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ABSTRACT
This article deals with robust inference for parametric copula models. Estimation using canonical maximum
likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on
the maximum mean discrepancy (MMD) principle. We derive nonasymptotic oracle inequalities, consistency
and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any
assumption on the copula family, and can be applied in the presence of outliers or under misspecification.
Moreover, in our MMD framework, the statistical inference of copula models for which there exists no
density with respect to the Lebesgue measure on [0, 1]d , as the Marshall-Olkin copula, becomes feasible. A
simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum
likelihood estimation. An R package implementing the MMD estimator for copula models is available.
Supplementary materials for this article are available online.
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1. Introduction

1.1. Context

Since the seminal work of Sklar (1959), it is well known that
every d-dimensional distribution F can be decomposed as
F(x) = C

(
F1(x1), . . . , Fd(xd)

)
, for all x = (x1, . . . , xd) ∈ Rd.

Here, F1, . . . , Fd are the marginal distributions of F and C is
a distribution on the unit cube [0, 1]d with uniform margins,
called a copula. This allows any user to split the complex
problem of estimating a multivariate distribution into two
simpler problems which are the estimation of the margins on
one side, and of the copula on the other side. Copulas have
become increasingly useful to model multivariate distributions
in a wide variety of applications: finance, insurance, hydrology,
engineering and so on. We refer to Nelsen (2007) and Hofert
et al. (2019) for a general introduction and background on
copula models.

Often, a copula of interest C belongs to a parametric family
C = {Cθ , θ ∈ � ⊂ Rp} and one is interested in the estimation
of the “true” value of the parameter θ . Typically, the goal is to
evaluate the underlying copula only, without trying to specify
the marginal distributions. In such a case, the most popular
method for estimating parametric copula models is by canon-
ical maximum likelihood (CML), shorter (Genest, Ghoudi, and
Rivest 1995; Shih and Louis 1995). This is a semiparametric
analog of maximum likelihood estimation for copula models
for which the margins are left unspecified and replaced by
nonparametric counterparts. The method of moments is also
a popular estimation technique, most often when p = 1, and
is usually done by inversion of Kendall’s tau or Spearman’s rho.

CONTACT Pierre Alquier pierre.alquier.stat@gmail.com RIKEN AIP, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027
Japan.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

The latter estimators have been implemented in the R package
VineCopula (Schepsmeier et al. 2019) and attain the usual

√
n

rate of convergence as if the margins were known: see Tsukahara
(2005) for the asymptotic theory.

Nevertheless, all the aforementioned estimation approaches
suffer from drawbacks. In particular, they are not robust statis-
tically speaking. More specifically, assume that the true copula
is slightly perturbed in the sense that C = (1 − ε)Cθ0 + εC̃
for a small ε > 0 and a copula C̃ �= Cθ0 . In general, there is
no guarantee that the estimators obtained by CML or by the
method of moments should be close to θ0 when ε �= 0, since
this problem still occurs in the case of most usual M-estimators
generally speaking.

In the literature, there are very few attempts to build robust
estimation methods for semiparametric copula models that
would be “omnibus” (i.e., not dependent on some particular
choices of models). Using Mahalanobis distances computed
using robust estimates of covariance and location, Mendes, de
Melo, and Nelsen (2007) identified some points which seem not
to follow the assumed dependence structure. Then, some copula
parameters are obtained through the minimization of weighted
goodness of fit statistics. In the semiparametric copula-based
multivariate dynamic (SCOMDY) framework (Chen and Fan
2006), Kim and Lee (2013) built a minimum density power
divergence estimator which shows some resistance to some
types of outliers. Denecke and Müller (2011) proposed a
parametric robust estimation method based on likelihood depth
(Rousseeuw and Hubert 1999). Recently, Goegebeur et al. (2020)
have considered robust and nonparametric estimation of the
coefficient of tail dependence in presence of random covariates,
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that may be a way of estimating copulas for some particular
models. Therefore, even if many estimators have been proposed
for Huber contaminated models in general parametric cases,
this has not been the case for semiparametric copula models
yet. This article is an attempt to fill this gap.

To this end, we need to consider a relevant distance between
distributions. The maximum mean discrepancy (MMD)
between two arbitrary probability distributions P and Q is
defined as

D(P,Q) = sup
f ∈F

∣∣∣∣
∫

f dP −
∫

f dQ
∣∣∣∣,

whereF is the unit ball in a universal reproducing kernel Hilbert
space (RKHS) H defined on a compact metric space, with an
associated kernel K and a norm || · ||H. It can be proved that
D(P,Q) is the distance between the kernel mean embeddings
of the two underlying probabilities, that is, D(P,Q) = ||μP −
μQ||H; see Muandet et al. (2017, sec. 3.5) that provides a state-
of-the-art introduction to the theory of RKHS and MMD. When
the kernel K is characteristic (i.e., when the map P �→ μP is
injective), MMD becomes a distance between the two probabil-
itiesP andQ. Such a distance can be easily empirically estimated
and has been used many times in different areas of statistics and
machine learning; see, for example, Danafar et al. (2013) and
Gretton et al. (2012) for the two-sample test problem.

As a tool for parametric estimation, MMD has been studied
as a general method for inference only recently (Briol et al. 2019;
Alquier and Gerber 2020; Chérief-Abdellatif and Alquier 2020,
2022), even though it was implicitly used in specific examples
in machine learning (Dziugaite, Roy, and Ghahramani 2015).
In the latter articles, it appeared that MMD criteria lead to
consistent estimators that are robust to model misspecification,
for most models and without any assumption on the actual
distribution of the data. Moreover, the flexibility offered by the
choice of the tuning parameter of the kernel, which can be used
to build a tradeoff between statistical efficiency and robustness,
is another advantage of such estimators. Thus, it seems natural
to apply such inference techniques to copulas, for which the risk
of misspecification can sometimes be important.

In this article, we will study a general semiparametric infer-
ence procedure for copulas that is robust with respect to cor-
rupted data, and that can be applied in case of model mis-
specification. Note that other distances are known to induce
robustness, like the total variation distance (Yatracos 1985) or
the Hellinger distance (Baraud, Birgé, and Sart 2017). However,
the estimation procedures proposed in these articles are not
computable. Also, we refer the reader to Baraud, Birgé, and Sart
(2017) for a thorough discussion on why the MLE, based on the
Kullback-Leibler divergence, cannot enjoy the same robustness
properties.

The rest of the article is organized as follows: the remaining of
the introduction yields notations and the definition of our esti-
mators. Section 2 contains our theoretical results: nonasymp-
totic oracle inequalities, consistency and asymptotic distribu-
tions of our estimators. Section 3 provides experimental results.
A simulation study confirms the robustness of MMD. We also
provide an R Package, called MMDCopula (Alquier et al. 2020),
which allows statisticians to apply our algorithms.

Note that our package computes the MMD estimator by
a stochastic gradient algorithm, described in Section 3. From
(Briol et al. 2019; Chérief-Abdellatif and Alquier 2022), such an
algorithm can be implemented to compute the MMD estimator
as long as it is possible to sample from the model. Thus, our
package has been built on the package VineCopula (Schep-
smeier et al. 2019), which allows to sample from the most
popular copula families. This package also provided us some
helpful formulas for the densities of some copulas, and their
differentials. More details about the implementation can be
found in Section 3.

1.2. Notations

Let (Xi)i=1,...,n be an iid sample of d-dimensional random vec-
tors, whose underlying copula is denoted by C0 and whose
margins are denoted by F1, . . . , Fd. The latter ones will be left
unspecified. We assume these margins are continuous. This
standard assumption will allow to invoke powerful results from
the theory of empirical copula processes (Bücher, Segers, and
Volgushev 2012 in particular). Let us define the unobservable
random variables Uk = Fk(Xk), k ∈ {1, . . . , d}, and U =
(U1, . . . , Ud), for a given random vector X = (X1, . . . , Xd)
whose underlying copula is C0 and underlying margins are
F1, . . . , Fd. Obviously, the cdf of U is C0, whose law is denoted by
P0. The empirical measure associated to (Xi)i=1,...,n is denoted
as Pn.

We consider a particular parametric family of copulas C =
{Cθ , θ ∈ � ⊂ Rp} (the family “of interest”) and we search the
best-suited copula inside the latter family. When the model is
correctly specified, there exists a “true” parameter θ0 ∈ � that is,
C0 = Cθ0 . More generally, possibly in case of misspecification,
we focus on a “pseudo-true” parameter θ∗

0 ∈ � so that a
particular distance between C0 and Cθ is minimized over θ ∈ �.
In our case, this chosen distance will be the MMD. Denoting
by PU

θ the law induced by Cθ on the hypercube U = [0, 1]d, a
pseudo-true value is formally defined as

θ∗
0 ∈ arg min

θ∈�
D(PU

θ ,P0).

