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Abstract 
The fluid flow in a reservoir largely depends on faults, as faults can act like conduits or barriers. The 
influence of three fault parameters (permeability, thickness and angle) on the temperature and 
pressure behaviour of a geothermal reservoir, has been investigated by modelling a faulted reservoir 
in 2D in MATLAB, based on the Finite Element Method.  
 
The reservoir is assumed to be sandstone with a permeability of 40*10-14 m2. The fault has been 
modelled with a permeability ranging from 10-11 m2 to 10-17 m2, a thickness ranging from 10 cm to 150 
m and an angle ranging from 0 to 90 degrees. While varying one parameter, the other two stayed 
fixed. The base values for the fault permeability, thickness and angle were 10-14 m2, 20 m and 0 degrees 
respectively. Both a finite and infinite fault have been modelled in the reservoir.  
 
Decreasing the permeability led to a higher production temperature, especially at a finite fault, where 
the fluid is able to bypass the fault and thus sweep the warmth of a larger part of the reservoir. At a 
fault permeability of 10-14 m2 the fluid has seemed to have extracted the maximum amount of heat in 
the reservoir, further decrease in permeability did not lead to a higher production temperature. At an 
infinite fault there is only a small increase in temperature at a fault permeability of 10-16 m2. The 
impedance at a finite fault is not much affected, as the fluid is able to flow around the fault. The 
impedance at an infinite fault, however, rapidly builds up with decreasing permeability. 

A thickness of 20 m, at the base permeability value of 10-14 m2, results in the highest 
production temperature. Larger thicknesses cause larger amounts of unrecoverable area and 
consequently less heat can be extracted. At a finite fault the impedance climbs only to a value of 4 
MPa at a thickness of 150 m, but at an infinite fault the impedance already reaches 10 MPa at a 
thickness of 80 m. 

The fault has its largest influence at a perpendicular position to the flow. At a parallel position, 
the results are the same as a reservoir without fault, as the fluid will not have to dodge a lot to reach 
the production well. 
 
All three fault parameters have a significant influence on the temperature and pressure behaviour of 
the geothermal reservoir. They are all able to enlarge and eliminate the influence of the fault. A finite 
fault can cause a favourable higher production temperature without a large impedance, as the fluid is 
able to bypass the fault. An infinite fault has less effect on the temperature and causes the impedance 
to build up rapidly, which requires an unrealistic high pumping power and consequently an 
unprofitable geothermal system.  
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Introduction  
Nowadays there is an increasing interest in developing geothermal projects, as it is a sustainable 
energy source. Over the years, the Netherlands have mostly been developing geothermal doublet 
systems in order to warm up greenhouses and houses. For electricity generation, a high thermal 
gradient is required, which is not yet the case in the subsurface of the Netherlands. Because of the 
lower thermal gradient, the feasibility of geothermal projects might still be questionable. In addition, 
geothermal wells require large investment costs and mainly the fact that the subsurface has large 
uncertainties slows down the development (C. Willems, 2017). The expected lifetime of a geothermal 
system is one of the most important aspects of determining whether developing a system is profitable 
or not (R.C.A. Smit, 2012). The lifetime depends on various reservoir properties: temperature, 
pressure, permeability distribution, flow rate and doublet spacing, among others. The geothermal 
reservoir is mainly influenced by the subsurface fluid flow, which is highly dependent of fault zone 
permeability (Moeck, 2014). Faults can be pathways or obstacles for fluid flow and can significantly 
affect the flow, and thus the performance, of the reservoir. Therefore, to estimate the profitability of 
the project, it is important to be able to predict the influence of a fault on a reservoir. 
 
In this thesis, the influence of fault parameters on geothermal reservoir performance will be 
investigated in a hydro-thermal framework. The performance of the reservoir will be measured on the 
basis of the temperature and pressure behaviour of the reservoir. This will be investigated by using a 
MATLAB model for the fluid flow and heat transfer, which are the two main physical processes in a 
reservoir. The model is 2D and based on the finite element method. In this research, both a finite and 
infinite fault will be simulated in the model with three varying parameters: permeability, thickness 
and angle.  
 
First geothermal reservoir and fault properties that were important for the modelling are discussed, 
followed by a description of the method in MATLAB. Next, the experiment sets and results are 
discussed and in the final chapters the conclusion, discussion and recommendations are stated.  
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1. Geothermal Reservoir Properties 
In the following paragraphs, a few aspects and parameters of geothermal doublet systems are 
described that were important for the modelling.  
 
1.1. Reservoir Temperature and Permeability  
A geothermal reservoir consists of highly permeable rock. This is essential as the reservoir must be 
able to contain lots of water and the pores should be interconnected for the water to flow from the 
injection well to the production well. Usually geothermal reservoirs are found in fractured volcanic 
rocks, such as in Iceland. The fluid is then found in the fractures, not in the pores, and the thermal 
gradient in such areas can reach 200 degrees per kilometre (A. Hjartarson, 2015). In the Netherlands, 
most of the geothermal doublets have been developed in the West Netherlands Basin (WNB). The 
reservoir is the fluvial Delft Sandstone Member which is part of the Cretaceous Nieuwekerk formation 
(Van Adrichem Boogaert and Kouwe, 1993) and the thermal gradient in the Netherlands is about 30 
degrees per kilometre (D. Bonté, J.D. van Wees & J.M. Verweij, 2012). In the Delft Sandstone Member 
reservoir, the depth ranges from 2 to 3 km and the temperature of the aquifer ranges from 70 to 90 
degrees (C.J.L. Willems, 2017). Currently a new well is being drilled in the Netherlands, the Trias 
Westland Project. On ‘nlog’ the properties of this well (LIR-45) are listed and this well goes to a depth 
of approximately 3 to 4 kilometres. The well reaches the ‘Hardegsen Formation’ until the ‘Lower 
Volpriehausen Sandstone Member’. These layers are part of the Main Buntsandstein which is a 
subgroup of the Triassic. To link some values of this thesis to a realistic case, this ‘Trias Westland 
Project’ has been taken as reference project. The permeability of the Buntsandstein is relatively low, 
however, this can be increased by hydraulic stimulation. Therefore, the permeability value of the 
reservoir taken in the model is 40*10-14 m2, a bit higher than the general value of Fresh Sandstone, 10-

14 m2 (Bear, 1972). A reservoir temperature of 140 degrees is expected at the Trias Westland Project, 
which will also be the value of the reservoir temperature in this thesis.  
 
