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The Learning with Errors (LWE) problem is a versatile basis for building various purpose post-

quantum schemes. Goldwasser et al. [ISC 2010] initialized the study of a variant of this problem 
called the Entropic LWE problem, where the LWE secret is generated from a distribution with a 
certain min-entropy. Brakerski and Döttling recently further extended the study in this field, and 
first proved the hardness of the Entropic LWE problem with unbounded secret [Eurocrypt 2020], 
then gave a similar result for the Entropic Ring-LWE problem [TCC 2020].

In this work, we systematically study the hardness of the Entropic Module-LWE problem. Adapting 
the “lossiness approach” to the module setting, we give lower entropy bounds for the secret 
distributions that guarantee the hardness of the Entropic Module-LWE problem in both search 
and decision cases, where results are divided into two settings: bounded and unbounded norm. 
We also present that our search entropy lower bound in the unbounded case is essentially tight. An 
application of our bounded result is to deduce the hardness for the Binary Module-LWE problem. 
One of our central techniques is a new generalized leftover hash lemma over rings, which might 
be of independent interest.

1. Introduction

The Learning with Errors (LWE) problem, introduced by Regev [29], has been proven to be a versatile basis for constructing 
cryptography schemes. Among several appealing properties of the LWE problem are its reductions from worst-case lattice problems 
[20,22,28,29], and its conjectured post-quantum security.

To improve the asymptotic and practical efficiency of LWE-based cryptographic schemes, Lyubashevsky et al. [22] introduced the 
Ring-LWE problem. To interpolate LWE and Ring-LWE, Brakerski et al. [10,20] introduced the Module-LWE problem. The Module-

LWE problem might be able to offer a better level of security than the Ring-LWE problem, while still offering performance advantages 
over the LWE problem.

The assumption that the LWE and its variants are intractable was used as a basis for various classical applications, such as public 
key encryption [15,29], key exchange [12,27], identity-based encryption [15], functional encryption [1] and various cutting edge 
primitives, such as fully homomorphic encryption (FHE) [16] and indistinguishability obfuscation (IO) [18].

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
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Fig. 1. Outline of our approach for Entropic Module-LWE.

With the rapid development of quantum computers, it is imperative to develop quantum-resistant cryptography schemes. For 
example, NIST proposed a standardization project, with the aim of selecting quantum-safe schemes for public-key encryption and 
digital signatures. Currently, the selected final standards Kyber [6] and Dilithium [14] are both based on the Module-LWE problem. 
Another well-studied KEM scheme Saber relies on the hardness of the Module Learning with Rounding (Module-LWR) problem, 
which is the definite variant of the Module-LWE problem.

Entropic secrets Motivated to achieve an entropic notion of security that will allow guaranteeing the hardness even if some informa-

tion about the secret 𝐬 is leaked, Goldwasser et al. [17] initiated the study on the hardness of the LWE problem when the secret 𝐬 is 
not chosen uniformly at random. They developed a “noise flooding” method and proved that if 𝐬 is sampled from a binary distribution 
(i.e. supported over {0, 1}𝑛), then the LWE problem remains hard so long as 𝐬 has sufficient entropy. Later, Alwen et al. [4] proved 
that the LWE problem is hard for bounded secret with sufficient entropy.

Recently, Brakerski and Döttling [9] further extended the study in this setting. They first considered the hardness of the LWE 
problem with unbounded secrets. By proposing a new approach to deal with the noise (“flooding at the source”), they first got an 
entropy bound that guarantees the security of the Entropic LWE problem. Besides, their method is also applicable for the bounded 
case, and yields similar results as [4]. Then they adopted this approach to the ring setting [35], and established the hardness result 
for the search Entropic Ring-LWE problem. The hardness of the decision Entropic Ring-LWE problem is still an open problem.

Boudgoust et al. [7,19] studied a special Entropic version problem, called Binary Module-LWE. They adapted the method proposed 
in [17] to the module setting, and showed the hardness of the Binary Module-LWE problem. However, there is no result known for 
the hardness of the Entropic Module-LWE problem with general secret distribution both in bounded and unbounded cases. In this 
work, we focus on determining hardness of the Entropic Module-LWE problem.

1.1. Our contributions

We make a systematic study on the hardness of the Entropic Module-LWE problem, and get the hardness results for both search 
and decision versions. The brief structure of our study is outlined in Fig. 1.

Search version First, we adapt the “flooding at the source” [9] approach to the module setting, and show that the secret distributions 
with sufficiently high noise lossiness will lead to the hardness of the search Entropic Module-LWE problem. The noise lossiness of 
secret distribution  , denoted by 𝜈𝛼(), is defined to be the conditional smooth min-entropy of a sample from  conditioned on 
learning its perturbation by gaussian noise. Formally, 𝜈𝛼() = �̃�∞(𝐬 ∣ 𝐬 + 𝐞 mod 𝑞𝑅∨) where 𝐞 is a gaussian noise with parameter 𝛼. 
Then, we analyze the relation between the noise-lossiness and the min-entropy of the secret distribution. According to whether there 
is a bound on the norm of the secret, we distinguish two cases below. By this one can deduce the lower bound for min-entropy of 
the secret distribution to imply the hardness of Module-LWE in both general case and bounded case, where the bounded case can 
achieve a better lower bound. Our results can be expressed as the following theorem.

Theorem 1. Assume that the decision primal Module-LWE problem over ring 𝑅 with modulus 𝑞, dimension 𝑘 and gaussian noise parameter 
𝛽 is hard. Then the following holds:

General case: If secret distribution  over (𝑅∨
𝑞 )

𝑑 satisfies that:

�̃�∞() ≥𝑛𝑘 log(𝑞) + 𝑛𝑑 log
( 𝑞

𝛼′

)
− 𝑑

2
log(Δ𝐾 ) + 1 +𝜔(log(𝜆)),

where 𝑞

𝛼′
≥ ‖�̃�𝑅‖ ⋅√ log4𝑛𝑑

𝜋
. Then the search Entropic Module LWE problem with rank 𝑑, modulus 𝑞, secret distribution  and √
2

gaussian noise parameter 𝛼 ≈ 𝛼′𝛽 𝑚 is hard.
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Bounded case: If secret distribution  over (𝑅∨
𝑞 )

𝑑 is 𝑀 -bounded and satisfies that:

�̃�∞() ≥ 𝑛𝑘 log(𝑞) +
√
2𝜋𝑛𝑑 ⋅

𝑀

𝛼′
log(𝑒) +𝜔(log(𝜆)).

Then the search Entropic Module LWE problem with rank 𝑑, modulus 𝑞, secret distribution  and gaussian noise parameter 
𝛼 ≈ 𝛼′𝛽

√
𝑚 is also hard.

Our bounded case result directly implies the hardness of the Binary Module-LWE problem, which is a very common variant in 
applications. For unbounded case, we also show that for general modulus and general min-entropy distributions, this lower bound 
is tight up to polynomial factors. Besides, during the proof, we introduce a new gaussian decomposition theorem and present the 
relation between the noise-lossiness and the min-entropy over module setting, which might be of independent interests.

Decision version Note that, the above theorem only applies to the search version. But the security of many cryptographic schemes 
depends on the hardness of the decision version. An interesting phenomenon is that, for the Module-LWE problem, we have a search 
to decision reduction, which means the decision version problem is as hard as the search version. But for the Entropic Module-

LWE problem, the hardness of the search version does not always imply the hardness of the decision version. To illustrate this, 
let us consider a specific setting that the ring 𝑅 satisfies 𝑞𝑅 = 𝔮1𝔮2, where each 𝑁(𝔮𝑖) = 𝑞𝑛∕2,  is a uniform distribution over 
(𝑅∕𝔮1)𝑑 but is 0 mod 𝔮2, and noise satisfies a gaussian distribution. In this case, the secret distribution has very high min-entropy 
�̃�∞() = 𝑛𝑑 log(𝑞)∕2 which satisfies our requirement, so the search problem is hard. However, in this case, the decision problem is 
easy. Note that for any Module-LWE sample (𝐚, 𝐲), we have ⟨𝐚, 𝐬⟩ mod 𝔮2 = 0. The adversary can easily solve the decision problem 
by identifying whether 𝐲 mod 𝔮2 is uniform distribution over 𝑅∕𝔮2. Therefore, the hardness of the decision version and the search 
version problem on these rings are separated.

It is worth noting that the phenomenon described above also exists in the case of plain LWE. However, in the LWE setting, 𝑞 is 
usually chosen as a prime, which turns ℤ𝑞 into a field, eliminating the aforementioned issue. On the other hand, for the Module-LWE 
problem, parameters that would make 𝑅𝑞 a field are generally not chosen. Therefore, the impact of the aforementioned issue on the 
Module-LWE problem is more significant.

From the above simple example, we know that the requirement that the secret distribution has high-entropy is obviously not 
enough for the decision Entropic Module-LWE problem. To deal with the above attacks, the secret distribution needs at least has 
enough entropy on each prime ideal. Fortunately, we find that this requirement is sufficient. We show that if secret distribution 
satisfies that for every prime ideal factor 𝔭𝑖|𝑞𝑅, 𝐬 mod 𝔭𝑖𝑅∨ has high entropy, then the decision Entropic Module-LWE problem is 
also hard. To prove this result, we introduce a new leftover hash lemma over module setting, which might be of independent interest. 
Similar to the search case, the results in the decision version are also divided into two cases, general high entropy case and bounded 
case, the bounded case can also get a smaller lower bound. The results can be expressed as the following theorem.

Theorem 2. Assume that the decision primal Module-LWE problem over ring 𝑅 with prime modulus 𝑞, dimension 𝑘 and gaussian noise 
parameter 𝛽 is hard. Assume the decomposition of 𝑞𝑅 can be expressed as 

∏
𝑖 𝔭

𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Then the following 
holds:

General case: If secret distribution  over (𝑅∨
𝑞 )

𝑑 satisfies that:

�̃�∞(𝐬 mod 𝔭𝑖𝑅
∨) ≥𝑛𝑘 log(𝑞 + 1) + 𝑛𝑑 log

( 𝑞

𝛼′

)
− 𝑑

2
log(Δ𝐾 ) − 1 +𝜔(log(𝜆)),

for any prime ideal 𝔭𝑖 of 𝑞𝑅, where 𝑞

𝛼′
≥ ‖�̃�𝑅‖ ⋅√ log4𝑛𝑑

𝜋
. Then the decision Entropic Module LWE problem with rank 𝑑, modulus 

𝑞, secret distribution  and gaussian noise parameter 𝛼 ≈ 𝛼′𝛽
√

𝑚 is hard.

Bounded case: If secret distribution  over (𝑅∨
𝑞 )

𝑑 is 𝑀 -bounded and satisfies that:

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥𝑛𝑘 log(𝑞 + 1) +
√
2𝜋𝑛𝑑 ⋅

𝑀

𝛼′
log(𝑒) − 2 +𝜔(log(𝜆))

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Then the decision Entropic Module LWE problem with rank 𝑑, modulus 𝑞, secret distribution  and 
gaussian noise parameter 𝛼 ≈ 𝛼′𝛽

√
𝑚 is also hard.

As an application of this result, we can obtain the hardness of the decision Entropic Ring-LWE problem for some special case 
secret distribution by combining this theorem and the “modulus switching” technique developed by [2]. The “modulus switching” 
technique can ensure that the secret keys before and after the switching have the same minimum entropy. However, it introduces an 
expansion factor for the noise terms, which is related to the maximum norm of the secret keys. Nevertheless, when the noise term 
is very large, the (Ring-)LWE problem becomes statistically difficult. Therefore, to obtain more meaningful results, we only consider 
the scenario where the secret key is bounded. In this situation, we can prove that when both 𝑠 mod 𝑞𝑅∨ and (𝑠 − 𝑠 mod 𝑞𝑅∨)∕𝑞
are bounded, and the entropy of 𝑠 is sufficiently large, the decision Entropic Ring-LWE problem becomes intractable, where 𝑠 is a 
3

random variable over 𝑅∨
𝑞2

. The formal analysis of Entropic Ring-LWE are presented in Section 5.
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1.2. Technical overview

Here we provide a technical overview of our main contributions.

Search version At a high level, we prove the hardness of the Entropic Module-LWE problem by adapting the “flooding at the source” 
approach developed by Brakerski et al. [9] to the module setting. Their proof framework consists of the following 3 steps.

1. Replace 𝐴 by a lossy matrix 𝐵𝐶 +𝑍 , and replace 𝐞 by 𝐹 𝐞1 + 𝐞2;

2. Show that high noise lossiness 𝜈𝛼() implies the hardness of Entropic LWE;

3. Show that high min-entropy �̃�∞(𝐬) implies high noise lossiness.

In the module setting, by the hardness of decision primal Module-LWE assumption (or decision primal Ring-LWE assumption) we 
can also replace 𝐴 by 𝐵𝐶 +𝑍 . But since the error term is in 𝐾ℝ and the matrix multiplication in the ring is different from which in 
ℝ𝑛, we need to establish a new decomposition theorem for continuous Gaussian distribution on 𝐾ℝ first.

If 𝐾 is a number field with 𝑠1 real embeddings denoted as 𝜎1, ⋯ , 𝜎𝑠1 and 𝑠2 pairs complex embeddings denoted as 𝜎𝑠1+1, ⋯ , 𝜎𝑛, 
then when 𝐹 is a fixed matrix in 𝑅𝑚×𝑑 , 𝐞1 ← (𝐷𝛼′ (𝐾ℝ))𝑑 and 𝐞 = 𝐹 𝐞1, we have 𝜎𝑖(𝐞) and 𝜎𝑗 (𝐞) are independent where 𝑖 ≠ 𝑗 and |𝑖 −𝑗| ≠ 𝑠2. Therefore, we can sample 𝐞2 in blocks and make the random variable 𝐹 𝐞1+𝐞2 follow distribution according to (𝐷𝛼(𝐾ℝ))𝑚. 
The details are outlined in Section 3.1.

Step 3 (establishing a relation between min-entropy and noise-lossiness) are portable to the module setting, but we also need to 
take care of some mathematical subtleties in the ring. The complete analysis and formal statement are presented in Section 4.1.

Decision version In [9], Brakerski et al. proved the hardness of decision Entropic LWE problem when the modulus 𝑞 is a prime. In 
this case ℤ𝑞 is a field, and they can get a generalized leftover hash lemma. However, for module setting, the requirement that 𝑅𝑞 is 
a field is too harsh. The commonly used ring does not meet this requirement. Therefore, to get the hardness result for the decision 
Entropic Module-LWE problem, we need to give a variant of leftover hash lemma first.

Our leftover hash lemma consider the case where there is a small amount of leakage of secrets, which states that for some secret 
distribution  , if for every prime ideal factor 𝔭𝑖|𝑞𝑅, 𝐬 mod 𝔭𝑖𝑅∨ has high entropy, then the distribution (𝐶, 𝐶𝐬, 𝐬 + 𝐞) and (𝐶, 𝐮, 𝐬 + 𝐞)
are statistical indistinguishability. The proof of our leftover hash lemma follows the framework from [21], but has some differences. 
Because we consider the case that the secret 𝐬 is partially leaked (𝐬 + 𝐞), we need to use conditional probability in our calculation. As 
a result, the statistical distance between the two distributions in [21] is controlled by certain collision probability, while in this work 
it is controlled by certain conditional collision probability. Then we combine the result about the relation between min-entropy and 
noise-lossiness in Section 3.2 to get the result. For the complete analysis and formal statement of the result, see Section 3.3.

Combining this new lemma, we can adapt the framework in [9] to the module setting and get the hardness result for the decision 
version problem. The complete analysis and formal statement are presented in Section 4.2.

1.3. Comparison to previous work

Entropic Module-LWE: Following the generalized “closeness to low-rank” approach, Brakerski and Döttling [35] proved that the 
Ring-LWE problem is hard so long as secret distribution  has sufficient min-entropy. Their result is established under Decisional 
Small Polynomial Ratio (DSPR) and Ring-LWE assumption, where DSPR assumption is a mild variant of the NTRU assumption. They 
determined the hardness of the search version Entropic Ring-LWE problem. The hardness of the decision version Entropic Ring-LWE 
problem is still open.

Boudgoust et al. [7,19] studied a special Entropic Module-LWE problem, namely Binary Module-LWE. In [7], they adapted the 
method proposed in [17] to the module setting and use Rényi divergence proved the hardness result for the search version Binary 
Module-LWE problem. In [19], they adapted the method proposed in [11] to the module setting and showed the hardness result for 
the decision version Binary Module-LWE problem. These two results are established under the Module-LWE assumption.

