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Which parts of the road guide obstacle avoidance? Quantifying the driver’s 
risk field 

Sarvesh Kolekar *, Joost de Winter, David Abbink 
Department of Cognitive Robotics, Faculty of Mechanical, Maritime, and Materials Engineering (3mE), Delft University of Technology, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

Gibson and Crooks (1938) argued that a ‘field of safe travel’ could qualitatively explain drivers’ steering behavior 
on straights, curved roads, and while avoiding obstacles. This study aims to quantitatively explain driver 
behavior while avoiding obstacles on a straight road, and quantify the ‘Driver’s Risk Field’ (DRF). In a fixed- 
based driving simulator, 77 (7 longitudinal and 11 lateral) positions of the obstacles were used to quantify 
the subjectively perceived and objectively (maximum absolute steering angle) measured DRF for eight partici-
pants. The subjective response was a numerical answer to the question “How much steering do you think you 
need at this moment in time?” The results show that the propagation of the width of the DRF, along the lon-
gitudinal distance, resembled an hourglass shape, and all participants responded to obstacles that were placed 
beyond the width of the car. This implies that the Driver’s Risk Field is wider than the car width.   

1. Introduction 

Many car manufacturers worldwide are developing highly auto-
mated driving systems that are expected to contribute to driver comfort 
and safety (Reimer, 2014). Before automated driving systems can be 
deployed on a widespread scale, various technological challenges still 
need to be resolved. One specific challenge is that current automated 
driving systems are conservative, strictly obedient to the traffic rules, 
and unable to exhibit natural driving behaviors, rendering them, at 
present, slow and inefficient (Neumann, 2016). A second challenge is 
that until fully (SAE Level 5) autonomous cars are introduced, there will 
be a need for automation systems that keep the human involved in the 
driving task. Such systems may have to interact with the driver in a 
human-like manner (Faltaous et al., 2018; Muslim and Itoh, 2018; Niu 
et al., 2018), for example via a shared control system (Abbink et al., 
2012). 

This need for effective interaction, and the inefficiencies of (partially 
and highly) automated vehicles provides an impetus for developing 
automated cars that drive in a human-like manner, with acceptable 
safety margins towards other road users and road boundaries (Kauff-
mann et al., 2018). At present, however, there is no generally accepted 
model that quantitatively captures human driving behavior (Papakos-
topoulos et al., 2017; Melman et al., 2018; Lappi and Mole, 2018). As 
early as 1970, a driver task analysis by McKnight and Adams (1970) 

identified over 1000 characteristics (vehicle, roadway, traffic, and 
environment characteristics) of the highway transportation system to 
which the driver must respond. The sheer complexity of driving makes it 
impractical to rely on separate heuristics for every driving situation, 
which is why it would be beneficial to identify the general principles 
that govern human driving behavior. 

So far, attempts at identifying the underlying principles of human 
driving behavior have resulted in a rather fragmented understanding of 
the driving task, where specific visual cues are used to predict the 
driver’s behavior in specific driving tasks (Papakostopoulos et al., 
2017). For example, the optical edge rate has been used to predict the 
speed at which drivers drive (Denton, 1980), whereas Lee (1976) 
showed that time to collision (TTC) is predictive of human braking 
behavior while approaching a static or moving obstacle. Godthelp and 
colleagues provided evidence that time-to-lane-crossing (TLC) can 
describe the positioning of a vehicle in a lane while driving on straights 
and curves (Godthelp et al., 1984; Godthelp, 1986). The TLC model of 
Godthelp was extended by Boer, to account for the variability of lateral 
position (satisficing) while driving in curves (Boer, 2016). Additionally, 
models based on a ‘potential-field’ have tried to solve the path planning 
problem by assigning different costs to different obstacles and finding 
the path of least cost (Rasekhipour, 2017). However, these 
potential-field models have not been tested for human-likeliness. 

The first attempt of creating a unified model of human driving 
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behavior can be found in Gibson and Crooks’ 1938 paper, where they 
proposed the concept of ‘field of safe travel’ (Gibson and Crooks, 1938). 
They defined the field of safe travel as the “field of possible paths which 
the car may take unimpeded” (p. 454); it was described as comprising 
both subjective elements (“subjective experience of the driver”, p. 455) 
and objective elements (“it exists objectively as the actual field within 
which the car can safely operate”, p. 455). Gibson and Crooks illustrated 
the field with various drawings of driving situations (e.g., straight-line 
driving, curve driving, moving pedestrian, moving obstacle, over-
taking a parked car, blind corner). The study, however, was qualitative 
and based on discussions between a psychologist and a student of 
driving. Thus, although the field of safe travel is introspectively plau-
sible and highly influential, it lacks operationalization and has limited 
empirical validation (Smith and K€allhammer, 2012). 

In recent years some automated cars have been based on concepts 
similar to that of Gibson and Crooks’. These concepts used ‘tentacle-like’ 
algorithms that allowed for driving on straights and curves while 
negotiating obstacles (Von Hundelshausen et al., 2008; Hu et al., 2018). 
These algorithms generated the possible future paths originating from 
the current state of the vehicle (based on several different methods such 
as rapidly-exploring random trees (RRT) and trajectories of maximum 
lateral acceleration at different speeds) which resembled tentacles 
extending from the front of the vehicle. These algorithms scanned the 
driver’s preview area and used that information for planning the path 
through the environment. Although these algorithms were not intended 
to be human-like, their success in navigating through several scenarios 
indicates that area-based models could potentially provide an under-
standing of human driving behavior in several scenarios (Kadar and 
Shaw, 2000). 