In the copula-related literature with unknown margins, it is
common to define a pseudo-sample (Û i)i=1,...,n, where Û i =
(Ûi,1, . . . , Ûi,d) and

Ûi,k = Fn,k(Xi,k), Fn,k(t) = n−1
n∑

i=1
1(Xi,k ≤ t),

for every i ∈ {1, . . . , n}, k ∈ {1, . . . , d} and every real number t,
denoting by 1(·) the usual indicator function. Our goal will be to
evaluate the pseudo-true parameter θ∗

0 with MMD techniques,
from the initial sample (Xi)i=1,...,n or from the pseudo-sample
(Û i)i=1,...,n. The empirical distribution of the latter pseudo-
sample is called the empirical copula Cn (Fermanian, Radulovic,
and Wegkamp 2004).

A relevant idea will be to work on the hypercube U =
[0, 1]d instead of Rd. To be specific, imagine we observe n iid
realizations of U , called U1, . . . , Un, and letPU

n be the associated
empirical measure on U . To obtain an estimator of θ , the MMD
criterion to be minimized is then D(PU

θ ,PU
n ) = ||μPU

θ
−
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μPU
n
||HU , for some RKHS HU , that is associated with a kernel

KU : U × U → R. As in Briol et al. (2019), we have

D2(PU
θ ,PU

n ) =
∫

KU(u, v)PU
θ (du)PU

θ (dv)

− 2
∫

KU(u, v)PU
θ (du)PU

n (dv)

+
∫

KU(u, v)PU
n (du)PU

n (dv).

Since we do not observe some realizations of U , we have to
replace them by pseudo-observations in the latter criterion. This
yields the approximate criterion

D2(PU
θ , P̂U

n ) =
∫

KU(u, v)PU
θ (du)PU

θ (dv)

− 2
∫

KU(u, v)PU
θ (du) P̂U

n (dv)

+
∫

KU(u, v)P̂U
n (du) P̂U

n (dv),

where P̂U
n denotes the empirical measure associated with the

pseudo-sample (Û i)i=1,...,n. Then, an estimator of θ∗
0 is defined

as

θ̂n ∈ arg min
θ∈�

D(PU
θ , P̂U

n )

∈ arg min
θ∈�

∫
KU(u, v)PU

θ (du)PU
θ (dv)

− 2
n

n∑
i=1

∫
KU(u, Û i)P

U
θ (du). (1)

If Cθ has a density cθ with respect to the Lebesgue measure on
[0, 1]d, this criterion may be rewritten

θ̂n ∈ arg min
θ∈�

∫
KU(u, v)cθ (u)cθ (v) du dv

− 2
n

n∑
i=1

∫
KU(u, Û i)cθ (u) du. (2)

It is clear from the definition that θ̂n depends on the kernel
KU . Thus, the choice of the latter kernel is a very important
question. The experimental study in Section 3 shows that the
most common parametric copulas, Gaussian kernels KG(u, v) =
exp(−||h(u)−h(v)||2/γ 2) lead to very good results (h being the
identity map or the inverse of the cdf of a standard Gaussian ran-
dom variable, applied coordinatewise). Interestingly, it empiri-
cally seems that the value of γ that leads to the smallest MSE
mainly depends on the kernel, and not really on the sample size
nor the true value of the parameter. This is shown in Figure 1,
and in additional plots in the supplementary material. Actually,
this fact was rigorously proven in Chérief-Abdellatif and Alquier
(2022) for the Gaussian mean model, and we conjecture that it
holds more generally. This allows to calibrate γ once and for all
through a preliminary set of simulations. Note that Dziugaite,
Roy, and Ghahramani (2015) proposed a median heuristic to
calibrate γ that yields good results in practice. Alternatively,
Briol et al. (2019) proposed to minimize the asymptotic variance
of the estimated parameter, which we could do thanks to our
Theorem 4. A more complete discussion on the choice of the
kernel in Briol et al. (2019), p. 14.

Remark 1. An alternative approach would be to directly
work with the initial observations Xi, instead of the pseudo-
observations Û i. In this case, we apply the same strategy,
but with the initial sample. The “feasible” law of Xi will be
semiparametric, because its margins are nonparametrically
estimated. To obtain an estimator of θ , the criterion to be
minimized would now be D(PX

θ ,PX
n ) = ||μPX

θ
− μPX

n
||HX , for

some RKHSHX , that is associated with a kernel KX : Rd×Rd →
R. Here, PX

θ denotes the law of X given by F1, . . . , Fd and Cθ .
Applying Sklar’s theorem, note that, for every x = (x1, . . . , xd),
PX

θ (X ≤ x) = Cθ

(
F1(x1), . . . , Fd(xd)

)
. As above,

D2(PX
θ ,PX

n ) =
∫

KX(x, y)PX
θ (dx)PX

θ (dy)

− 2
∫

KX(x, y)PX
θ (dx)PX

n (dy)

+
∫

KX(x, y)PX
n (dx)PX

n (dy).

Since we do not know the margins of X, this yields the approxi-
mate criterion

D2(P̂X
θ ,PX

n ) =
∫

KX(x, y)P̂X
θ (dx) P̂X

θ (dy)

− 2
∫

KX(x, y)P̂X
θ (dx)PX

n (dy)

+
∫

KX(x, y)PX
n (dx)PX

n (dy),

where, for every x = (x1, . . . , xd), we define P̂X
θ (X ≤ x) =

Cθ

(
Fn,1(x1), . . . , Fn,d(xd)

)
. Then, this provides another estima-

tor

θ̂X
n ∈ arg min

θ∈�
D(P̂X

θ ,PX
n ) = arg min

θ∈�

∫
K(x, y)P̂X

θ (dx) P̂X
θ (dy)

− 2
n

n∑
i=1

∫
K(x, Xi)P̂

X
θ (dx).

Unfortunately, the evaluation of any integral as
∫

ψ(x) P̂X
θ (dx)

is costly in general. Indeed,

∫
ψ(x) P̂X

θ (dx) 
 n−d
n∑

i1,...,id=1
ψ(Xi1,1, . . . , Xid ,d)

cθ

(
Fn,1(Xi1,1), . . . , Fn,d(Xid ,d)

)
.

Therefore, it is more convenient to deal with the first method,
especially if d is large. This is our choice in this article.

2. Theoretical Results

We now study the theoretical properties of the estimator defined
by (1). Since we will work with pseudo-observations from now
on, we omit the upper index “U” to lighten notations. Thus,
the law induced by the pseudo-sample (Û i)i=1,...,n, previously
denoted P̂U

n , simply becomes P̂n. Moreover, PU
n , the law of the

unobservable sample (U i)i=1,...,n becomes Pn. Recall that the
true underlying law is P0, and P0 = Pθ∗

0
only if the model is
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correctly specified. For any function f : E ⊂ Rd → R that is
twice continuously differentiable, set

||d(2)f ||∞ = sup
x∈E

sup
k,l=1,...,d

∣∣∣∣ ∂2f
∂xk∂xl

(x)

∣∣∣∣.
We assume in this section that the kernel KU is symmetri-

cal, that is,KU(u, v) = KU(v, u) for every u and v in [0, 1]d

(otherwise, replace KU by a symmetrized version). We also
assume that the kernel is bounded over [0, 1]2. Note that the
popular Gaussian kernel KG(u, v) = exp(−||u − v||2/γ 2), is
characteristic, symmetric and bounded. We recall that, when K
is a characteristic kernel, the divergence

D2(P,Q) =
∫

KU(u, v)P(du)P(dv)

− 2
∫

KU(u, v)P(du)Q(dv)

+
∫

KU(u, v)Q(du)Q(dv),

induces a true distance between probability measures on [0, 1]d.

2.1. Nonasymptotic Guarantees

The first result of this section is a nonasymptotic “universal”
upper bound in terms of MMD distance that holds with high
probability for any underlying distribution. Our bound exhibits
clear dimensionality- and kernel-dependent constants. It estab-
lishes that the MMD estimator is robust to misspecification,
and is consistent at the usual optimal n−1/2 rate. Similar results
can be found in the literature, both in the iid (Briol et al. 2019,
Theorem 1; Chérief-Abdellatif and Alquier 2022, Theorem 3.1)
and in the dependent setting (Chérief-Abdellatif and Alquier
2022, Theorem 3.2), but none of them can be applied to semi-
parametric copula models.

Theorem 1. The kernel KU is assumed to be two times con-
tinuously differentiable on [0, 1]d. Then for any ν, δ > 0 with
ν + δ < 1, with probability larger than 1 − δ − ν ∈ (0, 1),

D(P
θ̂n

,P0) ≤ inf
θ∈�

D(Pθ ,P0) +
{

8
n

sup
u∈[0,1]d

KU(u, u)

}1/2

×
{

1 + (− ln δ
)1/2

}

+
{

2d2

n
||d(2)KU ||∞ ln

(
2d
ν

)}1/2
.

Note that, if a pseudo-true value θ∗
0 exists,

infθ∈� D(Pθ ,P0) = D(Pθ∗
0

,P0) by definition, and this quantity
is zero if the model is correctly specified.

Proof. For every θ ∈ �, we have

D(P
θ̂n

,P0) ≤ D(P
θ̂n

, P̂n) + D(P̂n,Pn) + D(Pn,P0)

≤ D(Pθ , P̂n) + D(P̂n,Pn) + D(Pn,P0)

≤ D(Pθ ,P0) + 2D(P̂n,Pn) + 2D(Pn,P0).

