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Abstract

RANS simulation are one of the most used tools for aerodynamic analysis. The advantage of RANS simulations

is the reduced computational cost compared to other methods such as LES or DNS. This is because by solving

the RANS equations one only solves for the mean flow. However, this reduction in computational cost comes

at the price of uncertainty. During the derivation of the RANS equations a closure problem is introduced.

The turbulence models that solve this closure model of the Reynolds stress introduce the largest level of

uncertainty. In this research symbolic regression is used to augment the k −ω− SST turbulence models

with corrections directly inferred from high fidelity data sources such as DES, LES or DNS. This model is

augmented with a correction to the anisotropic part of the Reynolds stress and a direct correction to the

turbulence production. These correction fields are calculated through the so called frozen approach, where

the k− and ω-transport equations are solved using the frozen mean flow values from the high fidelity data.

Symbolic regression with Pope’s eddy viscosity hypothesis as a basis is used to find models for these correction

fields. With these correction models the k −ω− SST is extended to a non-linear turbulence model for the

prediction of the eddy viscosity. Elastic net regression forms the basis of the machine learning method and

is used to promote sparsity of the correction models. The sparsity is needed for stability and to keep the

computational efficiency of the RANS method. This symbolic regression method is named SpaRTA and has

been successfully applied to 2D cases in literature. In this work that is extended to 3 fully 3D cases, namely

a wall mounted cube, an infinite circular cylinder and an idealised rotating wheel on a road surface. This

study has shown the applicability of the SpaRTA methodology to these cases, resulting in models that have

the extrapolating capabilities to improve the results on all 3 test geometries.
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1
Introduction

The purpose of this chapter is to give the reader an introduction to the topic and the motivation for this

research. The problem is described accompanied by a presentation of some existing solutions. After this the

research questions that are attempted to be answered in this research are presented. Finally an outline of the

contents of this report is given, guiding the reader where to find what information.

1.1. Motivation
A good compromise between computational cost and accuracy for the simulation of flows is achieved through

a large eddy simulation (LES). With the advancements made in LES methodology and computer hardware

continuing to become faster, the use of the LES methodology and the availability of high fidelity data has

significantly increased.

In most industrial application where resources and time are limited the choice is often made to solve the

Reynolds averaged Navier-Stokes equations (RANS) instead of doing an LES. Performing RANS simulations

is a cheaper alternative over the computationally much more expensive LES method. The main difference

between LES and the RANS approach is that in LES the equations are solved in discrete time steps for the

instantaneous solution, requiring the solution to be solved over a large period of time to attain the averaged

solution. While by solving the RANS equations, one only solves for the mean solution directly. This assumption

has as a result that the method is cheaper and therefore also faster. However, this reduced cost also brings

uncertainty in the form of inaccuracy. During the derivation of the RANS equations assumptions are made

and as a result of the averaging procedure to arrive at the equations a closure problem arises.

This closure problem is introduced in the form of the Reynolds stress tensor that needs to be modelled.

The models for this Reynolds stress are called turbulence models and are all approximations based on assumptions

that introduce some form of modelling error. Because all models have assumptions there does not exist a

perfect model and each model has its own strengths and weaknesses.

The increase in popularity and development of machine learning algorithms and the advancements made

in the areas of hard- and software has resulted in research starting to focus on the challenge of turbulence

modelling in a more data driven way. This is done in different ways but usually involves employing a machine

learning algorithm on a set of high fidelity data, gathered by simulation methods such as LES and DNS or by

experiments. Previous works have proven that these machine learning techniques can be used to improve

the prediction of 2D flows. This forms the motivation to further investigate the application of and develop

one of these techniques.

1
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1.2. Problem statement and research context
The strength of machine learning algorithms is the ability to find patterns in large sets of data. This feature of

machine learning and the availability of high fidelity data opens up the question: Can the accuracy of RANS

solvers be improved by augmenting the turbulence model with a machine learned model? Specifically for

this research the turbulence model that is selected to be improved is the k −ω−SST turbulence model. This

turbulence model is a combination of the k −ω and k − ǫ turbulence models and is described in more detail

in Section 3.1.

There are multiple other research groups that have been applying data driven techniques for the improvement

of RANS simulations. These works can generally be split up into three categories. The first category uses these

data driven techniques to tune the model coefficients of existing models. Examples of this are the Bayesian

approach applied by Edeling, Cinella and Dwight [3]. Who used this to tune the coefficients of the k − ǫ

turbulence model. Li, Hoag, Martin and Bailey [9] have developed an iterative approach where the model

coefficients are tuned while solving a RANS equation, high fidelity or experimental data is used as a reference

for the tuning. These approach are described in more detail in Section 2.3.1.

The second category is that of the field inversion methods. These methods use the predictive qualities

of the machine learning methods to apply a correction to an existing turbulence model. The target for the

machine learning algorithm is an output of the RANS simulation. Singh Duraisamy and Pan [20] have applied

a version of this field inversion method on the Spalart Allmaras turbulence model. They have used a neural

network for the prediction of the correction field. This method is explained in more detail in Section 2.3.2.

This approach is called field inversion because it looks at the full field and through a single correction tries to

match measurements or high fidelity data with the simulated data.

A similar but fundamentally different approach is that applied by Ling, Kurzawski and Templeton [10].

They applied a feed-forward neural network in combination with a tensor basis as proposed Pope [16]. This

method is used to correct the anisotropic part of the Reynolds stress, with the neural network predicting

this correction. This predicted correction field is then added to a converged solver after which it allowed to

converge again. This approach is described in Section 2.3.3 and the tensor basis is described in more detail

in Section 3.2.1. This work belongs to the third category, those are the approaches that use this tensor basis.

Many other works have followed up on this approach using the tensor basis to correct the anisotropic

part of the Reynolds stress. It has been combined with many different machine learning techniques such as

the regression tree algorithm applied through a random forest as applied by Kaandorp and Dwight [6]. This

approach is presented in Section 2.3.4.

Weatheritt and Sandberg [26] have attempted to make this method using the tensor basis generally applicable

without the need for a machine learning algorithm implemented in the turbulence model. Instead they

used evolutionary programming to find correction models that can be directly implemented into existing

turbulence models. This method is closest to the methodology followed in this research and is explained in

more detail Section 2.3.5.

Finally two other approaches are highlighted in this report that do not use the tensor basis for the correction

of turbulence models. The first of these is presented by Cruz et al. [1], instead of correcting for the Reynolds

stress they correct for the divergence of the Reynolds stress, the Reynolds force vector. A neural network is

used to predict the correction needed in the Reynolds force vector to match the high fidelity data. The reason

to use this Reynolds force vector is to mitigate the error that is made in calculating the Reynolds stress from

high fidelity data, as there is a discrepancy between the real Reynolds stress and the calculated one. A more

detailed explanation of this method is found in Section 2.3.7. The other method uses the decomposition

of the anisotropic part of the Reynolds stress into eigenvalues and eigenvectors to find perturbation and

transformation predicted by a neural network to get the correct Reynolds stress. The full details of this

approach are shown in Section 2.3.8.

In this work the methodology presented by Schmelzer and Dwight [18] is followed. This methodology is

closest to evolutionary algorithm from Weatheritt and Sandberg and is called Sparse Regression of Turbulent

Stress Anisotropy (SpaRTA). This methodology attempts to find correction models to be directly implemented

in existing turbulence models.
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In the SpaRTA methodology the turbulence model that has been selected is the k −ω−SST model, but in

theory other turbulence models can be used as well. In contrary to the evolutionary algorithm two corrective

fields are added to the turbulence model. One field is correcting the anisotropic part of the Reynolds stress

tensor and the other is directly correcting the turbulence production. These corrective fields are determined

using the so called frozen approach described in Section 3.2.2.

To make the corrections applicable to a range of problems symbolic regression is performed to find

correction models that can be directly implemented into the k−ω−SST turbulence model. For this symbolic

regression the elastic net algorithm is used to promote sparsity and keep coefficients small. These are two of

the requirements for the stability of a turbulence model. The exact machine learning technique used to infer

models from the high fidelity data is presented in Section 3.2.3.

1.3. Research objective
The objective for this research is to further examine if the accuracy of RANS solvers be improved by augmenting

the turbulence model with a machine learned model. The methodology that has been selected more specifically

as stated above is the SpaRTA methodology.

Schmelzer and Dwight [18] have proven this improvement for 2D flow cases. In order to fully answer the

main research question in this work the extension is made to 3D flow cases. This is an important step as most

flow cases are 3D and in most industrial applications the interest is in 3D flows.

When the correction models improve the solution of 3D flows there are some other questions that need to

be answered before the SpaRTA methodology can be used in an industrial environment. The first important

question that needs to be answered is that of the computational cost. Are the correction models found using

the SpaRTA methodology computationally cheap enough to validate their use? This is an important question

as the main benefits of the RANS methodology are the low computational cost and the robustness of the

method.

To answer this question it is not only required to look at the computational cost per calculation step but

also to look at the combination of convergence rate, computational cost of the additional equations and

the accuracy of the solution. Finally a question that is tried to be answered is: What are the extrapolating

qualities of the correction models found using the SpaRTA methodology. In other words, how well do the

correction models perform on geometries other than the training geometry? What are the limitations of such

a correction model? Are there certain types of flows that the correction model is unable to correctly resolve?

These are all questions that are tried to be answered in this research.

Some other questions that need to be answered are about the assumptions made in the methodology. An

example is the choice of not using the full tensor basis but only a part of it for the model regression. This

looked to be sufficient for 2D flow cases but will it also be sufficient for 3D cases where more mean flow

features are present?

Finally when looking at the application of the models discovered using the SpaRTA methodology it is

interesting to know what types of flows or what areas can be improved the most. This is interesting knowledge

for industrial applications that deal with very specific flow types.

1.4. Report Outline
The report is structured in the following way: Chapter 2 covers in more detail the literature that was briefly

discussed above in the problem statement and research context section. This is to give the reader an idea of

what has been done before and where this work falls within the existing research frame-work.

In the following chapter the methodology as is followed in this research is presented. This chapter start

with a short overview of the RANS method, explaining the assumptions that are made by using the RANS

method. This is done together with an overview of the high fidelity methods that have been used in this

research. Also, turbulence modelling and what assumptions they are based upon will be briefly discussed.

This theoretical background can be found in Section 3 before addressing the methodology specific to the
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SpaRTA approach in Section 3.2. Finally the implementation of the method in an industrially relevant solver

is presented in Section 3.3, this implementation is verified for correct implementation against the results from

Schmelzer and Dwight [18].

To answer the research questions posted above the SpaRTA methodology has been applied to 3 different

test cases. In Chapter 4 these test cases are described and the results are presented. The first test case that

has been used is that of a wall mounted cube. This test case has been used to test several things besides

the general improvement in performance of the correction models generated with the SpaRTA methodology.

It was also used to prove the assumption that a reduced tensor basis can be used for the model regression.

Other things that have been tested using this geometry are the stability of the model that seems to depend on

the size of the anisotropy correction and the good extrapolating qualities of this model. When the model is

applied to an extended cube similar improvements in performance are noted.

To further test the extrapolating qualities of the model that was found for this flow case the model has

also been applied to the two other test cases that have been tested. The results of this model and that trained

directly on the geometry of an infinite circular cylinder are shown in Section 4.2.

The other test case for which the results are shown is that of an idealised rolling wheel on a road surface.

This is the most complex test case that has been done, the results of which can be found in Section 4.3.

In Chapter 5 the conclusions that can be drawn from the results are presented and discussed. From these

conclusions it is not yet possible to fully answer all the research questions. With the results achieved in this

research some questions remain and new questions about how to furhter improve the method have arisen.

To answer these, more research is required, recommended steps for further research to get a complete answer

to the research questions can be found in Section 6. This is accompanied by recommendations for possible

further development of this method.



2
Overview of data driven techniques in

literature

In this chapter a summary is given of the literature regarding machine learning methods applied to turbulence

modelling. This should provide the reader with some background information to see where this research falls

within the machine learning and turbulence modelling field. For a short overview of the works discussed here

the reader is referred to Section 1.2 of the introduction.

Before discussing these methods different levels of modelling inaccuracy are discussed as this gives a

good idea of the differences between several methods. This is needed because not all methods that act on

the same modelling level. After that a short part of the work from Emory and Iaccarino [4] is discussed, they

have described methods for visualising turbulence. The visualisation of turbulence is an essential part of the

discussion as several methods use this approach for the visualisation of the results. It will also be used later in

the presentation of the results in chapter 4 and is therefore presented here. After that most relevant literature

in relation to this work is presented.

2.1. Levels of modelling inaccuracy
Before discussing the different data-driven methods for turbulence modelling it is good to asses the different

types of inaccuracies that are introduced at the different levels of turbulence modelling. Duraisamy, Iaccarino

and Xiao [2], have produced an overview of different data driven techniques and have presented the different

stages during which errors are made. They labelled each of these levels L1-L4 and are important to understand

at which level the data driven models operate.

The first level (L1) of modelling inaccuracy is that introduced during averaging. The fact that the average

of the Navier-Stokes equation is not equal to the Navier-Stokes equations of average values is the first level of

inaccuracy. The derivation of the Reynolds averaged Navier-Stokes equation is shown in section 3.1.1

〈N (·)〉 6= N (〈·〉) (2.1)

The second level (L2) of inaccuracy is in the assumption that the additional terms that appear in the

averaging process can be modelled using a set of averaged variables as the model variables. The inaccuracies

on this level come from the choice of variables and the fact that averaged variables are used. An example of

this is the Boussinesq approximation, this is discussed in more detail in section 3.1.2.

The third level of inaccuracy (L3) is the model M(·) and the assumptions that are made while deriving the

model. Each assumption that is made while deriving the model is a source of model inaccuracies.

〈N (·)〉 6= N (〈·〉)+M(·) (2.2)

Finally the fourth level (L4) that they have identified is the inaccuracy in model coefficients. These coefficients

determine model behaviour and can be changed according to different conditions. Over the last decades a

5
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lot of effort has gone into determining the coefficients that give the most accurate solutions in general or for

very specific flow cases. This is classically done by tuning the coefficients using a database of fundamental

flows. [21].

2.2. Visualising Turbulence
A lot of the Machine learning methods focus on fixing the anisotropic part of the Reynolds stress. In order

to compare and understand the modifications that are made by the machine learning algorithms to the the

turbulence models it is of critical importance to have tools available to compare turbulence models and the

prediction of turbulence.

[4] Emory and Iaccarino have described multiple methods that can be used to visualise the turbulence

anisotropy. The Reynolds stress anisotropy tensor as given by (2.3), is the anisotropic part of the Reynolds

stress and gives a good amount of information on the turbulence model. However, a tensor is difficult to

visualise effectively.

ai j =
u′

i
u′

j

2k
−
δi j

3
(2.3)

A technique that is used frequently is to use anisotropy invariant maps [12]. The technique uses the

invariants of the the anisotropy tensor, in this case the eigenvalues λ1−3 and eigenvectors e1−3 resulting

from the diagonalisation of ai j . Using these eigenvalues different maps can be made to visualise the state

of turbulence. The general commonality between all the invariants maps is that the independent variables

and axes variables are functions of the anisotropy eigenvalues. The eigenvalues can be used to describe the

relative strengths of the fluctuating velocity components. There are three limiting states that define the

boundaries of the invariant maps. The first of the limiting states is one component. It describes a flow

where the turbulent fluctuations only exist along one direction. The second is where fluctuations exist in

two components and finally there is isotropic turbulence which is fluctuating in all three directions.

The first map that can be used is the so called Lumley triangle [12]. It creates the coordinate system

(I I , I I I ), which results in a triangle with curved sides as shown in figure 2.1(a). The corners of the triangle are

the limiting states of isotropic x3c , axisymmetric x2c and one-component x1c turbulent fluctuations. On the

right hand side the turbulence triangle is shown. This triangle is similar to the Lumley triangle but has had a

coordinate transformation:

I I = ai j a j i /2 =λ2
1 +λ1λ2 +λ2

2 (2.4)

I I I = ai j a j n ani /3 =−λ1λ2(λ1 −λ2) (2.5)

ξ3 = I I I /2, η2 = I I /3 (2.6)

In figure 2.2 two more invariant maps are shown. In figure 2.2(a) the eigenvalue map is shown, which uses

the first two eigenvalues as coordinates. The dashed line indicates the plane-strain limit. This limit, where at

least one of the eigenvalues is zero.

In figure 2.2b the barycentric map is shown. This map spans an Euclidian domain, in this case constructed

as an equilateral triangle described by the corner points X1c = (1,0), X2c = (0,0), X 3c = (1/2,
p

3/2). All the

states of a turbulent flow should fall into the triangles. And with that comes the downside of the method.

For large sets of data a point cloud is the result of plotting in the barycentric map, cluttering the domain and

reducing visibility. Another downside of plotting in the invariant maps is the lack of physical locations. The

data points in the domain are hard to link back to physical locations in the domain. This makes observing

patterns and global componentiality behaviour difficult. There are methods to resolve this issue of the lacking

link with the physical domain, by labelling and colouring the points in the map according to their location.

C 1c =λ1 −λ2 (2.7)

C 2c = 2(λ2 −λ3) (2.8)

C 3c = 3λ3 +1 (2.9)
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Figure 2.1: Diagram of two non-linear anisotropy invariant maps. Figure taken from [4].

Figure 2.2: Diagram of two linear anisotropy invariant maps. Figure taken from [4].

xB =C1c x1c +C2c x2c +C3c x3c =C1c +C3c
1

2
(2.10)

yB =C1c y1c +C2c y2c +C3c y3c =C3c

p
3

2
(2.11)

Another option is to instead of colouring the points in the triangle according to their physical location to

colour the points in the domain according to their place in the domain. This can be done by applying an RGB

map to the domain where 100% red is equal to full X1C , green to X2c and blue to x3c (figure 2.3).
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Figure 2.3: RGB map according to the Barycentric map. Figure taken from [4].

2.3. Machine learning applied to Turbulence modelling
In this section the application of machine learning to turbulence modelling is presented. Where machine

learning is identified as a class of algorithms that do not use explicit instructions but relies on pattern recognition

and inference instead [7].

2.3.1. Model calibration
One of the approaches that is used to optimise the accuracy of existing turbulence models is to tune the model

coefficients such that the model performs well under certain flow types. The standard coefficients for models

have usually been determined using fundamental flow types such as turbulent channel flow or flat plate flow.

This type of model calibration as acting on the L4 uncertainty level as it only modifies model coefficients and

not model form or any fundamental assumptions in the derivation of the model.

To get more accurate solutions for more complex flows it is useful to re-calibrate these model coefficients

to values that give more accurate results. The calibration of these coefficients can be done by hand or from

experience.

Bayesian Approach If there is high fidelity data available of a similar flow, statistical methods can be used

to determine the best fitting model coefficients for RANS models. Edeling, Cinella and Dwight [3] have used

an approach where using a Bayesian approach the optimal coefficients for multiple turbulence models for

multiple flow cases have been generated by using a statistical method.

The model is matched to experimental data by sampling for the posterior of the model coefficients. This

sampling is done using the last 5000 samples of a converged Markov Chain. The flow cases that were tested

were that of a flat plate boundary layer with different pressure gradients. What was found was that the

posterior model probabilities vary greatly with the pressure-gradient applied. It was therefore fair to say

that the model coefficients for the best fit depend on the flow case and there are no coefficients that suit all

conditions well.

Ray et al [17] have used a similar Bayesian approach to calibrate the coefficients of the k − ǫ turbulence

model for a jet in crossflow conditions. This flow case is a complex flow with a jet blowing perpendicular

to the oncoming flow. This results in the plume of the jet rolling over and producing two counter-rotating

vortices.

The problem that needs to be solved is an inverse problem to calculate the joint probability density

function (JPDF)of the model coefficients C = (Cµ,Cǫ2,Cǫ1). In this case the data from which this inverse

problem is solved is wind-tunnel data gathered using PIV and DNS simulations. In this case the equations

that is tried to be maximised is the following:
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Figure 2.4: Prior and posterior densities obtained from midplane and cross-plane measurements. Posterior densities are plotted using

solid and dashed lines. The corresponding priors are pltted with ◦ and ∆. The vertical lines are the "nominal" values of the parameters.

Figure taken from [17].

P (C,σ2|ye ) ∝ L(ye |C,σ2)Π1(C)Π2(σ2) (2.12)

Where it is assumed that the likelihood of the simulation result ye has a normal distribution and can be

compared to the measurement which gives the following expression for the JPDF:

P (C,σ2|ye ) ∝
1

σNp
exp

(

−
||ye −ym(C)||22

2σ2

)

Π1(C)Π2(σ2) (2.13)

With the measurements being in this case the velocity deficit in streamwise and normal direction with

reference to the free stream velocity. Solving this equation (2.13) requires specifying Π1(C) and Π2(σ2). Where

it is assumed that the prior believe of σ2 is represented by its reciprocal, Π2(σ−2), which is modelled using a

Gamma distribution. The distribution of (2.13) is complicated and is realised by drawing samples of (C,σ2).

The sampling is done by running a simulation for each sample of C that is a realistic combination, ie. physical

combination of coefficients that gives a converging solution, using the Markov Chain Monte Carlo algorithm.

The result of this sampling procedure is the JPDF for the coefficients, with a maximum a posteriori estimate

(MAP). Which can be seen in figure 2.4, where it can be seen that the MAP estimate for the coefficients is

different from the values of the coefficients used in the original model.

In figure 2.5 results are plotted for both the standard coefficients Cnom and the MAP estimate values by

taking the mean of the JPDF (ensemble mean) and the optimal coefficient from the analytic solution Ca .

These results show the improved correspondence with the experimental results, especially the location of the

velocity deficits and vertical flow has been much improved with some slight deviations in the magnitude.

They concluded from this that two-equation RANS models can be tuned to improve results for a jet in

crossflow conditions. They also showed that the analytical solution of the model coefficients followed the

trends seen in the JPDFs. The outcomes makes them believe that the effect of the model-form errors on the

JPDFs are small and the predictive skill of Ca .

Iterative Approach

An iterative approach that does this model tuning ’on the go’ is presented by Li, Hoagg, Martin and Bailey

[9]. They have chosen the k −ω turbulence model to iteratively determine the coefficients for. The standard

transport model and coefficients have the following form.

For the implementation of their method they have used the KATS computing framework. The method

which is called the retrospective cost adaptation algorithm (RCA-RANS) uses the known flow-field measurements

(velocity or pressure) at certain locations in the flow to adapt the k−ω closure coefficients, which are required

to solve the transport equations. The closure coefficients are updated with time step ∆tadapt
∆= ηadapt∆t . With

that the closure coefficients on adaptation step n are given by (2.14)

θ(n) = [α(n)β(n)β∗(n)σk (n)σω(n)]T ∈Rlθ (2.14)

The performance of the model with these model coefficients θ(n) is described by the following parameter
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Figure 2.5: Streamwise velocity deficit (top) and normalised vertical velocity (bottom) computed using Cnom and Ca (analytical estimate)

compared with the ensemble mean from the "pushed-forward posterior" test and experimental measurements. Results are plotted for

the (M=0.8, J=10.2) test case, at three streamwise locations (x/d j = 21,31.5 and 42). Figure taken from [17].

ξ(n)
∆=Φs (n)−Φm(n) (2.15)

Where Φm(n) is the measurement data and Φs (n) is the simulation data at each reference point in the

domain. This performance ξ is used to adapt the model coefficients θ(n).

To proof the working of the method, it has also bee applied to a surface mounted cube, The measurement

data from experiments were used to do the iterative approach. By iteratively altering the closure coefficients

as described above they produced result using a RANS simulation that were closer to the experimental data

then a RANS simulation with the default coefficients, but it did not match the measurement result.
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2.3.2. Field inversion methods
A method that acts on the L3 level is that applied by Singh, Duraisamy and Pan [20], who applied the technique

of inverse modelling for augmenting the Spalart Allmaras (SA) turbulence model. The idea behind this method

is to improve the accuracy of the model by adding additional corrective terms. These terms are in this method

determined by a neural network (NN).

The main form of the SA turbulence model is the following:

Dṽ

Dt
= P (ṽ ,U)−D(ṽ ,U)+T (ṽ ,U) (2.16)

The augmentation of the model happens by multiplying a spatially-varying term β(x) to the production

term. Which is equivalent to adding a source term to the equation.

Dṽ

Dt
=β(x)P (ṽ ,U)−D(ṽ ,U)+T (ṽ ,U) (2.17)

The problem that is being solved to get the optimal value of the corrective termβ is shown in (2.18). Where

Nd data points and where G j (β) is the output of the RANS model.

min
β

Nd
∑

j=1

[

G j ,exp −G j (β)
]2 +λ

Nm
∑

n=1

[

β(xn)−1
]2

(2.18)

min
β

Nd
∑

j=1

[

Cp j ,exp
−Cp j (β)

]2 +λ
Nm
∑

n=1

[

β(xn)−1
]2

(2.19)

To solve this, two variables for determining β are proposed. The first is the pressure coefficient Cp in

case experimental pressure measurements are used, this leas to the minimisation problem shown in (2.19).

Another option is the lift coefficient as in most experimental studies the lift coefficient is measured. Both

these functions have led to a similar solution of the inverse problem.

In order to use the corrective field derived here it is necessary to create a map from β(x) to something that

only depends on the mean local flow variables. Before this is done the variables are non-dimensionalised

such that it can be applied to a variety of problems.

To make this method generally applicable the corrective field needs to be predicted, for this machine

learning is used. Specifically a neural network has been chosen to form the basis for predicting the corrective

field. The solution to the inverse problem from (2.18) is the target for the machine learning algorithm.

The machine learning algorithm that was chosen for this specific case is the feed forward neural net. The

fields from the flow field that forms the input basis for the neural network algorithm are stored in a vector

named η, such that the corrective field β(x) ≈β(η). The features that are chosen for η are all variables that are

also seen in the Spalart Allmaras turbulence model, it is important the variables are non-dimensional.

The first is χ = ν̂/ν, the ratio of the SA working variable over the kinematic viscosity. Secondly a non

dimensionalized vorticity Ω̄ is used as input (2.20)

Ω̄=
d 2

ν̂+ν
(2.20)

Besides that the dimensionless versions of the production and destruction term are used, (2.21) (2.22).

