 + 𝜈23)
𝛼 = 𝜇 − 𝐺12

𝛽 =
𝐸2(𝜈12 + 𝜈23𝜈12 − 𝜈23 − 𝑛𝜈212)

4𝑚(1 + 𝜈23)

𝛾 =
𝐸1(1 − 𝜈23)

8𝑚
−

�̄� + 2𝜇
8

+ 𝛼
2
− 𝛽

(55)

ere, 𝐸1 is the Young’s modulus in the preferential stiffness direction, 𝐺12 and 𝜈12 are the shear modulus and Poisson’s ratio in the
lanes perpendicular to the plane of isotropy, 𝐸2 and 𝜈23 are the elastic constants in the transverse plane. Values of these parameters
re listed in Table 3. Note that 𝐺12 has a higher value than usually reported in the literature, e.g. [35]. This value is calibrated to
rovide a good match in the initial slope between the experiments and the RVE simulation.

.3. Cohesive law

Microcracking in the matrix is represented by means of a cohesive surface methodology. Cohesive segments along element edges
re added on the fly [19] whenever a microcrack initiation criterion is satisfied. As introduced in Section 2, the traction is acting
n a cohesive surface as a function of the displacement jump, see Fig. 5. The relation between the traction and the displacement
ump is provided by a mixed-mode damage cohesive law elaborated by Liu et al. [36]. The governing equations of the cohesive
odel are summarized here with the extension to 3D. Since cohesive elements are inserted on the fly, the cohesive traction should
ave a non-zero value at zero opening, see Fig. 8(left), where the normal component of the traction is plotted against the normal
omponent of the displacement jump. The area under the graph is the fracture energy of the material 𝐺𝑐 . Direct application of
his kind of cohesive law under mixed-mode conditions would lead to a singularity [37]. To avoid working with an infinite initial
tiffness, the cohesive law is evaluated by shifting the displacement jump [[�̄�]] for a value depending on the magnitude of the jump

at crack initiation as proposed by Hille et al. [38], see Fig. 8(middle):

[[�̄�]]sh = [[�̄�]] + [[�̄�]]0 (56)

The shift [[�̄�]]0 is defined as:

[[�̄�]]0 = �̄�0
𝐾𝑚

(57)

where �̄�0 is the traction on the cohesive surface in the local frame at the instant of microcrack initiation, and 𝐾𝑚 = 106 N∕mm3 is
the initial dummy stiffness. In simulating rate-dependent failure, we assume that the magnitude of �̄�0 may depend on the local rate
of deformation. The evolution of the traction with changing displacement jump is governed by the cohesive law through:

�̄� = (𝐈 −𝜴)𝐾𝑚[[�̄�]]sh = (𝐈 −𝜴)�̄�eff (58)

where 𝐈 is the unit tensor and �̄�eff is the effective traction on the cohesive surface. The decohesion process is driven by the damage
variable 𝜔𝑚 used to construct the damage tensor 𝜴:

𝛺𝑖𝑗 = 𝜔𝑚𝛿𝑖𝑗

(

1 + 𝛿𝑖1
⟨−𝑡eff

𝑛 ⟩

eff

)

(59)
11
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Fig. 8. Mode I representation of the shifted mixed-mode damage cohesive law.

ssentially, only the diagonal terms of 𝜴 are nonzero. The diagonal terms are equal to 𝜔𝑚, except in the case of compression when
the diagonal term corresponding with normal opening and traction vanishes. The evolution of the scalar damage variable 𝜔𝑚 is
irreversible:

𝜔𝑚 = max
𝜏≤𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝛥 ≤ 𝛥0
𝛥𝑓
𝛥

(

𝛥−𝛥0
𝛥𝑓−𝛥0

)

, 𝛥0 < 𝛥 < 𝛥𝑓

1, 𝛥 > 𝛥𝑓

(60)

where 𝛥 is the shifted equivalent displacement jump:

𝛥 =
[

(⟨[[𝑢]]sh𝑛 ⟩)2 + ([[𝑢]]sh𝑠 )2 + ([[𝑢]]sh𝑡 )2
]1∕2 (61)

In Eq. (60) 𝛥0 is the equivalent displacement jump at the onset of failure:

𝛥0 =
𝑡0eq

𝐾𝑚
(62)

here 𝑡0eq is the corresponding equivalent traction on the cohesive surface:

𝑡0eq =
[

(𝑡0𝑛)
2 + (𝑡0𝑠 )

2 + (𝑡0𝑡 )
2]1∕2 (63)

he degradation process is completed when the equivalent shifted displacement jump reaches a critical value 𝛥𝑓 defined as:

𝛥𝑓 =
2𝐺𝑐

𝑡0eq
(64)

The unloading of the cohesive law is secant, with the slope depending on the current state of damage at an integration point, see
Fig. 8(right). In the space of finite elements, the complete unloading happens when two neighboring bulk finite elements overlap
for the value 𝛥0, which is the consequence of the introduced shift when evaluating the cohesive law. Moreover, due to this shift,
the actual energy dissipation during decohesion will be smaller than 𝐺𝑐 . However, both the overlapping upon unloading and the
reduction in effective energy dissipation vanish when 𝐾𝑚 approaches infinity.

