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Loose bolt localization and torque
prediction in a bolted joint using
lamb waves and explainable artificial
intelligence

Muping Hu1,2 , Nan Yue2 and Roger M. Groves2

Abstract
With the increasing application of artificial intelligence (AI) techniques in the field of structural health monitoring (SHM),
there is a growing interest in explaining the decision-making of the black-box models in deep learning-based SHM meth-
ods. In this work, we take explainability a step further by using it to improve the performance of AI models. In this work,
the results of explainable artificial intelligence (XAI) algorithms are used to reduce the input size of a one-dimensional
convolutional neural network (1D-CNN), hence simplifying the CNN structure. To select the most accurate XAI algo-
rithm for this purpose, we propose a new evaluation method, feature sensitivity (FS). Utilizing XAI and FS, a reduced
dimension 1D-CNN regression model (FS-X1D-CNN) is proposed to locate and predict the torque of loose bolts in a
16-bolt connected aluminum plate under varying temperature conditions. The results were compared with 1D CNN
with raw input vector (RI-1D-CNN) and deep autoencoders-1D-CNN (DAE-1D-CNN). It is shown that FS-X1D-CNN
achieves the highest prediction accuracy with 5.95 mm in localization and 0.54 Nm in torque prediction, and converges
10 times faster than RI-1D-CNN and 15 times faster than DAE-1D-CNN, while only using a single lamb wave signal
path.

Keywords
Lamb waves, explainable AI, structural health monitoring, one-dimensional convolutional neural network, loose bolt
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Introduction

Threaded fasteners, commonly referred to as ‘‘indus-
trial rice’’ due to their ubiquity, are foundational
components in various industrial fields, prized for their
simplicity and ease of assembly.1 However, when
subjected to various environmental factors such as
vibration, impact, and changing temperatures,2 bolted
connections are prone to loosening after assembly,
which can directly affect the safety and reliability of
the bolted structures, even leading to catastrophic
ccidents. Statistics show that approximately 20% of
mechanical system failures worldwide each year can be
attributed to the self-loosening of threaded bolts or fas-
teners.3 In 2017, the offshore supply vessel Red Dawn
experienced an engine failure during a major overhaul
due to improperly tightened bolts, which caused a
nearly $1 million loss.4 Similarly, in 2015, the Carnival
Liberty cruise ship suffered an engine room fire caused
by a loose bolt on a fuel injector pump, resulting in
losses of $1.7 million.5 These incidents highlight the

critical importance of continuous monitoring of bolted
connections to ensure structural safety and reliability.

Structural health monitoring (SHM) is a potential
technology that comprises in-service data collection
and signal analysis to ensure structural safety and
reduce maintenance costs.6,7 A variety of SHM meth-
ods for monitoring bolt loosening have been proposed
in recent years, including electro-mechanical impe-
dance methods,8,9 vibration-based methods,10,11 electri-
cal conductivity,12 acoustic emission methods,13,14 etc.
Among these, guided wave-based SHM methods are
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considered one of the most promising technologies for
large-scale, in-service engineering structural monitoring
due to their low energy consumption, remote inspec-
tion capabilities, the ability to monitor large areas from
a single point, and the ability to inspect hard-to-reach
areas.15,16

Many studies have applied guided waves to bolt-
loosening detection.17–19 However, most of these stud-
ies require manual extraction of signal features, such as
wave energy dissipation,20–22 mode conversion,23 and
nonlinear acoustic properties,24,25 and then establish
relationships between these statistical indicators and
bolt connection states through experiments. However,
in practical engineering, guided waves are susceptible
to industrial noise,26 which can cause those methods
that perform well in a stable laboratory environment to
no longer to be able to provide an accurate damage
assessment in practice once the working environment
or operating conditions (vibration,27 temperature,28,29

humidity,30 etc.) change.7 In addition, the difficulty of
identifying suitable feature extraction methods for large
structures with more complex connections can also be
an obstacle to the complete automation of the monitor-
ing task.

Deep learning-based SHM (DeepSHM31) methods
have the potential to address these problems. They can
extract high-level features without a priori knowledge
in SHM and possess very strong nonlinear analysis and
generalization capabilities, which gives them great
advantage for in-service monitoring of large structures
in unstable environments.6 However, due to the black-
box nature of AI models, their results are often difficult
to understand and trust. Therefore, there is an increas-
ing demand for explainable research on AI models. As
an emerging technology in the field of AI, explainable
artificial intelligence (XAI) can open the black box of
AI and help humans to better understand the decisions
of AI models.32

In recent years, explainability research for the
DeepSHM methods has begun to emerge.33–37 Meister
et al.38 used a CNN for damage classification during the
automated fiber laying processes of composite structures
and visualized the results of CNN using the Smooth
Integrated Gradients algorithm. Geetha and Sim et al.39

analyzed the metadata of a one-dimensional deep learn-
ing model by local XAI and visualized the knowledge
transfer within the hidden layers by t-distributed
Stochastic Neighborhood Embedding (t-SNE). In our
previous work,40 we employed six different XAI algo-
rithms to analyze the decision-making process of a one-
dimensional convolutional neural network (1D-CNN)
model for detecting loose bolts and provided physical
explanations for its decisions. Chen and Lee41 used the
results of Grad CAM to demonstrate that CNN prefers
the information from the high-frequency band for the

bearing faults diagnosis, which differs from the tradi-
tional methods that rely on low-frequency features.
Letzgus et al.42 proposed two novel XAI algorithms for
explaining regression models. Lomazzi et al.43 employed
a layer-wise relevance propagation algorithm to explain
the predictions of a CNN model that processes ultraso-
nic guide waves for damage diagnosis.

However, most of the current explainability research
has been focused on explaining the decisions made by
AI models, with little application beyond this.
Zacharias et al.44 used the result of Shapley Additive
Explanations (SHAP) to do the feature selection of the
XGBoost model and provide a design framework con-
sisting of meta-requirements and design principles for
explainable feature selection. Polle et al.45 used the
explainable neural network (XANN) architecture to
examine and validate the artificially generated signal
features and to improve the augmentation process for
temperature compensation.

