

Delft University of Technology

A First Physical-World Trajectory Prediction Attack via LiDAR-induced Deceptions in
Autonomous Driving

Lou, Yang; Zhu, Yi; Song, Qun; Tan, Rui; Qiao, Chunming; Lee, Wei Bin; Wang, Jianping

Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 33rd USENIX Security Symposium

Citation (APA)
Lou, Y., Zhu, Y., Song, Q., Tan, R., Qiao, C., Lee, W. B., & Wang, J. (2024). A First Physical-World
Trajectory Prediction Attack via LiDAR-induced Deceptions in Autonomous Driving. In Proceedings of the
33rd USENIX Security Symposium (pp. 6291-6308). (Proceedings of the 33rd USENIX Security
Symposium). USENIX Association.
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

A First Physical-World Trajectory Prediction Attack via
LiDAR-induced Deceptions in Autonomous Driving

Yang Lou, City University of Hong Kong; Yi Zhu, State University of New York at
Buffalo; Qun Song, Delft University of Technology; Rui Tan, Nanyang Technological
University; Chunming Qiao, State University of New York at Buffalo; Wei-Bin Lee,
Information Security Center, Hon Hai Research Institute, and Feng Chia University;

Jianping Wang, City University of Hong Kong
https://www.usenix.org/conference/usenixsecurity24/presentation/lou

A First Physical-World Trajectory Prediction Attack via LiDAR-induced
Deceptions in Autonomous Driving

Yang Lou∗1, Yi Zhu∗2, Qun Song∗3, Rui Tan4, Chunming Qiao2, Wei-Bin Lee5,6, Jianping Wang1

1 City University of Hong Kong 2 State University of New York at Buffalo
3 Delft University of Technology 4 Nanyang Technological University

5 Information Security Center, Hon Hai Research Institute
6 Department of Information Engineering and Computer Science, Feng Chia University

Abstract
Trajectory prediction forecasts nearby agents’ moves based
on their historical trajectories. Accurate trajectory prediction
(or prediction in short) is crucial for autonomous vehicles
(AVs). Existing attacks compromise the prediction model of
a victim AV by directly manipulating the historical trajectory
of an attacker AV, which has limited real-world applicabil-
ity. This paper, for the first time, explores an indirect attack
approach that induces prediction errors via attacks against
the perception module of a victim AV. Although it has been
shown that physically realizable attacks against LiDAR-based
perception are possible by placing a few objects at strategic
locations, it is still an open challenge to find an object location
from the vast search space in order to launch effective attacks
against prediction under varying victim AV velocities.

Through analysis, we observe that a prediction model is
prone to an attack focusing on a single point in the scene. Con-
sequently, we propose a novel two-stage attack framework to
realize the single-point attack. The first stage of prediction-
side attack efficiently identifies, guided by the distribution of
detection results under object-based attacks against percep-
tion, the state perturbations for the prediction model that are
effective and velocity-insensitive. In the second stage of lo-
cation matching, we match the feasible object locations with
the found state perturbations. Our evaluation using a public
autonomous driving dataset shows that our attack causes a col-
lision rate of up to 63% and various hazardous responses of
the victim AV. The effectiveness of our attack is also demon-
strated on a real testbed car 1. To the best of our knowledge,
this study is the first security analysis spanning from LiDAR-
based perception to prediction in autonomous driving, leading
to a realistic attack on prediction. To counteract the proposed
attack, potential defenses are discussed.

1 Introduction
Autonomous vehicles (AVs) are transforming transportation
systems worldwide. Autonomous driving (AD) systems, e.g.,

*Equal contribution
1A demo video of our attack on a real testbed car is available at https:

//1drv.ms/v/s!Aoc_mWfaEyaGbrdCPNS9oKMjm9Q?e=f1GA6u.

(a) A scene with adversarial card-
boards placed around a parked car.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(b) Random object locations cause
a prediction error posing no threat.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(c) Brute-force search finds object
locations threatening victim vehicle.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(d) No longer threatening for victim
vehicle approaching at higher speed.

Figure 1: A motivation experiment.

Autoware.AI [1], typically consist of perception, prediction,
and planning modules. In this AD system pipeline, the per-
ception module utilizes sensors, such as LiDAR, to detect
and track on-road objects; the prediction module forecasts
the future trajectories of nearby agents; the planning module
determines the AV’s future driving behavior. The predicted
trajectories are particularly vital for the subsequent planning
module as they significantly influence an AV’s driving be-
havior. The existing studies [9, 47, 61] directly compromise
the prediction module of a victim AV by manipulating the
historical trajectory of an attacker agent nearby, which is usu-
ally a vehicle. In these attacks, the attacker’s vehicle must
drive according to a specific adversarial driving trajectory to
mislead the victim AV’s prediction module into generating
wrong future trajectory prediction for the attacker’s vehicle.
However, it is hard to precisely drive the attacker’s vehicle
along a pre-computed trajectory due to kinematic constraints.
Moreover, such adversarial trajectories are designed based on

USENIX Association 33rd USENIX Security Symposium 6291

https://1drv.ms/v/s!Aoc_mWfaEyaGbrdCPNS9oKMjm9Q?e=f1GA6u
https://1drv.ms/v/s!Aoc_mWfaEyaGbrdCPNS9oKMjm9Q?e=f1GA6u

a restrictive assumption that the victim AV would drive at a
certain velocity.

To address these limitations, in this paper, we explore the
possibility of indirectly compromising the prediction module
via perturbing the perception module of the victim AV such
that the perception errors can induce the prediction module
to predict a wrong trajectory of a nearby agent. The exist-
ing physically-realizable attacks against the LiDAR percep-
tion [10, 38, 44, 45] provide a basis for such indirect attack
on the prediction module. Among them, object-based attacks,
which use specific shapes or common objects to introduce
additional adversarial LiDAR points captured by the victim
AV, have lower logistics overhead in attack implementation.
However, the impact of the perturbed bounding box attributes
(including coordinates, dimensions, and heading) as a result
of the object-based attack on the subsequent prediction in the
AD pipeline has never been systematically studied.

To study the feasibility of compromising the prediction
model indirectly via object-based attacks to induce dangerous
driving decisions, we conduct a motivation experiment on our
custom-built real testbed AV. We employ an object-based at-
tack method from [66], due primarily to its practicality, to plan
the locations for placing two adversarial cardboards around
a car parked roadside, called adversarial vehicle, as shown
in Fig. 1(a). Then, the victim AV running the LiDAR-based
AD pipeline drives by. Fig. 1(b) shows that random object
placement may result in a wrongly predicted trajectory of the
adversarial vehicle, which stays stationary in reality. How-
ever, as the predicted trajectory points to the left, it imposes no
threat on the victim AV. Then, we employ brute-force search
to find the locations of the two adversarial cardboards that
lead to a collision between the victim AV’s original trajec-
tory and the adversarial vehicle’s trajectory predicted by the
victim AV. The search is based on the victim AV’s original
trajectory. As shown in Fig. 1(c), the attack-induced illusive
collision leads to a sudden brake decided by the victim AV’s
planning module. This result shows the existence of object-
based attacks that generate threatening effects penetrating the
AV pipeline. However, when the victim AV runs at a varied
velocity causing a deviation from the spatio-temporal trajec-
tory assumed by the attacker’s brute-force search, the attack
becomes no threatening as shown in Fig. 1(d). This paper
aims to design an efficient attack approach to identify loca-
tions for placing adversarial objects that lead to hazardous
responses of the victim AV regardless of its driving velocity.

Our vulnerability analysis via experiments shows that the
AV’s trajectory prediction is prone to substantial perception
errors when the moving victim AV is at a point in the scene.
Based on this observation, we choose to reduce the attack
design space to focus on a fixed attack point and perturb the
victim AV’s perception to induce prediction errors, when it
arrives at the attack point. This strategy greatly reduces the
search space yet largely preserves the potential of the attack
in leading to the victim AV’s hazardous responses. However,

as the historical LiDAR frames captured before the victim AV
arrives at the attack point form a part of the prediction model’s
input, the victim AV’s velocity still affects the effectiveness
of the single-point attack. In addition, the exhaustive search
for the locations of multiple adversarial objects in the 3D
proximity space of the adversarial vehicle, while considering
all possible victim AV’s velocity values for robustness to
velocity variations, still incur undesirable overhead.

To address the above two issues related to the single-point
attack strategy, we design a novel two-stage attack framework.
In the stage of prediction-side attack, we maximize attack
effectiveness by searching for input state perturbations for
the prediction model that maximize the interference between
the predicted trajectory of the adversarial vehicle and the vic-
tim AV’s planned trajectory. To maintain attack effectiveness
across various velocity conditions, we employ the Expecta-
tion over Transformation (EoT) technique. Our experiment
shows that, with object-based attacks, the perturbed detection
results (i.e., bounding boxes) of the adversarial vehicle ex-
hibit distributional patterns. Thus, we utilize the distribution
to guide the optimization of the state perturbations for the
prediction model, which improves the efficiency of attack de-
sign. We use the Projected Gradient Descent (PGD) method
to iteratively search for the state perturbations and select the
perturbations that lead to collisions. However, the optimized
state perturbations may not translate to feasible perturbed de-
tection results caused by the placement of adversarial objects.
To achieve attack feasibility, in the stage of location matching,
we employ the Hungarian algorithm to match the adversarial
locations with the optimized state perturbations and further
refine the candidate adversarial locations by probing in their
close vicinity for reducing the matching cost.

We conduct experiments on both the nuScenes [6] au-
tonomous driving dataset and our real testbed AV. In the
dataset-based experiments, our attack achieves a collision
rate of up to 63%, effectively inducing various hazardous
responses of the victim, including sudden brakes, accelera-
tions, and unexpected lane changes, in the presence of object
displacement errors and object size variations. In the physical-
world experiments with our custom-built testbed AV, our at-
tack is effective in various velocity conditions and achieves
the highest attack success rate compared with the random lo-
cation and the brute-force sampling attacks. The experiments
also show that our attack is robust against object displacement
errors and variations in the victim AV’s direction.