4.4. Microcrack initiation criterion

Before the cohesive law activates, a proper microcrack initiation criterion must be satisfied. In order to have quantitative
comparison with the experiment, we propose an initiation criterion that is rate-dependent. First, at every time step the traction
is computed on a potential cohesive surface, see Fig. 9, that is on any surface between finite elements of the matrix part or interface
between the carbon fibers and the matrix. The traction is then decomposed in the components perpendicular and parallel to the
fiber direction:

𝑡⟂ =
(

𝑡2𝑛 + 𝑡2𝑠
)1∕2

𝑡∥ = 𝑡𝑡
(65)

The reason for this stress decomposition is the fact that for the off-axis angle of 90◦ the fracture process is completely governed
by 𝑡 , whereas 𝑡 = 0. On the other hand, for the lower off-axis angles, e.g. 𝜒 = 15◦, the stress component parallel with the fibers
12
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Fig. 9. Traction acting on a potential cohesive surface with corresponding stress components.

Fig. 10. Simulation results (solid) compared with experiment (dotted) at �̇�𝑦𝑦 = 10−4∕s; one initiation envelope assumed for every point in matrix, and one
initiation envelope assumed at matrix/fiber interface.

becomes more dominant and mostly drives the microcracking process. With these two stress components a power law initiation
criterion is proposed in the following form:

(

𝑡⟂
𝑓⟂

)𝑚
+
( 𝑡∥
𝑓∥

)𝑛
< 1 (66)

here 𝑚 and 𝑛 are the constants, while 𝑓⟂ and 𝑓∥ are the strength parameters in the corresponding directions. An alternative
pproach, in which the stress vector is decomposed in the component normal to the cohesive surface 𝑡𝑛 and shear component
sh =

(

𝑡2𝑠 + 𝑡2𝑡
)1∕2 is also possible. This would lead to different calibration of the cohesive law, i.e., different initiation stress and

racture energies. Due to the possible misalignment of the cohesive surface normal and maximum principal stress, the 𝑡𝑠 component
s not necessarily equal to zero for a mode I fracture process.

In this study 𝑛 = 2 was chosen to ensure the symmetry of the initiation criterion with respect to the shear stress 𝑡∥, while 𝑚 = 3
as calibrated to achieve a good estimate for the strain at failure for 𝜒 = 45◦ and a reasonably good estimate for 𝜒 = 30◦ off-axis
ngle. The change in coefficient 𝑚 has much lower effect on the strain at failure for 𝜒 = 15◦, as compared for 30◦ and 45◦ loading
ngles. Further, the strain-rate �̇�𝑦𝑦 = 10−4∕s is applied on the RVE with the fiber volume ratio 𝑉𝑓 = 0.4. The calibrated strength
alues are: 𝑓⟂ = 130 MPa and 𝑓∥ = 60 MPa for matrix cracks and 𝑓⟂ = 130 MPa and 𝑓 if

∥ = 75 MPa for fiber/matrix interface cracks.
he simulation results for different off-axis angles are plotted in Fig. 10 and compared with the experiment. The onset of softening

n the RVE response corresponds with macroscopic failure, and that point is used to make comparison with the experimental stress
nd strain at failure. The model qualitatively and quantitatively corresponds well with the experiment for the angles ranging from
0◦ to 90◦, while for the angle of 15◦ there is an offset. In this case the simulation does match the observed stress at failure, but
he strain at failure differs significantly. To achieve a similar level of accuracy for the strain-rates other than �̇�𝑦𝑦 = 10−4∕s it proves
ecessary to change the strength parameters 𝑓⟂ and 𝑓∥. The initiation envelopes corresponding to different global strain-rates are
hown in Fig. 11, for matrix and matrix/fiber interface, where the matrix/fiber interface strength 𝑓 if

∥ = 75 MPa is kept constant.
This state of the initiation criteria is similar to the idea presented by Sato et al. [16]. They employ a unique initiation envelope

ccording to the Christensen failure theory [39] for every global (macroscopic) strain-rate acting on the RVE. Accordingly, every
oint of the RVE has the same initiation envelope, irrespective of the possibly different local deformation rate. In this paper, we
13

ropose a microscopic initiation criterion based on the stress and the local rate of deformation state at any point of the RVE. To
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Fig. 11. Microcrack initiation envelopes for matrix (left) and matrix/fiber interface (right) for different strain-rates, according to Eq. (66).