P̄ =
d 2

(ν̂+ν)2
sp = cb1(1− ft2)

( χ

χ+1

)(

Ω̂+
1

κ2

χ

χ+1
ft2

)

(2.21)

D̄ =
d 2

(ν̂+ν)2
sd =

( χ

χ+1

)2
cw1 fw (2.22)

With that the complete input vector has the following form: {Ω̄,χ,S/Ω,τ/τw all ,P/D}. Where S is the strain

rate and τ and τw al l are the Reynold stress and wall shear stress.
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Figure 2.6: Results comparing the inverse method to the neural network prediction applied to an S809 airfoil at an angle of attack of 14◦

and Re = 2×106. Figure taken from [20].

.

The input layer of the neural net takes from the input vector one variable each and has two proceeding

hidden layers and an output layer. The number of nodes in the hidden layer is set to around 100. The neural

network is trained using the high data from the inverse approach and is then applied to a different RANS

simulation to correct this and thereby improve the accuracy of the result.

In Figure 2.6 an example of the application of this trained neural network is shown. In this figure the

results are compared from the inverse approach figure 2.6(a) (data not in the training set) and the neural net

prediction Figure 2.6(b). In Figure 2.6(c) the pressure coefficient is compared between a baseline simulation,

experimental data, the full inverse problem and the neural net corrected solution. What can be seen is that

inverse approach matches with the experimental data is is expected and that the neural net correction comes

close to the result but does not exactly match. What can be concluded is that with the correction there is a

definite improvement over the base SA model.

The downside of this approach is that the inverse approach is computationally expensive for larger problems

and that the training of the neural network will require a lot of computational power when full scale 3D

problem data sets are trained and the dimensionality of the problem is increased.

2.3.3. Deep Neural Networks with Embedded Invariance
Pope [16] derived a new effective viscosity hypothesis. In this hypothesis he derived a basis of tensors and

invariants of which a combination should be capable of representing the anisotropic part of the Reynolds

stress. This theory and the tensor basis is described in section 3.2.1. It forms the basis for the work of Ling

Kurzawski and Templeton [11]. They were the first to combine this tensor basis with a feed-forward neural

network and compared this approach to that of standard linear eddy viscosity models and of the results of a

neural net without the tensor basis.

The goal of the network in the Tensor-Basis approach is to determine the scalar coefficients g (n) from

(3.38). The neural network that does this has a layout as shown in figure 2.7, with an input layer containing

the invariants I1 − I5, which is followed by a number of hidden layers. The final hidden layer has 10 nodes for

the 10 tensors which are combined in the merge output layer.

The neural networks were trained on a database of nine flows. In this database are DNS data-sets or well-

resolved LES data-sets, as well as RANS results. The inputs to the neural network are the RANS results as this

is the only known information when doing a RANS simulation with the neural network.

The trained tensor basis neural network and the network without the tensor basis were used to predict

the Reynolds stress anisotropy tensor. The results for these predictions are compared to linear and quadratic

eddy-viscosity models and can be seen in Figure 2.8. The figure shows the improved predictions of the

tensor basis neural network over the linear and quadratic eddy viscosity models and also the better predictive

capability when compared to the neural network without the tensor basis.

To truly asses the performance of a neural network augmented turbulence models it was of interest to
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Figure 2.7: Schematic of Feed forward neural network architectures, with and without Tensor basis. Figure taken from [11].

test the predictive capabilities for predicting mean flow velocities. Therefore the Reynolds stress anisotropy

tensor predicted by the tensor basis neural network was implemented in a RANS solver. The solver was first

allowed to converge to a result after which the found Reynolds anisotropy was added and it was allowed to

re-converge. The results of this approach showed an improvement in the results of a flow over a wavy wall

where separation occurs. It was compared to the prediction of a linear and quadratic eddy viscosity model,

the DNS data and a RANS model with the exact Reynolds stress anisotropy from the DNS inserted. The linear

and quadratic eddy viscosity models fail to predict the flow separation that occurs on the wall. The DNS

inserted anisotropy RANS correctly captures the shape and size of the separation while the tensor basis neural

network predicted anisotropy augmented RANS successfully captures the separation but underestimates the

size of the separation.

2.3.4. Stochastic Random Forest with Invariance

A second method that uses the tensor basis approach is that presented by Kaandorp and Dwight [6]. They

have used a Random Forest machine learning algorithm to determine the coefficients of the tensor basis. For

this approach the random forest method had to be modified to work with the Tensor basis.

The training of the algorithm happens just as in the Neural net approach using LES and DNS data. The

final goal is to find a nonlinear eddy-viscosity model. The training takes the invariant features from a converged

k−ω simulation. And the target, the anisotropy Tensor comes from the high fidelity simulation. This approach

is a corrective approach where a single machine learning prediction provides an update to the solution. It

is also possible to apply the network in an iterative manner such that at each solver iteration the machine

learning algorithm updates the solution. In that case the training should be done on the DNS mean flow

solution and not on the RANS mean flow, as the assumption is made that the RANS model with the machine

learned correction converges to the DNS solution. This approach is however more expensive, as the machine

learning model is applied each iteration. How expensive this is depends on the type of ML model.

A decision tree bases its predictions on a series of if-then tests on the input. The Random forest consist

of a database of decision trees. Each tree has some randomised component that is making the difference

between trees. The training of the tree happens by splitting the feature space recursively into two bins. A

constant value is used to approximate the training data in each bin. The training data consists of X ∈ RpxN

point locations of inputs and y ∈ RN scalar targets. The splitting is done in such a way that it minimises the

mismatch between the response y and the approximation of the response in both bins (2.23). In this equation

yi is the response at Xi . The goal is to find the constants CL ,CR , which basically results in averaging of the
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Figure 2.8: Predictions of Reynolds stress anisotropy tensor bi j on a wavy wall testcase. LEVM=linear eddy viscosity model, QEVM=

quadratic eddy viscosity model, TBNN=tensor basis neural network, MLP=multi-layer perceptron network (NN without tensor basis).

Figure taken from [11].

target over the bins RR and RL , minimising the variance in both bins.

min
j ,s

[

min
CL∈R

∑

xi∈RL ( j ,s)

(yi −CL)2 + min
CR∈R

∑

xi∈RR ( j ,s)

(yi − cR )2

]

(2.23)

The outer minimisation loop is solved using a brute-force calculation over the features j , and a one

dimensional optimisation over s. This method is then reapplied over the new data-set in each of the bins.

In comparison to a general CART decision tree algorithm the new tensor basis decision tree algorithm is

very similar. The difference being that the output is not constant values to approximate the anisotropy tensor,

but it outputs coefficients for the tensor basis g (m). The equation that is being solved is (2.24), where i is the

index of the samples, bi . is the anisotropy tensor coming from the high fidelity data and g (m)
L

and g (m)
R

are the

tensor basis coefficients in the left and right bins. The norm that is being used is the Frobenius norm.

min
j ,s

[

min
g (m)

L
∈R10

∑

xi∈RL ( j ,s)

∣
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∣
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∣
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R
∈R10
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i
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∣

∣
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∣

∣

∣

2

F

]

(2.24)

Finding the coefficients g (m)
L

and g (m)
R

is now a matter of solving two least-squares problems. This must

be repeated for every j and every optimisation of s. This is done explicitly by flattening the tensor at each

point as shown in (2.25). Where each of the minimisation problems over g becomes ming J where g is defined

as in (2.26), which can be solved separately for RL and RR .
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J =
N
∑

i+1

||T̂i g− b̂i ||2 (2.26)

The tensor bases random forest is the result of averaging multiple decision trees. These trees are trained

on a collection of bagged data sets. Bagging means randomly drawing with replacement from the full data-set,

the idea is that this reduces the variance of the predictor by combining a number of high-variance, low-bias

estimators. This is supported by adding some randomness into the individual decision trees. For splitting the

data-set into training and validation data the bagging is used. As random samples are drawn until the original

size of the data-set is reached there are some samples left, which form the validation data-set, also called the

out-of-bag (OoB) samples.

For the decision trees, the inputs that are being used are the tensors and invariants derived by Pope [16].

These are sufficient to describe any possible tensor function. In this approach the assumption is relaxed

and more input features are used. The total list of inputs are the Strain and rotation rate tensors and the

gradient of the turbulent kinetic energy which is normalised and transformed into an anti-symmetric tensor:

Ak = −I ×∇k. Besides that nine extra scalar features are used, such as the wall-distance based Reynolds

number.

Set Features Normalization Comment

FS1 Sij
2,Sij

3,Rij
3,Rij

2,Rij
2Sij,

Rij
2Sij

2,Rij
2SijRijSij

2
- Invariant set based on Sij andRij.

FS2 AK
2,Ak

2Sij,Ak
2Sij

2,

Ak
2SijAkSij

2,RijAk,

RijAkSij,RijAkSij
2,

Rij
2AkSij

∗,R2AkSij
2∗,

Rij
2SijAkSij

2∗

- Added invariants when including ∇k

FS3 1
2

(||Rij
2 −Sij

2||) ||Sij||2 Ratio of excess rotation rate to strain rate

k† 1
2

ūi ūi Turbulence intensity

min
(p

kd
50

,2
)

- Wall-distance based Reynolds number
k
ǫ

1
||Si j || Ratio of turbulent time scale to mean strain time scale

√

∂p
∂xi

∂p
∂xi

1
2
ρ ∂

∂xk
ū2

k
Ratio of pressure normal stresses to shear stresses

ūi
∂k
∂xi

† |u′
j
u′

k
S j k | Ratio of convection to production of TKE

|u′
i
u′

j
| k Ratio of total to normal Reynolds stresses

∣

∣

∣ūi ū j
∂ūi

∂x j

∣

∣

∣

†
√

ūl ūl ūl
∂ūi

∂x j
ūk

∂ūk

∂x j
Non-orthogonality between velocity and its gradient

Table 2.1: Features used for the machine learning algorithms, obtained from [25] and [24]. For features with an * all cyclic permutations

of labels of anti-symmetric tensors need to be taken in account. For FS1 and FS2 the trace of the tensor quantitites is taken. Features

marked with † are rotationally invariant but not Galilean invariant. Table taken from [6]

For the regression trees, outlier filtering has been used. The reason for this is that decision trees are

sensitive to small changes in the data, this is shown during testing as the regression tree can produce irregular

and inconsistent predictions in small regions of the spatial domain. Both regularization and pruning were

applied to prevent this problem, but an outlier filter proved to be a more robust way of eliminating data-

sensitivity. The outlier filtering is described in (2.27). Finally a Gaussian filter is used to smooth the prediction

spatially before inserting them into the N-S equation.

|yi −med(y)|
med(|y−med(y|)

> θmed (2.27)
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Figure 2.9: The anisotropy tensor components for the curved backward facing step from LES, RANS, TBRF and TBNN. Figure taken from

[6].

Figure 2.10: The ansitropy tensor displayed through barycentric coordinates for the curved backward facing step from LES (a), RANS (b),

TBRF (c) and TBNN (d). Figure taken from [6].

For the insertion of the correction into the N-S equations OpenFOAM was used. The implementation of

the predicted anisotropy field is done in a blending way, such that the Boussinesq approximation is slowly

replaced by the ML predicted anisotropy field (2.28), Where bB := νt Ŝ. The ramping is introduced acording

to (2.29), where γmax ≤ 0.8 was achieved for all simulations and where nmax is the number of iterations after

which the value of γ is fixed.

τ≃ τML(γ) :=
2

3
kI+2k[(1−γ)bB +γbML] (2.28)

γn = γmax min

{

1,
n

nmax

}

(2.29)

The test cases that have been used to prove this method are the Periodic hills case (PH), the Converging-

diverging channel (CD), the curved backward-facing step (CBFS), the backward-facing step (BFS) and the

square duct. For each of the cases either DNS or highly resolved LES data was available.

In Figure 2.9 the predicted anisotropy tensor components are compared to the ’true’ LES values, the

standard k−ω RANS model and the prediction from the tensor basis neural net that was developed by Ling et

al. [11]. What can be concluded is that the standard RANS only is capable to predict the b12 tensor component

effectively. All the other components are not predicted correctly at all, this is mainly due to the Boussinesq

approximation that causes the turbulence anisotropy tensor to be aligned with the mean rate of strain tensor.

Besides that it can be seen that the tensor basis random forest produces smoother and more accurate results

compared to the tensor basis neural net. This becomes even clearer when using the Barycentric colormap as

in Figure 2.10, here it can be seen that the boundary layer anisotropy is much more similar to that of the LES

and that it also produces smoother results than the TBNN.
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In conclusion the tensor basis random forest performs on par with the tensor basis neural network. As it

improves the accuracy of the predicted velocities and shows results very close to the DNS data generally for

all test cases.

The disadvantages of the methods described previously is that they are difficult to implement and expensive

to train. The neural network from Ling et al. [11] acts as a single correction after the RANS solver has

converged. In this the assumption is made that the correct anisotropy tensor can be found from a converged

standard RANS solution. Next to that the assumption is made that once this found anisotropy tensor is

inserted into a RANS solver the solution converges towards the high fidelity data. The main limitation of

this method is the extrapolating qualities of the neural net. Since the network has been trained on a specific

flow it is not necessarily true that the correct anisotropy can be found from the RANS mean flow. At least

not in a general sense as the discrepancy between high fidelity data and the RANS mean flow might not be

correlated at all and depends on many different factors.

2.3.5. Evolutionary algorithm
Weatheritt and Sandberg [26] have used genetic evolutionary programming (GEP) to find a model that predicts

the Reynolds stress anisotropy ai j . The GEP is similar to genetic programming, both methods revolve around

iteratively improving a population of candidate solutions by making random changes and keeping the solution

that fits best, the ’fittest’. The GEP is a tool that can be used for multiple applications but is used in this

application as a symbolic regression tool that produces constraint-free solutions.

The overall goal of the evolutionary programming is to find the model which fits the data best. The fitness

of a a model is defined as per (2.30). Where the maximum fitness is equal to 1.

F i t ( f guess) = 1−
1

n

n
∑

k=1

|| f guess(xk , yk )− fk ||
|| fk ||

(2.30)

The GEP is used to form new models for a correction that is applied to a slightly modified k −ω− SST

turbulence model. For which the modified k and ω transport equations are shown.

∂t k +U j∂x j
k = Pk −ǫ+∂x j

[

(ν+σkνt )∂x j
k
]

(2.31)

∂tω+U j∂x j
ω=

γω

k
Pk −βω2 +∂x j

[

(ν+σωνt )∂x j
ω

]

+σdC Dkω (2.32)

Where ax
i j

is the anisotropy correction predicted by the GEP. (2.33), (2.34).

τi j =
2

3
δi j k −2νt Si j +ax

i j (2.33)

ai j = ai j (k,ǫ,Si j ,Ri j ) (2.34)

The GEP method consists of 4 steps:

1. update/create population P i

2. selection

3. reproduction

4. genetic operators

In the first steps models are formed existing of individual expression trees (ET), as shown in (2.35) and

Figure 2.11(a). The total algorithm is build up out of these block by combining these ETs, resulting in multi-

genetics as shown in Figure 2.11(b). From these complete models the best fitting model is selected by testing

using the training data-set. After that the selected models are altered by reproduction and genetic operations

such as mutations.

f guess(x, y) = cos(2− y)(x +4) (2.35)

For the application in turbulence modelling some alterations had to be made since the standard GEP

algorithm works well for scalar field regression. However for tensor regression problems it easily produces
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Figure 2.11: (a) Example ET corresponding to (2.35) (b) Example multigenic ET. Figures taken from [26].

’dimensionally invalid’ solutions. For tensors the goal is to fit a function of the form τi j = τi j (Ai j ,Bi j , x, y) ∈
R

3×3 to the data-set of high fidelity data.

τ
guess

i j
=

∑

n

αnT n
i j (2.36)

Where αn are the coefficients that need to be optimised and V n
i j

are the tensor basis. This is where the

tensor basis from Pope [16] comes in. It was chosen in this approach to use the first 4 Tensors and 2 Invariants

from the 10 tensors and 5 invariants.

With the reformulation of the problem into tensor form the Fitness expression has also been updated

(2.37).

F i t (T
guess

i j
) =

n
∑

k=1

Ti j ,k T
guess

i j ,k

Tmn,k Tmn,k T
guess

pq,k

(2.37)

The result of the evolutionary algorithm are equations of the tensor basis form. For this research the

Periodic hill and the backward facing step has been used as test cases.

To asses the quality of the models the evolutionary algorithm has produced the fit to do this the anisotropy

is compared to reference data from the LES and DNS along a certain x-distance in the domain (2.38). To get

a value for the entire slice this expression is integrated over the entire vertical distance. ρa,case =
∫

y ρa(y)d y .

An other metric of the models performance is the ratio of the normal stresses τr = τ22/τ11.

ρa = ρa(y) =
ai j aref

j i

amn anm aref
pq

(2.38)

In Figure 2.12 Some results are shown for the periodic hills case. In this figure the results from the baseline,

the SSG model are compared to two of the equations that were found by the Genetic programming algorithm

equations (2.39), (2.40). These two models have been found independently from each other. In the figures

these equations are referred to as Eq. 19 and Eq. 20.

ax
i j 2νt T 1

i j

[

0.02−0.0648τ2
I

(

3I1 + I2 +0.0162τ2
1I 2

1

)]

−0.18νt

[

T 2
i j +T 3

i j +2T 4
i j

]

(2.39)

ax
i j 2νt T 1

i j

[

0.01−0.0324τ2
I

(

3I1 − I2

)]

−0.18νt

[

T 2
i j +T 3

i j +2T 4
i j

]

(2.40)

What can be seen is that compared to a linear SST model and the SSG model the found correction models

(2.39), (2.40). It can be seen that for all variables the results from the correction models move the results closer

to the LES values. Especially the skin friction coefficient sees a good correspondence with the LES data. In

Figure 2.13 more results are shown for the periodic hills case, but in off design conditions. These conditions

are different to the training flow and therefore show the extrapolating capabilities of the method

What can be seen is that the velocity and shear stress profiles in ’on design conditions from Figure 2.12

(b-c) have small confidence intervals for the mean solution of the GEP models. However, as can be seen in
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Figure 2.12: Statistical results from the periodic hills case. Profile for stress and velocity is x/h = 4.0. The M-GEP sample is represented

as a 99.9% confidence interval for the mean. Figure taken from [26].

Figure 2.13 this confidence interval grows significantly as the case is in off-design conditions and this is also

seen in the results that are less accurate than the baseline models for the shear stress.

This new method has proven to improve RANS simulations for 2D flow cases it shows to be a useful

predictive tool. The need for training on data-sets with a various number of flow cases is shown. As models

trained on a single flow regime should not be activated when applied to another regime.

In later work Weatheritt and Sandberg [27] have applied this approach to a diffuser where it showed

similar improvements in simulation accuracy. with this showed good extrapolating performance, making

this method a useful tool for engineering simulations.
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Figure 2.13: Flow quantities in ’off-design’ conditions. (a) highlights on-design vs off-design Statistical results from the periodic hills

case. Profile for stress and velocity is x/h = 4.0. The M-GEP sample is represented as a 99.9% confidence interval for the mean. Figure

taken from [26].
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2.3.6. Deterministic Symbolic Regression
To improve the extrapolating capabilities Schemlzer and Dwight [18] came up with a novel approach to find

new turbulence models by discovering additional corrections to already existing turbulence models. The

approach they presented is called Sparse Regression of Turbulent Stress Anisotropy and forms the basis for

this work. The theoretical basis for the method is described in Section 3.2. Here some results from the existing

literature is presented as similarities between these results is visible with the results presented later in Chapter

4.

This method has been applied in [18] to three different test cases: the periodic hill at a Reynolds number

of 10595, a converging diverging channel at Reynolds number 12600 and a curved backward facing step at

a Reynolds number of 13700. For each of the cases a library of correction models was found, ranging in

complexity with model coefficients of different magnitude. Three of the models that have been selected from

each of the training cases are shown in (2.41), (2.42) and (2.43). These models have been selected based on a

cross validation with CFD and have the lowest error when applied to all three test cases. It is possible to apply

only the model for correcting R and for correcting b∆

i j
separately.

M (1)

b∆
= (24.94I 2

1 +2.65I 1
2 )T (1)

i j
+2.96T (2)

i j
,

+
(

2.49I 1
2 +20.05

)

T (3)
i j

+
(

2.49I 1
1 +14.93

)

T − i j (4),

M (1)
R

= 0.4T (1)
i j

(2.41)

M (2)

b∆
= T i j (1)

(

0.46I 1
2 +11.68I 2

1 −0.30I 2
2 +0.37

)

+T (2)
i j

(

−12.25I 1
1 −0.63I 2

2 +8.23
)

+T (3)
i j

(

−1.36I 2
1 −2.44

)

+T (4)
i j

(

−1.36I 11+0.41I 2
1 −6.52

)

,

M (2)
R

= 1.4T (1)
i j

(2.42)

M (3)

b∆
= T (1)

i j

(

0.11I 1
1 I 2

1 +0.27I 1
1 I 2

2 −0.13I 1
1 I 2

3 +0.07I 1
1 I 2

4

+17.48I 1
1 +0.01I 1

2 I 2
1 +1.251I 1

2 +3.67I 2
1 +7.52I 2

2 −0.3
)

+T (2)
i j

(

0.17I 1
1 I 2

2 −0.16I 1
1 I 2

3 −36.25I 1
1 −2.39I 1

2 +19.22I 2
1 +7.04

)

+T (3)
i j

(

−0.22I 1
2 +1.8I 2

1 +0.07I 2
2 +2.65

)

+T (4)
i j

(

0.2I 1
2 −5.23I 2

1 −2.93
)

,

M (3)
R

= 0.93T (1)
i j

,

(2.43)

When these models are applied to the test cases an improvement is seen compared to baseline RANS. All

models show an improvement, even though they are all trained on different flow cases. The results of these

models can be seen in Figure 2.14. Here it can be seen that the model that is not trained on the case is the

best performing model. Overall From this it can be concluded that the SpaRTA Method gives a systematic

improvement over the baseline turbulence model, with the model discovery being relatively inexpensive.
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Figure 2.14: The predicted stream-wise velocity for the three different test cases [18]
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2.3.7. Reynolds Force Vector
An approach that does not use the Tensor basis approach is that of Cruz et al. [1]. They use a method with

which they try to circumvent the issue that there is a discrepancy between the Reynolds stress calculated from

the DNS data and the real Reynolds stress.

R = Rθ+δRθ
(2.44)

According to Thompson et al. [23] this discrepancy is critical when being used to recover basic quantities

of interest. In their work they show that due the fact that the Reynolds stress being a second order statistic

is less converged than the first order statistics. They evaluated the difference between reconstructing the

mean velocity flow from a DNS which had more converged statistics than the other and noticed a significant

difference between the two.

To circumvent this issue Cruz et al. try to use the Reynolds force vector, the divergence of the Reynolds

stress. A field that can be constructed from first order statistics. This Reynolds force vector forms the target for

the machine learning. The flow case that is used is a series of DNS solutions of square duct flow at Reynolds

numbers ranging from 2200 to 3500.

The methodology that is proposed is based on the observation that the turbulence only influences the

mean momentum balance equation through the divergence of the Reynolds stress. This is the reason for the

name of Reynolds Force vector. The relation between the Reynolds force vector and the data is given by (2.45).

r ≡∇·R =∇·
(

Rθ+δRθ

)

= rθ+δrθ (2.45)

It is also possible to derive the Reynolds force vector from first order statistics as shown in (2.46). In case

the mean pressure is not available in the data-set, a modified Reynolds force vector can be estimated by (2.47).

For the injection of the correction the standard k −ǫ RANS model was used.

rǫ = 〈U〉θ ·∇〈U〉θ−ν∇2〈U〉θ+
1

ρ
∇〈p〉θ (2.46)

tǫ =
[

r−
1

ρ
∇〈p〉

]ǫ
= 〈U〉θ ·∇〈U〉θ−ν∇2〈U〉θ (2.47)

The machine learning technique that was employed for training of the corrections is a feedforward neural

network. The inputs and the targets are normalized before being used in the neural net training. The inputs

that were used in the neural network are the strain rate and the non persistence-of-straining tensor. P ≡
D · W̄ − W̄ · D where W̄ ≡ W −Ω

D and D ≡ 0.5(L + LT ). These are retrieved from the solution of RANS

simulations. In total 8 vectors and 8 tensors are used as inputs for the neural network, these can be found

in table 2.2

Tensors (Ti ) Vectors (∇·Ti )

D ∇·D

D ∇·P

P ∇·D2

D2 ∇·P2

P2 ∇· (D ·P+P ·D)

D ·P+P ·D ∇· (D ·P+P ·D)

D2 ·P+P ·D2 ∇· (D2 ·P+P ·D2)

P2 ·D+D ·P2 ∇·P2 ·D+D ·P2)

R r ≡∇·R

Table 2.2: Inputs used for the training of the neural network to predict the Reynolds force vector [1].

For the training of the neural network 4 of the 6 RANS cases have been used. The output target for

the training are the components of the discrepancy of the Reynolds stress tensor of the RANS simulation

and the DNS data. The training data is split up into training and test data for the training of the neural
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Figure 2.15: Comparison of the normal components of the Reynolds stress tensor for Re = 2400. Figure taken from [1].

network. Once the neural network has converged the result is tested. This is done by inserting the outputs

from the neural network, the Reynolds Stress tensor and Reynolds force vector corrections inserted into the

OpenFOAM platform. The velocity field comes from the double step procedure of neural net and insertion

into the momentum balance equation.

In Figure 2.15 the results of the insertion of the Reynolds stress into the RANS solver can be found. What

stands out is the large discrepancy between the baseline RANS and the DNS predictions and the accuracy of

the NN prediction for the Tensor. The same can be seen in Figure 2.16, where the components of the Reynolds

force vector are seen, again the default RANS prediction is far off from the DNS solution and the correction

model approaches the DNS solution nicely though some discrepancies can be seen. In Figure 2.17 the velocity

components can be seen from the baseline RANS, the DNS, using the Reynolds force vector correction and

using the Reynolds stress correction. These results are shown for a Reynolds number of 2400. What can be

seen in this figure is that the Reynolds force corrected velocity prediction is more accurate than the Reynolds

stress correction for the Velocity in x direction. However, a drawback of using the Reynolds force vector is the

loss of symmetry with respect to the diagonal. Comparing the y and z velocity components it is harder to give

a definitive conclusion which learning method gives more accurate results.
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Figure 2.16: Comparison of the Reynolds force vector between RANS, DNS and the NN predicted correction for Re = 2400. Figure taken

from [1].