Our main contributions can be summarized as follows:

• We design and launch the first physical-world attack on
the AD system’s trajectory prediction by strategically
placing objects to indirectly induce prediction errors,
leading to hazardous responses of the victim AV.

• We find that the prediction model is susceptible to the
single-point attack. Built upon this, we design a novel
two-stage attack framework that efficiently identifies
adversarial locations for object placement, leading to

6292 33rd USENIX Security Symposium USENIX Association

effective, velocity-insensitive, and feasible attacks.
• Our attack is evaluated on both a public autonomous

driving dataset and a custom-built real-world testbed
AV, achieving consistently higher threats compared with
the baselines and attack robustness. Additionally, we
propose potential defenses to mitigate the threat.

2 Background and Related Work

2.1 Autonomous Driving System
A typical AD system consists of perception, trajectory predic-
tion, and motion planning modules, as detailed below.

LiDAR-based Perception, known for its precision in ac-
quiring environmental data, is widely adopted in the default
pipeline of open-source AD systems [5] and in commercial
solutions [50, 51]. This process starts with 3D object detec-
tion, which analyzes a LiDAR point cloud to identify objects
around the ego vehicle. Modern AD perception utilizes deep
learning models, denoted by Mdet(·), to process LiDAR point
cloud D and produce a set of 3D bounding boxes B=Mdet(D).
A bounding box b ∈ B, characterized by coordinates, dimen-
sions, heading, and a confidence score, represents a detected
object. Existing 3D object detection methods can be divided
into Bird’s Eye View (BEV)-based [56], voxel-based [55, 57],
and point-based [43]. They respectively map point clouds into
2D representation, discretize 3D space into voxels, and oper-
ate on raw point cloud directly. Detected objects are tracked
over time by an object tracking model Mtrack.

Trajectory Prediction forecasts the future trajectories of
road agents (vehicles and pedestrians) based on their current
and historical states perceived over H time steps denoted by
X = (X−H+1, . . . ,X0), where Xt = (xt

1, . . . ,x
t
Na
) represents

the states of Na agents at time step t and each xt includes an
agent’s coordinates, velocity, acceleration, and heading. The
trajectory prediction for a horizon of T time steps by a pre-
dictor Mpred(·) is Y = (Y1, . . . ,YT) = Mpred(X), where Yt =
(yt

1, . . . ,y
t
Na
) is the predicted coordinates of the Na agents

at time step t. Existing trajectory predictors employ recur-
rent neural networks [28, 31], graph neural networks [29, 59],
and transformers [30, 63]. Recent generative predictors such
as Trajectron++ [39] and AgentFormer [58], which perform
conditional sampling and selection, have shown superior per-
formance and are therefore employed in this work.

Motion Planning takes into account road agents’ current
states X0 and trajectory prediction results Y to plan a safe, ef-
ficient, and feasible future trajectory P = Mplan(X0,Y) for the
ego vehicle. Existing solutions can be divided into sampling-
based [26], control-based [15], graph search-based [17], and
learning-based methods [41, 60].

2.2 Adversarial Attacks
Deep learning models are shown to be vulnerable to adversar-
ial examples [12, 19, 27, 32, 37, 42, 46, 48, 53, 62], which are

perturbed input samples that mislead the model to generate
erroneous outputs. Specifically, given a model M(·), for a be-
nign input x with ground truth label y, the attack searches for a
minimal perturbation δ such that M(x+δ) ̸= y (non-targeted
attack) or M(x+δ) = y′ (targeted attack), where y′ is the tar-
get label. Adversarial examples may pose great threat on the
safety-critical AD systems that employ deep learning models
for perception and prediction. In what follows, we review
the existing adversarial attacks on LiDAR-based perception,
trajectory prediction, and motion planning, respectively.

The attacks on LiDAR-based perception are studied in both
simulations [20, 21] and physical environments. Physical-
space attacks fall into two groups: laser-based [7, 10, 25,
38, 40, 44, 45] and object-based [8, 49, 64, 66]. The former,
also known as spoofing, injects fake points by intercepting
LiDAR’s emitted laser pulses using a receiver and then trans-
mitting counterfeit pulses back to the LiDAR sensor with
a manipulated delay. However, such attacks require precise
timing and specialized equipment, making them costly and
conspicuous. Object-based attacks use physical objects to mis-
lead LiDAR detection models. For example, in [66], a vehicle
can be hidden from LiDAR detection by placing common
objects at computed adversarial locations near the vehicle.
Both laser-based and object-based attacks usually hide or cre-
ate objects by manipulating bounding box confidence scores.
Yet, their effects on bounding box parameters (coordinates,
dimensions, and heading) and the impact of induced errors
in estimating these parameters on subsequent AD modules
remain largely unexplored. This work considers object-based
attacks that are more realistic for real-world deployments.

In the tracking module, tracker hijacking attacks [13, 22–
24, 34, 54] perturb camera image inputs to manipulate bound-
ing box parameters. A primary goal of these attacks is object
move-in, which manipulates the tracker of a roadside object
towards the road center, potentially inducing falsified trajec-
tories similar to ours due to pipeline effects. However, these
studies focus exclusively on the tracking module, while our
attack optimizes such effects in the downstream trajectory
prediction module. Unlike these studies that focus on camera-
only systems, our attack applies to LiDAR-based perception,
introducing unique challenges and attack vectors that necessi-
tate new methodologies.

The attacks on trajectory prediction perturb the input states
of the adversarial vehicle and mislead the victim AV’s pre-
diction model. However, existing methods either neglect the
kinematic laws governing the adversarial vehicle [47, 61] or
disregard the driving uncertainties of the victim AV, includ-
ing speed variations [9, 11], which could alter the adversarial
vehicle’s input states during the attack. Differently, this paper
plans the object-based attacks that generate pipeline effect on
LiDAR-based perception and then trajectory prediction.

There are a few studies focusing on physical attacks against
motion planning. The work [52] uses common road objects to
trigger a Semantic Denial-of-Service in the motion planning

USENIX Association 33rd USENIX Security Symposium 6293

Figure 2: Our attack scenario. Solid blue arrows are victim
AV’s planned trajectories; dash red arrow is adversarial vehi-
cle’s future trajectory predicted by the victim AV.

module, causing emergency stops or critical driving decision
failures. In comparison, this paper targets the trajectory pre-
diction module in AD systems. Regarding methods, the work
in [52] exploits flaws in programming code logic, while our
attack focuses on vulnerabilities in learning-based perception
and prediction models, highlighting a distinct approach in
exploiting AD systems’ weaknesses.

3 Threat Model

Attack Goal. We consider an attack scenario depicted in
Fig. 2, where a static adversarial vehicle is parked on the
roadside, while a victim AV is driving and approaching it
on the adjacent lane. Such a scenario is common in urban
driving environments, such as street parking, industrial areas,
and parking lots. We assume that the victim AV runs the AD
pipeline of LiDAR-based perception, trajectory prediction,
and motion planning. The attack goal is to manipulate the
victim AV’s perception, such that the prediction forecasts an
erroneous moving trajectory for the static adversarial vehicle
and causes the victim AV’s motion planning to decide a haz-
ardous driving strategy. This can be motivated by intentional
harm towards an individual, unhealthy competition among
solution vendors aiming to undermine the safety reputation
of rivals’ self-driving products, or the intent to disrupt traffic
mobility by causing traffic jams [36]. The manipulation of the
victim AV’s perception is achieved by placing some adversar-
ial common objects, e.g., cardboards, around the adversarial
vehicle. The key for the perception manipulation is to identify
the adversarial locations for placing the adversarial objects,
such that the victim AV’s LiDAR-based perception generates
inaccurate bounding boxes over time for the adversarial vehi-
cle. The attack aims at misleading the victim AV to produce
a falsified trajectory of the adversarial vehicle that intersects
the victim AV’s planned trajectory. As a result, the victim AV
re-plans the motion to avoid the illusive collision with safety-
undermining driving decisions, including emergent braking,
sudden acceleration and/or lane change.

Attacker Capabilities. We assume that the attacker is ca-
pable of placing objects around an adversarial vehicle, which
can be the attacker’s own car or a random car parked on the
roadside. We consider a realistic but challenging setting in
which the attacker has no access to the real-time data (e.g.,
LiDAR point cloud) collected by the victim AV. We consider
the white-box attacker that has comprehensive knowledge of
the victim AV’s AD pipeline. This enables the attacker to
query and analyze Mdet(·), Mtrack, and Mpred(·) for crafting
attacks. To obtain these three models, the attacker can use
social engineering on the system designers of the car manufac-
turers or reverse-engineer a vehicle identical to the victim AV.
For the vehicles employing open-source AD systems [1, 2],
the overhead of obtaining the three models Mdet(·), Mtrack,
and Mpred(·) can be lower. Before launching the attack, the
attacker gathers data by driving a LiDAR-equipped vehicle to
mimic the victim AV’s behavior. The attacker uses the data to
determine the locations for placing the objects.

4 Challenges and Problem Definition

4.1 Attack Challenges

Challenges to identify effective adversarial locations include:
Challenge C1: Maximizing Attack Effectiveness. Induc-

ing errors in predicting the adversarial vehicle’s trajectory,
quantified by metrics such as average displacement error
(ADE) and final displacement error (FDE), as in the liter-
ature, does not necessarily imply a threat to the victim AV.
An erroneously predicted moving trajectory for an adversarial
vehicle that is stationary in reality, if not intersecting the vic-
tim’s planned trajectory, poses no actual danger. To maximize
attack effectiveness, a meaningful objective is to minimize the
distance between the adversarial vehicle’s predicted trajectory
and the victim AV’s planned trajectory.

Challenge C2: Velocity-Induced Uncertainty in Attack
Effectiveness. The victim AV may drive by the adversarial
vehicle at varying velocities. When the victim AV’s velocity
is different from that used for attack construction, the victim
AV’s perception results and the consequent predicted trajec-
tory of the adversarial vehicle may differ from those expected
by the attacker. Thus, should the victim AV deviate from its
expected trajectory, the effectiveness of the pre-determined
adversarial locations may be reduced.