Fig. 12. Rate of deformation components computed when microcrack initiation criterion from Fig. 11 is satisfied for different strain-rates.

characterize the deformation rate, the rate of deformation tensor 𝐃 is used, which is defined as the symmetric part of the velocity
gradient 𝐋:

𝐃 = 1
2
(𝐋 + 𝐋T) = 1

2
(�̇�𝐅−1 + 𝐅−T�̇�T) (67)

The reason for this choice is twofold. First, 𝐃 is the work-conjugate to the Cauchy stress. Second, it is objective under a rigid-body
rotation and follows the same transformation rule as the Cauchy stress [40], i.e.:

�̄� = 𝐐𝐃𝐐T (68)

Therefore, together with the traction components on the potential cohesive surface, the corresponding rate of deformation
components are also computed:

𝐷⟂ =
(

𝐷2
𝑛𝑛 +𝐷2

𝑛𝑠
)1∕2

𝐷∥ = 𝐷𝑛𝑡

(69)

The RVE analyses have been repeated with the feature that every time an initiation criterion from Fig. 11 is met, the rate of
deformation components are stored. Results are plotted in Fig. 12. It can be seen that the components 𝐷⟂ and 𝐷∥ form separate clouds
of points in the rate of deformation space for every considered global strain-rate. This distinction in the local rate of deformation
enables constructing different regions, such that the boundary of a region is parametrized with the �̇�𝑦𝑦 that defines a corresponding
initiation envelope in Fig. 11. Each boundary is determined with a 𝐷⟂ and a 𝐷∥ component, which are listed in Table 4 together
with the �̇�𝑦𝑦 parameter. The vertical lines in Fig. 12 represent the average value of the 𝐷⟂ component calculated for 𝜒 = 90◦. The
horizontal lines in the same figure correspond to the average value of the 𝐷∥ component obtained from the simulations with off-axis
ngles of 15◦, 30◦ and 45◦. These angles are considered because the power law initiation parameters in Eq. (66) are calibrated from
he corresponding off-axis experiments. In Fig. 12 there are also points from 𝜒 = 60◦ and 𝜒 = 75◦ simulations which oscillate around

the corresponding horizontal lines, but are not included in defining the average values, although accounting for these points as well
would not drastically change the outcome.
14
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Table 4
The rate of deformation components defining boundaries in Fig. 12 and the strength values
defining initiation envelopes in Fig. 11 corresponding to parameter �̇�𝑦𝑦.

�̇�𝑦𝑦 [s−1] 𝐷⟂ [s−1] 𝐷∥ [s−1] 𝑓⟂ [MPa] 𝑓∥ [MPa]

10−6 2.88 ⋅ 10−6 2.42 ⋅ 10−6 115 54
10−5 2.97 ⋅ 10−5 2.54 ⋅ 10−5 123 57
10−4 2.78 ⋅ 10−4 2.46 ⋅ 10−4 130 60
10−3 2.94 ⋅ 10−3 2.65 ⋅ 10−3 132 63

Fig. 13. Strategy to construct microcrack initiation envelope by interpolating between two neighboring parametric curves (left), depending on the local rate of
deformation state (right).

As already stated, the �̇�𝑦𝑦 parametrizes the curves in Fig. 11, which are calculated from Eq. (66). The strength parameters adopted
o construct these curves for different values of the �̇�𝑦𝑦 are also listed in Table 4. The strategy to compute the local initiation envelope
or any potential cohesive surface is as follows:

1. compute components 𝐷⟂ and 𝐷∥ at a point of possible microcrack initiation
2. given 𝐷⟂ and 𝐷∥ find the equivalent loading rate �̇�max

𝑦𝑦 from Table 4, linearly interpolating between the corresponding rate
of deformation components; �̇�(1)𝑦𝑦 = 𝑓 (𝐷⟂), �̇�

(2)
𝑦𝑦 = 𝑓 (𝐷∥), �̇�max

𝑦𝑦 = max(�̇�(1)𝑦𝑦 , �̇�
(2)
𝑦𝑦 )

3. given �̇�max
𝑦𝑦 , compute 𝑓⟂ and 𝑓∥ from Table 4, linearly interpolating between the corresponding strength parameters; note that

𝑓 if
∥ always equals 75 MPa

4. given 𝑓⟂ and 𝑓∥, construct the initiation envelope using Eq. (66)

This strategy is illustrated in Fig. 13, where for a given point in the rate of deformation space the corresponding initiation envelope
represents a proper interpolation between two adjacent parametric curves. If the point is outside the defined regions, the envelope
is the closest parametric curve.

As part of this procedure we need to evaluate the rate of deformation tensor at the integration point level, Eq. (67). In the
𝑛−1
15

updated Lagrangian formulation followed in this paper, the deformation gradient from the previous time step 𝐅 and the current
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Fig. 14. Cohesive law fracture energy as function of local stress ratio at the moment of microcrack initiation.