Taking these examples, we identify that XAI can
contribute to the improvement of AI models.
Therefore, in this paper, we aim to make rational use
of the explanatory information generated by XAI and
feed it back into the design of the DeepSHM method
to reduce the computational costs. A feature sensitivity
(FS) and XAI-based 1D-CNN regression model (FS-
X1D-CNN) are proposed in this paper, which leverage
the results of XAI to reduce the size of the input vector
for the 1D CNN model to enhance computational effi-
ciency while ensuring prediction accuracy.

Specifically, the 1D CNN classification model was
used to detect the loose bolt in a 16-bolt-connected alu-

minum plate under temperature variations. Then the

decision-making process of the model was analyzed

using the six different XAI algorithms. Based on the

results of XAI, the importance of each signal in the

input vector was assessed, and the signal with the high-

est importance was selected as the new input to the 1D

CNN regression model for loosen blot torque predic-

tion. Therefore, FS-X1D-CNN can also enhance the

efficiency of the monitoring of multiple bolts. By focus-

ing on specific pairs of transducers, it can simplify the

tasks of signal collection, transmission, and analysis.
Considering that different XAI algorithms provide

different assessments of signal importance, accurately
selecting the most accurate XAI algorithm is also a
challenge. To address this issue, an evaluation method
FS is proposed to identify the most accurate XAI algo-
rithms in finding important features. Finally, the FS-
X1D-CNN, X1D-CNN, RI-1D-CNN, and deep auto-
encoders-1D-CNN (DAE-1D-CNN) regression models
were used to locate and predict the torque of the loose
bolt, and the positioning accuracy, torque prediction
accuracy, and convergence time are compared.
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Methodology

An FS-X1D-CNN model that utilizes the knowledge
from XAI algorithms to reduce the size of the input
vector is proposed in this paper, the flowchart of the
process is shown in Figure 1. First, signals are collected
from the experiment for training and testing of the 1D
CNN classification model. The proposed methodology
was tested using four piezoelectric ultrasonic sensors
loaded onto a bolted aluminum plate. By using each
sensor in sequence as an exciter, with the remaining
sensors serving as receivers, different monitoring paths
can be formed: P1, P2, P3 . Pi. Subsequently, all the
signals from these monitoring paths are arranged into
a vector which serves as input to the 1D CNN model
which is used to classify different bolt-loosening cases.
The next step is to analyze the decisions of the classifi-
cation model using XAI algorithms. Then the FS
method is applied to assess the accuracy of various
XAI algorithms in identifying important features of all
the signals in the raw input vector. Then, utilizing the
best XAI algorithm to select the most important signal
from the raw input, which is used to train the FS-
X1D-CNN model is applied to locate and predict the
torque on the loose bolt. The analysis process of the

XAI algorithm is not involved in the training and
testing of the FS-X1D-CNN model.

One-dimensional convolutional neural network

1D CNN is a specialized type of CNN primarily used
for temporal data, which has a high memory and com-
putational efficiency compared to other architectures.46

It consists of two stages: feature extraction and classifi-
cation/regression.47 The feature extraction stage con-
sists of stacking and alternating convolutional layers
and pooling layers. Input data are convolved by 1D
kernel filters, with each filter sharing the same learn-
able weight matrix over the entire input data to extract
specific features.48 The convolution calculation is as
follows:

ym + 1
u = Sk2Nm

xm
k � wm + 1

u + bm + 1
u ð1Þ

where ym + 1
u and xm

k are the feature maps of the u-th and
k-th channels in the (m + 1)-th and m-th layers, respec-
tively. Nm is the number of convolutional kernels in the
m-th layer. wm + 1

u and bm + 1
u are the weight and bias of

the (m + 1)-th layers, respectively. * represents the 1D

Figure 1. Flowchart of the FS-X1D-CNN model.
1D CNN: one-dimensional convolutional neural network; FS-X1D-CNN: feature sensitivity and XAI based 1D-CNN regression model; XAI:

explainable artificial intelligence.
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convolutional operation. After the convolution, the
output goes to the max-pooling layer.

The structure of the classification/regression stage is
fully connected layers and is calculated as follows:

yn + 1
q =ReLU wn + 1

q xn
p + bn + 1

q

� �
=max 0, wn + 1

q xn
p + bn + 1

q

� �h i
ð2Þ

where yn + 1
q is the q-th value in the (n + 1)-th layer, xn

p

is the p-th value in the n-th layer, ReLU represents the
linear rectification activation function, wn + 1

q and bn + 1
q

are the weights and bias of (n + 1)-th layer.
For the model’s training, cross-entropy is adopted

to calculate the error between the 1D CNN predicted
and the true label:

L(Y) = � Ŷ C log (F(VC)) + 1� Ŷ C

� �
log 1� F(VC)ð Þ

� �
ð3Þ

where L is the loss function, F is the function of 1D
CNN model, Y contains all the parameters (weights
and bias) of F, VC represents the input vector from
class C, and ŶC is the label of VC. The 1D CNN is
updated using a stochastic gradient descent algorithm
with Adam optimizer.49

XAI algorithms

Six different XAI algorithms are employed for the
explanation of the 1D CNN classification model. Then
the XAI result obtained can be used for the calculation
of importance scores for the data points of the input
vector, a more detailed description can be found in our
previous work.40 Subsequently, the importance scores
of all data points are summed to obtain the importance
scores for the signal on each monitoring path.

Sensitivity analysis. Sensitivity analysis50 uses the square
of the derivative value of the input vector to calculate
the importance score of each data point. Then, the
importance score of the signal can be represented by
the sum of the importance scores of all data points:

ISA Pið Þ=
Xsn

s = 1

∂F

∂v
Pi
s

� 	2

ð4Þ

Pi represents the i-th monitoring path, s represents the
number of data points, sn is the length of each signal,
and vPi

s represents the s-th data point of the signal on
the Pi monitoring path.

Smooth Simple Taylor. Smooth simple Taylor40 uses the
first-order term of the Taylor expansion of the 1D
CNN model at the root point as the importance score

for each data point and smooths the results by adding
noise for averaging:

ISST Pið Þ=
Xsn

s = 1

1

Nnoise

XNnoise

1

∂F

∂v
Pi
s

(~v) � v0s � ~vsð Þ
 !

ð5Þ

where Nnoise is the number of noisy samples, ~v is the
root vector that represents the neutral points on the
decision boundary of the 1D CNN model, and v0s rep-
resents the signal with noise.