Liu et al. [21] studied the definite variant of the Module-LWE problem, namely Module-LWR. They present a search-to-decision 
reduction for Module-LWR with respect to a special rounding method. As a result, they show that Module-LWR is pseudorandom as 
long as it is one-way.

Boudgoust et al. [8] recently adapted the proof method from [35] on rings to modules, which uses a sensibly different approach 
from the one we described above. Their proof is based on an Module-NTRU hardness assumption, while it is based on Module-LWE 
for us. Although their reduction is rank-preserving, hardness problem they based (Module-NTRU) has very few theoretical hardness 
results. Besides, their method only shows the entropic hardness of search Module-LWE problem, while our method also provide the 
entropic hardness of decision Module-LWE problem.

Concretely, in this work, we make the first systematic study on the hardness of the Entropic Module-LWE problem. We get the 
hardness results for the Entropic Module-LWE problem for both search and decision versions. Each version consists of two cases, 
where the bounded case has a better lower bound. Our results are established under the Module-LWE assumption (or Ring-LWE 
assumption). By using “modulus switching” technique, we also get the hardness result for the decision Entropic Ring-LWE problem 
with some special case secret distribution.

We summarize the results and the achieved parameters in Table 1, which primarily compare the parameters that can be achieved 
4

when we assume that the Module-LWE problem with rank 𝑘 is hard, and secrets are uniformly sampled from a small range [−𝜂, 𝜂].
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Table 1

Summary of the results for the Entropic Module-LWE problem.

Field 𝐾 Rank 𝑑 Modulus 𝑞 Secret 𝐬 Variant

[7,19] Cyclotomic
log 𝑞

log(2𝜂+1)
𝑘 Prime [−𝜂, 𝜂] Decision (Search)

[8] Arbitrary 𝑘 All [−𝑛𝑘 log𝑛, 𝑛𝑘 log𝑛] Search

Ours Arbitrary 𝑑 All [−2
𝑘 log 𝑞

𝑑 ,2
𝑘 log 𝑞

𝑑 ] Search

Ours Arbitrary 𝑑 All Depends on 𝐾a Decision

a The achievable secret bound depends on the form of the field 𝐾 .

Leftover hash lemma Most previous ring-based leftover hash lemmas require secret 𝐬 to obey some special distribution. Roşca et 
al. [30] require 𝐬 ← (𝐷𝑅,𝛼)𝑑 and Boudgoust et al. [7] require 𝐬 ← 𝑈 ((𝑅∨

2 )
𝑑 ). Recently, Liu et al. [21] also proposed a new leftover 

hash lemma, they show that if 𝐬 mod 𝔭 has sufficient entropy for every ideal factor 𝔭, then 𝐶𝐬 is indistinguishable from uniform 
distribution.

The situation we consider is different from theirs. We show that if 𝐬 mod 𝔭 has sufficient entropy for every ideal factor 𝔭, then 
𝐶𝐬 is indistinguishable from uniform distribution even if some auxiliary information 𝐬 + 𝐞 is leaked. However, in [21], auxiliary 
information 𝐬 + 𝐞 is not allowed to be disclosed.

1.4. Paper organization

The remaining of the paper is organized as follows. In Section 2, we present preliminaries and definitions. In Section 3, we prove 
three probability lemmas over ring. In Section 4, the Entropic Module-LWE problem is formally defined, and the hardness results for 
both search and decision version are established. In Section 5, we present the hardness results for the decision Entropic Ring-LWE.

2. Preliminaries

In this section, we review some basic notions and mathematical notations used throughout the paper. We denote the security 
parameter by 𝜆, and we say a function 𝑓 (𝜆) is negligible if 𝑓 (𝜆) ∈ 𝜆−𝜔(1). For any positive integer 𝑛, we represent the set {1, ⋯ , 𝑛}
by [𝑛].

We denote column vectors over ℝ𝑛 or ℂ𝑛 by bold lower case letters (𝐚, 𝐛, etc.). Matrices over ℝ𝑚×𝑛 or ℂ𝑚×𝑛 are denoted by 
upper-case letters (𝐴, 𝐵, etc.). For a vector 𝐱 over ℝ𝑛 or ℂ𝑛, define the 𝓁2 norm as ‖𝐱‖2 = (

∑
𝑗 |𝑥𝑗 |2)1∕2, define the 𝓁∞ norm as ‖𝐱‖∞ = max𝑗 |𝑥𝑗 |. We denote the identity matrix in 𝑛 dimensions using 𝐼𝑛. The transpose of a matrix or vector will be denoted by 

(⋅)T, the conjugate transpose of a matrix or vector will be denoted by (⋅)† and the complex conjugate of 𝑧 ∈ ℂ will be written as �̄�. 
For a matrix 𝑋 over ℝ𝑚×𝑛, the spectral norm of matrix is defined by 𝑠1(𝑋) = sup𝐮≠0 ‖𝑋𝐮‖2‖𝐮‖2 .

An 𝑛-dimensional lattice is a discrete subgroup of ℝ𝑛. Any lattice Λ can be seen as the set of all integer linear combinations of a 
set of basis vectors {𝐛1, ⋯ , 𝐛𝑗}. We will consider full rank (i.e. 𝑗 = 𝑛) lattice. We use the matrix 𝐵 = [𝐛1, ⋯ , 𝐛𝑛] to denote a basis. 𝐵
is used to denote the Gram-Schmidt orthogonalization of columns in 𝐵 (from left to right), ‖𝐵‖ is the length of the longest vector in 
𝓁2 norm of the columns of 𝐵 and ‖𝐵‖∞ is the length of the longest vector in 𝓁∞ norm of the columns of 𝐵. The dual of a lattice Λ
is defined as Λ∗ = {𝐱 ∈ span(Λ) ∶ ∀𝐲 ∈Λ, ⟨𝐱, 𝐲⟩ ∈ℤ}.

2.1. Algebraic number theory

Let K be some algebraic number field, the degree of K is equal to the dimension of K as a vector space over ℚ. For any field 
element 𝜈 ∈𝐾 , multiplication by 𝜈 is a ℚ-linear transformation of K into itself, i.e.

𝑚𝜈 ∶𝐾 ↦𝐾 given by 𝑚𝜈(𝑥) = 𝜈𝑥.

The trace of 𝜈, denoted by Tr(𝜈), is defined as the trace of this linear transformation. An element 𝜈 ∈ 𝐾 is said to be integral if it 
is the root of a monic polynomial with integer coefficients. The set of all integral elements 𝑅 forms the ring of integers of 𝐾 . Let 
𝑅∨ = {𝑥 ∈ 𝐾 ∣ Tr(𝑥𝑅) ⊂ ℤ} be the dual of 𝑅. 𝑅 is a free ℤ-module of rank 𝑛 (the degree of 𝐾), i.e. it is the set of all ℤ-linear 
combinations of some basis 𝐵 = {𝑏1, ⋯ , 𝑏𝑛} ⊂ 𝑅. Also let 𝐾ℝ ∶= 𝐾 ⊗ℚ ℝ and define 𝕋𝑞𝑅∨ ∶= 𝐾ℝ∕𝑞𝑅∨. In this paper, we always 
explicitly assume 𝐾 be some algebraic number field, 𝑅 be its ring of integers and 𝑅∨ be the dual of 𝑅, unless stated otherwise.

An ideal  ⊂ 𝑅 is a nontrivial additive subgroup that is closed under multiplication by 𝑅. An ideal 𝐼 ⊊ 𝑅 is said to be prime if 
whenever the product 𝑥𝑦 ∈ 𝐼 for elements 𝑥, 𝑦 ∈𝑅, then at least one of 𝑥 and 𝑦 must also belong to 𝐼 . Two ideal ,  ⊂ 𝑅 are said 
to be coprime if  +  =𝑅. A fractional ideal  ⊂𝐾 is a set such that 𝑑 ⊂𝑅 is an integral ideal for some 𝑑 ∈𝑅. The product ideal 
 is the set of all finite sums of terms 𝑎𝑏 for 𝑎 ∈ , 𝑏 ∈  . Multiplication extends to fractional ideal in an obvious way, and the 
set of fractional ideals forms a group under multiplication; in particular, every fractional ideal  has a (multiplicative) inverse ideal, 
written −1. The norm of an ideal  is its index as a subgroup of 𝑅, i.e. 𝑁() = |𝑅∕|. We have 𝑁( ) =𝑁() ⋅𝑁( ).

The (absolute) discriminant Δ𝐾 of a number field 𝐾 is defined to be the square of the fundamental volume of 𝜎(𝑅), the embedded 
ring of integers. Equivalently, Δ𝐾 = |det(Tr(𝑏𝑖 ⋅ 𝑏𝑗 ))| where 𝑏1, ⋯ , 𝑏𝑛 is any integral basis of 𝑅.

When working with number fields and ideal lattices, it is convenient to work with the space ℍ ⊂ ℝ𝑠1 × ℂ2𝑠2 for some number 
5

𝑠1 + 2𝑠2 = 𝑛, defined as
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ℍ ={(𝑥1,⋯ , 𝑥𝑛) ∈ℝ𝑠1 ×ℂ2𝑠2 ∶ 𝑥𝑠1+𝑠2+𝑗 = 𝑥𝑠1+𝑗 , ∀𝑗 ∈ [𝑠2]} ⊂ℂ𝑛.

For 𝑗 ∈ [𝑠1], we set 𝐡𝑗 = 𝐞𝑗 , and for 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, we set 𝐡𝑗 =
√
2
2 (𝐞𝑗 + 𝐞𝑗+𝑠2 ) and 𝐡𝑗+𝑠2 =

√
2𝐢
2 (𝐞𝑗 − 𝐞𝑗+𝑠2 ), where 𝐞𝑗 ∈ ℂ𝑛

is the vector with 1 in its 𝑗-th coordinate and 0 elsewhere, 𝑖 is the imaginary number such that 𝑖2 = −1. The set {𝐡𝑗}𝑗∈[𝑛] forms an 
orthonormal basis of ℍ as a real vector space. Let 𝑈𝐻 = [𝐡1, 𝐡2, ⋯ , 𝐡𝑛]†, we can easily get a field isomorphic 𝜎𝐻 ∶ ℍ ↦ ℝ𝑛 where 
𝜎𝐻 (𝐱) =𝑈𝐻 ⋅ 𝐱. Thus ℍ ≅ℝ𝑛 as an inner product space. And we will also equip ℍ with the 𝓁2 and 𝓁∞ norm induced on it from ℂ𝑛.

We will often use canonical embeddings to endow field elements with a geometry. A number field 𝐾 ∶= ℚ(𝜉) of degree 𝑛
has exactly 𝑛 = 𝑠1 + 2𝑠2 field homomorphisms 𝜎𝑗 ∶ 𝐾 ↦ ℂ fixing each element of ℚ. Let 𝜎1, ⋯ , 𝜎𝑠1 be the real embeddings and 
𝜎𝑠1+1, ⋯ , 𝜎𝑛 be complex. The complex embeddings come in conjugate pairs, so we have 𝜎𝑗 = 𝜎𝑗+𝑠2 for 𝑗 = 𝑠1+1, ⋯ , 𝑠1+𝑠2 if we use an 
appropriate ordering of the embeddings. The canonical embedding is defined as 𝜎𝐶 ∶𝐾 →ℍ where 𝜎𝐶 (𝑥) ∶= (𝜎1(𝑥), ⋯ , 𝜎𝑛(𝑥))T. We 
can also represent 𝜎𝐶 (𝑥) via the real vector 𝜎𝐻 (𝑥) ∈ℝ𝑛 through the change described above. So for any 𝑥 ∈𝐾 , 𝜎𝐻 (𝑥) =𝑈𝐻 ⋅ 𝜎𝐶 (𝑥).

For the ring of integer 𝑅 of the field 𝐾 , we define the canonical embedding of the module 𝑅𝑑 into the space ℍ𝑑 in an obvious way, 
i.e. by embedding each component of 𝑅𝑑 into ℍ separately. For any 𝐱 ∈𝐾𝑑 , define the 𝓁2 norm as ||𝐬|| = (

∑𝑑
𝑗=1

∑𝑛
𝑖=1 |𝜎𝑖(𝑥𝑗 )|2)1∕2. It 

is well known that the dimension of the ring of integers 𝑅 as a ℤ-module is equal to the degree of 𝐾 over ℚ, that means the lattice 
𝜎𝐻 (𝑅) is of full rank. We often refer to the ring of integer 𝑅 as a lattice. Whenever we do this, we are really referring to the lattice 
𝜎𝐻 (𝑅).

For any integer 𝑞, we have the following ideal factorization lemma.

Lemma 1. Let 𝐾 =ℚ(𝛼) be a number field with degree 𝑛, where 𝛼 is an algebraic integer. Moreover if gcd(𝑞, [𝑅 ∶ℤ[𝛼]]) = 1, then we have 
prime ideal decomposition 𝑞𝑅 =

∏
𝑖,𝑗 𝔭

𝑟𝑖,𝑗
𝑖,𝑗

and 𝑞𝑅∨ =
∏

𝑖,𝑗 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨.

Lemma 2 (Chinese Remainder Theorem [5]). Let  be a fractional ideal over 𝐾 , and let 𝔭𝑖 be pairwise coprime ideals in 𝑅, then natural 
ring homomorphism is an isomorphism: ∕(∏𝑖 𝔭𝑖) ↦

⨁
𝑖(∕𝔭𝑖).

The following lemma first appeared in [24] and was generalized by Liu et al. in [21] recently. This lemma is the key to prove the 
generalized leftover hash lemma.

Lemma 3. Let 𝑅 be the ring of integers of a number field 𝐾 ,  be an ideal of 𝑅, and 𝐬 = (𝑠1, ⋯ , 𝑠𝑑 ) ∈ (𝑅∨∕𝑅∨)𝑑 be a vector of ring 
elements. If 𝐚 = (𝑎1, ⋯ , 𝑎𝑑 ) ∈ (𝑅∕)𝑑 are uniformly random, then 

∑
𝑖 𝑎𝑖 ⋅ 𝑠𝑖 mod 𝑅∨ is uniformly random over the ideal ⟨𝑠1, ⋯ , 𝑠𝑑⟩∕𝑅∨. 

In particular, Pr[
∑

𝑖 𝑎𝑖 ⋅ 𝑠𝑖 = 0 mod 𝑅∨] = 1∕|⟨𝑠1, ⋯ , 𝑠𝑑⟩∕𝑅∨|.
We recall the notion of maximal belongs for the vector 𝐬 ∈ (𝑅∨)𝑑 in the following, which was first introduced in [21].

Definition 1. Let 𝑅 be the ring of integers of a number field 𝐾 ,  be an ideal of 𝑅 and 𝑅∨ be the dual of 𝑅. We say a vector 𝐬 ∈ (𝑅∨)𝑑
maximal belongs to a factor  of 𝑞𝑅, abbreviated as 𝐬 ∈max 𝑅∨, if the following conditions hold:

– For every coordinate 𝑠𝑖 of 𝐬, we have 𝑠𝑖 ∈ 𝑅∨;

– For any ideal  |𝑞𝑅 such that | , there exists at least one coordinate 𝑠𝑖 such that 𝑠𝑖 ∉ 𝑅∨.

Liu et al. [21] also proved that any possible 𝐬 in the range must maximal belong to 𝑅∨ for only one ideal factor  |𝑞𝑅, which 
means {𝐬 ∈ 𝑅∨} |𝑞𝑅 forms a partition.

2.2. Probability

The uniform probability distribution over some finite set  will be denoted by 𝑈 (). If 𝑠 is sampled from a distribution , 
we write 𝑠 ←. Also, let 𝐬 = (𝑠1, ⋯ , 𝑠𝑚)T ←𝑑 denote the act of sampling each component 𝑠𝑖 according to  independently. We 
also write Supp() to mean the support of the distribution . For a continuous random variable 𝑋, denote the probability density 
function of 𝑋 by 𝑃𝑋 (⋅) and denote the probability density of 𝑋 conditioned on an event 𝐸 by 𝑃𝑋|𝐸 (⋅).

The statistical distance is a widely used measure of distribution closeness.

Definition 2 (Statistical distance). Let X and Y be two discrete probability distributions on a discrete domain  . Their statistical 
distance is defined as

Δ(𝑋;𝑌 ) = 1
2
∑
𝑥∈

|Pr(𝑋 = 𝑥) − Pr(𝑌 = 𝑥)|.
6

The following is the definition of min-entropy and conditional min-entropy.
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Definition 3 (Min-entropy). Given a discrete random variable 𝑋 over  , the min-entropy of 𝑋 is denoted by

�̃�∞(𝑋) = − log
(
max
𝑥∈ Pr[𝑋 = 𝑥]

)
.