A geothermal reservoir is naturally in dynamic condition, it is in a continuous state of convective flow, 
with a constant heat supply coming from all four sides of the reservoir. The heat supply will be more 
or less constant during the whole research so it will not significantly affect the modelling, since it is a 
comparison study of different fault scenarios and not a calculation of the total recoverable energy for 
example.  
 
1.2. Reservoir Pressure 
The production and injection of water in a geothermal reservoir result in a pressure difference, which 
results into fluid flow (B. Steingrimsson, 2013). At the injection well, the pressure rises and at the 
production well, the pressure decreases, which drives the flow from the injection well to the 
production well. A steady flow with a small impedance is desired, as a large impedance requires a 
higher pumping power. Just a little amount of overpressure would be the best-case scenario. At an 
impedance larger than 10 MPa it is usually not worth it to produce from that reservoir. The lower the 
permeability of the reservoir, the higher the impedance will be. This can be described at the basis of 
Darcy’s equation for fluid flow. The pressure of the water in the reservoir during initial conditions in 
the model is 34 MPa, this corresponds to a depth of 3.4 kilometres as the water pressure follows a 
hydrostatic profile. The reservoir then has a static pressure that is unaffected and completely depends 
on the reservoir fluid density. During injection, the well has a different pressure than the reservoir, 
which results in a high-pressure gradient at the near well area.  
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1.3. Well Spacing 
The well spacing of the geothermal doublets in the West Netherlands Basin is between 1 and 1.5 km. 
(C.J.L. Willems et al., 2017) In this thesis the well distance is 400 metres. This is due to the running 
time of the MATLAB script and the Random-Access Memory of the computer. For an easier and quicker 
computation, a small reservoir and well spacing have been chosen. The whole reservoir has a size of 
600 m x 300 m.  
 
1.4. Fluids in the Well and Reservoir  
The fluid in the reservoir can be gas or liquid, and it can be meteoric, sea water or magmatic (K. 
Nicholson, 1993). The fluids in the well and reservoir are water. The initial pressure of the reservoir is 
assumed to be 34 MPa, which is equal to 340 Atm, which is high enough for the water to be in the 
liquid phase at a temperature of 140 degrees (see Figure 1). The boiling and gas phase are not 
considered in the model since the reservoir is assumed to be in single phase. 

The injection water has a temperature of 40 degrees, this is also the approximate injection 
temperature in the Netherlands (C.J.L. Willems et al., 2017). A typical enhanced geothermal system 
has a flow rate of 100 L/s for the whole reservoir. The thickness of the reservoir could vary a lot, a 
possible thickness of 100 m has been chosen in this thesis. As the model in this thesis is 2D, the value 
of 100 L/s has to be divided by its thickness. Thus, the flow rate now becomes 1 L/s, which is 0.001 
m3/s. The flow rate will be fixed everywhere in the reservoir for every time step. 
 

 
Figure 1: Phase diagram of water 

1.5. Well Radius 
After well stimulation, the effective well radius becomes larger than the actual well radius. Well 
stimulation treatments improve the permeability of the near-well formation and thus the well 
productivity. In sandstones for example, the formation damage is removed by dissolving the material 
that is plugging the pores or by increasing the pore spaces. The treatment fluid is usually acid (R.C.M. 
Malate & J.J.C. Austria, 1998). The actual radius of the injection well is 21.60 cm (M.Z. Lukawski, et al., 
2014), while the effective well radius used in this thesis has the value of 1 m. 
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2. Fault Properties 
As written in the introduction, faults influence the flow in a reservoir. The fault zone usually consists 
of a fault core and a damage zone, as seen in Figure 2 (Cowie & Sholz, 1992). They do not both have 
to be present. In the fault core, most of the displacement has taken place. It can be a single slip surface, 
clay rich gouge zone, brecciated, chemically effected or cataclasite zone. Damage zones consist of 
deformation bands, veins, fractures, cleavage and faults. The permeability of the fault mainly depends 
on the grains of the fault rock in the core and on the fracture network of the damage zone (J.S. Caine, 
J.P. Evans & C.B. Forster, 1996). In porous sandstones three different faults can form: slip surfaces, 
single deformation bands and zones of deformation bands (Aydin & John-son, 1978). Deformation 
bands are small faults with small displacements consisting of small grains, poor sorting and thus lower 
porosity (R. Schultz, 2009). Because of the different permeability values the fault can have compared 
to the host rock, it can behave like a barrier, or the opposite, a pathway. If faults act like a barrier, 
they can trap the water, which can even lead to over pressuring (E.C.D. Hooper, 1991). In this thesis, 
the model has been tested with a varying fault permeability, fault thickness and fault angle with the 
faults’ location in the middle of the reservoir.  
 

 
Figure 2: Schematic model of a fault core zone and damage zone within a strike-slip fault zone (Cowie & Scholz, 1992) 

 
2.1.  Permeability 
The permeability of the fault depends on the amount of cataclasis, clay content, autogenic minerals 
and diagenetic precipitation of cement (M. Antonellini & A. Aydin, 1994). Due to shearing of a 
sandstone rock, the grainsize decreases in the fault core. This results into clay that will significantly 
decrease the permeability of the fault zone, and will thus result into a barrier for the flow 
perpendicular to the fault. However, the damage zone can also contain higher permeability areas due 
to fractures and breccia, such as along the slip plane discontinuity, and this will result into flow parallel 
to the fault (G. C. Rawling, L.B. Goodwin & J.L. Wilson 2001). In Figure 3, three possible situations of a 
normalized permeability along a fault zone are displayed.  
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Figure 3: Three situations for a normalized permeability along a fault zone. A shows a deformation band zone, which 

decreases the permeability. B shows a fault created by shearing. The fault rock is surround by a permeable damage zone. C 
shows a fault zone containing breccia which results in increased permeability (Rawling et al., 2001). 