Fig. 15. Simulation (solid) versus experiment (dotted) for �̇�𝑦𝑦 = 10−4∕s and different off-axis angles.

ime step 𝐅𝑛 are available at every integration point. Therefore the time derivative of 𝐅 in Eq. (67) can be approximated:

�̇� = lim
𝛥𝑡→0

𝛥𝐅
𝛥𝑡

≈ 𝛥𝐅
𝛥𝑡

= 𝐅𝑛 − 𝐅𝑛−1

𝛥𝑡
(70)

𝛥𝐅 in this equation should not be confused with an increment in the deformation gradient 𝑑𝐅 used to update the deformation
gradient 𝐅𝑛 = 𝑑𝐅 ⋅ 𝐅𝑛−1. In the case no additional deformation is present 𝛥𝐅 is a zero tensor, while 𝑑𝐅 is a unit tensor.

Beside an initiation stress, the cohesive law also requires the fracture energy 𝐺𝑐 as an input. The fracture mode changes with
different off-axis angles, and the fracture mode likely influences the effective energy dissipation. To account for this, the 𝐺𝑐 provided
to the cohesive law interpolates between a lower bound value 𝐺𝐼𝑐 calibrated for 𝜒 = 90◦, and an upper bound value 𝐺𝐼𝐼𝑐 determined
for 𝜒 = 15◦ at the strain-rate �̇�𝑦𝑦 = 10−4∕s, see Fig. 14. The local value of 𝐺𝑐 is determined when the cohesive segment is inserted
and depends on the ratio 𝑡∥∕𝑡⟂ at initiation, which represents for these micromechanical simulations a sufficient insight in the mode,
or degree of mode mixity of the fracture process. The quantity 𝑡𝑟 in Fig. 14 is the initial ratio between the homogenized shear stress
𝜏21 and normal stress 𝜎22 acting on a plane parallel with the fiber direction when 𝜒 = 15◦, see Fig. 4. In this paper the following
values are adopted: 𝐺𝐼𝑐 = 0.03 N/mm, 𝐺𝐼𝐼𝑐 = 0.095 N/mm, for all strain-rates and for matrix cracks and fiber/matrix interfacial
cracks alike.

5. Results and discussion

In this section the performance of the RVE model is examined through comparison with the experimental benchmark. The stress
𝜎𝑦𝑦 in the global loading direction, see Fig. 3, is plotted against the strain component 𝜀𝑦𝑦. The goal of this exercise is to illustrate
capabilities of the model, without detailed statistical analysis on the size of the RVE. Therefore, the micromodel counting in total
9 fibers (3 × 3) of the diameter 𝐷𝑓 = 5 μm is considered. A single set of parameters describing the rate and the stress dependent
initiation as outlined in the previous section is considered in every simulation. As for the experiments, in the cases when the
extensometer was not used to measure the exact strain, an empirically determined coefficient of 0.8 multiplies the experimental
strain to cancel the compliance effect.

The RVE model has been subjected to the strain-rate of �̇�𝑦𝑦 = 10−4∕s under different off-axis angles. In Fig. 15 the simulation
results are plotted against the experimental measurements. It can be seen from the figure that the results obtained with the rate-
dependent initiation criterion are similar to those obtained earlier with fixed initiation criterion calibrated for this strain-rate only
(cf. Fig. 10). For 𝜒 = 15◦, there is an offset in the response, as already observed in Section 4. In this case the measurement has
been performed without the extensometer which may have affected the accuracy of the strain measurements. Another reason for this
discrepancy might be in different boundary conditions in the experiment and the model. The change in orientation of the RVE shows
the tendency of the fibers to align with the loading direction and reduce the initial off-axis angle. In the experiment, however, clamps
16

of the testing machine introduce constraining effect, such that rotation of the fibers is reduced close to the boundaries. This fact
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Fig. 16. Experiment compared with simulation results when the model accounts for changes in orientation (𝜙 ≠ 0) and when orientation is fixed (𝜙 = 0), for
two different off-axis angles.

Fig. 17. Simulation (solid) versus experiment (dotted) for �̇�𝑦𝑦 = 10−3∕s and different off-axis angles.

mplies a mismatch between the stress state in the experiment and the model. The simulation results with the fixed RVE orientation
s plotted in Fig. 16 together with the experiment and the model response for the changing orientation for 𝜒 = 15◦ and 𝜒 = 45◦.
hese results confirm that a small variation in the off-axis angle significantly changes the response for small off-axis angles, like
= 15◦, whereas for the angle of 45◦ this variation has less impact on the outcome. Consequently, the effect of mismatch between

he stress state of the experiment and the model increases for smaller off-axis angles. From Fig. 16 it may be hypothesized that the
ctual response of the specimen for 𝜒 = 15◦ lies between the case when the RVE freely changes orientation, and the case when this
hange is restrained. A full multiscale analysis similar to that performed by Gao et al. [15], with separate RVEs linked to individual
acroscopic integration points accounting for macroscopic variations in the deformation, possibly provides a better match with the

xperiment. It may be noted that if macroscopic variations are indeed significant, the experimental results should not be interpreted
s direct stress–strain measurements of the composite material. To what extent such variations are present could be checked with
IC, although that has not been done in this study.