Definition 4 (Conditional min-entropy). Let 𝑋 be a discrete random variable over  , 𝑍 be a random variable over , define the 
conditional min-entropy of 𝑋 given 𝑍 , denoted by

�̃�∞(𝑋 ∣𝑍) = − log
(
𝐸𝑧[max

𝑥∈ Pr[𝑋 = 𝑥 ∣𝑍 = 𝑧]]
)
.

We now state a fundamental property of the conditional min-entropy.

Lemma 4 (Lemma 2.2 in [13]). Let 𝑋, 𝑌 , 𝑍 be random variables, and 𝑌 has at most 2𝜆 possible values, then

�̃�∞(𝑋 ∣ (𝑌 ,𝑍)) ≥ �̃�∞(𝑋 ∣𝑍) − 𝜆.

Gaussian measures The Gaussian function of parameter 𝛼 and centre 𝑐 is defined as 𝜌𝛼,𝑐(𝑥) = exp(−𝜋(𝑥 − 𝑐)2∕𝛼2), and the Gaussian 
distribution 𝐷𝛼,𝑐 is the probability distribution whose probability density function is given by 1

𝛼
𝜌𝛼,𝑐 .

Similarly, for multivariate case, we have the following formal definition. A matrix Σ ∈ℝ𝑛×𝑛 is called positive definite, if it holds 
for every 𝐱 ∈ℝ𝑛 ⧵ {𝟎} that 𝐱TΣ𝐱 > 0. For every positive definite matrix Σ there exists a unique positive definite matrix 

√
Σ such that 

(
√
Σ)2 = Σ.

Definition 5 (Multivariate Gaussian distribution). Let Σ ∈ℝ𝑛×𝑛 be a positive definite matrix. The multivariate Gaussian function with 
covariance matrix Σ centred on 𝐜 ∈ℝ𝑛 is defined as

𝜌√Σ,𝐜(𝐱) = exp(−𝜋(𝐱 − 𝐜)TΣ−1(𝐱 − 𝐜)),

and the corresponding multivariate Gaussian distribution denoted 𝐷√
Σ,𝐜 is defined by the density function 1√

det(Σ)
𝜌√Σ,𝐜.

Notice that the matrix Σ differs from the standard covariance matrix by a factor of 2𝜋. However, for convenience, we refer to Σ
as the covariance matrix throughout. Note that if the centre 𝐜 is omitted, it should be assumed that 𝐜 = 𝟎. If the covariance matrix 
is diagonal, we describe it using the vector of its diagonal entries. For example, suppose that Σ𝑖𝑗 = (𝛼𝑖)2𝛿𝑖𝑗 and let 𝜶 = (𝛼1, ⋯ , 𝛼𝑛)T. 
Then we would write 𝐷

𝜶
to denote the centred Gaussian distribution 𝐷Σ. Furthermore, if 𝛼1 =⋯ = 𝛼𝑛 = 𝛼, we would write 𝐷𝛼 to 

denote this centred Gaussian distribution.

Using the identification of ℍ as ℝ𝑛, we can extend the definition of multivariate Gaussian distribution on ℝ𝑛 to ℍ as follows. Let 
Σ ∈ℝ𝑛×𝑛 be a positive definite matrix, a sample from 𝐷Σ on ℍ is given by 

∑
𝑖∈[𝑛] 𝑥𝑖𝐡𝑖, where 𝐱 = (𝑥1, ⋯ , 𝑥𝑛)T ←𝐷Σ over ℝ𝑛.

We also have discrete Gaussian distributions i.e. normalized distributions defined over some discrete set (typically lattice or lattice 
coset). The notation for a discrete Gaussian distribution over some 𝑛-dimensional lattice Λ and coset vector 𝐮 ∈ℝ𝑛 with parameter 
𝛼 is 𝐷Λ+𝐮,𝛼 . This distribution has probability mass function 𝜌𝛼 (𝐲)

𝜌𝛼 (Λ+𝐮)
, where 𝜌𝛼(Λ + 𝐮) =∑𝐱∈Λ+𝐮 𝜌𝛼(𝐱). For the ring of integers 𝑅 of 

a number field 𝐾 and any 𝑥 ∈ 𝐾 , we define 𝐷𝑅+𝑥,𝛼 to be the discrete Gaussian over the coset 𝑅 + 𝑥 of the lattice 𝑅, i.e. over the 
lattice coset 𝜎𝐻 (𝑅) + 𝜎𝐻 (𝑥) of the lattice 𝜎𝐻 (𝑅).

Next we recall the definition and some lemmas of the smoothing parameter of a lattice that we will make use of.

Definition 6 (Smoothing parameter). For a lattice Λ and 𝜖 > 0, the smoothing parameter 𝜂𝜖(Λ) is defined as the smallest 𝛼 > 0 s.t. 
𝜌1∕𝛼(Λ∗ ⧵ {0}) ≤ 𝜖.

Lemma 5 (Lemma 3.1 in [15]). For any 𝜖 > 0 and 𝑛-dimensional lattice Λ with basis 𝐵,

𝜂𝜖(Λ) ≤ ||�̃�||√log(2𝑛(1 + 1∕𝜖))∕𝜋.

Lemma 6 (Lemma 2.9 in [26]). For any lattice Λ, positive real 𝛼 > 0 and vector 𝐜, 𝜌𝛼,𝐜(Λ) ≤ 𝜌𝛼(Λ).

Lemma 7 (Lemma 2.5 in [9]). Let 𝛼2 > 𝛼1 > 0. Then it holds for all 𝐱 ∈ℝ𝑛 and 𝐭 ∈ℝ𝑛 that

𝜌𝛼1 (𝐱 − 𝐭) ≤ exp

(
𝜋
||𝐭||2

𝛼22 − 𝛼21

)
⋅ 𝜌𝛼2 (𝐱).
7

Moreover, the same holds for the 𝑞-periodic Gaussian function, i.e.
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𝜌𝛼1 (𝐱 − 𝐭 + 𝑞ℤ𝑛) ≤ exp

(
𝜋
||𝐭||2

𝛼22 − 𝛼21

)
⋅ 𝜌𝛼2 (𝐱 + 𝑞ℤ𝑛).

Subgaussian Subgaussian distributions are those on ℝ which have tail dominated by Gaussians [32]. An equivalent formulation is 
through the moment-generating function of the distribution, this definition is commonly used throughout lattice-based cryptography 
[25].

Definition 7. A real random variable X is subgaussian with parameter 𝛼 ≥ 0 if for all 𝛽 ∈ ℝ, 𝐸
(
𝑒2𝜋𝛽𝑋

) ≤ 𝑒𝜋𝛼
2𝛽2 . More generally, 

we say that a random vector 𝐱 ∈ℝ𝑛 is subgaussian with parameter 𝛼 ≥ 0 if for all unit vectors 𝐮 ∈ℝ𝑛, the random variable ⟨𝐱, 𝐮⟩ is 
subgaussian with parameter 𝛼.

The subgaussian distribution admits the following properties.

Lemma 8 (Theorem 4.4.5 in [33]). Let 𝑋 ∈ ℝ𝑚×𝑑 be a random matrix with entries drawn independently from a subgaussian distribution 
with parameter 𝛼 ≤ 0. Then, there exists some universal constant 𝐶0 ≥ 0 such that for any 𝑡 ≥ 0, with probability at least 1 − 2𝑒−𝑡2 we have 
𝑠1(𝑋) ≤ 𝐶0 ⋅ 𝛼 ⋅ (

√
𝑚+

√
𝑑 + 𝑡).

Lemma 9 (Adapted Lemma 2.8 in [25]). Let Λ ⊂ℝ𝑛 be a lattice, then for any 𝛼 > 0, 𝐷Λ,𝛼 is subgaussian with parameter 𝛼.

Noise lossiness The noise lossiness of a distribution  measures how information is lost about a sample of  when adding Gaussian 
noise. It is defined to be the conditional smooth min-entropy of a sample from  conditioned on learning its perturbation by Gaussian 
noise. This notion was proposed by [9] first.

Definition 8 (Noise Lossiness). Let  be a secret distribution over (𝑅∨
𝑞 )

𝑑 and 𝐞 ← (𝐷𝛼)𝑑 be a gaussian noise. We define the noise-

lossiness 𝜈𝛼() by

𝜈𝛼() = �̃�∞(𝐬 ∣ 𝐬+ 𝐞 mod 𝑞𝑅∨)

where 𝐬 ←  .

Lemma 10 (Adapted from Lemma 5.1 in [9]). Let 𝐬 be a random variable over (𝑅∨
𝑞 )

𝑑 with min-entropy �̃�∞(𝐬) and 𝐞 ← (𝐷𝛼)𝑑 . Then it 
holds that

𝜈𝛼() ≥ �̃�∞(𝐬) − log
⎡⎢⎢⎢⎣ ∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲
⎤⎥⎥⎥⎦ .

Proof. According to calculations, we have

𝜈𝛼() = − log(𝐸𝐲[max
𝐬∗

Pr[𝐬 = 𝐬∗ ∣ 𝐬+ 𝐞 = 𝐲]])

= − log
⎛⎜⎜⎜⎝ ∫
(𝕋𝑞𝑅∨ )𝑑

𝑃𝐬+𝐞(𝐲) ⋅max
𝐬∗

Pr[𝐬 = 𝐬∗ ∣ 𝐬+ 𝐞 = 𝐲]𝑑𝐲
⎞⎟⎟⎟⎠

= −log
⎛⎜⎜⎜⎝ ∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐬,𝐬+𝐞(𝐬∗,𝐲)𝑑𝐲
⎞⎟⎟⎟⎠

= −log
⎛⎜⎜⎜⎝ ∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐬+𝐞∣𝐬=𝐬∗ (𝐲) ⋅ Pr[𝐬 = 𝐬∗]𝑑𝐲
⎞⎟⎟⎟⎠

≥ −log
⎛⎜⎜⎜⎝ ∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐬+𝐞∣𝐬=𝐬∗ (𝐲) ⋅ 2−�̃�∞(𝐬)𝑑𝐲
⎞⎟⎟⎟⎠

= �̃�∞(𝐬) − log
⎡⎢⎢ ∫ max

𝐬∗
𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲

⎤⎥⎥ . □
8

⎢⎣(𝕋𝑞𝑅∨ )𝑑 ⎥⎦
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2.3. Module-LWE

The module variant of LWE was first introduced by Brakerski et al. [10], and thoroughly studied by Langlois and Stehlé [20]. The 
search version problem MLWE(𝐾, 𝑑, 𝑞, 𝑚, 𝜒) is to find 𝐬 ∈ (𝑅∨

𝑞 )
𝑑 given (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨), where 𝐴 ←𝑈 ((𝑅𝑞)𝑚×𝑑 ), 𝐬 ←𝑈 ((𝑅∨

𝑞 )
𝑑 )

and 𝐞 ← 𝜒𝑚. The decisional version problem DMLWE(𝐾, 𝑑, 𝑞, 𝑚, 𝜒) asks to distinguish between the distributions (𝐴, 𝐴 ⋅𝐬 +𝐞 mod 𝑞𝑅∨)
and (𝐴, 𝐮), where 𝐴, 𝐬 and 𝐞 are as in the search version and 𝐮 ←𝑈 ((𝕋𝑅∨ )𝑚). As pointed out by Lyubashevsky et al. [23], sometimes 
it can be more convenient to work with a discrete variant, where 𝜒 is a discrete error distribution over 𝑅∨. Langlois et al. [20]

showed that DMLWE(𝐾, 𝑑, 𝑞, 𝑚, 𝐷
𝑅∨ ,

√
2𝛼) is at least as hard as DMLWE(𝐾, 𝑑, 𝑞, 𝑚, 𝐷𝛼) using discretization technique.

Furthermore, Roşca et al. also considered primal form Ring-LWE in [30]. The primal-DRLWE(𝐾, 𝑞, 𝑚, 𝐷𝑅,𝛼) problem asks to 
distinguish between the distributions (𝐚, 𝐚 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅) and (𝐚, 𝐮), where 𝐚 ← 𝑈 ((𝑅𝑞)𝑚×1), 𝐬 ← 𝑈 (𝑅𝑞), 𝐞 ← (𝐷𝑅,𝛼)𝑚 and 𝐮 ←
𝑈 ((𝑅𝑞)𝑚). In [30] Roşca et al. showed a reduction from Ring-LWE to primal-Ring-LWE with a limited error growth. Later, in [34]

Wang et al. showed that when the field 𝐾 is a cyclotomic field, the growth in the error term does not exceed 𝑂(𝑛 log log𝑛). Likewise, 
we can also consider primal-Module-LWE. The primal-DMLWE(𝐾, 𝑑, 𝑞, 𝑚, 𝐷𝑅,𝛼) problem asks to distinguish between the distributions 
(𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅) and (𝐴, 𝐮), where 𝐴 ← 𝑈 ((𝑅𝑞)𝑚×𝑑 ), 𝐬 ← 𝑈 ((𝑅𝑞)𝑑 ), 𝐞 ← (𝐷𝑅,𝛼)𝑚 and 𝐮 ← 𝑈 ((𝑅𝑞)𝑚). By the same way, we can 
also get the reduction from Module-LWE to primal-Module-LWE.

We also consider the primal-DMLWE problem for any sample 𝑚 = poly(𝑛 log 𝑞), which are denoted by prime-DMLWE(𝐾, 𝑑, 𝑞, 𝐷𝑅,𝛼). 
The matrix version of prime-DMLWE asks to distinguish between the distribution (𝐴, 𝐴 ⋅ 𝑆 + 𝐸 mod 𝑞𝑅) from (𝐴, 𝑈 ), where 
𝐴 ← 𝑈 ((𝑅𝑞)𝑚×𝑘), 𝑆 ← 𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐸 ← (𝐷𝑅,𝛼)𝑚×𝑑 and 𝑈 ← 𝑈 ((𝑅𝑞)𝑚×𝑑 ). The hardness of matrix version for any 𝑑 = poly(𝑛) can be 
established from DMLWE(𝐾, 𝑘, 𝑞, 𝑚, 𝐷𝑅,𝛼) via a routine hybrid argument. For technical reason, we use this form primal-DMLWE in 
the proof in Section 4.

3. Probability lemmas

In this section, we present three results in the probability theory.

1. First, we give a decomposition theorem for Continuous Gaussian on 𝐾ℝ in Section 3.1, which is a generalization of Proposition 
3.2 in [9]. This theorem is the key to adapt the proof of the hardness of Entropy LWE to the module setting.

2. Then, we compute the noise lossiness for high-entropy distributions on 𝐾ℝ in Section 3.2. Similar to [9], we will consider two 
cases: one is for general high-entropy distribution and the other is for bounded high-entropy distribution. We will show that 
considerable improvements can be achieved when considering bounded case.

3. Finally, we give a generalized leftover hash lemma over rings in Section 3.3. The proof of our leftover hash lemma follows 
the framework from [21], but has some differences. This theorem will be used to prove the hardness of the decision Entropic 
Module-LWE problem.

3.1. Gaussian decomposition

In this subsection, we present a new decomposition theorem for continuous Gaussian distribution on 𝐾ℝ. Specifically, we show 
there exists an efficient sampling algorithm 𝐷(𝐹 , 𝛼, 𝛼′), such that the random variable 𝐞 = 𝐹 𝐞1 + 𝐞2 follows Gaussian distribution 
(𝐷𝛼(𝐾ℝ))𝑚, where 𝐞1 ← (𝐷𝛼′ (𝐾ℝ))𝑑 , 𝐞2 ←𝐷(𝐹 , 𝛼, 𝛼′) and 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
.

Assume field 𝐾 has exactly 𝑠1 real embeddings and 𝑠2 pairs complex embeddings. For any matrix 𝐹 = (𝑓𝑖𝑗 ) ∈ 𝑅𝑚×𝑑 and any 
𝑗 ∈ [𝑠1], we set1

𝐹 𝑗 =
⎛⎜⎜⎝
𝜎𝑗 (𝑓11) ⋯ 𝜎𝑗 (𝑓1𝑑 )

⋮ ⋮
𝜎𝑗 (𝑓𝑚1) ⋯ 𝜎𝑗 (𝑓𝑚𝑑 )

⎞⎟⎟⎠ ,
and for 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, set

𝐹 𝑗 =
⎛⎜⎜⎜⎝
√
2Re(𝜎𝑗 (𝑓11)) ⋯

√
2Re(𝜎𝑗 (𝑓1𝑑 ))

⋮ ⋮√
2Re(𝜎𝑗 (𝑓𝑚1)) ⋯

√
2Re(𝜎𝑗 (𝑓𝑚𝑑 ))

⎞⎟⎟⎟⎠ ,

𝐹 𝑗+𝑠2 =
⎛⎜⎜⎜⎝
√
2Im(𝜎𝑗 (𝑓11)) ⋯

√
2Im(𝜎𝑗 (𝑓1𝑑 ))

⋮ ⋮√
2Im(𝜎𝑗 (𝑓𝑚1)) ⋯

√
2Im(𝜎𝑗 (𝑓𝑚𝑑 ))

⎞⎟⎟⎟⎠ .
We are interested in the spectral norm of 𝐹 𝑗 when 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
and give an upper bound in the following lemma.
9

1 Here 𝑑 could be 1, and in this case 𝐹 would be a vector.
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Lemma 11. Let 𝐹 ← 𝐷𝑚×𝑑
𝑅,𝛽

, assume for convenience that 𝑚 ≥ 𝑑. Then with all but 2−𝑚 probability it holds that 𝑠1(𝐹 𝑗 ) ≤ 𝑐𝛽
√

𝑚 for all 
𝑗 ∈ [𝑛], where 𝑐 is a global constant.