Challenge C3: Vast Search Space for Adversarial Loca-
tions. Given the non-differentiable processes within the AD
system’s independent modules, employing gradient-based op-
timization to achieve the attack goal presents significant dif-
ficulties. A straightforward approach would be exhaustively
sampling a multitude of locations in the vicinity of the ad-
versarial vehicle in order to identify the most effective set
of adversarial locations. However, such a brute-force sam-
pling approach faces efficiency challenges, particularly in
time-sensitive scenarios. For instance, if an attacker can only

6294 33rd USENIX Security Symposium USENIX Association

Figure 3: Our proposed inverse attack framework for identifying the adversarial locations to place objects (cardboards in red
boxes). The framework operates within the AD system pipeline, which is outlined on the left for reference.

determine the victim AV’s route after it departs, it has limited
time to plan and deploy the attack. First, even if we restrict
the search area to only the top of the adversarial vehicle and
its immediate surroundings, the search space is still exten-
sive and grows exponentially with the number of adversarial
objects. Second, if the search further accounts for the victim
AV’s velocity as an additional dimension to address C2, the
search space is even larger.

4.2 Problem Definition
We aim to identify a set of adversarial locations L = {ln|n =
1, ...,NL}, where ln ∈ R3 is the 3D coordinates of the n-th
adversarial location and NL is the number of locations we
consider, to achieve the attack goal. Inspired by the finding
F1 in Section 5.2, we propose to establish a fixed attack point
and manipulate the prediction of the adversarial vehicle when
the victim AV reaches this point. In this way, the perception
of the adversarial vehicle at the attack point is independent
of the victim AV’s velocity. We let t = 0 denote the time step
when the victim AV arrives at the attack point. The point
cloud frame captured by the victim AV’s LiDAR at t = 0 is
referred to as the current frame. We formulate the problem of
identifying L as:

argmax
L

Ev∈V [Interference(Ỹv,Pv)],

s.t. Ỹv = Mpred(X̃v),

X̃v = Mtrack({Mdet(Dv
t (L))|t =−H +1, . . . ,0}),

(1)

where v is the victim AV’s velocity sampled from a range
V ; Dv

t (L) is the LiDAR point cloud captured by the victim

AV with velocity v at time step t when the adversarial objects
are placed at L; the {Mdet(Dv

t (L))|t = −H + 1, ...,0} is the
sequence of the victim AV’s detection results regarding the
adversarial vehicle over H time steps; X̃v represents the adver-
sarial vehicle’s states observed by the victim AV, determined
by the tracking model Mtrack(·) based on the detection results;
Ỹv is the trajectory of the adversarial vehicle predicted by the
victim AV; Pv is the original planned trajectory of the victim
AV; Interference(Ỹv,Pv) represents the interference between
the trajectories Ỹv and Pv. One meaningful definition of the
interference is the reciprocal of the average distance between
the adversarial vehicle moving on Ỹv and the victim AV mov-
ing on Pv. In the above formulation, the quantities with the
superscript v are affected by the victim AV’s velocity v.

5 Attack Design
To achieve the attack goal defined in Eq. 1 while addressing
the attack challenges summarized in Section 4.1, we design
a novel two-stage attack framework as shown in Fig. 3. This
framework aims to identify adversarial locations for placing
objects that mislead the victim AV into forecasting a falsified
future trajectory of the adversarial vehicle, inducing danger-
ous driving behaviors conducted by the victim AV.

5.1 Approach Overview
Our attack framework is built upon two key insights. First,
the widespread use of learning-based models in AD systems,
which are vulnerable to adversarial inputs, presents a potential
attack surface to impact downstream modules such as trajec-
tory prediction through pipeline effects. Second, in contrast to

USENIX Association 33rd USENIX Security Symposium 6295

Table 1: Average distance between predicted trajectory of
adversarial vehicle and victim AV’s planned trajectory. A
smaller distance indicates a higher collision risk.

Model
Average Distance (m)

Clean Attacked Frame Index

-4 -3 -2 -1 0

Trajectron++ 6.3 6.1 6.1 5.9 3.0 2.7
AgentFormer 6.3 5.9 5.8 5.8 5.0 3.9

the brute-force forward sampling attack that is inefficient and
often gets stuck in local optima, our inverse attack strategy
effectively exploits vulnerabilities in the prediction module
for enhanced effectiveness and efficiency.

At a high level, our framework compromises modules from
prediction to perception. It initiates by conducting adversarial
attacks on the prediction module to generate adversarial states,
i.e., the adversarial inputs of the trajectory prediction mod-
ule that can mislead the module into forecasting a falsified
future trajectory of the adversarial vehicle. Then, we conduct
object-based attacks on the perception module, which gener-
ates adversarial locations. Placing objects at these locations
can mislead the perception module to generate the adversarial
bounding box perturbations, resulting in the desired adversar-
ial states in the previous step.

The first stage, called prediction-side attack as detailed in
Section 5.3, is designed to find state perturbations that mis-
lead the victim AV’s prediction model. Firstly, we address the
attack effectiveness challenge C1 by minimizing the distance
between the predicted trajectory of the adversarial vehicle
and the planned trajectory of the victim AV. Secondly, we
propose a fix-point attack based on a key finding F1 presented
in Section 5.2 that the trajectory prediction models are es-
pecially susceptible to the adversarial attack at the current
frame. Together with the Expectation over Transformation
(EoT) technique applied to various velocities of the victim AV,
we address the velocity-insensitivity challenge C2. Thirdly,
we address the vast search space challenge C3 by utilizing a
feasible set of detection results to guide the searching for ef-
fective state perturbations against the prediction model, which
is based on a key finding F2 presented in Section 5.2, i.e.,
the detection results under object-based attacks are limited
and exhibit distributional patterns. Lastly, we employ the Pro-
jected Gradient Descent (PGD) method to iteratively update
the state perturbations and select the perturbations that lead
to collisions.

The second stage, called location matching as detailed in
Section 5.4, finds the adversarial locations for placing com-
mon objects that can implement the state perturbations found
by the prediction-side attack.

5.2 Findings
We conduct experiments to gain key insights for the design
of our attack, as detailed below.

−4 −3 −2 −1 0 1 2 3
Coordinate Deviation (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ca

ti
on

 S
am

pl
e

#

1e5
x coordinate
y coordinate

−6 −4 −2 0 2 4 6
Heading Deviation (rad)

0.0

0.2

0.4

0.6

0.8

1.0 1e5

(a) nuScenes Dataset.

−1 0 1 2
Coordinate Deviation (m)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ca

ti
on

 S
am

pl
e

#

1e3
x coordinate
y coordinate

−3 −2 −1 0 1 2 3
Heading Deviation (rad)

0.0

0.5

1.0

1.5

2.0

1e3

(b) Self-Collected Scene.

Figure 4: Histogram of coordinates and heading perturbations
in nuScenes dataset scenes and a self-collected real-world
scene under object-based attacks.

Finding F1: Trajectory prediction models are vulnera-
ble to single-point attack at the current frame. To address
challenge C2, we conduct a vulnerability analysis of two rep-
resentative trajectory prediction models: Trajectron++ [39]
and AgentFormer [58]. Both models take five historical states
as input to predict the future trajectory. We apply the PGD
method to perturb each of the five historical states. We add
random noises to the remaining states to simulate noisy con-
ditions in practice. The PGD attack minimizes the average
distance between the predicted trajectory of the adversarial
vehicle and the victim AV’s planned trajectory. Then, we mea-
sure this average distance under both clean and single-point
attack scenarios. The results presented in Table 1 show that
perturbing the current state (i.e., t = 0) achieves the smallest
average distance, indicating the highest threat for collision.
The reasons are two-fold. First, models such as Trajectron++
sequentially process input states using LSTM, which relies
heavily on the most recent input state. Second, models in-
cluding AgentFormer transform input states into a local co-
ordinate system centered on the current frame. Thus, a small
perturbation on the current state has the largest impact on
the prediction result. The finding reveals that for a trajectory
prediction model Mpred(·) and a sequence of H input states
X = (X−H+1, · · · ,X0), the model is particularly susceptible
to adversarial attacks targeting the current state X0, despite
variations in historical states due to say different velocities.
Therefore, by focusing the design of the attack on a fixed
attack point that the victim AV arrives at, we can simplify the
problem and preserve the potential of the attack in inducing
victim AV’s hazardous responses.

Finding F2: 3D object detection results under attack
exhibit distributional patterns that help improve attack
efficiency. We follow the approach in [66] to compromise

6296 33rd USENIX Security Symposium USENIX Association

LiDAR-based 3D object detection systems. The principle
behind this attack is that strategic placement of adversar-
ial objects distorts the vehicle’s perceived shape, perturbing
the object detector’s geometric feature recognition. To ana-
lyze the resulting bounding box perturbations, we conduct
experiments to launch attacks on 100 driving scenes from
the nuScenes dataset [6] and a self-collected real-world driv-
ing scene. For each driving scene, we uniformly sample 500
candidate locations around the adversarial vehicle to place
objects and record the resulted bounding box perturbation in
five consecutive frames, which is defined as the deviation of
the bounding box for the adversarial vehicle with and without
attack. To be more specific, we measure the deviations of
the x and y coordinates and the heading h of the bounding
box, which serve as the inputs to the downstream trajectory
prediction. Based on the experiment results in Fig. 4, we can
observe that the bounding box perturbations caused by plac-
ing adversarial objects exhibit distributional patterns. The
deviations of x and y coordinates are primarily distributed
within the interval [-1, 1]. The distribution of heading devia-
tions exhibits distinct clusters. Note that heading deviations of
around ±1rad mean that the adversarial vehicle is perceived
to have a heading close to its actual heading, while deviations
of ±3rad indicate a heading in the opposite direction. This
finding is key to address the vast search space challenge C3.
This is because, instead of exhaustive location sampling, we
only need a limited number of location probes to recognize
the bounding box perturbation distribution, thus improving
efficiency in finding adversarial locations.