Next, the strain-rate �̇�𝑦𝑦 = 10−3∕s is considered. The simulation outcome is plotted in Fig. 17 and compared with available
xperiments. There is a good correspondence with the experimental observation for the angles of 45◦ and 90◦, while for 𝜒 = 30◦

he simulation fails prematurely, resulting in a lower stress at failure.
In the next example �̇�𝑦𝑦 = 10−5∕s is applied on the RVE. Comparison with the experiment is depicted in Fig. 18(left). The similar

onclusion as for the case �̇�𝑦𝑦 = 10−4∕s holds here as well. For 𝜒 = 45◦, the simulation ends up with a response more ductile than
xperimentally observed, but the stress at failure is still very close to the testing one. Results for the strain-rate of 10−6∕s and two
ifferent off-axis angles 𝜒 = 15◦ and 𝜒 = 90◦ are shown in Fig. 18(right). While there is a good match for 90◦ off-axis angle, again
here is an offset for 𝜒 = 15◦.

In the following, three different strain-rates of: 3 ⋅10−4∕s, 3 ⋅10−5∕s and 3 ⋅10−6∕s are imposed on the RVE under two different off
xis angles: 30◦ and 45◦. The simulation outcome is plotted in Fig. 19, accompanied by the experimental results. The strain-rates
onsidered here have not been included in the construction of the parametric curves in Fig. 11. A good agreement between the
odel and the experiment is obtained for 𝜒 = 45◦, whereas under 𝜒 = 30◦ a larger difference is present with a lower stress at

ailure than in the experiments, similar to what was observed for the other considered strain-rates. This aspect can be improved by
ncreasing the strength 𝑓∥ in Eq. (66), but that action would result in an even larger offset for 𝜒 = 15◦.

In Fig. 20 the computationally determined stress at failure is plotted against the corresponding strain-rate in a semilog plot, and
omparison is made with the experiment. It is clear that the model matches well with the experimental observations for the angles
◦ ◦
17

5 and 90 . As the off-axis angle decreases the absolute difference between the model and the observation increases. We assume
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Fig. 18. Simulation (solid) versus experiment (dotted) for �̇�𝑦𝑦 = 10−5∕s (left), �̇�𝑦𝑦 = 10−6∕s (right), and different off-axis angles.

Fig. 19. Simulation (solid) versus experiment (dotted) for range of strain-rates and two different off-axis angles.

Fig. 20. Material strength determined numerically (o) and experimentally (x) under different off-axis angles.

that the biggest part of this difference is due to an inconsistent stress state in the experiment and the micromodel, whose effect
increases for lower off-axis angles.

The fracturing RVE is visualized in Fig. 21 for two different strain-rates: �̇�𝑦𝑦 = 10−3∕s, �̇�𝑦𝑦 = 10−6∕s, and two different off-axis
angles: 𝜒 = 45◦ and 𝜒 = 90◦. The contour plots indicate the distribution of the equivalent plastic strain in the polymer matrix. There
is more equivalent plastic strain accumulated for 𝜒 = 45◦ compared to 𝜒 = 90◦, in line with the observation that the 45◦ response is
much more ductile than the 90◦ response, see e.g. Fig. 17. Comparing the strain-rates considered, there is more equivalent plastic
strain for the lower strain-rate of 10−6∕s for both off-axis angles.

The nonlinear response of the RVE is a competition of viscoplasticity and microcracking. To shed light on the contribution
of the each source of nonlinearity, the RVE response without microcracking is plotted together with the RVE response when
microcracking is included, and the comparison is made with the experiments for different off-axis angles and �̇�𝑦𝑦 = 10−4∕s, see
Fig. 22. As can be observed from the figure, initially the nonlinear response is not affected by microcracking and therefore is
dominated by viscoplasticity. However, without microcracking the RVE response is monotonically hardening, which does not provide
18
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Fig. 21. Distribution of equivalent plastic strain in fracturing RVE for two different strain-rates and off-axis angles.

Fig. 22. Simulation with microcracking and without microcracking compared with experiments for different off-axis angles and the strain-rate of 10−4∕s.

an opportunity to define the failure point. Therefore, the presence of cohesive microcracks in the model is necessary to observe
softening and define the material strength.