Proof. In order to show 𝑠1(𝐹 𝑗 ) ≤ 𝑐𝛽
√

𝑚, we only need to show that 𝐹 𝑗 is a random matrix with entries drawn independently from 
a subgaussian distribution, and then apply Lemma 8. Recall that 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
means samples each component 𝑓𝑘𝑙 according to 𝐷𝑅,𝛽

independently, and 𝑓𝑘𝑙 ←𝐷𝑅,𝛽 means 𝜎𝐻 (𝑓𝑘𝑙) ←𝐷𝜎𝐻 (𝑅),𝛽 , where

𝜎𝐻 (𝑓𝑘𝑙) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎1(𝑓𝑘𝑙)
⋮

𝜎𝑠1 (𝑓𝑘𝑙)√
2Re(𝜎𝑠1+1(𝑓𝑘𝑙))

⋮√
2Re(𝜎𝑠1+𝑠2 (𝑓𝑘𝑙))√
2Im(𝜎𝑠1+1(𝑓𝑘𝑙))

⋮√
2Im(𝜎𝑠1+𝑠2 (𝑓𝑘𝑙))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, for any 𝑗 ∈ [𝑛], the entries of 𝐹 𝑗 are sampled from the same distribution independently.

Since 𝜎𝐻 (𝑅) is a lattice in ℝ𝑛, by Lemma 9, 𝜎𝐻 (𝑓𝑘𝑙) is subgaussian with parameter 𝛽. So by definition, we have ⟨𝜎𝐻 (𝑓𝑘𝑙), 𝐞𝑗⟩ is 
also subgaussian with parameter 𝛽.

Thus for any 𝑗 ∈ [𝑛], 𝐹 𝑗 is a random matrix with entries drawn independently from a subgaussian distribution with parameter 𝛽. 
Therefore, by Lemma 8 and set 𝑡 =

√
𝑚, 𝑐 = 3𝐶0, we have 𝑠1(𝐹 𝑗 ) ≤ 𝑐𝛽

√
𝑚 with probability at least 1 −2𝑒−𝑚. Finally, we take a union 

bound over all 𝑗 and get

Pr[∃𝑗 ∈ [𝑛] ∶ 𝑠1(𝐹 𝑗 ) ≥ 𝑐𝛽
√

𝑚)] ≤ 𝑛 ⋅ 2𝑒−𝑚 ≤ 2−𝑚. □

We now show and prove a generalized decomposition theorem for continuous Gaussian distribution over 𝐾ℝ. To avoid confusion, 
we use 𝐷𝛼(𝐾ℝ) to denote the Gaussian distribution over 𝐾ℝ. For 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, we set

𝐹 𝑗 =
√
2
2

(
𝐹 𝑗 −𝐹 𝑗+𝑠2

𝐹 𝑗+𝑠2 𝐹 𝑗

)
.

Theorem 3. Let 𝐹 ∈ 𝑅𝑚×𝑑 be a matrix with 𝑠1(𝐹 𝑗 ) ≤ 𝐵 for any 𝑗 ∈ [𝑛]. Let 𝛼, 𝛼′ > 0 be positive real numbers with 𝛼 >
√
2𝐵 ⋅ 𝛼′. 

Let 𝐞1 ← (𝐷𝛼′ (𝐾ℝ))𝑑 and 𝐞2 be the random variable in (𝐾ℝ)𝑚 obtained in the following way: for 𝑗 ∈ [𝑠1], set 𝐞
𝑗

2 ← 𝐷√
Σ𝑗

where Σ𝑗 =

𝛼2𝐼𝑚 − 𝛼′ 2𝐹 𝑗 (𝐹 𝑗 )T; for 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, set ((𝐞𝑗2)
T, (𝐞𝑗+𝑠22 )T) ←𝐷√

Σ𝑗
where Σ𝑗 = 𝛼2𝐼2𝑚 − 𝛼′ 2𝐹 𝑗 (𝐹 𝑗 )T. Then the random variable 

𝐞 = 𝐹 𝐞1 + 𝐞2 follows distribution according to (𝐷𝛼(𝐾ℝ))𝑚.

Proof. We first prove that Σ𝑗 is positive definite for any 𝑗 ∈ [𝑠1 + 𝑠2]. For any 𝑗 ∈ [𝑠1] and any 𝐱 ∈ℝ𝑚∕{0}, we have

𝐱TΣ𝑗𝐱 ≥ 𝛼2‖𝐱‖22 − 𝛼′ 2 ⋅ 𝑠1(𝐹 𝑗 )2‖𝐱‖22 ≥ (𝛼2 − 𝛼′ 2𝐵2) ⋅ ‖𝐱‖22 > 0,

as 𝛼 ≥√2𝐵 ⋅ 𝛼′ and 𝑠1(𝐹 𝑗 ) = 𝑠1((𝐹 𝑗 )T).
For any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2} and any 𝐱 = (𝐲T, 𝐳T)T ∈ℝ2𝑚∕{0}, we have

‖(𝐹 𝑗 )T𝐱‖22 =1
2
[‖(𝐹 𝑗 )T𝐲 + (𝐹 𝑗+𝑠2 )T𝐳‖22 + ‖(𝐹 𝑗 )T𝐳 − (𝐹 𝑗+𝑠2 )T𝐲‖22]

≤1
2
[(‖(𝐹 𝑗 )T𝐲‖2 + ‖(𝐹 𝑗+𝑠2 )T𝐳‖2)2 + (‖(𝐹 𝑗 )T𝐳‖2 + ‖(𝐹 𝑗+𝑠2 )T𝐲‖2)2]

≤𝐵2(‖𝐲‖2 + ‖𝐳‖2)2 ≤ 2𝐵2(‖𝐲‖22 + ‖𝐳‖22) = 2𝐵2‖𝐱‖22.
So for any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2} and any 𝐱 = (𝐲T, 𝐳T)T ∈ℝ2𝑚∕{0}, we also have

𝐱TΣ𝑗𝐱 ≥ 𝛼2‖𝐱‖22 − 𝛼′ 2 ⋅ 2𝐵2‖𝐱‖22 > 0.

Since we have (𝐾ℝ)𝑚 ≅ ℝ𝑚𝑛, 𝜎𝐻 (𝐞1), 𝜎𝐻 (𝐞2) are independent Gaussian vectors, and therefore 𝜎𝐻 (𝐞) is also a Gaussian vector. 
Since 𝜎𝐻 (𝐞1), 𝜎𝐻 (𝐞2) have expectation 0, then so does 𝜎𝐻 (𝐞).

Now let us calculate the covariance matrix for 𝜎𝐻 (𝐞). We use 𝜎𝐻𝑗
(𝑒𝑖), 𝜎𝐻𝑗

(𝑒1𝑖) and 𝜎𝐻𝑗
(𝑒2𝑖) to denote the 𝑗-th component of 

𝜎𝐻 (𝑒𝑖), 𝜎𝐻 (𝑒1𝑖) and 𝜎𝐻 (𝑒2𝑖) respectively, where 𝑒𝑖, 𝑒1𝑖 and 𝑒2𝑖 is the 𝑖-th coordinate of 𝐞, 𝐞1 and 𝐞2 separately, and we use 𝑓𝑗
𝑘𝑙

to 
10

denote the entry that appears in the 𝑘-th row and 𝑙-th column of matrix 𝐹 𝑗 . Since 𝑒𝑖 =
∑𝑑

𝑘=1 𝑓𝑖𝑘𝑒1𝑘 + 𝑒2𝑖, for any 𝑗 ∈ [𝑠1] we have
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𝜎𝐻𝑗
(𝑒𝑖) =

𝑑∑
𝑘=1

𝑓
𝑗
𝑖𝑘
𝜎𝐻𝑗

(𝑒1𝑘) + 𝜎𝐻𝑗
(𝑒2𝑖).

For any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2} we have

𝜎𝐻𝑗
(𝑒𝑖) =

√
2Re

[
𝑑∑

𝑘=1
𝜎𝑗 (𝑓𝑖𝑘)𝜎𝑗 (𝑒1𝑘) + 𝜎𝑗 (𝑒2𝑖)

]

= 1√
2

𝑑∑
𝑘=1

[𝑓𝑗
𝑖𝑘
𝜎𝐻𝑗

(𝑒1𝑘) − 𝑓
𝑗+𝑠2
𝑖𝑘

𝜎𝐻𝑗+𝑠2
(𝑒1𝑘)] + 𝜎𝐻𝑗

(𝑒2𝑖),

𝜎𝐻𝑗+𝑠2
(𝑒𝑖) =

√
2Im

[
𝑑∑

𝑘=1
𝜎𝑗 (𝑓𝑖𝑘)𝜎𝑗 (𝑒1𝑘) + 𝜎𝑗 (𝑒2𝑖)

]

= 1√
2

𝑑∑
𝑘=1

[𝑓𝑗
𝑖𝑘
𝜎𝐻𝑗+𝑠2

(𝑒1𝑘) + 𝑓
𝑗+𝑠2
𝑖𝑘

𝜎𝐻𝑗
(𝑒1𝑘)] + 𝜎𝐻𝑗+𝑠2

(𝑒2𝑖).

Therefore, according to the sampling method of 𝐞1 and 𝐞2, for any 𝑗 ∈ [𝑠1], 𝑗′ ∈ [𝑛] which satisfies 𝑗′ ≠ 𝑗, and any 𝑖, 𝑖′ ∈ [𝑚], 
𝜎𝐻𝑗

(𝑒𝑖) and 𝜎𝐻𝑗′
(𝑒𝑖′ ) are independent. For any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, any 𝑗′ ∈ [𝑛] which satisfies 𝑗′ ≠ 𝑗, 𝑗′ ≠ 𝑗 + 𝑠2, and any 

𝑖, 𝑖′ ∈ [𝑚], 𝜎𝐻𝑗
(𝑒𝑖) and 𝜎𝐻𝑗′

(𝑒𝑖′ ) are independent. For any 𝑗 ∈ {𝑠1 + 𝑠2 + 1, ⋯ , 𝑛}, any 𝑗′ ∈ [𝑛] which satisfies 𝑗′ ≠ 𝑗, 𝑗′ ≠ 𝑗 − 𝑠2, and 
any 𝑖, 𝑖′ ∈ [𝑚], 𝜎𝐻𝑗

(𝑒𝑖) and 𝜎𝐻𝑗′
(𝑒𝑖′ ) are independent.

By a direct calculation, for any 𝑗 ∈ [𝑠1], we have 𝐞𝑗 = 𝐹 𝑗𝐞𝑗1 + 𝐞𝑗2; for any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, we have(
𝐞𝑗
𝐞𝑗+𝑠2

)
=
√
2
2

𝐹 𝑗

(
𝐞𝑗1
𝐞𝑗+𝑠21

)
+

(
𝐞𝑗2
𝐞𝑗+𝑠22

)
.

Therefore, for any 𝑗 ∈ [𝑠1], the covariance matrix of 𝐞𝑗 is:

𝐸(𝐞𝑗 (𝐞𝑗 )T) =𝐸(𝐹 𝑗𝐞𝑗1(𝐞
𝑗

1)
T(𝐹 𝑗 )T) +𝐸(𝐞𝑗2(𝐞

𝑗

2)
T) = 𝛼′ 2𝐹 𝑗 (𝐹 𝑗 )T + Σ𝑗 = 𝛼2𝐼𝑚.

Likewise, for any 𝑗 ∈ {𝑠1 + 1, ⋯ , 𝑠1 + 𝑠2}, the covariance matrix of 
(
𝐞𝑗
𝐞𝑗+𝑠2

)
is:

𝐸

[(
𝐞𝑗
𝐞𝑗+𝑠2

)
⋅ ((𝐞𝑗 )T, (𝐞𝑗+𝑠2 )T)

]
= 𝛼′ 2𝐹 𝑗 (𝐹 𝑗 )T + Σ𝑗 = 𝛼2𝐼2𝑚.

Consequently, 𝐞 = 𝐹 𝐞1 + 𝐞2 follows the distribution according to (𝐷𝛼(𝐾ℝ))𝑚. □

Remark 1. We find that Brakerski et al. also provided a blockwise Gaussian decomposition theorem (Lemma 5.4) in [35]. Since 
multiplication over a ring can be converted into multiplication between a matrix and a vector, their result can be regarded as a 
special case of our result when 𝑑 = 1.

Combining Theorem 3 and Lemma 11, we obtain the following corollary.

Corollary 1. Let 𝐾 be a number field with degree 𝑛, 𝑅 be the ring of integers of 𝐾 . Let 𝐹 ← 𝐷𝑚×𝑑
𝑅,𝛽

, assume for convenience that 𝑚 > 𝑑. 

Let 𝛼, 𝛼′ > 0 with 𝛼 >
√
2𝑐𝛽

√
𝑚𝛼′. Let 𝐞1 ← (𝐷𝛼′ (𝐾ℝ))𝑑 be the random variable in (𝐾ℝ)𝑑 . Then with all but 2−𝑚 probability there exists 

an efficient sampling algorithm 𝐷(𝐹 , 𝛼, 𝛼′), such that the random variable 𝐞 = 𝐹 𝐞1 + 𝐞2 is distribution according to (𝐷𝛼(𝐾ℝ))𝑚, where 
𝐞2 ←𝐷(𝐹 , 𝛼, 𝛼′).

3.2. Gaussian noise lossiness

In this subsection, we compute the Gaussian noise lossiness high-entropy distributions over 𝐾ℝ. Similar to [9], we will consider 
two cases: one is general high-entropy distribution and the other is bounded high-entropy distribution. Thanks for Lemma 10, we 
only need to bound

∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲
11

in the following.
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General high entropy secrets In order to get noise lossiness result in general high entropy case, we establish the following lemma first.

Lemma 12. Let 𝐵𝑅 be some known basis of 𝑅 in ℍ, 𝑑, 𝑞 be integers and 𝛼 be a parameter for Gaussian with

𝑞

𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
,

then it holds for all 𝐱 ∈ (𝐾ℝ)𝑑 that 𝜌𝛼(𝐱 + (𝑞𝑅∨)𝑑 ) ≤ 2.

Proof. Since 𝐵𝑅 is a basis of 𝑅 in ℍ, we have 𝐵𝑅𝑑 = 𝐼𝑑 ⊗ 𝐵𝑅 is a basis of 𝑅𝑑 in ℍ𝑑 . Orthogonalizing from left to right, we can 
see that ‖𝐵𝑅𝑑 ‖ is precisely ‖𝐵𝑅‖. By Lemma 5 and set 𝜖 = 1, we have 1

𝛼
≥ 𝜂1((

1
𝑞
𝑅)𝑑 ). By definition, we obtain 𝜌𝛼((𝑞𝑅∨)𝑑 ⧵ {0}) ≤ 1. 

Thus, we have 𝜌𝛼((𝑞𝑅∨)𝑑 ) ≤ 2. And by Lemma 6, we get

𝜌𝛼(𝐱 + (𝑞𝑅∨)𝑑 ) = 𝜌𝛼,𝐱((𝑞𝑅∨)𝑑 ) ≤ 𝜌𝛼((𝑞𝑅∨)𝑑 ) ≤ 2. □

Now we bound ∫(𝕋𝑞𝑅∨ )𝑑 max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲 in the following lemma.

Lemma 13. Let 𝐵𝑅 be some known basis of 𝑅 in ℍ, 𝑑, 𝑞 be integers and 𝛼 be a parameter for gaussian with 𝑞
𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
, then 

we have

∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲 ≤ 2 ⋅
( 𝑞

𝛼

)𝑛𝑑
⋅
(

1
Δ𝐾

) 𝑑
2
.