In the deformation bands of sandstone, the permeability in a fault usually decreases, due to the much 
smaller grain size, poorer sorting, and a lower porosity in the deformation bands than the original 
sandstone (R. Schultz, 2009). Sandstones mostly have high fault densities, faults in a reservoir can 
reduce the permeability up to 80% (Fowles & Burley, 1994). In reality, the fault zone has various 
permeability values, in the model of this thesis an overall average value will be used for the fault.  
 
In the model, 40*10-14 m2 has been taken as permeability value of the reservoir. The permeability of 
sandstone faults can have many different values, dependent on the fault structures. Measured 
permeability values of faults of the Quartz Sandstones in Oklahoma ranged from 50-17 m2 until 52-15 

m2 (E.D. Pittman, 1981), measured permeability values of faulted eolian sandstone of the Jurassic 
Navajo Sandstone ranged from 10-16 m2 to 20-12 m2 (Z.K. Shipton et al., 2002) and M. Antonellini & A. 
Aydin (1994) state that the permeability values of sandstone in the fault zone decreased to values of 
10-19 to 10-16 m2. Furthermore, Woodcock (1987) and Fowles & Burley (1994) also state that the 
permeability of a sandstone decreases around three orders of magnitude in a fault.  In the model, the 
fault will have permeability values ranging from 10-17 m2 to 10-11 m2. The reservoir has a permeability 
of 40*10-14 m2 and more than a contrast of 3 or 4 orders of magnitude will not be possible to calculate 
in this model, the reason will be explained in the discussion. Even though most of the times the 
permeability decreases in a fault in a sandstone reservoir, it is still interesting to see what happens 
when there is an increase in permeability, as then the influence of this parameter can be investigated 
even better.  
 

2.2. Thickness 
The thickness of a fault varies enormously. The entire fault zone, which can be very large, can have a 
different permeability than the surrounding rock and thus influences the flow of the reservoir. This 
zone can range from centimetres to hundreds of metres (Lin & Yamashita, 2013). In good quality 
sandstone reservoirs however, faults tend to be of small-scale due to the strength of the sandstone, 
which is proportional to its porosity (T. Manzocchi et al., 1998). As the reservoir of the model in this 
thesis is only 600 m by 300 m and the well spacing is 400 m, the fault will be modelled with thicknesses 
of 10 cm until 150 m.  
 
2.3. Angle  
Faults can theoretically have every angle, as it depends on the stress direction and on the fracture 
orientation. The stress direction, however, can be dependent on its location on earth which could 
result in a more common fault angle per area. Since the model is 2D, the type of fault and also the 
dipping angle has not been taken into account. The angle is modelled with values ranging from 0 to 
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90 degrees. At 0 degrees, the fault is perpendicular to the flow, at 90 degrees the fault is parallel to 
the flow. 
 
2.4. Pressure Gradient 
Paragraph 1.2 stated that after injection and production, a high-pressure gradient occurs at the wells. 
Also at a barrier of low permeability the pressure gradient will increase, which can be described with 
equation 1, derived from Darcy’s law for fluid flow. The fluid velocity will stay the same at both sides 
of the barrier, which can be described on the basis of the mass balance: “what goes in, must go out”. 
The viscosity is maintained as well. The permeability ‘k’ decreases at the boundary and since the flow 
rate ‘v’ is fixed, the pressure gradient increases. The higher the permeability difference of the barrier 
and the reservoir, the higher the pressure gradient will become.  
 

𝑣 =
𝑘
µ
𝛥𝑃
𝛥𝑥

 

Equation 1: Derived from Darcy’s law for flow. Velocity through permeable media in a one-dimensional homogeneous rock 
formation with a single fluid phase and a constant fluid viscosity 
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3. Method  
The main goal of the thesis is to investigate the influence of fault parameters on the performance of 
a geothermal reservoir. Thus, a model must be made that represents a geothermal reservoir, including 
a well doublet and a fault. A basic and small 2D heat flow model without fault has been made in 
advance, with which the temperature and pressure at every point of the reservoir can be calculated 
at every time step. This model has then been adjusted during this project with various aspects: 
enlarging the reservoir, adding a fault and increasing the accuracy for example. During the modelling, 
the fault parameters will be varied for both a finite and infinite fault and finally the output, the 
pressure values and the temperature values, will be compared. In the following paragraphs, the setup 
of the model will be explained. 
 
3.1.   Finite Element Method  
The model is numerical, based on the finite element method. The method solves a larger problem by 
dividing it in smaller parts (smaller equations): finite elements (D.L. Logan, 2011). These smaller parts 
will then be assembled into the larger system of equations and a solution is approximated by 
minimizing an associated error function.  

To model the flow in the reservoir, properties and equations of every point in the reservoir 
must be taken into account. The reservoir is divided into grid blocks, it forms a mesh consisting of 
elements. Every element is then calculated separately and finally added to a total solution. The smaller 
the mesh size, the more accurate the solution will be. However, a smaller mesh size also means a 
longer calculation time. As said above, the approximate values of the elements are calculated at a 
discrete number of points over the domain: a sequence of time steps. Accuracy will be increased when 
there are more time steps, but this will also increase the computational time. Sufficiently small-time 
steps to reduce temporal errors must be used in order to obtain a time-accurate discretization of a 
highly dynamic flow problem (M. Moller, 2015). In this model 62 time steps are used, which represent 
a total of 50 years. The time steps start small, until the model approaches a year and from then on, 
the time step is a year until the end of the simulation. 
 
In addition, the MATLAB function ‘sparse’ was used. In numerical models, the system is often loosely 
coupled. This means that the components have little or no influence on other components. Because 
of this, the matrix contains a lot of zeroes (a sparse matrix), which uses up a lot of memory. The sparse 
function in MATLAB eliminates all the zero elements, this increases the running speed.  
 
3.2. Boundary Conditions 
The finite element analysis requires boundary conditions, as a unique solution must exist to solve the 
equations. The boundary conditions limit the solutions at the boundaries at a certain value for every 
time step. This model has a ‘no flow boundary condition’ at the boundaries of the reservoir. The model 
is based on solving for Pressure and Temperature at each location and time step. At the sides of the 
reservoir there is no fluid flow and no heat flow. The velocity ‘v’ is proportional to the pressure ‘DP’ in 
equation 1 of Paragraph 2.4, so when there is no velocity, there is no pressure gradient. At the 
injection well, the boundary conditions are the injection temperature of 40 degrees and the fixed flow 
rate. At the production well, there is also a fixed flow rate, which is the same as at the injection well. 
 