Deep Taylor. In deep Taylor,51 the importance vector of
the neural network’s last layer is first calculated. Then,
this importance vector is propagated layer by layer for-
ward through Taylor expansion. The transfer between
the n-th and (n + 1)-th layer can be calculated as:

I (n)
DT (xp) =

X
q

∂I (n + 1)
DT (xp)

∂xp







~x(q)

pf g
� xp � ~x(q)

p

� �
ð6Þ

where ~x(q)
p represents the root point vector in the n-th

layer. After backpropagation, the importance scores of
the first layer (input vector) are summed to obtain the
importance score of each signal:

IDT Pið Þ=
Xsn

s = 1

I (1)
DT vPi

s

� �
ð7Þ

Gradient-weighted class activation mapping. Grad CAM52

focuses on the information flow into the last convolu-
tional layer. First, the activations of each channel are
weighted by its average gradient. Then, the weighted
activations are summed up and the negative values are
filtered out by a ReLU function. Finally, the importance
vector of the last convolutional layer is mapped back to
the input vector through a linear transformation:

IGC(vs) =ReLU
XNm

k = 1

E
∂F(VC)

∂Am
k

� �
Am

k

 !
! vs ð8Þ

where Nm is the number of convolutional kernels, Am
k

represents the activation in the k-th channel of the m-th
layer, C represents the class, F(VC) represents the score
predicted by the neural network for class C, and E rep-
resents taking the average along the length direction of
the activation Am

k . Then the importance score of the sig-
nal can be calculated as:

IGC(Pi) =
Xsn

s = 1

IGC vPi

s

� �� �
ð9Þ

Guided Grad CAM. Guided Grad CAM builds upon
Grad CAM by incorporating the gradient information
from the guided backpropagation gradients (GBP)53:
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IGGC(Pi) =
Xsn

s = 1

IGC vPi

s

� �
�GBP vPi

s

� �� �
ð10Þ

Deep Grad CAM. Deep Grad CAM40 utilizes the
backward propagation mechanism of convolutional
layers to transmit the importance vector of the last
convolutional layer to the input layer, replacing the lin-
ear mapping used in Grad CAM. The propagation
rules between the m-th and (m + 1)-th layers can be
expressed as follows:

Im
DGC xm

k, i

� �
= am

k, i

X
j

w+
ijP

i

am
k, iw

+
ij + b+

j

Im + 1
DGC xm + 1

u, j

� �
ð11Þ

where am
k, i represents the activation value at the i-th

point in the k-th channel of the m-th layer. w+
ij and b+

j

are the positive parts of the network weights and
biases, respectively. The importance score of the signal
is:

IDGC Pið Þ=
Xsn

s = 1

I (1)
DGC vPi

s

� �
ð12Þ

Feature sensitivity

For the reason that different XAI algorithms yield
varying importance score results, a new question arises:
which XAI algorithm’s results should be adopted? To
address this question, the FS evaluation method is
proposed. This method utilizes the changes in testing
accuracy to assess the accuracy of XAI algorithms in
the calculation of importance scores:

FS=
1

N

XN

i = 1

d F(Vi), Ŷ i

� �
� 1

N

XN

i = 1

d F V
Rnf

i

� �
, Ŷ i

� �
ð13Þ

d(x, y) =
1 x = y

0 x 6¼ y

(
Rnf

= argmax F(F), nf

� �
ð14Þ

where N is the total number of samples in the testing
dataset, Vi is the i-th sample in the testing dataset,

F(Vi) is the predicted label for Vi, and Ŷi is the true

label. V
Rnf

i represents the noise sample, which is
obtained by multiplying a random vector over the most
important nf features of the Vi vector, and nf is the

length of the important features. Rnf
is the index of the

important features, F is the XAI function, and differ-
ent XAI algorithms get different indices of the impor-
tant features.

Therefore, 1
N

PN
i = 1

d F(Vi), Ŷ i

� �
can denote the predic-

tion accuracy on the original testing dataset,

1
N

PN
i = 1

d F(V
Rnf

i ), Ŷ i

� �
can represent the prediction accu-

racy on the testing dataset with perturbations added to
the important features. A higher FS indicates that
when perturbations are added to the features consid-
ered important by the XAI algorithm, the testing accu-
racy is more significantly affected, and therefore these
important features are more crucial for the 1D CNN
classification model. Thus, FS can be used to evaluate
the accuracy of the XAI algorithm in identifying the
important features.

Loose bolt localization

Bolt-loosening database

An experimental study was conducted to detect a loose
bolt in a double-layered aluminum plate with 16 bolted
connections. The sensor array and bolt arrangement
are shown in Figure 2(a), while the experimental setup
is illustrated in Figure 2(b). The aluminum plates are
Al-7075 with a Young’s modulus of 71 GPa, a density
of 2700 kg/m3, and a Poisson’s ratio of 0.33.54 Each
layer of aluminum plate has a thickness of 2 mm and
dimensions of 400 3 400 mm. The Young’s modulus
of the bolts is 206 GPa, density is 7800 kg/m3, and
Poisson’s ratio is 0.3.55 Four piezoelectric ceramic
transducers (PZT) with an 8 mm diameter and 16 steel
bolts with 6 mm diameter are positioned on the alumi-
num plates, the coordinates of which are found in
Table 1. The experimental setup consists of an arbi-
trary waveform generator (Agilent 33502A), a digital
oscilloscope (Pico Scope 6402A), and an amplifier
(Agilent 33502A).

A 17-class bolt-loosening database was first estab-
lished. The first class was labeled as ‘‘Healthy,’’ which
represents the secure connections between the bolts
and the plate, where a torque of 5 Nm was applied to
each bolt using a torque wrench. The second to seven-
teenth classes were labeled as ‘‘Damage’’ 1–16, which
represent the sequential loosening of bolt 1–16, respec-
tively, where the torque on the bolt was removed. For
each damage case, excitation was applied on one of the
PZTs and signals were received at the remaining three
PZTs, and then the excitation sensors were sequentially
transformed so that a total of 12 sets of signals could
be received for each damage case.

The sampled length of the received signals was 1500
data points and the total number of samples was 150, of
which 100 sets were used to construct the training
dataset and 50 sets were used to construct the testing
dataset. Then a phase variation of 7% and an amplitude
variation of 10% were added to the received signals to
simulate the signals collected under different
temperature conditions, corresponding to a temperature

Hu et al. 5



variation range of 25�.56,57 Consequently, a training
dataset of size 12 3 1500 3 1700 and a testing dataset
of size 12 3 1500 3 850 were obtained. Then the 12
sets of signals in each experiment were concatenated
head-to-tail to form a 1D vector with lengths of 18,000.
Consequently, the size of the training dataset is
1700 3 18,000 and the testing dataset is 850 3 18,000.
Figure 3 displays training signal examples for the
Healthy, Damage 1, and Damage 2 scenarios.