Proof. Since 𝑞
𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
, by Lemma 12, we have 𝜌𝛼(𝐱 + (𝑞𝑅∨)𝑑 ) ≤ 2. Thus, we have

∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲

= 1
𝜌𝛼(ℝ𝑛𝑑 ) ∫

(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝜌𝛼(𝐲 − 𝐬∗ + (𝑞𝑅∨)𝑑 )𝑑𝐲

≤ 1
𝛼𝑛𝑑

⋅ ∫
(𝕋𝑞𝑅∨ )𝑑

2𝑑𝐲 = 2 ⋅
( 𝑞

𝛼

)𝑛𝑑
⋅
(

1
Δ𝐾

) 𝑑
2
. □

By combining Lemma 10 and Lemma 13, we can get the following corollary, which bounds noise lossiness by min-entropy.

Corollary 2 (General high entropy). Let 𝑅 be the ring of integers of a field 𝐾 with degree 𝑛, 𝑅∨ be the dual of R and 𝐵𝑅 be some known 

basis of 𝑅 in ℍ. Let 𝑑, 𝑞 be integers and 𝛼 be a parameter for gaussian with 𝑞
𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
. Let 𝐬 be a random variable on (𝑅∨

𝑞 )
𝑑

then it holds that

𝜈𝛼(𝐬) ≥ �̃�∞(𝐬) + 𝑑

2
log(Δ𝐾 ) − 𝑛𝑑 log

( 𝑞

𝛼

)
− 1.

Bounded norm secrets We now turn to the case that the secret has bounded norm. We show that considerable improvements can be 
achieved in this case. We also bound ∫(𝕋𝑞𝑅∨ )𝑑 max

𝐬∗
𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲 first.

Lemma 14. Let 𝑑, 𝑞 be integers and 𝛼 be a parameter for Gaussian. Let 𝐬 be a random variable on (𝑅∨
𝑞 )

𝑑 which satisfies ||𝐬|| ≤𝑀 . Then it 
holds that

∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲 ≤ exp
(√

2𝜋𝑛𝑑 ⋅
𝑀

𝛼

)
.

Proof. By Lemma 7, for some �̃� > 𝛼, we have

∫ max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲
12

(𝕋𝑞𝑅∨ )𝑑
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= 1
𝜌𝛼(ℝ𝑛𝑑 ) ∫

(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝜌𝛼(𝐲 − 𝐬∗ + (𝑞𝑅∨)𝑑 )𝑑𝐲

≤ 1
𝜌𝛼(ℝ𝑛𝑑 ) ∫

(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

exp
(
𝜋
||𝐬∗||2
�̃�2 − 𝛼2

)
⋅ 𝜌�̃�(𝐲 + (𝑞𝑅∨)𝑑 )𝑑𝐲

≤ 1
𝜌𝛼(ℝ𝑛𝑑 )

⋅ exp
(
𝜋

𝑀2

�̃�2 − 𝛼2

)
∫

(𝕋𝑞𝑅∨ )𝑑

𝜌�̃�(𝐲 + (𝑞𝑅∨)𝑑 )𝑑𝐲

=
𝜌�̃�(ℝ𝑛𝑑 )
𝜌𝛼(ℝ𝑛𝑑 )

⋅ exp
(
𝜋

𝑀2

�̃�2 − 𝛼2

)
=
(
�̃�

𝛼

)𝑛𝑑

⋅ exp
(
𝜋

𝑀2

�̃�2 − 𝛼2

)
.

In particular, let �̃� = 𝛼 ⋅
√
1 + 𝜂 where 𝜂 =

√
2𝜋
𝑛𝑑

𝑀

𝛼
, we have

∫
(𝕋𝑞𝑅∨ )𝑑

max
𝐬∗

𝑃𝐞(𝐲 − 𝐬∗)𝑑𝐲 ≤ (1 + 𝜂)
𝑛𝑑
2 ⋅ exp

(
𝜋
𝑀2

𝜂𝛼2

)

≤ exp
(
𝜋
𝑀2

𝜂𝛼2
+ 𝑛𝑑𝜂

2

)
= exp

(√
2𝜋𝑛𝑑 ⋅

𝑀

𝛼

)
. □

By combining Lemma 10 and Lemma 14, we can get the following corollary.

Corollary 3 (Bounded norm). Let 𝑅 be the ring of integers of a field 𝐾 with degree 𝑛, 𝑅∨ be the dual of R. Let 𝑑, 𝑞 be integers and 𝛼 be a 
parameter for Gaussian. Let 𝐬 be a random variable on (𝑅∨

𝑞 )
𝑑 which satisfies ||𝐬|| ≤𝑀 . Then it holds that 𝜈𝛼(𝐬) ≥ �̃�∞(𝐬) −

√
2𝜋𝑛𝑑 ⋅ 𝑀

𝛼
log(𝑒).

3.3. Leftover hash lemma

Here we show a generalized leftover hash lemma over 𝑅𝑞 . We are interested in the case where the noise lossiness of secrets is 
leaked. Following the framework from [21], we prove a new generalized leftover hash lemma.

In this subsection, all operations are performed on 𝑅∨
𝑞 (i.e. whenever dealing with all operations, they are involved end with 

a modulo 𝑞𝑅∨ operation), unless stated otherwise. Let  denote a secret distribution defined on (𝑅∨
𝑞 )

𝑑 . For simplicity, we denote 
distribution  as

 = {(𝐶,𝐱, 𝐳) ∣𝐶 ←𝑈 (𝑅𝑘×𝑑
𝑞 ),𝐱 = 𝐶𝐬, 𝐳 = 𝐬+ 𝐞 for 𝐬←  , 𝐞← 𝜒},

and denote 𝐳 as the conditional distribution of (𝐶, 𝐱) given 𝐳 = 𝐬 + 𝐞.
Similarly, we denote distribution  as

 = {(𝐶,𝐱, 𝐳) ∣𝐶 ←𝑈 (𝑅𝑘×𝑑
𝑞 ),𝐱←𝑈 ((𝑅∨

𝑞 )
𝑘), 𝐳 = 𝐬+ 𝐞 for 𝐬←  , 𝐞← 𝜒},

and denote 𝐳 as the conditional distribution of (𝐶, 𝐱) given 𝐳 = 𝐬 + 𝐞. Note that, 𝐳 is uniform distribution over 𝑅𝑘×𝑑
𝑞 × (𝑅∨

𝑞 )
𝑑 . For 

any distribution , the collision probability, denoted by Col(), represents the probability that two independently sampled samples 
following () are equal.

Our new leftover hash lemma demonstrates that when  satisfies specific entropy conditions, the statistical distance between 
and  is negligible. Depending on the splitting of 𝑞𝑅, we can attain varying entropy conditions. When 𝑞𝑅 is low-splitting (meaning 
it splits into fewer but larger ideals), we are able to achieve smaller parameters. The proof of this lemma starts by constraining the 
statistical distance between  and  with a collision probability. Subsequently, we show that when the entropy of  is sufficiently 
high, this collision probability becomes quite small. Now we prove our leftover hash lemma as follows.

Theorem 4. Let 𝐾 =ℚ(𝜉) be a number field with degree 𝑛, where 𝜉 is an algebraic integer. Let 𝑅 be the ring of integers of 𝐾 and 𝑅∨ be the 
dual of 𝑅. Let 𝑞, 𝑑, 𝑘 be positive integers with 𝑑 > 𝑘 and gcd(𝑞, [𝑅 ∶ℤ[𝜉]]) = 1. Let  be a secret distribution defined on (𝑅∨

𝑞 )
𝑑 , 𝜒 be a noise 

distribution over (𝐾ℝ)𝑑 and let 𝐞 ← 𝜒 , then we have

Δ(, ) ≤ 1
2

√√√√ ∑
 |𝑞𝑅, ≠𝑅

(𝑁( ))𝑘 ⋅ ∫
𝐳

𝑃𝐬+𝐞(𝐳) ⋅Col( |𝐳)𝑑𝐳,
13

where Col( |𝐳) is the collision probability of
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𝑅∨ = {𝐬 mod 𝑅∨ ∣ 𝐬← } given 𝐳 = 𝐬+ 𝐞.

Proof. By definition, we need to bound Δ(,  ). To do this, we first derive an upper bound on the statistical distance between 
and  in terms of the conditional collision probability Col(|𝐳), where Col(|𝐳) is the collision probability of 𝐳 .

Δ(, ) =1
2 ∫

𝐳

𝑃𝐬+𝐞(𝐳) ⋅
∑
(𝐶,𝐱)

|Pr[(𝐶,𝐱)← 𝐳] − Pr[(𝐶,𝐱)←𝐳]|𝑑𝐳
≤1
2 ∫

𝐳

𝑃𝐬+𝐞(𝐳) ⋅ 𝑞
𝑛𝑘(𝑑+1)

2 ⋅
√∑

(𝐶,𝐱)
(Pr[(𝐶,𝐱)← 𝐳] − Pr[(𝐶,𝐱)←𝐳])2𝑑𝐳

=1
2 ∫

𝐳

𝑃𝐬+𝐞(𝐳) ⋅
√

𝑞𝑛𝑘(𝑑+1) ⋅Col(|𝐳) − 1𝑑𝐳. (1)

Next we bound Col(|𝐳) as follows, where probabilities run through two independently copies of (𝐶, 𝐶𝐬), (𝐶 ′, 𝐶 ′𝐬′) ← 𝐳 .
Col(|𝐳) = Pr[(𝐶 = 𝐶 ′) ∧ (𝐶𝐬 = 𝐶 ′𝐬′) ∣ 𝐬+ 𝐞 = 𝐬′ + 𝐞′ = 𝐳]

= 1
𝑞𝑛𝑑𝑘

⋅ Pr[𝐶(𝐬− 𝐬′) = 0 ∣ 𝐬+ 𝐞 = 𝐬′ + 𝐞′ = 𝐳]. (2)

Now we further bound the probability

Pr[𝐶(𝐬− 𝐬′) = 0 ∣ 𝐬+ 𝐞 = 𝐬′ + 𝐞′ = 𝐳].

We denote Col( |𝐳) as the collision probability of 𝑅∨ given 𝐳 = 𝐬 + 𝐞, where  is an ideal of 𝑅. Obviously, we have

Col( |𝐳) = Pr[𝐬− 𝐬′ ∈ 𝑅∨ ∣ 𝐬+ 𝐞 = 𝐬′ + 𝐞′ = 𝐳]

≥ Pr[𝐬− 𝐬′ ∈max 𝑅∨ ∣ 𝐬+ 𝐞 = 𝐬′ + 𝐞′ = 𝐳].

For simplicity, we use ♣ to express the condition 𝐬 + 𝐞 = 𝐬′ + 𝐞′ = 𝐳 in the following. Since {𝐬 ∈max 𝑅∨}𝑅∨|𝑞𝑅∨ forms a partition, 
we have:

Pr[𝐶(𝐬− 𝐬′) = 0 ∣ ♣]

=
∑

𝑅∨|𝑞𝑅∨
Pr[𝐶(𝐬− 𝐬′) = 0 ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣] ⋅ Pr[𝐬− 𝐬′ ∈max 𝑅∨ ∣ ♣]

≤ ∑
𝑅∨|𝑞𝑅∨

Pr[𝐶(𝐬− 𝐬′) = 0 ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣] ⋅Col( |𝐳). (3)

Now we compute Pr[𝐶(𝐬 − 𝐬′) = 0 ∣ 𝐬 − 𝐬′ ∈max 𝑅∨, ♣]. By Lemma 1, we have 𝑞𝑅 =
∏

𝑖,𝑗 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

and 𝑞𝑅∨ =
∏

𝑖,𝑗 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨. Without 

loss of generality, we let  =
∏

𝑖,𝑗 𝔭
𝑟′
𝑖,𝑗

𝑖,𝑗
with 𝑟′

𝑖,𝑗
≤ 𝑟𝑖,𝑗 . By Lemma 2, we have

𝑅𝑞 =𝑅∕𝑞𝑅 ≅
⨁
𝑖,𝑗

𝑅∕𝔭𝑟𝑖,𝑗
𝑖,𝑗

,

𝑅∨
𝑞 =𝑅∨∕𝑞𝑅∨ ≅

⨁
𝑖,𝑗

𝑅∨∕𝔭𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨.

Thus a random ring element in 𝑅𝑞 can be viewed as independently random coordinates in {𝑅∕𝔭𝑟𝑖,𝑗
𝑖,𝑗

}𝑖,𝑗 . Therefore, we have:

Pr[𝐶(𝐬− 𝐬′) = 0 ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣]

=
∏
𝑖,𝑗

Pr[𝐶(𝐬− 𝐬′) = 0 mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨ ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣]

=
∏
𝑖,𝑗

Pr[𝐶𝑖,𝑗 (𝐬− 𝐬′)𝑖,𝑗 = 0 mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨|𝐬− 𝐬′ ∈max 𝑅∨,♣], (4)

where 𝐶𝑖,𝑗 = 𝐶 mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

and (𝐬 − 𝐬′)𝑖,𝑗 = (𝐬 − 𝐬′) mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨.

In [21], Liu et al. proved that the ideal generated by the vector (𝐬 − 𝐬′)𝑖,𝑗 is 𝔭
𝑟′
𝑖,𝑗

𝑖,𝑗
𝑅∨ in Claim 5.6. Therefore, by Lemma 3, we have

Pr[𝐶𝑖,𝑗 (𝐬− 𝐬′)𝑖,𝑗 = 0 mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨ ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣] =
⎛⎜⎜⎜⎝
𝑁(𝔭

𝑟′
𝑖,𝑗

𝑖,𝑗
𝑅∨)

𝑁(𝔭𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨)

⎞⎟⎟⎟⎠
𝑘

.

14

Thus, we get
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𝑖,𝑗

Pr[𝐶𝑖,𝑗 (𝐬− 𝐬′)𝑖,𝑗 = 0 mod 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨ ∣ 𝐬− 𝐬′ ∈max 𝑅∨,♣]

=
∏
𝑖,𝑗

⎛⎜⎜⎜⎝
𝑁(𝔭

𝑟′
𝑖,𝑗

𝑖,𝑗
𝑅∨)

𝑁(𝔭𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨)

⎞⎟⎟⎟⎠
𝑘

=
⎛⎜⎜⎜⎝
𝑁(
∏

𝑖,𝑗 𝔭
𝑟′
𝑖,𝑗

𝑖,𝑗
𝑅∨)

𝑁(
∏

𝑖,𝑗 𝔭
𝑟𝑖,𝑗
𝑖,𝑗

𝑅∨)

⎞⎟⎟⎟⎠
𝑘

=
(
𝑁(𝑅∨)
𝑁(𝑞𝑅∨)

)𝑘

= (𝑁( ))𝑘

𝑞𝑛𝑘
. (5)

Combining the facts 𝑁(𝑅) = 1, Col(𝑅|𝐳) = 1 and Eqs. (1), (2), (3), (4), (5), we have

Δ(, ) ≤ 1
2 ∫

𝐳

𝑃𝐬+𝐞(𝐳) ⋅
√ ∑

 |𝑞𝑅, ≠𝑅
(𝑁( ))𝑘 ⋅Col( |𝐳)𝑑𝐳

≤ 1
2

√√√√∫
𝐳

𝑃𝐬+𝐞(𝐳) ⋅
∑

 |𝑞𝑅, ≠𝑅
(𝑁( ))𝑘 ⋅Col( |𝐳)𝑑𝐳

= 1
2

√√√√ ∑
 |𝑞𝑅, ≠𝑅

(𝑁( ))𝑘 ⋅ ∫
𝐳

𝑃𝐬+𝐞(𝐳) ⋅Col( |𝐳)𝑑𝐳. □

Now we bound ∫𝐳 𝑃𝐬+𝐞(𝐳) ⋅Col( |𝐳)𝑑𝐳 for any ideal  in the following lemma.

Lemma 15. Let 𝑞, 𝑑, 𝑘 be positive integers with 𝑑 > 𝑘. Let  be a secret distribution defined on (𝑅∨
𝑞 )

𝑑 and 𝜒 be a noise distribution over 
(𝐾ℝ)𝑑 and let 𝐞 ← 𝜒 , then we have

∫
𝐳

𝑃𝐬+𝐞(𝐳) ⋅Col( |𝐳)𝑑𝐳 ≤ 2−�̃�∞( mod 𝑅∨) ⋅ ∫
𝐳

max
𝐬∗

𝑃𝐞(𝐳 − 𝐬∗)𝑑𝐳.

Proof. Obviously, we have

Col( |𝐳) = ∑
𝐭∈(𝑅∨∕𝑅∨)𝑑

(
Pr[𝐬 = 𝐭 mod 𝑅∨ ∣ 𝐬+ 𝐞 = 𝐳]

)2
≤max

𝐬∗
Pr[𝐬 = 𝐬∗ mod 𝑅∨ ∣ 𝐬+ 𝐞 = 𝐳].