As indicated above, the use of field-based approaches is promising in 
modeling human driving behavior and for using it in the controllers of 
automated vehicles. However, so far, there appears to be no experi-
mental evidence as to whether such a field is perceived and used by 
humans while driving. In this study, we take a step towards operation-
alizing the field of safe travel (Gibson and Crooks, 1938) by measuring 
the ‘Driver’s Risk Field’ (DRF): a quantification of the driver’s steering 
response as a function of the region (area) in front of the vehicle. It is 
important to point out that the DRF defined in this study and the field of 
safe travel are two different concepts. To put it in the context of other 
literature, N€a€at€anen and Summala (1976) suggest that a driver’s 
perceived risk is the product of (i) the importance given by the driver to 
a hazardous event occurring and (ii) the consequences of the event. In 
this paper, we hold the second part (consequence of the event) constant 
by performing obstacle avoidance tasks with identical obstacles. We 
assume that when the drivers think that they may collide with the 
obstacle they respond proportionally to the perceived risk. With this 
assumption, the DRF represents the first part: the importance given by 
the driver to an obstacle appearing (hazardous event) in his/her pre-
view. The DRF can be used to estimate the driver’s perceived risk, which 
will be a function of the car and driver state. The optimal values of this 
estimated risk (with respect to the yaw rate, heading, speed, etc. apart 
from the position of the vehicle), when plotted as a function of the po-
sition of the vehicle in the environment, will result in Gibson and 
Crooks’ field of safe travel. The field of safe travel can, hence, be seen as 
the solution space of a path planning problem, whereas the DRF can be 
viewed as a component that helps generate this solution space. 

To determine the shape of the DRF, different positions in the preview 
of the driver needed to be probed. For this study, we chose an obstacle 
avoidance task on a straight road, where an obstacle appeared at a 
specific lateral and longitudinal location. The experiment was con-
ducted in a driving simulator instead of in a real car, for safety and 
experimental control. 

The shape of the DRF (2D projection on the road surface) was hy-
pothesized to expand (i.e., widen) as the longitudinal distance from the 
vehicle increases (Fig. 1). This hypothesis was based on neurophysio-
logical studies that have provided evidence for the presence of noise in 

the human sensors (vision, proprioception, etc.) and actuators (muscles) 
(Clamann, 1969). It is also known that humans try to minimize the effect 
of noise present in their sensorimotor control system (Harris and Wol-
pert, 1998; Wolpert and Landy, 2012). In the field of driving, it has been 
established that humans look ahead (preview) while driving (Land and 
Horwood, 1995). If predictions of positions of the vehicle are made, the 
noise/uncertainty will propagate and will result in an expanding region 
as the longitudinal distance increases (see Fig. 2 in Du et al., 2011). 

Furthermore, we hypothesized that the height of the DRF decays as 
the lateral and longitudinal distance from the vehicle increase. This 
hypothesis is based on findings in the literature that show that with 
higher time margins, the response of the driver decreases. Jurecki and 
Sta�nczyk (2014) found that the driver became more relaxed (higher 
reaction times) as the risk of colliding with a pedestrian decreased (i.e., 
the time to collision (TTC) to pedestrians increased). Lewis-Evans et al. 
(2010) found that the perceived risk and task difficulty increased when 
the time headway during car following increased. In our study, we 
aimed to quantify these observations by finding the functions that 
describe these relationships. 

2. Methods 

2.1. Apparatus 

Participants (N ¼ 8) drove in a fixed-base simulator at the Control 
and Simulation Department at the faculty of Aerospace Engineering, 
Delft University of Technology. Self-aligning torques of the front wheels 
were provided by a MOOG FCS ECOl8000 S steering motor running at 
2500 Hz. A single-track model (heavy sedan of 1.8 m width) was used to 
simulate the vehicle dynamics. The environment was shown using three 
digital light processing (DLP) projectors (BenQ W1080ST 1080p Full 
HD), together providing a horizontal and vertical field-of-view of 180�

and 40�, respectively. The visuals were displayed with a frame rate of 60 
Hz, and the data was logged at 100 Hz. The (front) bonnet/hood of the 
car was visualized to facilitate a more accurate perception of the car’s 
position relative to the road boundaries (Fig. 2). 

2.2. Participants 

Since our goal was to examine functional relationships at the level of 
individual participants, it was decided to follow a design in which a 
large number of observations were made on a relatively small number of 
participants (Smith and Little, 2018). Eight participants (7 male, 1 fe-
male) with normal or corrected-to-normal vision volunteered for this 
study and performed 308 obstacle avoidance trials. Participants had the 
following characteristics (Mean � SD) [units]: age (25.4 � 1.7) [years], 
driving experience (6.1 � 2.0) [years], driving frequency in the last 12 
months (2.1 � 1.8) [trips/week], and distance driven in the past 12 
months (4712 � 688) [km]. 

Fig. 2. A snapshot of the driving scene from the simulator, at the moment the 
obstacle appeared in front of the driver. The participants drove a 1.8 m wide car 
on a 7 m wide road with no center lane markings, at a constant speed of 25 m/s. 