For all loading angles, the actual fracture plane forms in the post peak, i.e., in the softening regime. This process is depicted
for 𝜒 = 45◦ and �̇�𝑦𝑦 = 10−4∕s in Fig. 23, where four different states of the fracturing RVE corresponding to different points of the
stress–strain curve are shown. After the material strength is reached (snapshot 1), the cohesive microcracks coalesce and deformation
localizes in the fracture plane (snapshot 2), along which an actual microcrack is formed when the cohesive traction is reduced to
zero locally (snapshot 3). This microcrack further propagates as more cohesive elements reach a fully damaged state along the
initiated fracture plane (snapshot 4).

From Fig. 23 it is concluded that no actual microcracks with zero cohesive traction exist in the RVE when the maximum
homogenized stress is reached. This fact holds true for other off-axis angles as well, and is depicted in Fig. 24, where snapshots
captured at the moment of reaching the peak point in the RVE stress–strain curve are shown. The absence of cohesive segments
with zero traction when the peak point is reached implies that the fracture process zone up to the failure point is larger than the
RVE. Further, it is observed that the density of cohesive microcracks decreases with an increase in the off-axis angle.

The ability of the model to account for changes in the material composition is illustrated next. The strain-rate �̇�𝑦𝑦 = 10−4∕s
is applied on the RVE under several off-axis angles, considering the fiber volume ratio of 0.4, 0.5 and 0.6. The obtained results
are shown in Fig. 25. As expected, an increase in the fiber volume ratio increases the initial stiffness of the model. Furthermore,
an increase in 𝑉𝑓 leads to a decrease in the strain at failure, implying more brittle behavior of the composite material. As for the
ultimate strength, or the stress at failure, no clear trend is observed. In most of the cases, the strength increases for increasing 𝑉𝑓 ,
but for 𝜒 = 15◦ the lowest strength is obtained with 𝑉𝑓 = 0.6.

Quite often the modeling of failure processes in engineering materials by means of a cohesive zone model neglects the related
19

geometric nonlinear effect. In this paper we have used a finite deformation framework that allows for geometric nonlinearity in
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Fig. 23. Evolution of microcracking process after the material strength is reached (snapshot 1); gray color indicates uncracked element boundaries, green color
stand for unloading cohesive segments, black color indicates damaging but not completely broken cohesive segments, red color represents formed microcrack
with zero cohesive traction.

Fig. 24. Density of initiated microcracks when material strength is reached for different off-axis angles and �̇�𝑦𝑦 = 10−4∕s; color scheme is the same as in Fig. 23.

Fig. 25. Micromodel response for several fiber volume ratios, under different off-axis angles.

the cohesive zones as well, see Eq. (19). To check the effect of this on the RVE response, results as shown before that include
the geometric contribution are plotted together with simulation results for which this contribution is neglected. The results are
shown in Fig. 26, for �̇�𝑦𝑦 = 10−4∕s and a range of off-axis angles. For the off-axis angles 30◦–90◦ there is a small effect of the
geometric nonlinear part, reflected in different strain at failure, whereas the stress at failure remains almost the same. For 𝜒 = 15◦

the geometric nonlinear effect is more obvious. In this case, carbon fibers bear most of the loading and a small variation in the
stress and displacement field caused by the geometric nonlinear part results in obviously different stress at failure.
20
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Fig. 26. Comparison of RVE response when cohesive zone geometric nonlinear effect is accounted for, and when this effect is neglected.

It should be noted that, even if the geometric contribution to the force vector was neglected, in the process of linearization there
ould still be a geometric contribution to the global tangent stiffness matrix. Specifically, 𝐊𝑔1 without the factor of 2, and 𝐊𝑔3 in
q. (26) would be nonzero.

. Conclusion

In this paper a 3D microscale model to simulate rate-dependent failure in unidirectional composites under off-axis loading is
ntroduced. A prescribed macroscopic strain-rate is applied on the RVE by means of an arclength control method. The RVE model
s constructed in local coordinate frame aligned with the reinforcement that may have an arbitrary orientation with respect to the
lobal loading direction. The micromodel is defined in the finite deformation framework, and accounts for two different nonlinear
rocesses in the polymer matrix: viscous plasticity and microcracking. The plastic deformation is represented with the Eindhoven
lassy Polymer material model, whereas a cohesive zone model represents the microcracking process. Cohesive segments are added
n the fly, whenever a microcrack initiation criterion is satisfied. A new initiation criterion based on the local stress as well as the
ocal rate of deformation state in the matrix is introduced. The fracture energy of the cohesive law depends on the mode of fracture,
ut is not changing for different strain-rates in the model. The presence of cohesive microcracks in the model is necessary to reach
he material strength and trigger the softening response.