With probability greater than 1 − δ, Lemma 1 in Briol et al.
(2019) yields

D(Pn,P0) ≤
{

2
n

sup
u∈[0,1]d

KU(u, u)

}1/2{
1 + (− ln δ

)1/2
}

. (3)

Moreover, by some limited expansions of KU wrt each of its
arguments, evaluated at (U i, U j) and with matrix notations, we
get

D2(P̂n,Pn) = 1
n2

n∑
i,j=1

{
KU(U i, U j) − 2KU(Û i, U j) + KU(Û i, Û j)

}

= 1
n2

n∑
i,j=1

{
∂1KU(U i, U j)

�(U i − Û i)

− 1
2
(Û i − U i)

�∂2
1 KU(U∗

i , U j)(Û i − U i)

− ∂2KU(Û i, U j)
�(U j − Û j)

+ 1
2
(Û j − U j)

�∂2
2 KU(Û i, Ũ j)(Û j − U j)

}
,

for some random vectors U∗
i (resp. Ũ j) that lie between U i and

Û i (resp. between U j and Û j). Since the kernel is symmetrical,
∂1KU(u, v) = ∂2KU(v, u) for every (u, v) in [0, 1]2d. This yields,
with obvious notations,

D2(P̂n,Pn) = 1
n2

n∑
i,j=1

{ (−1)

2
(Û i − U i)

�∂2
1 KU(U∗

i , U j)(Û i − U i)

− (Û i − U i)
�∂2

12KU(Ū i, U j)(U j − Û j)

+ 1
2
(Û j − U j)

�∂2
2 KU(Û i, Ũ j)(Û j − U j)

}
,

and we deduce

D2(P̂n,Pn) ≤ 2d2||d(2)KU ||∞ sup
i=1,...,n

sup
k=1,...,d

|Ûik − Uik|2.

The Dvoretzky-Kiefer-Wolfowitz inequality (Boucheron,
Lugosi, and Massart 2012, p. 383) yields

P

(
sup

i=1,...,n
sup

k=1,...,d
|Ûi,k − Ui,k|2 > ε

)
≤ 2d exp

(− 2nε
)
,

and D2(P̂n,Pn) is less than d2||d(2)KU ||∞ ln(2d/ν)/n with a
probability larger than 1 − ν. In addition with (3), this proves
the result.

Remark 2. Note that if an exact minimizer θ̂n of (1) does not
exist, we can simply define θ̂n as any value that reaches the
infimum up to 1/n. The extension of Theorem 1 to this case is
direct.

It is possible to slightly strengthen Theorem 1 at the price
of more regularity for KU , details are provided in Appendix A,
supplementary material.

Let us emphasize the consequences of Theorem 1 when the
data are contaminated by a proportion ε of outliers. Huber
proposed a contamination model for which P0 = (1 − ε)Pθ0 +
εQ. That is, while the majority of the observations is actually
generated from the “true” model, a (small) proportion ε of
them is generated by an arbitrary contamination distributionQ.
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Using this framework, it is possible to upper bound the distance
between the MMD estimator and the true parameter directly.
To be short, assume here that supu∈[0,1]d KU(u, u) ≤ 1, as for the
usual Gaussian kernel. SinceD(P0,Pθ0) ≤ 2ε andD(P

θ̂n
,Pθ0) ≤

2ε + D(P
θ̂n

,P0) by the triangle inequality, Theorem 1 yields

D(P
θ̂n

,Pθ0) ≤ 4ε +
(

8
n

) 1
2 {

1 + (− ln δ
)1/2

}

+
{

2d2

n
||d(2)KU ||∞ ln

(2d
ν

)}1/2
. (4)

In any model where an upper bound on ||θ̂n − θ0||2 can be
deduced from an upper bound on D(P

θ̂n
,Pθ0), this proves the

robustness of θ̂n.

Example 1. As an illustration, let us consider the Gaussian
copula model in dimension d = 2, whose laws (Pθ )θ∈(−1,1) are
given by their density

cθ (u1, u2) = 1
2π

√
1 − θ2φ(x1)φ(x2)

exp
(

− 1
2(1 − θ2)

(
x2

1 + x2
2 − 2θx1x2

))
, (5)

by setting xk = �−1(uk), k = 1, 2. We use the Gaussian kernel:

KU(U , V) = exp
{−||�−1(U) − �−1(V)||2/γ 2} ,

where � is the cdf of a standard Gaussian random variable,
and its inverse �−1 is applied coordinatewise. We prove
at the end of Appendix F, supplementary material that,
using the latter Gaussian kernel, there is a constant c(γ ) ∈
(0, +∞) that depends only on γ such that, for any (θ1, θ2) ∈
(−1, 1)2, |θ1 − θ2| ≤ c(γ )D(Pθ1 ,Pθ2). Together with (4), this
gives:

|θ̂n − θ0| ≤ c(γ )

[
4ε +

(
8
n

) 1
2 {

1 + (− ln δ
)1/2

}

+
(

8
n
||d(2)KU ||∞ ln

( 4
ν

))1/2
]

.

In the general case, we can use the following proposition.

Proposition 1. Assume that the map θ �→ D2(Pθ ,Pθ0) is twice
continuously differentiable in a neighborhood of θ0. Denoting
by λmin(θ) the smallest eigenvalue of ∇2

θ ,θD
2(Pθ ,Pθ0), assume

that λmin(θ) ≥ λmin(θ0)/2 > 0 when ||θ − θ0|| < r,
for some r > 0. Set α = inf {θ ;||θ−θ0||≥r} D(Pθ ,Pθ0) and
assume α > 0.

Then, for any contamination distribution Q, when the data
are drawn from (1 − ε)Pθ0 + εQ for some ε ∈ [0, α/8], for any
ν > 0 and δ > 0 with ν + δ < 1, as soon as

√
nα ≥

{
32 sup

u∈[0,1]d
KU(u, u)

}1/2{
1 + (− ln δ

)1/2
}

+
{

8 d2||d(2)KU ||∞ ln
(2d

ν

)}1/2
,

we have, with probability at least 1 − ν − δ,

||θ̂n − θ0|| ≤ 2√
λmin(θ0)

[
4ε +

{ 8
n

sup
u∈[0,1]d

KU(u, u)
} 1

2

×
{

1 + (− ln δ
) 1

2
}

+
{2d2

n
||d(2)KU ||∞ ln

(2d
ν

)} 1
2
]

.

The proof is provided in Appendix B, supplementary
material.

2.2. Asymptotic Guarantees

We denote

�(w; θ) =
∫

KU(u, v)Pθ (du)Pθ (dv) − 2
∫

KU(u, w)Pθ (du).

We assume that the functions �(·; θ) are measurable and P0-
integrable for every θ ∈ �. The theoretical loss function is

L0(θ) = E[�(U ; θ)] =
∫

[0,1]d
�(w; θ)P0(dw).

Here, it is approximated by the empirical “feasible” loss

Ln(θ) = 1
n

n∑
i=1

�(Û i; θ) =
∫

[0,1]d
�(w; θ)P̂n(dw),

so that θ̂n ∈ arg minθ∈� Ln(θ) and θ∗
0 ∈ arg minθ∈� L0(θ). The

asymptotic properties of M-estimators (“Quasi-MLE” particu-
larly) for possibly misspecified models are well established in
the literature: see White (1982, 1994) for instance. As usual in
the statistical theory of copulas, the main difficulty will come
here from unspecified margins.

2.2.1. Consistency
Under classical assumptions, we prove that the MMD estimator
is consistent.

Condition 1. The parameter space � is compact. The map L0 :
� → R is continuous on � and uniquely minimized at θ∗

0 .

Condition 2. The family F = {�(·, θ); θ ∈ �} is a collection
of measurable functions with an integrable envelope function F.
For every w ∈ [0, 1]d, the map θ �→ �(w; θ) is continuous on �.

Theorem 2. If Conditions 1 and 2 are fulfilled, then θ̂n is strongly
consistent, that is,

θ̂n
P0−a.s.−−−−→
n→+∞ θ∗

0 .

Proof. As � is compact, then the δ-bracketing numbers
N[·]

(
δ,F , L1(P0)

)
are finite for every δ > 0, invoking Example

19.8 in Vaart (1998). Moreover, using Lemma 1(c) in Chen and
Fan (2005), we obtain the strong uniform law of large numbers

sup
θ∈�

|L0(θ) − Ln(θ)| P0−a.s.−−−−→
n→+∞ 0.

Hence, according to Theorem 2.1 in Newey and McFadden
(1994), for example, we deduce the strong consistency of the
minimizer θ̂n of Ln toward the unique minimizer of L0.
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2.2.2. Asymptotic Normality
Although Theorem 2 gives conditions under which we obtain
the consistency of the MMD estimator, it does not provide any
information on its rate of convergence. Hence, we now state
the weak convergence of

√
n(θ̂n − θ∗

0 ). First, we need a set of
usual regularity conditions to deal with M-estimators. It mainly
requires the functions �(w; ·) to be smooth enough on a small
neighborhood of θ∗

0 when w ∈ [0, 1]d.