5.3 Prediction-Side Attack
To mislead victim AV’s trajectory prediction model, we need
to identify the state perturbation at the current time step,
which is added to the input states of the prediction model. It
is denoted by δ

st = {δst
x ,δ

st
y ,δ

st
h }, where x, y, and h indicate x

coordinate, y coordinate, and heading, respectively. Now, we
discuss the considerations when designing δ

st to address the
three challenges presented in Section 4.1.

Attack Effectiveness. To find the state perturbation at the
current time step that can address challenge C1 and achieve
the attack goal defined in Eq. 1, we propose Adversarial Loss
Ladv = ∥Ỹ

v−Pv∥2, which maximizes attack effectiveness by
minimizing the ℓ2 distance between the predicted trajectory of
the adversarial vehicle Ỹ v and the original planned trajectory
Pv of the victim AV.

Attack Efficiency. Given the vast search space as men-
tioned in challenge C3 in Section 4.1, finding a physically
feasible state perturbation achieved by placing objects around
the adversarial vehicle is costly. To address this, we rely on
the finding F2 and leverage a set of physically feasible de-
tection results under object-based attack to efficiently guide
the searching for the effective state perturbation. Specifically,
we evenly sample a small number of locations around the
adversarial vehicle to derive a bounding box perturbation set

Algorithm 1 Prediction-side Attack
Require: Prediction model Mpred(·), victim AV’s original

planned trajectory P, bbox perturbation set Cbox, bbox
perturbation clusters R, victim AV’s velocity range V

1: for r in R do
2: for e← 1 to E do
3: Init δst

i ∼N (µr
i ,σ

r
i), i ∈ {x,y,h};

4: for iter← 1 to I do
5: for v∼V do
6: Simulate historical states to estimate X̃v;
7: Trajectory prediction Ỹ v

= Mpred(X̃
v
);

8: Compute loss L = Ladv +Lrea;
9: end for

10: Update δ
st with PGD using avg. L over V ;

11: Clip δst
i into [µr

i −2σr
i ,µ

r
i +2σr

i], i ∈ {x,y,h};
12: end for
13: Inference Ỹ = Mpred(X +δ

st);
14: if collision between Ỹ and P then
15: Cst←Cst∪{δst};
16: end if
17: end for
18: end for
19: return State perturbation set Cst

Cbox. Each element in this set consists of a bounding box
perturbation δ

box,m = {δbox
x ,δbox

y ,δbox
h } and its corresponding

location set Lm. Based on the distribution of the bounding
box heading perturbation, we divide Cbox into a set of clus-
ters R. For each cluster r in R, the bounding box perturbation
δbox

i follows the distribution N (µr
i ,σ

r
i), where i ∈ {x,y,h}.

Then, for each r in R, we leverage the estimated bounding
box perturbation distribution to constrain the searching for
the state perturbation by the following two steps. (1) At the
start of each attack epoch, we initialize the state perturbation
δst

i from the estimated distribution N (µr
i ,σ

r
i), i ∈ {x,y,h},

and then conduct iterative updates for attack optimization.
At the end of each update, we clip δst

i within the range
[µr

i − 2σr
i ,µ

r
i + 2σr

i] for i ∈ {x,y,h}. (2) We define a Real-
izable Loss as Lrea = ∥δst− argmin

δ
box∈Cbox

∥δst−δ
box∥1∥1, aiming

to minimizes the ℓ1 distance between δ
st and its closest δ

box

in Cbox. An advantage of constraining the state perturbation
within multiple clusters is that the generated perturbations are
diversified, which enhances the probability of finding adver-
sarial locations capable of achieving the desired perturbation.

Velocity-Insensitivity. To address challenge C2, we rely
on the finding F1 and aim to identify a state perturbation δ

st

effective for the victim AV passing the attack point at various
velocities. To achieve this, we employ the Expectation over
Transformation (EoT) technique [4]. Specifically, we compute
the expected sum of adversarial and realizable losses over
a range of possible adversarial and victim AV input states
associated with various velocities. To simulate the historical

USENIX Association 33rd USENIX Security Symposium 6297

states of the victim AV, we fix the current frame at the attack
point and backtrack the vehicle’s motion using a kinematic
model to obtain historical frames, ensuring compliance with
vehicle dynamics. For the adversarial vehicle, we randomly
sample states from the bounding box perturbation distribution.
In each iteration, we update the state perturbation using the
average losses across sampled velocities.

Optimization Procedure. To summarize, we propose the
optimization problem in Eq. 2.

argmin
δ

st
Ev∈V [Ladv(Ỹ

v
,Pv)+Lrea(X̃

v
,Cbox)],

s.t. Ỹ v
= Mpred(X̃

v
), X̃v

= Xv +δ
st,

δ
st
i ∈ [µi

r−2σ
i
r,µ

i
r +2σ

i
r],∀i ∈ {x,y,h}.

(2)

The attack procedure is summarized in Alg. 1. The goal is to
identify a set of candidate state perturbations, denoted as Cst =

{δst,n}NC
n=1, that are effective and velocity-insensitive. Given

the bounding box perturbation set Cbox and corresponding
distribution clusters R, for each cluster r in R, we conduct
multiple attack epochs starting from initializing δ

st within its
respective distribution (line 3). We compute the average loss
on different victim AV’s velocities and use it to iteratively
update δ

st with the PGD method (lines 5-10). At the end of
each iteration, we clip δ

st to its distribution range (line 11).
Due to the randomness in initialization and optimization, the
candidate δ

st may not lead to a successful attack. To select
effective state perturbations for forming the set Cst, we utilize
the criteria in [14] to evaluate collision likelihood between
the adversarial vehicle’s predicted trajectory Ỹ and the victim
AV’s planned trajectory P. In particular, a collision is defined
when the outer circumferences of both vehicles intersect. We
choose only perturbations that cause collisions to form the
final set Cst (lines 13-15).

5.4 Location Matching
In prediction-side attack, we efficiently identify a set of state
perturbations of the adversarial vehicle that are effective and
velocity-insensitive. To launch a successful attack in the real
world, we must also identify an adversarial location set L∗ that
can achieve the desired state perturbations. To achieve this
feasibility, we adopt a two-step solution, including the Vehicle
State Matching and Location Refinement. The procedure is
illustrated in Alg. 2.

Vehicle State Matching. In this step, we utilize the sam-
pled bounding box perturbation set Cbox in Section 5.3 to
estimate the object locations that can achieve the desired state
perturbations. Specifically, we employ the Hungarian algo-
rithm to find the matched bounding box perturbation δ̂

box,m

and its corresponding adversarial location set L̂m in Cbox with
each desired state perturbation δ

st,n in Cst. The cost matrix for
the Hungarian algorithm is defined as:

cost(m,n) = ∑
i∈{x,y,h}

wi · |δbox,m
i −δ

st,n
i |. (3)

Algorithm 2 Location Matching

Require: State perturb set Cst, bbox perturb set Cbox

1: // Vehicle State Matching
2: NC← size of Cst, M← size of Cbox;
3: Init. cost matrix of size NC×M;
4: for n← 1 to NC do
5: for m← 1 to M do
6: Calculate cost(m,n) ← ∑i∈{x,y,h}wi · |δbox,m

i −
δ

st,n
i |;

7: end for
8: end for
9: Apply Hungarian Algorithm to cost;

10: Generate matched tuples (δ̂
box,n

, L̂n,δ
st,n)

NC
n=1;

11:
12: // Location Refinement
13: L∗← null;
14: for each tuple (δ̂

box,n
, L̂n,δ

st,n) do
15: Init. fmin← current cost, Lmin← L̂n;
16: for each location set L near L̂n do
17: Calculate cost f = ∑i∈{x,y,h}wi · |δbox,L

i −δ
st,n
i |;

18: if f < fmin then
19: fmin← f , Lmin← L;
20: end if
21: end for
22: L∗← L∗∪{Lmin};
23: end for
24: return Adversarial location set L∗

Here, cost(m,n) is the matching cost between the m-th bound-
ing box perturbation δ

box,m
i and the n-th state perturbation

δ
st,n
i , for i ∈ {x,y,h}. The wi represents the pre-set weights

corresponding to {x,y,h}, where elements with larger nor-
malized perturbation in δ

st are assigned greater weights. For
instance, if a desired state perturbation has a larger normalized
δst

x value compared with the normalized δst
y and δst

h , we will
assign a larger weight to x. This is inspired by our empirical
observation that a larger perturbation is more related to the
change of a prediction result. For each desired state perturba-
tion, this step finds all the matched bounding box perturbation
and its corresponding location set, generating matched tuples
(δ̂

box,n
, L̂n,δ

st,n), for n = 1, . . . ,Nc.
Location Refinement. Due to the limited samples in Cbox,

the bounding box perturbation δ̂
box,n

matched in the above
Vehicle State Matching step might not precisely align with
the desired state perturbations δ

st,n. This step aims to refine
candidate adversarial locations, thereby further aligning the
corresponding bounding boxes towards the desired state per-
turbations. Specifically, we search for refined adversarial lo-
cation set in close proximity to L̂n, aiming to reduce the cost
f = ∑i∈{x,y,h}wi · |δbox,L

i − δ
st,n
i |, where δ

box,L
i is a bounding

box perturbation after placing objects at L near L̂n. We ran-

6298 33rd USENIX Security Symposium USENIX Association

50 10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0 1K 2K

The Number of Queries

4.5

5.0

5.5

6.0

6.5

AT
D

 (
m

)

Clean
Brute-force
Inverse

50 10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0 1K 2K

The Number of Queries

1.2
1.4
1.6
1.8
2.0
2.2
2.4

PR
E

(m
)

50 10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0 1K 2K

The Number of Queries

30

40

50

60

CR
 (

%
)

Figure 5: Average Trajectory Distance (ATD), Planning-Response Error (PRE), and Collision Rate (CR) under clean, brute-force
sampling attack, and our inverse attack scenarios.

domly probe multiple locations in the vicinity of L̂n. The
probing space is defined as small cubes centered around each
l̂n in L̂n, as shown in Fig. 3. We set the cube size to be nearly
equal to the voxel size of the LiDAR detector, allowing for
moderate detection shifts. Finally, the refined location set
leading to the smallest cost value is selected to form the final
adversarial location set L∗.