3.3. Mesh Generation 
At the wells and fault, there is a very high pressure gradient, as explained in Paragraphs 1.1 and 2.4. 
At a very small distance x, the pressure P differs enormously, so the mesh must be really refined to be 
able to smoothly show the pressure distribution without showing overshoot and undershoot in 



13 
 

pressure and temperature output. However, to have a tiny mesh size in the whole reservoir takes up 
a lot of memory and is not necessary as the gradient is much lower away from the fault and wells.   
Thus, a mesh with very small elements at the fault and well and bigger elements in between, where it 
is of less significance, would be convenient. To generate a mesh that is not of uniform size and not 
evenly distributed over the reservoir, a MATLAB code called ‘DistMesh’ (P.O. Persson & G. Strang, 
2004) was used. The ‘Rectangle with circular hole, refined at circle boundary’ and ‘Square, with size 
function and line sources’ have been implemented. The code is able to generate a mesh of 
unstructured triangular and tetrahedral shapes. All the geometries are specified by ‘Signed Distance 
Functions’. These functions calculate the smallest distance between any point in the reservoir to the 
domain boundary (P.O. Persson & G. Strang, 2004). In Figure 4 the mesh that is used in the modelling 
is displayed, it can be clearly seen that the mesh size at the wells and the fault is significantly smaller 
compared to the rest of the reservoir. The well on the left is the injection well and the well on the 
right is the production well. At the left part of the reservoir, another refinement has been made in 
order to prevent overshoot and undershoot at the injection well. This part of the MATLAB code can 
be found in Appendix 1.  
 

 
Figure 4: The mesh generated in MATLAB with the DISTMESH function (P.O. Persson & G. Strang, 2004) with the well 

doublet and the fault. At x=-300, y=0, another refinement has been made in order to prevent overshoot and undershoot 
near the injection well. 

 
3.4. Mesh Sensitivity Analysis 
A fine mesh grid results in accurate solutions, however it is very time-consuming. An analysis of the 
mesh size must be made, in order to generate a mesh that is accurate enough, while having the highest 
possible running speed. Three different parameters of the mesh generation have been analysed: the 
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maximum edge length of the whole mesh grid, the well edge length and the growth rate of the mesh 
triangle.  

A ‘for loop’ has been made in MATLAB with maximum edge lengths varying from 80 to 5. The 
average temperature results at the production well for those maximum edge lengths have been 
displayed in Figure 5. It can be seen that the temperature at a time step can differ more than 3 degrees 
depending on the maximal edge length, so this value is of big influence on the result. A lot of lines are 
overlapping at a certain height; the temperature is not influenced very much anymore at certain 
maximal edge lengths. After zooming in and testing another few times, the temperature outcome 
becomes stable and does not have an undershoot or overshoot at a maximal edge value of 10, thus 
this will be the maximal edge length of the mesh used in the model. After this, the well edge length 
has been tested, in the same way as the maximal edge length. This is the mesh size at the radius of 
the wells. A ‘for loop’ has been made for well edge lengths ranging from 0.5 to 0.05. At a well edge 
length of 0.35 the results became stable. Thirdly, the growth rate is tested. With a maximum edge 
length of 10, a well edge length of 0.35 and a growth rate of 0.2 the temperature results show no over 
and/or undershoot and the changes when using smaller values become insignificantly small.  
 

 
Figure 5: A plot created in MATLAB of the temperature at a few time steps with different maximal edge lengths. 

 
3.5. Impedance  

As explained in Paragraph 1.2, a higher impedance requires a higher pumping power, and thus higher 
operational costs, therefore it is important to investigate the influence on the pressure. With a fixed 
flow rate and viscosity, a lower permeability results into a higher impedance, which can be described 
on the basis of equation 2, Darcy’s law for fluid flow. 
 

𝑄 =	
𝑘*+, ∗ 𝑤 ∗ ℎ ∗ 𝛥𝑃

µ ∗ 𝐿  
Equation 2: Darcy’s law for fluid flow with discharge ‘Q’, average permeability ‘kavg’, width ‘w’, thickness ‘h’, pressure 

difference ‘𝛥𝑃’, viscosity ‘µ’ and length ‘L’. 
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The model in MATLAB shows a pressure distribution after each time step. However, the fault 
sometimes causes too small differences in impedance to see it clearly with the naked eye on the colour 
bar. Therefore, the impedance of the reservoir at different situations will be calculated using equation 
2. The average permeability will be estimated by using the 
‘weighted-average permeability’ method. This estimation is 
just for seeing the influence of the fault parameters on the 
impedance. The accurate calculation of average reservoir 
permeability is much more complicated. For calculating the 
weighted-average permeability, the reservoir has been divided 
into three zones, which have been displayed schematically in 
figure 6. As the fluid in the whole reservoir has the same flow 
rate and viscosity, the average permeability of zone 2 can be 
derived with equation 3. The total pressure difference is equal 
to the sum of the pressure drops across each zone. 

 

𝑘*+, =
𝑘1𝑤1 + 𝑘3𝑤3 + 𝑘4𝑤4

𝑤5
 

 
Equation 3: weighted average permeability equation 

 
  

Figure 6: Schematic figure of reservoir divided into 
three zones. 



16 
 

4. Experiment Sets in MATLAB 
As explained before, the reservoir has been modelled with different fault variables: fault thickness, 
permeability and angle. They have all been calculated by using a ‘for loop’ with all the different values. 
While varying one of the three variables, the other two have been kept fixed. During the investigation 
of the influence of the fault permeability and thickness, also an infinite fault has been modelled to 
compare the results. As the fluid is not able to bypass the fault with an infinite fault, the results should 
be significantly different. Below the calculations are explained shortly. The reservoir has a size of 600 
m x 300 m and a well spacing of 400 m and the finite fault has a length of 260 m.  
 
