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Abstract

The Language Server Protocol (LSP) is a protocol that standardizes the way Inte-
grated Development Environments (IDEs) and text editors communicate with language
servers to provide language-specific features like autocompletion, go-to-definition, and
diagnostics. While LSPhas beenwidely adopted bymainstreamprogramming languages,
its adoption in dependently typed languages has been slower due to the unique chal-
lenges posed by their complex type systems and interactive theorem proving capabilities.
This thesis explores the potential of LSP for enhancing the development of dependently
typed programs, focusing on the Agda programming language. We present the imple-
mentation of a prototype LSP server for Agda that leverages scope checking to provide
fast and responsive IDE features. We evaluate the performance of the prototype and
compare its feature completeness with existing Agda development tools. Our findings
demonstrate that scope checking can serve as a foundation for implementing efficient
LSP features in Agda, offering a promising direction for improving the tooling and over-
all development experience for dependently typed languages.
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Chapter 1

Introduction

The adoption of programming languages is increasingly influenced by the quality of their
tooling (Meyerovich and Rabkin 2013). What drives developer adoption is no longer solely
based on a language’s technical merits. Today, the quality of its tooling ecosystem plays
a critical role in attracting and retaining users. This is especially true in the domain of in-
teractive theorem proving languages like Coq, Lean, and Agda, where efficiency and user
experience directly translate into productive research and development. One of the most
important components of good tooling is the level of support provided by Integrated Devel-
opment Environments (IDE). Good IDE integration provides the developer with all sorts
of editor services, such as syntax highlighting, auto-completions, inline diagnostic messages
and automated refactorings.

Historically, IDE and text editor integration for programming languages was a very time
consuming process for language tooling developers. Each IDE and text editorwould have it’s
own bespoke protocol, DSL or plugin system in which the integration would have to be writ-
ten in. So a large subset of the programming language would have to be rewritten to support
an IDE. And since each IDE had their own plugin system, a different implementation would
be required for each IDE. This would be very time consuming but also very prone to errors,
as each implementation could have subtle implementation differences. This is illustrated in
Figure 1.1.

Python

Haskell

Agda

VSCode

Emacs

Vim

Figure 1.1: Old way of integrating languages with IDEs: Each language requires a separate
integration for each IDE, resulting in a complex and error-prone process with lots of redun-
dant work. The choice of languages and editors is just for illustrative purposes.

In 2016, Microsoft introduced the Language Server Protocol (LSP) to standardize the
communication between code editors and language servers. A language server is a program
that analyzes source code and provides language-specific features such as auto-completion,
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1. INTRODUCTION

go-to-definition, and error diagnostics. LSP established a common protocol based on JSON-
RPC, allowing language servers to communicate with any compatible editor or IDE, regard-
less of its specific architecture or plugin system. By adopting LSP, editors would implement
a client that understands the protocol, while language maintainers would only need to im-
plement a single server that provides LSP-compliant information, as illustrated in Figure 1.2.
This revolutionized the language integration process. Eliminating the need to rewrite lan-
guage support for each individual editor saves development time and resources. Now virtu-
ally all moderately popular programming languages have at least one LSP implementation.

Python

Haskell

Agda

LSP

VSCode

Emacs

Vim

Figure 1.2: New way of integrating languages with IDEs using LSP: Each language offers
an implementation of a language server which follows the LSP protocol. Each IDE or editor
implements a client for the LSP protocol. This significantly reduces the number of direct
integrations needed, simplifying the process and reducing errors.

But there is an exception to this, dependently typed languages are notoriously lacking
behind in LSP adoption. Out of the most well known dependently typed languages Agda,
Coq, Idris2 andLean, only Idris2 (Idris Community 2024a) andLean (LeanProver 2024) have
LSP support, and they only support a small subset of the full LSP capabilities. This is likely
due to the complex nature of these languages, which makes implementing a comprehen-
sive language server a challenging task. Dependently typed languages often have intricate
type systems and advanced features that require sophisticated analysis, this makes them
slower at type-checking than typical programming languages. They also support advanced
interactions with the type-checker that are not found in mainstream languages, making it
challenging to provide efficient and interactive IDE support.

One example of such a dependently typed language isAgda, which has gainedpopularity
in the research community due to its powerful type system and interactive development
environment. Being dependently typed means that Agda allows types to depend on values,
enabling the expression of more precise properties and invariants within the type system
itself. This allows, for example, expressing mathematical proofs in the language. In this
thesis, I focus on Agda as a representative example of a dependently typed language, but
the insights gained can be applied to other languages in this domain as well.

At the time of writing, when someone opens an Agda file in most IDEs or text editors,
they are met with monocolored text, no completions, no diagnostics while typing and no in-
teractivity. This is a stark difference fromwhat a typical experience would be for mainstream
languages. Agda has no LSP implementation, but Agda does have a more unique approach
to editor integration. Agda’s most well supported editor is Emacs, where a dedicated mode
called “agda-mode” (Coquand, Takeyama, and Synek 2006) offers some features like those
found in LSP-backed editors. For example, agda-mode provides advanced syntax highlight-
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1.1. Agda LSP

ing that makes use of typing information. However, the program needs to be type-checked
first to benefit from this feature, and the user must prompt it, it does not happen automati-
cally. Most importantly it provides a unique command-based interaction loop where users
interact directly with the type-checker by automatically placing and filling “holes” in the
active source code. This is a unique feature for languages with powerful typesystems like
Agda. Some examples of this workflow:

• Type inference: Agda allows users to leave placeholders, known as “holes”, in their
code to represent incomplete or unknown expressions. These holes can be used for
both type signatures and implementations. By leaving a hole, users can continue writ-
ing code without being blocked by incomplete details. Agda-mode interacts with the
type-checker to provide feedback on the expected type of each hole based on its con-
text. This guides users towards correct type annotations and helps them complete the
implementation incrementally.

• Interactive Program and Proof Editing: In Agda, programs and proofs are essentially
the same, both being constructions that satisfy types. Agda-mode leverages this by
allowing users to incrementally build both programs and proofs, suggesting possible
next steps based on type information and context. This facilitates an exploratory pro-
cess where developers can gradually refine their solutions while receiving immediate
feedback on the validity of each step.

• Goal-Directed Development: Whether you’re building a program or proving a the-
orem, Agda-mode supports a goal-oriented workflow. Instead of writing everything
at once, users can decompose a complex task into smaller, manageable goals (or sub-
goals). Agda-mode aids in navigating and tracking these subgoals, making it easier to
focus on individual parts of the problem while maintaining an understanding of the
overall structure.

1.1 Agda LSP
As part of this research, we implemented an experimental Language Server Protocol (LSP)
server for Agda. The LSP integration for Agda offers several features that significantly im-
prove the development experience for Agda programmers. These features include variable
renaming, diagnostic and removal of unused implicit arguments, and insertion of explicitly
used implicit arguments.

Variable renaming

Variable renaming is a crucial feature that allows programmers to change the name of a vari-
able throughout the codebase consistently. Consider the example in Figure 1.3

_*_ : Nat → Nat → Nat
zero * n = zero
(suc m) * n = n + (m * n)

(a) Before Refactoring

_*_ : Nat → Nat → Nat
zero * n = zero
(suc m) * x = x + (m * x)

(b) After Refactoring

Figure 1.3: Code before and after automated renaming of the n variable to x

Supposewewant to rename the variable n in the second clause to x. Manually performing
this transformation can be tedious and error-prone, especially when the function is large and
the variable is used in multiple places. The LSP server for Agda simplifies this process by
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1. INTRODUCTION

providing a rename refactoring feature. With a single action, the variable can be renamed
consistently throughout the code.

Implementing variable renaming can be challenging due to the need to handle scoping
rules, name shadowing, and ensuring the correctness of the transformation across the en-
tire codebase. Take another example where one of the variables is shadowed, as shown in
Figure 1.4.

Here, the variable outer in the function shadowExample shadows the top-level declaration
of outer. When renaming occurs, only the names referring to the internal variable should be
renamed.

outer : Nat
outer = 3

shadowExample : Nat → Nat
shadowExample outer = outer + 2

(a) Before Refactoring

outer : Nat
outer = 3

shadowExample : Nat → Nat
shadowExample x = x + 2

(b) After Refactoring

Figure 1.4: Code before and after automated renaming of outer variable to xwithout affecting
the shadowed outer declaration.

Diagnostic and removal of unused implicit arguments

Agda allows the use of implicit arguments, which are inferred by the compiler and do not
need to be explicitly provided by the programmer, although they can bemade explicit. How-
ever, sometimes implicit arguments may become unused, leading to unnecessary clutter in
the code. Consider the example in Figure 1.5.

id : {A : Set} → A → A
id {A} x = x

(a) Before Refactoring

id : {A : Set} → A → A
id x = x

(b) After Refactoring

Figure 1.5: Code before and after automated removal of the unused implicit argument A.

In this case, the implicit argument A is unused. The LSP server for Agda detects such
unused implicit arguments and provides a diagnostic message, underlining the declaration
with a yellow line and displaying themessage “Unused implicit variable”. Moreover, it offers
a quick fix that automatically removes the unused variable declaration.

Detecting and removing unused implicit arguments helps keep the code clean and main-
tainable. However, it requires careful analysis of the usage of variables throughout the pro-
gram. The LSP server for Agda handles this complexity by utilizing scope information to
know which implicit parameters are available in the given context and which ones are not
being used.

Insertion of explicitly used implicit arguments

In some cases, implicit arguments need to be used explicitly within the function body. Con-
sider the example in Figure 1.6.
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1.2. Research Objectives

appTwice : {A : Set} → {f : A → A} → A → A
appTwice x = f (f x)

(a) Before Refactoring

appTwice : {A : Set} → {f : A → A} → A → A
appTwice {f = f} x = f (f x)

(b) After Refactoring

Figure 1.6: Code before and after automated insertion of the explicitly used implicit argu-
ment f.

Here, we want to use the implicit parameter f explicitly to call it twice. However, f is not
declared in scope, so wemust make it explicit. The LSP server for Agda detects this situation
and offers a quick fix to make f explicit.

Inserting explicitly used implicit arguments can be tricky, as it requires knowing which
implicit variables are available within the context and which ones are already defined explic-
itly. Having the LSP server for Agda handle this automatically can smoothen the develop-
ment process.

1.2 Research Objectives
While agda-mode provides great interactivity, it still lacks basic functionality that would
be provided by an LSP compliant extension, such as inline auto-complete, hover informa-
tion and automatic renaming. However, this unique workflow raises the question: can the
strengths of agda-mode style workflows be combined with the wider reach and standard-
ized approach of LSP? This research aims to explore the potential of LSP for enhancing the
interactive development of dependently typed programs in general. This research will delve
deeper using Agda as a specific example, but the insights gained will be applicable to other
dependently typed languages due to the shared characteristics and challenges within this
domain.

Developing a prototype LSP server for Agda serves as a valuable approach to better un-
derstand the challenges and opportunities associated with integrating LSP support for de-
pendently typed languages. By implementing key LSP features and exploring their feasibil-
ity within the context of Agda, we can gain practical insights into the specific requirements,
limitations, and potential solutions. This hands-on experience will provide a foundation for
answering the main research questions and identifying strategies to effectively leverage LSP
for enhancing the development experience of dependently typed programs. The insights
gained from the prototype implementation will directly contribute to the field of language
server protocol integration for dependently typed languages.

Contributions

• We identify the key LSP features that are beneficial for programming in dependently
typed languages (Chapter 2).

• We investigate how other dependently typed languages integrate with LSP or their
IDEs, and what lessons can be learned from their approaches (Chapter 3).

• We explore how existing language implementation libraries can be utilized to build LSP
servers for dependently typed languages (Chapter 4).

• We identify the specific challenges and limitations encountered when implementing
LSP features for dependently typed languages (Chapter 5).

• We discuss strategies for balancing performance considerations with the need for com-
prehensive and accurate LSP features (Chapter 5).
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1. INTRODUCTION

• Wepropose potential strategies for overcoming these limitations and achieving efficient
LSP server implementations (Chapters 5 and 6).

• We implemented a prototype LSP server1 for Agda which includes features such as
auto-completions, find/go-to references, renaming and implicit parameter refactorings.

1https://github.com/willemstuijt/agda-lsp
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Chapter 2

Language Server Protocol

2.1 Overview of Language Server Protocol

The Language Server Protocol (LSP) is a standardized protocol that defines how program-
ming language features can be implemented and exposed to development tools, such as code
editors and IntegratedDevelopment Environments (IDEs). The primary purpose of LSP is to
provide a common interface between language-specific tools and various development envi-
ronments, enabling developers to access rich language features regardless of their preferred
editor or IDE.

LSP was first introduced byMicrosoft in 2016 as part of their efforts to improve the devel-
opment experience in Visual Studio Code (Microsoft 2023). The protocol was designed to be
language-agnostic and editor-agnostic, allowing for a more modular and flexible approach
to language tooling. Since its inception, LSP has gained widespread adoption across the soft-
ware development community, with numerous programming languages and development
tools implementing support for the protocol, namely: Visual Studio Code, JetBrains IDEs
such as IntelliJ and Fleet (JetBrains 2024), Vim (Shrestha 2024), and many others.