S. Kolekar et al.                                                                                                                                                                                                                                 



Applied Ergonomics 89 (2020) 103196

3

2.3. Experimental setup 

Participants had to avoid an obstacle that appeared at one (randomly 
chosen) of the 77 positions.1 Each obstacle position was encountered 4 
times, once per block of 77 trials. In total, each participant performed 
308 obstacle avoidance trials. The experiment was spread out over two 
separate (not necessarily consecutive) days, with each day consisting of 
2 blocks of approximately 30 min each. Each block consisted of 3 sub- 
blocks of approximately 8 min each. Sub-blocks 1, 2, and 3 consisted 
of 26, 26, and 25 trials, respectively, which resulted in each block 
making up 1 repetition of 77 trials. The trials were randomly ordered 
among the sub-blocks to ensure that participants could not anticipate 
the position of the obstacles. 

2.4. Road and obstacle design 

2.4.1. Road design 
Participants drove on a straight single-lane 7 m wide road, with no 

center lane markings, and no traffic. The road was designed to be wide, 
to minimize the cues that participants would get from the lane bound-
aries with respect to the obstacle positions. 

2.4.2. Obstacle positions 
The 77 obstacle positions formed a grid that was used to determine 

the shape of the DRA. There were 7 columns of obstacle positions, and 
each column consisted of 11 positions. The distances were calculated 
from the center of the obstacle to the center of the vehicle, with longi-
tudinal and lateral directions being parallel and perpendicular to the 
heading of the road, respectively. The 7 columns were at longitudinal 
distances of 25 m, 50 m, 75 m, 100 m, 125 m, 150 m, and 175 m in front 
of the vehicle center. In each of the columns, the obstacles were posi-
tioned at lateral distances of 2.05 m, 1.85 m, 1.65 m, 1.45 m, 1.25 m, 0 
m, � 1.25 m, � 1.45 m, � 1.65 m, � 1.85 m, and � 2.05 m, from the lane 
center. A positive value indicates that the obstacle was to the left of the 
lane center, negative to the right, and zero indicates that the obstacle 
was on the lane center. 

As can be noticed, the 5 obstacles to the left and right of the lane 
center were laterally positioned 20 cm apart, but the distance between 
the obstacle at � 1.25 m and the obstacle at 0 m was 1.25 m. The vehicle 
used in the simulator was 1.8 m wide, and hence, any obstacle posi-
tioned within 1.025 m (1.8/2 þ 0.25/2) of the lane center would have to 
be always avoided. All the obstacles beyond 1.025 m, theoretically, did 
not need to be avoided, as they were beyond the width of the car. 
Accordingly, in our experiment, 70 out of 77 obstacles (i.e., all obstacles 
except the 7 in the center row) did not have to be avoided. The partic-
ipants were not made aware of this information. 

2.4.3. Obstacle properties 
Each obstacle was a cuboid with a rectangular cross-section (height x 

width ¼ 12.5 cm � 25 cm) and length of 15 m. The obstacle laid flat on 
the road with its long axis parallel to the road heading. The obstacle was 
relatively long to encourage participants not to steer back immediately 
after they have passed the front of the obstacle. 

2.4.4. Driving task 
The experiment was conducted at a constant vehicle speed (25 m/s), 

since the intention was to measure the response of the driver solely by 
means of steering. If speed control were handed over to the driver, it 

could be expected that the response of the driver would get distributed 
over steering and speed control. Additionally, it was necessary to ensure 
that, in every trial, the relative distance between the vehicle and the 
obstacle is realized, as per the design (Fig. 3). Therefore, guidance tor-
ques were exerted on the steering wheel, which guided the vehicle to the 
lane center, before the start of each trial. A small buzzing vibration was 
also added to the steering wheel to convey to the driver that the vehicle 
is guiding itself to the lane center. 

Each trial was assigned a road section of 350 m, and the obstacle 
appeared at the start of this section (Fig. 4). As soon as the obstacle 
appeared, the lane centering guidance was deactivated. The driver then 
performed the maneuver, and 50 m after the obstacle center had been 
passed by the vehicle center, the guidance torques would come into 
effect. As soon as the next obstacle appeared, the guidance torques were 
deactivated, and the experiment continued with the subsequent trial. 

Because the obstacles appeared at random positions and the lane 
centering guidance system took over after the obstacle was passed, the 
duration for which the guidance system was on was also random. This 
random duration mitigated the problem of participants anticipating the 
obstacle appearance based on the duration for which the guidance was 
on. 

2.5. Measuring the driver’s response 

Whether the DRF is subjective (only perceived) or objective (visible 
in the driver’s actions) is an important point that needs to be investi-
gated. If the DRF is subjective but not objective, then it could be a quirk 
of human perception, where people subjectively experience the DRF but 
do not act accordingly. Conversely, if it is objective but not subjective, 
then apparently people perform their steering actions subconsciously, 
without necessarily being aware of what they are doing. These, how-
ever, are extreme cases. Different shapes of DRF for subjective and 
objective steering responses could provide insights into the driver’s 
awareness and perception of the driving scene. Thus, the experiment 
measured both the subjective and the objective steering responses of the 
participants during an obstacle avoidance task, and the results are 
analyzed independently without assuming any dependency of one on 
the other. 

2.5.1. Objective response 
The objective measure was calculated as the maximum of the abso-

lute value of the steering angle applied from the instant the obstacle 

Fig. 3. The representation (not to scale) of the grid of obstacle positions. 
During each trial, an obstacle would appear at one of these 77 positions (11 
lateral and 7 longitudinal positions). If driven straight, only the center row of 
obstacles obstructed the vehicle. All other obstacles were at a lateral distance 
(at least 0.225 m) greater than the width of the car. 