The ability of the RVE model to predict failure of the material is illustrated through comparison with experiments on
hermoplastic UD C/PEEK composite laminates for different strain-rates and off-axis angles, at room temperature conditions. A good
atch is obtained for the off-axis angles 45◦–90◦, whereas the discrepancy between the simulation and the observation increases for

he off-axis angle of 30◦, and especially for 15◦. A large influence of rotations of the fibers on the averaged stress–strain response
s identified for the smaller off-axis angles. This observation supports the proposed explanation for the mismatch between model
nd test: that boundary conditions in the experiment introduce macroscopic variations in the deformation, which are not accounted
or in the microscale simulations. The contour plots of the fractured RVE indicate that more equivalent plastic strain accumulates
or lower strain-rates, implying the more brittle failure of the material at higher strain-rates. It has been shown that the geometric
onlinearity of the cohesive zone model has negligible impact on failure stress of C/PEEK composite system, except for 𝜒 = 15◦.
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Appendix. Derivation details

To find derivatives 𝜕𝐐∕𝜕𝗮 we express the transformation matrix components, Eq. (27), in terms of the initial nodal coordinates
, 𝑌 , 𝑍 and corresponding nodal displacements. Given the isoparametric mapping this is initially possible for the vectors 𝐬 and 𝐭′.
ombining Eqs. (28)–(31) the 𝑥-component of the vector 𝐬 is:

𝑠𝑥 =
�̃�𝑥
‖�̃�‖

= 1
2

[𝑁A,𝜉 (𝑋1 + 𝑢𝑥1 +𝑋7 + 𝑢𝑥7) +𝑁D,𝜉 (𝑋4 + 𝑢𝑥4 +𝑋10 + 𝑢𝑥10)

+𝑁B,𝜉 (𝑋2 + 𝑢𝑥2 +𝑋8 + 𝑢𝑥8) +𝑁E,𝜉 (𝑋5 + 𝑢𝑥5 +𝑋11 + 𝑢𝑥11)

+𝑁C,𝜉 (𝑋3 + 𝑢𝑥3 +𝑋9 + 𝑢𝑥9) +𝑁F,𝜉 (𝑋6 + 𝑢𝑥6 +𝑋12 + 𝑢𝑥12)]∕‖�̃�‖

(A.1)

Components 𝑠𝑦 and 𝑠𝑧 can be obtained in a similar way, replacing 𝑋 respectively with 𝑌 and 𝑍 initial nodal coordinates, and also
replacing 𝑢𝑥𝑖 with nodal displacements associated with 𝑦- and 𝑧-direction. In Eq. (A.1) the shape function gradients in 𝜉-direction
are defined as:

𝑁A,𝜉 =
1
4
(1 − 𝜂)(2𝜉 − 1), 𝑁D,𝜉 =

1
4
(1 + 𝜂)(2𝜉 + 1)

𝑁B,𝜉 = −(1 − 𝜂)𝜉, 𝑁E,𝜉 = −(1 + 𝜂)𝜉

𝑁C,𝜉 =
1
4
(1 − 𝜂)(2𝜉 + 1), 𝑁F,𝜉 =

1
4
(1 + 𝜂)(2𝜉 − 1)

(A.2)

Following the same approach but combining Eqs. (28)–(30) with Eq. (32), it is possible to derive expressions for the components of
the vector 𝐭′. The 𝑥-component of this vector is:

𝑡′𝑥 =
𝑡′𝑥
‖𝐭′‖

= 1
2

[𝑁A,𝜂(𝑋1 + 𝑢𝑥1 +𝑋7 + 𝑢𝑥7) +𝑁D,𝜂(𝑋4 + 𝑢𝑥4 +𝑋10 + 𝑢𝑥10)

+𝑁B,𝜂(𝑋2 + 𝑢𝑥2 +𝑋8 + 𝑢𝑥8) +𝑁E,𝜂(𝑋5 + 𝑢𝑥5 +𝑋11 + 𝑢𝑥11)

+𝑁C,𝜂(𝑋3 + 𝑢𝑥3 +𝑋9 + 𝑢𝑥9) +𝑁F,𝜂(𝑋6 + 𝑢𝑥6 +𝑋12 + 𝑢𝑥12)]∕‖𝐭′‖

(A.3)

where the shape function gradients in 𝜂-direction are as follows:

𝑁A,𝜂 = −1
4
(𝜉2 − 𝜉), 𝑁D,𝜂 =

1
4
(𝜉2 + 𝜉)

𝑁B,𝜂 = −1
2
(1 − 𝜉2), 𝑁E,𝜂 =

1
2
(1 − 𝜉2)

𝑁C,𝜂 = −1
4
(𝜉2 + 𝜉), 𝑁F,𝜂 =

1
4
(𝜉2 − 𝜉)

(A.4)

From Eq. (A.1) it is possible to find the derivative of the 𝑠𝑥 component with respect to the nodal displacements:

𝑠𝑥,𝗮 =
𝜕
𝜕𝗮

(

�̃�𝑥
‖�̃�‖

)

=
�̃�𝑥,𝗮‖�̃�‖ − �̃�𝑥‖�̃�‖,𝗮

‖�̃�‖2
(A.5)

in which the derivative of the norm ‖�̃�‖ is defined as:

‖�̃�‖,𝗮 =
�̃�𝑥�̃�𝑥,𝗮 + �̃�𝑦�̃�𝑦,𝗮 + �̃�𝑧�̃�𝑧,𝗮

‖�̃�‖
(A.6)

Differentiation of the numerator in Eq. (A.1) with respect to the vector 𝗮 yields the following expression:

�̃�𝑥,𝗮 =
1
2
[𝑁A,𝜉 0 0 𝑁B,𝜉 0 0 𝑁C,𝜉 0 0...