The development of LSP has been driven by the need to address the challenges associated
with traditional language tooling approaches. Prior to LSP, language features were often
tightly coupled with specific editors or IDEs, requiring developers to use a particular tool to
access advanced functionality. To support more editors or IDEs it would be often necessary
to rewrite a significant part of the frontend of a language. This fragmentation of language
tooling led to inconsistent user experiences and limited the ability of developers toworkwith
their preferred tools.

LSP aims to solve these problems by decoupling language features from the development
environment. As discussed in Section 2.2, LSP provides a standardized interface for commu-
nication between the language server and the client (editor or IDE). This enables language
tooling to be developed independently of the client, allowing for greater flexibility and inter-
operability. As a result, language servers can be reused across multiple development envi-
ronments, and clients can supportmultiple languageswithout the need for language-specific
integrations.

2.2 Core Components of LSP

The Language Server Protocol follows a client-server architecture, where the client is typi-
cally a code editor or an Integrated Development Environment (IDE), and the server is a
language-specific tool that provides language features. This separation of concerns allows
for a modular and extensible design, enabling language tooling to be developed indepen-
dently of the client.

7



2. LANGUAGE SERVER PROTOCOL

In the LSP architecture, the client communicates with the server using JSON-RPC, a
lightweight remote procedure call protocol that uses JSON as its data format. The client
sends requests to the server for various language features, such as code completion, hover
information, or code actions. The server processes these requests and sends back responses
containing the requested information or actions.

The communication between the client and the server is bidirectional, meaning that the
server can also send notifications to the client to provide updates on the state of the language
tooling. This could involve sending diagnostic messages to flag errors or warnings in the
code as soon as the semantic analysis phases are done, or providing real-time updates on
completion results as they become available, especially during lengthy calculations.

The Language Server Protocol defines a set of core features that language servers can
implement to provide rich language functionality to clients. These features include:

Navigation

Go to Definition and Find References are essential features that greatly enhance code navi-
gation capabilities. Go to Definition enables developers to jump directly to the definition of
a symbol, such as a function, class, or variable, by simply clicking on the symbol or using a
keyboard shortcut. This feature saves time and effort in navigating through large codebases
and understanding the implementation details of specific code elements. Find References
provides a comprehensive list of all the locations where a particular symbol is referenced
within the project. This feature is invaluable for understanding the usage and impact of a
symbol, as well as for performing code analysis tasks.

Renaming

Rename refactoring is a powerful feature that allows developers to safely rename symbols
across the entire project while ensuring that all references to the symbol are updated accord-
ingly. This feature helps maintain code consistency and prevents potential errors that may
arise from manual renaming.

Diagnostic Messages

Diagnostic messages in LSP are called Diagnostics. They play a crucial role in providing
developers with real-time feedback about potential issues in their code. Two key diagnostic
features are warnings for unused variables and fast error feedback.

Unused variable warnings help developers identify and eliminate unnecessary declara-
tions, improving code clarity andmaintainability. By highlighting variables that are declared
but never used, the language server can guide developers towards writing cleaner and more
efficient code.

Fast error feedback is essential for a smooth development experience, enabling develop-
ers to catch and fix errors early in the coding process. The language server can analyze the
code in real-time and provide immediate feedback on syntax errors, type mismatches, and
other common programming mistakes. This feature helps developers identify and resolve
issues quickly, reducing the time spent on debugging and improving overall productivity.

Completions

Code completion is a vital feature for enhancing developer productivity and facilitating code-
base exploration. It provides developers with suggestions for available functions, types, and
modules based on the current context, helping them discover and use relevant identifiers
quickly.

8



2.2. Core Components of LSP

Language servers can implement intelligent code completion by leveraging the semantic
understanding of the codebase. They can analyze the context inwhich the developer is typing
andprovide accurate and context-aware suggestions. This feature not only saves typing effort
but also helps developers explore the available APIs and discover new functionality.

Code completion can be further enhanced with additional information, such as parame-
ter hints, return types, and documentation snippets, to provide a more comprehensive and
informative coding experience.

Code Lens

Code Lens is a powerful feature that provides contextual information and actionable insights
directly within the editor. It can display relevant information and actions directly above or
below the corresponding code elements, offering a more intuitive and streamlined workflow
for developers. Some examples of the information that can be displayed in a Code Lens
include:

• Code Lens can show the type information for variables, parameters, and return val-
ues, making it easier to understand the expected types and catch potential type-related
issues.

• Code Lens can indicate the status of associated unit tests, showing whether the tests
are passing or failing, and providing quick access to run or debug the tests.

• Code Lens can display code metrics, such as cyclomatic complexity (a measure of the
number of linearly independent paths through a program’s source code) or lines of
code, helping developers assess the complexity and maintainability of their codebase
(McCabe 1976).

Code Actions

Code Actions offer automated code transformations and quick fixes for common program-
ming tasks. They can assist with tasks such as handling implicit arguments, suggesting code
improvements, and applying language-specific refactorings.

When the language server detects a particular code pattern or issue, it can provide a set
of Code Actions to the client. These actions appear as clickable suggestions or light bulbs in
the editor, allowing developers to apply the suggested changes with a single click.

Code Actions can range from simple transformations, such as adding missing imports or
removing unused variables, to more complex refactorings, like extracting a code block into
a separate function or converting between different coding styles.

Semantic Tokens

Editors like VSCode and Emacs rely on regular expressions or textmate grammars (Macro-
Mates Ltd. 2024) for syntax highlighting. These approaches work by matching patterns in
the code and applying colors based on predefined rules. While this method is sufficient for
simple languages, it falls short when dealing with more complex languages or advanced
coding constructs.

The limitations of regex-based syntax highlighting become evident in scenarios where
the meaning of a token depends on its context, scoping or type information. For example, in
many languages, a word might be a keyword in one context but a variable or function name
in another. Regular expressions alone cannot accurately distinguish between these cases,
leading to inconsistent or incorrect syntax highlighting.

This is where Semantic Tokens come into play. Semantic Tokens offer detailed seman-
tic information for syntax highlighting, enabling more accurate and context-aware coloring
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2. LANGUAGE SERVER PROTOCOL

of code elements. This feature provides an alternative to regular expressions and textmate
grammars for syntax highlighting, which may be challenging to implement for languages
with complex syntactic structures.

With Semantic Tokens, the language server can provide fine-grained semantic informa-
tion about each token in the code, such as its type (e.g., keyword, variable, function), scope
(e.g., local, global), and modifiers (e.g., static, readonly). The client can then use this infor-
mation to apply more sophisticated and meaningful syntax highlighting, improving code
readability and comprehension.

Other LSP Features

• Hover: This functionality displays contextual information about a symbol when it is
hovered over with the cursor, including documentation, type information, and other
relevant details. Hover information helps developers understand the purpose and us-
age of code elements without having to navigate away from their current context.

• Type Hierarchy: This feature visualizes the relationships between types, displaying
both super types (parent types) and sub types (child types). Type Hierarchy helps
developers understand the inheritance structure of classes and interfaces, making it
easier to navigate and comprehend complex type hierarchies.

• Signature Help: This feature displays information about function signatures and pa-
rameters, including their names and types, as function calls are typed. Signature Help
assists developers in understanding the expected arguments and their types, reducing
the chances of passing incorrect arguments or missing required parameters.

• Document Links: This feature detects and highlights links within a document, such
as URLs or file paths. Document Links enable developers to easily identify and navi-
gate to referenced resources, improving the discoverability and accessibility of related
information.

• Document Highlighting: This functionality highlights all occurrences of a selected
symbol within the current file. Document Highlighting helps developers quickly iden-
tify and locate all instances of a particular code element, making it easier to understand
its usage and impact throughout the file.

These features form the core of the Language Server Protocol and provide a foundation
for building rich language tooling experiences. Language servers can implement additional
features beyond this core set, depending on the specific needs and characteristics of the lan-
guage they support.

The modular nature of LSP allows for a gradual and incremental approach to implement-
ing language features. Language server developers can prioritize and implement the features
that are most relevant and impactful for their language, while also having the flexibility to
extend and customize the functionality as needed.

2.3 Importance of LSP Features According to Developers
Several studies have investigated the importance of various IDE features to developers. These
studies provide valuable insights into which features are most valued and how they con-
tribute to the overall development experience.

Amann et al. (2016) found that code completion was the most frequently used assistance
tool inMicrosoft’s Visual Studio IDE, followed by the build system, debugger, and navigation
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tools (Amann et al. 2016). This highlights the importance of features like code completion,
diagnostics, and code navigation in enhancing developer productivity and code quality.

Zayour and Hajjdiab (2013) emphasized the impact of modern IDE features such as In-
tellisense and code navigation on reducing accidental difficulties, particularly syntax errors
and code navigation challenges (Zayour and Hajjdiab 2013). This underscores the value of
LSP features that support code completion, error checking, and navigation in streamlining
the development process and improving overall efficiency.

Murphy et al. (2006) revealed that developers heavily rely on editors and specific views
within the Eclipse IDE, such as the Package Explorer and Console (Murphy, Kersten, and
Findlater 2006). They also observed frequent use of keyboard shortcuts for executing com-
mands and navigating through code. This highlights the need for LSP features that support
efficient code editing, navigation, and interaction with the development environment.

The studies mentioned above focused primarily on imperative and object-oriented pro-
gramming languages. While their findings are still relevant to functional and dependently
typed languages like Agda, some differences in developer preferences and usage patterns
should be acknowledged. For example, the significance of type hierarchy exploration, a fea-
ture commonly used in object-oriented languages, may be less pronounced in Agda due to
its different type system. Conversely, the importance of features like code actions, which can
assist with implicit arguments and type-related refactorings, may be heightened in Agda.

Understanding the importance of these LSP features in the context of dependently typed
languages can help in prioritizing the development of language tooling and ensuring that
the most valuable functionalities are implemented first.

2.4 Relevance to Dependently Typed Languages
The findings from these studies suggest that the most important LSP features for developers
are code completion, diagnostics, hover information, and code navigation. These features
are particularly relevant for dependently typed languages, which often have complex type
systems and require a deep understanding of the relationships between types and terms.

Code completion is crucial for dependently typed languages, as it can help developers
navigate the complex type landscape and discover available functions and types based on
the current context. By providing context-aware suggestions, code completion can reduce
the cognitive burden of remembering and manually typing out complex type signatures.

Diagnostics are also essential for dependently typed languages, as they can help catch
type errors early in the development process. Given the intricate nature of dependent types,
even small type mismatches can lead to significant issues down the line. By providing real-
time feedback on type errors and other issues, diagnostics can help developers maintain the
correctness and consistency of their code.

Hover information is particularly useful for dependently typed languages, as it can pro-
vide valuable insights into the types and relationships of symbols in the code. By displaying
type information and documentation on hover, developers can quickly understand the role
and purpose of various components without having to navigate away from their current con-
text.

Code navigation features, such as go to definition and find references, are important for
dependently typed languages, as they enable developers to explore the complex relation-
ships between types and terms. By providing fast and accurate navigation to the definitions
and references of symbols, these features can help developers understand the structure and
flow of their code, making it easier to reason about and modify.

Code Lens and Code Actions offer additional benefits specific to dependently typed lan-
guages. CodeLens canprovide contextual information and actionable insights directlywithin
the editor, potentially replacing the need for command-based interaction with holes in Agda.

11



2. LANGUAGE SERVER PROTOCOL

It can display inferred types, suggest possible solutions, and offer quick actions to fill holes,
streamlining the development workflow. Code Actions, on the other hand, can automate
code transformations and provide quick fixes for language-specific constructs, such as han-
dling implicit arguments in Agda.

Furthermore, the Semantic Tokens feature is particularly suitable for dependently typed
languages like Agda, which often have complex syntactic structures. The alternative to this
feature for syntax highlighting is using tree-sitter based grammars. But Agda’s grammar
is difficult to express using tree-sitter due to its use of complex syntactic structures such as
mixfix operators (Danielsson and Norell 2011). This makes the semantic tokens feature of
LSP ideal as it allows syntax highlighting to be offered through the use of Agda’s official
parser implementation.

2.5 LSP in Dependently Typed Languages
Dependently typed languages, such as Agda, Coq, and Idris, pose unique challenges for
Language Server Protocol implementations due to their complex type systems and proof-
oriented nature. These languages often require more advanced type checking and theorem
proving capabilities compared to traditional programming languages.

One of the primary challenges in implementing LSP for dependently typed languages is
the need for fast type checking. Dependently typed languages rely heavily on advanced type
inference and unification, which can be computationally expensive, especially for large code-
bases. To provide a responsive and interactive development experience, language servers
for dependently typed languages must be able to perform type checking and inference in
real-time, without introducing significant latency or performance overhead.

Another challenge is the integration of proof assistance and interactive theorem proving
into the LSP workflow. Dependently typed languages often include features such as proof
tactics, hole-driven development, and interactive proof refinement. These features require a
tight integration between the language server and the proof engine, as well as the ability to
provide real-time feedback and guidance to the user during the proof development process.

Additionally, dependently typed languages often have a rich and expressive syntax, with
features such as dependent pattern matching and implicit arguments. Language servers for
these languages must be able to accurately parse and analyze this syntax, while also provid-
ing helpful error messages and suggestions for resolving type errors and proof obligations,
and even suggesting quick fixes or refactorings for common patterns in theorem proving
code.