Dimensionality reduction based on XAI

Table 2 shows the detailed architecture of the 1D CNN
classification model, which consists of 12 layers in total:
(1) an input layer with a length of 18,000. (2) Three
convolutional layers with output channels 64, 128, and
256, and kernel sizes 32, 16, and 8, respectively. To
expedite the reduction of the feature vector’s length,
the stride was set to 6, and the max-pooling layer has a
size of 2. (3) Two fully connected layers with 512 and
128 neurons, respectively. (4) An output layer with a
length of 17.

The training and testing of the model were per-
formed on PyTorch 1.11.0 package with Python 3.7.11
environment, and the hardware platform was a laptop
with an AMD Ryzen 7 5800H, 16 GB of RAM, and

an NVIDIA GeForce RTX 3050 Ti GPU. After the
training, the classification model was applied to the
testing dataset. The confusion matrix of the testing
dataset is shown in Figure 4, and the overall predicting
accuracy is 98.24%. However, the classification model
could only provide the class label for the loose bolt,
not the decision-making for physical information such
as the location or the torque of the bolt, which makes
this form of damage detection less intuitive.

Therefore, this study aims to utilize 1D CNN to pre-
dict the position and torque of the loose bolt. But in
this scenario, the problem addressed by 1D CNN shifts
from a classification problem to a regression problem,
which leads to the more complex patterns between the
input and the output that need to be learned.
Consequently, there is a need to further increase the
model complexity, which often comes at a higher com-
putational cost. The training iteration curves for the
classification and regression models are shown in
Figure 5. The models are considered to converge when
the slope of the loss curve is close to 0. So, it can be
observed that the classification model converges around
1000 epochs, and the regression model converges
around 8000 epochs. The converging times are 20 and
400 s, respectively. Regression is 20 times more compu-
tationally expensive than classification. Moreover, this

Table 1. Coordinates of bolts and PZT transducers.

Number Bolt 1 Bolt 2 Bolt 3 Bolt 4

Coordinates (mm) (150, 150) (50, 150) (250, 150) (2150, 150)
Number Bolt 5 Bolt 6 Bolt 7 Bolt 8
Coordinates (mm) (150, 50) (50, 50) (250, 50) (2150, 50)
Number Bolt 9 Bolt 10 Bolt 11 Bolt 12
Coordinates (mm) (150, 250) (50, 250) (250, 250) (2150, 250)
Number Bolt 13 Bolt 14 Bolt 15 Bolt 16
Coordinates (mm) (150, 2150) (50, 2150) (250, 2150) (2150, 2150)
Number PZT 1 PZT 2 PZT 3 PZT 4
Coordinates (mm) (100,100) (2100,100) (2100, 2100) (100, 2100)

PZT: piezoelectric ceramic transducers.

Figure 2. (a) Layout of the aluminum plate and transducer array and (b) experiment setup.
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is only for the application on a small 400 3 400 mm
aluminum plate. When dealing with more complex,
larger structures with more monitoring sensors, the
computational cost can increase exponentially.

Therefore, appropriate dimensionality reduction of
the input vector is essential for the regression model.
Reduced input space leads to significantly lower model
complexity, fewer parameters, and less computational
costs. However, existing data dimensionality reduction
methods like Deep Autoencoders58 and Principal
Component Analysis (PCA)59 often destroy the
structural characteristics of the signal that may be
crucial for damage localization, making it challenging
to ensure both effective dimensionality reduction and

accurate localization.60,61 But if the redundant signals
among the 12 signals in the input vector can be
removed and the most representative signal can be
found to serve as the new input of the 1D CNN regres-
sion model, the dimension of the input vectors will be
greatly reduced, while the structural features of the sig-
nals can still be preserved.

As shown in Table 3, each input vector consists of
signals from 12 monitoring paths. By utilizing XAI to

analyze the 1D CNN classification model, it can be

determined which monitoring paths are primarily refer-

enced by the 1D CNN during the decision-making pro-

cess. Figure 6 shows an example of the explanation of

the 1D CNN classification model using Smooth Simple

Taylor, which is referred to as the importance-score

Saliency map. There are two bright regions (P5 and

P8) in the map, indicating these two regions have high

importance scores and this also means Smooth Simple

Taylor believes that the 1D CNN classification model

has mainly referred to the information collected from

P5 and P8 when determining this sample as the

Damage 12 class.
The importance-score Saliency map for all 17 dam-

age scenarios was calculated. Then the number of times
that each path is considered to be the most important
path under all damage scenarios can be counted. The
path with the highest number of times can then be
selected as the new input vector to the 1D CNN regres-
sion model, achieving the objective of dimensionality
reduction for the raw input vector.

Figure 3. Input vector for 1D CNN (a) from health class in which all the bolts and plate were tightly connected, (b) from Damage
1 class in which bolt 1 was loosed, and (c) from Damage 2 class in which bolt 2 was loosed.
1D CNN: one-dimensional convolutional neural network.

Table 2. Architecture of the 1D CNN classification model.

# Layer type Output dimension

0 Input 1 3 18,000
1 Convolution 1D 64 3 2995
2 Max pooling 1D 64 3 1497
3 Convolution 1D 128 3 247
4 Max pooling 1D 128 3 123
5 Convolution 1D 256 3 20
6 Max pooling 1D 256 3 10
7 Fully connected layer 1 3 512
8 ReLu 1 3 512
9 Fully connected layer 1 3 128
10 ReLu 1 3 128
11 Output layer 1 3 17

1D CNN: one-dimensional convolutional neural network.

Hu et al. 7



The ranking score for the most important path was
calculated by six different XAI algorithms, sensitivity
analysis (SA), Smooth simple Taylor (SST), deep
Taylor (DT), Grad CAM (GCAM), Deep Grad CAM
(DCAM), and Guided Grad CAM (GGCAM), which
is shown in Figure 7. For the result of SA, P11 is
considered the most important. SST identifies P3 as
the most crucial. DT and GCAM both highlight P6 as
the most important, while DCAM and GGCAM favor
P5. These results demonstrate that different XAI

algorithms provide varying recommendations for the
new input vector.