1 In the experiment we had 78 obstacle positions, but the 78th position was 
not used for analysis in this study. It appeared as the 26th obstacle of every Sub- 
block 3 and was positioned on the lane center (lateral position ¼ 0 m) at a 
longitudinal distance of 350 m. This obstacle was implemented for analysis 
which will be performed in a follow up study, and has not been considered for 
analysis in this study. 
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appears to the point when the vehicle center travels 25 m (1 s, since the 
speed of the vehicle ¼ 25 m/s). In Fig. 5, this is indicated from 0 m 
longitudinal distance until the dotted vertical line. This ensured that we 
captured the initial response of the participants since we were interested 
in quantifying the shape of the DRF at the “current instant in time”. 

2.5.2. Subjective response 
For each trial, participants had to say aloud a non-negative real 

number as soon as the obstacle appeared. The number was an answer to 
the question: “How much steering do you think you need, at this 
moment?“. The words “at this moment” are an important part of the 
question, since the DRF, as previously defined, relates to the perceived 
risk at the current time instant. Participants were instructed to report 
zero if they did not feel the need to steer at the current time instant. The 
question was stated at the beginning of the experiment (on each day) 
and was not repeated for each trial. The participants were expected to 
respond as soon as the obstacle appeared. They were trained for this 
with a 6 min trial at the start of each day. No scale or reference values 
related to the subjective response were provided to the participants 
(Stevens, 1975). This approach was used to prevent the saturation of 

subjective answers towards the extremes of a predefined scale, which is 
important in our experiment because the participants did not know the 
lowest or highest level of stimulus beforehand. Also, this approach 
provided more freedom to the participants, as it did not require them to 
multiply, divide, etcetera to scale their responses to the given reference 
value (Stevens, 1975, p 28). 

3. Analyses 

In this paper, the analysis and results are reported for each partici-
pant independently. For each trial, we calculated a subjective and 
objective measure, as described in the methods section. Three-hundred- 
eight responses were recorded per participant for the subjective and 
objective measure, each. All participants were instructed to report a 
subjective response of ‘0’ to indicate ‘no steering needed at this instant in 
time’. A similar threshold that distinguishes between a ‘steering action’ 
and ‘no steering action’ is needed for the objective measure since the 
objective measure will never be exactly 0. A steering angle threshold of 
�2� was used as a threshold for the objective measure since literature 
indicates that �2� represents a conscious steering action (Johansson 
et al., 2004; Markkula and Engstr€om, 2006; Petermeijer et al., 2017). 
This means that if the maximum of the absolute of the steering angle 
applied by the participant was less than 2�, the objective measure was 
set to 0, for that particular trial. Following this, for both subjective and 
objective measures, the 4 repetitions for the 77 obstacle locations were 
averaged and rearranged in an 11 x 7 matrix (11 lateral positions and 7 
longitudinal positions). It is important to note that we performed the 
experiment at a constant speed and we expect speed to have a significant 
effect on the DRF (which will have to be quantified in future studies). 
Hence, to avoid the speed dependency, we report our results in terms of 
distances and not in terms of time-based measures such as time to 
collision (TTC) or time headway (THW). 

3.1. Shape of the driver risk field (DRF) 

We investigated the relationship between the position of the obstacle 
and the steering responses (subjective and objective), to determine the 
shape of the DRF, with respect to the 3 axes:  

1) y-axis: Effect of the lateral position of the obstacle on steering 
response (subjective and objective)  

2) x-axis: Effect of the longitudinal position of the obstacle on steering 
response (subjective and objective)  

3) z-axis: Contours of steering response (subjective and objective) 

For each of these 3 axes, the data was fit to a function (Gaussian, 
power curve, or parabolic), and the R2 index was calculated to assess the 
goodness of fit for each fit. A nonlinear least-squares method with the 
Trust-Region algorithm was used to find the optimal parameters (Cole-
man and Li, 1996). The analysis is identical for subjective and objective 
steering response and performed for each participant independently. 

3.1.1. Effect of the lateral position of the obstacle on steering response 
The effect of lateral position on the steering response was studied by 

using the 11 data points per longitudinal position (Fig. 6, Row 1). Each 
row of 11 data points (in cutting planes parallel to the y-z plane) was 
used to fit a Gaussian function (1). 

z¼ a1 e
� y2

a2 2 (1)  

where a1 and a2 are the parameters to be estimated. The steering re-
sponses had their maximum value at the lane center and decayed to zero 
on either side of the lane center, for each of the 7 longitudinal positions. 
Accordingly, the continuous and differentiable Gaussian function was 
chosen over other simple functions such as linear functions or parabolas. 
The R2 index was calculated per participant by taking a mean of the R2 

Fig. 4. A trial started when the obstacle appeared. The participant was ex-
pected to provide a numerical value (subjective response) and perform (or not 
perform) a steering maneuver to avoid the obstacle. Fifty meters after the 
vehicle center had passed the obstacle center, the lane centering guidance 
forces took over and guided the participant to the lane center, in preparation for 
the next trial. The guidance deactivated, as soon as the next obstacle appeared, 
which also marked the beginning of the next trial. 

Fig. 5. The figure shows the steering angle applied by a participant and the 
lateral position of the vehicle on the road as a function of the longitudinal 
distance along the lane center. In this particular example, the obstacle appeared 
on the lane center (lateral position 0 m) at a longitudinal distance of 50 m. The 
four lines represent the four repetitions for this particular obstacle position 
(Rep1 ¼ first repetition). SR ¼ subjective response of the participant for the 
corresponding trial. 
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index of each of the 7 (longitudinal positions) curves. 