2.6 Contributions to Language Adoption
The adoption of the Language Server Protocol for dependently typed languages can also con-
tribute to the broader adoption and usability of these languages in industry and academia.

Historically, dependently typed languages have been perceived as complex and challeng-
ing to learn and use (Ringer et al. 2019), due in part to the lack of mature tooling and editor
support, or at least for the stark difference between dependently typed workflows and main-
stream programming language workflows. By providing a more standard and interactive
development experience through LSP, these languages can become more accessible and at-
tractive to a wider range of developers, from undergraduates to those working on real-world
applications and research projects.

The improved tooling and editor support enabled by LSP can also help to showcase the
unique benefits and capabilities of dependently typed languages, such as the ability to ex-
press complex type constraints and invariants, and to guide the user in proving properties
of programs. By making these features more discoverable and easier to use, LSP can help to
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demonstrate the value and potential of dependently typed programming to a broader audi-
ence.

Overall, the integration of Language Server Protocol into development environments for
dependently typed languages can play a significant role in promoting the adoption, usabil-
ity, and impact of these languages. By providing a more accessible, efficient, and interactive
development experience, LSP can help to unlock the full potential of dependently typed pro-
gramming and enable more developers to leverage the power and expressiveness of these
languages in their work.
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Chapter 3

Related Work

The field of dependently typed programming languages has seen significant advancements
in recent years, with a growing focus on improving the development experience through
better IDE support. This thesis builds upon prior research on language servers, IDEs for
dependently typed programming languages, and techniques for enhancing the development
experience with advanced type systems. In this chapter, we will explore the most relevant
work in each of these areas, highlighting the challenges and opportunities that arise when
integrating dependently typed languages with modern development tools.

The Language Server Protocol (LSP) has emerged as a standardized way to provide
language-specific features in IDEs, enabling developers to work with their preferred tools
while benefiting from rich language support. However, LSP support for dependently typed
languages has been limited to date. This is partly due to the complex nature of these lan-
guages, which rely on advanced type systems and proof-based reasoning, making it chal-
lenging to provide the real-time feedback and interactive features expected in modern IDEs.

3.1 IDE Support for Dependently Typed Languages
3.1.1 Agda
Despite the limited LSP support, there have been notable efforts to improve the IDE experi-
ence for dependently typed languages. Agda, a dependently typed functional programming
language, has a well-established Emacs mode (Coquand, Takeyama, and Synek 2006) that
provides a command-based interaction model for querying the type checker and incremen-
tally developing proofs. While this Emacs mode offers a solid foundation for working with
Agda, it lacks many features expected in modern IDEs, such as auto-completion and real-
time diagnostics.

3.1.2 Coq
The Coq ecosystem has seen significant advancements in IDE support. The company-coq
(C. F. Pit-Claudel, Courtieu, and C. Pit-Claudel 2016) package provides an IDE-like experi-
ence within Emacs, offering features such as auto-completion, real-time documentation, and
interactive proof development. This demonstrates the potential for integrating advanced
language features with traditional IDE functionalities, enhancing the overall development
experience. However, company-coq is still limited to the Emacs environment, which may
not be the preferred choice for all developers.

In addition to company-coq, there are other alternative environments for Coq develop-
ment. CoqIDE (CoqIDE n.d.) is a standalone IDE provided by the Coq team, which offers a
simplified interface for writing and evaluating Coq code. It includes features such as syntax
highlighting, error reporting, and interactive proof development. Another option is Proof
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General (Proof General n.d.), a generic interface for proof assistants that supports Coq. It
provides an Emacs-based environment with similar features to CoqIDE and company-coq.

The Coqoon (Faithfull et al. 2018) project has taken a different approach by integrating
Coqwith the Eclipse IDE. Coqoon provides projectmanagement, syntax highlighting, and in-
teractive proof stepping, bringingCoq development closer to themainstream IDE experience.
However, it is important to note that Coqoon is a separate IDE rather than a general-purpose
solution that brings Coq support to existing IDEs. This is due to the challenge of integrat-
ing dependently typed languages with established development environments, as it often
requires significant effort to adapt the language’s unique features to the IDE’s architecture.

3.1.3 Lean
A promising example of LSP’s potential for dependently typed languages can be found in
the Lean 4 theorem prover. The Lean LSP server implementation (Moura and Ullrich 2021)
powers the Lean VS Code extension, providing a rich IDE experience that includes syntax
highlighting, type information, auto-completion, and jump-to-definition. This demonstrates
that LSP iswell-suited for handling the rich semantic information used by dependently typed
languages, opening up new possibilities for integrating these languages with a wide range
of IDEs.

Building on the success of the Lean LSP server, there has been further work on improv-
ing the user experience for mathematicians working with the Lean language. Nawrocki et
al. (Nawrocki, Ayers, and Ebner 2023) have developed a more friendly user interface that
aims to make Leanmore accessible to mathematicians whomay not have extensive program-
ming experience. This highlights the importance of considering the target audience when
designing IDE support for dependently typed languages, as the needs of mathematicians
and programmers may differ significantly.

3.1.4 Idris and Idris 2
Idris has alsomade strides in improving its IDE support. The Idrismode for Emacs (Mehnert
andChristiansen 2014) provides a command-based interactionmodel similar to that of Agda,
allowing users to query the type checker and incrementally develop proofs. Despite the lack
of LSP support in Idris 1, the community has developed various IDE integrations to enhance
the development experience. For example, there are plugins available for popular IDEs such
as Atom and Visual Studio Code.

Idris 2 (Brady 2021), the successor to Idris, has been developedwith a focus on improving
the language’s performance and expressiveness. Idris 2 also aims to enhance the developer
experience by providing better tooling and documentation. One of the notable improve-
ments in Idris 2 is the introduction of an LSP server (Idris Community 2024b), which enables
a more comprehensive and robust IDE integration. One of the more interesting features of
the Idris 2 LSP is its use of Code Actions to provide interactive editing capabilities, such as
case splitting, refining holes, and generating function clauses based on type signatures.

3.2 Challenges and Techniques for Responsive IDE Support
One of the major challenges when implementing an LSP-compliant server for a dependently
typed language is the slow type-checking times. Even when imported modules’ types are
cached, checking a single file in Agda can take seconds, which is unacceptable for the real-
time feedback expected in modern IDEs. To address this issue, researchers have explored
techniques for improving type-checking time, such as incremental parsing (Collins andRoark
2004; Wagner and Graham 1998) and incremental type checking (Zwaan, Antwerpen, and
Visser 2022; Pacak, Erdweg, and Szabó 2020). These techniques allow for faster feedback by
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reusing previously computed syntax and type informationwithin the same file, reducing the
overhead of re-checking unchanged code.

Incremental type checking has been successfully employed in the LeanLSP server (Moura
andUllrich 2021) to provide responsive type checking as the user edits their code. By caching
and reusing type information, the Lean LSP server is able to provide real-time feedback even
for complex proofs. This demonstrates the feasibility of applying incremental techniques to
dependently typed languages, paving the way for more responsive IDE support.

3.3 Specification Language Server Protocol (SLSP)
Another relevant area of research is the Specification Language Server Protocol (SLSP) (Rask
et al. 2021), which aims to extend LSP to support specification languages. The authors argue
that while LSP has been successful for programming languages, it lacks support for features
specific to specification languages, such as proof obligation generation and theorem prov-
ing. The SLSP aims to fill this gap by providing standardized extensions for these features,
promoting decoupling of language support from IDEs, and reducing the effort required to
integrate specification languages into different IDEs.

In the context of formal methods, proof obligations are logical statements that need to be
proven to ensure the correctness of a specification. The SLSP defines a “generate” message
that allows the client (IDE) to request proof obligations from the server (SLSP). The server
responds with a list of proof obligations, each containing an ID, name, type, location, and
an optional flag indicating if it has been proven. A notification message is also defined to
keep the proof obligations synchronized with the specification, ensuring that the client can
request updated proof obligations if the specification changes.

Theorem proving is the process of formally verifying the correctness of mathematical
statements or logical formulas. The SLSP includes messages to support theorem proving
features. The protocol defines messages for:

• querying the available lemmas (formally proven statements) in a specification;

• initiating a proof session for a lemma;

• applying automated theorem proving to try and prove a lemma automatically;

• sending commands for interactive theorem proving, where a user guides the proof
process;

• undoing proof steps;

• getting a list of available prover commands.

The SLSP aims to provide a standardized way for IDEs to interact with different theorem
provers, abstracting away the specific commands and protocols of each prover.

3.4 Conclusion
While LSP support for these languages has been limited to date, there have been notable ef-
forts to improve the development experience through projects like agda-mode, company-coq
package, Coqoon, and the Lean LSP server. The success of these projects demonstrates the
potential for integrating dependently typed languages with modern IDEs, providing devel-
opers with the rich language support they need to work effectively.

The main challenge of providing responsive feedback in the face of slow type checking
times still remains. Incremental parsing and type checking techniques have shown promise
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in addressing this issue, as demonstrated by the Lean LSP server. The main problem with
these advanced techniques is that they are difficult to implement and would require signifi-
cant modifications to a dependently typed language’s compiler to incorporate.
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Chapter 4

Agda Implementation in Haskell

This chapter provides a brief overview of the Agda implementation in Haskell. The informa-
tion here will be important to understand the implementation of the prototype LSP. Since
the implementationmostly relies on the parser, Concrete Syntax Tree (CST), Abstract Syntax
Tree (AST) and scope checking, details about type-checking will be omitted. First a general
overview of the Agda implementation will be given. Then the parser and CST will be de-
scribed in more detail. Then the AST and how it relates to scope checking. As well as an
overview of the APIs Agda exposes for interacting with it. Figure 4.1 presents a high-level
overview of Agda’s front-end architecture, illustrating the main components and their inter-
actions.

Parser Scope Checker Type CheckerCST AST

Figure 4.1: High-level overview of Agda’s front-end architecture

4.1 Parser and Concrete Syntax Tree (CST)
The parser is the entry point of Agda’s analysis pipeline, responsible for transforming the tex-
tual representation of Agda source code into a structured form known as the CST. The CST
captures the syntactic structure of an Agda program, representing elements such as expres-
sions (Expr), declarations (Declaration), patterns (Pattern), and more. It closely resembles
the original source code, preserving the concrete syntax and layout of the program.

In essence, the parser transforms Agda code into a structured format, the CST, which
serves as the foundation for subsequent scope analysis and interpretation of the code. This
transformation is crucial for implementing LSP features like code completion, refactoring,
and error diagnostics.

4.1.1 Expressions
The Expr datatype represents various forms of expressions in the CST. Some relevant con-
structors that are frequently used in the LSP implementation are Ident and RawApp.

Ident

The Ident constructor represents an identifier in an Agda expression. It takes a QName (quali-
fied name) as its argument. A QName consists of either a single name or a module name and
another nested QName, allowing for unambiguous references to identifiers defined in differ-
ent modules. For example, MyModule.MySubmodule.myFunction is a qualified name that refers
to the myFunction identifier defined in the MySubmodule submodule of the MyModule module.
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More precisely, it consists of three nested QNames: MyModule, MySubmodule, and myFunction,
where each subsequent QName is nested within the previous one. This hierarchical structure
allows for unique identification of names within a module system. This expression is partic-
ularly important for code completion, as it enables precise suggestions based on the module
context.

RawApp

The RawApp constructor represents a raw application in an Agda expression. It consists of
a Range (source code location) and a non-empty list of expressions (List2 Expr). Unlike
the fully parsed AST, the RawApp constructor does not have operators parsed yet. It simply
captures the application of expressions without further analysis of the operator precedence
and associativity.

Listing 4.1: Example Agda code with a raw application

f : Nat -> Nat -> Nat
f x y = x + y * 2

Consider the Agda code in Listing 4.1. In the CST, the expression x + y * 2 would be
represented as a RawApp node, containing the expressions x, +, y, *, and 2 as its arguments,
without any further parsing of the operators.

4.1.2 Declarations
The Declaration datatype represents various forms of declarations in the CST. Some relevant
constructors that are frequently used in the LSP implementation are Import, Module, TypeSig
and FunClause.

Import

The Import constructor represents an import declaration in an Agda module. It consists of a
Range (source code location), a QName (the module being imported), an optional AsName (for
renaming imports), an OpenShortHand flag (indicating if the import is open or not), and an
ImportDirective (specifying how the import should be handled).

Listing 4.2: Example Agda code with import declarations

module Main where

import Data.List as L
open import Data.Maybe

In the CST of the Listing 4.2, the first import declaration would be represented as an
Import node with the QName Data.List, the AsName L, and the OpenShortHand flag set to false.
The second import declarationwould be represented as an Importnodewith the QName Data.Maybe,
no AsName, and the OpenShortHand flag set to true.

Module

The Module constructor represents a module declaration in an Agda file. It consists of a Range
(source code location), an Erased flag (indicating if the module has a run-time component
or consists of compile-time proofs only), a QName (the name of the module), a Telescope (the
module parameters), and a list of Declarations (the content of the module).
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Listing 4.3: Example Agda code with a parameterized module

module Parameterized (A : Set) where

data List : Set where
nil : List
cons : A -> List -> List

The CST of the code in Listing 4.3 would be represented as a Module node with the QName
Parameterized, the Telescope containing the parameter A : Set, and the list of Declarations
containing the List datatype declaration.