6 Experiments on Dataset
In this section, we evaluate our attack using a public real-
world autonomous driving dataset. This data-driven evalua-
tion quantifies the effectiveness and robustness of our attack.

6.1 Experiment Setting

Dataset. We select 100 driving scenes from the nuScenes
dataset [6], a large-scale autonomous driving dataset consist-
ing of extensive data and labels covering both perception and
prediction. The scene selection criteria are as follows. We
select driving scenes aligned with our specified attack sce-
nario, in which the ego vehicle approaches a static vehicle
parked on the roadside. The parked vehicle is viewed as the
adversarial vehicle; the ego vehicle serves as the victim AV.
In each scene, we ensure that the victim AV starts with a mini-
mum separation of 20 meters from the adversarial vehicle and
reaches an attack point at a distance of less than 10 meters.
During the attack planning, we leverage the annotated key
frames captured at 2Hz in the nuScenes dataset to identify the
adversarial location set. We then evaluate these locations on
frames that simulate various velocities of the victim AV, se-
lected via a kinematic model from the unannotated nuScenes
dataset sampled at 20Hz. We simulate variations in the victim
AV’s velocities at 1.5x, 1.25x, 0.75x, and 0.5x of the original
recorded speed.

AD Models. We employ representative models for the
victim AV’s AD system. We use PIXOR [56] for LiDAR-
based detection, CenterPoint Tracker [57] for tracking, Trajec-
tron++ [39] for trajectory prediction, and a Model Predictive
Control (MPC)-based planner [15] for motion planning. Note
that Trajectron++ is a widely used and open-source prediction
model on the nuScenes dataset. We train both PIXOR and
Trajectron++ using their default configurations.

Adversarial Object. Following [66], we simulate adver-
sarial objects at three adversarial locations. Each object is
represented by a random point cluster with a radius of 0.2m.
The number of points in each cluster is set to 4. During the
location sampling step to derive Cbox, the search space is a
4×4×1m3 cube above the adversarial vehicle. In the loca-
tion refinement, we reduce the search space to a sphere with
a radius of 0.1m, allowing for more precise adjustments.

Evaluation Metrics. We employ the following three met-
rics to measure the attack performance:

Average Trajectory Distance (ATD): This is the average
distance between the predicted trajectory of the adversarial
vehicle and the victim AV’s original planned trajectory. It
inversely quantifies the efficacy for the interference of the
adversarial vehicle’s trajectory to the victim AV. A smaller
ATD suggests a larger interference.

Planning-Response Error (PRE): The average displace-
ment error between the victim AV’s planned trajectories in
the presence and absence of attack, respectively. A greater
PRE signifies an increased tendency for the victim AV to
deviate from its original action.

Collision Rate (CR): The proportion of the adversarial vehi-
cle’s predicted trajectories that intersect with the victim AV’s
planned trajectories in any future frame. Such intersections
imply hazardous driving actions by the victim AV.

Baseline: Brute-Force Sampling. This straightforward
baseline samples numerous locations around the adversar-
ial vehicle and identifies the location set that results in the
smallest ATD as the adversarial location set. We employ this
customized baseline because there is no existing attack that
can achieve the goal of this work.

6.2 Attack Effectiveness
Fig. 5 shows the error bars representing the mean and standard
deviation of ATD, PRE, and CR values achieved by three
repeated experiments. “The number of queries” refers to the
maximum number of queries the attacker can make to the
victim’s AD system. For instance, if the number of queries
is set to 100, the attacker is limited to sample at most 100
locations around the adversarial vehicle and restricted to a
total of 100 queries across all interactions with the victim AV’s
detection, tracking, prediction, and planning models. From

USENIX Association 33rd USENIX Security Symposium 6299

(a) Sudden brake scene. (b) Sudden acceleration scene. (c) Lane change scene.

Unchanged Brake Acceleration Lane change
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (

%
)

Brute-force
Inverse

(d) Attack impacts categorization.

Figure 6: The attack impacts are categorized into unchange, sudden brake, acceleration, and lane change, with the latter three
indicate hazardous driving behaviors.

0.00 0.05 0.10 0.15 0.20
Location Error (m)

25

30

35

40

45

CR
 (

%
)

Inverse

Figure 7: Attack robustness
against object displacement.

0.1 0.2 0.3 0.4 0.5
Object Size (m)

25
30
35
40
45
50
55

CR
 (

%
)

Inverse

Figure 8: Attack robustness
against object size.

the results, we can see that our method with 2,000 queries
achieves the best attack performance, with the lowest ATD
(4.7m), the highest PRE (2.2m), and the highest CR (63%).
We can also observe that the attack performance is better for
both brute-force sampling and our inverse attacks when the
number of queries is larger. Notably, under the same number
of queries, our method consistently outperforms the brute-
force sampling. In particular, our method with 400 queries
results in a higher CR than the brute-force sampling with
2,000 queries, indicating a reduction of the attack overhead
by a factor of five.

To illustrate the attack impact, we categorize the victim
AV’s driving behaviors under attacks into four categories,
i.e., unchanged, sudden brake, sudden acceleration, and lane
change. Note that the victim AV’s original driving behavior is
moving forward within its current lane. Thus, the latter three
behaviors are considered hazardous because they deviate from
the victim AV’s original driving intent. The categorization is
based on the metrics of Maximum Lateral Deviation (MLaD)
and Longitudinal Deviation (MLoD). MLaD measures the
lateral deviation between the victim AV’s planned trajectories
in the presence and absence of attack, while MLoD measures
the longitudinal deviation. A trajectory with an MLoD greater
or smaller than ±2m is categorized as a sudden acceleration
or brake. An MLaD greater or smaller than ±1m indicates a
left or right lane change. Figs. 6(a), 6(b), and 6(c) visualize
three representative scenes of sudden brake, sudden acceler-
ation, and lane change, respectively. Fig. 6(d) displays the
categorization results for 400 victim AV’s planned trajectories
under attacks. These trajectories are generated on 100 driving

scenes at four different velocities. The number of queries is set
to 100. The results show that our method induces hazardous
driving behaviors of the victim AV for more than 50% of
the trajectories, while the brute-force method results in 12%
fewer hazardous trajectories. This suggests that our attack not
only induces errors in trajectory prediction but also forces
the victim AV’s planning module to adopt unsafe maneuvers
as corrective measures to avert potential collisions with the
adversarial vehicle’s incorrectly predicted future trajectory.

6.3 Attack Robustness
Robustness against Object Displacement. In real-world
deployment, precisely placing objects at pre-computed loca-
tions may be challenging. To evaluate the robustness of our
attack against object displacement errors, we randomly shift
the identified adversarial locations and evaluate our attack’s
effectiveness. In this experiment, we use the adversarial loca-
tion set generated by our attack method with a limit of 100
queries. Fig. 7 illustrates CR as the location shift changes
from 0 to 0.2m in intervals of 0.02m. The corresponding
ATD and PRE results are presented in Appendix B.1. The
results show that ATD gradually increases, while PRE and
CR decrease, as the location shift increases. This is because
when the shift exceeds the grid cell/voxel size of the object
detector, the additional point clusters caused by the objects
might be assigned to a different grid cell/voxel than the origi-
nally intended one, leading to a detection bounding box that
deviates from the desired state perturbation. However, within
the grid cell/voxel size limit of 0.1m, the location sets gen-
erated by our attack demonstrate relative robustness, making
them deployable in real-world scenarios.

Robustness against Object Size. In this work, the attacker
launches the attack by placing objects, such as cardboards or
boxes, at designated locations. These objects vary in size and
shape. To evaluate robustness of our attack against object size
variations, we generate random point clusters with varying
radius, ranging from 0.1m to 0.5m, and position them at same
adversarial locations. Following the setting in [66], we set the
number of points in each cluster proportional to the square
of the object size. Fig. 8 illustrates the CR under different

6300 33rd USENIX Security Symposium USENIX Association

Figure 9: Experimental setup for physical world attack.

object sizes. The corresponding ATD and PRE results are
presented in Appendix B.1. We can observe that a smaller
object size results in weaker attack performance, indicated by
a higher ATD and lower PRE and CR. This is because smaller
objects induce fewer points, leading to limited perturbing
effect in detection results. Object sizes in the range of 0.2m
to 0.4m demonstrate stable, optimal performance across all
metrics. However, the performance declines and becomes
much more random beyond this range. This is likely due to
larger objects occupying numerous grid cells/voxels, resulting
in a significant deviation from the original detection results.

6.4 Attack Transferability
We also evaluate the transferability of our attack under the
black-box scenario. In this experiment, we assume the vic-
tim AV uses AgentFormer as its trajectory prediction model.
We assume a black-box condition where the attacker gener-
ates locations of adversarial objects based on Trajectron++
and uses these locations to compromise the target model,
i.e., AgentFormer. The results (see Appendix B.1) indicate
that our attack effectively compromises a different predictor,
achieving a maximum CR of 31% with 500 queries. Similar
to the white-box results, our attack consistently outperforms
the brute-force approach across different numbers of queries,
demonstrating its superior transferability and efficiency.