Figure 2.17: Comparison of the velocity components of baseline RANS, DNS, the Reynolds force vector correction and the Reynolds

stress correction. Re = 2400. Figure taken from [1].
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Figure 2.18: The perturbations on (a) the magnitude (turbulent kinetic energy k), (b) eigenvalues Λ, and (c) eigenvectors V of a Reynolds

stress tensor R. For clarity, the tensor is represented in the two-dimensional space as an ellipsis instead of a three-dimensional ellipsoid.

in addition, perturbations on k,Λ, and V are shown individually on each panel and not as three consecutive perturbations. Figure taken

from [29].

2.3.8. Representation of stress tensor perturbations with application in machine-learning-

assisted turbulence modelling
Wu, Sun, Laizet and Xiao, [29] take a different approach in correcting the Reynolds stress, they do this by

means of representing the Reynolds stress in the Isotropic and anisotropic parts. The anisotropic part is then

split up into its eigenvalues Λ and eigenvectors V (2.48). The eigenvectors V consist of three orthonormal

vectors but have only three degrees of freedom.

2k
( I

3
+ A

)

= 2k
( I

3
+VΛVT

)

(2.48)

The discrepancy between the Reynolds stress retrieved from the DNS and the modelled Reynolds stress

can be expressed in terms of three consecutive transformations, described by Wu et al as: "

1. The size of the ellipsoid (magnitude of the tensor) is scaled by a positive factor of γk = k∗/kr ans while

keeping the shape the same, as ilustrated in Figure 2.18 (a)

2. The aspect ratio of ellipsoid is perturbed while keeping the size (sum of the three axes) and orientation

unchanged. This is achieved by perturbing the eigenvalues, i.e., Λ∗ = Λ+∆Λ, as illustrated in Figure

2.18(b).

3. Finally, the ellipsoid experiences a rigid-body rotation, which is represented as V∗ = QV, where Q is a

rotationmatrix. This perturbation is illustrated in Fig. 2.18(c)."

Where the machine learning objective is to try and predict a mapping f : q 7→ (γ,∆Λ,Q). The transformation

that is then equal to R∗ = 2γk k
(

I
3
+QV(λ+∆Λ)VT QT

)

.

These transformations need to be represented in a machine learning environment. The most trivial

transformation is using the rotation matrix Q. This matrix has 9 elements but only three intrinsic degrees

of freedom due to the orthonormality constraint. This results in a number of constraints which is not trivial

to implement in the machine learning algorithm. Therefore, it has been chosen to use a transformation with

the same number of variables as the number of intrinsic degrees of freedom. The two options that satisfy this

requirement are the Euler angles and unit quaternion.

For the regression function two requirements were imposed, namely the function should be smooth, such

that it has a good generalisation performance. Secondly the function itself must be frame-independent, the

similar requirement that holds for any other method applicable to RANS.

The Euler angles that are used in this system consist of three rotations (φ1,φ2,φ3) round the z − axi s,

x − axi s and z − axi s respectively. It is used to describe the current orientation of a fixed body in an axis

system. This system is referred to as the "absolute Euler angles". The discrepancy between these two sets of

eigenvectors, V and V∗, can be described by the Euler angles. The machine learning is trained for regressing

functions for the Euler angles ∆φα that describe this transformation. However, there is one problem with this

formulation, that is it is not frame independent. To solve this issue the choice was made to directly express

the rotation from V to V∗ in Euler angles φ0→⋆
α . However these direct transformation angles are non smooth
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Figure 2.19: The prediction of the discrepancy-based Euler angles for the inflow in a square duct at Re = 3500, showing the the three

components ∆φ1−3, training flow Re −2900. Figure taken from [29].

spatially and are therefore not suitable due to the smoothness requirement.

Therefore, it has been chosen to use the unit quaternion, for which the expression is shown in (2.49). This

representation describes a rotation from V to V∗, which can be expressed in terms of a unit vector [n1,n2,n3]

and an angle θ.

h =
[

cos
θ

2
,n1 sin

θ

2
,n2 sin

θ

2
,n3 sin

θ

2

]T
(2.49)

For the machine learing part the random forest regression was used to build mappings from the inputs,

the 50 mean flow features and to the Reynolds stress discrepancies. For the forest 300 trees are used and the

number of features at each split is set to 7. The predicted discrepancies from the random forest are compared

to the true discrepancy between the DNS and the RANS model. From this test it was shown that the unit

quaternion is the most accurate method when comparing to the Euler angle representations.

For the proper validation of the method, the random forest has been applied to a test case that is different

from the training case. The training and test cases that were used were both periodic hills but with a different

ramping geometry. The other two test geometries that were used are the square duct flow at Re = 2900 for

training and Re = 3500 for testing and the same geometry but the coordinate system rotated by 60 degrees

anti-clockwise.

Using the two different types of Euler angles described above it was shown that the discrepancy based

Euler angles are spatially smooth but the direct-rotation-based Euler angles are not. However, the direct-

rotation-based Euler angles are not frame independent as is illustrated in Figure 2.21. In Figure 2.19 the

results for the machine learned prediction of the discrepancy based Euler angles are shown for the inflow in a

square duct at a Reynolds number of 3500. The comparison is made with the actual angles based on the DNS

data. The training was done on the same flow at Re = 2900.

In Figure 2.20 the prediction of the discrepancy based Euler angles is shown, with the resulting predicted

Reynolds stress components. It can be seen that the Machine learned model accurately predicts the Reynolds

stress components, compared to baseline RANS. However, this brakes down when a rotation of the coordinate

system of 60◦ is introduced as can be seen in Figure 2.22. In this figure it is shown that the Reynolds stress

prediction of the machine learning model is worse that that of the baseline RANS. As is also confirmed by the

plots shown in Figure 2.21.

In conclusion the only true option that fulfils all the requirements is the unit quaternion decomposition as

a target for the machine learning. This method shows a good predictability in terms of the machine learning

prediction and capability of correcting the flow velocity. As is seen in Figure 2.23 where the results for the

periodic hills are plotted.
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Figure 2.20: The prediction of Reynolds stress components (a) Rx y and (b) Rxz based on the discrepancy-based Euler angles for the flow

in a square duct at Re = 3500. The training flow is at Re = 2900. Figure taken from [29].

Figure 2.21: The prediction of discrepancy-based Euler angles ∆φα for the flow in a square duct at Re = 3500. Training of at Re = 2900

with a coordinate system rotation of 60◦. Figure taken from [29].
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Figure 2.22: The prediction of Reynolds stress components based on discrepancy-based Euler angles for the flow in a square duct at

Re = 3500. The training flow is the flow in a square duct at Re−2900 with the reference frame rotated by 60◦ anti-clockwise. Figure taken

from [29].

Figure 2.23: Results on the periodic hills flow case, comparing different transformations. Figure taken from [29].





3
Methodology for symbolic regression of

turbulence model corrections

In this chapter the methodology that is followed is presented. Before discussing the exact methodology

where this research focuses on, some theoretical background information is given for the reader to better

understand the procedures that will be followed in the remainder of this work. This is done in Section 3.1

where the basics of the RANS procedure and turbulence modelling are covered.

After that the machine learning approach to this problem of turbulence modelling is introduced and the

methodology that is followed in the remainder of this report is introduced in section 3.2. With the theory for

the basis functions of this method presented in Section 3.2.1, the methodology for attaining the corrective

fields to regress models for, the ’frozen-approach’ is explained in Section 3.2.2. Finally the machine learning

theory is presented in Section 3.2.3 where the goal is to find sparse models with small coefficients to augment

to the k −ω−SST model.

Lastly the implementation of this methodology is discussed. The implementation of the methodology in

the industry relevant OpenFOAM v1912 is discussed in Section 3.3 together with the process for the model

regression in Section 3.3.5 which is performed in python. In Section 3.3.4 the implementation of the OpenFOAM

code is verified against the results from Schmelzer and Dwight [18].

The procedures that have been followed to test all the steps of the methodology presented in this chapter

is given in Section 3.4. This section presents what needs to be done in what order to get the results presented

in Chapter 4.

3.1. RANS and the need for turbulence modelling
In this section a short overview and some background is given about the theory that will be used in this

research. Firstly the Reynolds averaged Navier-Stokes (RANS) equations are presented and the closure problem

that is introduced during the derivation of these equations is discussed with the introduction of turbulence

modelling, this is done in sections 3.1.1 and 3.1.2.

Secondly some of the higher fidelity methods that have been used to gather high fidelity data used in this

research are discussed. The methods that have been used are the large eddy simulation (LES) and the direct

eddy simulation (DES). A short description of both methods is given as well as a discussion on the subgrid

scale models that have been used together with the inflow conditions for the turbulent inflow that is required

in these types of simulations.

3.1.1. RANS
To save computational time Osborne Reynolds time-averaged the Navier stokes equation. The idea behind

this is that instead of solving for the flow at a specific time-step one solves for the average flow directly by

solving the time averaged equations. This approach is much cheaper when the only interest is the mean flow,

31
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as it does not require calculations for the flow at multiple time steps that then need to be averaged.

The derivation of these equations starts at the incompressible conservation of mass and momentum

equations, (3.1) and (3.2).

∂ui

∂xi
= 0 (3.1)

∂ui

∂t
+u j

∂ui

∂x j
= fi −

1

ρ

∂p

∂xi
+ν

∂2ui

∂x j∂x j
(3.2)

The derivation starts when the velocity and pressure components are split into their respective mean and

fluctuating components. ui = ūi +u′
i

and pi = p̄i +p ′
i
.

Substitution into the incompressible NS-equations leads to:

∂(ūi +u′
i
)

∂xi
= 0 (3.3)

∂(ūi +u′
i
)

∂t
+ (ū j +u′

j )
∂(ūi +u′

i
)

∂x j
= ( f̄i + f ′

i )−
1

ρ

∂(p̄i +p ′
i
)

∂xi
+ν

∂2(ūi +u′
i
)

∂x j∂x j
(3.4)

The next step is to take the average of these equations, which will result in the final set of time averaged

equations that is solved in the Reynolds averaged approach.

∂(ūi +u′
i
)

∂xi
= 0 (3.5)

∂(ūi +u′
i
)

∂t
+ (ū j +u′

j
)
∂(ūi +u′

i
)

∂x j
= ( f̄i + f ′

i
)−

1

ρ

∂(p̄i +p ′
i
)

∂xi
+ν

∂2(ūi +u′
i
)

∂x j∂x j
(3.6)

∂ūi

∂xi
= 0 (3.7)

∂ūi

∂t
+ ū j

∂ūi

∂x j
+u′

j

∂u′
i

∂x j
= f̄i −

1

ρ

∂p̄i

∂xi
+ν

∂2(ūi )

∂x j∂x j
(3.8)

∂ūi

∂t
+ ū j

∂ūi

∂x j
= f̄i −

1

ρ

∂p̄i

∂xi
+ν

∂2(ūi )

∂x j∂x j
−
∂u′

i
u′

j

∂x j
(3.9)

ρ
∂ūi

∂t
+ρū j

∂ūi

∂x j
= ρ f̄i +

∂

∂x j

[

− p̄δi j +2µS̄i j −ρu′
i
u′

j

]

(3.10)

With S̄i j = 1
2

(

∂ūi

∂x j
+ ∂ū j

∂xi

)

When this equation is integrated in time the following result is achieved:

ρū j
∂ūi

∂x j
= ρ f̄i +

∂

∂x j

[

− p̄δi j +2µS̄i j −ρu′
i
u′

j

]

(3.11)

All the terms in this equation are knowns and can be calculated, except for u′
i
u′

j
. This term is called the

Reynolds stress tensor and requires modelling to be resolved. That is the closure problem that is introduced

by the averaging process.
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3.1.2. Turbulence modelling and the k-ω-SST turbulence model
To solve this closure problem of the Reynolds stress a model is required. Over the years a multitude of

turbulence models have been created that try to model the Reynolds stress tensor based on the known mean

flow features. Of these models a large number are based on the the so called Boussinesq hypothesis. Joseph

Boussinesq introduced the concept of eddy viscosity, which is the first approximation to the Reynolds stress

in terms of mean flow features and has the following form:

−u′
i
u′

j
= νt

(

∂ūi

∂x j
+
∂ū j

∂xi

)

−
2

3
kδi j (3.12)

Where in this equation νt is the eddy viscosity that requires a model to be calculated. Many of the the

currently used turbulence models are based on this Boussinesq hypothesis, such as the k − ǫ [8] and k −ω

turbulence models. These models approximate νt by 2 variables, νt = k
ǫ and νt = k

ω [14], where k is the

turbulent kinetic energy and ǫ and ω are the turbulence dissipation. For these variables additional transport

equations are required. For the k − ǫ model the turbulence transport equations can be found in (3.13) and

(3.14).

Because for these types of models two additional equations are necessary they are called two equation

models. There also exist models with a single equation and models with multiple equations, but for this

research the focus is on a two equation model. In these models multiple coefficients can be found that can

be altered to suit specific types of flows. The standard model coefficients are usually selected such that the

resulting flows match well with canonical flows.

∂(ρk)

∂t
+
∂(ρkui )

∂xi
=

∂

∂x j

[ µ

σk

∂k

∂x j

]

+2µt Ei j Ei j −ρǫ (3.13)

∂(ρǫ)

∂t
+
∂(ρǫui )

∂xi
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∂

∂x j

[

µt

σǫ

∂ǫ

∂x j

]

+C1ǫ
ǫ

k
2µt Ei j Ei j −C2ǫρ

ǫ2

k
(3.14)

The turbulence model that will be modified for this research is the k −ω-SST equation [14]. This is a

turbulence model based on the k −ω model from Wilcox [28]. The SST part of the model stands for shear

stress transport model and uses the original k−ω model for the inner half of the boundary layer and switches

to the k−ǫ model in the outer part. The model has the ability to cope with transport of the principal turbulent

shear stress in adverse pressure gradient boundary-layers. This is mainly important when trying to simulate

massively separated flows and flows involving multiple length-scales. The flows that will be dealt with in this

research all have these features and therefore the choice for the k−ω-SST turbulence model is an appropriate

choice.

The model equations of the k −ω-SST turbulence model are shown in (3.15) and (3.16).

∂ρk

∂t
= τi j

∂ui

∂x j
−β∗ρωk +

∂

∂x j

[

(µ+σkµt )
∂k

∂x j

]

(3.15)
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νt
τi j

∂ui

∂x j
−βρω2 +

∂

∂x j

[

(µ+σωµt )
∂ω

∂x j

]

+2ρ(1−F1)σω2
1

ω

∂k

∂x j

∂ω

∂x j
(3.16)

Where φ= F1φ1+(1−F1)φ2 is defined as the switching function, switching between model coefficients of

the original k −ω model φ1 and the transformed k −ǫ model φ2. The original k −ω model will be used in the

near wall region exclusively. The transformed k −ǫ model is mainly used in free shear-layers.

For this the blending function F1 needs to be defined such that it is equal to one for a large part of the

boundary layer. This is in order to preserve the desirable features of the k −ω model in the boundary layer

but should go to zero at the boundary layer edge, to preserve free-stream independence.

F1 = tanh(ar g 4
1 ) (3.17)

ar g1 = min
(

max
(

p
k

0.09ωy
;

500ν

y2ω

)

;
4ρσω2k

C Dkωy2

)

(3.18)
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With C Dkω defined as

C Dkω = max(2ρω2
1

ω

∂k

∂x j

∂ω

∂x j
,10−20) (3.19)

The eddy viscosity is defined as:

νt =
a1k

max(a1ω;ΩF2)
(3.20)

With Ω= ∂u
∂y

and where F2 is also a blending function and is defined as:

F2 = tanh(ar g 2
2 ) (3.21)

ar g2 = max
(

2

p
k

0.09ωy
;

500ν

y2ω

)

(3.22)

The model coefficients are defined as in (3.23). These basis coefficients are tuned such that the boundary

layer of a flat plate shows the correct behaviour.

σk1 = 0.85, σk = 0.5,β1 = 0.0750, a1 = 0.31,

β∗ = 0.09, κ= 0.41, γ1 =β1/β∗−σω1κ
2/

√

β∗
(3.23)

This k −ω−SST model relies heavily on the Boussinesq hypothesis, the accuracy of which is lacking as

was among other proven by Schmitt [19], who has investigated the validity of the Boussinesq hypothesis by

calculating the validity of the expression in (3.12). This was done evaluating the following expression:

ρRS =
|Rij : Sij|

||Rij|| ||Sij||
(3.24)

This number is analogous to the cosine of the angle between vectors. This means that ρRS will be a

number between 1 and 0. With 1 being that the Boussinesq hypothesis is valid and as it goes to 0 it becomes

less valid. Figure 3.1 shows this relationship for several DNS cases and it shows that near the wall (y+ small),

the Boussinesq approximation holds well. This is because close to the wall the viscous stress dominates.

Further away from the wall the turbulent stress becomes more dominant and therefore the Boussinesq hypothesis

holds less.

This inacuracy in the Boussinesq approximation of the Reynolds stress is a good target for a correction.

The machine learning part of this research focuses on finding a new better approximation. The theoretical

basis of this new approximation is explained in section 3.2.1 with the machine learning approach to finding

this correction explained in section 3.2.
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Figure 3.1: Plot of ρRS (y+) for DNS databases: (1) total stress (turbulent + viscous stress) and (2) turbulent stress only. [19]

3.1.3. High fidelity methods: LES
It is possible to fully resolve the flow exactly using the so called direct numerical simulation. In this type

of simulation no closure models are used and all scales are resolved. The smallest scales that need to be

resolved are so small that a lot of computational power is needed. For flows with a higher Reynolds number

the smallest scales become so small that calculating all these scales is not a viable option as time scales and

length scales become too small, such that a massive amount of computational power is needed. In this case

for gathering high fidelity data doing a large eddy simulation (LES) might be the best option.

A large eddy simulation is a type of simulation similar to the Direct numerical simulation where the flow

is resolved in time but in contrary to the DNS, LES doe not resolve all scales. It resolves the large scales and

models the smaller scales. The size of the scales that are resolved depends on the grid size, the smaller the

grid size, the smaller the scales that can be resolved. The scales that are too small for the grid size need to be

modelled, this is done using a so called subgrid-scale model (SGS).

SGS

The sub-grid scale model that was used for the LES simulations for this research is the WALE model. The

WALE model is the Wall adapting local eddy-viscosity model, this model was introduced by Nicoud and

Ducros [5]. Most subgrid-scale models model the subgrid-scale tensor in (3.25) using the eddy viscosity

assumption.

Ti j = ui u j −ui u j (3.25)

Si j =−
1

2

(∂ui

∂x j
+
∂u j

∂xi

)

(3.26)

One of the most common subrid-scale models is the Smagorinsky model [22]. This model has formed the

basis for a large number of subgrid-scale models. In this model the eddy viscosity is modelled in the following

way:

νt = (Cs∆)2|S|, |S| =
√

2Si j Si j (3.27)
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Here Cs is the Smagorinsky coefficient which can be determined from looking at the energy spectrum

and assuming that the dissipation that occurs in the subgrid scales is identical to the disspation at the cut-off

wave number kc .

A downside to the Smagorinsky model is that it does not take into account the presence of walls. The

WALE model tries to model the eddy viscosity differently by replacing Si j with the traceless symmetric part

of the velocity gradient tensor Si j = 1
2

(G2
i j
+G2

j i
)− 1

3
δi j G2

kk
with Gi j =

∂u j

xi
. Then to get the correct asymptotic

wall scaling it uses the following expression for the eddy viscosity.
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i j
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i j
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i j
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5
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(3.28)

Cost and stability

One of the things that should be taken into account when doing an LES is a convergence requirement. The

maximum timestep is limited by the so called Courant–Friedrichs–Lewy condition (3.29). This is a necessary

condition for convergence when solving partial differential equations.

C F L =
ui∆t

∆xi
≤ 1 (3.29)

For convergence this CFL number is required to be smaller than 1. This means that with the scaling of the

mesh size ∆xi the time-step needs to scale with it to keep the CFL number under 1. This means that when the

mesh becomes finer the time-step needs to be smaller. Also when the velocity is increased the time step needs

to be adjusted accordingly. This condition needs to hold locally, so the number cannot exceed 1 anywhere

in the domain. This means usually that the critical condition is near walls, where there is a combination of a

high velocity and small mesh size.

This CFL condition also gives an insight into why the cost of an LES scales with the Reynolds number

(3.30). As both the velocity and the mesh size are dependent on the Reynolds number of the flow. When the

Reynolds number increases the inertial Range lengthens moving the dissipation range further away into the

smaller scales. To have accurate large-scale statistics it is required to have the initial part of the spectrum

resolved. In the outer layer far away from walls the resolution needed does not scale strongly with the

Reynolds number. However, for the flow close to the wall, in the so called inner layer, the size decreases

much quicker with Reynolds number.

Re =
ρU L

µ
(3.30)

This increased computational cost in relation to an increase in Reynolds number is a result of the decrease

in the size of eddies. Forcing the cut off wave number to be lower and thus having a finer mesh requirement.

Having a finer mesh results in the necessity of having a smaller time step as well, as is dictated by the CFL

convergence requirement (3.29).

Inflow condition

Finally for an LES it is crucial to have the right inflow conditions. The inflow must have a form of turbulence

that matches the expected inflow for a given Reynolds number. There are three general ways of generating a

turbulent inflow condition.

The first is by creating synthesised turbulence, what this does is that a mean flow is specified, on which

artificial fluctuations are created. This is usually done using random numbers with a scaling to create the

correct turbulence statistics for the inflow. The implementation that was used in the simulations done in

this research used the divergence free synthetic eddy viscosity inflow model implemented OpenFOAM. This

OpenFOAM implementation is based on the work from Poletto, Craft and Revell [15]. This type of inflow

condition was chosen because of it’s good controllability and stability features. It is also computationally

cheaper than the other two options.
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The second is by running a precursor simulation, this method takes the data from a separately running or

stored simulation and maps the velocity data on the inflow of the simulation. The upside to this method is

that there is no feedback to the precursor and therefore preventing acoustic interactions. The disadvantage

is that a large amount of data needs to be stored to avoid excessive correlations or the precursor simulation

must be run concurrently, making the simulation more computationally expensive.

The third is by recycling and rescaling data from downstream of the flow. The data is rescaled to match the

desired boundary layer thickness and turbulence intensity. One of the downsides of this method is that there

can occur correlations between the extraction plane and the inflow plane if these two are too close too each

other. This sort of boundary condition is similar to a periodic boundary condition however, the coupling only

works one way.

3.1.4. High fidelity methods: DES
In the case that an LES computation is also too time consuming or too computationally expensive, the choice

can be made to perform a hybrid between RANS and LES, also known as the direct eddy simulation (DES).

In this type simulation the scales that are too small to be resolved using an LES method are modelled

using a RANS model. This approach is called a hybrid approach and since the cost of an LES scales with the

Reynolds number mainly in the regions near walls taking a hybrid approach can result in a significant saving

of computational time.

For the DES that has been done in this work the Spalart-Allmaras eddy viscosity model has been used.

This eddy viscosity model estimates the eddy viscosity in both the RANS regions as well as for the LES region

subgrid-scale model.

Similar to an LES a DES also requires a turbulent inflow condition. For the DES that was done in this

research again the synthetic turbulence inflow condition was used.
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3.2. Method for symbolic regression: SpaRTA
The methodology that forms the basis of this research is that introduced by Schemlzer and Dwight [18], they

came up with a novel approach that infers algebraic stress models for the closure of the RANS equations. It

does this directly from high-fidelity data sources that can be either LES or DNS. This is further extended to

the use of DES as well in this work.

The goal of this method is to improve already existing turbulence models and specifically the k −ω−SST

model and thereby improve RANS predictions in general. The approach presented is called Sparse Regression

of Turbulent Stress Anisotropy. A schematic overview of the method is given in Figure 3.2, in the following

section the steps in this schematic are further explained.

Figure 3.2: Schematic overview of the SpaRTA methodology.

The machine learning framework is focused on finding models to improve the RANS method. Machine

learning is a way of finding these models from a large set of high fidelity data. There exist several machine

learning algorithms that are able to do this. Within all these methods is a similarity, this is that they rely on the

availability of training data, that is the combination of input values and target values. In other words: what

values are expected from a trained model for a given set of given inputs? In this research the inputs of the

training data are the mean flow features that are available from a RANS simulation. The targets are focused

on achieving the correct Reynolds stress.

The training data that the SpaRTA methodology uses is not directly available from the set of high fidelity

data and requires an additional processing step. The method that is used for this is the ’k-corrective-frozen-

RANS’ or Frozen approach as is shown in Figure 3.2. A thorough explanation of this procedure can be found

in section 3.2.2 and the implementation of this method in code is discussed in section 3.3.1.

The corrective fields that are found from this frozen approach can be applied in two ways. The first is
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by directly inserting these corrections into the model when solving. This method is called the propagated

approach and is possible only on the same geometry as the training case. The implementation of this approach

is discussed in section 3.3.2. This way of correcting does not involve any machine learning. To make the

corrections generally applicable a model needs to be found that predicts the corrective fields from the mean

flow features.

This leads to the machine learning approach that is used in this research, which is called Sparse Regression

of Turbulent Stress Anisotropy or SpaRTA in short. The application of the correction fields using these machine

learned models is called the ’modelled approach’ (Figure 3.2). The theory behind SpaRTA is explained in

section 3.2.3 and the implementation of this method are explained in section 3.3.4. The modelled approach

implementation is discussed in section 3.3.3.

Before all this it is necessary to understand the theory behind the SpaRTA methodology, what the inputs

for the method are and how the corrections are applied to existing turbulence models. The basis for the

corrections and inputs comes from the theory from Pope [16] who derived a new effective-viscosity hypothesis.

This theoretical basis is discussed in section 3.2.1. This theory forms the basis to model from mean flow

features a correct prediction of the Reynolds stress tensor.

3.2.1. Pope’s effective-viscosity hypothesis
The SpaRTA method regresses correction functions to improve the modelling of the Reynolds stress. The

regression relies on a library of basis functions that was introduced by Pope in 1975 [16], a proposition

was made for a new effective-viscosity hypothesis. The first effective-viscosity hypothesis was proposed by

Boussinesq. The idea behind an effective-viscosity hypothesis is that it relates the Reynolds stresses only to

the rates of strain of a fluid and to scalar quantities.

The hypothesis from Boussinesq, which is used in the majority of turbulence models, relates the Reynolds

stress to the velocity gradient Ui j and an effective viscosity.