TypeSig and FunClause

In the CST, type signatures (TypeSig) and function clauses (FunClause) are represented as
separate declarations. This means that the function clauses for a given function are not yet
grouped together with their corresponding type signature.

For example, consider the following Agda code:

Listing 4.4: Example Agda code with a type signature and function clauses

append : {A : Set} -> List A -> List A -> List A
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

The CST of the code in Listing 4.4 would be represented as three separate Declaration
nodes: one TypeSig node for the type signature, and two FunClause nodes for the function
clauses. The grouping of the type signature and function clauses happens later in the parsing
pipeline.

4.1.3 Parser API
To call Agda’s parser from Haskell one can use the parseFile function from the
Agda.Syntax.Parser1 module. You can pass various different parser configurations to this
function depending on what you want to parse. For example to parse a single expression
you can use exprParser. To parse the whole file the moduleParser can be used, this results in
a parser that produces aCSTModulewhich contains a list of pragmas anddeclarationswhich
can be used for further analysis. To run a parser and get its result you can use runPMIO. This
function takes in the constructed parser and runs it to completion, returning the expected
result or a ParseError.

One of the significant limitations of Agda’s parser is that it does not handle parsing errors
gracefully. When Agda’s parser encounters an error while parsing, it immediately gives up.
It does not try to perform some error recovery and return a partially correct CST and a list of
errorsmessages. Thismeans that if there is a single syntax error, then no analysis can be done.
This is a significant limitation to implementing LSP features as most of the time while users
are editing files, they will be in syntactically invalid states, and in all these states most LSP
features will stop working. Fixing this would allow for a much smoother LSP experience.

4.2 Scope Checking and Abstract Syntax Tree (AST)
Scope checking is a crucial phase in Agda’s compilation process, serving as the bridge be-
tween the Concrete Syntax Tree (CST) and the Abstract Syntax Tree (AST). Its primary pur-

1https://github.com/agda/agda/blob/master/src/full/Agda/Syntax/Parser.hs
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pose is to resolve names, determine operator precedences, and construct a well-formed AST
that can be further analyzed by the type checker. Scope checking plays a vital role in trans-
forming the raw syntactic information of the CST into amoremeaningful representation that
captures the semantic structure of the program.

During scope checking, Agda traverses the CST and maintains a scope environment that
keeps track of defined names and their visibility. This environment is used to resolve names
by considering the context in which they appear and the available definitions in the current
scope. Name resolution is a critical aspect of scope checking, as it disambiguates themeaning
of identifiers and enables precise type checking.

In addition to name resolution, scope checking handles Agda’s flexible operator syntax.
Agda allows users to define custom operators with specific precedence and associativity
rules. However, these rules are not explicitly encoded in the CST. Instead, they are stored
separately and looked up during scope checking. By consulting the operator precedence ta-
ble, Agda determines the proper grouping and application of operators, ensuring that the
resulting AST accurately reflects the intended semantics of the program. This process of op-
erator precedence resolution is important for constructing a well-formed AST that can be
reliably processed by subsequent phases of the compiler.

Again, similar to the problemwith Agda’s parser, its scope-checker gives up immediately
as soon as it finds a single error in name resolution and returns immediately with that single
error. One key feature of LSP is Diagnostics which is used to give error andwarning informa-
tion to the client to display inline in the code. It is expected that language implementations
will try to give asmany helpful errormessages as possible using diagnostics. By stopping the
analysis right away, Agda gives up a great opportunity of guiding the user towards correctly
written code. Another problem is that no partially constructed AST is returned that could be
used for implementing LSP features when the code is not correct. This makes it impossible
to provide Completions while the user is typing by only relying on the AST.

4.3 Type Checking and Interaction
Agda’s type checker plays a crucial role in ensuring the correctness and consistency of Agda
programs. It operates on the AST produced by the scope checking phase, traversing the
AST to infer types, check type consistency, and generate detailed type information for each
program element. The type checker maintains a context that keeps track of the types of
variables, functions, and data constructors, as well as the constraints and equalities imposed
by the program’s logic.

To implement various LSP features, it is essential to be able to resolve imported mod-
ules. This can be achieved through Agda’s Haskell API using the scopeCheckModule func-
tion from the Agda.Interaction.Imports2 module. Despite its name, this function not only
scope-checks the import but also type-checks it. Consequently, type-checking time remains
relevant for implementing LSP, even if we only want to rely on scope-checking information
when using Agda’s module system.

However, Agda’s type-checker is known to be too slow for providing real-time feedback
to users (more information about this claim can be found in the Evaluation Chapter 6). To
mitigate this issue and keep type-checking times low, Agda employs a caching mechanism.
It stores type information for modules and definitions in interface files, allowing for efficient
reuse of previously type-checked code. When a module is imported or a definition is refer-
enced, Agda can quickly retrieve the cached type information from the interface files, avoid-
ing the need to re-type-check the dependencies of the program. This mechanism is crucial
for providing a responsive and efficient development experience when working with large
codebases.

2https://github.com/agda/agda/blob/master/src/full/Agda/Interaction/Imports.hs
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Nevertheless, the serialization and deserialization of interface files can have performance
implications. Loading and saving interface files involves disk I/O operations, which can in-
troduce latency and impact the responsiveness of the development environment. To address
these performance issues, it is important to manage Agda’s Type Checking Monad (TCM)
properly. The simplest way to do this is to retrieve the underlying TCState and re-use it when-
ever we want to check files so that they re-use the loaded interface files instead of reading
and deserializing each time from disk.

Agda’s type checking process is tightly integrated with its interaction model, which en-
ables interactive development and exploration of Agda programs. The interaction model
allows developers to query the type checker, inspect the types of expressions, and incre-
mentally construct proofs and programs using a command-based interface. This interactive
nature sets Agda apart from many other programming languages and is a key factor in its
appeal to researchers and developers working with dependent types.

At the core of Agda’s interaction model lies the TCM, a state monad that encapsulates
the context and state of the type checker. The TCM provides a set of APIs and operations for
interacting with the type checker, such as retrieving type information, unifying types, and
generating proof obligations. These APIs allow developers to interrogate the type checker,
ask for the type of an expression, and step through the construction of proofs and programs
in a controlled manner.

In the next chapter, we will dive into the details of the LSP implementation for Agda.
We will explore how to leverage the information available in the CST and TCM to provide
useful language features such as code completion, go-to references and some automated
refactorings. We will also discuss the challenges and trade-offs involved.
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Chapter 5

Agda LSP Implementation

This chapter presents the implementation of a prototype Language Server Protocol (LSP)
for Agda. This implementation leverages a custom scope checker to provide faster and more
responsive IDE features, compared to relying solely on Agda’s type checker, which is sig-
nificantly slower but more accurate. By decoupling certain language features from the type
checking process, we aim to improve the developer experience and provide useful function-
ality without the overhead of full type checking.

The implementation focuses on a subset of LSP features that can be realized using scope
checking alone, such as semantic highlighting, go to definition, find references, and basic
code actions for refactoring implicit variables. While this approach has limitations and can-
not provide the full range of features that would be possible with a fully type-checked solu-
tion, it offers a pragmatic and efficient way to enhance the Agda development workflow.

Throughout this chapter, we will go into the details of the LSP implementation for Agda.
We will discuss the advantages and limitations of the scope checking approach, the choice
of programming language and libraries used in the implementation, and the integration
with the existing Agda ecosystem, particularly the Visual Studio Code extension agda-mode-
vscode. Wewill also provide an in-depth look at the implementation of specific LSP features,
including semantic highlighting, diagnostics, completions, and code actions.

By the end of this chapter, readers will have a comprehensive understanding of the LSP
implementation for Agda, its underlying design decisions, and the potential for future im-
provements and extensions. This work aims to contribute to the growing body of research
on language server protocols and their application to dependently typed programming lan-
guages, ultimately benefiting the Agda community and the wider field of programming lan-
guage research.

5.1 Scope Checking Approach
One of the key design decisions in the LSP implementation for Agda was to rely on scope
checking rather than full type checking. Scope checking is a static analysis technique that
focuses on verifying the visibility and accessibility of identifiers within a program’s scope,
ensuring that names are properly declared and used in accordance with the language’s scop-
ing rules. In contrast, type checking is a more comprehensive process that validates the type
consistency and compatibility of expressions and variables throughout the program.

5.1.1 Advantages over Type Checking
The primary advantage of using scope checking over type checking in the context of an LSP
implementation is its computational efficiency. Scope checking can be performed relatively
quickly by traversing the abstract syntax tree (AST) or concrete syntax tree (CST) of the
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program, keeping track of declared identifiers and their scopes. This process does not require
the complex type inference and unification algorithms that are typically associatedwith type
checking in languages like Agda.

By leveraging scope checking, we can decouple certain language features from the type
checking process and provide useful functionality to the userwithout the need towait for the
complete type checking of the entire codebase. This is particularly relevant in the context of
an IDE,where responsiveness and real-time feedback are crucial for a smooth andproductive
development experience.

Scope checking allows us to implement features such as semantic highlighting, go to def-
inition, and find references with minimal latency, as these features primarily depend on
the visibility and accessibility of identifiers within the program’s scope. By avoiding the
overhead of full type checking, we can provide these features in real-time, even for large
codebases or in the presence of type errors which cause the Agda type checker to halt.

It is important to note that while scope checking offers significant advantages in terms
of performance and responsiveness, it does have limitations compared to full type check-
ing. Scope checking alone may not catch certain type-related errors or inconsistencies that
would be detected by a complete type checking process. However, the benefits of faster feed-
back and improved developer productivity often outweigh these limitations, especially in
the context of an IDE where the focus is on providing immediate assistance and guidance to
the programmer.

In the following subsections, we will explore the specific LSP features that can be imple-
mented using scope checking and discuss their implementation details. Wewill also address
the limitations and trade-offs of the scope checking approach and outline potential future
directions for extending the LSP implementation to incorporate type checking where neces-
sary.

5.1.2 LSP Features using Scope Checking
The scope checking approach enables the implementation of several useful LSP features that
can significantly enhance the Agda development experience. By leveraging the information
obtained from scope analysis, we can provide programmers with real-time assistance and
navigation capabilities without relying on the complete type checking of the codebase. In
this subsection, we will discuss the most important LSP features that can be implemented
using scope checking alone.

Semantic Highlighting

In the context of Agda, semantic highlighting can be implemented using the scope infor-
mation obtained from the scope checker. By traversing the CST and analyzing the scopes
of identifiers, we can determine whether a particular identifier represents a type, function,
variable, or other language construct. This information can then be used to apply specific
highlighting styles to each identifier, making it easier for programmers to visually distin-
guish between different elements of their code.

The implementation of semantic highlighting in the Agda LSP involves folding over the
CST and checking the scope of each identifier node. If an identifier is found to be defined
or used within a certain scope, the corresponding highlighting information is generated and
sent back to the client IDE. This process is computationally efficient and can be performed in
real-time as the user types, providing instant visual feedback and improving code readability.

Go to Definition and Find References

Both of these features can be implemented effectively using the scope information obtained
from scope checking. By maintaining a mapping between identifiers and their declaration
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locations, as well as a list of all references to each identifier, the LSP can provide fast and
accurate navigation capabilities.

When a user invokes the Go to Definition feature, the LSP looks up the identifier at the
current cursor position in the scope map and retrieves the location of its declaration. This
information is then used to navigate the user to the appropriate file and position within the
codebase. Similarly, for Find References, the LSP consults the reference list associated with
the identifier and returns a list of all locations where the identifier is used.

Code Actions for Implicit and Unused Arguments

Code actions are a powerful LSP feature that enables the language server to offer context-
sensitive suggestions and refactorings based on the user’s current code. In the case of Agda,
one particularly useful code action is the ability to manage implicit arguments in function
declarations and applications.

Implicit arguments are a common feature in dependently typed languages like Agda,
allowing programmers to omit certain argumentswhen they can be inferred from the context.
However, managing implicit arguments can sometimes be tedious, especially when dealing
with complex function signatures or when refactoring code.

The Agda LSP implementation leverages scope checking to provide code actions for im-
plicit argumentmanagement. By analyzing the type signatures of functions and the patterns
of their applications, the LSP can offer suggestions such as making an implicit argument ex-
plicit or removing unused implicit arguments altogether.

To implement these code actions, the LSP keeps track of the type signatures of functions
and data constructors during scope analysis. By examining the names and positions of im-
plicit arguments in these signatures, the LSP can determine which arguments are currently
implicit and which ones are explicitly provided in function applications.

When the user invokes the code action feature, the LSP analyzes the current context and
generates a list of applicable actions based on the implicit argument information. These ac-
tions can include inserting missing implicit arguments and removing unused implicits or
explicits. The user can then select the desired action, and the LSP will automatically apply
the corresponding refactoring to the code.

By providing these implicit argument code actions, the Agda LSP significantly improves
the developer experience, reducing the manual effort required to manage implicits and mak-
ing the code more readable and maintainable.