Condition 3. θ∗
0 is an interior point of �.

Condition 4. There exists an open neighborhood O ⊂ � of
θ∗

0 such that the maps θ �→ �(w; θ) are twice continuously
differentiable on O, for P0-almost every w ∈ [0, 1]d. Moreover,
all functions ∇2

θ ,θ �(·; θ) are measurable on [0, 1]d for any θ ∈ O.

Condition 5. There exists a compact set K0 ⊂ O whose interior
contains θ∗

0 such that

E

[
sup
θ∈K0

∥∥∇2
θ ,θ �(U ; θ)

∥∥] < +∞,

for any matrix norm || · ||. Moreover, the map θ �→ E[∇2
θ ,θ

�(U ; θ)] is continuous at θ∗
0 .

Condition 6. The matrix B = E[∇2
θ ,θ �(U ; θ∗

0 )] is positive
definite.

Condition 7. E[∇θ �(U ; θ∗
0 )] = 0.

Second, the asymptotic behavior of our estimator is closely
related to the asymptotic distribution of the empirical copula
that has been widely studied in the last two decades. The weak
convergence in (�∞([0, 1]d), || · ||∞) of the empirical copula
process {√n(P̂n −P0)(u), u ∈ [0, 1]d} to a Gaussian process was
formally stated by Fermanian, Radulovic, and Wegkamp (2004),
by requiring the first-order partial derivatives of the copulaP0 to
exist and to be continuous on the entire unit hypercube [0, 1]d.
Actually, as initially suggested in Theorem 4 of Fermanian,
Radulovic, and Wegkamp (2004), the continuity is not needed
on the boundary of the hypercube, but only on the interior
of the hypercube. This result was established by Segers (2012)
under minimal assumptions, rewritten below as Condition 9.
With additional smoothness requirements on the loss function �

(Condition 8), we will be able to obtain the asymptotic normality
of our MMD estimator θ̂n from the weak convergence of the
empirical copula process.

Condition 8. The function ∇θ �(·; θ∗
0 ) is right continuous, that

is, it is coordinatewise right-continuous in each coordinate,
and is of bounded variation in the sense of Hardy-Krause
(see, Radulović, Wegkamp, and Zhao 2017, sec. 2).

Condition 9. For each j ∈ {1, . . . , d}, the jth first-order partial
derivative Ċj of the true copula P0 exists and is continuous on
the set Vj = {w ∈ [0, 1]d : 0 < wj < 1}.

Still, it is possible to obtain the weak convergence of the
empirical copula process for an even larger class of copulas
using semimetrics on �∞([0, 1]d) that are weaker than the sup-
norm, but the limiting distribution will no longer be Gaussian

in general. Indeed, Bücher, Segers, and Volgushev (2012) estab-
lished the hyper-convergence of the empirical copula process
{√n(P̂n − P0)(u), u ∈ [0, 1]d} under the following assumption
that is weaker than Condition 9.

Condition 10. The set S of points in [0, 1]d where the partial
derivatives of the true copula P0 exist and are continuous has
Lebesgue measure 1.

Note a related regularity assumption in Genest, Nešlehová,
and Rémillard (2017), Condition 1. Hereafter, (wI , 1−I) denotes
a vector in [0, 1]d whose jth component is wj when j ∈ I and is
one otherwise.

Condition 11. For any I ⊂ {1, . . . , d}, I �= ∅, there exists some
qI ∈ (1, +∞) such that

∫
[0,1]|I|

∣∣∇θ �(dwI , 1−I ; θ∗
0 )
∣∣qI < ∞.

Now, let us state the weak convergence of
√

n(θ̂n − θ∗
0 ).

Theorem 3. If Conditions 1–9 are fulfilled, then
√

n(θ̂n − θ∗
0 ) is

asymptotically normal. Alternatively, under Conditions 1–8 and
10–11, the weak limit of

√
n
(
θ̂n − θ∗

0
)

still exists.

Proof. According to Condition 4, Ln is twice differentiable on
a neighborhood of θ∗

0 and ∂Ln/∂θj = n−1∑n
i=1 ∂�(Û i; ·)/∂θj.

Moreover, due to the consistency of θ̂n (according to Condi-
tions 1 and 2), we can assume that θ̂n belongs to such a neigh-
borhood. Using Condition 3, the first-order condition is

0 = ∇θ Ln(θ̂n) = ∇θ Ln(θ
∗
0 ) + ∇θ ,θ�Ln(θ̄n)(θ̂n − θ∗

0 ), (6)

where θ̄n is a random vector whose components lie between
those of θ∗

0 and θ̂n. Note that Hn = ∇θ ,θ�Ln(θ̄n) is an (d, d)-
sized Hessian matrix whose (j, k)-th component is Hn,jk =
1
n
∑n

i=1 ∂2�(Û i; θ̄n)/∂θk∂θj, j, k ∈ {1, . . . , d} Let us now study
the asymptotic behavior of this Hessian matrix and of ∇θ Ln(θ

∗
0 ).

For any pair (j, k), the function ∂2�(w; ·)/∂θj∂θk is continu-
ous on the compact set K for P0 almost every w ∈ [0, 1]d, all
second-order functions ∂2�(·; θ)/∂θj∂θk are measurable for any
θ ∈ K and E[supθ∈K |∂2�(U ; θ)/∂θk∂θj|] < +∞ (Conditions 4
and 5). Therefore, the L1 bracketing numbers associated to the
Hessian maps indexed by θ ∈ K are finite, invoking Example
19.8 in Vaart (1998). Using Lemma 1(c) in Chen and Fan (2005),
we get

sup
θ∈K

∣∣∣∣ 1
n

n∑
i=1

∂2�(Û i; θ)

∂θk∂θj
− E

[
∂2�(U ; θ)

∂θk∂θj

]∣∣∣∣ P0−a.s.−−−−→
n→+∞ 0.

As θ̄n lies between θ̂n and θ∗
0 componentwise, θ̄n

P0−a.s.−−−−→
n→+∞ θ∗

0 .

Moreover, taking expectations with respect to (U , θ̄n) or (Û , θ̄n),
respectively, we have for n large enough

∣∣∣∣ 1
n

n∑
i=1

∂2�(Û i; θ̄n)

∂θk∂θj
− E

[
∂2�(U ; θ∗

0 )

∂θk∂θj

]∣∣∣∣
≤
∣∣∣∣ 1
n

n∑
i=1

∂2�(Û i; θ̄n)

∂θk∂θj
− E

[
∂2�(U ; θ̄n)

∂θk∂θj

]∣∣∣∣
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+
∣∣∣∣E
[
∂2�(U ; θ̄n)

∂θk∂θj

]
− E

[
∂2�(U ; θ∗

0 )

∂θk∂θj

]∣∣∣∣
≤ sup

θ∈K

∣∣∣∣ 1
n

n∑
i=1

∂2�(Û i; θ)

∂θk∂θj
− E

[
∂2�(U ; θ)

∂θk∂θj

]∣∣∣∣
+
∣∣∣∣E
[
∂2�(U ; θ̄n)

∂θk∂θj

]
− E

[
∂2�(U ; θ∗

0 )

∂θk∂θj

]∣∣∣∣.
The continuity ofE[∂2�(U ; ·)/∂θj∂θk] at θ∗

0 (Condition 4) yields

1
n

n∑
i=1

∂2�(Û i; θ̄n)

∂θk∂θj

P0−a.s.−−−−→
n→+∞ E

[
∂2�(U ; θ∗

0 )

θjθk

]
.

Finally, by definition of Hn and B (see Condition 6), we obtain
Hn

P0−a.s.−−−−→
n→+∞ B.

According to Proposition 3.1 in Segers (2012) and under
Condition 9, the empirical copula process

√
n(P̂n − P0) weakly

converges to the Gaussian process α(w) − ∑d
j=1 Ċj(w)αj(wj)

in �∞([0, 1]d) where α is a P0-Brownian bridge. By Condi-
tion 8 and an integration by parts argument (Proposition 3
in Radulović, Wegkamp, and Zhao 2017), we have with obvious
notations

√
n
{∇θ Ln(θ∗

0 ) − E[∇θ �(U ; θ∗
0 )]}

= √
n
∫
(0,1]d

∇θ �(w; θ∗
0 )d(P̂n − P0)(w) (7)

=
∑

I⊂{1,...,d};I �=∅
(−1)|I|

∫
(0I ,1I ]

√
n(P̂n − P0)(wI , 1−I) ∇θ �(dwI , 1−I ; θ∗

0 ).

Since all the maps wI �→ ∇θ �(wI , 1−I ; θ∗
0 ) are of bounded

variation, the maps

g �→
∫

(0I ,1I ]
g(wI)∇θ �(dwI , 1−I ; θ∗

0 )

are continuous on �∞([0, 1]|I|, || · ||∞
)

for any I �= ∅. Recalling
Condition 7, the continuous mapping theorem implies that the
weak limit of

√
n∇θ Ln(θ

∗
0 ) exists, is centered and Gaussian:

√
n∇θ Ln(θ∗

0 )
L−−−−−→

n→+∞∑
I⊂{1,...,d};I �=∅

(−1)|I|
∫
(0I ,1I ]

{
α(wI , 1−I) −

∑
j∈I

Ċj(wI , 1−I)αj(wj)
}

∇θ �(dwI , 1−I ; θ∗
0 ).