−u′
i
u′

j
=µe f f Ui j (3.31)

This expression can be generalised for higher dimensional problems to give the well known isotropic-

viscosity assumption as shown in (3.32) and also shown in (3.12).

u′
i
u′

j
=

2

3
kδi j −µe f f

(

Ui j +U j i

)

(3.32)

This approximation has been successfully applied but fails in accurately representing the Reynolds-stress

tensor. In Pope’s work he derives a constitutive relation for the Reynolds stresses. With the following assumptions:

The Reynolds stresses are uniquely related to the rates of strain and local scalar quantities. This is an assumption

fundamental to an effective-viscosity hypothesis. An other assumption that is implied by an effective-viscosity

hypothesis is that the stresses are determined locally.

The two scaling parameters k and ω are used to normalise the Reynolds stress and rates of strain. Where

ω is the turbulent dissipation rate and k the turbulent kinetic energy.

ai j = ui ,u j /k −
2

3
δi j (3.33)

Si j =
1

2
(k/ω)(Ui j +U j i ) (3.34)

Ri j =
1

2
(k/ω)(Ui j −U j i ) (3.35)

ai j and Si j are dimensionless tensors with zero trace. This is also due to the incompressibile flow assumption

which results in Si i = 0. From (3.33) it can be seen that determining the Reynolds stress ui u j is equivalent to

determining ai j . On the dimensional grounds Si j and Ri j contain all the information from k, ω and Ui , j .

ai j = ai j (Si j ,Ri j ) (3.36)
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The most general expression for (3.36) can be written as an infinite tensor polynomial of the combinations

of Si j , Ri j and the coefficients G (3.37). Luckily the Cayley-Hamilton theorem states that the number of

independent invariants and the number of linearly independent second-order tensors that can be formed

from the strain rate and rotation rate tensors is finite.
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∞
∑

αi=0

∞
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∞
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s
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i j
R
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i j
s
α2

i j
R
β2

i j
(3.37)

[16]

In the general three-dimensional case there are ten tensors and five invariants:

T 1 = Si j , T 2 = Si j Ri j −Ri j Si j ,
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Table 3.1: The ten tensors for the general three-dimensional case

I1 = Tr (S2
i j

) I2 = Tr (R2
i j

) I3 = Tr (S3
i j

) I4 = Tr (R2
i j

Si j ) I5 = Tr (R2
i j

S2
i j

)

Table 3.2: The five invariants for the general three-dimensional case

With this limitation to 10 Tensors and 5 invariants (3.37) can be rewritten to a finite sum:

10
∑

n=1

g (n)(I1, ..., I5)T(n) (3.38)

The reason to use this tensor basis is the fact that the Reynolds stress tensor is approximated by a tensor

and that any continuous function can be determined using this basis. Due to the dimensionless coefficients

and the model form, Galilean invariance is ensured. This is a critical property for CFD applications as methods

should not give different results for different geometry orientations.

3.2.2. Calculating the correction fields: Frozen approach
The SpaRTA methodology uses the tensor basis to regress a correction model for the turbulent transport

model equation. The first correction term b∆

i j
acts directly on the Reynolds anisotropy as defined in (3.33).

The correction term is added to the Reynolds anisotropy to correct for the assumption that is made in the

Boussinesq approximation. Namely that the true anisotropy tensor ai j can be approximated as follows:

b0
i j

= −νt

k
Si j , where Si j is the strain rate tensor and b0

i j
is the Reynolds anisotropy tensor as predicted by

the Boussinesq hypothesis.

ui ,u j = 2k(b0
i j +b∆

i j −
1

3
δi j ) (3.39)

For the application of this corrective approach the k −ω− SST model has been selected, this model is

described in Section 3.1.2. The correction factors for this model are a correction to the Reynolds stress

anisotropy tensor, leading to a correction to the turbulence production term together with a correction to

the k-transport equation which also influences the production of turbulence. These corrective fields/targets

are calculated in the so called frozen approach also named k-corrective-frozen-RANS method. This method

uses the mean velocity and turbulent kinetic energy as inputs to the k and ω equations which are then solved

for ω,k,b∆

i j
,R (3.40) (3.41) (3.42). The method is called frozen because all the inputs from the high fidelity

data are frozen. The idea behind this is that with the correct anisotropy and the additional correction to the

turbulent kinetic energy equation the RANS method should converge to the high fidelity solution. Therefore

the mean velocity of the high fidelity data forms the inputs for the target calculation.
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∂k

∂x j
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]

(3.40)



3.2. Method for symbolic regression: SpaRTA 41

∂ω

∂t
+U j

∂ω

∂x j
=

γ

νt
(Pk +R)−βω2 +

∂

x j

[

(ν+σωνt )
∂ω

∂x j

]

+C Dkω (3.41)

Pk = 2k(b0
i j +b∆

i j ) (3.42)

All the other model coefficients and equations are kept the same as the standard k −ω− SST model.

The correction therefore is on the turbulent kinetic energy and the anisotropy, which uses the standard

Boussinesq approximation b0
i j
= νt

k
Si j and the correction term b∆

i j
.

When looking back at the graphical overview of the methodology in Figure 3.2 the two top blocks represent

this procedure. The DATA block forms the input and with this input the k-corrective-frozen-RANS procedure

is performed. From this procedure the outputs are the targets: b∆

i j
and R, and the specific dissipation rate ω

which is not directly available from the high fidelity data and needs to be calculated. This dissipation rate ω

is needed to calculate the tensors T 1 −T 10 and the invariants I1 − I5, which are normalised using k and ω as

was shown by Pope [16].

With the correction fields and input fields coming from the frozen approach the next step is the inference

of a correction model that can calculate these correction fields from mean flow data which is available from

a RANS simulation.

3.2.3. Correction model discovery
For the model regression an ansatz is made, it is assumed that the anisotropy correction can be modelled

using the first four Tensors T 1−4 and the first two invariants I1−2. It is also assumed that the correction to

the turbulent kinetic energy equation can be written in the similar form as that of the anisotropy tensor, as

shown in (3.43). This has the advantage that the same framework can be used for the model regression for

the R term.

R = 2kbR
i j

∂Ui

∂x j
(3.43)

The model regression consists of two steps namely the model discovery stage and the model inference

stage. The model discovery stage is used to construct a large library of nonlinear candidate functions to

regress data.

The first step in model discovery consists of the construction of a library with all possible combinations

of invariants and tensors. This is done by multiplying all invariants with each other, leading to a maximum

degree of 6.

B =
[

c, I1, I2, I 2
1 , I 2

2 , I 2
1 I 3

2 , I 4
1 I 2

2 , I1I 2
2 , I1I 3

2 , I1I 4
2 , I 3

1 I2, I 2
1 I 4

2 , I 2
1 I2, I1I2, I 3

1 I 2
2 , I 2

1 I 2
2

]

(3.44)

To create the library each combination of invariants is combined with each of the tensors T 1−4 resulting

in a library of candidate functions (3.45). For the library of the k-correction R all the variables the double dot

product of each Cb∆

i j
is taken with the velocity gradient tensor leading to the library (3.46).

Cb∆

i j
=

[

cT (1)
i j

,cT (2)
i j

, ..., I 2
1 I 2

2 T (4)
i j

]T
(3.45)

CR =
[

cT (1)
i j

∂ jUi , ..., I 2
1 I 2

2 T (4)
i j

∂ jUi

]T
(3.46)

These two libraries of functions are then evaluated at all points in the domain to give a full set of training

input features. The target values from the k-corrective frozen are stacked in vectors b∆,R and form the targets

for the model discovery. With these libraries it is then the goal to form a linear model to regress the target data

∆= b∆ or R, by finding the coefficient vector Θ.

∆= C∆Θ (3.47)

The system that is being solved is a large overdetermined system with many datapoints that need to be

fit to the model. To keep the model that is found lightweight to be later used in the turbulence model it is
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of importance to keep the number of model variables low in other words to have a sparse model. The other

constraint that is applied is to keep the coefficients small. This is done for both stability reasons as well as to

prevent overfitting the data. Therefore, the elastic net regression is used to find models that are both sparse

and have small coefficients.

Θ= argmin
Θ̂

∣

∣

∣

∣C∆Θ̂−∆
∣

∣

∣

∣

2
2 +λρ

∣

∣

∣

∣Θ̂
∣

∣

∣

∣

1 +0.5λ(1−ρ)
∣

∣

∣

∣Θ̂
∣

∣

∣

∣

2
2 (3.48)

The elastic net regression blends the l1− and l2−norm regularisation given the mixing parameter ρ ∈ [0,1]

and the regularisation weightλ, to promote sparsity ofΘ. The larger the regularisation weightλ the higher the

number of nonzero coefficients. Because it is unknown what regularisation parameters give the best results

a range of combinations of regularisation weights and mixing parameter are selected. A total of 100 entries

of λ uniformly scaled using a log-scale. The elastic net is used to get the model coefficients Θ for this range

of regularization weights and mixing parameters. There is a good chance that certain combinations of these

regression parameters give models with the same non-zero terms, these models are combined. The model

discovery step is done with normalised coefficients to aid the elastic net algorithm.

With the library of model forms complete, ridge regression is used to fit coefficients to the model terms

for each of the models in the library. Ridge regression is used to control their size (3.49). For that a range of

Tikhonov-regularisation parameters have been selected to give a different range of model coefficient sizes.

Θ
s,d
∆

= argmin
ˆ

Θ
s,d
∆

∣
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∆
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∣
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∣
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2

2
(3.49)

Once the model regression step has been completed a model can be selected to be implemented in a

RANS solver. During this step the model is validated and the convergence is studied. It is not guarenteed

that all corrections models will result in a converging result when implemented in a solver. It has been found

that 0.1 >λr > 0.01 gives model coefficients that produce converged solutions when implemented in a RANS

model. These observations are based purely on empirical observations and in case a model did not converge

the coefficients were decreased by a factor ξ= 0.1 for the b∆

i j
model.
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3.3. Code implementation
A large part of the methodology explained above needs to be implemented into a solver. For this the openFOAM

solver has been selected. For the model discovery steps python has been used in combination with the scikit-

learn toolkit.

The OpenFOAM solver has been selected because it is an opensource platform which allows for the

modification of source code. There is also good documentation available of the solvers and the turbulence

models that are already implemented in the base version of the code. The original work from Schmelzer and

Dwight [18] has been performed in version 2.4.0 of OpenFOAM, but for this work it was chosen to implement

the methodology in version v1912. This decision was made because version 2.4.0 was released in 2015 and

therefore misses 5 years of development making the code less relevant for industry. Between these versions

there are a lot of differences in the way the code is implemented. In this section the implementation of

the different methods is documented and the verification procedure to show the correct implementation is

shown.

In this section the implementation of the 3 methods in the top right of Figure 3.2. The modification to

the original turbulence models are explained in Sections 3.3.1-3.3.3 and the code is available in Appendix

B. After this in Section 3.3.4 the implementation of this code is verified against the original implementation

from Schmelzer and Dwight in version 2.4.0.

3.3.1. OpenFOAM Frozen approach code
The implementation of the frozen approach requires the modification of two things: the simpleFoam solver

and the k−ω−SST turbulence model. The simpleFoam solver is an incompressible RANS solver which solves

the continuity and the momentum equation using the SIMPLE algorithm. After which it calls the turbulence

model which then solves the turbulence transport equation(s).

Knowing this, the modification of the simpleFoam solver to make it suitable for the frozen approach as

shown in section 3.2.2 is rather easy. The only steps that need to be taken are to remove the lines calling

for the solving of the continuity and the momentum equations. Together with renaming of the solver to

frozen_simpleFoam the code can be compiled and used to perform the k-corrective-frozen-RANS.

The main modifications, however are in the turbulence model, where some alterations need to be made.

First of all, the additional fields that will be calculated need to be declared: b∆

i j
and R, secondly the existing

definition for k needs to be modified, as k is frozen it needs to be loaded from the high fidelity data and there

is no need to rewrite k to a file again.

Besides this there are some more variables that are newly defined, either because they are needed in the

method or they contribute to the visualisation of the method. These variables are:

• ai j , The Reynolds anisotropy calculated from the high fidelity data.

• a∆

i j
, the difference between the Reynolds anisotropy from the high fidelity data and the prediction from

the Boussinesq approximation.

• b∆

i j
, the non-dimensionalized version of a∆

i j
.

• Pk , the turbulence production as calculated from the high fidelity method .

• P 0
k

, the turbulence production as predicted by the Boussinesq approximation .

• P∆

k
, the difference between Pk and P 0

k
.

• t i mescalel i mi ted , The timescale that is later used when calculating the tensors and invariants.

The code definitions of these variables can be found in appendix B.1, these are the initial definitions of

the variables. They are updated later when the turbulence transport equations are solved.
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The modified turbulence transport equations are given by (3.40) and (3.41) and the implementation can

be found in appendix B.2. The modifications to the original code are in the lines calculating the turbulence

production. This includes the calculation of the production as is calculated by the Boussinesq approximation.

The altered production is carried on into the ω-equation which is besides this modified production and

the addition of the R term unaltered. The k-equation is a bit different, as from the high fidelity data the

turbulence kinetic energy k is already known it is only necessary to solve for R (called kDeficit in the code).

This is done by moving all the terms except kDeficit to the right hand side of the k-equation (3.40).

Finally after solving the ω equation and calculating R, the anisotropy correction b∆

i j
needs to be updated,

this is done at the end of the code. Which concludes all the modifications to the k−ω−SST turbulence mode.

3.3.2. OpenFOAM Propagated approach code
The propagated approach is where the correction field are directly imported into the solver to correct the

RANS simulation. For this only a small number of changes need to be made to the turbulence model only.

These changes are the addition of the definition of the correction fields in a similar manner as was done

for the frozen approach, only this time the correction fields must be read from a file and not written to a file.

The code for the loading of the correction fields can be found in appendix C.1 together with the modified k

and ω equations.

The main modifications in the equations are in the turbulence production term Pk called G in the code,

this happens before the declaration of the actual equations. Inside the actual equations R (kDeficit) is added

directly to correct the turbulence production in both the ω and k-equations. In the omega equation this R

term is divided by νt to make it the same dimensions as the Gby Nu0 term which is equal to the turbulence

production devided by the eddy viscosity: Pk /νt . In the k-equation the R correction can be added directly.

One more thing that needs to be changed are two functions that are not normally declared in the turbulence

model but are used when solving the momentum equation. The first of the two functions is called devReff and

returns the effective stress tensor. This function is called when solving for the momentum equation and needs

to be modified to include the anisotropy correction b∆

i j
. The code can be found in appendix C.2, together with

the modified code for the function divDevReff, which returns the source term for the momentum equation,

this function needs to be updated as well with the anisotropy correction tensor b∆

i j
.

3.3.3. OpenFOAM Modelled approach code
The difference between the modelled approach and the propagated approach is mainly that the correction

fields are modelled instead of imported. For this it requires the implementation of the basis functions from

Pope’s viscosity hypothesis (Section 3.2.1) in the OpenFOAM code. One of the big advantages of the OpenFOAM

framework is the implemented methods for tensor operations.

The definitions of the Tensors and invariants that need to be implemented are in shown in table 3.1. There

are a couple of useful tensor operators that from openfoam that will be used. The mathematical operators

are shown below.

First of there is the ’symm’ operator, which takes the symmetric part of the matrix. This operator is used

a lot as all the 10 tensors from the basis functions used are symmetric. Due to floating point precision and

round-off errors not all tensors were automatically recognised as symmetric. To make sure these tensors were

stored as symmetric matrices for memory efficiency the symm operator was used.

symm(A) =
1

2
(A+AT ) (3.50)

The ’skew’ operator is the opposite of the ’symm’ operator and takes the a-symmetric part of the tensor.

This operator has not been used in the final code, but does form a useful tool when debugging and post-
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processing.

skew(A) =
1

2
(A−AT ) (3.51)

The final operator that has been used is the ’dev’ operator. This operator takes the deviatoric part of the

tensor A of which the trace(A) = 0. The other part is called the hydrostatic part and is of the form sI, where I

is the identity matrix and s is a scalar.

dev(A) = A−
1

3
tr(A)I (3.52)

In the code the velocity gradient tensor is defined as ’tgradU’:

tgradU =
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(3.53)

With that the two basis components that are used to calculated all the remaining tensors T 1 −T 10 and

invariants I1 − I5 are the strain rate tensor Si j and the rotation rate tensor Ri j .

The strain rate tensor is calculated using the following operators according to (3.34). It is normalised using

the definition for ’timel’, this is a limited timescale and sets a limit on ω in case values get too large.

Si j = dev(symm(tgradU/timel)) (3.54)

timel = max((
√

2∗ (symm(tgradU) : symm(tgradU)))/a31),ω) (3.55)

The rotation rate tensor is also normalised using the limited time-scale and is calculated in the following

way.

Ri j = dev(tgradU)/timel (3.56)

The implementation of all the 10 tensors and 5 invariants using Si j and Ri j can be found in appendix D.1

the definitions are in Table 3.1 and Table 3.2. These same definitions are used during post-processing of the

frozen approach. This makes sure that in the later stage during the model discovery exactly the same inputs

are used as the output functions of the model.

3.3.4. Verification of code implementation in OpenFOAM
To make sure the method has been implemented correctly various code verifications have to be performed.

All the different methods have to be verified separately. This is done using the periodic hills flow case used by

Schmelzer and Dwight [18]. This is a small 2D case and the reference data from the original implementation

in OpenFOAM 2.4.0 from [18] is available to do the verification.

Frozen approach verification

The first method that needs to be verified for successful implementation is the frozen approach. This is done

by taking identical input data as used by Schmelzer and Dwight [18] and running the frozen approach using

an identical setup.

The resulting correction fields are then compared to the original, any large differences indicate something

is wrong in the implementation. In Figure 3.3 the R correction fields are plotted for the two different implementations

in the different OpenFoam versions. In the middle the difference is plotted in a percentage relative to the

original. What can be seen is that overall the error is under 1% difference between the versions, with the

largest differences being in the regions where the correction is 0 and therefore the tiniest difference gives a

large value percentage-wise.

In Figure 3.4 the same is done for the anisotropy tensor. One should keep in mind that this test case is

only 2D and therefore since the anisotropy tensor is symmetric, there are only three relevant non-zero tensor
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Figure 3.3: Verification of the implementation of the frozen approach by comparing the new implementation in v1912 with the original

code in version 2.4.0. Difference between the anisotropy-correction fields in percentage of the original field.
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Figure 3.4: Verification of the implementation of the frozen approach by comparing the new implementation in v1912 with the old code

in version 2.4.0. On the left: the original field from 2.4.0 on the right: difference between the b∆

i j
-correction field in percentage of the

original field.

components. In this image on the left are the values as predicted by the original version and on the right the

difference between the old version and the new version. What can be seen here is that the difference between

the two versions are very small < 0.001%. This ensure the correct implementation of the method, with the

final negligible differences coming from the differences in the implementation of the solver and boundary

conditions itself, which has changed significantly between the updates.

Code propagation

To check if the propagated approach has been implemented correctly the corrective fields from the frozen

approach are fed into the propagated approach solver.

The first test that is done, is to start from the LES solution and the ω field from the frozen approach. With

these settings only the transport equations are solved, for which the residuals should be close to zero. If this

is the case the implementation of the corrective fields in the turbulence model has been done correctly. After

that that the solver is allowed to solve the continuity and momentum equations as well to see if the solution
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(a) (b)

(c) (d)

Figure 3.5: X-component velocity comparison between OpenFOAM 2.4.0 and v1912 implementation.

moves away from the LES starting point or stays approximately the same. The Residuals for this case should

be small as the final result approximates the LES solution almost perfectly, as was shown by Schmelzer and

Dwight [18].

This first test showed that the residuals of the transport equations were equal to zero, ensuring the correct

implementation of the correction fields. Secondly when solving for the velocity and pressure the residuals

were small and the solution converged to a solution close to the LES solution. This allowed to move forward

with the final step in the verification process of the propagated approach.

This final test is to perform the propagated approach starting from the baseline RANS solution. Also this

approach starting from the baseline solution should converge to a solution very close to the LES solution.

The results of this can be found in Figure 3.5.

Modelled approach

Finally the modelled approach needs to be verified, this is done by implementing one of the models that

were discovered by Schmelzer and Dwight [18] and comparing the resulting solution for the periodic hills test

case. The model equations are given in (3.57) and (3.57), the results of this can also be found in Figure 3.5, the

modelled line is compared to the graph presented by Schmelzer and Dwight [18] in Figure 2.14 and seems to

give an identical improvement, with that the modelled approach is also verified to be implemented correctly.

b∆

i j = (24.94I1
2 +2.65I2)T (1) +2.96T (2) + (2.49I2 +20.05)T (3) + (2.49I1 +14.93)T (4) (3.57)

R = 0.4T (1) (3.58)
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3.3.5. Model discovery implentation in Python
The model discovery step is done using python as the main code, making use of the scikit-learn libraries for

the regression steps of the method. With the frozen approach completed all the necessary information is

available for the model discovery step. The methodology for the model discovery is in basis that of Schmelzer

and Dwight, some modifications to this are made in order to make the method more applicable for larger

problems. As the geometries that were tested in the original were limited to 2D problems with a small number

of cells, the methodology had to be altered and optimised for the larger 3D problems. The number of cells has

changed from O(104) to O(107) which means a much larger memory requirement and longer computation

time.

In the original code from Schmelzer and Dwight the calculation of the inputs for the discovery, the tensors

T 1 −T 10 and invariants I1 − I5 were calculated in the python code. Since python is an object based language

and limited to a single thread for computations the calculation of this becomes inefficient, even though the

optimised numpy modules are used. Therefore an alteration was made to calculate the inputs for the model

discovery step during the postprocessing of the frozen approach. This uses the efficient c++ libraries already

available in the OpenFOAM code and is therefore a lot faster. After this the python code loads the data from

the files written by the OpenFOAM postprocessing.

This alteration has resulted in a significant speedup, reducing the total importing and computation time

from several hours to a couple of minutes for a problem with 1 million data points. This covers the first step

of the code, which is the importing ad calculations of the inputs and targets for the machine learning part.

Before continuing with the the model selection step, a library of candidate functions needs to be created.

This library consists of lists of models stored as strings. These are created by combining and multiplying

the invariants multiple times, after this the simpy module is used to simplify the mathematical expressions.

After this list of all different combinations of invariants up to a certain order has been created, all the double

entries are removed. This list is then combined with each of the tensors to create the full library of candidate

functions.

This list of library functions can be as long as 300 unique functions. The number of candidate functions

is of great influence on the computational cost of the elastic net regression. Therefore it is a good idea

for computational efficiency to reduce this number. To do this the so called cliqueing approach is used.

Functions are grouped according to similarity and from each group the ’simplest’ function is selected. The

implementation of this method has been done using the numpy covariance function, the limit for functions

to be in the same group can be adjusted and as a baseline a value of 0.99 is being used for the covariance

limit. Setting this value higher gives more unique functions, having a lower value gives less unique functions

but might result in a library that misses features.

This operations is one of the most demanding on the memory, as it evaluates all the candidate functions

at all the locations. After this step the number of candidate functions is significantly reduced, reducing the

memory requirement for the further operations. To reduce the memory requirement of this first step, sub-

sampling is used. The simplest form of sub-sampling is where the data is taken from every Nth point in the

data-set. This form of sub-sampling is quick and efficient and does not give preference to any regions in the

domain. It might not be the most efficient method, as data can be picked at the locations of interest. Using

the simplest case an investigation was done into what the limit of the sub-sampling is to still give the same

candidate functions as the output of the cliqueing procedure. It turned out that using 1/10th of the original

set still gives the same library of functions to do the model selection with.

The reduction of this data-set is of crucial importance to be able to run the model discovery on reasonably

sized machines as without this the memory requirements can go up to 100gb or more for problems with 1

million cells. This same problem continues in the first step of the model discovery, doing similar research it

turned out that 1/5th of the original data-set is enough to get the same functions from the model selection

step.

This model selection step uses the elastic net regression function from the scikit-learn library. The net

requires as inputs the candidate functions evaluated all the points, the target values b∆

i j
or R and the regression



50 3. Methodology for symbolic regression of turbulence model corrections

settings. These are the alpha coefficient, which determines the size of the l1 and l2 regression coefficient and

the ratio, which determines the ratio between l1 and l2. Finally the maximum number of iterations and the

tolerance need to be given as inputs.

Before the elastic net is used to determine which candidate functions to use in the model the inputs and

outputs are normalised. This normalisation is done because the optimisation algorithms work better when

all the inputs and outputs are normalised. The normalisation means that all the inputs are scaled to unit

norm, making sure all the values are roughly in the range of -1 to 1.

The settings for the elastic net concerning tolerance and maximum number of iterations have an influence

on the computational time and the model shape. Since this step is not the final step in the regression it is

not of crucial importance to have absolute convergence of the method. However, from experiments it was

found that letting the elastic net run for longer, sy setting a lower tolerance and higher number of maximum

iterations the models that were found were generally more satisfying in terms of sparsity and coefficient size.

Therefore, the decision was made to lower the tolerance from 1e −4 to 1e −7 from the original settings.

The final step is the ridge regression, it is used to have control over the coefficient size. This ridge regression

step is applied to all the model forms found in the model discovery step. In the original version the input for

this method was using a data-set that contains the evaluation of all the candidate functions and taking those

values that were needed for the evaluation of the selected model form. In this way the script runs through

all the model forms that were found by the elastic net regression. To optimise for memory and performance

it was decided to still use the full data-set but reduce the input library to just the functions needed in the

model form. This means the computations will take slightly longer because certain candidate functions are

recalculated multiple times. However, it does allow to do the final data fit with the full data-set on a smaller

machine.

This ridge regression was done using different ridge alpha’s to create different coefficient sizes. For the

ridge coefficientα= 0 the ridge regression is equal to a least squares fit. This ridge step results in the coefficients

that combined with the model forms results in a large library of correction functions. Each function with

different coefficient sizes and sparsity due to the variation in elastic net coefficients and ridge coefficient.

These models are then sorted on their respective error on the training data and visualised in a graph, where

using a logarithmic scaling the coefficient size is transformed onto a colourmap. This visualisation is then

used to pick a well balanced model for implementation into the turbulence model.

3.4. Methodology test procedure
Three test cases have been selected to test the SpaRTA methodology on. The selected geometries are the wall

mounted cube, an infinite circular cylinder and an idealised rotating wheel. These test cases are ranging up

in terms of complexity and mesh size, with the surface mounted cube having the smallest mesh size and the

idealised wheel the largest.

The test procedure that is followed is the following. The first step is the collection of the high fidelity data,

that is by running an LES for the cylinder and the wheel and by running a DES for the surface mounted cube.