Therefore, FS was used to evaluate the accuracy of
these six XAI algorithms in the calculation of the
importance scores of the signals. Figure 8(a) shows the
change in testing accuracy of the 1D CNN classifica-
tion model when adding random perturbations to the
important features given by the six XAI algorithms
with different feature lengths (nf) ranging from 0 to
100. It can be observed that the testing accuracy

Figure 4. Confusion matrix on the testing dataset using 1D CNN.
1D CNN: one-dimensional convolutional neural network.

Figure 5. Comparison of training iteration curves between classification and regression model.
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decreases most rapidly when changing the important
features identified by SST. When the feature length
reaches 100, the testing accuracy drops to 26.58% for
SST, while for the other XAI algorithms remains
above 75%. This indicates that the features identified
by SST are the most critical for the 1D CNN’s deci-
sion-making. Figure 8(b) shows the average FS values
for the six XAI algorithms at different nf. The average

Table 3. Signals from different monitoring paths for each input
sample.

P1: PZT1–PZT2 P2: PZT1–PZT3 P3: PZT1–PZT4
P4: PZT2–PZT1 P5: PZT2–PZT3 P6: PZT2–PZT4
P7: PZT3–PZT1 P8: PZT3–PZT2 P9: PZT3–PZT4
P10: PZT4–PZT1 P11: PZT4–PZT2 P12: PZT4–PZT3

PZT: piezoelectric ceramic transducers.

Figure 6. Importance-score Saliency map for the Damage 12 case from Smooth simple Taylor.

Figure 7. The ranking score for the most important paths was calculated by six different XAI algorithms: sensitivity analysis (SA),
Smooth Simple Taylor (SST), deep Taylor (DT), Grad CAM (GCAM), Deep Grad CAM (DCAM), and Guided Grad CAM (GGCAM).
CAM: Class Activation Mapping; XAI: explainable artificial intelligence.
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FS value of SST is significantly higher than that of the
other algorithms. Therefore, it can be known that the
FS suggests choosing the most important path given
by the SST algorithm as the new input vector for the
1D CNN regression model.

Regression result of bolt-loosening database

In this section, the X1D-CNN, RAN-1D-CNN, RI-
1D-CNN, and DAE-1D-CNN regression models are,
respectively, constructed. The X1D-CNN uses the most
important signal determined by each XAI algorithm as
input. For example, P11 is used as the input in SA, P3
is used in SST; The RAN-1D-CNN randomly selects a
signal from the raw input vector; the RI-1D-CNN uses
the raw input vector; the DAE-1D-CNN uses 1500 fea-
tures obtained from the self-encoding of deep autoen-
coders as input.

The architectures of X1D-CNN, RAN-1D-CNN, and
DAE-1D-CNN are the same, with details in Table 4,
which consists of 18 layers in total: (1) an input layer
with a length of 1500. (2) Three convolutional layers with
output channels 64, 128, and 256, and kernel sizes 16, 16,
and 8, respectively. The stride was set to 3, the max-
pooling layer has a size of 2, and each convolutional
layer employs ReLU and Batch Normalization. (3) Two
fully connected layers with 512 and 128 neurons, respec-
tively. (4) An output layer with a length of 2.

The RI-1D-CNN includes an additional fully con-
nected layer, with detail in Table 5, which consists of 20
layers in total: (1) An input layer with a length of
18,000. (2) Three convolutional layers with output chan-
nels 64, 128, and 256, and kernel sizes 16, 16, and 8,
respectively. The stride was set to 4, the max-pooling

layer has a size of 2, and each convolutional layer
employs ReLU and batch normalization. (3) Three fully
connected layers with 4096, 2048, and 512 neurons,
respectively. (4) An output layer with a length of 2.

Figure 9 compares the localization results of nine dif-
ferent regression models for 16 different damage scenar-
ios. The XAI-based regression models (X1D-CNN) use
the most important signal determined by each XAI algo-
rithm as input. For example, P11 is used as the input in

Figure 8. (a) Testing accuracy of 1D CNN classification model on six different feature lengths calculated by XAI algorithms and
(b) mean value of FS for the XAI algorithms over six different feature lengths.
1D CNN: one-dimensional convolutional neural network; FS: feature sensitivity; XAI: explainable artificial intelligence.

Table 4. The architecture of the X1D-CNN, RAN-1D-CNN,
and DAE-1D-CNN regression models.

# Layer type Output dimension

0 Input 1 3 1500
1 Convolution 1D 64 3 495
2 Batch normalization 1D 64 3 495
3 ReLu 64 3 495
4 Max pooling 1D 64 3 247
5 Convolution 1D 128 3 78
6 Batch normalization 1D 128 3 78
7 ReLu 128 3 78
8 Max pooling 1D 128 3 39
9 Convolution 1D 256 3 11
10 Batch normalization 1D 256 3 11
11 ReLu 256 3 11
12 Max pooling 1D 256 3 5
13 Fully connected Layer 1 3 512
14 ReLu 1 3 512
15 Fully connected layer 1 3 128
16 ReLu 1 3 128
17 Output layer 1 3 2

X1D-CNN: XAI-based regression models; RAN-1D-CNN: random-1D

CNN regression model; DAE-1D-CNN: deep autoencoders-regression

model; 1D CNN: one-dimensional convolutional neural network; XAI:

explainable artificial intelligence.
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SA, P3 is used in SST; The random-1D CNN regression
model (RAN-1D-CNN) randomly selects a signal from
the raw input vector; the raw input-regression model
(RI-1D-CNN) uses the raw input vector; the deep
autoencoders-regression model (DAE-1D-CNN)
uses1500 features obtained from the self-encoding as
input.

In the figure, the true damage locations are marked
with red crosses, while the predictions of various regres-
sion models for the positions of the loose bolts of the
testing dataset are represented by blue scatters, and the
predictions are connected with the actual locations by
lines. From the graph, it is evident that SST and RI
exhibit the best localization results, the 16 damage
cases can be clearly distinguished from each other, and
the distribution of the scatters in all the clusters is rela-
tively concentrated, which indicates the predictions of
each damage case are very close.