3.1.2. Effect of longitudinal position on of the obstacle on steering response 
The effect of longitudinal position on the steering response was 

studied by using the 7 data points per lateral position (Fig. 6, Row 2). 
Each column of 7 data points was then used to fit a power function (2). 

z¼ a3 xa4 þ a5 (2)  

where a3, a4, and a5 are the parameters to be estimated. A power curve 
was fit to the experimental data because, from visual inspection, it could 
be seen that the steering response decays as the longitudinal position 
increases, an effect that bears a resemblance to the relationship between 
an objective stimulus and a subjective response studied by Stevens 
(1975). The R2 index is calculated, per participant, by taking a mean of 
the R2 of each of the 11 (lateral positions) curves. 

3.1.3. Shape of contours representing constant steering responses 
The interpolated Gaussian functions (previous subsection) are 

‘sliced’ (parallel to the x-y plane) at 5 levels of steering response (0.1%, 
2.5%, 10%, 25%, 50% of the maximum value of the measure). The max 
value is calculated per participant, separately for the subjective and 
objective measure. The points at which these cutting planes intersect the 
interpolated Gaussians are calculated and used to fit a second-order 
polynomial (3) 

y¼ a6ðx � a7Þ
2
þ a8 (3)  

where a6, a7, and a8 are the parameters to be estimated and x is the 
longitudinal distance. 

A parabolic function was chosen because it is the lowest degree of the 
polynomial capable of estimating curvature. The number of data points 
available for curve fitting was a factor of consideration because we 
probed seven longitudinal distances (25 m–175 m), but participants 

Fig. 6. Shape of the DRF was analyzed along the y (lateral obstacle position) and x (longitudinal obstacle position) axes. The left column illustrates the analysis 
performed on the experimental data (black circles) using the (pale yellow) cutting planes to arrive at the results shown in the right column. The look-ahead distance 
(dla) was the distance along the longitudinal axis, beyond which the steering response of the driver was 0. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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could have lower look-ahead distances (dla), resulting in a smaller (than 
7) number of data points available for interpolation. Hence, a poly-
nomial of the second order was chosen. If the cutting plane intersected 
only two Gaussians, then linear interpolation (4) was used because 
interpolating a parabola is not feasible with less than three points. 

y¼ a6 xþ a7 (4) 

If the cutting plane intersected less than two Gaussians, a region 
could not be calculated, and hence is not shown in the plots. The R2 

index was calculated per participant by averaging the R2 index of each 
curve. There are five cutting planes and each plane results in two 
boundary curves (left and right), which are mirror images of each other 
about the longitudinal distance (x) axis since the Gaussian function is 
centered at a lateral position of 0 (1). 

3.2. Width of the Gaussian cross-section along longitudinal distance 

In the previous subsection, we proposed to quantify the cross-section 
of the DRF with a Gaussian function the height of which decays as a 
power-law function of the longitudinal distance. However, the propa-
gation of the width of the Gaussian function along the longitudinal 
distance is not quantified. For this, we fit a 2nd order polynomial to the 
a2 parameter (Equation (1)) of the Gaussian function at each longitu-
dinal distance. 

σ¼ a9ðx � a10Þ
2
þ a11 (5) 

The 3 parameters for (a9, a10, a11) of the second-order polynomial (5) 
define the shape of the propagation of the width of the DRF along the 
longitudinal distance (x). Parameter a9 dictates the curvature of the 
boundary (a9 > 0, curves upwards and a9 < 0, curves downwards). 
Parameter a10 defines the position along the longitudinal distance, at 
which the curve reaches its inflection point (slope ¼ 0). Parameter a10 
can be classified into three regions: (i) a10 < 25 (in front of the near end), 
(ii) 25 < a10 < dla (between the near and far end), and (iii) a10 > dla 
(beyond the far end). dla is the look-ahead distance of a particular 
participant. If the obstacles appear beyond the dla, the participant does 
not feel the need to steer immediately (Fig. 6). Parameter a11 defines the 
lateral position of the inflection point of the curve. Hence a9 is classified 
in 2 ways (a10 > 0, a10 <0), a10 is classified in 3 ways (a10 < 25, 25 < a10 
< dla, a10 > dla), and a11 is classified in 2 ways (a11 > 0, a11 < 0). Hence, 
there are 12 (2 x 3 x 2) possible shapes, 4 of which are shown in Fig. 7. 
The Type 1 shape resembles an hourglass, widening at the ends and 
narrowing in the middle. Type 2 looks like a funnel that widens from one 
end to the other, and Type 3 is ‘opposite’ of Type 2, where the funnel 
narrows as the longitudinal distance increases. Type 4 bulges outwards 
while narrowing from the near end to the far end. We plot the left 
boundary using (5) (a2 > 0) and its ‘mirror image’ (-a2<0) about the 
longitudinal axis to provide better visualization and understanding of 
the shape that would propagate (Fig. 7). 

