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A B S T R A C T

In this paper, a Reinforcement Learning (RL)-based approach to optimally dispatch PV inverters in unbalanced
distribution systems is presented. The proposed approach exploits a decentralized architecture in which PV
inverters are operated by agents that perform all computational processes locally; while communicating with a
central agent to guarantee voltage magnitude regulation within the distribution system. The dispatch problem
of PV inverters is modeled as a Markov Decision Process (MDP), enabling the use of RL algorithms. A rolling
horizon strategy is used to avoid the computational burden usually associated with continuous state and action
spaces, coupled with a computationally efficient learning algorithm to model the action-value function for
each PV inverter. The effectiveness of the proposed decentralized RL approach is compared with the optimal
solution provided by a centralized nonlinear programming (NLP) formulation. Results showed that within
several executions, the proposed approach converges either to the optimal solution or to solutions with a PV
curtailment excess of less than 2.5% while still enforcing voltage magnitude regulation.
1. Introduction

According to the International Energy Agency, for the year 2020,
a total addition of 107 GW to the global solar PV capacity was
reached [1]. From this new PV capacity, approximately 36% comes
from residential, commercial, and industrial projects, usually located at
low voltage (LV) and medium (MV) voltage distribution networks [2].
Due to these constantly increasing levels of PV generation, Distribution
System Operators (DSOs) are facing several technical and operational
challenges, including overvoltage issues, increase in the frequency of
tap changes in distribution transformers as well as in power losses,
violation of the thermal limits on the lines, among others [3,4].

Various strategies can be found in the literature to cope with the
technical issues on distribution networks due to a high PV penetra-
tion. These strategies can be grouped into coordinated and locally
implemented strategies. Locally implemented strategies are easy to im-
plement and do not require any type of communication infrastructure.
Among these strategies, one can find those based on droop control, such
as in [5,6]. In these droop-based control strategies, the PV inverters
regulate their active and reactive power injection as a function of their
voltage magnitude at the point of connection with the distribution
system [7]. Despite their effectiveness to solve overvoltage issues, as
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curtailment decisions are made based only on local information, a
larger amount of active power will be curtailed, especially when com-
pared with coordinated strategies that consider the whole distribution
network’s operation. Moreover, they can be seen as unfair, as PV
inverters located at the end of the feeders curtail more than those
located closer to the distribution transformer [8]. This issue can be
solved, for instance, if the operation of the droop control is coordinated
among all PV inverters, as shown in [9].

In contrast to locally implemented strategies, coordinated strate-
gies can ensure minimum PV power curtailment, but they require
the deployment of either a centralized (e.g., [10]) or a distributed
(e.g., [11,12]) communication infrastructure. The dispatch of all PV
inverters within the distribution system can be formulated as a nonlin-
ear optimization problem to ensure minimum PV power curtailment,
such as in [10,13]. Although optimality can be guarantee through
convexification procedures, these centralized approaches show poor
scalability features. To overcome this issue, works such as [12,14] have
developed distributed strategies in which all the information required
to perform coordination is shared either with a centralized operator
or between PV inverters closely located. Nevertheless, due to their
distributed nature, an online iterative procedure must be executed
vailable online 13 October 2021
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Notation

The notation used throughout this paper is reproduced below
for reference.

Sets:

 Set of actions (action space)
 Set of phases {A, B, C}.
 Set of lines.
 Set of nodes.
 Set of states (state space)
 Set of time-intervals.

Indexes:

𝜙, 𝜓 Phases 𝜙, 𝜓 ∈  .
𝑘𝑚, 𝑚𝑛 Line 𝑘𝑚, 𝑚𝑛 ∈ .
𝑛, 𝑚 Nodes 𝑛, 𝑚 ∈  .
𝑡, 𝑡ℎ Time steps 𝑡 ∈  , 𝑡ℎ ∈ ℎ.

Parameters:

𝛥𝑡 Time duration between two consecutive
time steps.

𝐼𝑚𝑛 Maximum line current limit.
𝑃 𝑃𝑉𝑚,𝑡,𝜙 Expected active power generation of the PV

systems.
𝑃𝐷𝑚,𝜙,𝑡 Expected active power consumption.
𝑄𝐷𝑚,𝜙,𝑡 Expected reactive power consumption.
𝑉 , 𝑉 Maximum/minimum voltage magnitude.
𝑅𝑚𝑛,𝜙,𝜓 Resistance of the lines.
𝑋𝑚𝑛,𝜙,𝜓 Reactance of the lines.

Continuous Variables:

𝛥𝑃 𝑃𝑉𝑚,𝑡 PV power curtailment percentage.
𝑃𝐺𝑚,𝑡,𝜙 Active power injection of the PV inverters

(AC side).
𝐼𝐺re𝑚,𝜙,𝑡 Real part of the current injection of the PV

inverters.
𝐼𝐺im𝑚,𝜙,𝑡 Imaginary part of the current injection of

the PV inverters.
𝐼𝐷re
𝑚,𝜙,𝑡 Real part of the current injection for the

consumption.
𝐼𝐷im
𝑚,𝜙,𝑡 Imaginary part of the current injection for

the consumption.
𝑉 re
𝑚,𝜙,𝑡 Real part of the voltage magnitude.
𝑉 im
𝑚,𝜙,𝑡 Imaginary part of the voltage magnitude.

until a convergence criterion is reached. If such criterion is not met,
optimality and feasibility cannot be guaranteed.

Recently, coordinated methods based on reinforcement learning
(RL) have drawn much attention for their capacity to learn from
historical data and/or from continuous interaction with an environ-
ment [15]. If properly designed, RL-based approaches offer multiple
advantages when compared with other optimization-based methods.
Such advantages include that distributed implementation is easier and
straightforward; they can be used in real-time (they are usually trained
offline); do not require an accurate physical model since they can be
updated after interacting with the environment [16], among others. An
updated review on the application of RL approaches for energy systems
problems can be found in [17]. Regarding the dispatch problem of PV
inverters, in [18], a centralized deep RL algorithm is implemented.
2

Results showed that once trained; the developed deep RL approach can
successfully mitigate overvoltage issues with lower PV power curtail-
ment when compared with a droop-based strategy. A similar centralized
deep RL strategy is presented in [19]. An RL-based strategy based on
a multi-agent approach is presented in [20,21] to enable distributed
implementation. In these works, deep neural networks are also used to
model the value function within the RL strategy. Nevertheless, although
deep neural networks have shown promising results in several RL
application areas [22–24], as these are nonlinear parametric models,
their convergence within RL frameworks is not guaranteed, difficulting
its implementation [25]. Moreover, a general procedure to optimally
define some intrinsic parameters (e.g., number of layers, number of
units, types of activation functions) is not available yet. The value
and/or action-value function can be easily approximated using linear
models to overcome this issue [26]. In this sense, the main advantage
of linear parametric models is that their convergence is theoretically
guaranteed as long as enough exploration is ensured [27].

Based on the aforementioned, an RL-based approach to optimally
dispatch PV inverters in unbalanced distribution systems is presented in
this paper. The proposed approach exploits a decentralized architecture
in which PV inverters are operated by agents that perform all compu-
tational processes locally; while communicating with a central agent to
guarantee voltage magnitude regulation within the distribution system.
Here, the PV inverters dispatch problem is modeled as a Markov
Decision Process (MDP), enabling the use of RL algorithms. Within the
proposed RL model, a computationally efficient learning algorithm to
model the action-value function is used. The effectiveness of the pro-
posed decentralized RL approach is compared with the optimal solution
provided by a centralized nonlinear programming (NLP) formulation.
The main contributions of this paper are as follows:

• A decentralized RL approach able to optimally dispatch PV in-
verters in an unbalanced distribution system considering voltage
magnitude constraints is presented. The proposed RL approach
uses a customized reward function and state definition that en-
ables to reach the centralized optimal solution, while still enables
all computational processes to be performed locally (also known
as on-device machine learning).