Invoking the integration by parts again, this yields
√

n∇θ Ln(θ
∗
0 )

L−−−−→
n→+∞

∫
∇θ �(w; θ∗

0 )d{
α(w) −

∑
j∈I

Ċj(w)αj(wj)
}

.

As the limiting matrix B is invertible, we can infer that the matrix
Hn is a.s. invertible for a sufficiently large n. Using Slutsky’s
lemma and Formula (6), we get
√

n(θ̂n − θ∗
0 ) = H−1

n
√

n∇θ Ln(θ
∗
0 )

L−−−−→
n→+∞ B−1

∫
∇θ �(w; θ∗

0 ) d

{
α(w) −

d∑
j=1

Ċj(w)αj(wj)
}

.

If Condition 9 is replaced by Condition 10, then the
empirical process

√
n(P̂n − P0) weakly converges to the

process α(w) + dC(−α1,...,−αd)(w) in Lp([0, 1]d) for any 1 ≤
p < ∞, as detailed in Bücher, Segers, and Volgushev
(2012) (Theorem 4.5. and the remarks that follow). Due
to Condition 11 and Hölder’s inequality, the maps h →∫

h(wI)∇θ �(dwI , 1−I ; θ∗
0 ) are continuous on LpI ([0, 1]|I|),

1/pI + 1/qI = 1. Therefore, by (7) and the continuous mapping
theorem, the weak limit of

√
n
{∇θ Ln(θ

∗
0 ) − E[∇θ �(U ; θ∗

0 )]}
exists and is B−1 ∫ ∇θ �(w; θ∗

0 ) d
{
α(w) + dC(−α1,...,−αd)(w)

}
,

proving the result.

In the case of asymptotic normality, the asymptotic variance
of

√
n(θ̂n − θ∗

0 ) is B−1�B−1, where

� =
∫

∇θ �(w; θ∗
0 )∇θ �(w′; θ∗

0 )� C0(dw, dw′),

and C0(·, ·) is the covariance function associated to the limiting
law of the empirical copula process, that is,

C0(w, w′) = E

⎡
⎣
⎧⎨
⎩α(w) −

d∑
j=1

Ċj(w)αj(wj)

⎫⎬
⎭⎧⎨

⎩α(w′) −
d∑

j=1
Ċj(w′)αj(w′

j)

⎫⎬
⎭
⎤
⎦ ,

denoting by α a usual P0-Brownian bridge on [0, 1]d. In partic-
ular, note that

E[α(w)α(w′)] = C0(w∧w′)−C0(w)C0(w′), (w, w′) ∈ [0, 1]2d,

denoting w ∧ w′ = (
min(w1, w′

1), . . . , min(wd, w′
d)
)
. The

previous matrices can be empirically estimated: see Remark 2
in Chen and Fan (2005), or Tsukahara (2005). Note that a more
explicit formula of � is given in the latter articles, say

� = var
[
∇θ �(U ; θ∗

0 ) +
d∑

j=1

∫
∇2

θ ,uj�(u; θ∗
0 )

1(Uj ≤ uj)P0(du)
]

. (8)

Alternatively, the asymptotic variance of θ̂n can be estimated by
bootstrap resampling (see below).

Remark 3. If the map w �→ ∇θ �(w; θ∗
0 ) is “sufficiently reg-

ular”, the limiting law of
√

n
(
θ̂n − θ∗

0
)

may still be Gaussian
under Condition 10 even if 9 is not fulfilled. Indeed, this law is
deduced from the weak convergence of integrals as

∫ √
n(P̂n −

P0)(w)∇θ �(dw; θ∗
0 ) (Equation (7) in the proofs). It is well-

known that integration is a way of regularizing potentially dis-
continuous processes. In particular,

√
n
(
θ̂n − θ∗

0
)

is asymptot-
ically normal if w �→ ∇θ �(w; θ∗

0 ) has an integrable density
with respect to the Lebesgue measure on [0, 1]d: apply Theorem
4.5 in Bücher, Segers, and Volgushev (2012) and the remark
that follows, using the fact that the limiting copula process has
bounded trajectories in every case.

Remark 4. Theorem 3 relies on the weak convergence of the
usual empirical copula process and an integration by parts trick.
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If the map w �→ ∇θ �(w; θ∗
0 ) is not of bounded variation, as

required in Condition 8, an alternative method would be to
invoke the weak convergence of the weighted empirical process
(Berghaus, Bücher, and Volgushev 2017, Theorem 2.2) in Equa-
tion (7). This is relevant when g(w)|∇θ �(dw; θ∗

0 )| defines a finite
measure, by setting

g(w) = min
{ d∧

k=1
uk,

d∧
k=1

(
1 − min

j �=k
uj
)}ω

, ω ∈ (0, 1/2).

The price to be paid for this strategy would be to require the
existence and a certain amount of regularity for the second order
derivatives of C0, say

∂2C0(u)/∂uj∂uk ≤ K
[

max
{

uj(1−uj), uk(1−uk)
}]−1

, K > 0,

for every u ∈ Vj ∩ Vk and every indices j and k in {1, . . . , d}.
Both ways of reasoning seem to be complementary, but without
any clear hierarchy between them.

In canonical maximum likelihood estimation of semi-
parametric models, the asymptotic normality of the copula
parameter is usually obtained by similar techniques but using
slightly different assumptions: see, for example, Genest, Ghoudi,
and Rivest (1995), Chen and Fan (2005), and Tsukahara (2005).
In such a situation, the loss function � is the copula log-
likelihood and Condition 8 should then hold on the score
function rather than on ∇θ �( · ; θ∗

0 ). Unfortunately, the bounded
variation assumption is violated by many popular copula
families with unbounded copula score functions such as the
Gaussian copula. Hence, it is not possible to establish the
asymptotic normality of CML-estimators for the latter copula
family using the same set of assumptions as in Theorem 3.
Our MMD estimator is most often less demanding. Indeed,
its loss function is typically obtained by integrating copula
densities, inducing a “regularization procedure”. In other words,
conditions of regularity as Condition 8 should be satisfied more
easily in the MMD case compared to the usual CML method
(even if this statement is not a universal rule).

Nonetheless, in every case, we can still rely on another set of
technical assumptions, as for the CML method. Now, we provide
the following result adopting this alternative formulation, whose
assumptions naturally hold for the Gaussian copula and can be
checked by a direct analysis.

Condition 12. For any w ∈ (0, 1)d,
∥∥∇θ �(w; θ∗

0 )
∥∥ ≤

C1
∏d

k=1{wk(1 − wk)}−ak for some constants C1 and ak ≥ 0
such that

E

[ d∏
k=1

{Uk(1 − Uk)}−2ak
]

< +∞.

Moreover, for any w ∈ (0, 1)d and any k = 1, . . . , d,

∥∥∇2
θ ,wk

�(w; θ∗
0 )
∥∥ ≤ C2 {wk(1 − wk)}−bk

d∏
j=1,j �=k

{wj(1 − wj)}−aj ,

for some constants C2 and bk > ak such that

E

[
{Uk(1 − Uk)}ζk−bk

d∏
j=1,j �=k

{Uj(1 − Uj)}−aj
]

< +∞,

for some ζk ∈ (0, 1/2).

Under the latter conditions, the partial derivatives of �(w, θ)

are allowed to blow up at the boundaries of [0, 1]d, but not “too
quickly”. Such conditions are well-known in the copula litera-
ture: see Assumption A.3 in Chen and Fan (2005) or Assump-
tion A.1 in Tsukahara (2005). Therefore, we get the same result
as in Theorem 3.

Theorem 4. If Conditions 1–7 and 12 are fulfilled, then
the MMD estimator θ̂n is asymptotically normal:

√
n(θ̂n −

θ∗
0 )

L−−−−→
n→+∞ N (0, B−1�B−1).

The beginning of the proof involves a first-order decompo-
sition as in the proof of Theorem 3. Nonetheless, instead of
invoking integration by parts, it relies on some results about
multivariate rank statistics that have been obtained by Ruym-
gaart and his coauthors in the 70’s: see Proposition 2 in Chen
and Fan (2005).

Proof. As in the proof of Theorem 3, we have under Condi-
tions 1–6:

0 = ∇θ Ln(θ
∗
0 ) + Hn(θ̂n − θ∗

0 ), and Hn
P0−a.s.−−−−→
n→+∞ B.

Moreover, according to Lemma 2 in Chen and Fan (2005)
applied to J = ∇θ �(·; θ∗

0 ) and wj(v) = (v(1 − v))ζj , Condi-
tion 12 directly leads to:

√
n
(
∇θ Ln(θ

∗
0 ) − E

[∇θ �(W; θ∗
0 )
]) L−−−−→

n→+∞ N (0, �), with

where � is given in (8). Condition 7 yields
√

n∇θ Ln(θ
∗
0 )

L−−−−→
n→+∞ N (0, �). Finally, as previously, we obtain

√
n(θ̂n − θ0) = H−1

n
√

n∇θ Ln(θ
∗
0 )

L−−−−→
n→+∞ N (0, B−1�B−1).