Diagnostics for Unused Symbols

Unused symbol warnings are a common feature in many programming languages, alerting
developers to variables, functions, or other identifiers that are declared but never used in
the code. These warnings can help improve code quality, reduce clutter, and catch potential
bugs early in the development process.

The Agda LSP implementation leverages the scope information obtained from scope
checking to generate unused symbol diagnostics. During scope analysis, the LSP keeps track
of all declared identifiers and their usage within the code. By comparing the set of declared
identifiers with the set of actually used identifiers, the LSP can determine which symbols are
unused.

When the client IDE requests diagnostics for a file, the LSP traverses the scope representa-
tion and generates warnings for each unused symbol it encounters. These warnings include
the location of the unused symbol (i.e., the range in the source file where it was declared)
and a descriptive message indicating that the symbol is unused.

The client IDE can then display these warnings to the user, typically in the form of col-
ored squiggles or underlines in the code editor. Users can hover over the warnings to see
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the detailed message and take appropriate action, such as removing the unused symbol or
updating the code to use it.

It’s worth noting that the scope checking approach to unused symbol diagnostics may
have some limitations compared to a full type-checking solution. For example, it may not be
able to detect unused symbols that are only referenced in dead code or unreachable branches.
However, for most practical purposes, the scope-based unused symbol diagnostics provide
a valuable tool for improving code quality and catching potential issues early in the develop-
ment process.

5.1.3 Limitations and Trade-offs
While the scope checking approach offers significant benefits in terms of performance and
responsiveness, it is important to acknowledge its limitations and the trade-offs involved in
using it as the basis for an LSP implementation.

Limited Range of Features and Diagnostics

One of the main limitations of scope checking is that it may not be able to provide the full
range of features and diagnostics that would be possible with a complete type checking so-
lution. Scope checking focuses primarily on the visibility and accessibility of identifiers, but
it does not perform the deep semantic analysis and type inference that are necessary for
catching more subtle type-related errors or providing more advanced code suggestions.

For example, scope checking alone may not be sufficient to detect issues such as type
mismatches, invalid function applications, or violations of Agda’s complex type-level con-
straints. These kinds of errors require amore thoroughunderstanding of the type systemand
the relationships between different type expressions, which can only be achieved through
full type checking. So error diagnostics as typically expected in full LSP implementations
will not be available.

Additionally, certain LSP features, such as type-aware code completion or type-driven
refactorings,may bemore challenging to implement using scope checking alone. Also, Hover
information, when the User holds the cursor over an identifier, will not be complete. It will
at most show what kind of symbol it is (Constructor, Function, etc.) but it will not show the
actual type of the symbol.

Maintenance and Compatibility

Another limitation of the custom scope checking approach is that itmay requiremoremanual
effort to maintain and update as the Agda language evolves. While the scope checker can be
implemented as a standalone component, it still needs to be kept in sync with changes to the
Agda parser and abstract syntax tree. This may involve updating the scope checker to handle
new language features, syntax extensions, or changes to the scoping rules. This limitation
can be easily addressed by some simple modifications to the existing Agda scope checker, so
that instead of using a custom implementation, the main Agda scope checker is used.

Balancing Performance and Functionality

Despite these limitations, the scope checking approach still provides a valuable and prag-
matic solution for enhancing the Agda development experience. By focusing on a core set
of features that can be implemented efficiently using scope information, the LSP can offer
significant benefits to programmers, such as real-time feedback, navigation, and basic refac-
toring support. This is in contrast to the massive amount of effort that would be required to
make the existing type checker fast enough to run in real time by using techniques such as
incremental type checking.
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In the meantime, the scope checking approach offers a balance between performance,
responsiveness, and functionality, enabling Agda programmers to benefit from a more inter-
active and supportive development environment. While it may not provide the full range
of features possible with a type-checked solution, it represents a significant step forward in
terms of tooling and developer experience for the Agda community.

5.2 Implementation Details
In this section, we will discuss the implementation details of the Agda LSP server and its key
components and design decisions. Subsection 5.2.1 will explore the rationale behind select-
ing Haskell as the primary language for the Agda LSP implementation. Subsection 5.2.2 will
focus on the custom scope checker, the core component of the implementation that enables
fast and responsive IDE features by operating onAgda’s concrete syntax tree (CST). The inte-
gration of the Agda LSP with the existing Visual Studio Code extension, agda-mode-vscode,
and the challenges encountered during this process will be discussed in Subsection 5.2.3. Fi-
nally, Subsection 5.2.4will explore the implementation of the implicit argumentmanagement
feature, which aims to enhance the user experience by providing algorithms for generating
insertions and removals of implicit arguments.

5.2.1 Choice of Programming Language
The choice of programming language is a critical decision in the implementation of any soft-
ware project, and the Agda LSP is no exception. Given the nature of the project and its close
integration with the Agda ecosystem, Haskell was selected as the primary language for the
LSP implementation.

Haskell is a statically-typed, purely functional programming language that is well-suited
for developing compilers, interpreters, and other language-related tools. It offers a rich type
system, powerful abstractions, and a strong emphasis on correctness and reliability. These
features make Haskell an ideal choice for implementing the Agda LSP, which requires pre-
cise and efficient manipulation of syntax trees, scopes, and other language-related data struc-
tures.

One of the main reasons for choosing Haskell is its close relationship with Agda itself.
Agda is implemented inHaskell, andmany of its core components, such as the parser and the
type checker, arewritten inHaskell. By using the same language for the LSP implementation,
we can leverage existing Agda libraries and infrastructure, reducing the development effort
and ensuring better integration with the Agda ecosystem.

Haskell has a mature and well-established ecosystem, with a wide range of libraries and
tools that can be used in the development of the Agda LSP. Of particular relevance is the
lsp library, which provides a strongly-typed framework for implementing Language Server
Protocol servers inHaskell. It is the same library used in the production grade LSP servers for
Haskell and Futhark, which shows it is well maintained. It provides a set of pre-defined data
types and functions that correspond to the various LSP messages and capabilities, making it
easier to implement compliant LSP servers.

5.2.2 Custom Scope Checker
The Agda LSP implementation relies on a custom scope checker to enable fast and respon-
sive IDE features. While Agda already includes a scope checker as part of its compiler in-
frastructure, it has some limitations that make it less suitable for direct use in an LSP context.
Specifically, the existing parser and scope checker stops as soon as it encounters a single er-
ror, without attempting any recovery. This makes it unusable when the code finds itself in
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incorrect intermediate stages while being written by the user, which is when we need LSP
features the most.

To address these limitations, we implemented a custom scope checker tailored to the
needs of the LSP. The custom scope checker operates on Agda’s concrete syntax tree (CST)
and recursively builds up a hierarchical representation of the program’s scope. At each node
in the CST, the scope checker maintains a mapping of identifiers to their corresponding sym-
bol information, such as their kind (e.g., type, function, variable), location, and any associ-
ated metadata.

One of the challenges in implementing the custom scope checker was handling Agda’s
rich syntax and scoping rules. Agda supports a wide range of language constructs, including
dependent types, pattern matching, mixfix operators, and implicit arguments. To accurately
capture the scoping behavior of these constructs, the scope checker needs to recursively tra-
verse the CST and update the scope mappings accordingly.

For example, when encountering a function definition, the scope checker creates a new
scope for the function body and adds any explicitly declared arguments to the scope map-
ping. It then recursively processes the function body, which may introduce additional local
scopes for constructs like patternmatching or let-expressions. As the scope checker traverses
back up the CST, it appends the local scopes to their parent scopes to create a unified view
of the program’s scope hierarchy.

Another challenge in implementing the custom scope checker was dealing with the lim-
itations of working directly with the CST. Unlike the abstract syntax tree (AST), which is a
more structured representation of the program, the CST includes additional syntactic details
and may not always provide a clean separation between different language constructs. This
can make it more difficult to accurately track scoping information, particularly for complex
constructs like mixfix operators.

Despite these challenges, the custom scope checker provides an efficient foundation for
implementing LSP features in Agda. By maintaining a standalone representation of the pro-
gram’s scope, the scope checker enables fast queries and manipulations of symbol informa-
tion, without the need for full type checking. This allows the LSP to provide responsive
feedback and navigation capabilities, even in the presence of parse, scope and type errors.

It’s worth noting that the custom scope checker is not intended to replace Agda’s existing
scope checker. The custom scope checker was just necessary to bypass the lack of error re-
covery on the existing Agda scope checker. The aim is to show that through scope checking
alone many important LSP features can be implemented which should hopefully inspire the
Agda maintainers to fix these small limitations so that a future LSP implementation based
on scope checking can use the canonical Agda implementation.

5.2.3 Integration with agda-mode-vscode

To make the Agda LSP implementation accessible to users, we integrated it with the exist-
ing Visual Studio Code extension for Agda, called agda-mode-vscode1. agda-mode-vscode
brings Agda’s Emacs mode functionality into VSCode. It’s important to note that prior to
this integration, agda-mode-vscode did not use LSP for its functionality. Instead, it forwards
Emacs style commands to the Agda executable in a similar fashion to the original agda-mode.

Integrating the Agda LSP with agda-mode-vscode involved several steps. We updated
the extension’s code to establish a connection with the Agda LSP server and to handle the ex-
change of LSP messages. This involved using Visual Studio Code’s built-in LSP client library
to send requests and notifications to the LSP server, as well as processing the responses and
updating the editor’s user interface accordingly.

1https://github.com/banacorn/agda-mode-vscode
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One of the challenges in integrating the Agda LSP with agda-mode-vscode was ensuring
a smooth interoperability between the LSP features and the existing Emacs mode functional-
ity. Agda-mode-vscode relies heavily on the Emacsmode for certain features, such as interac-
tive development and goal-directed programming. To maintain compatibility and provide
a seamless user experience, we implemented the LSP integration in a way that preserves
the existing Emacs mode features while augmenting them with the additional capabilities
provided by the LSP.

The integration of the Agda LSP with agda-mode-vscode significantly enhances the de-
velopment experience for Agda programmers using Visual Studio Code. Andmakes it much
more likely to be incorporated into user’s workflows. By combining the power of the LSP
with the rich functionality of the existing Emacs mode, agda-mode-vscode is now enhanced
with code completion, real time syntax highlighting, diagnostics and some refactoringswhile
still maintaining the familiar Emacs mode with its powerful capabilities.

5.2.4 Implicit Argument Management
Implicit argument management is a key feature of our Agda Language Server, aimed at en-
hancing the user experience and reducing the cognitive burden on developers. The algo-
rithm for handling implicit arguments consists of two main components: generating inser-
tions and generating removals.

Intermediate Representation: IPattern

To facilitate the processing of Agda patterns, the algorithm first converts them into an inter-
mediate representation called IPattern. This representation captures various forms of pat-
terns, including those involving implicit arguments, such as hidden patterns and patterns
within parentheses. Figure 5.1 shows the definition of the IPattern data type. The key dif-
ference between the CST patterns is that variables contain a symbol identifier that is used
to lookup whether a that variable is unused. And functions also contain a list of SigParam
which holds information on what kinds of parameters and how many this function receives
as input. This information is used in the matching stage when trying to find which patterns
match which parameters.

data IPattern = IApp LSP.Range (Maybe SymId) [SigParam] [IPattern]
| IHidden LSP.Range (Maybe String) IPattern
| IVar LSP.Range (Maybe String) (Maybe SymId)
| IOther LSP.Range
| IParen LSP.Range IPattern

Figure 5.1: IPattern data type. Each pattern contains a range representing its position in the
source file, which is important when generating the CodeActions for removing and inserting
implicit arguments since a CodeAction needs to know inwhich range its edit will be inserted.
It also contains symbol identifiers to simplify looking up whether a symbol is unused or not
in the matching stage.

The conversion from Agda patterns to IPattern is performed by a function that utilizes
the provided scope to resolve symbols and handle different pattern types.

Generating Insertions

To generate insertions, the algorithm computes all possible insertions of implicit arguments
that are not explicitly stated in the code. It does so by recursively processing the IPattern
and determining valid insertion points based on the signature parameters and the existing
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patterns. A matching function plays a crucial role in aligning the patterns with their corre-
sponding parameters, enabling accurate identification of missing implicit arguments.

The Insertion data type, shown in Figure 5.2, represents the specific details of an inser-
tion, including the range in the source code, the name of the argument, and any necessary
additional information.

data Insertion = Insertion LSP.Range String (Maybe String) (Maybe LSP.Range)

Figure 5.2: Insertion data type representing an implicit parameter that is not made explicit
and could be automatically made explicit through Code Actions.

The first parameter is the edit range where this variable should be inserted if the Code
Action is executed. The second parameter is the name of the variable to insert, which is used
to display the name of the variable to users in the Code Actions context menu and also as the
string that is actually inserted into the program.

The third parameter is an optional string that contains the name of the inserted implicit
argument when it needs to be inserted in a position that is not immediately after the next
implicit parameter. For example, consider the following Agda code:
add : {a b : Nat} -> Nat
add = ?

In this case, we have the function clause addwith implicit parameters a and b. If we insert
b without first inserting a, we must give a name to b so that Agda knows which implicit to
match. The resulting code after automatically inserting b would be:
add : {a b : Nat} -> Nat
add {b = b} = ?