4.1.  Fault Permeability 
First of all, the permeability parameter has been varied to decide a base value for the permeability of 
the fault. It is convenient to use a fault permeability that has a significant influence on the reservoir, 
as then the dependence on thickness and angle can be seen more easily. The fault has been given a 
different permeability than the surrounding area by using the function ‘inpolygon’, which indicates 
whether certain points are in or outside a certain area. If the element is inside that area, it receives 
the value of the fault permeability and if it is outside that area, it receives the reservoir permeability 
value. The permeability of the reservoir is 40*10-14 m2 and the permeability of the fault ranges from 
10-11 m2 until 10-17 m2.  The base value of fault permeability will be 10-14 m2, in the next chapter it will 
be clear how this value has been chosen. 
 
4.2. Fault Thickness 
The thickness of the fault in the model varies from 10 cm until 150 m. This has been done by varying 
the x coordinates of the fault mesh with every loop. 20 m has been chosen as the base thickness for 
the fault. 
 
4.3. Fault Angle  
The angle of the fault has been varied by multiplying the fault coordinates with the rotation matrix 
(equation 4). The angle (theta) has been varied from 0 to ½ π. At zero the fault is placed perpendicular 
to the flow. At ½ π, the fault has turned parallel to the flow. In Appendix 2 a generated mesh of the 
reservoir with a fault with an angle of 45 degrees is shown as an example. The base value for the angle 
is zero degrees, so the fault perpendicular to the flow.  

 
Equation 4: Rotation matrix (Familton, 2015). 
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5. Results 
The production temperatures were determined by finding the elements in MATLAB that had the same 
coordinates as the well location and taking the average of their solutions. The impedance has been 
estimated by using the method described in Paragraph 3.5. 
 
First, a reservoir without fault has been modelled to check the temperature and pressure behaviour 
without the fault influence. In Figure 7, the plots for the pressure and heat flow after 50 years are 
displayed. In Figure 8, a graph of the temperature throughout the reservoir after 50 years is presented. 
In this situation, the fluid tries to directly reach the production well, due to the pressure difference, 
and has no obstacles of lower permeability values. The final temperature after 50 years is 100.6 
degrees and the impedance has been approximated 1.7 MPa. In the following paragraphs the 
significant results of the three tested fault parameters are presented. 
 

 
Figure 7: Pressure distribution and heat flow of the reservoir without fault after 50 years 

 
Figure 8: Plot of the temperature throughout the reservoir after 50 years 
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5.1.  Fault Permeability 
 
Temperature  
The trend of the production temperatures at a few fault permeability’s has been displayed in Figure 
9. Increasing the permeability of the fault, does not have a lot of influence on the reservoir. This might 
be due to the fact that the fluid will follow the same path as without fault in the direction of the 
production well, due to pressure difference. Decreasing the permeability of the fault, does lead to a 
significant higher production temperature. At a slight decrease of the permeability, the final 
temperature slowly rises. The fluid will start to bypass the fault and sweep away the warmth of the 
sides of the reservoir towards the production well. The fluid will cover a larger distance on its way to 
the reservoir, consequently it will extract a larger amount of heat. At a fault permeability of 10-14 m2, 
the final temperature suddenly shows a larger increase and it becomes constant. Now the 
permeability of the fault is low enough for all the fluid to bypass the fault. From this value on, the fluid 
seems to have reached all the sides from the reservoir and swept away all the warmth, since a lower 
permeability does not have any further influence.  

With an infinite fault, the production temperature only increases (with 5 degrees) at a fault 
permeability of 10-16 m2. The fluid still goes to the production well, but will first distribute over the 
length of the fault, and consequently reach more reservoir area before reaching the production well. 
With further decreasing permeability the temperature does not change, however, much smaller 
values could not be calculated as the difference with the matrix permeability was too large. 
The complete table of production temperatures at different fault permeability’s is given in Appendix 
3.  
 

 
Figure 9: production temperature at permeability’s ranging from 10-11 to 10-17 m2 

Impedance 
The calculated values for the impedance can be found in Appendix 4 and the trend can be seen in 
Figure 10. Only six values have been calculated, therefore it is not a smooth line, but to be able to 
follow the trend more values are not necessary. 

The impedance of the finite fault at a fault permeability of 10-14 m2 is estimated 2.0089 MPa. 
This is a slightly higher value than the case without fault. Apparently an additional pressure of 0.3 MPa 
must be applied to overcome the impedance in that case. A fault permeability of 10-17 m2 creates an 
impedance of 2.0683 MPa. So decreasing the fault permeability does also not have a lot of further 
influence on the impedance, just like at the temperature, as the fluid seems to already have bypassed 
the fault completely at a fault permeability of 10-14 m2. With the impedance being clearly inside the 
threshold of 10 MPa, in which the required pumping powers should be acceptable, the lower fault 
permeability’s might be an advantage for the feasibility of the reservoir. 

An infinite fault gives an impedance of 3.91 MPa at a fault permeability of 10-14 m2, an 
impedance of 24.31 MPa at a permeability of 10-15 m2 and 228.31 MPa at 10-16 m2. The fluid has no 
choice than to go through the fault, and consequently a higher pressure drop must be overcome. The 
higher production temperature at a permeability of 10-16 m2 does by far not weigh against the amount 
of pumping power necessary.  
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Figure 10: Impedance at permeability’s ranging from 10-11 – 10-15m2 

5.2. Fault Thickness 
 

Temperature 
In Figure 11 can be seen that at a fault thickness of 20 m, which is also the base value, the production 
temperature has the highest value compared to other thicknesses. This thickness clearly has the best 
sweeping effect. At a very low thickness, the fault does not have a major impact over the circulation 
period so the results are comparable with a faultless reservoir. But with a very large thickness, in this 
model already at a thickness of 30 m and more, the sweeping effect will not weigh against the 
unrecoverable area of the fault. The fluid then bypasses the fault and is unable to recover the heat in 
the fault. With an infinite fault, the fluid decreases quickly, as it seems unable to reach the complete 
fault area. The production temperature at each thickness is listed in Appendix 5.  
 