• The decentralized RL approach is framed within a rolling horizon
strategy that avoids the computational burden associated with
continuous state spaces due to the long-term dispatch decisions
as well as the need of long-term PV generation forecast for the
PV inverters.

The remainder of this paper is structured as follows: Section 2
presents a centralized NLP formulation model for the optimal dispatch
problem of PV inverters. Later, Section 3 introduces Markov Decisions
Processes (MDPs) and RL. Section 4 presents the optimal dispatch
problem of PV inverters as an MDPs and the proposed RL approach,
while Section 5 presents the simulation results used to validate the
proposed approach. Finally, conclusions are drawn in Section 6.

2. Optimal dispatch of PV inverters

The optimal dispatch problem of PV inverters in unbalanced distri-
bution networks can be modeled using the NLP formulation given by
(1)–(13). The objective function in (1) aims at minimizing the total PV
generation curtailment for the time horizon  , defined as the difference
between the total expected active power consumption and the total
active power generated by the PV inverters (i.e. the net active power).

min
𝛥𝑃 𝑃𝑉𝑚,𝑡

{

∑

𝑡∈

[

∑

𝑚∈

∑

𝜙∈
(𝑃𝐷𝑚,𝑡,𝜙 − 𝑃𝐺𝑚,𝑡,𝜙)𝛥𝑡

]}

, (1)

subject to:
∑

𝐼 re
𝑛𝑚,𝜙,𝑡 −

∑

𝐼 re
𝑚𝑛,𝜙,𝑡 + 𝐼

𝐺re
𝑚,𝜙,𝑡 = 𝐼𝐷re

𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (2)

𝑛𝑚∈ 𝑚𝑛∈
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∑

𝑛𝑚∈
𝐼 im
𝑛𝑚,𝜙,𝑡 −

∑

𝑚𝑛∈
𝐼 im
𝑚𝑛,𝜙,𝑡 + 𝐼

𝐺im
𝑚,𝜙,𝑡 = 𝐼𝐷im

𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (3)

re
𝑚,𝜙,𝑡 − 𝑉

re
𝑛,𝜙,𝑡 =

∑

𝜓∈

(

𝑅𝑚𝑛,𝜙,𝜓𝐼
re
𝑚𝑛,𝜓,𝑡 −𝑋𝑚𝑛,𝜙,𝜓𝐼

im
𝑚𝑛,𝜓,𝑡

)

∀𝑚𝑛 ∈ ,∀𝜙 ∈  ,∀𝑡 ∈  (4)

im
𝑚,𝜙,𝑡 − 𝑉

im
𝑛,𝜙,𝑡 =

∑

𝜓∈

(

𝑋𝑚𝑛,𝜙,𝜓𝐼
re
𝑚𝑛,𝜓,𝑡 + 𝑅𝑚𝑛,𝜙,𝜓𝐼

im
𝑚𝑛,𝜓,𝑡

)

∀𝑚𝑛 ∈ ,∀𝜙 ∈  ,∀𝑡 ∈  (5)

𝐷
𝑚,𝜙,𝑡 = 𝑉 re

𝑚,𝜙,𝑡𝐼
𝐷re
𝑚,𝜙,𝑡 + 𝑉

im
𝑚,𝜙,𝑡𝐼

𝐷im
𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (6)

𝐷
𝑚,𝜙,𝑡 = −𝑉 re

𝑚,𝜙,𝑡𝐼
𝐷im
𝑚,𝜙,𝑡 + 𝑉

im
𝑚,𝜙,𝑡𝐼

𝐷re
𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (7)

𝐺
𝑚,𝜙,𝑡 = 𝑉 re

𝑚,𝜙,𝑡𝐼
𝐺re
𝑚,𝜙,𝑡 + 𝑉

im
𝑚,𝜙,𝑡𝐼

𝐺im
𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (8)

= −𝑉 re
𝑚,𝜙,𝑡𝐼

𝐺im
𝑚,𝜙,𝑡 + 𝑉

im
𝑚,𝜙,𝑡𝐼

𝐺re
𝑚,𝜙,𝑡 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈  (9)

𝐺
𝑚,𝜙,𝑡 = 𝑃 𝑃𝑉𝑚,𝑡 (1 − 𝛥𝑃

𝑃𝑉
𝑚,𝑡 )∕3 ∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈ 

(10)
2 ≤

(

𝑉 re
𝑚,𝜙,𝑡

)2
+
(

𝑉 im
𝑚,𝜙,𝑡

)2
≤ 𝑉

2
∀𝑚 ∈  ,∀𝜙 ∈  ,∀𝑡 ∈ 

(11)

0 ≤
(

𝐼 re
𝑚𝑛,𝜙,𝑡

)2
+
(

𝐼 im
𝑚𝑛,𝜙,𝑡

)2
≤ 𝐼

2
𝑚𝑛 ∀𝑚 ∈ ,∀𝜙 ∈  ,∀𝑡 ∈ 

(12)
0 ≤ 𝛥𝑃 𝑃𝑉𝑚,𝑡 ≤ 1 ∀𝑚 ∈  ,∀𝑡 ∈ 

(13)

The unbalanced distribution network is modeled using the AC three-
phase power flow formulation shown in (2)–(5) [28]. Constraints (2)
and (3) model the real and imaginary line current balance, respectively.
Constraints (4) and (5) model the real and imaginary voltage drop
in lines, respectively. The active and reactive power consumption is
modeled using (6) and (7), respectively, while the active and reactive
PV power generation is modeling using (8) and (9), respectively. Notice
in (9) that it is assumed that the PV inverter operates with unity
power factor. Constraint (10) models the PV active power output of
the PV inverters as a function of the PV power curtailment percentage
(𝛥𝑃 𝑃𝑉𝑚,𝑡 ). Finally, constraints (11) and (12) enforce the voltage mag-
nitude limits and the thermal limits of lines, respectively, while (13)
defines the limits for the PV power curtailment percentage. Notice that
a centralized approach must be used to solve the above-presented NLP
formulation. A central operator gathers the operational data (e.g., nom-
inal capacity, long-term expected PV generation, etc.) to define the
dispatch decisions for the PV inverters enforcing voltage magnitude
limits. Simultaneously, the central operator defines the total amount
of curtailed power.

3. Markov Decision Process and Reinforcement Learning

In this section, some background on Markov Decision Process (MDP)
and the used Reinforcement Learning (RL) algorithm are provided.

3.1. Markov Decision Process (MDP)

In general, a MDP can be described by the 5-tuple ( ,, ,, 𝛾),
where  is a finite set of states 𝑠 ∈  (also know as state space),  is a
finite set of actions 𝑎 ∈  (also know as action space),  is a Markovian
transition model that states the probability of transitioning from one
state to another state after taking an action;  ∶  ×  ×  → R is
a reward functions that maps from each state 𝑠, 𝑠′ ∈  and 𝑎 ∈ ,
𝑟 = (𝑠, 𝑎, 𝑠′) is the reward obtained when the system transitions from
state 𝑠 to state 𝑠′ after implementing action 𝑎; and 𝛾 ∈ [0, 1) is a discount
factor. For now on, we will refer to the 4-tuple (𝑠, 𝑎, 𝑠′, 𝑟) as a transition.