It was chosen to do a DES for the surface mounted cube, to keep the computational cost relatively low. This

helped in the first stages of testing the methodology as it allowed the procedures in the SpaRTA methodology

to be run quickly multiple times, helping in the testing and optimisation of the code before moving on to the

computationally more expensive test cases. The choice for a DES as high fidelity data source had not been

done before for this method and therefore this was the perfect opportunity to test this.

The second step after the collection of the high fidelity data is to run the frozen approach. This step

requires the mean flow velocity data, the turbulent kinetic energy and the Reynolds stress tensor as calculated

from the high fidelity simulation. The frozen approach also requires the setup of boundary and initial conditions

for the variables used in the turbulence models. Correct setup of this is essential for the convergence of the

frozen approach. As is the statistical convergence of the high fidelity data as will be shown later in the results

chapter.
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With the frozen approach converged the next step is post-processing of the results, this step involves the

calculation of all the input features for the model regression ie. the tensors and invariants from Pope’s eddy

viscosity hypothesis. With this all the data required for the model discovery step is available. In the meantime

the propagation test can be completed with the addition of the correction fields in the solver.

Depending on the size of the data-set sub-sampling is applied. This is done to stay withing the memory

limits of the machine the model discovery is run on. For now the sub-sampling is done by taking data every

N points, this leads to a huge reduction in data size. How much the data is sub-sampled depends on the

size of the data-set. For optimal use of the data for different steps different levels of sub-sampling are used.

This is to maximise the accuracy while remaining within the memory limits. The operations that follow are

the creation of the library of candidate functions, reduction of this library through the cliqueing operation

after which the model-forms are discovered through the elastic net regression. For each model-form the

coefficients are determined through a ridge regression. This completes the model discovery step and results

in a large library of correction models is available.

The next step is to pick one of the correction models from this large library of functions. To help with

the decision making for which model to pick the models are compared by visualising the number of basis

functions and the size of the coefficients and comparing this to the relative error on the training data.

After picking a model and the implementation of this model into the turbulence model, test simulations

are performed. In this test the correction terms in the turbulence model are slowly increased. Usually the R

correction term is directly added in full to the turbulence model. With the anisotropy correction b∆

i j
being

added slowly up till such an amount that the solution still converges. This test is then done for different

models to determine the right balance between model complexity final result accuracy and stability. This

corrected solution is then compared to a baseline RANS simulation with the uncorrected turbulence model

and the high fidelity simulation to asses the accuracy of the solution. Once a model is found with a good

balance between performance and complexity this model is stored to be applied to the other test cases as

well to check for the extrapolating qualities.
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Results

In this chapter the results of the application of the SpaRTA methodology on the various test cases are presented.

They are compared to the high fidelity reference data to get an idea of the performance of the method and

the extrapolating capabilities of the different models.

In Section 4.1 the results of the method applied to the wall mounted cube are presented. This test case

has been used extensively for several tests and experiments to better understand the effects of the correction

models. This test case has also been used to verify the assumption that the first 4 tensors and 2 invariants of

the tensor basis presented in Section 3.2.1. It has also been used to investigate the stability of the models and

the effect of the magnitude of the correction.

Secondly the hardest of the test cases is discussed in Section 4.2, which is the infinite cylinder. This

test case is particularly difficult due to its unstable nature. The main challenge for this case was finding

stable solutions for the baseline RANS and with correction models applied. This case is also used to test the

extrapolating qualities of the correction model that was found on the wall mounted cube test case.

Finally in Section 4.3 a larger case has been explored with the application of the correction model to

an idealised rotating wheel. This case also showed improvements with two models trained on different

geometries showing very similar results.

4.1. Wall mounted cube
The wall mounted cube has been selected as a test case for a couple of reasons. Firstly it is a geometry

similar in topology to the idealised wheel, which will form the most complex test case of this research. The

wall mounted cube is expected to create a horseshoe vortex, which is a similar flow features as seen in

literature on the idealised wheel. Another reason to use the cube as a test case is because it has separation

and reattachment regions of which the location is dependent on the turbulence model. Improvements in the

turbulence model will result directly into shifts in the separations and reattachment locations. Besides this

the cube is a relatively simple model that allows the use of quickly generated structured meshes with local

refinement areas. Finally literature is available on both experimental and computational research that has

been performed on the same or similar geometries, this forms a good basis for the following research.

The geometry of this flow case is that of a cube of dimensions 1m mounted on a flat plate with another

flat plate 1m away from the top of the cube. The sides of the domain are treated as symmetry planes, the

geometry is shown in Figure 4.1. The inflow velocity is set to 1m/s with a dynamic viscosity of 2.5×10−5 to

get a Reynolds number of 40000.

53
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Figure 4.1: Geometry for the Wall mounted cube

The structure of the remainder of this Section is as follows:

In Section 4.1.1 the DES that was run to gather the high fidelity data is discussed and compared to an experimental

setup of a similar geometry. After this in Section 4.1.2 the setup of the baseline RANS simulation is presented,

this simulation will serve as baseline reference to compare the correction models to.

The results from the frozen approach which is explained in Section 3.2.2 are shown in Section 4.1.3. The

direct application of the corrective fields found in the frozen approach is presented in Section 4.1.4, here the

first difficulty with the stability of the solution is encountered.

In Section 4.1.5 the library of correction models resulting from the regression are presented, here it is

explained how a correction model is picked and the effect of the elastic net and ridge regression methods

explained in Section 3.2.3 can be clearly seen in the visualisation of the models.

The main result, the application of the regression model selected from the library of models is presented

in Section 4.1.6. Here the improvement in the resulting flowfield is shown and the effect of the correction

model on the converged solution is highlighted. The test in this section was not done with the full correction

fields due to stability issues. An investigation on the effect of each correction field and the magnitude that is

added to the equations is presented in Section 4.1.8. Here results are presented as well with the full correction

fields, but with solutions that are averaged over the last 1000 iterations to deal with the instability created by

the anisotropy correction field.

In Section 4.1.7 the assumption is tested that the first 4 tensors and 2 invariants from Pope’s viscosity

hypothesis [16] are sufficient for modelling the correction fields, as explained in section 3.2.1. The application

of two models, one with the full tensor basis and the other with a limited number of tensors showed very small

differences with a slight favour for the model with the limited number of tensors and invariants, thereby

confirming the ansatz made in Section 3.2.3.

Finally the first test of the extrapolating qualities of the correction model is shown in Section 4.1.9. Here

the correction is applied to a very similar geometry but slightly modified geometry. For this test the cube has

been lengthened to 1.5 times the original length. This first test shows promising signs of the extrapolating

qualities of the model. Later in Section 4.2.6 and Section 4.3.5 this model is applied on the cylinder test case

and wheel test case to further proof the extrapolating qualities.

4.1.1. DES as high fidelity data source
For the set of high fidelity data that will be used to improve turbulence modules, the decision was made to do

a DES. This decision was made because running a DES is significantly cheaper than running an LES. It is also

a good test to see if the methods that were previously proven to work by applying an LES data-set as training

data also works with DES data as training data.

DES Mesh and simulation setup

The main difference between the DES and LES comes down to the way the flow near the wall is resolved. The
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Number of Cells 1216000

Cell Type Hexahedra

Max Aspect Ratio 81.949

Min Volume 2.471e-6

Max Volume 0.0178

Mesh max non-orthogonality 0

Max skewness 4.092e-13

Table 4.1: Characteristics of the mesh used for the DES of the wall mounted cube.

DES uses RANS models in the near wall regions and uses the LES approach for the cells further away from the

walls. For this DES the setup that has been used is to use the Spallart Almaras IDDES turbulence model for

the RANS regions and is also used as the SGS model.

The mesh that has been used for this simulation is created using the OpenFOAM blockmesh utility. The

aim for this mesh is to achieve a value of max y+= 30. This has been done because wall functions are being

used. The computational domain has a size of 14.5×9×2 (l ×w ×h). With the cube placed on the bottom

surface in the centre of the domain in terms of width and with the front face 4 meters behind the inlet.

The quality of the mesh was checked using the openFOAM checkMesh utility, of which the results can

be found in Table 4.1. A general overview of the mesh is shown in Figure 4.2, where the refinement regions

can be seen to be in close proximity to the faces of the cube. Due to the nature of the mesh these refinement

regions expand throughout the entire domain.

The Reynolds number is set to 40000 with an inflow velocity of 1m/s and a kinematic viscosity ν= 2.5e−5

to match for the Reynolds number. For solving the DES problem the incompressible pimpleFoam solver is

used. For the inlet the turbulent turbulentDFSEMInlet [15] is used together with a mapped field to initiate

the boundary layers on the top and bottom wall. This boundary layer was initialized by doing a RANS of a

channel, This boundary layer is initiated in a RANS channel flow. The turbulentDFSEMinlet is a divergence

free synthetic eddy method to reproduce the turbulent inflow conditions for an LES or DES.

For the wall boundary conditions, the nutUspalding wall function was used for the eddy viscosity, with

k being set to 0 at the wall for the turbulent kinetic energy boundary conditions. The walls are enforced by

having a no slip condition for the velocity and a Neumann boundary condition for the pressure by enforcing

a zero gradient.

The solver was run for a total of 200 seconds of simulated time, with averaging starting at T = 20s resulting

in an averaging period of 180 seconds or 12.4 flow-throughs. Also data with a shorter averaging time of 110s

has been retrieved for a comparison of statistical convergence and to see how much the statistics need to be

converged in order to be able to apply the SpaRTA approach.
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Figure 4.2: The mesh that has been used for the DES of the wall mounted cube, total number of cells is 1.2 million. With a maximum y+
of 30.
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DES Results

In Figure 4.3 the streamtraces of the average flow around the cube are shown. What can be seen is that the

flow around the cube forms a horse-shoe vortex that is formed in front of the cube due to the interaction of

the ground boundary layer and the cube stagnation point. This horseshoe vortex travels downstream of the

cube the direction of rotation on this vortex pair is symmetrically opposite and is rotating down at the sides

of the cube.

The other flow feature that are distinctive for this flow case are the separations that occur at the leading

edges of the cube. Behind this separation a recirculation area can be seen where there is backflow, this

phenomenon occurs on both the top and the side surfaces of the cube. On the side surfaces with the interaction

of the bottom boundary layer this circulation area attaches on the bottom surface, which can be clearly

seen in Figure 4.4a where the surface streamlines are plotted on the bottom surface. They are compared to

experimental results at a different but comparable Reynolds nuber from Martinuzzi and Tropea [13] in Figure

4.4b. The streamtraces show a good between the DES solution and the experimental results. The shape of

the horshoevortex around the cube shows good similarity and the reatachement location of the flow on the

bottom of the domain shows good agreement with the reattachment location of the experimental result.

Figure 4.3: Visualisation of the flow around the cube using stream ribbons The results are from the DES simulation.

From the streamtraces it can also be seen that the flow reattaches on the top and side surfaces, to then

separate again at the trailing edge of the cube. These separations cause another recirculating area directly

behind the cube, shaped in a horseshoe standing up straight. Figure 4.4a also shows very clearly the two

recirculation areas that are behind the cube originating from the separating flow coming from the sides of the

cube.

The wake behind the cube is characterised by a drop in total pressure behind the cube compared to the

total pressure in freestream conditions. Further on the size and shape of the wake is compared to that of

different simulations. The shape of the wake is visualised using an isosurface where C p0 = 0.5. Doing this

shows the shape of the wake which is longer than just the recirculation areas behind the cube. The length

of the wake shows the effects of turbulence production and dissipation. As turbulence production generally

leads to flow that will remain attached for longer. Having more turbulence dissipation will lead to a faster

breakdown of turbulent structures into smaller eddies, which should result in the faster dissipation of the

horseshoe vortex structure downstream of the cube.
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(a) Velocity magnitude and streamtraces at the bottom of the cube from the DES simulation. Re = 40000

(b) Experimental results from the wall mounted cube Re ≈ 80000−120000. Figure taken from [13].

Figure 4.4: Comparison of the streamtraces on the bottom of the domain between the DES solution and experimental simulations from

Martinuzzi and Tropea [13].
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4.1.2. Baseline RANS
To be able to have a comparison and get an estimate of the performance of an unmodified k −ω-SST model

a baseline RANS simulation has been run. This baseline RANS simulation was done on the same mesh as the

DES for consistency and to make the comparison easier. This RANS simulation was run until the residuals

were no longer decreasing.

The inflow and boundary conditions were kept the same to that of the DES, to create a fair comparison.

The only thing that was changed was the inflow condition, where the synthetic eddies were replaced with a

constant inflow from the mapped inflow condition. The simulation was run using the simpleFoam solver,

which is an incompressible RANS solver.

Further on in this report a more in depth comparison will be made between this baseline RANS solution

and the DES, when comparing with the correction. From Figure 4.5 a big difference with the DES solution

can be spotted immediately. That is the wake of the flow behind the cube is a lot bigger than that of the DES

solution. The recirculation area behind the cube is much longer and the point where the flow reattaches

to the bottom surface is further downstream. Another thing that is different compared to the DES is the

recirculation area on the top of the cube and the sides of the cube. A more detailed comparison will be made

later when the corrected model is compared to the DES solution and this Baseline run.

Figure 4.4a gives a good overview of the location of the horseshoe vortex and the shape of the wake. At first

sight it can be again seen that the length of the wake is a lot longer than that of the DES solution. Besides that

the shape is different and when looking at the a-symmetry of the wake it must be noted that there is still some

instability in the solution. This instability is something that can be reduced by changing numerical settings

and running the simulation for longer but for now it is a good opportunity to see what applying a correction

model does to the stability of the solution.

Figure 4.5: Flow visualisation using streamtraces. Simulation is the baseline RANS simulation with standard k−ω-SST turbulence model

at Re = 40000.

When looking a the shape of the horseshoe vortex, it can be seen that the trajectory of the vortex around

the cube is a lot wider and that the trajectory is different compared to the DES. It also seems like there is a

second smaller vortex in front of the main vortex, this vortex is not visible in the DES field.
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(a) Reynolds Anisotropy as calculated by the DES

(b) Anisotropy field as predicted by the Boussinesq hypothesis

Figure 4.6: Reynolds anisotropy comparison between the DES and the Boussinesq hypothesis, slice at centre of the cube y=4.5.

Visualisation through a Barycentric mapping as according to Figure 2.3.

4.1.3. Frozen Approach

For the frozen approach the starting conditions are taken from the mean DES velocity field, the turbulent

kinetic energy that is retrieved from post-processing, similar to the calculated Reynolds stress tensor that

will be used to calculate the corrective fields with. The variables that are used in the turbulence model need

boundary conditions. These are the conditions that are also used in the baseline RANS. Therefore, for νt the

nutUspalding wall function is used and for omega the omegaWallfunction is used.

The initial fields for ω and νt are set to fixed values that were determined based on the baseline RANS

that was run. From experience it should be noted that having the right boundary and initial conditions is

critical for the stability of the frozen approach. Having the wrong boundary conditions and an initial value of

ω that is too small will result in instabilities and ω values going to infinity locally. Having a large value of ω as

a starting condition helps with the stability and helps convergence towards a stable solution for omega and

the corrective fields.

In Figure 4.6a the anisotropy field is visualised using the Barycentric map colouring from Figure 2.3. In this

figure a slice through the centre of the cube can be seen with the anisotropy field visualised as is calculated

by the DES, in Figure 4.6b is the anisotropy field that is predicted by the Boussinesq approximation. This

figure highlights the necessity for the need of a correction to the anisotropy field. In the SpaRTA approach

the b∆

i j
field is trying to correct for this discrepancy. As the Boussinesq hypothesis results in a prediction of

3d turbulence almost everywhere while definitely at the walls the anisotropy should be forced to be 2d and

therefore resemble a green colour. The same difference can be seen when looking at the anisotropy field near

the bottom wall, in Figure 4.7a the turbulent structures are mainly calculated to be 2D and 1D structures,

while the prediction from the Boussinesq hypothesis is mainly 3d turbulence as shown in Figure 4.7b.

A crucial component of the SpaRTA approach is to close and correct the k-equation of the k−ω-SST model.

This is necessary because with this newly corrected anisotropy field the production term has been changed

and therefore the k-equation requires an additional closure term called R. This corrective field acts on the

turbulent kinetic energy and directly adds or removes turbulence production locally. This field is shown in

Figure 4.8b, it shows the addition of turbulent kinetic energy all over the entire top surface of the cube. This

highlights that additional production is needed to reduce the separation area seen on top of the cube as is

predicted by the baseline RANS, which can be seen in Figure 4.8a. Besides this it appears that just above this

edge there is a reduction in the turbulent kinetic energy.

Also when looking at the location of the horseshoe vortex in front of the cube some correction fields can be

seen. In the k−correction a positive and negative field can be seen, which would result in a different location

and shape of the horseshoe vortex. It does not guarantee this but it does proof hat a baseline RANS solution

would never reach the position where the horseshoe vortex is in this location.
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(a) Reynolds Anisotropy as calculated by the DES (b) Anisotropy field as predicted by the Boussinesq hypothesis

Figure 4.7: The Reynolds anisotropy comparison between the DES and the Boussinesq hypothesis, slice at z=0.5. Visualisation through

a Barycentric mapping as according to Figure 2.3.

(a) Total correction in turbulence production from both the anisotropy

correction and the R-correction at the centre of the cube.

(b) Direct correction in the turbulence production R. Calculated from the

kinetic energy equation (4.2).

Figure 4.8: The correction field as determined by the frozen approach
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4.1.4. Corrective field propagation
A good test is to see if a RANS simulation with the correction fields from the frozen approach converges to

the DES solution. This shows if the corrective field is converged enough and if the approach works. The

optimal test is to start from the converged baseline RANS solution and add the corrective fields from the

frozen approach. This was shown to converge to the LES solution by Schmelzer and Dwight [18]. There is a

good chance that the solution will not converge because the corrective field is too disruptive and causes the

simulation to diverge. In that case ramping is used, where the corrective fields are slowly added by increasing

the amount the correction field is added each couple of iterations once the solution seems converged.

This same approach was applied to the cube. However, with the full correction fields added the solution

immediately diverged asω values went to infinity locally. Therefore the decision was made to slowly introduce

the corrective fields into the baseline RANS. However, this approach also failed to get to a stable solution and

to correct the RANS solution in the direction of the DES solution. One of the hypothesises for this is that

for this specific case the baseline RANS solution is so far off the DES solution that the corrective field is not

correcting in the right places to make the solution move towards the DES solution. In the 2D test cases that

have been done the baseline RANS solution was already relatively close to the LES solution, therefore the

velocity field which the correction fields are based upon is close enough to the velocity field of the baseline

RANS. For the cube this is not the case and therefore the solution never starts to move closer to the DES

solution with the corrections in these locations.

Another thing that can be tried to verify the correction fields is to start from the DES velocity and turbulent

kinetic energy field with the ω field and the eddy viscosity field retrieved from the frozen approach and add

the correction fields to this. The residual on the first iteration should be small and the as the simulation

progresses the solution should not move away from the initial solution.

This test has been performed for the cube but proved to be difficult due to instabilities. These instabilities

originated from the boundaries, where the anisotropy correction is showing extremely large values. This is

due to the boundary condition, k is forced to be very small (close to zero) at the wall making the corrections

large. This large correction near the wall in combination with the already unstable flow solution for the solver

causes the solution to diverge with locally large values for ω. Despite this setback it is still possible to apply

the correction through a correction model.



4.1. Wall mounted cube 63

4.1.5. Model Regression
To make the method generally applicable to different meshes and geometries, a model is to be found to

reproduce the correction fields. This is done following the regression methodology shown in Section 3.2.3.

The target values for the regression are the correction fields calculated in the frozen approach. The input

values for the regression are calculated during post-processing of the frozen approach simulation. These are

then loaded into the python script that does the model regression.

The first step of the regression, the model inference step was done using the full data-set consisting of 1.2

million cells. This data-set was scaled and normalised to do the elastic net regression that gives the model

form. After that the data-set was split into a train and a testing part, which was then used to the final step

the ridge regression. The test part of the data-set was used to determine the mean squared error of the

model, which is then used to compare the different models achieved from running with different regression

coefficients.

The resulting models from this operation are shown in Figure 4.9 for the models created for b∆

i j
and in

Figure 4.10 for the models created for the R correction factor. These figures show the size of the coefficients

for the basis functions that were used as inputs. In this figure clearly the effect of the ridge α regression

coefficient can be seen, the larger the coefficient, the smaller the model coefficients in the final model.

Therefore the model that fits the data the best is generated with the ridge α= 0 coming down to regular least

squares regression. What also can be seen in this figure is the effect of the elastic net coefficients. A total of

16 different model forms were achieved from running the elastic net regression with 500 different coefficient

settings. This means that the majority of these settings converge to the same model form. That is the case

for the models for b∆

i j
, for the R correction more different models came out with the same elastic net settings,

namely 29 different model forms.

What can be seen is that from the colours in Figure 4.9 is that there are a couple of dominant model terms

that always return in the model with large coefficients are are basis function 1,2,6 and 40− 43 respectively

I 1T 1, I 1T 2, I 2T 2, cT 1. cT 2, cT 3, cT 4. It is interesting to see that the simplest basis functions almost always

return in the models. The same thing is the case for the models for the R correction, all these models contain

the constant times the tensors 1, 3 and 4 term. Tensor number 2 is not present or only with a very small

coefficient 10−3. This shows that the R and the b∆

i j
correction depend on different mean flow features

1 I1T (1) 9 I2T (4) 17 I1I2T (3) 25 I1
2I2

2T (4) 33 I1
3I2

2T (4) 41 cT (2)

2 I1T (2) 10 I1
2T (1) 18 I1I2

2T (1) 26 I1I2
3T (1) 34 I1

2I2
3T (1) 42 cT (3)

3 I1T (3) 11 I1I2T (1) 19 I1I2
2T (2) 27 I1I2

3T (2) 35 I1
2I2

3T (2) 43 cT (4)

4 I1T (4) 12 I1I2T (2) 20 I1I2
2T (4) 28 I1I2

3T (3) 36 I1
2I2

3T (3)

5 I2T (1) 13 I1I2T (4) 21 I1
2I2T (1) 29 I1I2

3T (4) 37 I1
2I2

4T (1)

6 I2T (2) 14 I2
2T (1) 22 I1

2I2T (2) 30 I1
2I2

2T (1) 38 I1
2I2

4T (2)

7 I2T (3) 15 I2
2T (2) 23 I1

2I2T (4) 31 I1
2I2

2T (2) 39 I1
2I2

4T (3)

8 I2
2T (3) 16 I2

2T (4) 24 I1I2
2T (3) 32 I1

2I2
3T (4) 40 cT (1)

Table 4.2: Basis functions used by the models.

With the library of correction models available it important to pick one that has the best chance of improving

the results without making the solution unstable. The general rule of thumb for this is to have coefficients

that are relatively small O(101) or smaller. Also the number of terms should be limited as a larger variety of

terms can have a destabilising effect, especially when terms with a high power are introduced. Also having a

lot of terms makes the equations more computationally expensive to calculate. When looking at the library

of models however, it becomes clear that the best fitting models are the ones that have the largest coefficients

and the highest number of terms. Therefore, a good balance must be sought between model complexity

and coefficient size. It is recommended to pick some of the simplest models and verify the performance

of these models to then go to more complex models if the results when implemented in the RANS solver is

unsatisfying.

The Figures 4.9 and 4.10 help in making a decision what model to pick to implement. The model coefficients
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Figure 4.9: Comparing the model form and coefficient sizes for the discovered models for the b∆

i j
correction term. Rectangles indicate

positive coefficients, ovals indicate negative coefficients.

should not be too large for stability reasons and therefore the models that have green model coefficients

are not an option because they are too large. Models with too many coefficients are computationally more

expensive and has higher order terms that form terms that form local instabilities.

The models that have been picked for the sections following is shown are shown in (4.1) model 36 in Figure

4.9 and (4.2) model 70 in Figure 4.10. To investigate how well these models approximate the models have been

applied to the training flow conditions and the corrective fields are plotted in Figure 4.11 and 4.12. The first

figure shows the results just above the ground plane at z = 0.1 and shows that the correction model only

really predicts very well in the regions where the strain rate in the flow is large, in the areas where the velocity

gradients are the largest. In the other regions the model predictions is very poor indicating the incapability

of the model to correctly predict the anisotropy correction.

In Figure 4.12 the same correction fields are shown but at the centre height of the cube z = 0.5. This

image shows similar to the previous image that the corrections mainly focus around the cube and that the

corrections are most accurate in the regions with a high strain rate. In some cases the predictions are actually

opposite to the training data as can be seen in Figure 4.12e.
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Figure 4.10: Comparing the model form and coefficient sizes for the discovered models for the R correction term. Rectangles indicate

positive coefficients, ovals indicate negative coefficients.

In Figures 4.13a and 4.13b a similar comparison is made for the R correction fields at z = 0.1 and z =
0.5. This shows that the R correction models is mainly predicting the correction near the cube surfaces.

Meanwhile the target field also has correction further away from the cube, for example in front of the cube

the target value is mainly negative, while the model does not predict a correction there. Overall the biggest

correction regions are captured, however the correction values show less contrast compared to the targets

with less extreme values.
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(a) b∆

i j X X
(b) b∆

i j X Y
(c) b∆

i j X Z

(d) b∆

i j Y Y
(e) b∆

i j Y Z
(f) b∆

i j Z Z

Figure 4.11: Comparison between the training data and the correction model prediction for the anisotropy correction b∆

i j
at height

z = 0.1. Top images are the model approximations of the frozen approach target values shown in the bottom images.

(a) b∆

i j X X
(b) b∆

i j X Y
(c) b∆

i j X Z

(d) b∆

i j Y Y
(e) b∆

i j Y Z
(f) b∆

i j Z Z

Figure 4.12: Comparison between the training data and the correction model prediction for the anisotropy correction b∆

i j
at height

z = 0.5. Top images are the model approximations of the frozen approach target values shown in the bottom images.
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(a) z = 0.1. (b) z = 0.5.

Figure 4.13: Comparing the model prediction for R from the correction model to the target value. Top: model prediction, Bottom: target

correction field. Cube top view at different heights.

4.1.6. Model corrected RANS
Once one of the correction models has been picked it needs to be implemented in the openFOAM solver.