4. Results 

4.1. Shape of the driver risk field (DRF) 

4.1.1. Effect of the lateral position of the obstacles on the steering response 
The effect of lateral position of the obstacles on the steering response 

of all eight participants (individually) is shown in Fig. 8 (subjective: top 
two rows, objective: bottom two rows). As hypothesized, the magnitude 
of steering response decreased as the lateral distance of the obstacle 
from the lane center increased (on either side). All participants 
responded to obstacles beyond the width of the car (�0.9 m), indicating 
that the area in the driver’s preview that stimulates a steering correction 
is wider than the width of the vehicle and that drivers prefer to adopt a 
lateral safety margin to the obstacles. 

Individual differences can be found in the height and width of the 

Gaussians. For example, S1 and S5 have narrow Gaussians, whereas S4 
and S8 have wide Gaussians. As the longitudinal distance of the obstacle 
to the vehicle increases, the magnitude of steering response decreases 
(as shown by the grayscale gradient lines in Fig. 8). The range of angles 
applied by the participants (objective measure) was quite similar (in the 
range of 0–80 deg), while the subjective responses had widely varying 
ranges. For example, S8 had a range from 0 to 100, while S3 had a range 
from 0 to 4. A Gaussian function accurately described the effect of lateral 
position on subjective (R2 ¼ 0.77) and objective (R2 ¼ 0.69) steering 
responses. 

4.1.2. Effect of the longitudinal position of the obstacles on the steering 
response 

The effect of the longitudinal position of the obstacles on the steering 
response is shown in Fig. 9 (subjective: top two rows, objective: bottom 
two rows). As the longitudinal distance of the obstacle from the vehicle 
increases, the magnitude of steering response decreases. Individual 
differences can be found in the height and the rate at which the re-
sponses decline as a function of longitudinal distance. For example, S3 
and S7 have gradual rates of descent of steering response, whereas S5 
and S6 have steep rates of descent. As the lateral distance to the lane 
center increases, the magnitude of steering response decreases (as 
shown by the grayscale gradient lines in Fig. 9). A power law was used to 
describe the effect of the longitudinal position of the obstacle, on sub-
jective (R2 ¼ 0.86) and objective (R2 ¼ 0.98) steering responses. 

4.1.3. Contours of constant steering responses 
The results in Fig. 10 show the regions in the DRF that correspond to 

different intervals of steering response. The intervals were defined 
relative to the maximum steering response (subjective and objective) of 
each participant. There are clear individual differences in the way par-
ticipants responded to obstacles. For example, S2 has a very wide DRF 
compared to S1. As the magnitude of steering response increases (0.1%– 
50%), the area of the corresponding contour region shrinks towards the 
vehicle. It is also evident that the participants used different look-ahead 
distances (dla). Most participants (S1, S2, S4, S5, S6, S8) have the same 
look-ahead distance for subjective and objective measures. 

Participants S3 and S7 have a shorter look-ahead distance calculated 
from the objective measure as compared to that calculated from the 

Fig. 7. Width of the Gaussian cross-section as a function of longitudinal dis-
tance: The three parameters (a9, a10, a11) can form 12 different shapes, 4 of 
which are shown. The direction of travel of the vehicle is along the positive x- 
axis, and the near and far end are located at 25 m and dla (look-ahead distance) 
in front of the vehicle, respectively. 
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subjective measure. This means that participants consciously decided to 
make a correction, but the steering corrections were smaller than the 2 
deg steering angle threshold that we set (to differentiate a conscious 
steering action from noise). Some of the subplots do not have the 50% 
(red) plane plotted (subjective: S6, objective: S1, S3, S4, S6, S8), since 
the 50% cutting plane intersected with less than two Gaussians. 

4.2. Width of the Gaussian cross-section along longitudinal distance 

The width of the Gaussian function (a2) for each longitudinal dis-
tance was used to interpolate a parabola to determine the shape of the 
propagation on the DRF (Fig. 11). The 95% confidence interval of the 
estimation of a2 is shown in grey markers. 

Fig. 8. The figure shows the effect of lateral distance (of the obstacle center from the lane center) on the steering response for the eight participants (S1–S8). The x- 
axis represents the lateral distance of the obstacle from the lane center (left of lane center is positive), and the y-axis represents the subjective response (top 2 rows) 
and the objective measure of max absolute steering angle (bottom 2 rows). 
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The shape was quantified by the parameters of the parabolic 
boundaries (a9, a10, and a11) as explained in the analysis section (re-
ported in Table 1: Supplementary material), and was classified into Type 
1, 2, 3, or 4 (Fig. 7), according to the parameter values. The interpolated 
Gaussian functions with height (a1) ¼ 0 were not used for fitting the 
parabolas since 0 steering response indicated ‘no immediate steering 
required’. Most of the shapes (six of eight for subjective, and seven of 

eight for objective) resemble an hourglass shape (Type 1). Participants 
S1 and S3’s objective measure narrows as the longitudinal distance in-
creases and hence is classified as Type 3, whereas the subjective measure 
of S7 narrows (with a bulge) and hence is classified as Type 4. 