Therefore, we have

∫
𝐳

𝑃𝐬+𝐞(𝐳) ⋅Col( |𝐳)𝑑𝐳
≤∫

𝐳

𝑃𝐬+𝐞(𝐳)max
𝐬∗

Pr[𝐬 = 𝐬∗ mod 𝑅∨ ∣ 𝐬+ 𝐞 = 𝐳]𝑑𝐳

=∫
𝐳

max
𝐬∗

𝑃(𝐬+𝐞,𝐬 mod𝑅∨)(𝐳, 𝐬∗)𝑑𝐳

=∫
𝐳

max
𝐬∗

𝑃(𝐬+𝐞∣𝐬=𝐬∗ mod𝑅∨)(𝐳) ⋅ Pr[𝐬 = 𝐬∗ mod 𝑅∨]𝑑𝐳

≤2−�̃�∞( mod 𝑅∨) ⋅ ∫
𝐳

max
𝐬∗

𝑃(𝐬+𝐞∣𝐬=𝐬∗ mod 𝑅∨)(𝐳)𝑑𝐳

≤2−�̃�∞( mod 𝑅∨) ⋅ ∫
𝐳

max
𝐬∗

𝑃(𝐬+𝐞∣𝐬=𝐬∗)(𝐳)𝑑𝐳

=2−�̃�∞( mod 𝑅∨) ⋅ ∫
𝐳

max
𝐬∗

𝑃𝐞(𝐳 − 𝐬∗)𝑑𝐳. □

From Theorem 4, Lemma 15, Lemma 13 and Lemma 14, we can derive the following lemmas for two cases: one is for the general 
15

high-entropy case and the other is for the bounded norm case.
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Lemma 16 (General case). Let 𝐾 be some number field with degree 𝑛, 𝑅 be the ring of integers of 𝐾 and 𝑅∨ be the dual of 𝑅. Let 𝑑, 𝑘 be 
positive integers with 𝑑 > 𝑘, 𝑞 be a prime and 𝜖 ∈ (0, 1). Let 𝛼 be a parameter for gaussian with 𝑞

𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
and 𝐞 ← (𝐷𝛼(𝐾ℝ))𝑑

be an noise term. Assume that the decomposition of 𝑞𝑅 can be expressed as 
∏

𝑖 𝔭
𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Suppose 𝐬 is 
chosen from some distribution  over (𝑅∨

𝑞 )
𝑑 such that

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥ 2 log
(1
𝜖

)
+ 𝑛𝑘 log(𝑞 + 1) + 𝑛𝑑 log

( 𝑞

𝛼

)
− 𝑑

2
log(Δ𝐾 ) − 1,

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Then we have Δ(,  ) ≤ 𝜖.

Proof. By combining Lemma 15 and Lemma 13, for any  |𝑞𝑅 we have

∫
𝐳

𝑝𝐳(𝐳) ⋅Col( |𝐳)𝑑𝐳 ≤ 2
( 𝑞

𝛼

)𝑛𝑑
⋅
(

1
Δ𝐾

) 𝑑
2
⋅ 2−�̃�∞( mod 𝑅∨).

Obviously, we have

�̃�∞( mod 𝑅∨) ≥ �̃�∞(𝐬 mod 𝔭𝑖𝑅∨)

for any 𝔭𝑖| . Thus, for any  |𝑞𝑅 we have

�̃�∞(𝐬 mod 𝑅∨) ≥ 2 log
(1
𝜖

)
+ 𝑛𝑘 log(𝑞 + 1) + 𝑛𝑑 log

( 𝑞

𝛼

)
− 𝑑

2
log(Δ𝐾 ) − 1.

Since 𝑞𝑅 =
∏

𝑖 𝔭
𝑟𝑖
𝑖

, we have 
∏

𝑖(𝔭𝑖)𝑟𝑖 =𝑁(𝑞𝑅) = 𝑞𝑛. And since 𝑞 is a prime, for any 𝑖 we have 𝑁(𝔭𝑖) ≥ 𝑞 and 𝑞𝑅 has at most 𝑛
prime ideals. Thus, we have∑

 |𝑞𝑅(𝑁( ))𝑘 ≤
𝑛∑

𝑖=0

(
𝑖

𝑛

)
𝑞𝑖𝑘 = (𝑞𝑘 + 1)𝑛 ≤ (𝑞 + 1)𝑛𝑘.

Therefore, we have

Δ(, ) ≤ 1
2

√√√√ ∑
 |𝑞𝑅, ≠𝑅

(𝑁( ))𝑘 ⋅ ∫
𝐳

𝑝𝐳(𝐳) ⋅Col( |𝐳)𝑑𝐳 ≤ 𝜖. □

Similarly, for the bounded case, we can get the following lemma.

Lemma 17 (Bounded case). Let 𝐾 be some number field with degree 𝑛, 𝑅 be the ring of integers of 𝐾 and 𝑅∨ be the dual of 𝑅. Let 𝑑, 𝑘 be 
positive integers with 𝑑 > 𝑘, 𝑞 be a prime and 𝜖 ∈ (0, 1). Let 𝛼 be a parameter for gaussian and 𝐞 ← (𝐷𝛼(𝐾ℝ))𝑑 be an noise term. Assume 
that the decomposition of 𝑞𝑅 can be expressed as 

∏
𝑖 𝔭

𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Suppose 𝐬 is chosen from some 𝑀 -bounded 
distribution  over (𝑅∨

𝑞 )
𝑑 such that

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥ 2 log( 1
𝜖
) + 𝑛𝑘 log(𝑞 + 1) +

√
2𝜋𝑛𝑑𝑀

𝛼
log 𝑒− 2

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Then we have Δ(,  ) ≤ 𝜖.

Proof. Since  is a distribution bounded by 𝑀 , by combining Lemma 15 and Lemma 14, for any  |𝑞𝑅 we have

∫
𝐳

𝑝𝐳(𝐳) ⋅Col( |𝐳)𝑑𝐳 ≤ exp
(√

2𝜋𝑛𝑑 ⋅
𝑀

𝛼

)
⋅ 2−�̃�∞( mod 𝑅∨).

Obviously, we have �̃�∞( mod 𝑅∨) ≥ �̃�∞(𝐬 mod 𝔭𝑖𝑅∨) for any 𝔭𝑖| . Thus, for any  |𝑞𝑅 we have

�̃�∞(𝐬 mod 𝑅∨) ≥ 2 log( 1
𝜖
) + 𝑛𝑘 log(𝑞 + 1) +

√
2𝜋𝑛𝑑𝑀

𝛼
log 𝑒− 2.

According to the analysis in Lemma 16, we have 
∑

 |𝑞𝑅(𝑁( ))𝑘 ≤ (𝑞 + 1)𝑛𝑘. Therefore, we have

Δ(, ) ≤ 1
2

√√√√ ∑
 |𝑞𝑅, ≠𝑅

(𝑁( ))𝑘 ⋅ ∫
𝐳

𝑝𝐳(𝐳) ⋅Col( |𝐳)𝑑𝐳 ≤ 𝜖. □

Remark 2. Note that, in the above lemma we can get smaller parameters when 𝑞𝑅 does not have a small ideal factor. In the most 
special case where 𝑞𝑅 is a field, the best parameters will be obtained. However, in this case number theoretic transform (NTT) [31]
16

algorithm cannot be used in this case, the computational efficiency is the worst. On the other hand, when each 𝑁(𝔭𝑖) is very small 
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then the parameters will be undesirable. For example when 𝑞𝑅 is completely-splitting, then each coordinate of 𝐬 mod 𝔭𝑖 can only 
provide log 𝑞 bits of entropy. In this case, 𝑑 will be very large. From the perspective of efficiency and security, our lemma suggests 
using an appropriate 𝑞 (such that 𝑞𝑅 only has ideals with large norms) in future Module-LWE applications.

4. Entropic module learning with error

In this section, we give a formal definition for the Entropic Module-LWE problem and then adapt the “flooding at the source” 
approach from [9] to the module setting to get the first result for the hardness of the Entropic Module-LWE problem. In particular, 
we present an entropy bound that guarantees the hardness of the Entropic Module-LWE problem. We also adapt the counterexample 
from [5,9] to the module setting to deduce that our entropy bound is essentially tight for general modulus and general min-entropy 
distributions.

Specifically, in Section 4.1, we show that high noise lossiness implies the hardness of search Entropic Module-LWE problem. 
Combining with the result in Section 3.2, we get the entropy bound. In Section 4.2, we show that if for every ideal factor  |𝑞𝑅, 
𝐬 mod  has high entropy, then we can also get the hardness result of decision Entropic Module-LWE. Finally, we show the tightness 
of the hardness result for the general high entropy setting in Section 4.3. In the following, we give the formal definition for the 
Entropic Module-LWE first.

Definition 9 (Entropic Module-LWE). Let 𝐾 be some number field with degree 𝑛, 𝑅 be the ring of integers of 𝐾 and 𝑅∨ be the 
dual of 𝑅. Let 𝑞 be a modulus, 𝑑 be a dimension and 𝑚 be a sample size. Let 𝜒 be an error distribution on 𝐾ℝ and  be a secret 
distribution on (𝑅∨

𝑞 )
𝑑 . Let EMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝜒, ) be a distribution over (𝑅𝑞)𝑚×𝑑 × (𝕋𝑞𝑅∨ )𝑚 obtained by choosing 𝐴 ← 𝑈 ((𝑅𝑞)𝑚×𝑑 ), 

𝐬 ←  , 𝐞 ← 𝜒𝑚, and outputting the pair (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨).
We say search Entropic Module-LWE problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝜒, ) is hard, if it holds for every PPT adversary  that

Pr[(𝐴,𝐴 ⋅ 𝐬+ 𝐞 mod 𝑞𝑅∨) = 𝐬] ≤ negl(𝜆),

where 𝐴 ←𝑈 ((𝑅𝑞)𝑚×𝑑 ), 𝐬 ←  and 𝐞 ← 𝜒𝑚.

We say decision Entropic Module-LWE problem DEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝜒, ) is hard, if it holds for every PPT distinguisher  that

|Pr[(𝐴1,𝐛1) = 1] − Pr[(𝐴2,𝐛2) = 1]| ≤ negl(𝜆),

where (𝐴1, 𝐛1) ← EMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝜒, ) and (𝐴2, 𝐛2) ←𝑈 ((𝑅𝑞)𝑚×𝑑 × (𝕋𝑞𝑅∨ )𝑚).

4.1. Hardness of search Entropic Module-LWE

In this subsection, we only establish the hardness of the search Entropic Module-LWE problem with continuous Gaussian noise. 
Using discretization technique (see Lyubashevsky et al. [23] for more details) we can get that the search entropic Module-LWE 
problem with discrete Gaussian noise is also hard. The results are divided into two cases, general high entropy case and bounded 
case, in which the bounded case can get a smaller lower bound.

Theorem 5. Let 𝑐 be the global constant from Corollary 1. Let 𝑞, 𝑑, 𝑚, 𝑘 be positive integers with 𝑚 > 𝑛, 𝑑 > 𝑘 and 𝛼, 𝛽, 𝛼′ > 0 with 
𝛼 >

√
2𝑚𝑐𝛽𝛼′. Let 𝐬 be a random variable on (𝑅∨

𝑞 )
𝑑 distributed according to some distribution  . Further assume that 𝜈𝛼′ () ≥ 𝑛𝑘 log(𝑞) +

𝜔(log(𝜆)). Then search Entropic Module-LWE problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, provided that primal-DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 ) is 
hard.

Proof. Let  be a search adversary against SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) and 𝐷(𝐹 , 𝛼, 𝛼′) be the efficient sampling algorithm from 
Corollary 1. Consider the following hybrid Module-LWE distributions:

– 0: Let 𝐬 ←  , 𝐴 ←𝑈 ((𝑅𝑞)𝑚×𝑑 ) and 𝐞 ←𝐷𝛼(𝐾ℝ)𝑚, and then output (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨);
– 1: Let 𝐬 ←  , 𝐵 ← 𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ← 𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ← 𝐷𝑚×𝑑

𝑅,𝛽
, set 𝐴 = 𝐵𝐶 + 𝐹 mod 𝑞𝑅, 𝐞 ←𝐷𝛼(𝐾ℝ)𝑚, and output (𝐴, 𝐴 ⋅ 𝐬 +

𝐞 mod 𝑞𝑅∨);
– 2: Let 𝐬 ←  , 𝐵 ← 𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ← 𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ← 𝐷𝑚×𝑑

𝑅,𝛽
, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝑐𝛽

√
𝑚 output ⊥. Else, let 

𝐴 =𝐵𝐶 + 𝐹 mod 𝑞𝑅, 𝐞 ←𝐷𝛼(𝐾ℝ)𝑚, and output (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨);
– 3: Let 𝐬 ←  , 𝐵 ←𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ←𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝑐𝛽

√
𝑚 output ⊥. Otherwise, let 

𝐞1 ←𝐷𝛼′ (𝐾ℝ)𝑑 , 𝐞2 ←𝐷(𝐹 , 𝛼, 𝛼′), and set 𝐴 =𝐵𝐶 + 𝐹 mod 𝑞𝑅, 𝐞 = 𝐅𝐞1 + 𝐞2, and then output (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨).

First note that 0 is identical to the SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) experiment. Second, it follows directly by the hardness of primal-

DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 ) that 0 and 1 are computationally indistinguishable. Then, if we have for any 𝑗 ∈ [𝑛], 𝑠1(𝐹 𝑗 ) ≤ 𝑐𝛽
√

𝑚, 1
and 2 are identically distributed. Thus we can bound the statistical distance between 1 and 2 by the probability√
17

Pr[∃𝑗 ∈ [𝑛] ∶ 𝑠1(𝐹 𝑗 ) ≥ 𝑐𝛽 ⋅ 𝑚)].
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By Lemma 11, with all but 2−𝑚 probability it holds that 𝑠1(𝐹 𝑗 ) ≤ 𝑐 ⋅ 𝛽 ⋅
√

𝑚 for all 𝑗 ∈ [𝑛]. Therefore, the statistical distance between 
1 and 2 is at most 2−𝑚. Finally, by Corollary 1, we have 2 and 3 are identically distributed.

We now show that for any search adversary , we have

Pr[(𝐴,𝐴 ⋅ 𝐬+ 𝐞 mod 𝑞𝑅∨) = 𝐬] < negl(𝜆),

where (𝐴, 𝐴 ⋅𝐬 +𝐞 mod 𝑞𝑅∨) ←3. Consequently, by the above we can then argue that the same holds for (𝐴, 𝐴 ⋅𝐬 +𝐞 mod 𝑞𝑅∨) ←0, 
which means that the search problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, concluding the proof for the theorem.

To do so, we bound the conditional min-entropy of 𝐬 given (𝐴, 𝐲) ←3. Note that we can compute 𝐲 = 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨ given 
𝐵 ∈ (𝑅𝑞)𝑚×𝑘, 𝐶𝐬 mod 𝑞𝑅∨, 𝐹 ∈𝑅𝑚×𝑑 , 𝐬 + 𝐞1 mod 𝑞𝑅∨ and 𝐞2 ∈ (𝐾ℝ)𝑚. Since 𝑅∨ is a free ℤ-module of rank 𝑛, 𝑅∨

𝑞 is a free ℤ𝑞 -module 
of rank 𝑛, we have 𝐶𝐬 mod 𝑞𝑅∨ ∈ (𝑅∨

𝑞 )
𝑘 has at most 2𝑘𝑛 log 𝑞 possible values. Then by Lemma 4, we can get the bound:

�̃�∞(𝐬 ∣ (𝐴,𝐴 ⋅ 𝐬+ 𝐞 mod 𝑞𝑅∨))

≥ �̃�∞(𝐬 ∣𝐵,𝐶,𝐹 ,𝐶𝐬 mod 𝑞𝑅∨, 𝐬+ 𝐞1 mod 𝑞𝑅∨, 𝐞2)

= �̃�∞(𝐬 ∣ 𝐶,𝐶𝐬 mod 𝑞𝑅∨, 𝐬+ 𝐞1 mod 𝑞𝑅∨)

≥ �̃�∞(𝐬 ∣ 𝐶, 𝐬+ 𝐞1 mod 𝑞𝑅∨) − 𝑛𝑘 log 𝑞

= 𝜈𝛼′ () − 𝑛𝑘 log 𝑞.