7 Experiments in Physical World

7.1 Experimental Settings

Testbed Car. As illustrated in Fig. 9, our testbed car includes
a LiDAR and a Global Navigation Satellite System receiver
(GNSS) with Real-Time Kinematic (RTK). The testbed car
serves as both the attacker’s data collection car during the
attack planning stage and the victim AV during the evalua-
tion. We integrate the commonly used Robosense Helios-32
LiDAR for perception, featuring 32 lines and a 10Hz frame
rate. The LiDAR is mounted on the top front center of the
testbed car at the height of 1.6m from the ground. We use the
BYNAV X1 high Precision GNSS/INS Receiver with RTK
to construct accurate coordinates for prediction and planning,
achieving centimeter-level precision in vehicle localization by
correcting GPS errors with differential signals. Our testbed

car uses the same models as in the dataset-based experiments
for perception, prediction, and planning.

Adversarial Vehicle and Objects. Our proposed attack
does not have any requirements on the size or color of the
adversarial vehicle, which can be any car parked on the road-
side. In our experiments, we use a black Tesla Model 3 as the
adversarial vehicle. For the adversarial objects, we utilize two
cardboards measuring 0.3m in width and 0.42m in height,
equivalent to the standard A3 paper size. During the attack
planning phase, to simulate realistic point clusters of card-
boards akin to those captured in the real world, we use the
ray-casting method [3] to sample points. In the attack deploy-
ment phase, each cardboard is mounted on a tripod for flexible
placement at various locations around the adversarial vehicle.
The cardboards are tilted at a 45◦ angle to face the side of
the victim AV. While our experiments use white cardboards
for better visibility, they can be substituted with ubiquitous
roadside objects, such as billboards, for stealthiness.

Attack Planning and Deployment. During the attack plan-
ning phase, we establish a start point as the origin of the global
coordinate system. The testbed car, acting as the attacker’s
data collection car, drives from the start point and passes by
the attack point at a velocity of 5km/h, simultaneously collect-
ing the LiDAR point cloud and the corresponding GNSS data.
The input states to the prediction model are computed in this
global coordinate system, originating at the start point. Specif-
ically, we transform the GNSS data in geodetic coordinates
(latitude, longitude, altitude) into ENU (East, North, Up) co-
ordinates based on this origin. This conversion enables us to
obtain the states of victim AV and combine these coordinates
with detection results to obtain the adversarial vehicle’s states.
Based on the collected data in the absence of attack, we derive
two adversarial locations aiming to mislead the victim AV’s
trajectory prediction. Considering the practicality of placing
the cardboards, we limit the location search space to the vicin-
ity of the adversarial vehicle. Specifically, we define the side
search region to be 5.2×0.4×0.8m3, matching the length of
the adversarial vehicle, and the rear/front search regions to be
0.4×2.2×0.8m3, aligning with the vehicle’s width. During
the attack deployment, the cardboards are positioned at the
decided adversarial locations. The testbed car, now acting as
the victim AV, drives from the start point established during
the attack planning phase towards the attack point at various
velocities to collect LiDAR point cloud and GNSS data. The
collected data under attack are then fed into the victim AV’s
AD system for evaluation.

7.2 Attack Effectiveness
In this section, we evaluate our attack’s effectiveness in two
real-world scenarios, where the victim AV drives on the road
with an adversarial vehicle parked either on its left or right
side, referred to as the “left-side scenario” and the “right-side
scenario”, respectively. We compare our attack with the ran-
dom location attack and the brute-force sampling attack. An

USENIX Association 33rd USENIX Security Symposium 6301

(a) Left-side scenario with adversarial
objects deployed (victim AV’s view).

(b) Result of left-side scenario when
no adversarial objects are deployed.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(c) Result of left-side attack(ours) at a
velocity of 5km/h. Success ratio: 5/5.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(d) Result of left-side attack(ours) at a
velocity of 10km/h. Success ratio: 4/5.

(e) Right-side scenario with adv ob-
jects deployed (victim AV’s view).

(f) Result of right-side scenario when
no adversarial objects are deployed.

−1 0 1 2 3 4
X (m)

18

20

22

24

26

28

30

32

Y
 (

m
)

(g) Result of right-side attack(ours) at
a velocity of 5km/h. Success ratio: 4/5.

−1 0 1 2 3 4
X (m)

18

20

22

24

26

28

30

32

Y
 (

m
)

(h) Result of right-side attack(ours) at
a velocity of 10km/h.Success ratio:5/5.

Figure 10: Two real-world scenarios with a parked black Tesla car as the adversarial vehicle. The adversarial objects (cardboards)
placed at the locations computed by our inverse attack are highlighted with red boxes. The attack results are illustrated in grid
maps, where the blue car represents the victim AV and the green car represents the adversarial vehicle.

attack is viewed as successful when the PRE exceeds a thresh-
old of 1m, which is a significant change in the victim AV’s
planning decision due to the erroneously predicted trajectory.

Inverse Attack (Ours). In these experiments, we place ob-
jects at the adversarial locations identified by our attack during
the attack planning phase, using data collected at a velocity of
5km/h. We then evaluate the effectiveness of these locations
when the victim AV drives at velocities of 5km/h or 10km/h,
with slight variations for each trial, capturing the uncertain-
ties encountered in real driving environments. Figs. 10(a) and
10(e) present the scenarios when our attack is deployed. Cor-
responding LiDAR point clouds perceived by the victim AV
under attack can be found in Appendix B.2. In non-attack
scenarios, the adversarial vehicle is predicted static and thus
poses no threat to the victim AV’s trajectory planning, as
depicted in Figs. 10(b) and 10(f). In the left-side scenario,
our attack succeeds in five out of five trials at an evaluation
velocity of 5km/h. Fig. 10(c) shows a successful attack where
our attack misleads the victim AV at a velocity of 5km/h to
predict a future trajectory heading towards itself, forcing the
victim AV to an emergency brake. Our attack, utilizing ad-
versarial locations planned using data at a velocity of 5km/h,
succeeds in four out of five trials at an evaluation velocity of
10km/h. Fig. 10(d) presents a successful example, where our
attack induces a similar prediction error as in the scene at a
velocity of 5km/h in Fig. 10(c), demonstrating our attack’s
velocity insensitivity. In the right-side scenario, the planned
adversarial locations achieve four successes out of five tri-
als at an evaluation velocity of 5km/h and five out of five
at 10km/h. Example successful attack scenes at velocities

of 5km/h and 10km/h are shown in Figs. 10(g) and 10(h),
with similar trajectory prediction errors and the same sudden
brake decision taken by the victim AV in both scenes. In
both left- and right-side scenarios, successful attack examples
at different evaluation velocities demonstrate similar percep-
tion errors at the current time step, as marked by red stars in
Fig. 10. This indicates the effectiveness of single-point attack
in inducing prediction error at the current frame. Detailed
quantitative results, including comparisons of ATD and PRE,
are presented in Appendix B.2.

Baseline 1: Random Location Attack. In this set of exper-
iments, adversarial cardboards are randomly placed around
the adversarial vehicle. Some example scenes are shown in
Appendix B.2. In both left-side and right-side random lo-
cation attack scenarios, our evaluation yields no successful
attacks out of five trials. Fig. 11(a) illustrates a left-side attack
example where cardboards, randomly placed on the right side
of the adversarial vehicle, cause a predicted trajectory of the
adversarial vehicle moving to the left of the victim AV, posing
a limited threat. Fig. 11(b) shows a right-side attack example
with cardboards randomly placed at the rear, leading to a static
predicted trajectory of the adversarial vehicle with no threat
to the victim AV. The results demonstrate that, objects placed
at random locations may affect the predicted trajectories of
the adversarial vehicle, while failing to achieve the attack goal
defined in Eq. 1. This underscores the importance of strategic
object placement at adversarial locations, which is facilitated
by our inverse attack.

Baseline 2: Brute-force Sampling Attack. We evaluate
the attack effectiveness of the brute-force sampling method

6302 33rd USENIX Security Symposium USENIX Association

(a) Result of left-side random loca-
tion attack. Success ratio: 0/5.

−1 0 1 2 3 4
X (m)

18

20

22

24

26

28

30

32

Y
 (

m
)

(b) Result of right-side random lo-
cation attack. Success ratio: 0/5.

Figure 11: Random location attack results.

(a) Result of coordinate shift (0.1m).
Success ratio: 3/5.

−4 −3 −2 −1 0 1
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(b) Result of orientation shift. Suc-
cess ratio: 5/5.

Figure 12: Robustness against object displacement errors in-
duced by shifts in object coordinates or orientations.

using locations derived from data at a velocity of 5km/h in the
planning phase. The evaluation is conducted in the left-side
scenario at velocities of 5km/h and 10km/h. This method
achieves a success ratio of three out of five trials at both veloc-
ities. The reason for the reduced attack success ratio compared
with our inverse attack, even under the less challenging condi-
tion at a velocity of 5km/h, is likely due to small fluctuations
in the victim AV’s velocity between trials. These variations
can render velocity-sensitive adversarial locations ineffective,
leading to attack failures due to minor discrepancies from the
original scene in the attack planning phase.

7.3 Attack Robustness
Robustness against Object Displacement. When deploying
cardboards at the adversarial locations, there may be devia-
tions in their 3D coordinates and orientations. To evaluate our
attack’s robustness against these deviations, we conduct ex-
periments to randomly shift each cardboard’s 3D coordinates
and orientation, respectively. The experiments are performed
in the left-side attack scenario, with the victim AV driving at a
velocity of 5km/h. Some example scenes are illustrated in Ap-
pendix B.2. To simulate the shifts, we move each cardboard
0.1m from its planned location in random directions. Results
show that shifting cardboards’ coordinates by 0.1m leads to
three successful attacks out of five trials. Fig. 12(a) illustrates
an example successful attack, achieving a similar attack result
as in the original attack scene in Fig. 10(d). This robustness is
due to the majority of points, even after shifting, still falling
within the same grid cell or voxel after LiDAR detection pro-
cessing. However, when the shift increases to 0.3m, which
exceeds the grid cell/voxel size, the attack success ratio drops

(a) Result of victim AV in left driv-
ing direction. Success ratio: 2/5.

−4 −3 −2 −1 0 1 2
X (m)

10

12

14

16

18

20

22

Y
 (

m
)

(b) Result of victim AV in right driv-
ing direction. Success ratio: 3/5.