How this is done is described in Section 3.3.3. For the cube the model that has been implemented consists of

the two equations shown in (4.1) and (4.2).

b∆

i j = T (1)(28.68361I1 +4.71739I2 −0.35604)

+T (2)(−88.99302I1 +68.76692I2 +13.80382)

+T (3)(20.59135I1 −0.85935)

+T (4)(11.45876I1 −2.76972I2 −0.94415)

(4.1)

R = T (1)(−35.74086I1I2 −69.5826I1 +39.73533I2
2 +7.57252I2 +3.73854)

+T (3)(5.86701I1 +0.3755I2
2 −6.78427I2 −16.47849)

+T (4)(−2.30422I1 −0.21816I2
2 +3.13597I2 −4.82169)

(4.2)

The application of this correction model has been done in two different ways. The first is to start from

the baseline solution and slowly introduce the corrective equations from here. The other is to start solving

directly with these corrective equations applied. It turned out that the latter approach is more effective. Since

the baseline solution is so far off from the DES solution it takes more iterations to come from the baseline

RANS solution towards a converged corrected solution than to start from 0 and have the corrective fields

applied from the start. It turned out as can be seen in Figure 4.14 that the latter approach actually converges

faster than the baseline simulation.

An explanation for this can be found by looking at the final converged solutions from the modelled approach

and the baseline RANS Figures 4.15. What can be seen is that the correction model generally adds turbulent

kinetic energy to the flow and therefore adds a lot of stability. This leads to a convergence rate being higher

and continuing lower than using the baseline k −ω-SST model especially since the number of iterations

required for each solver iteration of the velocity was reduced from requiring 3 inner loop iterations for the

velocity field to just one iteration. This means that the added stability from the correction model actually

speeds up the solving process despite being slightly more computationally expensive with the additional

terms that need to be calculated.

The results that are shown in the following section are achieved by adding the full correction for the R

correction and just 50% of the b∆

i j
-correction as a higher number showed stability issues. A more thorough

research into how much correction can be added and how this should be done can be found in Section 4.1.8.
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(a) Converge history of the baseline RANS simulation (b) Convergence history of the corrected RANS simulation

Figure 4.14: Comparing the convergence of the baseline and the corrected RANS simulations for the wall mounted cube case

When looking at the results the most obvious thing that stands out is the difference in the size of the wake.

This can be very clearly seen when looking at a slice through the centre of the cube in Figures 4.15 and 4.16

and when looking at the streamlines on the bottom surface in Figure 4.17. The most likely explanation for the

reduction of the wake is in the additional production from the corrective terms. This has caused the flow that

is separated on the top and the sides of the cube to re-attache again. This can be seen in the flow on top of

the cube that now has a smaller recirculation area (Figure A.1).

Another thing that has been changed due to the corrective terms in the model is the location of the

horseshoe vortex in front and around the sides of the cube. The location is closer to the cube all around as

can be clearly seen in Figure 4.17. As can be seen the vortex starting point is moved closer and the trajectory

around the cube is also moved closer to the cube, more in line with the DES result but what looks like a bit

too close and lacking the outboard motion after the cube. In Figure A.2 the starting location of the vortex is

shown in more detail. In this figure it is clear that the location has moved forward to the cube, however it

looks like it is moved to far and that the strength has increased too much in comparison to the DES results.
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Figure 4.15: Comparison of the velocity magnitude. Top: Baseline RANS, Centre: DES, Bottom: Corrected 100%R 50%b∆

i j

Figure 4.16: Direct comparison of the x-velocity component in the centre plane of the cube y = 4.5
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Figure 4.17: Top: Baseline RANS, Middle: DES, Bottom: Corrected 100%R 50%b∆

i j
. Velocity magnitude and streamlines at the bottom of

the domain.
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Figure 4.18: Top: Baseline RANS, Middle: DES, Bottom: Corrected 100%R 50%b∆

i j
, velocity magnitude and vectors at the middle height

of the cube z = 0.5
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Figure 4.19: Top: Baseline RANS, Middle: DES, Bottom: Corrected 100%R 50%b∆

i j
, pressure coefficient at the centre of the cube.
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4.1.7. Model regression with 10 tensors and 5 invariants
One of the things that has been investigated is the effect of limiting the number of input Tensors to 4 and the

number of invariants to 2. To do this a model regression has been done using all 10 tensors and 5 invariants

as basis functions.

In Figure 4.20 and Figure 4.21 the results for the correction models regression can be found. What can be

seen in this figure is that from the extended library of complex basis functions mainly the simplest terms are

seen back in the models. The list of basis functions can be found in Table 4.3. As expected the accuracy

of the model reduces with number of basis functions used and size of coefficients. The models that are

found using this list of basis functions generally have a smaller number of basis functions compared to the

models found using only the first 4 tensors and 2 invariants. This means that the most complex model has a

sufficiently small number of variables to not be too computationally expensive. In order to have coefficients

of sufficiently small size a ridge α value of 0.1 was required. The model that was selected is model 55 from

Figure 4.20 and is shown in (4.3).

b∆

i j = T (1)(18.23125I1 −1.35478I3 −0.08781)+7.56892T (2)

+T (3)(0.37684I1 −0.37384)+T 4(−0.06152I1 −0.89674I2 −0.72209)

−2.62734T (5) +1.96763T (6) −13.00702T (7) −11.9126T (8))

(4.3)

The model results for R are shown in Figure 4.21. It can be seen that these models are generally more

complex and also contain more variations of the invarariants, where in the model for b∆

i j
the model tensors

were mainly multiplied with constants. The model that was picked from this list is model 175 and is shown in

(4.4).

If one takes a good look at Table 4.3, where the basis functions used are shown one can see that there are a

few of duplicates. This is due to a bug in the cliquing part of the code. he cliquing works by grouping function

according to similarity, after which from each group the simplest function is selected. With this large set of

basis functions it has occurred that some of the simplest basis functions show up in multiple groups and are

therefore selected twice. This should not matter for the end result as identical functions are balanced by each

other and can simply be summed up to get the final coefficient. It is however computationally inefficient

and therefore in future an additional check will be performed to remove these double entries in the basis

functions list. This bug only appears when the full set of 10 tensors and invariants is used, with just the first 4

tensors and 2 invariants this did not happen.

R = T (1)(−70.72229I1 +36.89125I2
2 +6.3582I3 −3.02241I4 +3.74826)

+T (3)(5.83195I1 +0.39076I2
2 −0.57387I3 −16.71976)

+T (4)(−2.32321I1 −0.21646I2
2 +3.18368I2 +0.17686I3 −5.13732)

+T (5)(−17.59335I1 +0.76685I5 −1.78069I 22 +18.73711I2 +2.99085)

+T (6)(−35.18669I1 +5.98169)+T (9)(0.1964I2 +0.00361I5 −7.16874)

+T (10)(−3.0e −5I1
2 −0.00167I1 +2.0e −5I5)

(4.4)

Taking a look at the Figures 4.22, 4.23, 4.24 and A.4 a direct comparison is made between the corrective

fields described by equations (4.1), (4.2) and (4.3), (4.4). Both these models have a mean squared error when

fitted to the training data that is around the same order of magnitude, both models also have coefficients

that are of the same order of magnitude and a similar number of model terms to get a equivalent level of

complexity.

Looking at the first Figure 4.22 shows a slice through the centre of the centre of the cube in the y plane.

The velocity magnitude is plotted and the velocity direction is shown through vectors. There are some small

differences between the top and bottom images. The shape of the wake seems to be slightly different and the

recirculation area on the top of the cube seems to be larger using the full model in the bottom image. This

can be seen in more detail in Figure A.3. This shows the correction model with 10 tensors and 4 invariants to

give a slightly better prediction over the model with just 4 tensors and 2 invariants.
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Figure 4.20: Visualising the different models found for b∆

i j
from regressing a function with 10 Tensors and 5 Invariants.
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Figure 4.21: Visualising the different models found for R from regressing a function with 10 Tensors and 5 Invariants.
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1 I1T (1) 57 I2I3T (3) 113 I5T (8) 169 I2I 2
3 T (9) 225 I2I 2

4 T (4) 281 I2I4I5T (3)

2 cT (8) 58 I2I3T (4) 114 I1I5T (10) 170 I 2
3 I4T (7) 226 I2I 2

4 T (5) 282 I2I4I5T (4)

3 I1T (3) 59 I2I3T (5) 115 I2I5T (1) 171 I 2
1 I4T (2) 227 I2I 2

4 T (6) 283 I2I4I5T (5)

4 I1T (4) 60 I2I3T (6) 116 I2I5T (4) 172 I 2
1 I4T (4) 228 I2I 2

4 T (8) 284 I2I4I5T (8)

5 I1T (5) 61 I2I3T (7) 117 I2I5T (5) 173 I 2
1 I4T (5) 229 I2I 2

4 T (9) 285 I2I4I5T (9)

6 I1T (7) 62 I2I3T (8) 118 I2I5T (7) 174 I 2
1 I4T (6) 230 I2I 2

4 T (10) 286 I2I 2
4 T (7)

7 cT (8) 63 I2I3T (9) 119 I2I5T (8) 175 I 2
1 I4T (7) 231 I3I 2

4 T (1) 287 I3I4I5T (1)

8 cT (9) 64 I3I4T (7) 120 I2I5T (9) 176 I1I4T (8) 232 I3I 2
4 T (2) 288 I3I4I5T (2)

9 I1T (10) 65 I 2
3 T (1) 121 I4I5T (7) 177 I 2

1 I4T (9) 233 I3I 2
4 T (3) 289 I3I4I5T (3)

10 cT (6) 66 I 2
3 T (2) 122 I3I5T (1) 178 I 2

1 I4T (10) 234 I3I 2
4 T (4) 290 I3I4I5T (4)

11 cT (7) 67 I 2
3 T (3) 123 I3I5T (3) 179 I4I5T (7) 235 I3I 2

4 T (5) 291 I3I4I5T (5)

12 cT (9) 68 I 2
3 T (4) 124 I3I5T (4) 180 I 2

2 I4T (1) 236 I3I 2
4 T (6) 292 I3I4I5T (6)

13 I2T (4) 69 I 2
3 T (5) 125 I3I5T (5) 181 I 2

2 I4T (3) 237 I3I 2
4 T (8) 293 I3I4I5T (8)

14 I2T (5) 70 I 2
3 T (6) 126 I3I5T (6) 182 I 2

2 I4T (4) 238 I3I 2
4 T (9) 294 I3I4I5T (9)

15 I2T (7) 71 I 2
3 T (7) 127 I3I5T (7) 183 I 2

2 I4T (5) 239 I3I 2
4 T (10) 295 I3I4I5T (10)

16 I2T (8) 72 I 2
3 T (8) 128 I3I5T (9) 184 I 2

2 I4T (7) 240 I1I5T (1) 296 I 2
4 I5T (1)

17 I2T (9) 73 I 2
3 T (9) 129 I3I5T (10) 185 I 2

2 I4T (8) 241 I5T (3) 297 I 2
4 I5T (2)

18 I4T (7) 74 I 2
3 T (10) 130 I4I5T (1) 186 I 2

2 I4T (9) 242 I1I5T (7) 298 I 2
4 I5T (3)

19 I3T (1) 75 I1I4T (1) 131 I4I5T (2) 187 I2I 2
4 T (7) 243 I1I5T (9) 299 I 2

4 I5T (4)

20 I3T (2) 76 I1I4T (2) 132 I4I5T (3) 188 I1I3I4T (2) 244 I 2
1 I5T (10) 300 I 2

4 I5T (5)

21 I3T (3) 77 I1I4T (3) 133 I4I5T (4) 189 I1I3I4T (4) 245 I 2
2 I5T (1) 301 I 2

4 I5T (6)

22 I3T (4) 78 I1I4T (4) 134 I4I5T (5) 190 I1I3I4T (5) 246 I 2
2 I5T (4) 302 I 2

4 I5T (8)

23 I3T (5) 79 I1I4T (5) 135 I4I5T (6) 191 I1I3I4T (6) 247 I 2
2 I5T (5) 303 I 2

4 I5T (9)

24 I3T (6) 80 I1I4T (6) 136 I4I5T (8) 192 I1I3I4T (7) 248 I 2
2 I5T (9) 304 I 2

4 I5T (10)

25 I3T (7) 81 I1I4T (7) 137 I4I5T (9) 193 I1I3I4T (9) 249 I2I4I5T (7) 305 I 2
5 T (1)

26 I3T (8) 82 I1I4T (9) 138 I4I5T (10) 194 I1I3I4T (10) 250 I3I5T (2) 306 I 2
5 T (8)

27 I3T (9) 83 I1I4T (10) 139 I 2
5 T (4) 195 I2I3I4T (1) 251 I1I3I5T (4) 307 I1I 2

5 T (10)

28 I3T (10) 84 I2I4T (1) 140 I 2
5 T (5) 196 I3I4T (7) 252 I1I3I5T (7) 308 I2I 2

5 T (4)

29 I4T (1) 85 I4T (7) 141 I 2
5 T (7) 197 I2I3I4T (3) 253 I3I5T (8) 309 I2I 2

5 T (5)

30 I4T (2) 86 I2I4T (3) 142 I 2
5 T (9) 198 I2I3I4T (4) 254 I1I3I5T (10) 310 I 2

2 I5T (8)

31 I4T (3) 87 I2I4T (4) 143 I 2
5 T (10) 199 I2I3I4T (5) 255 I2I3I5T (1) 311 I2I 2

5 T (9)

32 I4T (4) 88 I2I4T (5) 144 I2I5T (3) 200 I2I3I4T (6) 256 I2I3I5T (3) 312 I4I 2
5 T (7)

33 I4T (5) 89 I2I4T (6) 145 I1I3T (1) 201 I2I3I4T (8) 257 I2I3I5T (4) 313 I3I 2
5 T (1)

34 I4T (6) 90 I2I4T (8) 146 I1I3T (2) 202 I2I3I4T (9) 258 I2I3I5T (5) 314 I3I 2
5 T (4)

35 I4T (8) 91 I2I4T (9) 147 I1I3T (3) 203 I3I 2
4 T (7) 259 I2I3I5T (6) 315 I3I 2

5 T (5)

36 I4T (9) 92 I 2
4 T (7) 148 I1I3T (5) 204 I 2

3 I4T (1) 260 I2I3I5T (7) 316 I3I 2
5 T (6)

37 I4T (10) 93 I3I4T (1) 149 I1I3T (6) 205 I 2
3 I4T (2) 261 I2I3I5T (8) 317 I3I 2

5 T (7)

38 I1T (6) 94 I3I4T (2) 150 I1I3T (8) 206 I 2
3 I4T (3) 262 I2I3I5T (9) 318 I3I 2

5 T (9)

39 I5T (4) 95 I3I4T (3) 151 I1I3T (9) 207 I 2
3 I4T (4) 263 I3I4I5T (7) 319 I3I 2

5 T (10)

40 I5T (5) 96 I3I4T (4) 152 I1I3T (10) 208 I 2
3 I4T (5) 264 I1I 2

3 T (7) 320 I4I 2
5 T (1)

41 I5T (7) 97 I3I4T (5) 153 I 2
2 I3T (1) 209 I 2

3 I4T (6) 265 I 2
3 I5T (4) 321 I4I 2

5 T (3)

42 I5T (9) 98 I3I4T (6) 154 I 2
2 I3T (3) 210 I 2

3 I4T (8) 266 I 2
3 I5T (5) 322 I4I 2

5 T (4)

43 I5T (10) 99 I3I4T (8) 155 I 2
2 I3T (4) 211 I 2

3 I4T (9) 267 I 2
3 I5T (6) 323 I4I 2

5 T (5)

44 I 2
1 T (1) 100 I3I4T (9) 156 I 2

2 I3T (5) 212 I 2
3 I4T (10) 268 I 2

3 I5T (7) 324 I4I 2
5 T (8)

45 I 2
1 T (10) 101 I3I4T (10) 157 I 2

2 I3T (6) 213 I1I 2
4 T (1) 269 I 2

3 I5T (10) 325 I4I 2
5 T (9)

46 I 2
2 T (1) 102 I 2

4 T (1) 158 I 2
2 I3T (7) 214 I1I 2

4 T (2) 270 I1I4I5T (1) 326 I4I 2
5 T (10)

47 I 2
2 T (3) 103 I 2

4 T (2) 159 I 2
2 I3T (8) 215 I1I 2

4 T (3) 271 I1I4I5T (2) 327 cT (1)

48 I 2
2 T (4) 104 I 2

4 T (3) 160 I 2
2 I3T (9) 216 I1I 2

4 T (4) 272 I1I4I5T (3) 328 cT (2)

49 I 2
2 T (5) 105 I 2

4 T (4) 161 I2I3I4T (7) 217 I1I 2
4 T (5) 273 I1I4I5T (4) 329 cT (3)

50 I 2
2 T (7) 106 I 2

4 T (5) 162 I2I 2
3 T (1) 218 I1I 2

4 T (6) 274 I1I4I5T (5) 330 cT (4)

51 I2I5T (2) 107 I 2
4 T (6) 163 I2I 2

3 T (3) 219 I1I 2
4 T (7) 275 I1I4I5T (6) 331 cT (5)

52 I 2
2 T (9) 108 I 2

4 T (8) 164 I2I 2
3 T (4) 220 I1I 2

4 T (8) 276 I1I4I5T (7) 332 cT (10)

53 I2I4T (7) 109 I 2
4 T (9) 165 I2I 2

3 T (5) 221 I1I 2
4 T (9) 277 I1I4I5T (8)

54 I1I3T (4) 110 I 2
4 T (10) 166 I2I 2

3 T (6) 222 I1I 2
4 T (10) 278 I1I4I5T (9)

55 I1I3T (7) 111 I1I5T (4) 167 I2I 2
3 T (7) 223 I2I 2

4 T (1) 279 I1I4I5T (10)

56 I2I3T (1) 112 I5T (6) 168 I2I 2
3 T (8) 224 I2I 2

4 T (3) 280 I2I4I5T (1)

Table 4.3: List of basis functions used for the model regression with 10 tensors and 5 invariants.
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Figure 4.22: Comparing a correction model using 4 tensors and 2 invariants (Top) with a correction model using 10 tensors and 5

invariants (Bottom). The DES solution is shown in the centre. Velocity magnitude with vectors.

Looking at the streamtraces on the bottom of the domain in Figure 4.24 no big differences can be seen,

there are some very small differences in the velocity magnitude near the recirculation areas directly behind

the cube, but in terms of re-attachment locations and vortex trajectories no differences can be seen.

Moving the slice in the z-plane up to the centre of the cube gives Figure 4.25. This region showed the

biggest improvement from both the corrections and the closest match to the DES results. In this comparison

the result shows some very small differences in the wake as the velocity magnitude is generally lower in the

model with 10 tensors and 5 invariants compared to the model limited to 4 tensors and 2 invariants. Overall

the shape and size of the wake is the same for both models. This can also be seen when an iso-surface is

plotted of the total pressure coefficient in Figure A.4. At first sight no differences can be spotted both in the

shape and the colouring indicating the pressure values at these points in the domain.

What can be concluded from this comparison is that by using the full set of tensors and invariants no

significant improvement in the final result is achieved and therefore due to the additional computational

cost the computation of these additional terms introduce the models limited to 4 tensors and 2 invariants

are preferable. Another benefit of limiting the number of tensors and invariants is that the number of basis

functions used in the regression is limited and therefore the computational requirements for the regression

are reduced, both in terms of computational time and memory usage. Because of this conclusion all the

further models in this research will use the 4 tensors and 2 invariants for the basis functions.
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Figure 4.23: Comparing the velocity x-component for the correction models with 10 tensors and 5 invariants with the correction models

using 4 tensors and 2 invariants.

Figure 4.24: Comparing a correction model using 4 tensors and 2 invariants (Top) with a correction model using 10 tensors and 5

invariants (Bottom). The DES solution is shown in the middle. Velocity magnitude with surface streamlines on the bottom of the domain.
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Figure 4.25: Comparing a correction model using 4 tensors and 2 invariants (Top) with a correction model using 10 tensors and 5

invariants (Bottom). The DES solution is shown in the centre. Velocity magnitude with vectors at half height of the cube z=0.5

4.1.8. Different levels of anisotropy correction

All the simulations that have been shown up to this point have been done with 100% R and 50%b∆

i j
for stability

reasons. What is interesting is to gradually apply the R and b∆

i j
corrections and see how the solution changes

and investigate the effect of each of the correction fields.

To see this change happen in Figure 4.26 sections are plotted for different converged fields with various

levels of b∆

i j
correction. The top field shows the baseline RANS solution without any correction fields, the

second shows the solution of adding 50% R correction and the third with the full R-correction. The third

image is of the solution where an additional 25% of the b∆

i j
correction is added and finally the fourth image is

of the solution with a total of 50%b∆

i j
correction added. Adding more correction makes the solution unstable.

What can be seen is that the first image with half the R correction the result is already improved compared

to the baseline solution and that when the full correction is added the solution is improved further. By adding

the 25% of the b∆

i j
correction the shape of the wake is modified and the re-attachment point is more in line

with the DES solution. Also, the recirculation area on the top of the cube is lengthened making it closer to

the DES solution. Adding 50% of this correction improves the circulation on the top even more, as well as the

re-attachment region, however the shape of the wake is not necessarily more accurate in terms of the velocity

magnitude.

Looking at the streamtraces in Figure 4.28 on the bottom of the domain gives an interesting insight in how

both correction fields change the flow in proximity to the wall. The R correction mainly decreases the size
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Figure 4.26: Visualisation of the effect of the corrective fields. 1st: 50%R 0%b∆

i j
2nd: 100%R 0%b∆

i j
3rd 100%R 25%b∆

i j
4th 100%R 50%b∆

i j
.

Velocity magnitude with vectors.

Figure 4.27: Comparing the velocity at the centre plane of the cube y = 4.5 for different levels of the correction fields
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Figure 4.28: Visualisation of the effect of the corrective fields. 1st: 50%R 0%b∆

i j
2nd: 100%R 0%b∆

i j
3rd 100%R 25%b∆

i j
4th 100%R 50%b∆

i j
.

Velocity magnitude with streamtraces on the bottom surface.

of the wake, as adding half the R correction already moves the recirculation zone centre closer to the cube.

Adding the full correction moves these further inboard and reduces the size of the wake even more. The b∆

i j

correction field mainly moves these recirculation zones even more inboard, only in the centre of the cube the

wake shape remains longer as it moves the wake in a pointy shape.

This pointy shape only happens near the bottom of the boundary as the flow on a plane a bit higher,

shown in Figure 4.29 shows less of a pointy shape but clearly shows the reduction in size and a movement of

the recirculation area when more correction is added. This is supported by the images shown in Figure A.5

which shows the velocity magnitude at the height of the middle of the cube.

Finally by looking at the total pressure coefficient through isocontours at Cp0 = 0.5 in Figure A.6 the

general reduction in wake shape is visualised. It also shows the narrowing of the wake near the bottom

surface. The colouring of the pressure shows that the effect of the correction fields on the pressure field is

small and that the correction mainly influences the resulting velocity field.

Averaging the unstable solutions

In all the simulations that have been with the model corrections the b∆

i j
correction had to be limited

to 50% of the original correction predicted by the model. After some investigation with slowly adding more

correction as iterations progress it was found that with the full field the solution does not diverge but oscillates.
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Figure 4.29: Visualisation of the effect of the corrective fields. 1st: 50%R 0%b∆

i j
2nd: 100%R 0%b∆

i j
3rd 100%R 25%b∆

i j
4th 100%R 50%b∆

i j
.

Velocity magnitude with vectors z = 0.2.

The hypothesis is that these oscillations are around a solution that comes close to the mean flow of the DES.

To investigate this a simulation has been done where the solution is first allowed to converge to a stable

solution with the b∆

i j
at 50% of the original. After this the full 100% of the correction is added to the solution.

What can be seen in the residuals is a stable trend, they are not converging or diverging but staying around

the same magnitude. This is left running for 1000 iterations after which the averaging is started for another

500-1000 iterations.

The results of this procedure are found below and they are compared to the solution of the flow at 50%

b∆

i j
correction and the DES mean flow. The averaged results are achieved by first allowing the solver to run

for 1000 iterations from the 50% b∆

i j
converged solution. After that the solver is run for another 1000 iteration

over which the solution is averaged.

Looking at the results in Figure 4.30 it can be be seen that with the averaging parts of the flow show a more

accurate prediction and others become worse. The part that has improved is the wake and the re-attachment

zone at the bottom of the cube whose location has moved forward, more in line with the DES result. What

has worsened is that the recirculation area on the top has reduced in size and as a result the circulation area

behind the top trailing edge of the cube is positioned lower. The centre of the main recirculation region

however is now in line with the prediction from the DES in contrary to the location of the 50% b∆

i j
solution.

When a closer look is taken at the flow near the bottom of the domain only one small change can be

observed and that is that the length of the wake is still a pointy shape but shorter, the recirculation area
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Figure 4.30: Comparing 50% b∆

bi j
correction (Top) with an averaged solution with 100% b∆

i j
correction (Bottom). Both have 100% R

correction. The middle is the DES solution for reference. Velocity magnitude comparison with vectors on the centre of the y-plane.

Figure 4.31: Comparing the velocity x-component for different levels of b∆

i j
: 50%b∆

i j
without averaging and 100%b∆

i j
with averaging
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Figure 4.32: Comparing 50% b∆

bi j
correction (Top) with an averaged solution with 100% b∆

i j
correction (Bottom). Both have 100% R

correction. The middle is the DES solution for reference. Streamtraces on the bottom of the domain.

behind the cube is still the same shape but a bit smaller, meaning that the rotation centres are still too far

inboard. The velocity profile a bit higher at z = 0.2 in Figure 4.33 shows a similar change, a shorter wake but

the recirculation areas remain too close to the centre. The separation regions on the sides of the cube are

smaller which is a move further away from the DES solution. Overall the shape of the wake is more in line

with the DES solution, however the flow close too the cube is worse.

This trend seen at the bottom of the domain and at z = 0.2 is also visible at the middle height of the cube

at z = 0.5 as can be seen in Figure A.7. Again the shape of the wake is more in line with the DES solution,

however the flow near the sides of the cube is showing a smaller separation and recirculation region.