Where the first equality follows from the fact that 𝐵, 𝐹 , 𝐞2 are independent of everything else, and the second equality follows 
from the fact that 𝐶 is independent of everything else. The second inequality follows from Lemma 4. By assumption we have 
𝜈𝛼′ () ≥ 𝑛𝑘 log(𝑞) +𝜔(log(𝜆)), it follows that

Pr[(𝐴,𝐴 ⋅ 𝐬+ 𝐞 mod 𝑞𝑅∨) = 𝐬] ≤ 2−�̃�∞(𝐬∣(𝐴,𝐴⋅𝐬+𝐞 mod 𝑞𝑅∨)) ≤ 2−𝜔(log(𝜆)),

which is negligible. This concludes the proof of the theorem. □

By combining Theorem 5, Corollary 2 and Corollary 3, we deduce the following theorems, which present an entropy bound that 
guarantees the hardness of search Entropic Module-LWE problem in both general case and bounded case.

Theorem 6 (General high entropy). Let 𝑐 be the global constant from Corollary 1. Let 𝑅 be the ring of integers of some algebraic number 
field 𝐾 of degree 𝑛, 𝑅∨ be the dual of R and 𝐵𝑅 be some known basis of 𝑅 in ℍ. Let 𝑞, 𝑑, 𝑚, 𝑘 be positive integers with 𝑚 > 𝑛, 𝑑 > 𝑘, 𝛽, 

𝛼′ > 0 with 𝑞

𝛼′
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
. Let 𝐬 be a random variable on (𝑅∨

𝑞 )
𝑑 distributed according to some distribution  , with

�̃�∞(𝐬) ≥ 𝑛𝑘 log(𝑞) + 𝑛𝑑 log( 𝑞
𝛼′

) + 1 − 𝑑

2
log(Δ𝐾 ) +𝜔(log(𝜆)).

Furthermore let 𝛼 >
√
2𝑚𝑐𝛽𝛼′, then the search problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, provided that primal-DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 )

is hard.

Theorem 7 (Bounded norm). Let 𝑐 be the global constant, 𝑅 be the ring of integers of some algebraic number field 𝐾 of degree 𝑛 and 𝑅∨ be 
the dual of R. Let 𝑞, 𝑑, 𝑚, 𝑘 be positive integers with 𝑚 > 𝑛, 𝑑 > 𝑘, 𝛽, 𝛼′ > 0. Let 𝐬 be a 𝑀 -bounded random variable on (𝑅∨

𝑞 )
𝑑 with

�̃�∞(𝐬) ≥ 𝑛𝑘 log(𝑞) +
√
2𝜋𝑛𝑑 ⋅

𝑀

𝛼′
log(𝑒) +𝜔(log(𝜆)).

Furthermore let 𝛼 >
√
2𝑚𝑐𝛽𝛼′, then the search problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, provided that primal-DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 )

is hard.

Remark 3. The hardness of primal-DMLWE assumption is used to assert that 𝐵𝐶 + 𝐹 mod 𝑞𝑅 is computationally indistinguishable 
from a uniform matrix. Thus we can set 𝑘 = 1 and use the hardness of Ring-LWE assumption to get the hardness Entropic Module-LWE 
result.

Binary module LWE Theorem 7 directly implies the hardness of the Binary Module-LWE problem. The Binary Module-LWE problem 
is a special case of the Entropic Module-LWE problem where the secret is chosen from the 𝑅∨

2 . Our method provides an alternative 
solution for the hardness of the Binary Module-LWE problem. Besides, as a small improvement, the noise ratio in our result is 

√
𝑚, 

smaller than 𝑛2𝑑
√

𝑚 in [7] and 𝑛1.5
√

𝑑 in [19].

For the sake of simplicity, we only consider a particular case, where 𝐾 = ℚ(𝜉) is a cyclotomic number field with degree 𝑛. In 
this case, the map taking the coefficient embedding to the canonical embedding is a scaled isometry with scaling factor 

√
𝑛. Taking 

the“power basis” of 𝑅 given by 1, 𝜉, ⋯ , 𝜉𝑛−1, gives us an orthonormal lattice basis of 𝑅 in the coefficient embedding. Applying the 
aforementioned scaled isometry, we can find an orthogonal basis in the canonical embedding where each vector has length 

√
𝑛. √
18

Therefore, in the canonical embedding ‖�̃�𝑅‖ = 𝑛 when using this basis.
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Lemma 18. Let 𝑐 be the global constant, 𝑅 be a cyclotomic rings with degree 𝑛 and 𝑅∨ be the dual of 𝑅. Let 𝑞, 𝑑, 𝑚 be positive integers with 
𝑚 > 𝑛, 𝑑 > 11 log𝑞, 𝛽, 𝛼′ > 0. Let 𝐬 be a uniform random variable on (𝑅∨

2 )
𝑑 . Also let 𝛼 > 6𝑐

√
𝑚𝛽. Then the Binary Module-LWE problem 

SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, (𝑅∨
2 )

𝑑 ) is hard, provided that primal-DRLWE(𝑅, 𝑞, 𝐷𝑅,𝛽 ) is hard.

Proof. Since 𝐬 is a uniform random variable on (𝑅∨
2 )

𝑑 , we have �̃�∞(𝐬) = 𝑛𝑑. Since 𝑅 is a cyclotomic ring with degree 𝑛, we have 
𝑅∨
2 = 1

𝑛
𝑅2. Let 1, 𝜉, ⋯ , 𝜉𝑛−1 be the “power basis” of 𝑅, for any 𝑠 ∈𝑅∨

2 , we have 𝑠 = 1
𝑛
(𝑎0 + 𝑎1𝜉 +⋯ + 𝑎𝑛−1𝜉

𝑛−1), where 𝑎𝑖 ∈ {0, 1}. So 
we have

|𝜎𝑖(𝑠)| = 1
𝑛
|𝜎𝑖(𝑎0 + 𝑎1𝜉 +⋯+ 𝑎𝑛−1𝜉

𝑛−1)| ≤ 1
𝑛

𝑛∑
𝑗=1

𝑎𝑗 |𝜎𝑗 (𝜉𝑗 )| = 1.

Therefore, we can take 𝑀 =
√

𝑛𝑑, 𝑘 = 1 and 𝛼′ = 4, then apply Theorem 7 in SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, (𝑅∨
2 )

𝑑 ) to completes this 
proof. □

Remark 4. In the above lemma, we use 𝑘 = 1 to establish the hardness of the Binary Module-LWE problem from the Ring-LWE 
problem, because we can get the smallest 𝑑 in this case. We can also take 𝑘 > 1 to get the hardness of the Binary Module-LWE 
problem from the Module-LWE problem. In this case 𝑑 need to satisfy 𝑑 > 11𝑘 log 𝑞.

4.2. Hardness of decision Entropic Module-LWE

In this subsection, we will establish the hardness of the decision entropic Module-LWE problem with continuous Gaussian noise. 
To achieve this, we require secret distribution satisfies that for every prime ideal factor 𝔭𝑖|𝑞𝑅, 𝐬 mod 𝔭𝑖𝑅∨ has high entropy. This 
requirement is not unique to our article, Liu et al. also used it when considering the pseudorandomness of Module-LWR in [21]. In 
addition, the Binary-MLWE problem also satisfies this requirement. Similar to the search pattern, the results in this subsection are 
also divided into two cases, general high entropy case and bounded case, the bounded case can also get a smaller lower bound.

Theorem 8 (Bounded norm). Let 𝑐 be the global constant from Corollary 1. Let 𝐾 be some number field with degree 𝑛, 𝑅 be the ring of 
integers of 𝐾 and 𝑅∨ be the dual of 𝑅. Let 𝑑, 𝑚, 𝑘 be positive integers where 𝑚 > 𝑛, 𝑑 > 𝑘, 𝑞 be a prime and 𝛼, 𝛼′, 𝛽 > 0. Assume that 
the decomposition of 𝑞𝑅 can be expressed as 

∏
𝑖 𝔭

𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Suppose 𝐬 is chosen from some 𝑀 -bounded 
distribution  over (𝑅∨

𝑞 )
𝑑 such that

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥ 𝑛𝑘 log(𝑞 + 1) +
√
2𝜋𝑛𝑑𝑀

𝛼′
log 𝑒− 2 +𝜔(log(𝜆))

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Let 𝛼 >
√
2𝑚𝑐𝛽𝛼′, then we have decisional problem DEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, provided primal-

DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 ) and DMLWE(𝑅, 𝑘, 𝑞, 𝑚, 𝐷𝛼) are hard.

Proof. Throughout this proof, 𝑐 is the global constant from Corollary 1 and 𝐷(𝐹 , 𝛼, 𝛼′) is the efficient sampling algorithm from 
Corollary 1. We assume  be a PPT distinguisher which distinguishes DEMLWE(𝐾, 𝑑, 𝑞, 𝑚,  , 𝐷𝛼) with non-negligible advantage. 
Consider the following hybrid Module-LWE distributions:

– 0: Let 𝐬 ←  , 𝐴 ←𝑈 ((𝑅𝑞)𝑚×𝑑 ) and 𝐞 ←𝐷𝛼(𝐾ℝ)𝑚, and then output (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨);
– 3: Let 𝐬 ←  , 𝐵 ←𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ←𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝑐𝛽

√
𝑚 output ⊥. Otherwise, let 

𝐞1 ←𝐷𝛼′ (𝐾ℝ)𝑑 , 𝐞2 ←𝐷(𝐹 , 𝛼, 𝛼′), and set 𝐴 =𝐵𝐶 + 𝐹 mod 𝑞𝑅, 𝐞 = 𝐹 𝐞1 + 𝐞2, and then output (𝐴, 𝐴 ⋅ 𝐬 + 𝐞 mod 𝑞𝑅∨).
– 4: Let 𝐬 ←  , 𝐬∗ ← 𝑈 ((𝑅∨

𝑞 )
𝑑 ), 𝐵 ← 𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ← 𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ←𝐷𝑚×𝑑

𝑅,𝛽
, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝑐𝛽

√
𝑚 output 

⊥. Otherwise, let 𝐞1 ←𝐷𝛼′ (𝐾ℝ)𝑑 , 𝐞2 ←𝐷(𝐹 , 𝛼, 𝛼′), and set 𝐴 =𝐵𝐶 +𝐹 mod 𝑞𝑅, and then output (𝐴, 𝐵𝐬∗ +𝐹 (𝐬 + 𝐞1 mod 𝑞𝑅∨) +
𝐞2 mod 𝑞𝑅∨).

– 5: Let 𝐬 ←  , 𝐬∗ ← 𝑈 ((𝑅∨
𝑞 )

𝑘), 𝐵 ← 𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐶 ← 𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ←𝐷𝑚×𝑑
𝑅,𝛽

, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝑐𝛽
√

𝑚 output 
⊥. Otherwise, let 𝐞 ←𝐷𝛼(𝐾ℝ)𝑚, set 𝐴 =𝐵𝐶 + 𝐹 mod 𝑞𝑅, and then output the pair (𝐴, 𝐵𝐬∗ + 𝐹 𝐬 + 𝐞 mod 𝑞𝑅∨).

First, we have 0 and 3 are computationally indistinguishable by the proof in Theorem 5. Then, we will show that 3 and 4
are statistically close via the Lemma 17. Note that the only difference between 3 and 4 is that in 4 we have replaced 𝐶𝐬 by a 
uniformly random 𝐬∗. Moreover, the only other term depending on 𝐬 is 𝐬 + 𝐞1 mod 𝑞𝑅∨. Consequently, we can bound the statistical 
distance between 3 and 4 by

Δ(3;4) ≤Δ((𝐶,𝐶𝐬, 𝐬+ 𝐞1 mod 𝑞𝑅∨); (𝐶, 𝐬∗, 𝐬+ 𝐞1 mod 𝑞𝑅∨))

=Δ(, ) ≤ 2−𝜔(log(𝜆))∕2,
19

which is negligible. The second inequality follows by the Lemma 17.
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Next, we claim that 4 and 5 are identically distributed. Note that all we did was reversing the decomposition of 𝐞 = 𝐹 𝐞1 +
𝐞2. Thus, by the above argument, distinguisher  also have non-negligible advantage in distinguishing (𝐴, 𝐲) from (𝐴, 𝐮), where 
(𝐴, 𝐲) ←5, (𝐴, 𝐮) ← 𝑈 ((𝑅𝑞)𝑚×𝑑 × (𝕋𝑞𝑅∨ )𝑚). From such a distinguisher  we can construct a distinguisher ′ which distinguishes

DMLWE(𝐾, 𝑘, 𝑞, 𝑚, 𝐷𝛼) with non-negligible advantage as follows. ′ gets as input 𝐵 ∈ (𝑅𝑞)𝑚×𝑘 and 𝐳 ∈ (𝕋𝑞𝑅∨ )𝑚, and proceeds as 
follows:

– Let 𝐬 ←  , 𝐶 ←𝑈 ((𝑅𝑞)𝑘×𝑑 ), 𝐹 ←𝐷𝑚×𝑑
𝑅,𝛽

, if there exists 𝑗 ∈ [𝑛] s.t. 𝑠1(𝐹 𝑗 ) > 𝐶𝛽
√

𝑚 output ⊥. Otherwise, set 𝐴 =𝐵𝐶 +𝐹 mod 𝑞𝑅, 
𝐲 = 𝐳 + 𝐹 𝐬 mod 𝑞𝑅∨, and then output (𝐴, 𝐲).

We claim that ′ has the same advantage as . First consider the case that the input of ′ is a pair of the form (𝐵, 𝐳 =
𝐵𝐬∗ + 𝐞 mod 𝑞𝑅∨), where 𝐵 ←𝑈 ((𝑅𝑞)𝑚×𝑘), 𝐬∗ ←𝑈 ((𝑅∨

𝑞 )
𝑘) and 𝐞 ←𝐷𝑟(𝐾ℝ)𝑚. Then it holds that

𝐲 = 𝐳 + 𝐹 𝐬 mod 𝑞𝑅∨ =𝐵𝐬∗ + 𝐹 𝐬+ 𝐞 mod 𝑞𝑅∨.

Thus, (𝐴, 𝐲) is distributed according to 5.

On the other hand, if the input of ′ is distributed according to (𝐵, 𝐳), where 𝐳 ← 𝑈 ((𝕋𝑞𝑅∨ )𝑚). Then it holds that 𝐲 = 𝐳 +
𝐹 𝐬 mod 𝑞𝑅∨ is also a uniformly random variable.

Therefore, ′ has the same advantage as , which contradicts the hardness of DMLWE(𝐾, 𝑘, 𝑞, 𝑚, 𝐷𝑟). This concludes the 
proof. □

Remark 5. Assuming that 𝑞𝑅 can be factored into 
∏

𝑖 𝔭
𝑟𝑖
𝑖

, such that 𝑁(𝔭𝑖) ≥ 𝑞
𝑛
𝜛 holds for each prime ideal. Then by Theorem 8, the 

minimum value we can set for 𝑑 is 𝜛𝑘.

Now, we provide some parameters to quantify the result of Theorem 8. Let 𝑅 =ℤ[𝑋]∕⟨𝑋512 + 1⟩, let 𝜛 be a power of two with 
𝜛 ≤ 512, let 𝑞 be a prime with 𝑞 − 1 ≡ 2𝜛 (mod 4𝜛), and let us fix a primitive 2𝜛-th root of unity 𝜁 in ℤ𝑞 . Then, the polynomial 

𝑋512 + 1 factors into 𝜛 irreducible polynomials in ℤ𝑞 , i.e., 𝑋512 + 1 ≡∏𝜛−1
𝑖=0 (𝑋

512
𝜛 − 𝜁2𝑖+1) mod 𝑞. By Chinese remainder theorem, 

we obtain 𝑞 ≅0
𝑞 ×⋯ ×𝜛−1

𝑞 for 𝑖
𝑞 = ℤ𝑞[𝑋]∕(𝑋

512
𝜛 − 𝜁2𝑖+1). Assume that the primal-DMLWE(𝑅, 1, 𝑞, 𝐷𝑅,𝛽 ) problem (actually 

Ring-LWE) is hard and distribution  is 
√

𝑞-bounded. In this case, setting 𝑑 = 8 ⋅𝜛2 is an appropriate choice. Therefore, when 𝑞𝑅
completely splits, 𝑑 = 221, which is very large, but when 𝑞𝑅 splits very little, such as 𝜛 = 2, 𝑑 can be chosen as 32.

Similarly, by replacing Lemma 17 with Lemma 16 in the above theorem, we can get the following general case theorem. The 
proof is the same, so we omit here.