On the other hand, SA, DT, DCAM, and GCAM
show some larger prediction errors in the cases of
Damage 1, 2, 5, and 6. The predictions from RAN are
more scattered, and there is a tendency for adjacent
damage locations to overlap. DAE has the worst result,
as it struggles to determine the positions of the loose
bolts, which proves that if the signal structure is dis-
rupted during the dimensionality reduction process, it
can adversely affect localization accuracy.

Figure 10 compares the training iteration curves of
nine different regression models. SA, SST, DT, and

GCAM reached convergence at 4000 iterations.

DCAM, GGCAM, and RI reached convergence at

6000 iterations. DAE converged at 1500 iterations.

RAN showed the poorest performance and did not

fully converge even after 6000 iterations.
Figure 11(a) compares the average Euclidean dis-

tances between the predicted and the true locations of

the loose bolt for nine different regression models. It

can be observed that SST and RI have the smallest

Euclidean distances, measuring 5.81 and 6.19 mm,

respectively. DAE has the largest Euclidean distance at

59.22 mm, while the errors for the other XAI-based

regression models are all less than 16 mm. Figure 11(b)

compares the testing loss for each model, showing a

similar trend to Figure 11(a). This indicates that the

results obtained by XAI-based dimensionality

reduction are superior to those obtained using deep

autoencoders. Retaining the complete signal structure

characteristics is beneficial for loose bolt localization.
Table 6 provides a comparison of nine regression

models, including their parameter number, converging

time, Euclidean distances, and testing loss. As shown

in the table, the parameter number for the X1D-CNN

model remains consistent at 1,117,378, while RI-1D-

CNN has the highest at 45,492,034, and DAE-1D-

CNN is at 1,379,782. As for the converging time, SA,

SST, DT, and GCAM exhibit faster convergence

speeds, reaching convergence within 20 s. DCAM and

GGCAM converge at 40 s, RAN reaches convergence

at 50 s, while RI takes 200 s to converge, and DAE is

the slowest, converging at 500 s. Therefore, it is shown

that X1D-CNN regression models converge much

faster than RI-1D-CNN and DAE-1D-CNN. For

inference time, the RI-1D-CNN is 0.233 s, while the

inference times for X1D-CNN, RAN-1D-CNN, and

DAE-1D-CNN are 0.036 s. The inference time for RI-

1D-CNN which uses the raw signal as input is 6.47

times longer than that of the other models.
Combining the results from Figure 11, it can be

known that the SST-regression model has the shortest

convergence time and the highest localization accuracy,

which aligns with the predictions of the FS method.

Therefore, selecting an XAI algorithm using the FS

method and then using that XAI algorithm for dimen-

sionality reduction can significantly reduce the model

training time while ensuring the accuracy of the loose

bolt localization. This also means that the FS-X1D-

CNN method can achieve the precise monitoring of all

16 bolts with only one signal from the P3 path.

Table 5. The architecture of the RI-1D-CNN regression
model.

# Layer type Output dimension

0 Input 1 3 18,000
1 Convolution 1D 64 3 4497
2 Batch normalization 1D 64 3 4497
3 ReLu 64 3 4497
4 Max pooling 1D 64 3 2248
5 Convolution 1D 128 3 559
6 Batch normalization 1D 128 3 559
7 ReLu 128 3 559
8 Max pooling 1D 128 3 279
9 Convolution 1D 256 3 68
10 Batch normalization 1D 256 3 68
11 ReLu 256 3 68
12 Max pooling 1D 256 3 34
13 Fully connected layer 1 3 4096
14 ReLu 1 3 4096
15 Fully connected layer 1 3 2048
16 ReLu 1 3 2048
17 Fully connected layer 1 3 512
18 ReLu 1 3 512
19 Output layer 1 3 2

RI-1D-CNN: raw input-regression model; 1D CNN: one-dimensional

convolutional neural network; ReLu: linear rectification activation

function.
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Loose bolt localization and torque
prediction

Torque-predicting database

The experimental setup and specimen are identical to
those described in the section ‘‘Bolt-loosening
database.’’ An additional 10 classes of torque variations
are added to the bolt-loosening database: The 18th to
22nd classes were labeled Damage 17–Damage 21, rep-
resenting torque values of 1, 2, 3, 4, and 5 Nm applied
to bolt 6, respectively. The 23rd to 27th classes were
labeled Damage 22–Damage 26, which represent the tor-
que on bolt 10 were 1, 2, 3, 4, and 5 Nm, respectively.
Therefore, the torque-predicting database consists of a

total of 27 classes. The training dataset size is
2700 3 18,000, and the testing dataset size is
1350 3 18,000.

Dimensionality reduction based on XAI

First, a 1D CNN classification model was used to clas-
sify the 27 damage classes, and 97.11% was achieved in
the testing dataset. Then, XAI algorithms were applied
to analyze the 1D CNN classification model. Figure 12
shows the ranking score of the most important paths
obtained by the XAI algorithms. SA, SST, and DT pro-
vided the same answer: P10 is the most important path.
GCAM considered P11 the most important, DCAM

Figure 9. Localization results of 16 different damage scenarios were calculated by nine different regression models.
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Figure 10. Training iteration curves for different regression models.

Figure 11. Localization error for different regression models: (a) Euclidean distance and (b) testing loss.

Table 6. The comparison of parameters number, converging time, Euclidean distance, and testing loss between different regression
models.

Model name Parameters number Converging time (s) Inference time (s) Euclidean distance (mm) Testing loss (mm2)

SA 1,117,378 20 0.036 8.57 124.64
SST 1,117,378 20 0.036 5.81 28.84
DT 1,117,378 20 0.036 13.03 355.96
GCAM 1,117,378 20 0.036 13.03 355.96
DCAM 1,117,378 40 0.036 15.31 693.49
GGCAM 1,117,378 40 0.036 15.31 693.49
RAN 1,117,378 50 0.036 13.51 563.60
RI 45,492,034 200 0.233 6.19 33.50
DAE 1,379,782 500 0.036 59.22 3125.86

CAM: class activation mapping; SA: sensitivity analysis; SST: smooth simple Taylor; DT: Deep Taylor; GCAM: Grad CAM; DCAM: Deep Grad CAM;

GGCAM: Guided Grad CAM; RAN: random; RI: raw input; DAE: deep autoencoders.
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found P12 to be the most important, and in GGCAM,
P1, P7, and P12 were tied for first place. Eventually, P1
was chosen as the best path by GGCAM.