 
Figure 11: the production temperature at different thicknesses for a finite and infinite fault 

Impedance 
As stated in the previous paragraph, the impedance at a thickness of 20m had an estimated value of 
2 MPa. Figure 12 shows that the impedance increases linearly with increasing thickness. A fault 
thickness of 40 m leads to an impedance of 2.3 MPa for example and a fault thickness of 150 m leads 
to an impedance of 4 MPa. Both values are still in the threshold of 10 MPa, so the pumping power 
needed can be overseen. An infinite fault, however, already leads to an impedance of 6.12 at a 
thickness of 40m and an impedance of more than 10 MPa at 80 m. The impedance values are listed in 
Appendix 6.  
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Figure 22: Impedance at different thicknesses for a finite and infinite fault 

 

5.3. Fault Angle  
The temperature shows a clear decline when turning the fault to a position from perpendicular to 
parallel to the fluid flow. When the fault is perpendicular to the fluid flow, a big amount of fluid will 
bypass the fault and thus sweep all the heat from the sides of the reservoir. A parallel position of the 
fault causes the fluid to go almost straight to the production well and the temperature and pressure 
will have a similar outcome as a reservoir without fault. At a complete parallel position, the 
temperature even becomes a little bit lower (99,7 degrees) than the temperature without fault (100.6 
degrees). This is probably due to the fact that the flow still almost goes completely straight to the 
production well, however there is an area of 260 x 20 m of unrecoverable heat that will not be 
extracted. 
 

 
 
. 

 
 
 
  

Figure 13: Plot of the final temperature at the production well at different fault angles 
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6. Conclusion  
The main purpose of this research was to investigate the influence of fault permeability, thickness and 
angle on the temperature and pressure performance of a geothermal reservoir. From the results that 
were obtained, it can be seen that all three fault parameters have significant influence on the 
temperature behaviour of the reservoir, at both an infinite and finite fault, as they can all maximize 
and minimize the influence of the fault on the reservoir. At a finite fault, the major impact of the fault 
is the direction of the fluid flow in the reservoir. Increasing the fault permeability leads to a higher 
temperature outcome at the production well, as the fluid bypasses the fault and will travel through a 
larger part of the reservoir and thus extract a larger volume of heat. The fault angle is able to cancel 
the influence of the fault, as at a parallel position the reservoir behaves the same as without fault. 
Increasing the thickness of the fault first leads to a higher temperature outcome due to the sweeping 
effect, but after a certain thickness, the temperature at the production well decreases due to the large 
amount of unrecoverable area, which makes it unable for the fluid to reach all the heat in the 
reservoir. An infinite fault has less influence on the production temperature and only gives a small 
increase of temperature at a very low permeability. 

The impedance does not have a significant influence at a non-infinite fault as the fluid can 
apparently easily bypass the fault. At an infinite fault, the impedance keeps building up with a 
decreasing permeability and increasing thickness, far beyond the acceptable threshold of 10 MPa. 
 
A lower permeable finite fault clearly can have a positive influence on the reservoir behaviour. The 
sweeping and bypassing of the fault causes a higher production temperature, with the impedance 
staying within the threshold of 10 MPa. Consequently, this means a larger energy production of the 
geothermal system. A very low permeable infinite fault also increases the production temperature, as 
the fluid tries to go through the fault over an as large area of the fault as possible. However, the higher 
production temperature does by far not weigh against the large amount of pumping power needed 
to overcome the pressure drop. As sandstones usually have lower fault permeability’s, an infinite fault 
will probably cause the reservoir to be unprofitable. 
 
This knowledge of how the fault parameters affect the temperature and pressure behaviour of a 
geothermal reservoir, can now be taken into account when developing new well doublets in faulted 
areas. This will increase the ability of predicting the performance of the reservoir and that means thus 
another step in reducing the role of uncertainties, that currently make justifying geothermal projects 
so difficult. 
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7. Discussion 
The accuracy of the model has been improved by doing the mesh analysis, which is explained in 
Paragraph 3.4. The maximal edge length, well edge length and growth rate of the mesh grid, have all 
been analysed by making for loops with different values for these three parameters. The final values 
have been determined by examining the differences of the temperature at the production well at the 
last time steps, and by checking for overshoot and undershoot of the temperature during the 
modelling. Using smaller values for these three parameters did not improve the model, the results 
remained constant. 
 
The model does have some limitations. First of all, while using smaller mesh parameter values did not 
improve the model, the temperature outcome when running the model multiple times with the exact 
same values is not precisely constant. A difference of approximately 0.2 degrees has been 
experienced, which presumably could be solved by even further mesh refinement, or it is influenced 
by other unknown factors.  However, it did not affect the conclusion of this report as that was a 
comparison study based on larger differences. 
 
Secondly, when the contrast between the permeability of the fault and the permeability of the 
sandstone matrix increases, also a more and more fine mesh is needed as explained in Paragraphs 2.4 
and 3.3. Only three orders of difference with the matrix permeability could be calculated with the 
model of this thesis, using higher and lower values resulted into over and undershoot. For more 
contrast, extreme refinement is required, which is impossible to implement on a normal computer as 
the size of the Random-Access Memory is too small. Above aspects suggest a more powerful computer 
and a larger amount of time. 
 
To decrease computation time, a symmetrical model (with the centreline halfway through the 
reservoir connecting both wells) could have been used so only half of the reservoir had to be modelled 
with a no-flow boundary condition at the interface. This is only applicable if both halves are 
homogenous, so it would have been possible to implement it in this thesis when modelling for the 
fault permeability and thickness. This would have been convenient in order to investigate even more 
parameters, especially considering the small amount of time scheduled for this research. However, 
the realization of the possibility to use the symmetrical model came in a too late stage of the research 
to be of any advantage. 
 
Moreover, a 2D model has been used in this research. M. Antonellini and A. Aydin (1994) state that it 
is important to use a 3D model when evaluating fluid flow through a low-permeability fault zone, 
because it has to be done at an appropriate scale for the problem and is needed to correctly evaluate 
sealing properties of faults for example. Especially large faults come with various structures such as 
slip surfaces, deformation bands, breccia zones, etc. which are arranged in a complex 3D structure.  
 