The last optional range in the Insertion data type represents the positions of parentheses
that must be inserted if this implicit is inserted. This is necessary when, for example, a con-
structor has implicit parameters, and none of them aremade explicit yet. In such cases, if any
implicit is inserted, the constructor on the pattern would need to be wrapped in parentheses.

Here’s an example to illustrate this scenario:
data MyData : Set where

Data : {a : Nat} -> MyData

foo : MyData -> Nat
foo Data = ?

If we want to insert the implicit parameter a in the constructor Data that is pattern match-
ing the first parameter of foo, after applying the insertion the resulting code would be:
foo : MyData -> Nat
foo (Data {a}) = ?

Notice that the constructor Data is now wrapped in parentheses to accommodate the in-
serted implicit parameter. If we did not insert the parenthesis Agda’s parser would interpret
the implicit argument to belong to the function instead of the constructor.

Generating Removals

Generating removals follows a similar approach to generating insertions. The algorithm iden-
tifies unused implicit arguments within a given scope and position in the source code. It con-
verts the pattern to an IPattern and uses the unused symbols information from the scope to
determine which symbols are unused. The algorithm then generates a list of Removal items,
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specifying the range and details of the implicit arguments to be removed. Figure 5.3 shows
the definition of the Removal data type.

data Removal = Removal String Bool LSP.Range (Maybe (LSP.Range, String)) (Maybe LSP.Range)

Figure 5.3: Removal data type representing an unused variable that can be automatically
removed through Code Actions.

The Removal data type represents an unused variable that can be automatically removed
through Code Actions. The first parameter is the name of the variable, used to display to the
user which variable will be removed.

The second parameter is Truewhen the variable can be fully removed. For example, when
removing an unused explicit variable, we cannot remove it fully since that would change the
semantics of the program. Instead, we replace it with an underscore. This is also the case
when an implicit parameter is pattern matched to a constructor and there is a variable like
{suc a} where a is unused. Here, we can’t remove a or we will no longer be matching on the
suc constructor, we must insert an underscore instead.

The third parameter contains the range in the source file of the variable, which is used to
provide an edit range for the LSP command to know what to remove.

The fourth parameter optionally contains the name and where to insert this name that
must be given to the next implicit variable in the case where we remove a positional implicit
variable and the one to the right is also positional and requires a name to keep referring to
the same one. Consider the following example:
add : {a b : Nat} -> Nat
add {a} {b} = ?

If we remove a because it is unused, we will need to give a name to b so that it keeps
referring to the same variable. The result after applying the refactoring will be:
add : {a b : Nat} -> Nat
add {b = b} = ?

The final parameter is an optional range that contains the positions of parentheses that
will be redundant after removing the variable. For instance, consider a constructor that has
an only implicit argument that is made explicit but is unused:
data MyData : Set where
Data : {a : Nat} -> MyData

foo : MyData -> Nat
foo (Data {a}) = ?

Whenwe remove the unused implicit argument a from the first pattern of the constructor
Data in foo, we should also remove the parentheses around the constructor as they become
unnecessary:
foo : MyData -> Nat
foo Data = ?

Removing these parenthesis is not strictly necessary as semantically the programs would
remain the same with or without parenthesis there. But it does reduce unnecessary clutter
in the syntax.

Auxiliary Functions

To find the right location to search for implicit arguments, the Language Server exposes two
main functions. These functions find the relevant clause containing the cursor position and
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return a list of implicit arguments that can be inserted or variables that can be removed,
respectively. They utilize a function to locate the appropriate pattern within the module.

The implicit argument management algorithm relies on several auxiliary functions and
data types to facilitate its operations. These functions handle complex nesting of patterns
by recursively processing sub-patterns and applying the necessary logic for insertions and
removals. They take into account hidden patterns, patterns within parentheses, and other
edge cases to ensure comprehensive coverage of all potential modifications.

In conclusion, the implicit argument management algorithm in our Agda Language
Server provides a robust and efficient way to handle the insertion and removal of implicit
arguments in Agda source code. By utilizing an intermediate representation, recursively
processing patterns, and leveraging auxiliary functions and data types, the algorithm en-
sures comprehensive coverage of all potential modifications, enhancing the user experience
and streamlining the development process.
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Chapter 6

Evaluation

In this chapter, we evaluate our approach, focusing on the performance and feature com-
pleteness of our custom CST scope checker LSP implementation. We begin by detailing our
performance evaluation in Section 6.1, where we compare the speed and efficiency of our
approach against the existing Agda type checker and other relevant components. Following
this, we delve into a feature evaluation in Section 6.2, assessing the capabilities of our LSP im-
plementation against a hypothetical full LSP implementation and the well-established Agda
Emacs mode.

6.1 Performance Evaluation
In this section, we compare the performance of the Agda CST Parser, Agda Scope Checker,
Agda Type Checker, and the custom CST scope checking technique developed for the LSP
implementation for Agda. The purpose of this evaluation is to assess the feasibility of pro-
viding real-time feedback to users while they edit Agda code. We describe the methodology
and test setup used to evaluate these components, present the results in a clear and visually
appealing format, and analyze the findings to discuss the performance differences and their
implications.

6.1.1 Methodology and Test Setup
To evaluate the performance of the Agda CST Parser, Agda Scope Checker, Agda Type
Checker, and the custom scope checking technique, we will be testing on the source code
of the Agda standard library. The Agda standard library is an extensive collection of Agda
modules that cover a wide range of mathematical concepts and programming constructs. It
includes modules for basic data types, data structures, algorithms, and various branches of
mathematics such as algebra, topology, and category theory. The diversity and complexity
of the modules in the standard library make it an ideal dataset for testing the performance
of the aforementioned components under various scenarios, ensuring that the results are
representative of real-world Agda development.

The tests were performed on all files in the Agda standard library to better understand
the worst-case and average-case performance. This approach allows us to identify potential
performance bottlenecks and edge cases that may arise during the development process. Be-
foremeasuring the time taken for each phase of the type checker on a specific file, we first ran
the Agda type checker at least once on all files in the library. This initial type check ensures
that all dependencies of the file being tested are pre-checked, and their types are cached in
Agda interface files. By doing this, we simulate a realistic editing scenario where the user
has already type-checked all imported files, and the results are readily available in the cache.
This step is important because it allows us to isolate the performance measurement of each

35



6. EVALUATION

phase for the specific file being tested, without including the time spent on checking its im-
ports. Consequently, themeasured time for each phase reflects only the time taken to process
the current file, providing amore accurate representation of the performance experienced by
users while editing Agda code in an IDE. This approach ensures that the performance mea-
surements are not skewed by the time spent on checking dependencies, which would have
already been cached in a typical editing session.

The measurements were performed 8 times per file to ensure the reliability of the results
and to account for any potential variations in performance due to external factors such as
system load or cache state. The custom scope checker’s benchmark was measured using
“getCPUTime” from “System.CPUTime”, which provides high-resolution CPU time mea-
surements. The rest of the components were timed using the built-in Agda profiler, which
offers detailed information about the time spent in each phase of the Agda compilation pro-
cess.

All benchmarks were conducted using Haskell GHC 9.2.8 on Ubuntu 22.04 LTS, with
Agda 2.6.3. The tests were performed on an HP ZBook Studio G5 with 32.0 GiB of memory
and an Intel® Core™ i7-8750H CPU @ 2.20GHz × 12 processor.

6.1.2 Results

The results of the performance evaluation are presented in Table 6.1, Figure 6.2 and Figure
6.3.

Table 6.1 shows the execution times for each component on a selection of Agda files from
the standard library. The columns represent the file name, line count in the file, Agda CST
Parser, Agda ScopeChecker, AgdaTypeChecker, and custom scope checking execution times,
while the rows represent the individual test files. The files manually selected for this table
aim to showcase the performance of the components across a diverse set of Agda modules,
ranging from basic data types to more complex mathematical concepts.

Figure 6.2 presents a bar graph comparing the average execution times of each phase
across all files in the Agda standard library. The x-axis represents the phases (Agda CST
Parser, Agda Scope Checker, Agda Totality Checker (Termination + Positivity), Agda Type
Checker, and custom scope checking), while the y-axis represents the average execution time
in milliseconds.

The average times for each of these phases can be a bitmisleading as the higher percentiles
for each phase can take a lot longer. Figure 6.3 shows a box plot of the same information as
the previous figure.

File name Lines Parsing Scoping Typing Custom Scoping
Data.Nat.Base 240 5.70 ms 5.56 ms 11.32 ms 4.28 ms
Data.List.Base 486 23.36 ms 22.38 ms 69.77 ms 12.67 ms
Algebra.Solver.Ring 551 76.80 ms 246.33 ms 234.61 ms 15.98 ms
Algebra.Properties.Group 138 8.57 ms 6.75 ms 25.18 ms 3.53 ms
Function.Bijection 127 5.33 ms 3.29 ms 20.79 ms 2.01 ms
Category.Functor 46 3.24 ms 2.01 ms 5.11 ms 0.86 ms
Relation.Binary.PropEq 146 6.89 ms 5.23 ms 22.16 ms 4.23 ms
Reflection 235 2.91 ms 2.20 ms 3.81 ms 2.87 ms

Table 6.1: Line count and average execution times for each component on selected Agda files
from the standard library.
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Figure 6.2: Bar graph comparing the average execution times of each phase across all files in
the Agda standard library.

6.1.3 Analysis and Discussion

The results show that the Agda CST Parser and the custom CST scope checker performs
exceptionally well, with an average execution time of under 10 milliseconds per file. This
is a promising finding, as it suggests that the technique developed in this paper can pro-
vide real-time feedback to users without introducing significant latency. Research on web
user experience (UX) suggests that waiting times between 0 and 100ms feel instantaneous
to users, while waiting times between 100ms and 300ms are noticeable but not perceived as
slow (Arapakis, Bai, and Cambazoglu 2014). Although this research focuses on web UX, we
can extrapolate these findings to the optimal response times for real-time feedback in IDEs.
The custom CST scope checker’s performance falls well within the instantaneous feedback
range, making it suitable for integration into an interactive development environment.

Looking at the percentiles in Figure 6.3 we see a different picture. The custom scope
checker performs exceptionallywell in all percentiles. The 95th percentile for the Parsing and
Scoping phases is still under 100ms which suggests that using the Agda Parser and Scope
Checker would be feasible for giving real time feedback on an LSP implementation. The 99th
percentile of runtimes is large for the Agda phases. For Parsing it is still under 100ms, but
Scoping exceeds this and Typing far exceeds the 1000ms mark making it unusable for real
time user feedback.

The difference between the 95th and 99th percentile is high: this means that there are
some outliers that take extremely long times go through each phase. In Table 6.4 we can see
the top 5 files sorted by decreasing Scoping runtimes. And we can clearly see that they are
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Figure 6.3: Box plot showing the distribution of execution times for each phase on each file of
the Agda standard library, with whiskers extending to the minimum and maximum values
to include the full data range.

all quite large files, with around 1000 lines or more. This makes sense, as larger files have a
larger syntax tree and require more operations. And it also aligns with the common advice
when writing Agda to keep your files small so that they can get easily cached by the Agda
compiler. Smaller files get processed much faster. In Figure 6.5 we can see all phase times
plotted against the line count of each file in the x-axis. We can see that there are no files under
260 lines that take more than 100ms to scope check. This means that it is definitely feasible
to use the fully implemented and correct Agda Scope Checker to implement an LSP.

File name Lines Parsing Scoping Typing Custom Scoping
Data.Integer.Properties 2501 352.29 ms 615.34 ms 757.37 ms 72.25 ms
Data.Fin.Subset.Properties 869 102.72 ms 509.03 ms 386.35 ms 21.35 ms
Data.Nat.Properties 2395 269.73 ms 465.42 ms 419.12 ms 54.18 ms
Data.Fin.Properties 962 71.26 ms 396.83 ms 229.51 ms 27.02 ms
Data.Nat.Binary.Properties 1530 218.05 ms 311.86 ms 372.06 ms 43.54 ms

Table 6.4: Line count and execution times for each component on the files of the Agda stan-
dard library that were slowest to scope check.
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Figure 6.5: The graph depicts how runtime varies with line count for key phases in the Agda
compiler: Parsing, Scoping, Typing, and Custom. Each point represents a file, showing its
line count andphase runtime. Colors distinguish phases for easy comparison, while a dashed
line at 100ms denotes the ideal maximum runtime for real time interactivity (Arapakis, Bai,
and Cambazoglu 2014). Further information about labelled points can be seen in Figure 6.6.

Label File name Lines Parsing Scoping Typing Custom Scoping
A Data.List.Relation.

Binary.Sublist.
Heterogeneous.
Properties

713 84.69 ms 180.60 ms 1654.21 ms 24.73 ms

B Data.Tree.AVL.
Indexed.Relation.
Unary.Any.Properties

265 29.80 ms 88.94 ms 1087.88 ms 12.42 ms

C Data.Rational.
Properties

1699 247.53 ms 234.33 ms 799.32 ms 47.31 ms

D Data.Integer.
Properties

2501 352.29 ms 615.34 ms 757.37 ms 72.25 ms

E Data.List.Relation.
Binary.
BagAndSetEquality

607 92.37 ms 64.60 ms 719.87 ms 18.82 ms

F Data.List.Relation.
Unary.Any.Properties

725 99.14 ms 155.86 ms 693.33 ms 24.88 ms

Table 6.6: Line count and execution times for each component on the files of the Agda stan-
dard library that were slowest to type-check.
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One limitation of this benchmark is that the current implementation of the custom scope
checker is not complete and does not traverse all Agda declarations. As a result, the per-
formance numbers reported in these benchmarks may be slightly lower than what would
be observed if all declarations were fully implemented. However, even if the custom scope
checker were to take twice as long to execute, its performance would still be well within the
acceptable range of under 100ms for providing real-time feedback to users.