Let 𝑆𝑡 and 𝐴𝑡 denote the state and action at time 𝑡, respectively, and
𝑅𝑡 the reward received after taking action 𝐴𝑡 in state 𝑆𝑡. Let P denote
the probability operator, then, 𝑡(𝑠′|𝑠, 𝑎) ∶= P{𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}
is the probability of transitioning from state 𝑠 to state 𝑠′ after taking
action 𝑎 at time 𝑡. Thus, one can estimates the expected reward from
3

(

an state–action pair (𝑠, 𝑎), as

𝑅(𝑠, 𝑎) = E[𝑅|𝑠, 𝑎] =
∑

𝑠′∈
(𝑠, 𝑎, 𝑠′)(𝑠′|𝑠, 𝑎), (14)

where E[⋅] denotes the expectation operator. The total discounted
ewards from time 𝑡 until the system reach a terminal state at time 𝑇 ,
enoted by 𝐺𝑡, and also known as the expected return, can be defined
s

𝑡 =
𝑇
∑

𝑡′=𝑡+1
𝛾 𝑡

′−𝑡−1𝑅𝑡′ . (15)

Let define a deterministic policy 𝜋 that maps from  to , such that
𝑎 = 𝜋(𝑠), 𝑠 ∈  , 𝑎 ∈ . Then, ones can define an action-value function
𝑄𝜋 (𝑠, 𝑎) under policy 𝜋 as follows

𝑄𝜋 (𝑠, 𝑎) = E[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎;𝜋], (16)

where 𝑄𝜋 (𝑠, 𝑎) estimates the expected return when taking action 𝑎 in
state 𝑠, following policy 𝜋. In this sense, the action-value function
𝑄𝜋 (𝑠, 𝑎) estimates the quality of the state–action pair (𝑠, 𝑎) for a given
policy 𝜋. If the optimal value-function 𝑄∗(𝑠, 𝑎) is known, then, an
optimal policy can be derived as 𝜋∗(𝑠) = arg max𝑎∈𝑄∗(𝑠, 𝑎). Then, it
follows from (15) and (16) that 𝑄∗(𝑠, 𝑎) satisfies the Bellman optimality
equation (see [25]),

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑

𝑠′∈
(𝑠′|𝑠, 𝑎) max

𝑎′∈
𝑄∗(𝑠′, 𝑎′) (17)

In this case, if  is known and both the state and the action spaces
re finite, the action-value function can be exactly represented in a
abular form for all the pairs (𝑠, 𝑎) ∈  ×  solving recursively the
xpression in (17). If  is not known, it can be approximated from
batch of transitions samples obtained by directly interacting with

he system, using a type of RL algorithms known as batch RL, such as
-Learning [29].

.2. Reinforcement learning and action-value function approximation

Conventional 𝑄 Learning follows a step-by-step procedure i.e., for
state 𝑠 ∈ , take an action 𝑎 ∈  either randomly or using 𝑄(𝑠, 𝑎),

bserve a new state 𝑠′ ∈  and a reward 𝑟, update the action-value
unction 𝑄(𝑠, 𝑎), repeat until convergence. If the state  and action 
paces are finite, these can be discretized (see e.g., [30]). However, this
rocedure may suffer from the curse of dimensionality, depending on the
ize of the discretization step. In practical applications, when the state
pace  is large or continuous, the action-value function 𝑄(𝑠, 𝑎) can be
pproximated by any type of parametric function such as linear [31]
nd neural network [32], or non-parametric functions such as decision
rees [33]. If a linear function approximation is used, 𝑄̂(𝑠, 𝑎) can be
epresented as,

̂ (𝑠, 𝑎) = 𝝎⊤𝝓(𝑠, 𝑎), (18)

here 𝝓(⋅) ∶  × → R𝑓 is a feature function for (𝑠, 𝑎), which is also
eferred as a basis function, and 𝝎 ∈ R𝑓 is a parameter vector.

One of the most data efficient algorithms available in literature to
stimate parameters 𝜔, and thus approximate the action-value function
̂ (𝑠, 𝑎), is known as Least Square Policy Iteration (LSPI) [27]. To be
xecuted, the LSPI algorithm requires a collection of transition samples
= {(𝑠, 𝑎, 𝑠′, 𝑟) ∶ 𝑠, 𝑠′ ∈  , 𝑎 ∈ } to iteratively estimate 𝝎. To better

nderstand the intuition behind the LSPI algorithm, define an error
stimation function 𝐽 (𝝎) as

(𝝎) =
∑

(𝑠,𝑎,𝑠′ ,𝑟)∈

(

𝑄(𝑠, 𝑎) − 𝝎⊤𝑘𝝓(𝑠, 𝑎)
)2 , (19)

here 𝝎𝑘 corresponds to the approximation of 𝝎 at iteration 𝑘. Notice
hat 𝑄(𝑠, 𝑎) is not known and can be replaced by the temporal-difference

𝑇 ′ ′ ′ ⊤ ′
TD) target 𝑟 + 𝛾𝝎 𝜙(𝑠 , 𝑎 ), where 𝑎 = arg max𝑎∈𝝎𝑘𝜙(𝑠 , 𝑎) is the
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Fig. 1. Transition representation used to model the PV inverters dispatch problem as
a MDP as in [19]. Notice that 𝑉𝑚,𝜙,𝑡+1 is the result of the distribution system reaching
steady-state considering the current PV generation power for the PV inverter 𝑚 as
𝑃 𝑃𝑉
𝑚,𝑡 (1 − 𝛥𝑃

𝑃𝑉
𝑚,𝑡 ) instead of 𝑃 𝑃𝑉

𝑚,𝑡+1.

optimal action taken for state 𝑠′ based on the current approximation
available of parameters 𝝎𝑘. Thus, 𝐽 (𝝎𝑘) can be expressed as

𝐽 (𝝎) =
∑

(𝑠,𝑎,𝑠′ ,𝑟)∈

(

𝑟 + 𝛾𝝎𝑇𝝓(𝑠′, 𝑎′) − 𝝎⊤𝑘𝝓(𝑠, 𝑎)
)2 . (20)

Therefore, at iteration 𝑘 + 1, 𝝎𝑘+1 can be approximated by solving the
next non-constrained optimization problem,

𝝎𝑘+1 = argmin
𝝎
𝐽 (𝝎). (21)

As can be seen from (21), at each iteration, the LSPI algorithm
finds parameters 𝝎 that minimizes the mean squared error between the
TD target and 𝑄̂(𝑠, 𝑎) over all transitions samples available in . This
process is repeated until a convergence criterion, defined as ‖𝝎𝑘+1 −
𝝎𝑘‖ ≤ 𝜀, is met, where ‖ ⋅‖ corresponds to the 𝐿2 norm and 𝜀 is a small
number.

The LSPI algorithm has multiple advantages: First, linear functions
are used to approximate the action-value function 𝑄(𝑠, 𝑎), which allows
the algorithm to handle MDPs with large and continuous  as well as
to guarantee learning convergence. Second, at each iteration, the whole
available batch of transitions samples are used to approximate 𝝎, thus,
increasing data efficiency. Third, different from the classic 𝑄 Learning
algorithm, there is no need to define a learning rate, thus fewer hyper-
parameters are required to be tuned. Interested readers are referred
to [27] for more details on convergence and performance guarantee.