Figure 13: Robustness against various driving directions of
the victim AV.

to one out of five trials. To simulate orientation shifts, the
cardboards are rotated randomly within [−30◦,30◦]. In all
five trials, our attack is successful. Fig. 12(b) shows a success-
ful attack. This robustness may stem from the observation
that, despite substantial orientation shifts, the points on a card-
board mostly remain within the original grid or shift to an
adjacent grid, resulting in similar perception and prediction
outcomes. To summarize, the adversarial locations identified
by our inverse attack remain effective within a reasonable
range of object displacement errors induced by coordinate
and orientation shifts.

Robustness against Varied Driving Direction. During
the evaluation , the victim AV remains in the same lane as in
the planning phase. However, it may not maintain a perfectly
straight path and occasionally steer slightly to the left or right.
To evaluate the robustness of our inverse attack against the
variations in victim AV’s driving direction, we conduct an ex-
periment in the left-side scenario at a velocity of 5km/h, with
example scenes shown in Appendix B.2. With the planned
adversarial locations unchanged, we shift the victim AV’s
starting and attack point by 1m to the left or right of their
original positions, simulating the victim AV going slightly
rightward or leftward. When shifting the victim AV’s driving
direction to the left, two out of five attack trials are successful.
When shifting to the right, the attack success ratio is three
out of five. Figs. 13(a) and 13(b) show example successful
attack results. When shifting to the left direction, the victim
AV is forced to brake urgently due to the reduced distance
from the predicted trajectory of the adversarial vehicle, while
shifting to the right direction leads to a lane change to avoid
intersection with the adversarial vehicle’s predicted trajectory.

8 Discussions

8.1 A Potential Defense

This work shows that a lack of awareness for adversarial
vehicle states can lead to hazardous results, which our pro-
posed attack exploits. As depicted in Fig. 4, in a sequence
of adversarial states under attack, the coordinates are typ-
ically perturbed within a reasonable range (±1m), but the
heading shows significant volatility. For instance, an adversar-

USENIX Association 33rd USENIX Security Symposium 6303

ial vehicle’s heading might abruptly reverse from one frame
to the next, which violates the vehicle physical dynamics.
Inspired by this, we propose a heading-centric adversarial
state detector based on the kinematic bicycle model as the
defense for our proposed attack. It scrutinizes the discrepancy
between observed and physically plausible heading changes
across consecutive frames. Given a wheelbase Lw and a max-
imum steering angle θmax, following the kinematic bicycle
model, the expected maximum heading change is denoted as
∆hmax =

v∆t tan(θmax)
Lw

, where v represents the vehicle’s velocity
and ∆t is the time interval between two consecutive frames. A
scene is labeled adversarial if the observed heading changes in
at least two frames exceed the calculated ∆hmax. This serves
as a criterion for detecting abnormal behaviors, such as those
of a vehicle under object-based attacks. As the defense, the
detected adversarial states are replaced with the states pre-
dicted by the kinematic bicycle model using preceding states.
We evaluate the detector on 400 attack scenes under the same
experiment setting as in Section 6. We set Lw at 2.5m and
θmax at 1rad, following standard vehicle configurations. The
results show that, 44.5% (178/400) attacked scenes are de-
tected. With defense, the ATD changes from 5.45m to 6.03m,
PRE from 1.51m to 1.15m, and CR from 40% to 25%.

8.2 Other Possible Defenses
Based on the nature of our attack mechanisms, three types
of existing general defense approaches might be applied. We
discuss and evaluate the effectiveness of such defenses against
our attack strategy.

Spatial-temporal consistency checks: Recent studies [16,
33, 35] have explored spatial-temporal consistency checks to
detect perception attacks. PercepGuard [33] is a representa-
tive method that leverages the spatial-temporal properties of
bounding boxes across different classes to detect anomalies.
In our experiments, PercepGuard detects anomalies in 4 out of
400 attack scenes, with a limit of 100 queries, under the same
settings as in the dataset-based experiments. Unlike typical
attacks that aim to induce object disappearance, creation, or
misclassification, our attack subtly perturbs bounding boxes,
presenting a challenge for spatial-temporal checks.

Adversarial training: Following adversarial training [19],
we fine-tune the Trajectron++ predictor with adversarial states
generated by our attacks for an additional 10 epochs. After
training, the CR decreases from 40% to 35%, while the mean
Final Displacement Error increases from 2.18m to 2.22m in
clean scenes. This illustrates a trade-off between robustness
and accuracy in the trajectory prediction model. Moreover,
effective adversarial training requires the defender to know
the attack methods, which is not always possible.

MC-dropout: We also explore MC-dropout [18], a tech-
nique that introduces randomness into the perception model
during inference, thus disrupting the matching between bound-
ing box perturbations and adversarial states. Implementing
MC-dropout with 5 runs led to a reduction in the collision

rate from 40% to 18%. However, this defense significantly
increases the computational overhead during inference, im-
pacting the real-time performance capabilities of AD systems.

In conclusion, existing methods can partially defend against
our attack but also introduce some additional overhead. Our
proposed lightweight defense method checks key adversarial
states against vehicle dynamics, achieving a good balance of
efficacy and cost.

8.3 Limitations and Future Work
Single-Point Attack Impact. A limitation of our attack is
its diminishing impact once the victim AV passes the attack
point. For example, a victim AV brakes suddenly at the attack
point may resume normal behavior in subsequent frames. This
occurs because the current frame at the attack point becomes
one of the historical frames as the victim moves, being less
effective as shown in finding F1 in Section 5.2. To address
this limitation, developing a temporally effective attack to
maintain consistent impact over time is interesting.

Different Attack Scenarios. Another limitation is that our
attack focuses on the driving scenario where a victim AV
passes a roadside-parked adversarial vehicle. Future work
can explore other common scenarios, such as an adversarial
vehicle stopped at an intersection, potentially impacting more
vehicles in dense traffic scenarios. Moreover, it is interesting
to extend our attack to scenarios where both the adversarial
vehicle and the victim AV are moving. In these cases, drones
can act as movable adversarial objects, utilizing advanced
drone localization and tracking technologies. This approach
opens up an opportunity for a continuous and dynamic attack,
adapting to the changing positions of the adversarial vehicle.

Attack Multi-sensor Fusion. Our attack can be extended
to multi-sensor fusion systems by optimizing existing percep-
tion attacks for different sensing modalities. For example, we
can use adversarial objects with specific shapes and textures
to compromise both LiDAR and camera perceptions, akin to
techniques discussed in [8, 65]. Specifically, the shape and
texture attributes of the adversarial objects can be randomly
sampled to create the bounding box perturbation set. Then,
our prediction-side attack methodology can be applied to gen-
erate a set of adversarial states. Lastly, a matching and refining
phase is applied, where the shape and texture parameters are
adjusted to optimize the attack’s effectiveness across sensors.

9 Conclusion
In this paper, we investigate the possibility of compromising
trajectory prediction in autonomous driving systems via phys-
ically realizable object-based LiDAR attacks on perception
modules. We find that prediction models are vulnerable to
single-point attacks. Building on this insight, we introduce a
novel two-stage attack framework that efficiently identifies
an effective, velocity-insensitive, and feasible adversarial lo-
cation set. By strategically placing objects at these locations,

6304 33rd USENIX Security Symposium USENIX Association

the attacker can manipulate the victim vehicle to predict a
wrong trajectory of a nearby agent, potentially inducing haz-
ardous victim AV responses. We evaluate the proposed attack
framework on both a public autonomous driving dataset and a
custom-built real testbed car. The results demonstrate that our
proposed attack consistently achieves the highest threat across
various driving conditions and shows robustness against dif-
ferent types of noise.

10 Acknowledgements
We thank our shepherd and reviewers for their valuable feed-
back on the paper. We also thank Qian Xu and Bingyuan
Huang from City University of Hong Kong for their gener-
ous assistance with the physical experiment setup. This work
is supported by Hong Kong Research Grant Council under
GRF project 11216323, by the US National Science Founda-
tion under grant CNS-2120369, and by the National Research
Foundation Singapore and DSO National Laboratories under
the AI Singapore Programme (AISG Award No: AISG2-GC-
2023-006).

References
[1] Autoware.ai. https://www.autoware.ai.

[2] Baidu apollo. http://apollo.auto.

[3] Intro to rendering, ray casting. https://ocw.mit.edu/
courses/electrical-engineering-and-computer-science/
6-837-computer-graphics-fall-2012/lecture-notes/
MIT6837F12_Lec11.pdf.

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok.
Synthesizing robust adversarial examples. In International conference
on machine learning, pages 284–293. PMLR, 2018.

[5] Autoware Foundation. Autoware.universe. https://github.com/
autowarefoundation/autoware.universe.

[6] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom. nuscenes: A multimodal dataset for autonomous
driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[7] Yulong Cao, S Hrushikesh Bhupathiraju, Pirouz Naghavi, Takeshi
Sugawara, Z Morley Mao, and Sara Rampazzi. You can’t see me:
Physical removal attacks on {LiDAR-based} autonomous vehicles
driving frameworks. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 2993–3010, 2023.

[8] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang,
Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li. Invisible
for both camera and lidar: Security of multi-sensor fusion based per-
ception in autonomous driving under physical-world attacks. In 2021
IEEE Symposium on Security and Privacy (SP), pages 176–194. IEEE,
2021.

[9] Yulong Cao, Chaowei Xiao, Anima Anandkumar, Danfei Xu, and
Marco Pavone. Advdo: Realistic adversarial attacks for trajectory
prediction. In European Conference on Computer Vision, pages 36–
52. Springer, 2022.

[10] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park,
Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. Adver-
sarial sensor attack on lidar-based perception in autonomous driving.
In Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pages 2267–2281, 2019.

[11] Yulong Cao, Danfei Xu, Xinshuo Weng, Zhuoqing Mao, Anima
Anandkumar, Chaowei Xiao, and Marco Pavone. Robust trajectory
prediction against adversarial attacks. In Conference on Robot Learn-
ing, pages 128–137. PMLR, 2023.