6.2 Feature Completeness
In this section, we evaluate the feature completeness of the customCST scope checker LSP im-
plementation, comparing it to a hypothetical full LSP implementation and the existing Agda
Emacs mode. The comparison is based on various categories of features, including editor
integration, code navigation, code assistance, refactoring, error handling, code formatting,
and Agda-specific features.

Tables 6.7 through 6.13 provide a detailed breakdown of the feature support for each
implementation across these categories. The tables use a color-coding scheme to indicate the
level of support: green for comprehensive support, yellow for partial or limited support, red
for no support, and blue for exceptional support.

6.2.1 Editor Integration
The custom CST scope checker LSP offers basic syntax highlighting based on scope analysis,
while a full LSP implementationwould providemore comprehensive highlighting using type
information as well. The Agda Emacs mode provides syntax highlighting using Emacs’ font-
lockmode. Code folding is not supported in the custom implementation but could be added,
while both the full LSP and Emacs mode support folding based on the semantic structure or
using Emacs’ outline-minor-mode, respectively. Unicode input methods are supported via
the agda-vscode extension in the custom implementation, depend on the editor’s capabilities
in a full LSP, and are well-supported in the Emacs mode.

Editor Integra-
tion

Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Syntax Highlight-
ing

Basic syntax highlight-
ing based on scope anal-
ysis.

Comprehensive syntax
highlighting using se-
mantic information.

Syntax highlighting
with Emacs’ font-lock
mode.

Code Folding Could be supported but
not implemented.

Code folding based on
semantic structure.

Code folding using
Emacs’ outline-minor-
mode.

Unicode Input
Method

Supported via agda-
vscode extension.

Depends on the editor’s
Unicode input capabili-
ties.

Agda-specific Unicode
input method for math
symbols.

Table 6.7: Editor Integration Feature Comparison

6.2.2 Code Navigation
The custom CST scope checker LSP and a full LSP implementation both support “Go to Def-
inition” and “Find References” using scope information and semantic analysis, respectively.
The Agda Emacsmode supports “Go to Definition” and “Find References” using Emacs tags.
Document Symbols could be supported using CST and scope information in the custom im-
plementation, but they were not implemented. In a full LSP implementation they would be
supported, while the Emacs mode provides partial support using Emacs imenu. Workspace
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Symbols andDocument Links are not supported in the custom implementation or the Emacs
mode, while a full LSP could support these features.

Code Navigation Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Go to Definition Supported using scope
information.

Supported using se-
mantic analysis.

Supported using Emacs
tags.

Find References Supported using scope
information.

Supported. Supported using Emacs
tags.

Document Sym-
bols

Could be supported but
not implemented.

Supported using se-
mantic analysis.

Partial support using
Emacs imenu.

Workspace Sym-
bols

Could be supported but
not implemented.

Supported using
workspace-level analy-
sis.

Not supported. This is
an LSP specific feature.

Document Links Not supported. Could support for cer-
tain link types. But the
utility for Agda is not
clear.

Not supported.

Table 6.8: Code Navigation Feature Comparison

6.2.3 Code Assistance
The customCST scope checker LSP supports auto-completion using scope information, while
a full LSP would also use type information for more comprehensive completions. The
Emacs mode could potentially support auto-completion using Emacs’ completion mecha-
nisms. Hover information has limited support in the custom implementation, showing only
symbol information such as if it is a constructor or a type, while a full LSP would provide
comprehensive hover information with type and documentation. The Emacs mode could
support hover using Agda’s type checker. Signature Help is not supported in any of the
implementations due to the difficulty of integrating it with ML-like syntaxes.

Code Assistance Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Auto-completion Supported using scope
information.

Supported using scope
and type information.

Could be supported us-
ing Emacs completion
mechanisms.

Hover Informa-
tion

Limited support for
showing some symbol
information.

Comprehensive hover
information with type
and documentation.

Could be supported
using Agda’s type
checker.

Signature Help Not supported due to
lack of type informa-
tion.

Not supported due
to difficulty with in-
tegrating for ML-like
syntaxes.

Not supported due
to difficulty with in-
tegrating for ML-like
syntaxes.

Table 6.9: Code Assistance Feature Comparison

6.2.4 Refactoring
The custom CST scope checker LSP supports Rename Refactoring using scope information,
although it might not be fully correct in all cases. A full LSP implementation would sup-
port renaming using Agda’s scope checker, while the Emacs mode has partial support using
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search and replace. Code Actions have limited support in the custom implementation for
certain actions, while a full LSP would provide extensive code actions based on semantic
analysis. The Emacs mode offers some code actions through Emacs commands.

Refactoring Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Rename Refactor-
ing

Supported using scope
information, although
might not be fully cor-
rect.

Supported using
Agda’s scope checker.

Partial support using
search and replace.

Code Action Limited support for cer-
tain code actions.

Extensive code actions
based on semantic anal-
ysis.

Some code actions
available through
Emacs commands.

Table 6.10: Refactoring Feature Comparison

6.2.5 Error Handling
The custom CST scope checker LSP provides limited error diagnostics for scope-related er-
rors and unused variables, while a full LSP implementationwould offer comprehensive error
diagnostics using type checking. The Agda Emacs mode supports error diagnostics using
Agda’s interactive mode. Code Lens is not supported in the custom implementation or the
Emacs mode but could be supported in a full LSP if implemented properly for Agda. Docu-
ment Highlighting could be supported using scope information in the custom implementa-
tion but was not implemented in time. On a full LSP implementation it could definitely be
implemented using scope information. Emacs does not have this feature.

Error Handling Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Error Diagnostics Limited to scope-
related errors and
unused variables.

Comprehensive error
diagnostics using type
checking.

Supported using
Agda’s interactive
mode.

Code Lens Could be supported but
not implemented.

Support for code lens
features if implemented
properly for Agda.

Not supported.

Document High-
lighting

Could be supported but
not implemented.

Supported using se-
mantic analysis.

Not a standard Emacs
feature.

Table 6.11: Error Handling Feature Comparison

6.2.6 Code Formatting
Code formatting is not supported in the custom CST scope checker LSP due to limitations in
parsing. It could be supported in a full LSP implementation or in the Emacs mode but as of
the time of this writing Agda does not have a standard code formatter.

6.2.7 Agda-Specific Features
The custom CST scope checker LSP and a full LSP implementation do not support the ad-
vanced interactive editing features that are the hallmark of the Agda Emacs mode, such as
interactive editing, goal-directed programming, case splitting, hole filling, and proof search.
While a full LSP could potentially support these features to some extent, depending on the
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Code Formatting Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Code Formatting Not supported due to
limitations in parsing.

Not supported due to
Agda not having a code
formatter rules.

Not supported due to
Agda not having a code
formatter rules.

Table 6.12: Code Formatting Feature Comparison

editor’s capabilities, the Emacs mode provides exceptional, well-integrated support that sets
the standard for interactive development in Agda. It could be possible to implement these
features in LSP through Code Actions or Code Lenses or perhaps through extensions to LSP
such as SLSP discussed in Section 3.3. But further research is required on this topic.

Agda-Specific
Features

Custom CST scope
checker LSP

Full LSP Agda Emacs mode

Interactive Edit-
ing

Not supported. Partial support depend-
ing on the editor’s capa-
bilities.

Extensive support us-
ing Agda’s interactive
mode.

Goal-Directed
Programming

Not supported. Partial support depend-
ing on the editor’s capa-
bilities.

Well-integrated sup-
port using Agda’s
interactive mode.

Case Splitting Not supported. Partial support depend-
ing on the editor’s capa-
bilities.

Well-integrated sup-
port using Agda’s
interactive mode.

Hole Filling Not supported. Partial support depend-
ing on the editor’s capa-
bilities.

Well-integrated sup-
port using Agda’s
interactive mode.

Proof Search Not supported. Partial support depend-
ing on the editor’s capa-
bilities.

Well-integrated sup-
port using Agda’s
interactive mode.

Table 6.13: Agda-Specific Feature Comparison

In summary, the custom CST scope checker LSP offers a solid foundation for basic ed-
itor integration, code navigation, and limited code assistance and refactoring. However, it
lacks the more advanced features that would be possible with access to full type informa-
tion, such as comprehensive error diagnostics, type-aware completions, and extensive code
actions. The Agda Emacs mode remains the gold standard for Agda-specific features, partic-
ularly in terms of interactive editing and proof assistance, which are not yet well-supported
in LSP implementations.
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Chapter 7

Discussion

This thesis aimed to explore the potential of leveraging the Language Server Protocol (LSP)
to enhance the development experience for dependently typed languages, focusing specifi-
cally on Agda. The main goal was to investigate how LSP features could be implemented ef-
ficiently using scope checking, rather than relying solely on full type checking. The research
findings demonstrate that scope checking can serve as a foundation for providing fast and
responsive LSP features, offering significant improvements in terms of real-time feedback
and interactivity.

The significance of this research lies in its contribution to the growing body of knowledge
on language server protocols and their application to dependently typed programming lan-
guages. By showcasing the feasibility and benefits of using scope checking for LSP features,
this thesis opens up newpossibilities for enhancing the development experience inAgda and
other similar languages. The insights gained from this research can inform future efforts to
improve tooling support and promote the adoption of dependently typed languages in both
academic and industrial settings.

7.1 Scope Checking as a Foundation for LSP Features
One of the key findings of this research is that scope checking can serve as a powerful foun-
dation for implementing LSP features in Agda. By leveraging the information obtained from
scope analysis, it is possible to provide fast and responsive IDE features without relying on
the computationally expensive process of full type checking.

The primary advantage of using scope checking for LSP features is its computational effi-
ciency. Scope checking can be performed relatively quickly by traversing the abstract syntax
tree (AST) or concrete syntax tree (CST) of the program, keeping track of declared identifiers
and their scopes. This enables the implementation of features such as semantic highlighting,
completions, go to definition, find references, renaming, and basic code actions for refactor-
ing implicit variables, all with minimal latency. As a result, developers can benefit from
real-time feedback and interactivity, enhancing their overall productivity and development
experience.

The performance evaluation conducted in this thesis provides strong evidence to sup-
port the efficiency of scope checking for LSP features. The custom CST scope checker im-
plemented as part of this research consistently outperformed the Agda scope checker, and
type checker in terms of execution time. On average, the custom scope checker took less than
10 milliseconds to process a file, falling well within the range of instantaneous feedback as
perceived by users. This demonstrates that scope checking can indeed provide the fast and
responsive IDE features necessary for a smooth development experience.

However, it is important to acknowledge the limitations of scope checking compared to
full type checking. Scope checking alone may not catch certain type-related errors or incon-
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sistencies that would be detected by a complete type checking process. Additionally, the lack
of complete type information can limit the range of LSP features that can be implemented
solely based on scope checking. For example, features like type-aware code completion or
type-driven refactorings may be more challenging to implement without access to the full
type information.

Despite these limitations, the benefits of using scope checking for LSP features in Agda
are significant. By providing fast and responsive IDE support, scope checking can greatly
improve the developer experience andmakeAgdamore accessible to awider audience. It can
also serve as a complementary approach to full type checking, offering immediate feedback
for certain features while more comprehensive type checking is performed asynchronously
in the background when the user is not actively editing the file.

To mitigate the limitations of scope checking, potential strategies can be explored. One
approach is to investigate incremental type checking techniques, which allow for faster feed-
back by reusing previously computed type information and only rechecking the parts of the
code that have changed. This could help bridge the gap between the responsiveness of scope
checking and the completeness of full type checking. Another possibility is to adopt a hybrid
approach that combines scope checking and type checking. In this scenario, scope checking
can be used to provide immediate feedback for certain features, while type checking is per-
formed only to catch type-related errors and enablemore advanced LSP features. This hybrid
approach can strike a balance between responsiveness and completeness, offering develop-
ers the benefits of both scope checking and type checking.

7.2 Comparison with Existing Agda Development Tools

When comparing the LSP implementation developed in this thesis with existing Agda de-
velopment tools, it is important to consider both the advantages and limitations of the LSP
approach.

One of the main advantages of the LSP implementation is its editor-agnostic nature. By
adhering to the standardized Language Server Protocol, the LSP implementation can be in-
tegrated with a wide range of editors and IDEs, providing a consistent development expe-
rience across different environments. This is in contrast to Agda’s Emacs mode, which is
tightly coupled with the Emacs editor and may not be easily accessible to developers who
prefer other editors and are not accostumed to typical Emacs workflows and key bindings.
The LSP approach democratizes Agda development, making it possible for developers to use
their preferred tools while still benefiting from advanced IDE features.