Fig. 9. The figure shows the effect of longitudinal distance (of the obstacle center from the vehicle center) on the steering response for the eight participants (S1-S8). 
The x-axis represents the longitudinal distance of the obstacle from the vehicle (the vehicle is traveling in the positive x-direction), and the y-axis represents the 
subjective response (top 2 rows) and the objective measure of max absolute steering angle (bottom 2 rows). 
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Fig. 10. The figure shows the regions of constant steering response at different intervals, for the eight participants (S1-S8). The different intervals (0.1%, 2.5%, 10%, 
25%, 50%) are of the maximum value of the measure (subjective and objective, respectively), per participant. The x-axis represents the longitudinal distance of the 
obstacle from the vehicle (the vehicle is traveling in the positive x-direction), and the y-axis represents the lateral distance of the obstacle from the lane center. All 
participants exhibit a DRF that is wider than the width of the car (horizontal dotted lines). 
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Fig. 11. The figure shows the effect of longitudinal distance on the width of the Gaussian cross-section of the DRF for the eight participants (S1-S8). The x-axis 
represents the longitudinal distance of the obstacle from the vehicle (the vehicle is traveling in the positive x-direction), and the y-axis represents the width of 
Gaussian. A parabolic function is fit to the width of Gaussian (parameter a2 in equation (1)) at every longitudinal distance. The 95% confidence interval (calculated 
using the confint function in Matlab) are shown with the grey markers. 
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4.3. The relation between subjective and objective measures 

When the subjective responses were compared against the corre-
sponding objective responses, for each participant (Fig. 12), the Pearson 
correlation coefficients (r) indicated a strong association between them. 
This result shows that the DRF was not only perceived (subjective 
measure) but also acted upon (objective measure). However, there was a 
considerable number trials (especially for participant 4, Nobj0 ¼ 30) 
where participants reported a non-zero subjective response but did not 
perform a steering action within 1 s of the obstacle appearing. This effect 
can also be seen in Fig. 10, where the subjective contours (Fig. 10 top 2 
rows) with higher values (red, yellow, deep-blue) cover larger areas of 
the DRF, compared to their area in the objective contours (Fig. 10 

bottom 2 rows). This indicates that even if the participants perceive the 
risk at the current instant in time, they do not necessarily act 
immediately. 

5. Discussion 

This study aimed to experimentally investigate the shape of the 
‘Driver’s Risk Field’ (DRF) by quantifying the steering response in an 
obstacle avoidance task, at a constant speed. The results (Figs. 8 and 9) 
show that the effect of lateral and longitudinal position of the obstacle 
on steering response can be quantified by the Gaussian function and the 
power-law, respectively. Hence, the DRF constitutes a function (Fig. 13- 
Right) describing driver risk along the direction of movement of the 
vehicle, where risk decreases in lateral direction according to a Gaussian 
function, and according to the power law in the longitudinal direction. 
The top-down projection of the function visualizes the Driver’s Risk 
Field projected around the vehicle, and the propagation of the width of 
the risk field follows an hourglass shape (for most participants). 

We hypothesized that the shape of the DRF would expand as the 
longitudinal distance increased (Type 2 shape), but the results show that 
the DRF is shaped like an hourglass (Type 1 shape) for most of the 
participants (Fig. 11). The Type 1 and 2 shapes are both wide at the far 
end, but the hourglass shape (Type 1) that we observed for most subjects 
also widens at the near end. This widening at the near end could be due 
to startle, because of an obstacle appearing suddenly in front of the 
participant (Fig. 13-Left). This startle could initiate an open-loop 
steering action, without completely processing the position of the 
obstacle. This open-loop type of steering response in emergency sce-
narios was also observed in a previous study by Van Auken et al. (2011). 

We hypothesized that the steering response would decrease as the 
distance between the obstacle and the vehicle increases. This hypothesis 
was confirmed by the results in Figs. 8 and 9. The decrease in steering 
response magnitude for increasing longitudinal distance to an obstacle 
corresponds to previous studies. For example, in Gold et al. (2013), the 

Fig. 1. Visualization of the hypothesized shape of the Driver’s Risk Field (DRF). 
The height of the surface represents the magnitude of the steering response to 
an obstacle (subjective or objective). Obstacle O1 stimulates a response of 
magnitude R1, whereas obstacle O2 does not stimulate any response from 
the driver. 

Fig. 12. The figure shows the correlation between the subjective response on the y-axis and the objective response (max of the absolute steering angle applied by the 
driver) on the x-axis. The Pearson correlation coefficient (r) is reported for each participant and indicates a high correlation between the subjective and objective 
measures (average of all participants: r ¼ 0.86). Nobj0 is the number of times (out of 77) that the objective measure was 0 and the subjective measure was non-zero 
(red squares), and Nsbj0 is the number of times the subjective measure was 0 and the objective measure was non-zero (green squares). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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steering response (and hence the trajectory of the vehicle) became 
smoother as the take-over ‘time budget’ was increased (Fig. 4 in Gold 
et al., 2013). Other researchers found a decrease in subjective ratings of 
risk as the time headway (to a leading vehicle) increased, confirming our 
subjective results (Lewis-Evans et al., 2010; Siebert et al., 2014; Tscharn 
et al., 2018). An important contribution of our paper is that we captured 
this decrease in steering response as a function of increasing longitudinal 
distance by means of a power-law function for both subjective and 
objective steering response. 

The shape of the DRF in this study is quantified at a constant speed. 
However, to fully understand the nature and properties of the DRF, 
experiments at different fixed vehicle speeds and with speed control 
handed over to the driver need to be carried out. The challenge here will 
be to derive a single DRF based on both lateral and longitudinal control 
since the driver’s response is expected to be distributed over steering 
and braking/acceleration. We expect that the size of the DRF will scale 
with the speed of the vehicle, but maintain its shape. This prediction is 
based on the fact that drivers tend to maintain a constant look-ahead 
time, and hence the look-ahead distance, and in turn, the DRF scales 
with speed (Van Winsum and Heino, 1996). 