Figure 13(a) shows the change in testing accuracy of
the 1D CNN classification model when adding random
perturbations to the important features given by the six
XAI algorithms with different feature lengths (nf) rang-
ing from 0 to 100. It can be observed that DT and SST
have similar performance. Changing the important fea-
tures identified by these two algorithms results in the
fastest drop in testing accuracy. When the feature
length reaches 100, the prediction accuracy drops to

12.89% and 15.93%, respectively, while the other XAI
algorithms can still remain above 60%. Therefore, in
this database, the important features identified by DT
and SST are the most crucial for the decision-making
of the 1D CNN classification model.

Figure 13(b) displays the average FS values for XAI
algorithms across six different nf. DT has the highest
average FS value, followed by SST. The average FS
values are much higher than those of the other algo-
rithms. Therefore, FS suggests the most important path
given by the DT or SST as the input of the 1D CNN
regression model.

Figure 12. The ranking score for the most representative paths is calculated by six different XAI algorithms in the torque-
predicting database.
XAI: explainable artificial intelligence.

Figure 13. (a) Testing accuracy of the 1D CNN classification model on six different feature lengths calculated by XAI algorithms
and (b) mean value of FS for the XAI algorithms over six different feature lengths.
1D CNN: one-dimensional convolutional neural network; FS: feature sensitivity; XAI: explainable artificial intelligence.
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Regression result of torque prediction database

Figure 14 shows the localization and torque prediction
of the loose bolt by nine different regression models for
27 damage scenarios. In the figure, the predictions for
the positions and torques of the loose bolts are repre-
sented by scatter points from black to red. The closer
the color is to red, the larger the prediction error, while
the closer it is to black, the smaller the prediction error.

It can be observed that SA, SST, and DT provide
the most accurate predictions. The scatter points for
the 27 different damage scenarios are distinct, and the
scatter points in all the clusters are relatively concen-
trated, which suggests that the predictions for each
damage scenario are close to the true locations. In addi-
tion, except for the clusters on bolt 10, where the color
is close to red, the color of all other clusters is close to
black. This signifies that, apart from the torque

prediction error of approximately 3 Nm on bolt 10, the
torque prediction error on all other bolts is close to
0 Nm.

Regarding the results for other algorithms, RI pro-
vides an accurate localization of the loose bolts.

However, it exhibits larger torque prediction errors for

bolts 6 and 10, shown in bright red. Clusters on bolts

1, 5, 9, 13, and 14 are shown in dark red. GCAM has

some deviations in the predictions for loose bolts 1, 2,

12, and 13. DCAM’s predictions for loose bolts 1–4

are not ideal, with some overlap in the predicted posi-

tions. GGCAM shows overlapping predictions for

bolts 13–16. RAN’s predictions are quite dispersed,

and neighboring damage scenarios tend to overlap.

DAE performs the worst, with almost no capability to

determine the loose bolt’s position and significant

errors in torque value prediction.

Figure 14. Loose bolt localization and torque prediction of 26 different damage scenarios calculated by nine different regression
models.
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Figure 15 compares the training iteration curves of
nine different regression models. SA, SST, DT,
GCAM, and DCAM reached convergence at 6000
iterations. RI reached convergence at 8000 iterations.
DAE converged at 1000 iterations. RAN and
GGCAM showed the poorest performance and did not
fully converge even after 10,000 iterations.

Figure 16(a) compares the average Euclidean dis-
tance between the predictions and the true locations of
the loose bolts for nine different models. It shows that

the Euclidean distance of SA, SST, and DT is the smal-
lest, which is 5.95 mm. RI is followed by 6.64 mm.
DAE has the largest Euclidean distance at 88.32 mm,
while the other XAI-based regression models have
errors of no more than 21 mm. Figure 16(b) compares
the torque-predicting errors of each model. The errors
of GCAM and GGCAM are very close, with values of
0.49 and 0.48 Nm, respectively. Followed by SA, SST,
DT, and RAN at 0.54 Nm, the error of RI is 1.12, and
the error of 1.36 Nm for DAE is the highest.

Figure 15. Training iteration curves for different regression models.

Figure 16. Localization error for different regression models: (a) Euclidean distance, (b) torque-predicting error, and (c) testing
loss.
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Figure 16(c) compares the testing loss for each model,
which combines both localization and torque prediction
errors. It shows that SA, SST, and DT have the lowest
testing loss, measuring 32. RI follows with a testing loss of
47.42, while DAE has the highest testing loss at 6117.51.
Overall, considering both types of errors, SA, SST, and
DT perform the best in terms of prediction accuracy.

Table 7 provides a comparison of nine regression
models, including their parameters number, converging
time, Euclidean distances, torque-predicting error, and
testing loss. As shown in the table, the parameter num-
ber for the X1D-CNN model remains consistent at
1,117,507, while RI-1D-CNN has the highest at
45,492,547, and DAE-1D-CNN is at 1,379,911. As for
the converging time, SA, SST, DT, GCAM, and
DCAM exhibit faster convergence speeds, reaching
convergence within 40 s. GGCAM and RAN have
intermediate regression speeds, reaching convergence

at around 80 s, while RI takes 400 s to converge, and
DAE is the slowest, converging at 600 s. Summarizing
XAI-based regression models converges much faster
than using raw input and deep autoencoders. For
inference time, the RI-1D-CNN is 0.321 s, while the
inference times for X1D-CNN, RAN-1D-CNN, and
DAE-1D-CNN are 0.045 s. The inference time for RI-
1D-CNN which uses the raw signal as input is 7.13
times longer than that of the other models.

Combining the results from Figure 16, it can be
known that the SA, SST, and DT models have the
shortest convergence time and the highest positioning
accuracy, which aligns well with the FS method predic-
tions. Because in the FS evaluation results, the FS val-
ues of SST and DT are much higher than those of
other algorithms. Therefore, in the torque-predicting
database, it is possible to achieve precise monitoring of
all 16 bolts and accurate torque prediction using sig-
nals from just the P10 path.

Discussion

The research findings above indicate that the FS-X1D-
CNN can realize the positioning and torque prediction
of loose bolts in 16-bolted plates with only a single
lamb wave signal under the condition of temperature
change. However, the current study does not consider
other influences apart from temperature variation. In
practical engineering, environmental factors are much
more complex, including vibration or electromagnetic
effect generated by machine operation, external struc-
tural loads, and variations in sensor performance dur-
ing service, etc.7 Therefore, more realistic conditions
need to be taken into account in the future research to
further improve the robustness of FS-X1D-CNN.