4. PV inverters dispatch problem as an MDP

The PV inverters dispatch problem is modeled as a MDP based on
the formulation presented in [19] and as follows: If 𝑃 𝑃𝑉𝑚,𝑡 represents
the PV generation of the PV inverter connected at node 𝑚 at time 𝑡,
with voltage magnitude 𝑉𝑚,𝜙,𝑡, and 𝑃 𝑃𝑉𝑚,𝑡 (1 − 𝛥𝑃 𝑃𝑉𝑚,𝑡 ) represents the PV
generation after curtailing 𝛥𝑃 𝑃𝑉𝑚,𝑡 , then, these cannot be equal at the
same time step 𝑡. There should be a time delay between applying the PV
curtailment action and the distribution system reaching a new steady-
state, in which the PV inverter 𝑚 perceives 𝑉𝑚,𝜙,𝑡+1. In other words,
𝑉𝑚,𝜙,𝑡+1 is the result of the distribution system reaching a steady-state
considering the current PV generation power for the PV inverter 𝑚 as
𝑃 𝑃𝑉𝑚,𝑡 (1 − 𝛥𝑃 𝑃𝑉𝑚,𝑡 ), instead of 𝑃 𝑃𝑉𝑚,𝑡+1, as shown in Fig. 1. In Fig. 1, the
continuous line between time steps 𝑡 and 𝑡 + 1 can be understood as a
simplified representation of the distribution systems dynamics, which
is disregarded for the sake of the MDP model used. The described
modeling representation is the base for the definition of the transition
model, later explained in Section 4.4.

An agent-based architecture is developed to facilitate the implemen-
tation of the proposed RL approach as in Fig. 2. Two types of agents
4

are considered: PV Agents and a centralized Distribution System (DS)
Agent. PV Agents are in charge of controlling the PV inverters, while
the DS Agent is in charge of supervising the distribution network’s
operation, enforcing voltage magnitude constraints. Regarding these
agents, the following assumptions that are assumed to hold:

1. The DS Agent is aware of the topology of the distribution net-
work and can execute a power flow algorithm assuming the
proposed curtailment actions by each PV Agent. After executing
the power flow algorithm, the DS Agent shares with each PV
Agent their expected voltage magnitude.

2. The PV Agents have enough computational resources to exe-
cute all the required processes of the LSPI algorithm locally, as
explained in Section 4.5. Also, such agents only communicate
and share data with the DS Agent and not between themselves,
ensuring privacy. The shared data is limited to the proposed
curtailment action and their PV power forecast.

The remaining definitions for the proposed RL approach, regarding
state space, action space, reward function, and transition models, are
presented next.

4.1. State space

For the PV Agent 𝑚, connected to node 𝑚 ∈  of the distribution
system at time 𝑡, define the state 𝑠𝑚,𝑡 = (𝑃 𝑃𝑉𝑚,𝑡 , 𝑉 𝑚,𝑡) ∣ 𝑠𝑚,𝑡 ∈ , as
he tuple given by the expected PV active power generation, 𝑃 𝑃𝑉𝑚,𝑡 , and
he maximum voltage magnitude among the phases 𝜓 ∈  at time
, 𝑉 𝑚,𝑡 = max𝜓∈{𝑉𝑚,𝜓,𝑡}, containing only continuous values. Thus,

the state space  ∈ R2. Notice here that we have considered only the
maximum voltage magnitude among all the phases as one of the state
variables, instead of considering the voltage magnitude of each phase.
By doing this, the number of state variables is reduced (reducing the
state space size) while still considering enough information regarding
the unbalanced operation of the distribution system to reach optimality,
as it will be shown later.

4.2. Action space

For the PV Agent 𝑚, actions are defined as a discrete PV power
urtailment percentage of the expected PV power generation at time
tep 𝑡, i.e., 𝑎𝑚,𝑡 = 𝛥𝑃 𝑃𝑉𝑚,𝑡 . Thus, the action space is defined as

= {0, 𝛥, 2𝛥,… , 1.0}, where 𝛥 defines the discretization step used.

.3. Reward function

As discussed in Section 2, the centralized objective of the optimal
ispatch of PV inverters problem is to solve local voltage issues while
inimizing the total amount of PV active power curtailed. The cen-

ralized objective function in (1) can be translated as a local reward
unction for each PV Agent 𝑚, 𝑚,𝑡(⋅), as follows:

𝑚,𝑡(𝑠𝑚,𝑡, 𝑎𝑚,𝑡, 𝑠′𝑚,𝑡) = −𝛿𝛥𝑃 𝑃𝑉𝑚,𝑡 + min{0, 𝛿𝑉 (
𝑉 − 𝑉

2
− |𝑉0 − 𝑉 𝑚,𝑡|)}, (22)

here 𝛿 and 𝛿𝑉 are positive penalty parameters. In expression (22),
he first term corresponds to a penalty term proportional to the action
aken. PV Agents need to chose lower value actions 𝛥𝑃 𝑃𝑉𝑚,𝑡 , thus, reduc-
ng the total amount of PV active power curtailed; while the second
erm penalizes actions that result in voltage magnitude violation. The
econd term of expression (22) in terms of the voltage magnitude is
epicted in Fig. 3. Notice that if the maximum voltage magnitude
ver all phases of the PV Agent 𝑚, i.e., 𝑉 𝑚,𝑡, is above 𝑉 or below
𝑉 , the penalty term is equal to zero, otherwise, the penalty increases
with slope −𝛿𝑉 . Notice that the thermal limits of lines in (12) are
disregarded.
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Fig. 2. RL approach using an agent-based architecture. Two types of agents can be found: a DS Agent and the PV Agents. PV Agents share limited information with the DS Agent,
while update of the 𝑄̂(𝑠, 𝑎) is done locally and in parallel.
Fig. 3. Representation of the second term of the reward function in (22) related to the penalty due to voltage magnitude violation as a function of the maximum voltage over
the phases 𝑉 𝑚,𝑡.
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.4. Transition model

Once the PV Agents share the proposed PV curtailment percentages
actions) with the DS Agent, as explained on the MDP modeling in
ection 4 and the state definition provided in Section 4.1, the DS Agent
olves a nonlinear power flow to estimate 𝑉𝑚,𝜙,𝑡+1 for all the PV Agents
𝑚. This information is used by the PV Agents to define the values of
the state transition, from 𝑠𝑚,𝑡 = (𝑃 𝑃𝑉𝑚,𝑡 , 𝑉 𝑚,𝑡) to 𝑠′𝑚,𝑡 = (𝑃 𝑃𝑉𝑚,𝑡+1, 𝑉 𝑚,𝑡+1),
nowing that 𝑉 𝑚,𝑡+1 is a result of implementing actions 𝑎𝑚,𝑡 = 𝛥𝑃 𝑃𝑉𝑚,𝑡

in the current state. The definition of states 𝑠𝑚,𝑡 and 𝑠′𝑚,𝑡 are needed in
order to update the approximation of the action-value function 𝑄̂𝑚(𝑠, 𝑎).