The limiting laws obtained in Theorems 3 and 4 are most
often complex, even in the case of Gaussian limit laws. Once
pseudo-observations are managed, particularly through empir-
ical copula processes, it is common practice to rely on bootstrap
schemes.

Any bootstrap scheme can be invoked as long as it is valid
to evaluate the limiting law of the empirical copula process:
see (7) in our proofs. Under Condition 9 (resp. Conditions
10–11), its weak convergence in �∞([0, 1]d) (resp. Lq([0, 1]d)
for some q > 1) is sufficient. In the former case, we can
rely on Efron’s nonparametric bootstrap (Fermanian, Radulovic,
and Wegkamp 2004), the multiplier bootstrap in Rémillard and
Scaillet (2009), among others. In the latter case, apply another
version of the multiplier bootstrap as defined in Bücher, Segers,
and Volgushev (2012) (see the remark at the top of p. 1611).
And, in the case of a correctly specified copula model, the para-
metric bootstrap (Genest and Rémillard 2008) could surely be
invoked too.

To be specific, the calculation of our nonparametric
bootstrap estimator requires resampling every observation
in the initial sample with replacement, yielding a bootstrap
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sample S∗
n = (

X∗
1, . . . , X∗

n
)
. The associated empirical measure

is

P∗
n = n−1

n∑
i=1

δX∗
i

= n−1
n∑

i=1
Wi,nδXi ,

where the vector of weights (W1,1, . . . , Wn,n) is drawn following
a n multinomial law with success probabilities (1/n, . . . , 1/n).
We deduce the bootstrapped empirical process as

√
n
(
P̂∗

n − P̂n
)
,

where P̂∗
n denotes the empirical measure of the pseudo-sample

obtained from S∗
n . Exactly as for θ̂n, one gets a bootstrapped

estimator θ̂∗
n , but working on S∗

n instead of the initial sample.
The asymptotic laws of

√
n(θ̂∗

n − θ̂n) and
√

n(θ̂n −θ0) will be the
same because the limiting laws of

√
n(P̂∗

n−P̂n) and
√

n
(
P̂n−P0

)
are similar in (7).

For the multiplier bootstrap (Bücher, Segers, and Vol-
gushev 2012, sec. 4.2), consider iid weights (ξi)1≤i≤n, with
both mean and variance equal to one. These weights satisfy∫ √

P(ξi > t) dt < ∞ and are independent of the sample.
Introduce the cdf G∗

n(x) = n−1∑n
i=1 ξi1(Xi ≤ x) on Rd

and its margins G∗
n,k, k ∈ {1, . . . , d}. Build the pseudo-

sample (V∗
i )i=1,...,n where V∗

i,k = G∗
n,k(Xi,k) for any k, the

associated empirical copula C̃∗
n and the empirical copula process√

n
(
C̃∗

n−Cn
)
. The bootstrapped estimator of θ0 is then obtained

by MMD minimization, but replacing the initial pseudo-sample
(Û i)i=1,...,n by (V∗

i )i=1,...,n, and the same arguments as above
apply.

Recently, subsampling has been proposed as an interesting
alternative to bootstrap estimates of functionals of many empir-
ical copula processes, possibly smoothed or weighted (Kojadi-
novic and Stemikovskaya 2019). This technique is valid when
our Condition 9 is satisfied and when the usual empirical pro-
cess of (U i)i=1,...,n is weakly convergent in �∞([0, 1]d) to a
tight centered Gaussian process. In particular, the latter result
applies when our X-sample is a stretch from a strongly mixing
stationary sequence.

2.3. Examples

Now, let us check that the previous asymptotic results can be
applied for two usual bivariate copula families, here the Gaus-
sian and the Marshall-Olkin copulas. In this section, when we
assume that the model is well-specified, that is, that the law of
the observations belongs to the considered parametric family,
the pseudo-true parameter θ∗

0 is simply the true underlying
parameter and is denoted by θ0.

In both cases, we will use some characteristic Gaussian-type
kernel KU defined as

Kh(u, v) = exp
{

− (h(u1) − h(v1))
2 + (h(u2) − h(v2))

2

γ 2

}
,

(9)
for some injective map h : [0, 1] �→ R and some tuning
parameter γ > 0 (see, e.g., Christmann and Steinwart 2010, Th.
2.2). Indeed, the latter function Kh is a kernel: let ζ : R2 → F be
the feature map that is associated with the usual Gaussian kernel
KG, that is, KG(x, y) = 〈 ζ(x), ζ(y) 〉F , where the Gaussian

kernel is defined for x, y ∈ R2 by

KG(x, y) = exp
{

− (x1 − y1)
2 + (x2 − y2)

2

γ 2

}
.

Then, the feature map that defines Kh is simply ψ : [0, 1]2 → F
given by ψ(u) = ζ

(
h(u1), h(u2)

)
for every u ∈ (0, 1)2, and Kh

inherits from KG its “characteristic” property.
Hereafter, we shall denote by � and φ the cumulative distri-

bution function and the probability density function of the stan-
dard normal distribution, respectively. Then, a natural choice is
to set h(u) = �−1(u). The latter kernel will simply be denoted
by KU . Even if it is possible to always choose the usual Gaussian
kernel KG by setting h(u) = u, we have observed that KU
provides better numerical results in some situations. We refer
the reader to the simulation study for a detailed comparison.
Moreover, it is sometimes simpler to use KU rather than KG.
For example, in the case of Gaussian copulas, the criterion L0
can be analytically calculated when K = KU (see Appendix F,
supplementary material), contrary to K = KG. Note that it is not
so surprising that KU provides better empirical results than KG.
Indeed, it is a common procedure in copula modeling to push
back the sample observations on Rd using Gaussian quantile
functions componentwise. This trick spreads the data cloud and
often improves inference. At the opposite, our conditions of
regularity for Marshall-Olkin copulas can be checked only when
the kernel is KG.

2.3.1. Gaussian Copulas
Let us consider two-dimensional Gaussian copulas Cθ (u) =
�2,θ

(
�−1(u1), �−1(u2)

)
, indexed by θ ∈ (−1, 1). Here, �2,θ

denotes the cdf of a bivariate Gaussian centered vector (X1, X2),
E[X2

k] = 1, k = 1, 2, and E[X1X2] = θ . The associated copula
density has been given in Equation (5).

Proposition 2. Assume that the true underlying copula is Cθ0 for
some parameter θ0 ∈ (−1, 1). Then, when K ∈ {KU , KG} and
γ 2 < 2, the estimator θ̂n given by (1) is strongly consistent and√

n(θ̂n − θ0) is asymptotically normal.

The proof is deferred to Appendix C, supplementary mate-
rial. For the sake of illustration, we will verify the conditions of
validity of Theorem 3, even if those of Theorem 4 can be checked
too. In this proof, it is stated that the term B that appears in the
asymptotic variance of θ̂0 when K = KU has the closed-form
expression

BG(θ0) = 3γ 2{(2 + γ 2/2)2 + 8θ2
0
}

2{(2 + γ 2/2)2 − 4θ2
0 }5/2 > 0·

Now, let us deal with the general case of misspecification.

Corollary 1. Assume that the true underlying copula is C0 and
K ∈ {KU , KG} with γ 2 < 2. If the estimator θ̂n given by (1) is
strongly consistent to θ∗

0 ∈ (−1, 1) that satisfies the first-order
Condition 7 and if B > 0, then

√
n(θ̂n − θ∗

0 ) is asymptotically
normal.

The proof is given in Appendix D, supplementary material.
When a Gaussian copula is contaminated by a fixed bivariate
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copula C̄, then C0 = (1 − ε)Cθ0 + εC̄, and the real number B is
now

B =
∫

∇2
θ ,θ �(u; θ∗

0 )C0(du) = (1 − ε)BG(θ∗
0 )

+ ε

∫
∇2

θ ,θ �(u; θ∗
0 )C̄(du).

Here, we have assumed the consistency of θ̂n because we cannot
exclude the existence of several minimizers of L0 in general, even
if it is a very unlikely situation.

2.3.2. Marshall-Olkin Copulas
By definition (Nelsen 2007, sec. 3.1.1), the bivariate Marshall-
Olkin copula is defined on [0, 1]2 as

Cθ (u, v) = u1−αv1(uα ≥ vβ) + uv1−β1(uα < vβ), (10)

for some parameter θ = (α, β), 0 < α, β < 1. This copula has
no density with respect to the Lebesgue measure on the whole
[0, 1]2. The absolutely continuous part of Cθ (with respect to the
Lebesgue measure) is defined on [0, 1]2 \C, where C = {(u, v) ∈
[0, 1]2 \ uα = vβ}. The singular component is concentrated on
the curve C, and P(Uα = Vβ) = αβ/(α + β − αβ) =: κ ,
when (U, V) ∼ Cθ . With the same notation as in Nelsen (2007),
Cθ (u, v) = Aθ (u, v) + Sθ (u, v), where, for every (u, v) ∈ [0, 1]2,
Sθ (u, v) = κ

{
min(uα , vβ)

}1/κ and

Aθ (u, v) =
∫ u

0

∫ v

0

∂2Cθ

∂u∂v
(s, t) ds dt

=
∫ u

0

∫ v

0

{
(1 − α)s−α1(sα > tβ)

+ (1 − β)t−β1(sα < tβ)
}

ds dt.