Figure 17 shows the relationship between the mean
value of FS and testing loss on the bolt-loosening

Table 7. The comparison of parameters number, converging time, Euclidean distance, and testing loss between different regression
models.

Model name Parameters
number

Converging
time (s)

Inference
time (s)

Euclidean
distance (mm)

Torque-predicting
error (Nm)

Testing
loss (mm2)

SA 1,117,507 40 0.045 5.95 0.54 32.25
SST 1,117,507 40 0.045 5.95 0.54 32.25
DT 1,117,507 40 0.045 5.95 0.54 32.25
GCAM 1,117,507 40 0.045 16.78 0.49 254.76
DCAM 1,117,507 40 0.045 20.40 0.67 1563.40
GGCAM 1,117,507 80 0.045 17.21 0.53 1189.80
RAN 1,117,507 80 0.045 11.25 0.55 444.63
RI 45,492,547 400 0.321 6.64 1.12 47.42
DAE 1,379,911 600 0.045 88.32 1.36 6117.51

CAM: class activation mapping; SA: sensitivity analysis; SST: smooth simple Taylor; DT: Deep Taylor; GCAM: Grad CAM; DCAM: Deep Grad CAM;

GGCAM: Guided Grad CAM; RAN: random; RI: raw input; DAE: deep autoencoders.

Figure 17. Relationship between the mean value of feature
sensitivity and testing loss.
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database and torque-predicting database. it can be seen
that the FS method proposed in this paper can accu-
rately select the best-performing XAI algorithm on dif-
ferent datasets. For instance, in the bolt-loosening
database, the FS value for SST is significantly higher
than that of other algorithms, and the SST-regression
model exhibits the lowest localization error. In the
torque-predicting database, SST and DT have FS val-
ues that are close and significantly higher than other
algorithms. Ultimately, both the SST-regression model
and DT-regression model achieve the same level of per-
formance, with the highest accuracy among all regres-
sion models.

However, FS cannot provide a ranking of XAI algo-
rithms that perfectly match their predictive perfor-
mance. For example, in the bolt-loosening database,
the testing loss of GCAM and DT are smaller than
DCAM and GGCAM, but their FS values are smaller.
In the torque-predicting database, the testing loss level
of the SA-regression model is on par with SST and DT,
but SA does not score well in FS. Therefore, it should
be noted that FS cannot identify all potentially high-
performing XAI algorithms, and it cannot predict the
precise ranking of all XAI algorithms. Part of the rea-
son for this may stem from the fact that XAI’s choice
of finding the most important signal is limited, as XAI
algorithms pick one signal from a finite set of 12 sig-
nals. Such selection is discrete, which may lead to diffi-
culties in effectively distinguishing the performance of
different XAI algorithms.

Therefore, while FS can currently select the best
XAI algorithm for different datasets, there is still a
need to further improve the accuracy of performance
evaluation of different XAI algorithms. In addition,
FS-X1D-CNN can help improve the efficiency of bolt
monitoring. For structures with multiple bolt connec-
tions, there are numerous degrees of loosening damage
for each bolt. Collecting, transmitting, and analyzing
signals for each damage scenario would be time-
consuming and labor-intensive. FS-1D-CNN narrows
down the monitoring scope to specific sensors, greatly
enhancing the efficiency of data analysis work.

Conclusion

This paper proposed an FS-X1D-CNN model, which
utilizes XAI algorithms for the dimensionality reduc-
tion of the input vector for the 1D CNN regression
model and uses the FS evaluation method to select the
most accurate XAI algorithm. This approach has suc-
cessfully reduced the training time of the 1D CNN
regression models 10-fold while ensuring the highest
detection accuracy on both the loose bolt database and

the torque-predicting database. The conclusions are as
follows:

1. FS can be utilized for the selection of XAI algo-
rithms. FS successfully predicted that SST per-
forms best in the loose bolt database, while DT
performs best in the torque-predicting database.
Therefore, selecting XAI algorithms based on FS
values can obtain the best-performing regression
model.

2. FS-X1D-CNN model demonstrates advantages in
loose bolt localization and torque prediction. In
the loose bolt database, the FS-X1D-CNN model
achieves a convergence time of 20 s, and a localiza-
tion error of 5.81 mm, which outperforms the RI-
1D-CNN model with 200 s and 6.19 mm. In the
torque-predicting database, the FS-X1D-CNN
model has a convergence time of 40 s, a localiza-
tion error of 5.95 mm, and a torque prediction
error of 0.54 Nm, which is superior to the RI-1D-
CNN model with 400 s, 6.64 mm, and 1.12 Nm.

3. Preserving the complete structure of the signal dur-
ing data dimensionality reduction is crucial. The
DAE-1D-CNN model has errors of 59.22 mm in
the loose bolt database and 88.32 mm and
1.36 Nm in the torque-predicting database. These
errors are significantly larger than those of other
regression models. This is because the autoencod-
ing process of deep autoencoders disrupts the com-
plete structure of the signals, leading to the loss of
information in the time series.
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Appendix

Acronyms

Acronyms Explanation

AI Artificial intelligence
SHM Structural health monitoring
DeepSHM Deep learning-based SHM
XAI Explainable artificial intelligence
1D CNN One-dimensional convolutional neural network
SA Sensitivity analysis
SST Smooth simple Taylor
DT Deep Taylor
GCAM Gradient-weighted class activation mapping
DCAM Deep gradient-weighted class activation mapping
GGCAM Guided gradient-weighted class activation mapping
FS Feature sensitivity which utilizes the changes in testing accuracy to assess the

accuracy of XAI algorithms in the calculation of importance scores
X1D-CNN XAI-based regression models that use the most important signal determined by each

XAI algorithm as input
FS-X1D-CNN Utilize FS to select the optimal XAI algorithm, and then use the optimal XAI

algorithm to pick the most important signals as input
RAN-1D-CNN Random-1D CNN regression model randomly selects a signal from the raw input

vector as input
RI-1D-CNN Raw input-regression model uses the raw input vector as input
DAE-1D-CNN Deep autoencoders-regression model uses 1500 features obtained from the self-

encoding as input

Hu et al. 21