The feature comparison conducted in this thesis highlights the strengths and limitations
of the LSP implementation compared to Agda’s Emacs mode. While the LSP implementa-
tion provides a solid foundation for editor integration, code navigation, code assistance, and
refactoring, it currently lacks some of the advanced interactive editing features that are avail-
able in the Emacs mode. Features like interactive case splitting, hole filling, and proof search
are deeply integrated into the Emacs environment and leverage Agda’s interactive mode for
a seamless development experience. These features are critical for the interactive and ex-
ploratory nature of dependently typed programming, and their absence in the current LSP
implementation is a notable limitation.

However, it is important to recognize that the LSP implementation developed in this the-
sis is an initial prototype and serves as a proof of concept for using scope checking as a foun-
dation for LSP features in Agda. The current limitations can be addressed through future
work and improvements. Integrating the LSP implementation with the official Agda scope
checker, enhancing the range of supported LSP features, and exploring ways to incorporate
interactive editing capabilities are all potential avenues for further development.
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7.3 The Role of Emacs in Dependently Typed Language
Development

The evolution of Emacs has been closely intertwined with the development and adoption
of dependently typed languages. In the early years, when languages like Coq (1989), Agda
(2007), Idris (2008), and Lean (2013) emerged, the Language Server Protocol (LSP) had not
yet been widely adopted. Emacs, with its robust customization capabilities and Lisp-based
configuration, became a natural framework for researchers and practitioners working with
these complex languages.

The popularity of Emacs within the functional programming community and its strong
ecosystem of language-specific modes and tools further solidified its position as the de facto
editor for dependently typed languages. Emacs provided a flexible and extensible environ-
ment for developing and interactingwith the sophisticated type systems and proof assistants
that are characteristic of these languages.

However, the landscape has started to shift with the growing prevalence of the Language
Server Protocol. Newer iterations of dependently typed languages, such as Idris 2 (2020)
and Lean 4 (2021), have embraced LSP integration more extensively. This transition reflects
the broader trend towards standardized protocols for communication between editors and
language servers. And it is also time for Agda to capitalize on this trend by adopting LSP,
thereby enhancing its accessibility and usability across a wider range of editing environ-
ments.

7.4 Future Work and Improvements
While the LSP implementation developed in this thesis demonstrates the feasibility and bene-
fits of using scope checking for Agda development, there are several areas for future research
and improvement.

One of the primary areas for future work is the implementation of additional LSP fea-
tures to further enhance the development experience. The current prototype focuses on a
core set of features such as semantic highlighting, go to definition, find references, and basic
code actions. However, there is significant potential to expand the range of supported fea-
tures. Implementing more advanced code actions, such as refactoring support for common
Agda-specific patterns, could greatly improve the productivity of Agda developers. Inte-
grating code lenses to provide contextual information and actions directly within the editor
could also enhance the discoverability and usability of Agda’s powerful features. Addition-
ally, supporting features like formatting andworkspace-level analysis would provide a more
comprehensive LSP implementation and align with the expectations of modern IDE users.

Another critical area for future work is addressing the limitations of the current imple-
mentation. One of the key steps in this direction would be to integrate the LSP implemen-
tation with the official Agda scope checker, rather than relying on a custom scope checking
solution. This integrationwould ensure compatibility with the latest Agda version and allow
the LSP implementation to benefit from any improvementsmade to the official scope checker.
Moreover, fixing the limitations of the Agda parser and scope checker, such as handling er-
ror recovery and providing more robust parsing, would greatly enhance the reliability and
usability of the LSP implementation. These improvements would require close collaboration
with the Agda development team and the Agda community to ensure a seamless integration
and a high-quality user experience.

Performance and responsiveness are crucial factors in the success of an LSP implemen-
tation, and there is room for further optimization in the current prototype. Investigating
incremental type checking techniques could be a valuable direction for future research. In-
cremental type checking would allow for faster feedback by reusing previously computed
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type information and only rechecking the parts of the code that have changed. This ap-
proach could help bridge the gap between the responsiveness of scope checking and the
completeness of full type checking. However, implementing incremental type checking in
Agda would be a significant undertaking and would require close collaboration with the
Agda development team.

Engagingwith theAgda community and seeking feedback fromAgda users is another es-
sential aspect of future work. The LSP implementation developed in this thesis is a research
prototype, and its long-term success and adoption depend on its ability to meet the needs
and expectations of the Agda community. Contributing the LSP implementation to the offi-
cial Agda project, or collaborating with the maintainers of existing Agda development tools,
could help ensure its long-term sustainability and integration with the broader Agda ecosys-
tem. By actively seeking user feedback and incorporating suggestions, the LSP implemen-
tation can be refined and extended to better serve the Agda community. This engagement
could take the form of user surveys, workshops, or community discussions to gather insights
and prioritize future development efforts.
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Conclusion

In this thesis, we have explored the potential of the Language Server Protocol (LSP) to en-
hance the development experience for dependently typed languages, focusing on the Agda
programming language. Our research demonstrates that scope checking can serve as a
solid foundation for implementing efficient LSP features in Agda, offering a promising ap-
proach to improve the tooling and overall development experience for dependently typed
languages.

The findings of this study demonstrate the effectiveness of scope checking in providing
fast and responsive IDE features, such as semantic highlighting, go-to-definition, find refer-
ences, and basic code actions for refactoring implicit variables. By decoupling these features
from the computationally expensive process of full type checking, we can deliver real-time
feedback and interactivity, which are essential for a smooth and productive development
workflow.

Although the scope checking approach has limitations, such as not supporting certain
LSP features, compared to full type checking, the benefits in terms of performance and re-
sponsiveness are substantial. The custom scope checker developed as part of this research
consistently outperformed the Agda type checker in terms of execution time, making it well-
suited for providing real-time feedback in an IDE setting.

This research makes a valuable contribution to the growing body of knowledge on lan-
guage server protocols and their application to dependently typed programming languages.
By demonstrating the feasibility and advantages of using scope checking for LSP features,
this thesis paves the way for further enhancements in the development experience of Agda
and other similar languages. The insights gained from this research can guide future efforts
to improve tooling support and foster the adoption of dependently typed languages in both
academic and industrial contexts.

As the adoption of dependently typed languages continues to grow, the importance of
providing intuitive, responsive, and feature-rich development tools cannot be overstated. By
leveraging the power of LSP and scope checking, we can create more accessible and produc-
tive environments for dependently typed programming, enabling researchers and develop-
ers to focus on their core tasks and unlock the full potential of these expressive and powerful
languages.

49





Bibliography

Amann, Sven et al. (2016). “A study of visual studio usage in practice”. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1.
IEEE, pp. 124–134.

Arapakis, Ioannis, Xiao Bai, and B Barla Cambazoglu (2014). “Impact of response latency on
user behavior in web search”. In: Proceedings of the 37th international ACM SIGIR conference
on Research & development in information retrieval, pp. 103–112.

Brady, Edwin (2021). “Idris 2: Quantitative type theory in practice”. In: arXiv preprint
arXiv:2104.00480.

Collins, Michael and Brian Roark (2004). “Incremental parsing with the perceptron algo-
rithm”. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Lin-
guistics (ACL-04), pp. 111–118.

CoqIDE (n.d.). https://coq.inria.fr/doc/v8.12/refman/practical-tools/coqide.html.
Accessed: 2024-06-29.

Coquand, Catarina, Makoto Takeyama, and Dan Synek (2006). “An Emacs interface for type
directed support constructing proofs and programs”. In: European Joint Conferences on
Theory and Practice of Software, ENTCS. Vol. 2.

Danielsson,NilsAnders andUlfNorell (2011). “Parsingmixfix operators”. In: Implementation
andApplication of Functional Languages: 20th International Symposium, IFL 2008, Hatfield, UK,
September 10-12, 2008. Revised Selected Papers 20. Springer, pp. 80–99.

Faithfull, Alexander et al. (2018). “Coqoon: An IDE for interactive proof development in
Coq”. In: International Journal on Software Tools for Technology Transfer 20, pp. 125–137.

Idris Community (2024a). Idris2 Language Server. https://github.com/idris- community/
idris2-lsp. Accessed: 2024-05-15.

— (2024b). idris2-lsp: Language Server for Idris2. Accessed: 2024-05-17. URL: https://github.
com/idris-community/idris2-lsp.

JetBrains (2024). Language Server Protocol. https://plugins.jetbrains.com/docs/intellij/
language-server-protocol.html. Accessed: 2024-05-22.

LeanProver (2024). Lean Language Server. https://github.com/leanprover/lean- client-
js/tree/master/lean-language-server. Accessed: 2024-05-15.

MacroMates Ltd. (2024). Language Grammars. https://macromates.com/manual/en/language_
grammars. Accessed: 2024-06-09.

McCabe, Thomas J (1976). “A complexity measure”. In: IEEE Transactions on software Engi-
neering 4, pp. 308–320.

Mehnert, Hannes and David Christiansen (2014). “Tool demonstration: An IDE for program-
ming and proving in Idris”. In: Proceedings of Vienna Summer of Logic, VSL 14.2.

Meyerovich, LeoA andAriel S Rabkin (2013). “Empirical analysis of programming language
adoption”. In: Proceedings of the 2013 ACM SIGPLAN international conference on Object ori-
ented programming systems languages & applications, pp. 1–18.

51

https://coq.inria.fr/doc/v8.12/refman/practical-tools/coqide.html
https://github.com/idris-community/idris2-lsp
https://github.com/idris-community/idris2-lsp
https://github.com/idris-community/idris2-lsp
https://github.com/idris-community/idris2-lsp
https://plugins.jetbrains.com/docs/intellij/language-server-protocol.html
https://plugins.jetbrains.com/docs/intellij/language-server-protocol.html
https://github.com/leanprover/lean-client-js/tree/master/lean-language-server
https://github.com/leanprover/lean-client-js/tree/master/lean-language-server
https://macromates.com/manual/en/language_grammars
https://macromates.com/manual/en/language_grammars


BIBLIOGRAPHY

Microsoft (2023). Language Server Protocol. https://microsoft.github.io/language-server-
protocol/. Version 3.17. Accessed: 2024-04-26.

Moura, Leonardo de and Sebastian Ullrich (2021). “The lean 4 theorem prover and program-
ming language”. In: Automated Deduction–CADE 28: 28th International Conference on Auto-
mated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. Springer, pp. 625–635.

Murphy, Gail C, Mik Kersten, and Leah Findlater (2006). “How are Java software developers
using the Eclipse IDE?” In: IEEE software 23.4, pp. 76–83.

Nawrocki, Wojciech, Edward W Ayers, and Gabriel Ebner (2023). “An extensible user inter-
face for Lean 4”. In: 14th International Conference on Interactive Theorem Proving (ITP 2023).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Pacak, André, Sebastian Erdweg, and Tamás Szabó (2020). “A systematic approach to de-
riving incremental type checkers”. In: Proceedings of the ACM on Programming Languages
4.OOPSLA, pp. 1–28.

Pit-Claudel, Clement F, Pierre Courtieu, and Clément Pit-Claudel (2016). “Company-Coq:
Taking Proof General one step closer to a real IDE”. In.

Proof General (n.d.). https://proofgeneral.github.io/. Accessed: 2024-06-29.
Rask, Jonas Kjær et al. (2021). “The specification language server protocol: A proposal for

standardised LSP extensions”. In: arXiv preprint arXiv:2108.02961.
Ringer, Talia et al. (2019). “QED at large: A survey of engineering of formally verified soft-

ware”. In: Foundations and Trends® in Programming Languages 5.2-3, pp. 102–281.
Shrestha, Prabir (2024). vim-lsp. https://github.com/prabirshrestha/vim- lsp. Accessed:

2024-05-22.
Wagner, Tim A and Susan L Graham (1998). “Efficient and flexible incremental parsing”. In:

ACM Transactions on Programming Languages and Systems (TOPLAS) 20.5, pp. 980–1013.
Zayour, Iyad and Hassan Hajjdiab (2013). “How much integrated development environ-

ments (ides) improve productivity?” In: J. Softw. 8.10, pp. 2425–2431.
Zwaan, Aron, Hendrik vanAntwerpen, and Eelco Visser (2022). “Incremental type-checking

for free: Using scope graphs to derive incremental type-checkers”. In: Proceedings of the
ACM on Programming Languages 6.OOPSLA2, pp. 424–448.

52

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://proofgeneral.github.io/
https://github.com/prabirshrestha/vim-lsp

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Agda LSP
	Research Objectives

	Language Server Protocol
	Overview of Language Server Protocol
	Core Components of LSP
	Importance of LSP Features According to Developers
	Relevance to Dependently Typed Languages
	LSP in Dependently Typed Languages
	Contributions to Language Adoption

	Related Work
	IDE Support for Dependently Typed Languages
	Challenges and Techniques for Responsive IDE Support
	 Specification Language Server Protocol (SLSP)
	Conclusion

	Agda Implementation in Haskell
	Parser and Concrete Syntax Tree (CST)
	Scope Checking and Abstract Syntax Tree (AST)
	Type Checking and Interaction

	Agda LSP Implementation
	Scope Checking Approach
	Implementation Details

	Evaluation
	Performance Evaluation
	Feature Completeness

	Discussion
	Scope Checking as a Foundation for LSP Features
	Comparison with Existing Agda Development Tools
	The Role of Emacs in Dependently Typed Language Development
	Future Work and Improvements

	Conclusion
	Bibliography