Let us calculate E[ψ(U, V
)], (U, V) ∼ Cθ , for any mea-

surable map ψ , to be able to calculate �(w, θ) for our bivariate
Marshall-Olkin model. Given a small positive real number δ, let
us first evaluate the mass along C, when the abscissa and the
ordinate belong to [u, u+δ] and [v, v+δ] respectively: if uα = vβ

and δ � 1,

Sθ (u + δ, v + δ) − Sθ (u + δ, v) − Sθ (u, v + δ) + Sθ (u, v)
= κ min

{
(u + δ)α , (v + δ)β

}1/κ − κuα/κ


 δαuα/κ−11(αv ≤ βu) + δβvβ/κ−11(αv > βu)


 δαuα/β−α1(αv ≤ βu) + δβu1−α1(αv > βu),

providing the density along the curve C. Therefore, we obtain

E[ψ(U, V
)] =

∫
ψ(s, t)

∂2Cθ

∂u∂v
(s, t) ds dt

+
∫

ψ(u, v) Sθ (du, dv) =: I1 + I2, (11)

I1 =
∫

ψ(s, t)
{
(1 − α)s−α1(sα > tβ)

+ (1 − β)t−β1(sα < tβ)
}

ds dt. (12)

Let (ūα,β , v̄α,β) be a point of C such that αv̄α,β = βūα,β . It
is easy to check that such a point exists in [0, 1]2 and is unique,
except when α = β . In the latter case, the couple (ūα,β , v̄α,β)

may be arbitrarily chosen along the main diagonal of [0, 1]2.
Then, we get

I2 =
∫

ψ(u, v) Sθ (du, dv) =
∫ ūα,β

0
ψ(u, uα/β) βu1−α du

+
∫ 1

ūα,β

ψ(u, uα/β) αuα/β−α du, (13)

with ūα,β = (
β/α

)β/(α−β) when α �= β and ūα,α = e−1. The
latter value has been chosen so that the map (α, β) �→ ūα,β is
continuous on the whole set (0, 1)2, that is, even at the main
diagonal. For most regular functions ψ , the latter integrals I1,
I2 and then E[ψ(U, V

)] are continuous functions of (α, β).

Proposition 3. For almost any true parameter θ0 = (α0, β0) that
belongs to the interior of � = [ε, 1 − ε]2 for some ε ∈ (0, 1/2),
the estimator θ̂n given by (1) is strongly consistent, using the
kernel KU or KG. Moreover, when K = KG and B is positive
definite,

√
n(θ̂n − θ0) is weakly convergent.

See the proof in Appendix E, supplementary material. When
the latter limiting law of

√
n(θ̂n − θ0) exists, it is not Gaussian

in general. It could be numerically evaluated by usual resam-
pling techniques, as the consistent bootstrap scheme in (Bücher,
Segers, and Volgushev 2012, sec. 4.2).

Remark 5. The difficulty to state the limiting law of
√

n(θ̂n −θ0)
with K = KU arises from the second-order derivatives of �(w, θ)

with respect to θ . To be short, at some stage, one has to deal with
integrals as∫

exp
{
− (x − y)2

γ 2 − (xα/β − yα/β)2

γ 2

}

× xayā�(x)b�(y)b̄

φ2(xα/β)
lnc �(x) lnc̄ �(y)φ(x)φ(y) dx dy

by setting tν = �−1(�(t)ν
)

for any ν ≥ 0 and any real
number t. Here, (a, b, c, ā, b̄, c̄) denotes a vector of nonnegative
real numbers. It can be proved that the latter integral is not
convergent, even in the simplest case α = β and all the other
constants are zero.

In the case of general misspecification, a similar result is still
valid.

Corollary 2. Assume that the true underlying copula C0 is
arbitrary. If the estimator θ̂n given by (1) is strongly consistent
to θ∗

0 ∈ (−1, 1) that satisfies the first-order Condition 7, then
the same results as in Proposition 3 apply, replacing θ0 by θ∗

0 .

The arguments of the proof are exactly the same as in
Appendix E, supplementary material.

3. Implementation and Experimental Study

In this section, we compare the MMD estimator to the CML
and the moment estimator on simulated data. The CML
and the method of moments by inversion of Kendall’s tau
are implemented in the R package VineCopula (Schepsmeier
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et al. 2019). We implemented the MMD estimator using the
stochastic gradient algorithm described in Chérief-Abdellatif
and Alquier (2022). This procedure requires sampling from
the copula model we want to estimate. For this, we used
again VineCopula. Note that our implementation of the MMD
estimator is itself available as the R package MMDCopula
(Alquier et al. 2020).

3.1. Implementation via Stochastic Gradient and the
MMDCopula Package

We start by a short description of the algorithm implemented
in our R package (Alquier et al. 2020) to compute the MMD
estimator in the bivariate case. It is of course possible to use
the vine-copula procedure to decompose higher-dimensional
copulas into bivariate ones. The main idea is differentiating
the criterion (2). Under suitable regularity assumptions on the
copula density cθ with respect to the Lebesgue measure on U ,
we have

d
dθ

[∫
KU(u, v)cθ (u)cθ (v) du dv

− 2
n

n∑
i=1

∫
KU(u, Û i)cθ (u) du

]

= 2
∫

KU(u, v)
d ln cθ (u)

dθ
cθ (u)cθ (v) du dv

− 2
n

n∑
i=1

∫
KU(u, Û i)

d ln cθ (u)

dθ
cθ (u) du

= 2E
[d ln cθ (U)

dθ

{
KU(U , V) − 1

n

n∑
i=1

KU(U , Û i)
}]

,

where the expectation is taken with respect to U and V , that
are independently drawn from Cθ (a formal statement can be
found in Chérief-Abdellatif and Alquier 2022). Even though this
expectation is usually not available in closed form, it is possi-
ble to estimate it by Monte Carlo to use a stochastic gradient
descent. That is, we fix a starting point, a step size sequence
(ηt)t≥0, and iterate:

{ draw U�
1, . . . , U�

n, V�
1, . . . , V�

n ∼ Cθt iid,

θt+1 ← θt − 2ηtn−2∑n
i,j=1

d ln cθ (U�
j )

dθ |θ=θt

{
K(U�

j , V�
i ) − KU (U�

j , Û i)
}

.

In practice, we take ηt = 1/
√

t as recommended in Chérief-
Abdellatif and Alquier (2022). We perform 200 iterations, and
return the average of θt over the last 100 iterations.

The implementation of this algorithm requires (i) to be able
to sample from Cθ and (ii) to compute cθ and its partial deriva-
tive with respect to θ . A list of copula densities and their dif-
ferentials can be found in Schepsmeier and Stöber (2014) and
is implemented in VineCopula (Schepsmeier et al. 2019). Some
procedures to sample from Cθ can also be found in VineCopula.
The same ideas can be adapted even if the latter copula density
does not exist on the whole hypercube, as for the Marshall-Olkin
copula. In the latter case with α = β , we implemented our own
sampler and considered the copula density with respect to the
measure given by the sum of the Lebesgue measure on [0, 1]2

plus the Lebesgue measure on the first diagonal.

In theory, the criterion in (1) has no reason to be convex
in θ . Therefore, it is possible that the algorithm gets stuck in a
local minimum. In order to avoid this situation, we propose two
possible strategies: (a) starting from a random initialization and
(b) starting from the empirical Kendall’s tau and the associated θ

values. We compared these two strategies in a set of experiments
in the supplementary material. In the noncontaminated case,
the Kendall’s tau initialization is slightly better (especially for
small γ ’s) but both strategies are comparable. However, in a
contaminated case, the random initialization becomes better.
We suspect Kendall’s tau might be close to a local minimizer of
the MMD in the latter case. In our package and in our simula-
tions, the random initialization is the default mode. The conver-
gence of stochastic gradient algorithms for MMD mininimiza-
tion in a general framework is discussed in Chérief-Abdellatif
and Alquier (2022).

Also, note that it is possible to use a quasi Monte Carlo
rather than a Monte Carlo sampling scheme. In our package
MMDCopula (Alquier et al. 2020), we give the user the possi-
bility to choose the sampling scheme for the U j’s and the V i’s
separately. In all our simulations, we observed that the use of
Monte Carlo on the U j and of quasi Monte Carlo on the V i’s
led to the best results, so this setting is chosen by default in our
package, and it was also used in the following experiments. An
important point is that the gradient method is not invariant by
reparameterization. In order to deal with gradient descents in
compact sets only, we decided to parametrize all the copulas
by their Kendall’s tau (apart from the Marshall-Olkin copula,
implemented in the case α = β , that is parametrized by α and
does not use quasi Monte Carlo).