4.5. Action-value function approximation

The algorithm used to approximate (learn) the action value func-
tion 𝑄̂𝑚(𝑠, 𝑎) is based on the LSPI algorithm presented in Section 3.2.
Although the LSPI is an efficient algorithm to handle data, it may
become computationally intractable as the action space  increases.
To overcome this issue, instead of approximating a general 𝑄(𝑠, 𝑎), a
separate approximation is defined for each action 𝑎 ∈  and for each
time step 𝑡 ∈  . Thus, each PV Agent 𝑚 learns an approximated optimal
5

o

action-value function

𝑄̂𝑚(𝑠𝑚,𝑡, 𝑎
(𝑙)
𝑚,𝑡) = 𝝎(𝑙)⊤

𝑚,𝑡 𝝓
(𝑙)(𝑠𝑚,𝑡, 𝑎

(𝑙)
𝑚,𝑡), (23)

where 𝑎(𝑙)𝑚,𝑡 is the 𝑙th component of the action space , 𝝎(𝑙)
𝑚,𝑡 are the

parameters associated with action 𝑎(𝑙)𝑚,𝑡, and 𝝓(𝑙)(⋅, ⋅) is a vector of basis
functions. In this paper, we propose to use radial basis functions (RBFs)
of the form 𝑒(−(𝑥−𝑥𝑐 )2∕𝜎2), where 𝑥 is a generic variable1 of the state 𝑠, 𝑥𝑐
s a generic (and constant) center related to the generic variable 𝑥, and

is the standard deviation of the RBFs, forming the following feature
ector
(𝑙)(𝑠𝑚,𝑡, 𝑎

(𝑙)
𝑚,𝑡) =

[

1, 𝑃 𝑃𝑉
𝑚,𝑡 , 𝑒

−(𝑉 𝑚,𝑡−𝑉𝑐1 )
2∕𝜎2 , 𝑒−(𝑉 𝑚,𝑡−𝑉𝑐2 )

2∕𝜎2 ,… , 𝑒−(𝑉 𝑚,𝑡−𝑉𝑐𝜅 )
2∕𝜎2

]⊤
, (24)

where 𝜅 corresponds to a positive number that indicates the total num-
ber of RBFs used. Based on this definition, notice that 𝝓(𝑙)(𝑠𝑚,𝑡, 𝑎

(𝑙)
𝑚,𝑡) ∶

 ×  → R(𝜅+2), and that 𝜙(𝑠, 𝑎) ∶  ×  ×  → R𝑓 , where 𝑓 =
(𝜅 + 2) × | | × ||. Therefore, as the function approximation 𝝓(𝑠, 𝑎) is
a collection of feature vectors of the form shown in (24), specifically,
when constructing 𝝓(𝑠, 𝑎) for the pair (𝑠𝑚,𝑡, 𝑎

(𝑙)
𝑚,𝑡), the remaining terms of

1 For instance, in our state definition in Section 4.1, 𝑥 can be either 𝑃 𝑃𝑉
𝑚,𝑡

r 𝑉 .
𝑚,𝑡
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Algorithm 1: LPSI Algorithm used by PV Agent 𝑚 to learn 𝝎𝑚 and
approximate the action-value function 𝑄̂𝑚(𝑠, 𝑎).
Input:

𝑚 : Transition samples for PV Agent 𝑚
𝝓(⋅, ⋅) : RBFs approximation
𝛾 : Discount factor
𝜀 : Small threshold value
𝑐 : Small number
utput:
𝝎𝑚: updated parameter vector to approximate 𝑄̂𝑚(𝑠, 𝑎) as

𝝓(𝑠, 𝑎)⊤𝝎𝑚.
Initialize 𝝎𝑚,−1 = 𝟎𝑓 and 𝑘 = 0
hile ||𝝎𝑚,𝑘+1 − 𝝎𝑚,𝑘|| > 𝜀 do

Initialize 𝑩0 = 𝑐𝑰𝑓×𝑓 , 𝒃0 = 𝟎𝑓 , 𝑖 = 0
for (𝑠, 𝑎, 𝑟, 𝑠′) ∈ 𝑚 do

𝑎′ = arg max𝑎∈𝝓(𝑠, 𝑎)⊤𝝎𝑚,𝑘
𝑩𝑖 = 𝑩𝑖−1 + 𝝓(𝑠, 𝑎)(𝝓(𝑠, 𝑎) − 𝛾𝝓(𝑠′, 𝑎′))⊤
𝒃𝑖 = 𝒃𝑖−1 + 𝑟𝝓(𝑠, 𝑎)
𝑖 = 𝑖 + 1

𝝎𝑚,𝑘 = 𝑩−1
|𝑚|

𝒃
|𝑚|

𝑘 = 𝑘 + 1
Set 𝝎𝑚 = 𝝎𝑚,𝑘

𝝓(𝑠, 𝑎) for all 𝑎 ∈  different from 𝑎(𝑙)𝑚,𝑡 and time steps different from
∈  are set to 𝟎𝜅+2, as shown next

(𝑠, 𝑎) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝟎𝜅+2
⋮

𝝓(𝑙)(𝑠𝑚,𝑡, 𝑎
(𝑙)
𝑚,𝑡)

⋮
𝟎𝜅+2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑓 . (25)

Based on this definition, the LPSI algorithm shown in Algorithm 1 is
sed to learn parameters 𝝎𝑚 ∈ R𝑓 to approximate 𝑄̂(𝑠, 𝑎). Notice that

Algorithm 1 requires as input a collection of transition samples 𝑚.
The procedure used by each PV Agent 𝑚 to obtain these collections of
samples is explained next.

4.6. Overview of the proposed RL approach

The proposed RL approach builds on the agent-based architecture
shown in Fig. 2 and follows the step-by-step procedure presented in
Algorithm 2, implemented over a rolling time horizon strategy. Ini-
tially, the time horizon is divided into larger size time steps 𝑡ℎ ∈ ℎ,
.g., ℎ can be a set of time in hours, while  a granular partition
f each hour. In other words, if the duration between two time steps
∈  is 15 min, i.e. 𝛥𝑡 = 0.25 h, thus set  will have a total

f four partitions, i.e.,  = {𝑡ℎ, 𝑡ℎ + 𝛥𝑡, 𝑡ℎ + 2𝛥𝑡, 𝑡ℎ + 3𝛥𝑡}. By doing
his, the RL algorithm is executed each 𝑡ℎ ∈ ℎ, while decisions are
aken for the next time steps  = {𝑡ℎ, 𝑡ℎ + 𝛥𝑡,… , 𝑡ℎ + (𝑛 − 1)𝛥𝑡},

where 𝑛 is the number of partitions. This approach reduces the need
of a long-term forecast of PV generation by PV Agents, as well as the
need of advanced computational infrastructure to execute Algorithm
1. Additionally, limiting the LPSI algorithm to take decisions only for
a few future time steps allow the proposed RL approach to adapt to
changes in the system dynamics.

According to Algorithm 2, the following procedure is executed to
earn parameters 𝝎𝑚,𝑡ℎ , which are used to take the optimal actions 𝑎∗𝑚,𝑡
or 𝑡 ∈  as 𝑎∗𝑚,𝑡 = arg max𝑎∈𝝓(𝑠𝑚,𝑡, 𝑎)⊤𝝎𝑚,𝑡ℎ . In 𝑡ℎ, for each time step
𝑡 ∈  : Firstly, each PV Agent 𝑚 either chooses a random action from
set  or the best action obtained using the current estimation of 𝝎𝑚,𝑡ℎ
also known as 𝜖-greedy). In a real implementation, this procedure is
one in parallel by all PV Agents 𝑚, using only its local computational
nfrastructure, as shown in Fig. 2. Secondly, and once all PV Agents
ave individually proposed one action, they share this information with
6

r

Algorithm 2: RL-Based Approach used to define the optimal dispatch
power of the PV Agents.
Input:

𝐽 : Maximum number of iterations
𝜖0 : Parameter to control exploration
𝜂 : Decay rate to control exploration

Output:
𝝎𝑚,𝑡ℎ : updated parameter vectors for each 𝑡ℎ ∈ ℎ
𝑎∗𝑚,𝑡: Optimal actions to implement for each 𝑡 ∈ 