Also, the reservoir in the model is assumed to be homogeneous. To obtain a more realistic solution, 
heterogeneous rock formations must be incorporated as the reservoir is not likely to have the same 
properties everywhere. For example, deformation bands throughout the reservoir can have a 
significant influence on the fluid flow (R. Schulz, 2009). This also counts for the fault. As said before, 
the fault zone consists of different structures which do not have a uniform value. Also, the same 
applies for the fault geometry, besides it being 2D, it is also modelled with straight lines which perhaps 
simplifies the calculation too much. Actual fault geometries should be incorporated for a more 
detailed evaluation and the realistic petrophysical values of all those structural aspects of the fault 
should be used (M. Antonellini & A. Aydin, 1994).   
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Furthermore, faults can form permeable parallel pathways coming from great depths to shallower 
aquifers and reservoirs (E.C.D. Hooper, 1991). The parallel permeability can be one order of magnitude 
bigger than the perpendicular permeability (M. Antonellini & A. Aydin, 199). This can cause a warm 
water supply from greater depth. This can also cause reservoir fluids to accommodate along the fault 
upward, out of the reservoir, due to the density difference. That the fault can act like a parallel 
pathway from and into other layers, has not been taken into account during the modelling.  
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8. Recommendations  
For further research about this topic, a model could be built with a heterogeneous reservoir. 
Therefore, data of a reservoir with fractures, different (fault) permeability values, different densities, 
different rock properties etc. should be implemented. Also, a 3D model would present a more realistic 
solution. Moreover, the anisotropy could be taken into account in the future. In this model, no 
difference has been made between permeability values in different directions. Particularly when a 
model is in 3D, which would be an improvement, it is important to take into account the anisotropy, 
as especially the permeability in vertical direction can vary significantly from the permeability in the 
horizontal directions. Furthermore, now only one fault has been investigated, it would be interesting 
to do the research with more faults and vary their permeability values to see the influence on the 
reservoir. In addition, researching the possibility of a fault enabling fluids to flow from and into other 
layers, by acting as a pathway, would be a useful addition as well.  
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Appendix 
Appendix 1: 
Matlab code for the mesh generation: 
DistMesh function retrieved from http://persson.berkeley.edu/distmesh/ (P.O. Persson & 
Gilbert Strang, 2004) 
 

% input data 
% cd(pwd) 
%  cd('/Users/ylanavanhout/Downloads/New folder2/'); 
prnt_fold = pwd; 
% 
%  addpath('/Users/ylanavanhout/Downloads/New folder/Distmesh/distmesh'); 
 
cd(pwd); 
addpath(genpath(pwd)) 
 
 
%create for loop over whole script to measure mesh sensitivity. However you 
%want to keep the average T so use clearex 
 
%k_a = 20:-1:5; 
%k_c = 0.5:-0.05:0.05; 
%k_d = 0.6:-0.05:0.1; 
%for iteration_maxedgelength=1:numel(k_a) 
%for iteration_edgelengtharoundwell = 1:numel(k_c) 
%for iteration_growthrate = 1:numel(k_d) 
%clearvars -except Avrge_prod_T k_d iteration_growthrate prnt_fold 
 
%k_w = [0.1,0.2,2,4,10,20,30,40,50,60,70,80,90,100,110,120,150]; 
%for iteration_width = 1:numel(k_w) 
%clearvars -except Avrge_prod_T k_w iteration_width prnt_fold 
 
% Mesh with two wells and fault 
clc 
%edge_length_around_well= k_c(iteration_edgelengtharoundwell); 
edge_length_around_well = 0.25; % smaller --> smaller mesh around well 
edge_length_fault=2.5; % bigger --> smaller mesh around well 
rad_well=1; 
growth_rate = 0.2; 
%growth_rate= k_d(iteration_growthrate); 
 
%max_edge_length = k_a(iteration_maxedgelength);%20*0.8.^(k_a-1) 
max_edge_length = 10 
 
 
%well location 
xc_left=-200; 
yc_left=0; 
xc_right=200; 
yc_right=0; 
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%Reservoir size 
X1_Res=-300; 
X2_Res=300; 
Y1_Res=-150; 
Y2_Res=150; 
 
Rect_fixed=[X1_Res,Y1_Res;X1_Res,Y2_Res;X2_Res,Y1_Res;X2_Res,Y2_Res]; 
 
%Fault coordinates: 
X1_fault=10 %k_w(iteration_width); 
X2_fault=-X1_fault; 
X3_fault=X2_fault; 
X4_fault=X1_fault; 
 
%Infinite, otherwise 130 
Y1_fault=-150; 
Y2_fault=-150; 
Y3_fault=150; 
Y4_fault=150; 
 
Point1=[X1_fault;Y1_fault]; 
Point2=[X2_fault;Y2_fault]; 
Point3=[X3_fault;Y3_fault]; 
Point4=[X4_fault;Y4_fault]; 
 
%Fault coordinates matrix 
Fault_coordinates = [Point1,Point2,Point3,Point4]; 
 
 
%phi = linspace(pi/20,pi/2,10); 
%phi = [pi/4] 
%for iteration_rotation = 1:numel(phi); 
 
%   clearvars -except iteration_rotation 
 
%     Rot_matrix(:,:,iteration_rotation) = [cos(phi(iteration_rotation)),-
sin(phi(iteration_rotation));sin(phi(iteration_rotation)),cos(phi(iteration_rotatio
n))]; 
%      new_rotPoints(:,:,iteration_rotation) = 
Rot_matrix(:,:,iteration_rotation)*Fault_coordinates; 
 
% assign XY_fault 
%new_rotPoints(1=x 2=y,point,iteration_rotation) 
% X1_fault = new_rotPoints(1,1,iteration_rotation); 
% X2_fault = new_rotPoints(1,2,iteration_rotation); 
% X3_fault = new_rotPoints(1,3,iteration_rotation); 
% X4_fault = new_rotPoints(1,4,iteration_rotation); 
% 
% Y1_fault = new_rotPoints(2,1,iteration_rotation); 
% Y2_fault = new_rotPoints(2,2,iteration_rotation); 
% Y3_fault = new_rotPoints(2,3,iteration_rotation); 
% Y4_fault = new_rotPoints(2,4,iteration_rotation); 
 