Finally, in the MMDCopula package, the estimator θ̂n
can be computed for five different kernels. In the following
simulations, we worked with the Gaussian kernel kU(U , V) =
exp(−||h(U) − h(V)||22/γ 2), the exp-L2 kernel kU(U , V) =
exp(−||h(U) − h(V)||2/γ ) and the exp-L1 kernel kU(U , V) =
exp(−||h(U) − h(V)||1/γ ), where h is either the identity or
�−1 and is applied coordinatewise. A major question is then:
how to calibrate γ , and which kernel to choose? We performed
some experiments on synthetic data to answer this question.
In Figure 1, we provide the MSE of the estimators based
on these three kernels as a function of γ . A more complete
study of the dependence of the MSE with respect to γ in
various models is provided in Appendix I, supplementary
material.

In these experiments, n = 1000 observations were sampled
from the Gaussian copula, and the objective was to estimate
the parameter of this copula. Each experiment was repeated
200 times. Except in some experiments in the supplement
used to calibrate γ , the true Kendall’s tau was fixed as
τ = 0.5.

The take-home message is that, as far as the Gaussian copula
is concerned and n = 1000, the Gaussian kernel is the best
one, whatever the choice of h. When h is the identity map, the
optimal γ is γ 
 0.25. For h(u) = (

�−1(u1), �−1(u2)
)
, the

optimal value is γ = 0.80. We performed similar experiments
for other copula families. The results can be found in Appendix
I, supplementary material. The optimal values for each family
are set as default values in our package, and used in the following
experiments.
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Figure 1. MSE of θ̂n based on the Gaussian kernel kU(U , V) = exp(−||h(U) − h(V)||22/γ 2), the exp-L2 kernel kU(U , V) = exp(−||h(U) − h(V)||2/γ ) and the exp-L1
kernel kU(U , V) = exp(−||h(U) − h(V)||1/γ ), as functions of γ .

Finally, note that we also discuss the computational cost in
Appendix G, supplementary material (for n = 1000, a MMD
estimation takes around 4–7 sec for most copula families).

3.2. Comparison to CML on Synthetic Data

We now compare the MMD estimators based on the Gaussian
kernel (with two choices of h) to the canonical maximum likeli-
hood (CML) estimator and the estimator based on the inversion
of Kendall’s tau (“Itau”). We would like to illustrate convergence
when the sample size n → ∞ and robustness to the presence of
various type of outliers. We designed nine types of outliers.

• Uniform: the outliers are drawn iid from the uniform distri-
bution U([0, 1]2).

• Top-left: the outliers belong to the top-left corner of [0, 1]2,
that is, they are drawn iid from U([0, q] × [1 − q, q]) where
q = 0.001.

• Bottom-left: the outliers belong to the bottom-left corner, that
is, they are drawn iid from U([0, q]2).

• Diagonal: the outliers are uniform on the first diagonal.
• Gauss 0.2: the outliers are drawn from the Gaussian copula

with a Kendall’s tau equal to 0.2.
• Gauss −0.8: the outliers are drawn from the Gaussian copula

with a Kendall’s tau equal to −0.8.
• Frank −0.8: the outliers are drawn from the Frank copula

with a Kendall’s tau equal to −0.8.
• Clayton 0.5: the outliers are drawn from the Clayton copula

with a Kendall’s tau equal to 0.5.
• Student 0.5 3df: the outliers are drawn from the Student

copula with a Kendall’s tau equal to 0.5 and 3 degrees of
freedom.

In each case, the data are sampled on [0, 1]2 from the desired
copula. Finally, the contaminated observations are rescaled by
their rank in order to keep pseudo-uniform margins.

In a first series of experiments, we use the various estimators
to estimate the parameter of the Gaussian copula. We compare

their robustness to the presence of a proportion ε of each type
of outliers, when ε ranges from 0 to 0.05. In a second time, we
go beyond the Gaussian model: we replicate these experiments
for the Frank copula, the Clayton copula, the Gumbel copula
and the Marshall-Olkin copula. The results being quite similar,
we save space by reporting only them for top-left outliers. In the
last series of experiments, we come back to the Gaussian case,
and illustrate the asymptotic theory. In this last experiment, we
study the convergence of the estimators when n grows in two
situations: no outliers, or a proportion ε ∈ {0.05, 0.1} of top-left
outliers.

3.2.1. Robustness to Various Types of Outliers in the
Gaussian Copula Model

For each type of outliers, and for each ε in a grid that ranges
from 0 to 0.05, we repeat 1000 times the following experiment:
the data are iid from the Gaussian copula, the sample size is n =
1000 and the parameter is calibrated so that τ = 0.5. Then, an
exact proportion ε of the data is replaced by outliers. We report
the mean MSE of each estimator in Figure 2.

When there are no outliers, CML yields the best estimator.
However, as soon as there is more than 2% or 3% of outliers,
the MMD estimators become much more reliable when con-
tamination arises from a distribution that significantly differs
from the reference Gaussian copula. Interestingly, the one based
on h(u) = u becomes equivalent to the one based on h(u) =
�−1(u) with uniform outliers, in terms of MSE.

3.2.2. Robustness in Various Models
Here, we replicate the previous experiments with other models:
Clayton, Gumbel, Frank and Marshall-Olkin. In each case, the
parameter was chosen so that τ = 0.5. We report the results in
the case of top-left outliers in Figure 3.

The conclusion remains unchanged: in all models, the MMD
estimators are far more robust than the CML and the method of
moments estimators.
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Figure 2. MSE of the MMD estimator with Gaussian kernel and h(u) = u, the MMD estimator with Gaussian kernel and h(u) = �−1(u), the CML estimator and the
method of moment based on Kendall’s τ , as a function of the proportion ε of outliers. Sample size: n = 1000, model: Gaussian copula. The title of each box gives the
distribution of the contamination.

3.2.3. Convergence
We finally come back to the Gaussian copula case. This time, we
study the influence of the sample size n, ranging from n = 100 to
n = 5000. We report the results of simulations without outliers
(ε = 0.00) and with top-left outliers (ε = 0.05 and ε = 0.1,
independently of the sample size) in Figure 4.

When there are no outliers, we observe the
√

n consistency
of all the estimators, as predicted by the theory. The CML
method yields the best estimator in this case. However, when
there are outliers, the situation is dramatically different. All the
estimators have an incompressible bias, and only their variances
will decrease to 0. However, we already observed that the MMD
estimators are a lot more robust to outliers: indeed, here, their
bias is (much) smaller than the other competing methods. Note

that the hierarchy between the different methods is unaffected
by the sample size.

4. Conclusion

We have shown that the estimation of semiparametric copula
models by MMD methods yields consistent, weakly convergent
and robust estimators. In particular, when some outliers con-
taminate an assumed parametric underlying copula, the com-
parative advantages of our MMD estimator become patent.

To go further, many open questions would be of interest. For
instance, extending our theory to manage time series should be
feasible. Indeed, the theory of the weak convergence of empirical
copula processes for dependent data has been established in
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Figure 3. MSE of the MMD estimator with Gaussian kernel and h(u) = u, the MMD estimator with Gaussian kernel and h(u) = �−1(u), the CML estimator and the
method of moment based on Kendall’s τ , as a function of the proportion ε of top-left outliers. Sample size: n = 1000. Top-left: Clayton copula. Top-right: Gumbel copula.
Bottom-left: Frank copula. Bottom-right: Marshall-Olkin copula.

Figure 4. MSE of the MMD estimator with Gaussian kernel and h(u) = u, the MMD estimator with Gaussian kernel and h(u) = �−1(u), the CML estimator and the
method of moment based on Kendall’s τ , as a function of the sample size n. Model: Gaussian copula. Left: no outliers. Middle: a proportion ε = 0.05 of outliers. Right: a
proportion ε = 0.1 of outliers.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

the literature; see, for example, Bücher and Volgushev (2013).
Moreover, finding a formal data-driven way of choosing the
kernel tuning-parameter γ would be useful. Finally, in the
case of highly parameterized models—such as hierarchical
Archimedean models (HAC), vines, or reliability models based
on Marshall-Olkin copulas also called “fatal shock” models—
it could be interesting to introduce a penalization on θ , for
example as

θ̃n ∈ arg min
θ∈�

∫
KU(u, v)PU

θ (du)PU
θ (dv)

− 2
n

n∑
i=1

∫
KU(u, Û i)P

U
θ (du) + λ||θ ||1.

This idea would be different from the so-called “regularized
MMD” in Danafar et al. (2013) that is reduced to multiplying
the first term on the right-hand side of the latter equation by a
scaling factor. To the best of our knowledge, the asymptotic or
finite distance theory for the penalized MMD estimator θ̃n still
does not exist. An interesting avenue for future research would
be to fill this theoretical gap and to adapt this framework to
copulas.

Supplementary Materials

Plot 3D Marshall-Olkin.html : contains the interactive plot of the MSE for
the Marshall-Olkin family of copulas.
Plot 3D parametric families.html : contains the interactive plot of the MSE
for parametric families of copulas.
Reproducibility : this folder contains the code and instructions to reproduce
the figures of the article.
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