Finally when the total pressure coefficient is compared in Figure A.8 it can again be seen that the wake is

shorter and in terms of shape more in line with the DES solution. The biggest difference however, can be seen

at the bottom of the domain where the wake in the corrected RANS solution is a lot narrower than that of the

DES solution. The re-attachment location and the recirculation are the same or close to the DES solution,

especially for the averaged solution with the full correction field. However, the velocity magnitude and the

total pressure do not recover as quickly as in the DES and therefore the wake is a lot longer and stronger in

the corrected RANS solutions compared to the DES solution. Also what is missing is the phenomenon where

the horshoe vortex as it traveles downstream is forced away from the centre of the middle of the domain. In

all RANS simulations, both corrected and uncorrected this phenomenon is never captured and the horseshoe

vortex goes travels downstream in an almost straight line.
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Figure 4.33: Comparing 50% b∆

bi j
correction (Top) with an averaged solution with 100% b∆

i j
correction (Bottom). Both have 100% R

correction. The middle is the DES solution for reference. Velocity magnitude on a plane at z=0.2

To find an explanation for why the solution becomes unstable for large correction values of b∆

i j
a look

is taken again at the corrective fields from the frozen approach in Figures 4.8a and 4.8b. These show the

total correction in turbulence production and the direct contribution from the correction on the turbulent

kinetic energy. Figure 4.8a shows that the total correction in turbulence is mainly a reduction of turbulence

production. When comparing this figure to the direct contribution from the correction on the turbulent

kinetic energy in Figure 4.8b it can be seen that this contribution is mainly positive thereby adding turbulence

production and making the solution more stable. This concludes that the correction coming from the anisotropy

correction is mainly a reduction in turbulence production. This is in line with the experience from the

corrective models. The corrective model term directly correcting the turbulent kinetic energy is adding stability

to the solution, while the anisotropy correction is making the solution more unstable.
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4.1.9. Testing the model’s extrapolating qualities
In order to asses the extrapolating qualities of the correction model, the model using 4 tensors and 2 invariants

(4.1) (4.2) has been applied to other geometries as well. The results of which will follow in Section 4.2.6

and Section 4.3.5. These geometries are completely different and are therefore the ultimate test for the

extrapolating qualities of this correction model. To get an idea of the performance of the model on a similar

but slightly different geometry the cube test case has been altered to a cube that is 1.5x longer than the

original, making it a wall mounted box of size 1.5×1×1 (l ×w ×h).

Taking a first look at the results in Figure 4.34 shows a similar improvement to what was seen in the original

box. The length of the wake has reduced and is almost similar to that of the DES, be it slightly longer and with

a lower velocity magnitude directly behind the box. The recirculation area on top of the box has improved

drastically with a reattachment area now visible.

This image is confirmed when looking at the x-component of the velocity in Figure 4.35 This shows that

in all the areas the x-component of the velocity has moved towards the DES solution. Both in front of the box,

near the horseshoe vortex location and in the wake the velocity profile has moved towards the DES solution,

with the largest change visible on top of the box and directly behind the box, sometimes over-correcting.

Also when looking at the streamtraces at the bottom of the domain in Figure 4.36 a similar change due

to the correction model can be seen as before. What is clear is that the recirculation areas directly behind

the box are moved inboards and closer to the box. he correction near the bottom plane is not necessarily

an improvement as the anisotropy correction causes an over-correction in this area, as was also seen in the

previous results. The improvement is more obvious when looking at the velocity magnitude at the middle

height of the box in figure A.10, this shows a velocity profile similar to that of the DES solution and a good

improvement over the baseline.

Figure 4.34: Velocity magnitude with vectors at the centre of the box. Top: baseline, middle: DES, bottom: 100%R 50%b∆

i j
correction.
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Finally when the wake is visualised through an isosurface of the total pressure in figure A.9 the reduction

in wake size and the change in shape is clearly visible. In this image the influence of the correction model

on the wake shape especially near the bottom plane is also clearly visible. It also shows that even though the

wake has reduced significantly with the application of the correction model it is not matching the DES yet,

for this a greater correction is needed.

Figure 4.35: Directly comparing the X-velocity component in the centre plane of the box

Figure 4.36: Velocity magnitude with streamtraces on the bottom of the domain of the box. Top baseline, middle DES, bottom

100%R,50%b∆

i j
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4.2. Infinite circular cylinder
A very challenging case for a RANS solver is that of the infinite circular cylinder. As the flow is generally

unstable especially at low Reynolds numbers, the RANS solvers generally struggle to converge to the correct

mean flow.

The setup for this case is a circular cylinder placed in the centre of a domain that has a length of 29m, a

height of 18m and a width of π. The diameter of the cylinder is set 1, combined with an inflow velocity of

1m/s and a dynamic viscosity of 7.14285×10−6 the Reynolds number is set to 140000. The cylinder centre is

placed 9 m after the inflow plane and in the centre, height wise. The boundary conditions for the sides are set

to symmetry planes to create the theoretically infinite cylinder.

In contrary to the wall mounted cube for this flow case, not a DES but a wall resolved LES was performed to

be used as the high fidelity training data for the SpaRTA methodology. This high fidelity data set is described

in Section 4.2.1. After this the setup of the baseline RANS simulation is discussed in Section 4.2.2 with the

frozen approach results in Section 4.2.3. From the results of the frozen approach the propagated approach

was tried but resulted in diverging results, this is discussed in Section 4.2.4. The model regression from the

frozen approach results are shown in Section 4.2.5 of which the results when applied in the turbulence model

are shown in Section 4.2.6, where they are compared to results from the model trained on the Cube, the

baseline and the LES results.

4.2.1. Cylinder high fidelity data source: LES
The LES was performed on a structured mesh created with the gmesh software. This software allow for

the creation of fully structured and unstructured meshes. The mesh can be seen in figure A.11 with the

characteristics shown in Table 4.4. The maximum values are mainly dominated by the corners where the

circular regions transforms into the straight sections.

Number of Cells 6071490

Cell Type Hexahedra

Max Aspect Ratio 684.600

Min Volume 9.910e-08

Max Volume 0.013102709

Mesh max non-orthonogonality 44.556061

Max skewness 0.54174513

Table 4.4: Characteristics of the mesh used for the LES of the infinite cylinder.

The setup of the LES used explicit time-stepping with the WALE SGS model and synthetic turbulent inflow

as described in Section 3.1.3. For this LES the pimpleFoam solver has been used with dynamic time step

adjustments to keep the CFL number constant at a value of 0.8.

4.2.2. Baseline RANS
To have a reference for the model performance a baseline RANS simulation has been run. This simulation

was run on a smaller mesh than the LES. The topology of the mesh is the same but the number of cells has

been reduced as the mesh gets coarser more quickly from the cylinder outboards. The mesh is made for a

wall resolved RANS with a target of y+= 1.

Number of Cells 851776

Cell Type Hexahedra

Max Aspect Ratio 1207.8738

Min Volume 3.7991e-07

Max Volume 0.1335

Mesh max non-orthonogonality 44.2376

Max skewness 0.6308

Table 4.5: Characteristics of the mes used for the RANS of the infinite cylinder.

The stability of the solution has proven troublesome as for this flow case the flow is generally unstable

as was discovered from the LES. The flow generally flaps behind the cylinder as the separation areas on the
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bottom and top sides of the cylinder shift locations constantly creating the so called von Kármánn vortex

street. This flapping motion was still present in the RANS simulation, even though the method is solving for

the average solution. Therefore the decision was made to let the solver run until the Residuals were no longer

decreasing, to then average the solutions over the last 500 iterations to get an estimate for the mean flow.

4.2.3. Correction fields calculation: Frozen Approach
With the averaged LES results the frozen approach was run on the same mesh as the LES. The method

converged in 2500 iterations to a stable solution for ω and the correction fields b∆

i j
and R.

The averaged flow in this case should be identical at each section through the cylinder, therefore a slice

through the centre of the cylinder will be used to visualise the flow and correction fields. This assumption of

identical flow at each section is not necessarily true as can be seen in Figure 4.41, but it also shows that the

centre location is the best to compare results as there the influence of the symmetry planes is the smallest.

In Figure 4.37a the total correction in turbulence production from both the anisotropy correction and

the direct k correction is shown. This figure shows that there is a sharp region where there is the biggest

correction in turbulence production and dissipation. Close to the cylinder there is a reduction in turbulence

production with slightly further away from the cylinder an area of additional production. When looking at the

direct correction in the turbulent kinetic energy correction in figure (4.6) it can be seen that this correction

mainly adds turbulence production. From this it can be concluded that the correction from the anisotropy

correction then must be mainly negative.

(a) Total turbulent kinetic energy production correction (b) Direct turbulent kinetic energy correction, R.

Figure 4.37: Cylinder frozen approach corrective fields.

4.2.4. Correction field propagation
The first test done with the corrective fields is to start from the LES solution and add the corrective fields from

the frozen approach and let a RANS simulation run from here. This method worked as intended, even though

the initial residuals were not extremely small, but in contrary to this approach applied to the wall mounted

cube where the solution diverged. The hypothesis for this is that this cylinder is wall resolved in contrary to

the cube where wall models are used.

This led to a final result that did not converge to a stable solution, as instabilities caused the solution to

remain flapping behind the cylinder, with the average solution close to the LES solution. The next step is

then to propagate these correction fields on a baseline RANS solution. This baseline RANS is run on the same

mesh as the LES and frozen approach, in contrary to the smaller mesh that will be used for the modelled

approach. This approach led to an immediately diverging solution, with the correction fields immediately

causing the dissipation values to shoot to infinity locally. This was to be expected as what is generally seen
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in this propagated approach is that if the baseline solution is far off the original and is already struggling to

converge properly, adding the corrective fields directly rarely leads to a stable solution.

4.2.5. Correction model Regression
With the partial success of the propagated approach the corrective field is now added through modelling of

the corrective fields. The resulting models that were found for b∆

i j
and R through the SpaRTA methodology

are shown in figures 4.38 and 4.39. With the basis functions on the x-axis being available in Table 4.6. These

images show a similar buildup of model structures compared to the models of the cube. With the simplest

functions always occurring in the models and the error compared to the training data increasing with less

basis functions used and smaller coefficients.

This observation is consistent for the b∆

i j
term but the models for the R term show some new observations.

It shows very large coefficients for the regression without the l2 norm applied (ridge α = 0). It is also not

necessarily the case that the models with a higher number of basis functions fit the training data better.

1 I1T (1) 7 I2T (4) 13 I 2
2 T (2) 19 I 3

2 T (2) 25 I 4
2 T (1) 31 I1I 3

2 T (1)

2 I1T (2) 8 I 2
1 T (1) 14 I 2

2 T (4) 20 I 3
2 T (4) 26 I 4

2 T (2) 32 I1I 3
2 T (2)

3 I1T (3) 9 I1I2T (1) 15 I 2
1 T (2) 21 I 2

1 I2T (1) 27 I 4
2 T (4) 33 cT (1)

4 I1T (4) 10 I1I2T (2) 16 I 2
1 T (3) 22 I1I 2

2 T (1) 28 I 2
1 I2T (2) 34 cT (2)

5 I2T (1) 11 I1I2T (4) 17 I1I2T (3) 23 I1I 2
2 T (2) 29 I 2

1 I2T (4) 35 cT (3)

6 I2T (2) 12 I 2
2 T (1) 18 I 3

2 T (1) 24 I 3
2 T (3) 30 I 4

2 T (3) 36 cT (4)

Table 4.6: Basis functions used for the regression of the correction model for the cylinder

The models that have been selected to be implemented into the turbulence model are model number 84

(4.5) for the b∆

i j
term and model number 340 (4.6) for the R term. These have been selected because they are

some of the simplest functions with a relatively small error on the training data. For the b∆

i j
term the model

was selected with the smallest number of basis functions without the jump in error on the training data, that

can be seen between models 12 and 13 for example.

In this case a ridge α value of 1 was necessary to get model coefficients of reasonable magnitude. This

was done after experiencing divergence during experiments where first models were selected from the ridge

α= 0.01 and α= 0.1 settings. This is because in contrast to the cube case the coefficients remained relatively

large, especially with a large anisotropy correction. This large anisotropy correction will cause some trouble

in terms of stability as can be seen later in the results.

b∆

i j = T (1)(19.24392I1 +57.85607I2 +2.93929)

+9.69506T (2) +7.80504T (3) +1.17078T (4)
(4.5)

R = T (1)(−2.82333I1 +33.82069I2 +2.58612)

+11.16664T (3) −3.10679T (4)
(4.6)
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Figure 4.38: Overview of the models found for b∆

i j
from both regression steps performed on the cylinder training data.

4.2.6. Model corrected RANS

With the correction models selected (4.5) (4.6) and implemented the corrected k −ω− SST model can be

tested. This is compared directly with the correction model that is already available from the cube case. This

model is found in (4.1) (4.2) and tested extensively in Section 4.1.6.

The first big difference between the two correction models became clear quickly during the first simulation

runs. The way the correction model in (4.5) and (4.6) were added to the solver, was by first adding the R

correction, which made the solution a bit more stable, but not by much. When adding the b∆

i j
correction

on top of this it showed that the maximum percentage of this correction field that could be added was 25%

of the original equation. When adding more of the correction, the solution would diverge and crash. This

is in contrary to the cube correction model, of which the full fields could be added to the turbulence model

without the solution diverging.

For the results shown in the following sections the maximum correction fields are added to the solution

for which the solution did not diverge. Due to the instabilities for all RANS simulations an average of the

solution is taken over the last 1000 iterations, where solver residuals remained of the same magnitude. For

the quality of the solution specific attention is paid to the size of the wake behind the cylinder, the separation

point on the cylinder and the symmetry of the averaged solution.

Firstly when looking at the x-component of the velocity in the wake of the cylinder in Figure 4.40 shows

that both correction models have improved the solution. With the model that has been trained on the cube
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Figure 4.39: Overview of the models found for R from both regression steps performed on the cylinder training data.

matching the velocity profile of the LES generally better than that trained on the cylinder case.

To illustrate the differences in stability between the different simulations and correction models a slice is

done through the middle of the cylinder to show the differences in velocity magnitude behind the cylinder.

This is shown in Figure 4.41 where there are some clear differences shown between the span-wise solution

similarity. It shows in all simulations an effect of the symmetry boundary condition. Either locally increasing

the wake length, which is the case for the LES and the cylinder trained model. Or decreasing the wake length,

as is the case for the baseline RANS and the cube trained correction model. It also shows some instabilities

near these sides for the cylinder trained correction model, being indicative of the local instabilities these

correction fields bring.

The second interesting point is to take a look at the separation point on the cylinder. This is again done at

the centre of the cylinder by looking at the velocity magnitude in Figure 4.42. In this figure it becomes clear

that the baseline solution predicts the separation point to be ever so slightly too far aft on the cylinder and

that with the corrections this point moves even further aft, with the cylinder correction model moving the

solution the furthest back.

Taking a look at the total pressure coefficient in Figure 4.43 shows the size and magnitude of the wake.

In this again some of the instabilities in the solution of both correction models can be seen. The strange

behaviour at the stagnation point might be due to the averaging procedure. The averaging of a RANS simulation

does not work the same as the averaging of an LES, as the time step of a RANS simulation does not represent
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physical time, the solutions over which are averaged might be mainly the two extremes on both sides and not

the solution between the two.

One of the things that definitely did not improve is the pressure coefficient in Figure 4.44, with a slight

improvement in the wake but a very large increase at the stagnation point which is not visible in the LES

solution, besides this the pressure drop at the high velocity areas just before the separation region, this

is something that was not seen in the cube case where the pressure coefficient saw is slight improvement

towards the DES solution.

In conclusion, both the model trained on the cylinder and the model on the cube improve the velocity

profile, but create a bigger difference in terms of pressure, this flow case remain very challenging for RANS

and the requirements for a correction model to make sure the solution converges towards a stable solution.

Figure 4.40: Velocity x-component comparison for the cube correction model
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Figure 4.41: Comparison of span-wise velocity magnitude distributions. Top: Baseline RANS, second: LES, third: RANS cylinder

correction model, Bottom: RANS cube correction model.
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Figure 4.42: Visualisation of the separation point through the Velocity magnitude, Top Baseline RANS, second: LES, third: RANS cylinder

correction model, Botom: RANS cube correction model.
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Figure 4.43: Total pressure coefficient. Top Baseline RANS, second: LES, third: RANS cylinder-correction model, Botom: RANS cube-

correction model.
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Figure 4.44: Pressure coefficient. Top Baseline RANS, second: LES, third: RANS cylinder-correction model, Botom: RANS cube-

correction model.
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4.3. Idealised wheel
The most complex flow case that has been investigated is that of the idealised rotating wheel. This flow case

is an idealised version of an isolated wheel that is rotating on a road surface. The wheel has been modelled

as a cylinder in contact with the ground. The boundary conditions simulate the rotation of the wheel and the

ground plane. With the velocity set to 1 m/s and the rotational velocity of the wheel set to match this. The

dynamic viscosity is set to 1e −6 to get in combination with a wheel diameter of 1m a Reynolds number of

1e6. The domain has a length of 30m with a width and height of 10m. The boundary conditions for the inlet

are a fixed inlet velocity with for the LES synthetically generated turbulence.

4.3.1. Wheel high fidelity data source: LES
The LES that forms the basis for the frozen approach has been run on a 102 million cell grid for a wall resolved

LES. The data from this simulation has been interpolated to a 50 million cell grid for the frozen approach and

the further post processing. The subgrid-scale model that has been used for this is the WALE model. The

solver that was used for this LES was not the OpenFOAM solver but the commercial solver Star-CCM+. The

solver was run for a total of 450s simulated time to complete 15 flowthroughs.

The topology of the mesh can be found in figures A.12 and A.13. The mesh has been created using the

snappyHexMesh Utility using refinement boxes and refinement layers for the surfaces. The minimum layer

height for the wheel was set to

• 0.008 m for the ground wall.

• 0.001 m for the main tyre wall

• 0.002 m for the tyre side wall.

• 0.002 m for the tyre contact patch.

4.3.2. Baseline RANS
For the RANS simulation it was chosen to run the simulation on a much smaller of around 8 million cells. This

was done to resemble a realistic scenario with a grid that might be used for such a RANS simulation. This has

also been done to reduce the computation cost and it is a good opportunity to see how the correction model

performs on a mesh that is a lot coarser than the mesh that has been used for the training data. This mesh

does have the same topology and also still aims for a low y+ value near the boundary layers.

4.3.3. Correction fields calculation: Frozen Approach
The frozen approach that was run till converged in about 600 iterations which was possible because the LES

was statistically sufficiently converged. The corrective fields coming from this frozen approach are shown in

Figure 4.45. In this figure it can be seen that the main correction happens close to the wheel in the boundary

layer. This correction can be seen in more detail in Figure 4.46. This shows that the largest corrections are

mainly focused on the boundary layer with a relatively small correction in the wake of the wheel as well.

It shows again that the total correction is a reduction of the total turbulence production with the direct

correction R being an addition the anisotropy correction must have mainly a negative effect on the turbulence

production. This is in line with the findings from the previous two to test cases.

4.3.4. Correction model regression
The models that were found during the model discovery step are shown in Figure 4.47 for the anisotropy

correction and in Figure 4.48 for the correction to the turbulent kinetic energy.

4.3.5. Model corrected RANS
Due to the differences in meshes between the RANS and LES it was chosen not to do a correction propagation

but to directly apply the correction through the modelled approach. The correction models that were selected

are model number 12 for the anisotropy correction (4.7) and model number 343 for the R term (4.8). What

stands out is that the magnitude of the coefficients for the basis functions that always return do not differ

with different ridge coefficients.
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(a) Total correction in turbulence production (b) Direct correction in the turbulent kinetic energy. R, (3.40)

Figure 4.45: Wheel frozen approach correction fields.

(a) Detail of the total correction in turbulent kinetic energy (b) Direct correction in the turbulent kinetic energy equation. R (3.40)

Figure 4.46: Wheel frozen approach correction fields detail.

1 I1T1 7 I1I2T4 13 I1I2T3 19 I1I 3
2 T1 25 I 2

1 I 3
2 T4 32 I 2

1 I 4
2 T3

2 I1T3 8 I 2
2 T1 14 I1I 2

2 T2 20 I1I 3
2 T2 26 I 3

1 I 2
2 T4 33 cT1

3 I1T2 9 I 2
2 T2 15 I1I 2

2 T4 21 I1I 3
2 T3 27 I 2

1 I 3
2 T1 34 cT2

4 I1T4 10 I 2
2 T4 16 I1I 2

2 T1 22 I1I 3
2 T4 28 I 2

1 I 3
2 T3 35 cT3

5 I2T1 11 I1I2T1 17 I 2
2 T3 23 I 2

1 I 2
2 T2 29 I 2

1 I 4
2 T1 36 cT4

6 I2T4 12 I1I2T2 18 I 2
1 I 2

2 T4 24 I 2
1 I 3

2 T2 30 I 2
1 I 4

2 T2

Table 4.7: Basis functions used for the correction model regression for the anisotropy correction b∆

i j
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1 I1T1 9 I 2
2 T2 17 I1I 2

2 T4 25 I1I 3
2 T1 33 I 2

1 I 2
2 T2 41 I1I 4

2 T2

2 I1T2 10 I 2
2 T4 18 I 3

2 T1 26 I1I 3
2 T2 34 I1I 4

2 T1 42 I1I 4
2 T3

3 I1T3 11 I 2
1 T1 19 I 3

2 T2 27 I1I 3
2 T3 35 I1I 4

2 T4 43 cT1

4 I1T4 12 I1I2T2 20 I 3
2 T3 28 I1I 3

2 T4 36 I 3
1 I 2

2 T4 44 cT2

5 I2T1 13 I 2
1 T3 21 I 3

2 T4 29 I 4
2 T1 37 I 2

1 I 3
2 T1 45 cT3

6 I2T4 14 I1I2T3 22 I1I 2
2 T1 30 I 4

2 T2 38 I 2
1 I 3

2 T2 46 cT4

7 I1I2T4 15 I1I2T1 23 I 2
2 T3 31 I 4

2 T3 39 I 2
1 I 3

2 T3

8 I 2
2 T1 16 I1I 2

2 T2 24 I 2
1 I 2

2 T4 32 I 4
2 T4 40 I 2

1 I 3
2 T4

Table 4.8: Basis functions used for the regression of the correction model for R for the idealised wheel

Figure 4.47: Overview of the correction models for the anisotropy correction b∆

i j
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Figure 4.48: Overview of the correction models for the anisotropy correction R
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To also get an idea about the extrapolating qualities of this approach these correction models are also

compared again to the model that was trained on the wall mounted cube case and was also successfully

applied to cylinder case. The equations for this correction model can be found in equations (4.1) and (4.2).

b∆

i j = T (1)(58.53851I1 +67.69593I2 +1.34969)

+T (2)(26.56142−430.87047I1)

+3.3792T (3) +4.89236T (4)

(4.7)

R = T (1)(68.57017I2 +3.95008)+30.62762T (3) (4.8)

In Figure 4.49 the velocity magnitude is plotted for the different simulations. What can be seen here is

that for the baseline RANS a massive separation area is predicted on top of the wheel, whilst for the LES the

flow remains attached resulting in an area of high velocity flow directly behind the wheel. With the wheel

correction model this separation area is reduced significantly with also the area of low velocity magnitude

behind the wheel moving towards the LES solution. The Cube correction model further decreases the separation

area on top of the wheel. However, with both correction models there are still some differences in the velocity

magnitude on top of the wheel and directly behind the wheel near the ground, where the velocity magnitude

is lower than in the LES solution.

Looking at the x-component of the velocity at different sections in front of and behind the wheel in

Figure 4.50 confirms this improvement, with both correction models moving the solution closer to the LES

solution and both showing a very similar result. When a comparison of the pressure coefficient is made for

the different simulations in Figure 4.51 it can be seen that both models show a significant improvement over

the baseline model, but with again a close match between for the Wheel correction model and the Cube

correction.

Looking at the wake of the wheel in Figure 4.52 shows that the shape of the wake is improved by the use

of both correction models, however it looks like when looking at the bulk length behind the wheel, the cube

trained model performs better. The only downside to this model is the strange double wave on the sides of

the wheel that does not correspond to the LES solution.

Finally when comparing the different simulations near the ground plane in Figure 4.53 the big differences

between the Baseline and the LES become very obvious with the biggest differences in the size of the wake

and the direction of the flow behind the wheel. When looking at the streamtraces from the LES solution one

can see that there is a small portion of where there is some backflow, this is just in front of the low velocity

area that marks the point where the two vortices originating from the interactions between the low pressure

on the sides and with the high pressure on the frontal area come together. It can be seen that this portion of

backflow is not visible in both the baseline RANS and the RANS with the wheel correction model. What also

stands out is that none of the RANS simulations seem to capture the outboard movement of the horseshoe

vortices as the flow moves further downstream. This missing prediction was also seen in the wall mounted

cube case, where the vortices travel downstream in almost straight lines.

In conclusion it possible to state that both correction models improve the result of the RANS in comparison

to the LES simulation. Both models do not manage to exactly recreate the LES solution, with differences

showing in the magnitude and direction of the wheel wake being the biggest differences still visible between

the two. The model that improves the solution the most is that found on the wall mounted cube case in

Section 4.1. This model also improved the stability of the solution the most leading to faster convergence.
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Figure 4.49: Comparing the Velocity magnitude at the centre of the wheel. Top: Baseline RANS, 2nd: LES, 3rd: Wheel correction model,

bottom: Cube correction model.

Figure 4.50: X-component velocity profile at the centre of the wheel.
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Figure 4.51: Pressure Coefficient profile at the centre of the Wheel.

Figure 4.52: Visualisation of the wheel wake through isosurface of the total pressure, Cp0 = 0.5, coloured by the pressure coefficient. Top:

Baseline RANS, 2nd: LES, 3rd: Wheel correction model, bottom: Cube correction model
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Figure 4.53: Streamtraces on the bottom of the domain combined with the velocity magnitude. Top: Baseline RANS, 2nd: LES, 3rd: Wheel

correction model, bottom: Cube correction model





5
Conclusion

From the results presented in Chapter 4 a number of conclusions can be drawn. The main question that

was to be answered is if the accuracy of RANS solvers could be increased by augmenting existing turbulence

models with machine learned models. From literature this had already been shown for 2D flow cases and

with the results from the three test cases it has been shown that this is also the case for 3D flows. With the

correction models improving the solution for all three cases compared to the standard k −ω−SST model.

Different training geometries resulted in different correction models with some models performing better

on non flows they were not trained on. This is in line with the results found by Schmelzer and Dwight [18]

who also found that models that were trained using a different geometry outperformed models trained on

this geometry.

The ansatz that was made in the SpaRTA methodology that only the first 4 tensors and 2 invariants from

Pope’s tensor basis are needed to get to be able to model the anisotropy. When looking at the results of the

surface mounted cube and comparing the results of the correction models for both the full tensors basis and

the reduced tensor basis, the results are similar enough to be able to conclude that in this application of the

reduction of the basis is justified.