Theorem 9 (General high entropy). Let 𝑐 be the global constant from Corollary 1. Let 𝐾 be some number field with degree 𝑛, 𝑅 be the 
ring of integers of 𝐾 and 𝑅∨ be the dual of 𝑅. Let 𝑑, 𝑚, 𝑘 be positive integers with 𝑚 > 𝑛, 𝑑 > 𝑘, 𝑞 be a prime and 𝛼, 𝛼′, 𝛽 > 0 with 
𝑞

𝛼
≥ ‖𝐵𝑅‖ ⋅√ log(4𝑛𝑑)

𝜋
. Assume that the decomposition of 𝑞𝑅 can be expressed as 

∏
𝑖 𝔭

𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Suppose 𝐬
is chosen from some distribution  over (𝑅∨

𝑞 )
𝑑 such that

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥𝑛𝑘 log(𝑞 + 1) + 𝑛𝑑 log( 𝑞
𝛼′

) − 𝑑

2
log(Δ𝐾 ) − 1 +𝜔(log(𝜆))

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Let 𝛼 >
√
2𝑚𝑐𝛽𝛼′, then we have decisional problem DEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is hard, provided primal-

DMLWE(𝑅, 𝑘, 𝑞, 𝐷𝑅,𝛽 ) and DMLWE(𝑅, 𝑘, 𝑞, 𝑚, 𝐷𝛼) are hard.

Remark 6. Similarly with the search Entropic Module-LWE problem, we can set 𝑘 = 1 here and use the hardness of Ring-LWE

assumption to get the hardness of the decision Entropic Module-LWE problem.

4.3. Tightness of the result

In this section, we will show that for general modulus and general min-entropy distributions, our result is tight up to polynomial 
factors. For sake of simplicity, we also consider the case of cyclotomic rings with degree 𝑛.

For a modulus 𝑞 and a noise parameter 𝛼, we will provide an example of a distribution 𝐬 with min-entropy at least 𝑛𝑑 log( 𝑞
𝛼
) −

2 log(log(𝜆)), such that SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is easy. Our counter-example is a natural generalization of the counter example 
in [5,9].

Lemma 19. Let 𝑅 be a cyclotomic rings with degree 𝑛 and 𝑅∨ be the dual of 𝑅. Let 1, 𝜉, ⋯ , 𝜉𝑛−1 be the “power basis” of 𝑅∨. Let 𝑞
be a modulus such that 𝑞 has a big divisor 𝑝. Let 𝑑, 𝑚 be positive integers with 𝑚 > 𝑛, 𝑑 > 1 and let 𝜒 be a error distribution with 
Pr𝑒←𝜒 [max𝑖 Tr(𝑒𝜉𝑖) > 𝐵] ≤ 𝛿 for some (𝐵, 𝛿), where 𝐵 ≤ 𝑝

2 . Define the distribution  to be the uniform distribution on 𝑝 ⋅ (𝑅∨
𝑞 )

𝑑 . Then there 
20

exists an efficient algorithm  that solves the search problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝜒, ) with advantage at least 1 − 𝛿.
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Proof. Assume that an element in (𝐾ℝ)𝑑 modulo 𝑝𝑅∨ is represented by the elements in the central residual class. In other word, 
let 𝐲 = (𝑦1, ⋯ 𝑦𝑚) and 𝐳 = 𝐲 mod 𝑝𝑅∨, then we have |Tr(𝑧𝑗𝜉𝑖)| ≤ 𝑝

2 for any 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]. The adversary  gets as input (𝐴, 𝐲) and 
proceeds as follows:

– Compute 𝐞 ← 𝐲 mod 𝑝𝑅∨;

– Solve the equation system 𝐀 ⋅ 𝐬 = 𝐲 − 𝐞 for 𝐬, and then output 𝐬.

To see that the algorithm  is correct, note that since 𝑅 is a cyclotomic rings with degree 𝑛, we have 𝑅𝑞 = 𝑛𝑅∨
𝑞 . Thus, for any 

𝐚 ∈ (𝑅𝑞)𝑑 , 𝐬 ∈ 𝑝 ⋅ (𝑅∨
𝑞 )

𝑑 , we have 𝐚 ⋅ 𝐬 ∈ 𝑝 ⋅ (𝑅∨
𝑞 )

𝑑 . Therefore

𝐲 mod 𝑝𝑅∨ =𝐴 ⋅ 𝐬+ 𝐞 mod 𝑝𝑅∨ = 𝐞

as 𝐵 ≤ 𝑝

2 . □

By the above lemma, we deduce the following corollary.

Corollary 4. Let 𝑅 be a cyclotomic rings with degree 𝑛 and 𝑅∨ be the dual of 𝑅. There exist moduli 𝑞 and distribution  over (𝑅∨)𝑑 with 
min-entropy at least 𝑛𝑑 log( 𝑞

𝛼
) − 2 log(log(𝜆)) such that the search problem SEMLWE(𝑅, 𝑑, 𝑞, 𝑚, 𝐷𝛼, ) is easy.

Proof. Note that a gaussian of parameter 𝛼 is log(𝜆)𝛼 bounded, except with negligible probability and 𝜎𝐶 (1), 𝜎𝐶 (𝜉), ⋯ , 𝜎𝐶 (𝜉𝑛−1)
is an orthogonal basis on ℍ, we have Tr(𝑒𝜉𝑖) is also log(𝜆)𝛼 bounded. Moreover, by choosing 𝑝 = 2𝛼 log(𝜆), the distribution  in 
Lemma 19 has min-entropy

𝑛𝑑 log(𝑞∕𝑝) ≥ 𝑛𝑑 log( 𝑞
𝛼
) − 2 log(log(𝜆)).

Thus we can apply Lemma 19 to complete this proof. □

5. Entropic ring-LWE

In this section, we show an entropy bound that guarantees the security of the Entropic Ring-LWE problem. The Entropic Ring-

LWE is a special Entropic Module-LWE with 𝑑 = 1. We use a different approach than Brakerski et al. [35] to get an essentially same 
entropy bound for search Entropic Ring-LWE problem in bounded case. The advantage of our method is that we can not only get the 
hardness for the search Entropic Ring-LWE problem in any number field based on common hardness assumption, but can also get 
the hardness result for the decision Entropic Ring-LWE problem in some special number fields. To the best of our knowledge, this is 
the first result for the decision Entropic Ring-LWE problem.

Hardness of E-SRLWE: Brakerski et al. [9] use the generalized “closeness to low-rank” approach to get the first hardness result of 
the search Entropic Ring-LWE problem. Here, we use another approach to get the hardness of search Entropic Ring-LWE. We only 
consider continuous gaussian noise here. Using discretization technique, the result holds for the search Entropic Ring-LWE problem 
with discrete gaussian noise. We show the entropy bound for the search Entropic Ring-LWE problem by combining the result of 
Albrecht et al. [3] and our Theorem 7.

Lemma 20 (Adapted from Corollary 3 in [3]). Let 𝑅 be the ring of integers of some algebraic number field 𝐾 of degree 𝑛, 𝑅∨ be 
the dual of 𝑅 and 𝐵𝑅 be some known basis of 𝑅 in ℍ. Let 𝑑, 𝑞, 𝑚 be positive integers and let 𝐆 = (1, 𝑞, ⋯ , 𝑞𝑑−1) ∈ 𝑅1×𝑑 . Let 𝐬
be a random variable on (𝑅∨

𝑞 )
𝑑 according to some distribution  satisfying Pr𝐬← [max𝑖,𝑗 |𝜎𝑖(𝑠𝑗 )| > 𝐵] ≤ 𝛿. Let 𝛼′ > 0, 𝜖 ∈ (0, 1∕2), 

𝜏 ≥ ‖𝐵𝑅‖ ⋅ √2 ln(2𝑛𝑑(1 + 1∕𝜖))∕𝜋 and define 𝛼 =
√

𝛼′ 2 + (𝜏𝐵(𝑚𝑛)1∕4)2. Suppose there exists a PPT algorithm which can solve

ERLWE(𝑅, 𝑞𝑑 , 𝑚, 𝐆 , 𝐷𝛼) with probability 𝑝, then there is an algorithm solving E-MLWE(𝑅, 𝑑, 𝑞, 𝑚,  , 𝐷′
𝛼) with probability at least 

(1−𝛿)𝑝2
2 − (2𝑑 + 6)𝜖𝑚 − 𝛿.

We now use the above lemma to show the hardness of the Entropic Ring-LWE problem.

Theorem 10. Let 𝑐 be the global constant from Corollary 1, 𝑅 be the ring of integers of degree 𝑛, 𝑅∨ be the dual of 𝑅 and 𝐵𝑅 be a basis of 
𝑅. Let 𝑞, 𝑚 be integers 𝛼, 𝛼′, 𝛽 > 0 and 𝜏 ≥ ‖𝐵𝑅‖ ⋅√2 ln(4𝑛(1 + 2𝜔(log(𝜆))))∕𝜋. Let 𝑠 be a random variable on (𝑅∨

𝑞2
) with ‖𝑠 mod 𝑞𝑅∨‖ ≤𝑀 , 

‖𝑠 −(𝑠 mod 𝑞𝑅∨)‖ ≤ 𝑞𝑀 and �̃�∞(𝑠) ≥ 𝑛 log(𝑞) +5.5𝑀
√

𝑛

𝛼′
. Let 𝛼 =

√
(
√
2𝑚𝑐𝛽𝛼′)2 + (𝜏𝑀(𝑚𝑛)1∕4)2. Then we have that the search problem

SERLWE(𝐾, 𝑞2, 𝑚,  , 𝐷𝛼) is hard, provided the primal-DRLWE(𝐾, 𝑞, 𝐷𝑅,𝛽 ) is hard.

Proof. Let 𝐆 = (1, 𝑞) ∈ 𝑅1×2. Then the map ℎ𝐆 ∶ (𝑅∨
𝑞 )

2 ↦ 𝑅∨
𝑞2

given by ℎ𝐆(𝐬) =𝐆𝐬 is a bijection. Thus, for any 𝐬 ∈ 𝑅∨
𝑞2

, we denote 
𝐆−1(𝐬) be preimage of 𝐬. And for any distribution  on 𝑅∨

𝑞2
, we denote 𝐆−1() be a distribution on (𝑅∨

𝑞 )
2 such that if 𝐬 is a random 
21

variable according to 𝐆−1(), then 𝐆𝐬 is a random variable according to  .



Theoretical Computer Science 999 (2024) 114553H. Lin, M. Wang, J. Zhuang et al.

Assume there is an adversary  and a distribution  such that  has non-negligible advantage to solve SERLWE(𝑅, 𝑞2, 𝑚,  , 𝐷𝛼), 
and  satisfies

‖𝑠 mod 𝑞𝑅∨‖ ≤𝑀, ‖𝑠− (𝑠 mod 𝑞𝑅∨)‖ ≤ 𝑞𝑀, �̃�∞(𝑠) ≥ 𝑛 log(𝑞) + 5.5
𝑀
√

𝑛

𝛼′
.

Then since 𝐆−1() is a distribution on (𝑅∨
𝑞 )

𝑑 , we have

Pr
𝐬←𝐆−1()[max

𝑖,𝑗
|𝜎𝑖(𝑠𝑗 )| >𝑀] = 0.

Then by Lemma 20, we can construct a PPT adversary ′ such that ′ solving SEMLWE(𝑅, 2, 𝑞, 𝑚, 𝐆−1(), 𝐷�̃�) with probability

Adv(′) ≥ (Adv())2

2
− (2𝑑 + 6)𝑚 ⋅ 2−𝜔(log(𝜆)),

where �̃� =
√
2𝑚𝑐𝛽𝛼′. And since ℎ𝐆 is a bijection, we have

�̃�∞(𝐆−1()) = �̃�∞() ≥ 𝑛 log(𝑞) + 5.5
𝑀
√

𝑛

𝑞𝛼′
.

Thus by Theorem 7, we have the search problem SEMLWE(𝑅, 2, 𝑞, 𝑚,  , 𝐷𝛼) is hard, which contradicts to the advantage of ′. This 
concludes the proof. □

Remark 7. Here, for sake of simplicity, we only use bounded case to get the hardness result for some special secret distribution with 
modulus 𝑞2. Similar results can be obtained for the Entropic Ring-LWE problem with general secret distribution and modulus 𝑞𝑑 .

Hardness of E-DRLWE In this section we will establish the hardness result for the decision version Entropic Ring-LWE problem 
with continuous gaussian noise. We first give a reduction from the decision Entropic Module-LWE problem to the decision Entropic 
Ring-LWE problem with a spherical error distribution, and then give the hardness result for the decision Entropic Ring-LWE problem 
by combining this reduction and our Theorem 8.

Lemma 21. Let 𝑅 be the ring of integers of some algebraic number field 𝐾 of degree 𝑛, 𝑅∨ be the dual of 𝑅 and 𝐵𝑅 be some known basis 
of 𝑅 in ℍ. Let 𝑑, 𝑞 be positive integers, and 𝐆 = (1, 𝑞, ⋯ , 𝑞𝑑−1) ∈𝑅1×𝑑 . Let 𝐬 be a random variable on (𝑅∨

𝑞 )
𝑑 according to some distribution 

 satisfying

Pr
𝐬←[max

𝑖,𝑗
|𝜎𝑖(𝑠𝑗 )| > 𝐵] = 0.

Also take any 𝑟 > 0, any 𝜖 ∈ (0, 1∕2),

𝜏 ≥ ‖𝐵𝑅‖ ⋅√2 ln(2𝑛𝑑(1 + 2𝜔(log(𝜆))))∕𝜋,

and define 𝑟′ =
√

𝑟2 + 2𝜏2𝐵2𝑑 ⋅ (𝑛𝑚∕ log(𝑛𝑚))1∕4. Suppose there exists a PPT algorithm solving E-DRLWE(𝐾, 𝑞𝑑, 𝑚, 𝐆 , 𝐷𝑟′ ) with non-

negligible probability, then there is a PPT algorithm solving E-DMLWE(𝐾, 𝑑, 𝑞, 𝑚,  , 𝐷𝑟) with non-negligible probability.

The proof of this lemma is obtained by combining the reduction from [2] and a technique (non-spherical error to spherical error) 
used in [28]. The proof is included in the full version of this paper.

Combining Theorem 8 and Lemma 21, we can get the following theorem. The proof of the following theorem is analogous to 
Theorem 10.

Theorem 11. Let 𝑐 be the global constant from Corollary 1. Let 𝐾 be some number field with degree 𝑛, 𝑅 be the ring of integers of 𝐾 and 𝑅∨

be the dual of 𝑅. Let 𝑑, 𝑚, 𝑘 be positive integers where 𝑚 > 𝑛, 𝑑 > 𝑘, 𝑞 be a prime and 𝛼, 𝛼′, 𝛽 > 0, and 𝜏 ≥ ‖𝐵𝑅‖ ⋅√2 ln(4𝑛(1 + 2𝜔(log(𝜆))))∕𝜋. 
Assume that the decomposition of 𝑞𝑅 can be expressed as 

∏
𝑖 𝔭

𝑟𝑖
𝑖

, where each 𝔭𝑖 is a prime ideal over 𝑅. Let 𝑠 be a random variable on (𝑅∨
𝑞2
)

distributed according to some distribution  , with ‖𝑠 mod 𝑞𝑅∨‖ ≤𝑀 , ‖𝑠 − (𝑠 mod 𝑞𝑅∨)‖ ≤ 𝑞𝑀 and

�̃�∞(𝐬 mod 𝔭𝑖𝑅∨) ≥ 𝑛𝑘 log(𝑞 + 1) +
√
2𝜋𝑛𝑑𝑀

𝛼′
log 𝑒− 2 +𝜔(log(𝜆))

for any prime ideal 𝔭𝑖 of 𝑞𝑅. Let 𝑟 >
√
2𝑐
√

𝑚𝛽𝛼′, and 𝛼 =
√

𝑟2 + 4𝜏2𝑀2 ⋅ (𝑛𝑚∕ log(𝑛𝑚))1∕4. Then the decisional problem E-DRLWE(𝐾, 𝑞2,
𝑚, , 𝐷𝛼) is hard, provided that primal-RLWE(𝐾, 𝑞, 𝐷𝑅,𝛽 ) and DRLWE(𝐾, 𝑞, 𝑚, 𝐷𝑟) are hard.
22

Remark 8. Similarly, the hardness results with general secret distribution and modulus 𝑞𝑑 can be obtained by the same way.
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6. Conclusion

LWE and its variants have been served as the foundation of many post-quantum cryptographic schemes. Module-LWE enjoys the 
properties of high computational efficiency and feasible concrete parameter selection. Towards establishing the leakage resilience of 
Module-LWE, we study the hardness of entropic version of Module-LWE. Our results apply to both the search and decision versions, 
each of which consists of bounded and unbounded norm cases. In terms of techniques, we develop several probability lemmas 
including a new variant of leftover hash lemma, which might find applications in other scenarios.
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