Initialize 𝑗 = 0, 𝝎𝑚,𝑡ℎ = 0, ∀𝑚 ∈  , 𝑡ℎ ∈ ℎ,
for 𝑡ℎ ∈ ℎ do

Approximate action-value function as follows: while j < J do
𝜖𝑗 = min{0.05, 𝜖0∕(1 + 𝑗𝜂)}
for 𝑡 ∈  do

for 𝑚 ∈  do
if 𝜖𝑗 < 𝜉 then

𝑎𝑚,𝑡 = random(𝑎 ∈ )
else

𝑎𝑚,𝑡 = arg max𝑎∈𝝓(𝑠𝑚,𝑡, 𝑎)⊤𝝎𝑚,𝑡ℎ

𝑉 𝑚,𝑡+1 ← DS Agent(𝑎𝑚,𝑡, 𝑠𝑚,𝑡)
for 𝑚 ∈  do

𝑟𝑚,𝑡 ← 𝑚,𝑡(𝑠𝑚,𝑡, 𝑎𝑚,𝑡, 𝑠′𝑚,𝑡) 𝑚 = 𝑚 ∪ (𝑠𝑚,𝑡, 𝑎𝑚,𝑡, 𝑠′𝑚,𝑡, 𝑟𝑚,𝑡)
𝑠𝑚,𝑡 = 𝑠′𝑚,𝑡
𝝎𝑚,𝑡ℎ ← Execute Algorithm 1

Define optimal actions as follows:
for 𝑡 ∈  do

for 𝑚 ∈  do
𝑎∗𝑚,𝑡 = arg max𝑎∈𝝓(𝑠𝑚,𝑡, 𝑎)⊤𝝎𝑚,𝑡ℎ

the DS Agent, which uses the transition model explained in Section 4.4.
Thirdly, the output information from this step (i.e., the voltage magni-
tude estimation 𝑉𝑚,𝜙,𝑡+1, see also Fig. 2) is shared with each PV Agent,
and it is used to estimate the reward 𝑟𝑚,𝑡 and construct the next state
𝑠′𝑚,𝑡, as explained in Section 4.3 and Section 4.4. Finally, each PV Agent
𝑚 updates its collection of samples 𝑚 and improves its current approx-
imation of 𝝎𝑚,𝑡ℎ by executing Algorithm 1. This procedure is done until
a maximum number iterations 𝐽 is reached. Notice in Algorithm 2 that
as the number of iterations increases, parameter 𝜖𝑗 decreases, reducing
the chance of selecting random actions, thus allowing controlling the
balance between exploration and exploitation. Additionally, in case
there is a change in the distribution system topology, the DS Agent
will be aware. Thus, updating the estimation of 𝑉𝑚,𝜙,𝑡+1, as explained
in Section 4.4.

5. Results and discussion

In this section, simulation results are presented. Comparisons with
the optimal solution of the centralized PV dispatch formulation in
Section 2 are also presented.

5.1. Simulation setup

The proposed RL approach has been implemented in Python lan-
guage and executed on a notebook with a processor Intel Core i7 and
16 GB RAM memory. The unbalanced 25-bus system shown in Fig. 4 is
used, load consumption per node, as well as resistance and reactance
data, can be found in [34].2 The load level per time step is shown

2 To increase the number of voltage issues in the distribution system, the
esistance/reactance ratio has been increased by a factor of 3.
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in Fig. 5. In total, three PV Agents are considered, located at nodes
𝑚 = 13, 17, 25, with a nominal capacity of 1500 kW, 1800 kW, and
2000 kW, respectively. The irradiance profile used for simulations is
shown in Fig. 5. All PV inverters are assumed to operate with a unity
power factor. The nominal voltage of the distribution system in Fig. 4
is 4.16 kV, set up to a value of 1.03 p.u. to avoid undervoltage prob-
lems during the peak consumption, while the minimum and maximum
voltage magnitude level have been defined as 0.90 p.u. and 1.10 p.u.,
respectively. The base power used for the power flow formulation and
the state representations is 1000 kVA.

Regarding the RL algorithm, six RBFs are used for the voltage
magnitude representation shown in (25), with centers located at 𝑉𝑐𝜅 =
{0.90, 0.94, 0.98, 1.02, 1.06, 1.10}. The remaining parameters are set
s 𝛾 = 0.95, 𝜖0 = 0.5, 𝑐 = 0.1, 𝜎 = 0.1, 𝜀 = 1 × 10−3, 𝛿𝑉 = 10 × 105

nd 𝛿 = 500. The action space  is discretized using 𝛥 = 0.05. The
aximum number of sample transitions that can be stored in 𝑚 is set

o 2000, while the maximum number of iterations for Algorithm 2 is
et to 𝐽 = 1000.

.2. Validation and comparison

Fig. 6 shows the learning results obtained after executing Algorithm
for hour 𝑡 = 48 (i.e., 12:00). As each hour is discretized into

horter time steps of 𝛥𝑡 = 0.25 h, Algorithm 2 provides the optimal
ctions 𝛥𝑃𝑉 𝑃𝑉

𝑚,𝑡 for time steps 𝑡 =12:00, 12:15, 12:30, and, 12:45.
ig. 6(a) presents the typical learning curve obtained when training RL
lgorithms, in which it is possible to observe how the reward improves
ver the learning process. As described in Algorithm 2, at the beginning
f the learning process, as the actions proposed by the PV Agent
re defined randomly, lower (negative) reward values are obtained.
evertheless, as more and more samples are added by the PV Agents to

he set 𝑚, the estimation of the parameters 𝝎𝑚,𝑡ℎ improves, leading to
he PV Agents to propose decisions that receive higher reward values.

Due to the randomness associated with the exploration of the state–
ction space during the learning process, different estimation of param-
ters 𝝎𝑚,𝑡ℎ can be obtained after convergence in different executions.
s a consequence, different optimal actions can also be defined. To
ssess this, Fig. 6(b)–(c) shows the mean and the standard deviation
f the rewards obtained by each of the PV Agents over five different
xecutions. As expected, higher standard deviations are observed at
he beginning of the learning process due to the exploration process.
evertheless, as the learning process continues, convergence to higher

eward actions is attained. In this case, observe that even at the end of
he learning process the mean does not converge to a single value (and
hus the standard deviation is different than zero). This is due to the
act that exploration is never finished, i.e., 𝜖𝑗 never becomes zero. This
s done to continuously improve the estimation of parameters 𝝎𝑚,𝑡ℎ ,
llowing the PV Agent improving the current best solution (exploitation
rocess), perhaps eventually reaching the optimal solution.

To assess the quality of the solutions obtained in different exe-
utions of the proposed RL approach, comparisons are presented in
able 1 for each PV Agent. In terms of actions 𝛥𝑃 𝑃𝑉𝑚,𝑡 , all PV Agents
ere able to achieve the optimal solution in at least one execution.
he optimal solutions provided in Table 1 were obtained after solving
he centralized model presented in Section 2 using a continuous and a
iscrete NLP formulation. As expected, the optimal solutions obtained
y the proposed RL approach enforce the voltage magnitude within the
equired limits. Notice in Table 1 that although the optimal solution is
ttained by the PV Agents in at least one execution, different voltage
agnitude results are obtained when compared with the optimal so-

ution provided by the NLP formulation. This is due to the fact that,
or instance, PV Agent 13 may have obtained the optimal solution,
hile the remaining PV Agents may have converged to a quasi-optimal

olution. As a result, different voltage magnitude profiles are observed.
n terms of the worst solutions obtained, notice that they differ from the
7

ptimal solution in curtailing more PV power than necessary to enforce
oltage magnitude regulation. In this case, for the worst solutions, PV
gents 13, 17, and 25, curtail 1.23%, 3.65%, and 2.47%, respectively,
ore than the optimal solution. Nevertheless, when comparing the

entralized NLP formulation, the main advantage of the proposed RL
pproach relies on how good quality solutions can be attained in a
istributed fashion, performing computations locally at the PV Agents
nd by sharing limited information.