From all three simulations that have been done, experience has shown that two correction fields for which

models are found both have different effects on the stability of the solution. All three simulations seemed to

benefit in terms of stability with the addition of the R-correction term. On the contrary with the addition

of the anisotropy correction the stability of the solution decreased making it harder for the simulation to

converge.

The finding of this instability due to the addition of the anisotropy correction led to an investigation of

what happens when more anisotropy is gradually added. It is shown that the more anisotropy correction is

added the more the solution moves towards the LES reference. It was also shown that when the solution is

then averaged over the last couple of hundredths of iterations the average of this unstable solution might

improve further towards the LES solution. In this process of adding the anisotopy correction it was also

shown that the largest correction effect comes from the R correction term. With the solution generally already

improving significantly with just this correction added.

Finally one of the most important conclusions that can be drawn is that the correction models can be

applied to different geometries and have a positive effect on the final result. This shows the extrapolating

qualities of the correction models. One might actually say that with the correction models found on the cube

a new turbulence model has been discovered. As it performed better on all three tested geometries than the

baseline and has shown a good stability to be able to generally apply it to all sorts of problems. However, more

testing is needed on more different flow cases to prove the general applicability of the model.

A decisive conclusion cannot be drawn yet if there is an increase or reduction in computational cost.

This is because the computational cost depends heavily on the stability and convergence rate of the solution.
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This stability depends on a couple of things: the geometry/flow itself, the correction model that is being

used and the amount of anisotropy correction that is being applied. This means that with a relatively stable

correction model and a small amount of anisotropy correction the stability of the solution and the converge

rate is increased leading to a reduction in computational cost compared to the baseline turbulence model.

However, when more anisotropy is added or a correction model is used that is less stable the convergence rate

of the solution is reduced resulting in a higher computational cost. All in all the computational cost depends

mainly on the choices the user makes.

The areas that see the largest improvement overall are the separation areas, the point of separation is

slightly adjusted in most cases and the resulting separated regions and re-circulation areas are reduced in size.

what can be concluded as well is that the areas that are already accurate in comparison to the high fidelity

data are not worsened with the application of the correction model. The biggest changes in the solution seem

to be visible in the velocity magnitude and the total pressure and not so much in the pressure directly. With

the instability of the solution it seems that the resulting pressure is becoming more inaccurate.



6
Recommendations for future research

From this research it is possible to draw multiple conclusions and a new avenue for further research is opened

up. The conclusions that can be drawn from this research are generally positive, however there is still good

number of questions that need to be answered. The results also leads to new questions and insights for

alterations to the method that might improve the final result.

From the research it was shown that the model that was found through the SpaRTA methodology on the

surface mounted cube case performed well on all three test cases. It would be interesting to know what

the limitation of this model are and if the improvement is also seen on completely different flows and more

complex cases with multiple flow device interactions.

This research has mainly focused on bluff body flows with large separation areas, for further research it

would be interesting to see the performance of these models on flows without separations such as the flow

over a wing at low angles of attack.

For the method itself it would be interesting to investigate the extension of the library of basis function

with other non-dimensional quantities such as used in the research from Kaandorp and Dwight [6]. They

extended the library of basis functions formed from the tensors and invariants from Pope’s viscosity hypothesis

with additional variables such as the non-dimensional wall-distance. It is important that variables are selected

that are non dimensional to keep the Galilean invariance of the method.

The non-dimensional wall distance is specifically interesting to include in the library as it was seen that

both correction fields were generally largest near the walls. Having a form of the wall-distance in the library

of candidate functions might allow the regression to more easily adapt for these large corrections near the

walls while maintaining the smaller corrections further away from the wall. That being said in the propagated

approach it was mainly due to the large corrections near the wall that the solution started to become unstable.

For the regression it might be a good idea to explicitely filter out the first cell for the regression of the anisotropy

correction model. As this first cell is dominated by boundary conditions anyway and with a wall model in the

wall modelled approach a correction should not have to be necessary.

One of the other things that requires further investigation is the effect of the convergence of the statistics

of the high fidelity data-set. In Section 4.1.5 the anisotropy correction field is shown together with the model

prediction. The anisotropy correction field still looks quite rough with model predictions that do not match

the target values very well. This mismatch could be due to two reasons, the first is that there is not enough

correlation between the inputs and the correction field. The second is that the Reynolds stress calculated

in the high fidelity method is not converged enough. Trying to make a prediction of this unconverged field

could be very difficult. To test this it would be required to let the LES or DES run for much longer to collect

more converged statistics.

Something else that needs to be investigated is the method of sub-sampling. The method that has been

used in this research is straightforward and fast but unsophisticated. There must be smarter ways of sampling

the data for the model discovery steps. What is important in this is that the balance should not be lost between

109



110 6. Recommendations for future research

areas where very little or no correction is needed and areas where the largest corrections are needed. This

means that it is not possible to just ignore the areas where no correction is needed as that will lead to skewed

models that will also correct in regions where no correction is required. There exist clever algorithms that are

able to determine which cells to filter out without throwing away too much information, this requires more

testing and is definitely needed if more large problems are to be used for training.

Another route that requires investigation is that of combining data-sets. The ultimate goal is to find a

correction model that is generally applicable. For now the research has focused on single cases where it

appeared that the correction models are also applicable to different cases. It would be interesting to see if this

general applicability is increased when multiple problems are combined in the model discovery step. This

should increase the chance of correcting more errors in the baseline model. There are a couple of things that

will require some thought and experiments if this method of combining data-sets is to be used. Something

that should be taken into account is the size of the data-set, how much data is used from one set and how

much from the other? Can you take data-sets with completely different Reynolds numbers or should they be

similar?

Finally for further investigation it might be beneficial to further optimise the elastic net algorithm. The

elastic net module from scikit learn that is being used now is not fully optimised for parallel computing. For

optimal performance it would be recommended to write a bespoke code which is properly optimised for

parallel running on multiple machines. Switching the elastic net regression for a support vector machine

with l1 and l2 regularization might also open up the opportunity to include GPU processing in this step as is

shown to be possible by Zhou, Chen, Song and Gardner [30].
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A
Additional Figures

Figure A.1: Wall mounted cube: Comparing the recirculation area on top of the cube for the baseline RANS and correction model to the

DES reference. Top: Baseline RANS, Centre: DES, Bottom: RANS 100%R,50%b∆

i j
correction applied. Model equations (4.1)(4.2)
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Figure A.2: Wall mounted cube: Comparing the horseshoe vortex location in front of the cube for the baseline RANS and correction

model to the DES reference. Top: Baseline RANS, Centre: DES, Bottom: RANS 100%R,50%b∆

i j
correction applied. Model equations

(4.1)(4.2)
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Figure A.3: Wall mounted cube: Comparing a correction model using 4 tensors and 2 invariants (Top) with a correction model using 10

tensors and 5 invariants (Bottom). The DES solution is shown in the centre. Velocity magnitude with vectors, detail of the recirculation

area on top of the cube.
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Figure A.4: Wall mounted cube: Comparing a correction model using 4 tensors and 2 invariants (Top) with a correction model using 10

tensors and 5 invariants (Bottom). Isosurface of Cp0 = 0.5.
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Figure A.5: Wall mounted cube: Visualisation of the effect of the corrective fields. 1st: 50%R 0%b∆

i j
2nd: 100%R 0%b∆

i j
3rd 100%R 25%b∆

i j

4th 100%R 50%b∆

i j
. Velocity magnitude with vectors z = 0.5.



118 A. Additional Figures

Figure A.6: Wall mounted cube: Visualisation of the effect of the corrective fields. 1st: 50%R 0%b∆

i j
2nd: 100%R 0%b∆

i j
3rd 100%R 25%b∆

i j

4th 100%R 50%b∆

i j
. Isocontour of the total pressure coefficient Cp0 = 0.5, coloured by the pressure.
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Figure A.7: Wall mounted cube: Comparing 50% b∆

bi j
correction (Top) with an averaged solution with 100% b∆

i j
correction (Bottom).

Both have 100% R correction. The middle is the DES solution for reference. Velocity magnitude on a plane above ground at cube centre

height at z=0.5
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Figure A.8: Wall mounted cube: Comparing 50% b∆

bi j
correction (Top) with an averaged solution with 100% b∆

i j
correction (Bottom).

Both have 100% R correction. The middle is the DES solution for reference. Isocontour of the total pressure coefficient (Cp0 = 0.5)

coloured by pressure.
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Figure A.9: Wall mounted box: Total pressure iso-surface Cp0 = 0.5, coloured by the pressure. Comparison for the extended box. Top:

Baseline RANS, Middle: DES, Bottom: RANS 100%R,50%b∆

i j
correction applied. Model equations (4.1)(4.2)
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Figure A.10: Wall mounted box: Velocity magnitude with vectors at the centre height of the extended box z = 0.5. Top: Baseline RANS,

middle: DES, bottom: RANS 100%R,50%b∆

i j
correction applied. Model equations (4.1)(4.2)
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Figure A.11: Infinite circular cylinder: Overview of the mesh structure for the infinite cylinder case.

Figure A.12: Idealised wheel: Mesh topology used for the LES
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Figure A.13: Idealised wheel: Detail of the refinement region for the LES



B
Frozen Approach code

B.1. Variable Definitions

1 ❛✐❥❴

2 ✭

3 ■❖♦❜❥❡❝t

4 ✭

5 ✧❛✐❥✧✱

6 t❤✐s ✲❃r✉♥❚✐♠❡❴✳t✐♠❡◆❛♠❡ ✭✮✱

7 t❤✐s ✲❃♠❡s❤❴ ✱

8 ■❖♦❜❥❡❝t ✿✿◆❖❴❘❊❆❉ ✱

9 ■❖♦❜❥❡❝t ✿✿ ❆❯❚❖❴❲❘■❚❊

10 ✮✱

11 t❛✉✐❥❴ ✲ ✭✭✷✳✵✴✸✳✵✮✯■✮✯❦❴

12 ✮✱

13 ❛✐❥❇♦✉ss✐♥❡sq❴

14 ✭

15 ■❖♦❜❥❡❝t

16 ✭

17 ✧❛✐❥❇♦✉ss✐♥❡sq✧✱

18 t❤✐s ✲❃r✉♥❚✐♠❡❴✳t✐♠❡◆❛♠❡ ✭✮✱

19 t❤✐s ✲❃♠❡s❤❴ ✱

20 ■❖♦❜❥❡❝t ✿✿◆❖❴❘❊❆❉ ✱

21 ■❖♦❜❥❡❝t ✿✿ ❆❯❚❖❴❲❘■❚❊

22 ✮✱

23 ✵✳✵✯ s②♠♠✭❢✈❝✿✿❣r❛❞✭t❤✐s ✲❃❯❴✮✮✯t❤✐s ✲❃♥✉t❴

24 ✮✱

25 ❛✐❥❉❡❧t❛❴

26 ✭

27 ■❖♦❜❥❡❝t

28 ✭

29 ✧❛✐❥❉❡❧t❛✧✱

30 t❤✐s ✲❃r✉♥❚✐♠❡❴✳t✐♠❡◆❛♠❡ ✭✮✱

31 t❤✐s ✲❃♠❡s❤❴ ✱

32 ■❖♦❜❥❡❝t ✿✿◆❖❴❘❊❆❉ ✱

33 ■❖♦❜❥❡❝t ✿✿ ❆❯❚❖❴❲❘■❚❊

34 ✮✱

35 ✵✳✵✯ s②♠♠✭❢✈❝✿✿❣r❛❞✭t❤✐s ✲❃❯❴✮✮✯t❤✐s ✲❃♥✉t❴

36 ✮✱

37 ❜✐❥❉❡❧t❛❴

38 ✭

39 ■❖♦❜❥❡❝t

40 ✭

41 ✧❜✐❥❉❡❧t❛✧✱

42 t❤✐s ✲❃r✉♥❚✐♠❡❴✳t✐♠❡◆❛♠❡ ✭✮✱

43 t❤✐s ✲❃♠❡s❤❴ ✱

44 ■❖♦❜❥❡❝t ✿✿◆❖❴❘❊❆❉ ✱

45 ■❖♦❜❥❡❝t ✿✿ ❆❯❚❖❴❲❘■❚❊

46 ✮✱

47 ✵✳✵✯ s②♠♠✭❢✈❝✿✿❣r❛❞✭t❤✐s ✲❃❯❴✮✮✴♦♠❡❣❛❴

48 ✮✱
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49 P❦❴

50 ✭

51 ■❖♦❜❥❡❝t

52 ✭

53 ✧P❦✧✱

54 t❤✐s ✲❃r✉♥❚✐♠❡❴✳t✐♠❡◆❛♠❡ ✭✮✱
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83 ✰ ❢✈❝✿✿❙♣✭❛❧♣❤❛✭✮✯r❤♦✭✮✯❜❡t❛❙t❛r❴✯♦♠❡❣❛❴ ✱ ❦❴✮

84 ✲ ❛❧♣❤❛✭✮✯r❤♦✭✮✯❜❡t❛❙t❛r❴✯♦♠❡❣❛■♥❢❴✯❦■♥❢❴❀

85

86 ❝♦rr❡❝t◆✉t✭❙✷✮❀

87

88 ✴✴ ❘❡✲❝❛❧❝✉❧❛t❡ ❛✐❥❉❡❧t❛

89

90 ✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❛✐❥❇♦✉ss✐♥❡sq❴ ❂ ✲♥✉t✯t✇♦❙②♠♠✭t❣r❛❞❯✭✮✮❀

91 ✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❛✐❥❉❡❧t❛❴ ❂ ❛✐❥❴ ✲❛✐❥❇♦✉ss✐♥❡sq❴❀

92 ✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❜✐❥❉❡❧t❛❴ ❂ ❛✐❥❉❡❧t❛❴ ✴✭✷✯✭❦❴✰t❤✐s ✲❃❦▼✐♥❴✮✮❀

93

94 ✴✴ ❈❛❧❝✉❧❛t❡ t✐♠❡s❝❛❧❡

95 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ❙ ❂ sqrt ✭✷✯ ♠❛❣❙qr✭s②♠♠✭t❣r❛❞❯✭✮✮✮✮❀

96 t✐♠❡s❝❛❧❡❴❧✐♠✐t❡❞❴ ❂ ✲ ✶✳✴♠❛①✭ ❙✴❛✶❴ ✰ t❤✐s ✲❃♦♠❡❣❛▼✐♥❴ ✱ ♦♠❡❣❛❴ ✰ t❤✐s ✲❃♦♠❡❣❛▼✐♥❴✮❀

97

98 t❣r❛❞❯✳❝❧❡❛r✭✮❀

99

100 ⑥



C
Propagated Approach code

C.1. Modified transport equations

1 ✈♦✐❞ ♣r♦♣❴❦❖♠❡❣❛❙❙❚❇❛s❡ ❁❇❛s✐❝❊❞❞②❱✐s❝♦s✐t②▼♦❞❡❧ ❃✿✿ ❝♦rr❡❝t ✭✮

2 ④

3 ✐❢ ✭✦t❤✐s ✲❃t✉r❜✉❧❡♥❝❡❴✮

4 ④

5 r❡t✉r♥❀

6 ⑥

7

8 ✴✴ ▲♦❝❛❧ r❡❢❡r❡♥❝❡s

9 ❝♦♥st ❛❧♣❤❛❋✐❡❧❞✫ ❛❧♣❤❛ ❂ t❤✐s ✲❃❛❧♣❤❛❴❀

10 ❝♦♥st r❤♦❋✐❡❧❞✫ r❤♦ ❂ t❤✐s ✲❃r❤♦❴❀

11 ❝♦♥st s✉r❢❛❝❡❙❝❛❧❛r❋✐❡❧❞✫ ❛❧♣❤❛❘❤♦P❤✐ ❂ t❤✐s ✲❃❛❧♣❤❛❘❤♦P❤✐❴❀

12 ❝♦♥st ✈♦❧❱❡❝t♦r❋✐❡❧❞✫ ❯ ❂ t❤✐s ✲❃❯❴❀

13 ✈♦❧❙❝❛❧❛r❋✐❡❧❞✫ ♥✉t ❂ t❤✐s ✲❃♥✉t❴❀

14 ❢✈✿✿ ♦♣t✐♦♥s✫ ❢✈❖♣t✐♦♥s✭❢✈✿✿ ♦♣t✐♦♥s ✿✿◆❡✇✭t❤✐s ✲❃♠❡s❤❴✮✮❀

15

16 ❇❛s✐❝❊❞❞②❱✐s❝♦s✐t②▼♦❞❡❧ ✿✿ ❝♦rr❡❝t ✭✮❀

17

18 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❞✐✈❯✭❢✈❝✿✿❞✐✈✭❢✈❝✿✿ ❛❜s♦❧✉t❡✭t❤✐s ✲❃♣❤✐✭✮✱ ❯✮✮✮❀

19

20 t♠♣ ❁✈♦❧❚❡♥s♦r❋✐❡❧❞ ❃ t❣r❛❞❯ ❂ ❢✈❝✿✿❣r❛❞✭❯✮❀

21 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ❙✷✭✷✯ ♠❛❣❙qr✭s②♠♠✭t❣r❛❞❯✭✮✮✮✮❀

22 ❞❡✈✭t✇♦❙②♠♠✭t❣r❛❞❯✭✮✮✮✮✮❀

23 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ●❜②◆✉✵✭❙✷ ✲✭✷✯❦❴✯❜✐❥❉❡❧t❛❴ ✫✫ s②♠♠✭t❣r❛❞❯✭✮✮✴♥✉t✮✮❀

24 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ●✭t❤✐s ✲❃●◆❛♠❡✭✮✱ ♥✉t✯●❜②◆✉✵✮❀

25

26 ✴✴ ❯♣❞❛t❡ ♦♠❡❣❛ ❛♥❞ ● ❛t t❤❡ ✇❛❧❧

27 ♦♠❡❣❛❴✳❜♦✉♥❞❛r②❋✐❡❧❞❘❡❢ ✭✮✳✉♣❞❛t❡❈♦❡❢❢s ✭✮❀

28

29 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ❈❉❦❖♠❡❣❛

30 ✭

31 ✭✷✯ ❛❧♣❤❛❖♠❡❣❛✷❴✮✯✭❢✈❝✿✿❣r❛❞✭❦❴✮ ✫ ❢✈❝✿✿❣r❛❞✭♦♠❡❣❛❴✮✮✴♦♠❡❣❛❴

32 ✮❀

33

34 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ❋✶✭t❤✐s ✲❃❋✶✭❈❉❦❖♠❡❣❛✮✮❀

35 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ❋✷✸✭t❤✐s ✲❃❋✷✸✭✮✮❀

36

37 ④

38 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❣❛♠♠❛✭t❤✐s ✲❃❣❛♠♠❛✭❋✶✮✮❀

39 ✈♦❧❙❝❛❧❛r❋✐❡❧❞ ✿✿ ■♥t❡r♥❛❧ ❜❡t❛✭t❤✐s ✲❃❜❡t❛✭❋✶✮✮❀

40

41 ✴✴ ❚✉r❜✉❧❡♥t ❢r❡q✉❡♥❝② ❡q✉❛t✐♦♥

42 t♠♣ ❁❢✈❙❝❛❧❛r▼❛tr✐① ❃ ♦♠❡❣❛❊q♥

43 ✭

44 ❢✈♠✿✿❞❞t✭❛❧♣❤❛ ✱ r❤♦ ✱ ♦♠❡❣❛❴✮

45 ✰ ❢✈♠✿✿❞✐✈✭❛❧♣❤❛❘❤♦P❤✐ ✱ ♦♠❡❣❛❴✮

46 ✲ ❢✈♠✿✿ ❧❛♣❧❛❝✐❛♥✭❛❧♣❤❛✯r❤♦✯❉♦♠❡❣❛❊❢❢✭❋✶✮✱ ♦♠❡❣❛❴✮

47 ❂❂

48 ❛❧♣❤❛✭✮✯r❤♦✭✮✯❣❛♠♠❛✯✭●❜②◆✉✭●❜②◆✉✵ ✱ ❋✷✸✭✮✱ ❙✷✭✮✮✰❦❉❡❢✐❝✐t❴ ✴✭♥✉t✰♥✉t❙♠❛❧❧❴✮✮

129
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49 ✲ ❢✈♠✿✿❙✉❙♣ ✭✭✷✳✵✴✸✳✵✮✯❛❧♣❤❛✭✮✯r❤♦✭✮✯❣❛♠♠❛✯❞✐✈❯ ✱ ♦♠❡❣❛❴✮

50 ✲ ❢✈♠✿✿❙♣✭❛❧♣❤❛✭✮✯r❤♦✭✮✯❜❡t❛✯♦♠❡❣❛❴✭✮✱ ♦♠❡❣❛❴✮

51 ✲ ❢✈♠✿✿❙✉❙♣

52 ✭

53 ❛❧♣❤❛✭✮✯r❤♦✭✮✯✭❋✶✭✮ ✲ s❝❛❧❛r ✭✶✮✮✯❈❉❦❖♠❡❣❛ ✭✮✴♦♠❡❣❛❴✭✮✱

54 ♦♠❡❣❛❴

55 ✮

56 ✰ ❛❧♣❤❛✭✮✯r❤♦✭✮✯❜❡t❛✯sqr✭♦♠❡❣❛■♥❢❴✮

57 ✰ ◗s❛s✭❙✷✭✮✱ ❣❛♠♠❛ ✱ ❜❡t❛✮

58 ✰ ♦♠❡❣❛❙♦✉r❝❡ ✭✮

59 ✰ ❢✈❖♣t✐♦♥s✭❛❧♣❤❛ ✱ r❤♦ ✱ ♦♠❡❣❛❴✮

60 ✮❀

61

62 ♦♠❡❣❛❊q♥✳r❡❢✭✮✳r❡❧❛①✭✮❀

63 ❢✈❖♣t✐♦♥s✳❝♦♥str❛✐♥✭♦♠❡❣❛❊q♥✳r❡❢✭✮✮❀

64 ♦♠❡❣❛❊q♥✳r❡❢✭✮✳❜♦✉♥❞❛r②▼❛♥✐♣✉❧❛t❡✭♦♠❡❣❛❴✳❜♦✉♥❞❛r②❋✐❡❧❞❘❡❢ ✭✮✮❀

65 s♦❧✈❡✭♦♠❡❣❛❊q♥✮❀

66 ❢✈❖♣t✐♦♥s✳❝♦rr❡❝t✭♦♠❡❣❛❴✮❀

67 ❜♦✉♥❞✭♦♠❡❣❛❴ ✱ t❤✐s ✲❃♦♠❡❣❛▼✐♥❴✮❀

68 ⑥

69

70 ✴✴ ❚✉r❜✉❧❡♥t ❦✐♥❡t✐❝ ❡♥❡r❣② ❡q✉❛t✐♦♥

71 t♠♣ ❁❢✈❙❝❛❧❛r▼❛tr✐① ❃ ❦❊q♥

72 ✭

73 ❢✈♠✿✿❞❞t✭❛❧♣❤❛ ✱ r❤♦ ✱ ❦❴✮

74 ✰ ❢✈♠✿✿❞✐✈✭❛❧♣❤❛❘❤♦P❤✐ ✱ ❦❴✮

75 ✲ ❢✈♠✿✿ ❧❛♣❧❛❝✐❛♥✭❛❧♣❤❛✯r❤♦✯❉❦❊❢❢✭❋✶✮✱ ❦❴✮

76 ❂❂

77 ❛❧♣❤❛✭✮✯r❤♦✭✮✯✭P❦✭●✮✰❦❉❡❢✐❝✐t❴✮

78 ✲ ❢✈♠✿✿❙✉❙♣ ✭✭✷✳✵✴✸✳✵✮✯❛❧♣❤❛✭✮✯r❤♦✭✮✯❞✐✈❯ ✱ ❦❴✮

79 ✲ ❢✈♠✿✿❙♣✭❛❧♣❤❛✭✮✯r❤♦✭✮✯❡♣s✐❧♦♥❇②❦✭❋✶✱ t❣r❛❞❯✭✮✮✱ ❦❴✮

80 ✰ ❛❧♣❤❛✭✮✯r❤♦✭✮✯❜❡t❛❙t❛r❴✯♦♠❡❣❛■♥❢❴✯❦■♥❢❴

81 ✰ ❦❙♦✉r❝❡ ✭✮

82 ✰ ❢✈❖♣t✐♦♥s✭❛❧♣❤❛ ✱ r❤♦ ✱ ❦❴✮

83 ✮❀

84

85 t❣r❛❞❯✳❝❧❡❛r✭✮❀

86

87 ❦❊q♥✳r❡❢✭✮✳r❡❧❛①✭✮❀

88 ❢✈❖♣t✐♦♥s✳❝♦♥str❛✐♥✭❦❊q♥✳r❡❢✭✮✮❀

89 s♦❧✈❡✭❦❊q♥✮❀

90 ❢✈❖♣t✐♦♥s✳❝♦rr❡❝t✭❦❴✮❀

91 ❜♦✉♥❞✭❦❴✱ t❤✐s ✲❃❦▼✐♥❴✮❀

92

93 ❝♦rr❡❝t◆✉t✭❙✷✮❀

94 ⑥
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1 t❡♠♣❧❛t❡ ❁❝❧❛ss ❇❛s✐❝❊❞❞②❱✐s❝♦s✐t②▼♦❞❡❧ ❃

2 t♠♣ ❁✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞ ❃ ▼▲❴❦❖♠❡❣❛❙❙❚❇❛s❡ ❁❇❛s✐❝❊❞❞②❱✐s❝♦s✐t②▼♦❞❡❧ ❃✿✿ ❞❡✈❘❡❢❢

3 ✭

4 ✴✴❝♦♥st s✐♥❣❧❡P❤❛s❡❚r❛♥s♣♦rt▼♦❞❡❧✫ ❧❛♠✐♥❛r❚r❛♥s♣♦rt ✱

5 ✴✴❝♦♥st tr❛♥s♣♦rt▼♦❞❡❧✫ ❧❛♠✐♥❛r❚r❛♥s♣♦rt ✱

6 ❝♦♥st ✈♦❧❱❡❝t♦r❋✐❡❧❞✫ ❯

7 ✮ ❝♦♥st

8 ④

9 r❡t✉r♥ t♠♣ ❁✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞ ❃

10 ✭

11 ♥❡✇ ✈♦❧❙②♠♠❚❡♥s♦r❋✐❡❧❞

12 ✭

13 ■❖♦❜❥❡❝t
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