The shape of the DRF, as quantified in this study, is based on the 
steering response magnitude as a function of the position of the obsta-
cles. All the obstacles presented in this study were identical. This was 
done to study only the effect of the position of the obstacle and not its 
dangerousness. However, in the real world, obstacles pose different 
levels of risk. For example, a stone is less harmful than a rock (effect of 
size), a sheet of paper on the road is less dangerous than a pothole of the 
same size (effect of material), a static obstacle like road work equipment 
causes different response than dynamic obstacles such as pedestrians 
and vehicles (effect of speed). Future experiments should be done using 
obstacles posing different levels of hazard. 

In this study, we measured the subjective and objective responses of 
the participants to examine if the risk field is perceived and/or acted 
upon. The results showed that the participants perceived (subjective 
response) and acted (objective response) on the risk. However, Fig. 12 
showed that some participants perceived the risk at the current instant 
in time but did not act immediately. This means that sometimes the 
perceived risk is not large enough to elicit an immediate action (or any 
action at all). The relationship between the delay in responding to 
perceived risk and the position of the obstacle will be studied in the 
future. 

One of the limitations of measuring subjective and objective 
response simultaneously is that there can be an interaction between the 
two responses. We tried to minimize this interaction by making the task 
‘subconscious’ so that the participants did not consciously link their 
subjective and objective responses. We trained and motivated the par-
ticipants to provide us their subjective response as soon as they saw the 
obstacle. Secondly, the participants could respond with any non-zero 
number and did not have to adhere to any predefined scale. This 
reduced the mental effort of consciously performing arithmetic calcu-
lations to provide a subjective response. Future studies could measure 

the subjective and objective measure separately and examine the 
interaction effect. 

The DRF proposed in this study, which represents the importance 
given by the driver to a hazardous event occurring, can be combined 
with the ‘consequences of the event’ to calculate the perceived risk 
(N€a€at€anen and Summala, 1976). This perceived risk could be used as a 
novel ‘cost function’ in controllers of automated driving/assistance 
systems. Fajen et al. (2003) performed a similar study with participants 
walking in an area strewn with obstacles and reported that such a 
field-based approach could predict the participant’s path. The ‘ten-
tacle-like’ algorithms in the field of robotics make use of the information 
from a vehicle’s preview and show resemblance to the DRF. These 
similarities and the success of the area-based approaches in the field of 
robotics to negotiate a variety of scenarios indicates that the DRF can 
potentially be useful in several curve negotiation and obstacle avoidance 
scenarios (Chu et al., 2012; Von Hundelshausen et al., 2008; Hu et al., 
2018; Werling et al., 2010). However, the main difference between the 
existing algorithms and the present DRF is that the former are derived 
from a control-theoretic point of view, whereas the DRF, as shown in this 
study, is perceived and acted upon by humans. We expect that our 
human-factors based approach can serve to improve the anthropomor-
phism of automated vehicles. 

In recent years, ‘human-like’ driver models (Kolekar et al., 2017, 
Kolekar et al., 2018; Sentouh et al., 2009; Saleh et al., 2011; Benderius 
and Markkula, 2014) and personalized driver models that can describe 
and adapt to the behavior of individual drivers (Schnelle et al., 2016; Shi 
et al., 2015) have gained increasing attention. An important aspect of 
such models is the use of a function, the parameters of which can be 
modified to individualize driving behavior. The DRF in our experiment 
had an hourglass shape (for most participants), but its size was different 
for each tested individual. These individual differences can be captured 
by manipulating the parameter values and hence provide a means to 
individualize the DRF and make personalized driver models. 

Note that in this study, we do not provide a unifying model or theory 
based on the quantified DRF. Such model development will have to be 
explored in future research, along with experimental studies to test the 
generalizability of the shape of the DRF for different driving scenarios. 
We hope that this paper thereby contributes to the development of 
automated vehicles that understand and interact with humans in a safer 
and more efficient manner. 

6. Conclusions 

In order to quantify the Driver’s Risk Field (DRF) which is subjec-
tively perceived and objectively acted upon by the drivers, we per-
formed a driving simulator study where drivers needed to avoid 
suddenly appearing objects on a straight road at a constant speed. For 
the experimental conditions studied, we conclude the following:  

1) Objective and subjective response of the drivers decreased as the 
lateral distance of the obstacle from the vehicle increased, and this 

Fig. 13. (Left) The results of our study show that the 
DRF is hourglass-shaped (Type 1), whereas the hy-
pothesis (marked by the dashed black lines) is funnel- 
shaped (Type 2). We argue that the widening towards 
the vehicle is due to the startle open-loop correction 
caused by an obstacle suddenly appearing at a short 
distance. (Right) Three-dimensional representation of 
the shape of the DRF. The height and width of the 
Gaussian cross-section follow the power law and the 
hourglass shape, respectively.   
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relationship could be described by the Gaussian function (Fig. 8: 
Subjective R2 ¼ 0.77, Objective R2 ¼ 0.69).  

2) Objective and subjective response of the drivers decreased as the 
longitudinal distance of the obstacle from the vehicle increased, and 
this relationship could be described by the power-law (Fig. 9: Sub-
jective R2 ¼ 0.86, Objective R2 ¼ 0.98).  

3) All participants responded to obstacles that were placed beyond the 
width of the car, meaning that the quantified DRF exceeds car width. 
(Fig. 10).  

4) For most of the participants, the propagation of the width of the DRF 
along the longitudinal distance resembled an hourglass shape 
(Fig. 11). 
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