.3. Computational time assessment

In order to be able to implement the proposed RL approach, the total
omputational time required for the PV Agents to achieve convergence
ust fit within the time step discretization of the rolling horizon

trategy used, which in this case is 1 h (𝛥𝑡ℎ = 1 h). To assess this, the
all-clock time of the proposed RL approach was measured, resulting in
n average time per iteration (of Algorithm 2) lower than 2 s, and in an
verage total time lower than 32 min (all PV Agents perform computa-
ions in parallel). As these average results are way below the time step
iscretization of 1 h, the proposed RL approach can be implemented to
perate in real-time. Notice that the most computationally expensive
peration within the proposed approach corresponds to the last step
f Algorithm 1, in which the inverse of matrix 𝑩

|𝑚| ∈ R|𝑚| needs to
be calculated to estimate parameters 𝝎𝑚,𝑘. The inversion of this matrix
can be avoided by using the Sherman–Morrison formula, which allows
to estimate it iteratively, as explained in [27]. As expected, the total
wall-clock of the proposed RL approach is much higher than the time
required to solve the centralized model (which is on average around
2 min). This is due to the fact that if all the information is available to
the centralized DS agent (including all the PV generation forecasts),
the computational time will depend on the size of the distribution
network (i.e., required to solve the optimal power flow formulation),
whereas the proposed decentralized approach the total computational
time depends on the number of PV Agents involved.

5.4. Full-time horizon operation

To assess the effectiveness of the proposed RL approach for different
irradiance and consumption conditions, continuous simulations were
executed for a time horizon of 24 h considering the irradiance and load
level consumption data shown in Fig. 5. Obtained results are discussed
based on Fig. 7, which presents the rewards for all PV Agents over
the learning process for hours at 6:00, 7:00, and 8:00. These hours are
selected as the irradiance increases as time passes. In terms of actions,
as the irradiance is relatively low at 6:00, curtailment actions are not
required to enforce voltage magnitude limits. This can be seen in Fig. 7
as the maximum reward obtained by the PV Agents is zero, which
necessarily implies that no PV curtailment is performed. Nevertheless,
as the irradiance conditions change during the next hours at 7:00 and
8:00, curtailment actions might be required to enforce voltage magni-
tude limits. In these cases, as shown in Fig. 7, the proposed RL approach
is able to converge to good quality solutions when compared with the
optimal reward (obtained using the centralized NLP formulation). In
operational terms, the total PV curtailment for PV Agents 13, 17 and
25, was estimated to be 1.6%, 2.13%, and 0.76%, respectively, higher
than the centralized optimal solution, which validated the effectiveness
of the proposed RL approach to obtain good quality actions during
continuous operation. Notice that all the defined curtailment actions
during continuous operation enforce all voltage magnitude constraints
during the full-time horizon, as shown in Fig. 8.

Finally, notice in Fig. 7 that in case of continuous operations, once
the optimal curtailment actions are defined for time step 𝑡ℎ, parameters
𝝎𝑚,𝑡ℎ+1 for time step 𝑡ℎ+1 are initialized as zero. This is done as the
LPSI algorithm is biased towards the current system’s state, and thus,
if 𝝎𝑚,𝑡ℎ are used as an initial approximation for 𝝎𝑚,𝑡ℎ+1 , exploration will
be limited to the vicinity of the actions obtained after convergence in

time step 𝑡ℎ, leading even to unfeasible solutions.
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Fig. 4. 25-node unbalanced distribution system test used with PV Agents located at nodes 𝑚 = 13, 17 and 25.
Fig. 5. Irradiance in kW∕m2 vs Time (in 𝛥𝑡 = 15 min time steps). Load level vs Time. Note: All active and reactive consumption power for each node is multiplied by this load
level factor, where a load level factor of 1.0 is equivalent to the data provided in [34].
Table 1
Comparison of the obtained results for the PV Agents over five executions for the time steps at 12:00, 12:15, 12:30, and, 12:45.

PV agent 13 PV agent 17 PV agent 25

Control actions (𝛥𝑃 PV
𝑚,𝑡 ) [%]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
Best 0.50 0.55 0.55 0.5 0.45 0.45 0.40 0.40 0.35 0.35 0.35 0.30
Worst 0.55 0.55 0.60 0.50 0.50 0.50 0.45 0.50 0.35 0.4 0.35 0.35
Optimal control 0.50 0.55 0.55 0.5 0.40 0.45 0.45 0.40 0.35 0.35 0.35 0.30
Optimal Controla 0.46 0.51 0.50 0.47 0.39 0.42 0.41 0.38 0.31 0.35 0.33 0.30

Voltage Magnitude (max𝜙 { 𝑉𝑚,𝜙,𝑡 } ) [p.u.]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
Best 1.0891 1.0916 1.0931 1.0910 1.0910 1.0932 1.0989 1.0960 1.0959 1.0977 1.0963 1.0987
Worst 1.0920 1.0897 1.0881 1.0960 1.0860 1.0905 1.0942 1.0876 1.0950 1.0934 1.0976 1.0940
No control 1.1686 1.1753 1.1707 1.1633 1.1596 1.1656 1.1613 1.1544 1.1415 1.1453 1.1416 1.1361
Optimal control 1.0945 1.0950 1.0931 1.0960 1.0960 1.0962 1.0942 1.0967 1.0957 1.0991 1.0969 1.0987
Optimal controla 1.0998 1.1000 1.1000 1.0998 1.0994 1.1000 1.1000 1.0997 1.1000 1.1000 1.1000 1.0993

Total PV power curtailed [%]

Best 39.53 32.89 24.72
Worst 40.76 35.78 27.19
Optimal Control 39.53 32.13 24.72
Optimal controla 36.56 29.90 24.23

Total Reward [-]

Best −1050.0 −850.0 −680.0
Worst −1100.0 −975.0 −725.0
Optimal control −1050.00 −850.0 −680.0

aOptimal solution solving the continuous NLP formulation in Section 2.
8
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Fig. 6. Rewards for 1000 iterations for the PV Agents 13, 17, and 25 at 12:00. (a) Rewards for all PV agents in one execution. (b), (c) and (d) Mean and standard deviation of
rewards for PV Agents 13, 17, and 25, respectively, over five different executions.
Fig. 7. Rewards for the PV Agents 13, 17, and 25 at 6:00 (from iteration 0 to 1000), 7:00 (from iteration 1000 to 2000), and at 8:00 (from iteration 2000 to 3000), when
executed in continuous operation for the full-time horizon of 24 h. The red dashed lined represents the optimal reward obtained when using the centralized NLP formulation.
5.5. Considering PV inverters’ reactive power absorption

To assess the effect of the PV inverters reactive power absorption
into the proposed RL-based approach, Algorithm 2 was executed for
9

hour 𝑡 = 48 (i.e., 12:00) considering all PV inverters operating with a
power factor of 0.95 (lagging). The remaining parameters are defined
as in Section 5.1. A comparison of the obtained results for this case are
presented in Table 2.
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Fig. 8. Voltage magnitude during the full-time horizon using the proposed RL approach. Notice that all actions implemented guaranteed that voltage magnitude constraints are
enforced, when compared with the voltage magnitude profile when no control is applied (gray lines).
Table 2
Comparison of the obtained results for the PV Agents over five executions for the time steps at 12:00, 12:15, 12:30, and, 12:45 considering a
lagging power factor of 0.95.