𝑁D,𝜉 0 0 𝑁E,𝜉 0 0 𝑁F,𝜉 0 0 repeat]1×36(ndof)

(A.7)

hich can be substituted in Eqs. (A.5) and (A.6). The vectors �̃�𝑦,𝗮 and �̃�𝑧,𝗮 from Eq. (A.6) are determined in a similar way as �̃�𝑥,𝗮.
fter determining the vectors �̃�𝑥,𝗮, �̃�𝑦,𝗮 and �̃�𝑧,𝗮 it is possible to calculate 𝑠𝑥,𝗮 with Eq. (A.5), as well as the vectors 𝑠𝑦,𝗮 and 𝑠𝑧,𝗮 with
imilar expressions.

For completeness, similar equations are shown for the derivative of 𝐭′ vector 𝑥-component:

𝑡′𝑥,𝗮 =
𝜕
𝜕𝗮

( 𝑡′𝑥
‖𝐭′‖

)

=
𝑡′𝑥,𝗮‖𝐭

′
‖ − 𝑡′𝑥‖𝐭

′
‖,𝗮

‖𝐭′‖2
(A.8)

‖𝐭′‖,𝗮 =
𝑡′𝑥𝑡

′
𝑥,𝗮 + 𝑡′𝑦𝑡

′
𝑦,𝗮 + 𝑡′𝑧𝑡

′
𝑧,𝗮

‖𝐭′‖
(A.9)

𝑡′𝑥,𝗮 =
1
2
[𝑁A,𝜂 0 0 𝑁B,𝜂 0 0 𝑁C,𝜂 0 0...

(A.10)
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𝑁D,𝜂 0 0 𝑁E,𝜂 0 0 𝑁F,𝜂 0 0 repeat]1×36(ndof)
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Now that the vectors 𝑠𝑖,𝗮 and 𝑡′𝑖,𝗮 are fully defined, where 𝑖 = 𝑥, 𝑦, 𝑧, they can be used to define the change in the unit normal
ector with nodal displacements. Differentiating Eq. (33) with respect to 𝗮 leads to:

𝜕𝐧
𝜕𝗮

=
⎡

⎢

⎢

⎣

𝑛𝑥,𝗮
𝑛𝑦,𝗮
𝑛𝑧,𝗮

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑠𝑦,𝗮𝑡′𝑧 + 𝑠𝑦𝑡′𝑧,𝗮 − 𝑠𝑧,𝗮𝑡′𝑦 − 𝑠𝑧𝑡′𝑦,𝗮
𝑠𝑧,𝗮𝑡′𝑥 + 𝑠𝑧𝑡′𝑥,𝗮 − 𝑠𝑥,𝗮𝑡′𝑧 − 𝑠𝑥𝑡′𝑧,𝗮
𝑠𝑥,𝗮𝑡′𝑦 + 𝑠𝑥𝑡′𝑦,𝗮 − 𝑠𝑦,𝗮𝑡′𝑥 − 𝑠𝑦𝑡′𝑥,𝗮

⎤

⎥

⎥

⎥

⎦

(A.11)

Applying the same differentiation procedure in Eq. (34) yields:

𝜕𝐭
𝜕𝗮

=
⎡

⎢

⎢

⎣

𝑡𝑥,𝗮
𝑡𝑦,𝗮
𝑡𝑧,𝗮

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑛𝑦,𝗮𝑠𝑧 + 𝑛𝑦𝑠𝑧,𝗮 − 𝑛𝑧,𝗮𝑠𝑦 − 𝑛𝑧𝑠𝑦,𝗮
𝑛𝑧,𝗮𝑠𝑥 + 𝑛𝑧𝑠𝑥,𝗮 − 𝑛𝑥,𝗮𝑠𝑧 − 𝑛𝑥𝑠𝑧,𝗮
𝑛𝑥,𝗮𝑠𝑦 + 𝑛𝑥𝑠𝑦,𝗮 − 𝑛𝑦,𝗮𝑠𝑥 − 𝑛𝑦𝑠𝑥,𝗮

⎤

⎥

⎥

⎥

⎦

(A.12)

qs. (A.11) and (A.12), together with the vectors 𝑠𝑖,𝗮 are finally used in Eq. (35) to construct 𝜕𝐐∕𝜕𝗮.
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