 
%Fault spacing 



29 
 

fault_spacing = edge_length_fault; 
 
distance_12 = sqrt((abs(X2_fault-X1_fault))^2+(abs(Y2_fault-Y1_fault))^2); 
distance_23 = sqrt((abs(X3_fault-X2_fault))^2+(abs(Y3_fault-Y2_fault))^2); 
distance_34 = sqrt((abs(X4_fault-X3_fault))^2+(abs(Y4_fault-Y3_fault))^2); 
distance_41 = sqrt((abs(X1_fault-X4_fault))^2+(abs(Y1_fault-Y4_fault))^2); 
 
nr_steps_hor = distance_12/fault_spacing; 
nr_steps_ver = distance_23/fault_spacing; 
 
%Fault fixed points: 
Fault_fix_12 = [linspace(X1_fault,X2_fault,nr_steps_hor); 
linspace(Y1_fault,Y2_fault,nr_steps_hor)]; 
Fault_fix_12 = Fault_fix_12'; 
 
Fault_fix_34 = [linspace(X4_fault,X3_fault,nr_steps_hor); 
linspace(Y4_fault,Y3_fault,nr_steps_hor)]; 
Fault_fix_34 = Fault_fix_34'; 
 
Fault_fix_23 = [linspace(X2_fault,X3_fault,nr_steps_ver); 
linspace(Y2_fault,Y3_fault,nr_steps_ver)]; 
Fault_fix_23 = Fault_fix_23'; 
 
Fault_fix_41 = [linspace(X4_fault,X1_fault,nr_steps_ver); 
linspace(Y4_fault,Y1_fault,nr_steps_ver)]; 
Fault_fix_41 = Fault_fix_41'; 
 
Fault_fixed = [Fault_fix_12;Fault_fix_34;Fault_fix_23;Fault_fix_41]; 
 
fd=@(p) ddiff( 
drectangle(p,X1_Res,X2_Res,Y1_Res,Y2_Res),dunion(dcircle(p,xc_left,yc_left,rad_well
), dcircle(p,xc_right,yc_right,rad_well)) ); 
fh=@(p)min(   min(   min(... 
                                    
min(edge_length_around_well+growth_rate*dcircle(p,xc_left,yc_left,rad_well), 
edge_length_around_well+growth_rate*dcircle(p,xc_right,yc_right,rad_well))... 
                                
,edge_length_around_well+growth_rate*abs(dpoly(p,[X1_Res, yc_left; 
X1_Res,yc_left]))... 
                         )... 
                      
,edge_length_fault+growth_rate*abs(dpoly(p,[X1_fault,Y1_fault; 
X2_fault,Y2_fault;X3_fault,Y3_fault; X4_fault, Y4_fault; X1_fault,Y1_fault]))... 
                  )... 
               ,max_edge_length... 
           ); 
 
 
[p,t]=distmesh2d_mod2(fd,fh,edge_length_around_well,[X1_Res,Y1_Res;X2_Res,Y2_Res],[
Fault_fixed;Rect_fixed]); 
 
axis on 
size(p,1) 
 
mesh_nodes = p; 
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mesh_elements = t; 
 
%mesh_nodes_test{i}(:,:) = p; 
%mesh_elements_test{i}(:,:) = t; 
%end 
 
%take all the means of the elements 
elem_mean=[]; 
for tmp_elem=1:size(t,1) 
    elem_ind=t(tmp_elem,:); 
    elem_mean=[elem_mean;mean(p(elem_ind,:))]; 
end 
 
 
out2=mesh_nodes'; 
fid = fopen(strcat('mesh_nodes.dat'), 'w'); 
fprintf(fid, '          %d          %d\n', out2); 
fclose(fid); 
 
out2=mesh_elements'; 
fid = fopen(strcat('mesh_elements.dat'), 'w'); 
fprintf(fid, '          %d          %d          %d\n', out2); 
fclose(fid); 

 
Appendix 2: mesh with a fault turned 45 degrees 
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Appendix 3: Table with the production temperatures at different fault permeability’s for a 
finite fault 
 

Fault permeability m2 Production Temperature C 
(finite fault) 

Production Temperature 
(infinite fault) 

10e-12 99,59 99,6 
70e-13 99,76  
50e-13 100,20  
30e-13 100,91  
10e-13 101,16 101,34 
90e-14 100,91  
60e-14 100,59  
40e-14 100,59  
10e-14 102,89 101,21 
90e-15 102,97  
70e-15 103,55  
50e-15 104,29  
30e-15 105,96  
10e-15 110,25 98,1 
90e-16 110,60  
10e-16 111,21 100,7 
10e-17 110,8 105,45 
5e-17 110,72 104,3 

 
Appendix 4: Table with impedance values at different permeability’s for finite and infinite 
fault with thickness of 20 m 
 

Permeability m2 MPa (Finite) MPa (Infinite) 
10e-12 1,65 1,65 
10e-13 1,67 1,67 
10e-14 1,81 1,87 
10e-15 2,01 3,91 
10e-16 2,06 24,31 
10e-17 2,07 228,31 
10e-18 2,07 2268,3 

 
Appendix 5: Table with temperature values at different thicknesses 
 

Thickness m Production temperature 
(Finite fault) 

Production temperature 
(Infinite Fault) 

0.1 100,53 100.8 
0.2 101.17 100.89 
1 100.48 101.71 
2 104.21 101.81 
4 106.18 101.73 
10 109.0 100.49 
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20 110.25 98.15 
30 110.25  
40 109.87  
50 109.16  
60 108.22 85.05 
70 107.19  
80 106.05 77.32 
90 104.55  
100 102.79 69.06 
110 101.02  
120 99.03  
130 98  
150 91.76  

 
 
Appendix 6: Table with impedance values at different thicknesses for finite and infinite fault 
with permeability of 10-14 m2 
 

Thickness (m) MPa (Finite) MPa (Infinite) 
10 1,85 2,80 
20 2,01 3,91 
30 2,16 5,02 
40 2,31 6,12 
50 2,47 7,23 
60 2,62 8,33 
70 2,78 9,44 
80 2,94 10,54 
90 3,09 11,65 
100 3,24 12,75 
110 3,40 13,86 
120 3,55 14,69 
130 3,71 16,07 
140 3,86 17,17 
150 4,02 18,27 

 