PV agent 13 PV agent 17 PV agent 25

Control actions (𝛥𝑃 PV
𝑚,𝑡 ) [%]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
Best 0.40 0.45 0.50 0.45 0.35 0.40 0.30 0.40 0.25 0.30 0.25 0.20
Worst 0.40 0.50 0.55 0.40 0.30 0.50 0.40 0.30 0.25 0.30 0.25 0.20
Optimal control 0.40 0.50 0.45 0.45 0.35 0.40 0.35 0.35 0.25 0.30 0.25 0.20

Voltage magnitude (max𝜙 { 𝑉𝑚,𝜙,𝑡 } ) [p.u.]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
Best 1.0968 1.0954 1.0920 1.0934 1.0952 1.0939 1.0991 1.0920 1.0968 1.0939 1.0978 1.0989
Worst 1.0968 1.0932 1.0920 1.0960 1.0996 1.0851 1.0945 1.0983 1.0964 1.0978 1.0978 1.1000
Optimal control 1.0968 1.0932 1.0986 1.094 1.0952 1.0939 1.0986 1.0943 1.0963 1.0951 1.0984 1.0984

Total PV power curtailed [%]

Best 34.59 27.19 18.60
Worst 35.88 29.81 18.60
Optimal control 34.59 27.14 18.60

Total reward [-]

Best −900.0 −730.0 −500.0
Worst −925.0 −780.0 −525.0
Optimal control −900.00 −725.0 −500.0
As can be seen in Table 2, all PV Agents were able to obtain at least
nce (over five different executions) the optimal (centralized) solution,
howing the effectiveness of the proposed RL-based approach to handle
V inverters absorbing reactive power. In terms of the worst obtained
olution, notice that the control actions were able to enforce the voltage
agnitude constraint. In operational terms, the maximum difference

among the three PV Agents) for the total active power curtailment
s 2.67%, when compared with the optimal control case. As expected,
hen increasing the amount of reactive power that the PV inverters can
bsorb, by operating at lower (lagging) power factor values, the total
mount of PV power curtailed is reduced, as shown in Table 3. Based
10
on the error shown in parenthesis in all the power factor scenarios
presented in Table 3, the proposed RL-based approach was able to reach
good quality solutions, when compared with the optimal centralized
solution, showing its effectiveness.

5.6. Scalability assessment

To assess the scalability features of the proposed RL approach, a
new case of study is presented in this section considering the same
distribution system in Fig. 4 and seven PV Agents. In the proposed RL
approach, scalability is related to the total number of PV Agents and
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Fig. 9. Rewards for 800 iterations for all the PV Agents at 12:00 in one execution. (a) Rewards for PV Agents 8 and 13. (b) Rewards for PV Agents 15 and 17. (c) Rewards for
PV Agents 19, 22 and 25.
Table 3
Total power curtailed (worst solution obtained over five different execu-
tions) for the PV Agents for the time steps at 12:00, 12:15, 12:30, and,
12:45 operating at different power factor values.
𝑝𝑓 Total power curtailed [%]

PV Agent 13 PV Agent 17 PV Agent 25

1.0 40.76 (1.6) 35.78 (2.13) 27.19 (0.76)
0.98 38.25 (2.42) 30.51 (2.08) 22.31 (1.29)
0.95 35.88 (1.29) 29.81 (2.67) 18.60 (0.0)
0.90 32.08 (0.05) 27.34 (3.85) 14.90 (1.28)

not to the size (i.e., number of nodes) of the distribution network. The
PV Agents in this case are located at nodes 𝑚 = 8, 13, 15, 17, 19, 22
and 25, with nominal capacity of 1200, 800, 700, 600, 1000, 1000,
and 1400 kW, respectively. The remaining parameters are defined as
in Section 5.1.

Fig. 9 shows the rewards for 800 iterations for all the PV Agents
at 12:00. In this case, 800 iterations represent approximately 60 min
of wall-clock computational time. As can be seen in Fig. 9, all PV
Agents reach good quality solutions (in terms of the reward) in less
than 200 iterations. These good quality solutions are characterized by
enforcing the voltage magnitude constraints during the next time step
(𝛥𝑡ℎ = 1 h). However, they differ from the optimal centralized solution.
Table 4 shows a comparison of the obtained curtailment actions after
the 800 iterations in Fig. 9 and the centralized optimal solution for PV
Agents 8, 17 and 22. The reasoning behind the difference between the
solution provided by the RL approach and the centralized solution is
due to the lack of shared information between the PV Agents. As in
the proposed RL approach actions are defined only considering local
information (i.e. voltage magnitude at the point of connection of the
PV system with the distribution network), disregarding the curtailment
actions from other PV Agents, the centralized solution may not be
easily obtained during the exploration process. This can be seen during
the exploration process in Fig. 9 after iteration 500, in which the
quality of the overall actions is reduced. This reduction is due to an
action taken by one PV Agent that rendered infeasible the already
defined actions of other PV Agent (for instance, if they are in the same
11
feeder). This issue can be solved by developing a multi-agent approach
in which all PV Agents are aware of the actions taken by other PV
Agents and their impact on the operation of the distribution network.
Nevertheless, this will require the deployment of a communication
infrastructure.

6. Conclusion

In this paper, a reinforcement learning (RL)-based approach to
optimally dispatch PV inverters in distribution networks was presented.
The proposed approach takes advantage of a decentralized architecture
that enables all computational processes to be performed locally by
the PV Agents. To avoid the computational burden usually associated
with Markov Decision Processes (MDPs) with continuous state and
action spaces, a rolling horizon strategy was used, together with a
computationally efficient learning algorithm used to model the action-
value function. Results showed that in several executions, the proposed
RL approach converged to the optimal solution, and in the worst case,
converged to solutions with an excess of PV curtailment lower than
2.5%. However, in both cases, it was found that the solution still
enforces voltage magnitude limits. Continuous operation of the pro-
posed RL approach, as well considering the PV inverters operating with
different lagging power factor values, was also tested, obtaining similar
results. Regarding scalability, the proposed RL approach can provide
good quality solutions, and that still enforce the voltage magnitude
constraints. Nevertheless, to obtain the global optimal solution, PV
Agents must be aware of the control actions performed by other agents
and their impact on the distribution network. This implementation will
require that the PV Agents share information among themselves, requir-
ing the deployment of communication infrastructure. Finally, notice
that compared with other distributed optimization-based approaches,
RL approaches offer the advantage of straightforward implementation
while ensuring convergence to good quality solutions. Moreover, RL
approaches do not rely on strict convexity assumptions as long as
linear parametric models are used to approximate the action-value
function.
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Table 4
Comparison of the obtained results for PV Agents 8, 17 and 22, for the time steps at 12:00, 12:15, 12:30, and, 12:45 after iteration 800 for
the scalability assessment.

PV agent 8 PV agent 17 PV agent 22

Control actions (𝛥𝑃 PV
𝑚,𝑡 ) [%]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
RL solution 0.3 0.3 0.50 0.3 0.6 0.6 0.6 0.6 0.25 0.30 0.25 0.20
Optimal control 0.2 0.25 0.2 0.2 0.55 0.55 0.55 0.55 0.35 0.40 0.40 0.35

Voltage magnitude (max𝜙 { 𝑉𝑚,𝜙,𝑡 } ) [p.u.]

𝑡 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45 12:00 12:15 12:30 12:45
RL solution 1.087 1.0920 1.090 1.0861 1.0814 1.0889 1.0872 1.0826 1.0940 1.0990 1.0968 1.0926
Optimal control 1.0979 1.0968 1.0982 1.0961 1.0962 1.0965 1.0977 1.0962 1.0984 1.0971 1.0965 1.0966

Total PV power curtailed [%]

RL solution 22.21 38.07 37.01
Optimal control 16.09 34.90 40.61

Total reward [-]

RL solution −600.0 −1200.0 −1200.0
Optimal control −425.0 −1100.0 −750.0
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