[12] Nicholas Carlini and David Wagner. Audio adversarial examples:
Targeted attacks on speech-to-text. In 2018 IEEE security and privacy
workshops (SPW), pages 1–7. IEEE, 2018.

[13] Xuesong Chen, Canmiao Fu, Feng Zheng, Yong Zhao, Hongsheng Li,
Ping Luo, and Guo-Jun Qi. A unified multi-scenario attacking network
for visual object tracking. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 1097–1104, 2021.

[14] Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Scept: Scene-
consistent, policy-based trajectory predictions for planning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17103–17112, 2022.

[15] Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-Shanklin,
and Aaron D Ames. Interactive multi-modal motion planning with
branch model predictive control. IEEE Robotics and Automation
Letters, 7(2):5365–5372, 2022.

[16] Minkyoung Cho, Yulong Cao, Zixiang Zhou, and Z Morley Mao.
Adopt: Lidar spoofing attack detection based on point-level temporal
consistency. arXiv preprint arXiv:2310.14504, 2023.

[17] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Path planning for autonomous vehicles in unknown semi-
structured environments. The international journal of robotics re-
search, 29(5):485–501, 2010.

[18] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In international
conference on machine learning, pages 1050–1059. PMLR, 2016.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[20] Zhongyuan Hau, Kenneth T Co, Soteris Demetriou, and Emil C Lupu.
Object removal attacks on lidar-based 3d object detectors. arXiv
preprint arXiv:2102.03722, 2021.

[21] Zhongyuan Hau, Soteris Demetriou, and Emil C Lupu. Using 3d shad-
ows to detect object hiding attacks on autonomous vehicle perception.
In 2022 IEEE Security and Privacy Workshops (SPW), pages 229–235.
IEEE, 2022.

[22] Saurabh Jha, Shengkun Cui, Subho Banerjee, James Cyriac, Timo-
thy Tsai, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Ml-driven
malware that targets av safety. In 2020 50th annual IEEE/IFIP in-
ternational conference on dependable systems and networks (DSN),
pages 113–124. IEEE, 2020.

[23] Shuai Jia, Chao Ma, Yibing Song, and Xiaokang Yang. Robust track-
ing against adversarial attacks. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XIX 16, pages 69–84. Springer, 2020.

[24] Yunhan Jia Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Hao Chen,
Zhenyu Zhong, and Tao Wei Wei. Fooling detection alone is not
enough: Adversarial attack against multiple object tracking. In Inter-
national Conference on Learning Representations (ICLR’20), 2020.

[25] Zizhi Jin, Xiaoyu Ji, Yushi Cheng, Bo Yang, Chen Yan, and Wenyuan
Xu. Pla-lidar: Physical laser attacks against lidar-based 3d object de-
tection in autonomous vehicle. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 1822–1839. IEEE, 2023.

[26] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio
Frazzoli, and Jonathan P How. Real-time motion planning with appli-
cations to autonomous urban driving. IEEE Transactions on control
systems technology, 17(5):1105–1118, 2009.

[27] Mark Lee and Zico Kolter. On physical adversarial patches for object
detection. arXiv preprint arXiv:1906.11897, 2019.

USENIX Association 33rd USENIX Security Symposium 6305

https://www.autoware.ai
http://apollo.auto
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6837F12_Lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6837F12_Lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6837F12_Lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6837F12_Lec11.pdf
https://github.com/autowarefoundation/autoware.universe
https://github.com/autowarefoundation/autoware.universe

[28] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy,
Philip HS Torr, and Manmohan Chandraker. Desire: Distant future
prediction in dynamic scenes with interacting agents. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 336–345, 2017.

[29] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng,
and Raquel Urtasun. Learning lane graph representations for motion
forecasting. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16,
pages 541–556. Springer, 2020.

[30] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei
Zhou. Multimodal motion prediction with stacked transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7577–7586, 2021.

[31] Chenxu Luo, Lin Sun, Dariush Dabiri, and Alan Yuille. Probabilistic
multi-modal trajectory prediction with lane attention for autonomous
vehicles. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2370–2376. IEEE, 2020.

[32] Chen Ma, Ningfei Wang, Qi Alfred Chen, and Chao Shen. Slowtrack:
Increasing the latency of camera-based perception in autonomous
driving using adversarial examples. arXiv preprint arXiv:2312.09520,
2023.

[33] Yanmao Man, Raymond Muller, Ming Li, Z. Berkay Celik, and Ryan
Gerdes. That person moves like a car: Misclassification attack de-
tection for autonomous systems using spatiotemporal consistency.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
6929–6946, Anaheim, CA, August 2023. USENIX Association.

[34] Raymond Muller, Yanmao Man, Z Berkay Celik, Ming Li, and Ryan
Gerdes. Physical hijacking attacks against object trackers. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2309–2322, 2022.

[35] Raymond Muller, Yanmao Man, Ryan Gerdes, Ming Li, Jonathan Petit,
and Z. Berkay Celik. Vogues: Validation of object guise using esti-
mated components. In 33rd USENIX Security Symposium (USENIX
Security ’24 Fall), 2024.

[36] NPR. San francisco’s driverless cars are causing traffic jams, city
officials say. https://www.npr.org/2023/08/26/1195695051/
driverless-cars-san-francisco-waymo-cruise, August 2023.

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[38] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. Remote
attacks on automated vehicles sensors: Experiments on camera and
lidar. Black Hat Europe, 11(2015):995, 2015.

[39] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco
Pavone. Trajectron++: Dynamically-feasible trajectory forecasting
with heterogeneous data. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVIII 16, pages 683–700. Springer, 2020.

[40] Takami Sato, Yuki Hayakawa, Ryo Suzuki, Yohsuke Shiiki, Kentaro
Yoshioka, and Qi Alfred Chen. Wip: Practical removal attacks on lidar-
based object detection in autonomous driving. In ISOC Symposium
on Vehicle Security and Privacy (VehicleSec), 2023.

[41] Oliver Scheel, Luca Bergamini, Maciej Wolczyk, Błażej Osiński, and
Peter Ondruska. Urban driver: Learning to drive from real-world
demonstrations using policy gradients. In Conference on Robot Learn-
ing, pages 718–728. PMLR, 2022.

[42] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter.
Accessorize to a crime: Real and stealthy attacks on state-of-the-art
face recognition. In Proceedings of the 2016 acm sigsac conference
on computer and communications security, pages 1528–1540, 2016.

[43] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d
object proposal generation and detection from point cloud. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 770–779, 2019.

[44] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim. Illusion
and dazzle: Adversarial optical channel exploits against lidars for
automotive applications. In Cryptographic Hardware and Embedded
Systems–CHES 2017: 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 445–467. Springer, 2017.

[45] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. To-
wards robust {LiDAR-based} perception in autonomous driving: Gen-
eral black-box adversarial sensor attack and countermeasures. In 29th
USENIX Security Symposium (USENIX Security 20), pages 877–894,
2020.

[46] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. Hybrid batch
attacks: Finding black-box adversarial examples with limited queries.
In 29th USENIX Security Symposium (USENIX Security 20), pages
1327–1344, 2020.

[47] Kaiyuan Tan, Jun Wang, and Yiannis Kantaros. Targeted adversarial
attacks against neural network trajectory predictors. In Learning for
Dynamics and Control Conference, pages 431–444. PMLR, 2023.

[48] Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin. Robust
adversarial objects against deep learning models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages
954–962, 2020.

[49] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin
Yang, Richard Du, Frank Cheng, and Raquel Urtasun. Physically
realizable adversarial examples for lidar object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13716–13725, 2020.

[50] Velodyne Lidar. Idriverplus building smart autonomous vehicles with
velodyne lidar technology. 7 2019.

[51] Vueron. Vueone – VUERON | LiDAR solution provider. https:
//vueron.com/vueone/, 2023.

[52] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi
Ma, and Qi Alfred Chen. Too afraid to drive: Systematic discovery
of semantic dos vulnerability in autonomous driving planning under
physical-world attacks. In Network and Distributed System Security
(NDSS) Symposium, April 2022.

[53] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille. Adversarial examples for semantic segmentation and
object detection. In Proceedings of the IEEE international conference
on computer vision, pages 1369–1378, 2017.

[54] Xiyu Yan, Xuesong Chen, Yong Jiang, Shu-Tao Xia, Yong Zhao, and
Feng Zheng. Hijacking tracker: A powerful adversarial attack on
visual tracking. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2897–
2901. IEEE, 2020.

[55] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convo-
lutional detection. Sensors, 18(10):3337, 2018.

[56] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object
detection from point clouds. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 7652–7660, 2018.

[57] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based
3d object detection and tracking. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11784–
11793, 2021.

[58] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani. Agent-
former: Agent-aware transformers for socio-temporal multi-agent
forecasting. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9813–9823, 2021.

[59] Wenyuan Zeng, Ming Liang, Renjie Liao, and Raquel Urtasun. Laner-
cnn: Distributed representations for graph-centric motion forecasting.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 532–539. IEEE, 2021.

[60] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang,
Sergio Casas, and Raquel Urtasun. End-to-end interpretable neural
motion planner. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8660–8669, 2019.

6306 33rd USENIX Security Symposium USENIX Association

https://www.npr.org/2023/08/26/1195695051/driverless-cars-san-francisco-waymo-cruise
https://www.npr.org/2023/08/26/1195695051/driverless-cars-san-francisco-waymo-cruise
https://vueron.com/vueone/
https://vueron.com/vueone/

[61] Qingzhao Zhang, Shengtuo Hu, Jiachen Sun, Qi Alfred Chen, and
Z Morley Mao. On adversarial robustness of trajectory prediction for
autonomous vehicles. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15159–15168,
2022.

[62] Zihan Zhang, Mingxuan Liu, Chao Zhang, Yiming Zhang, Zhou Li,
Qi Li, Haixin Duan, and Donghong Sun. Argot: Generating adversarial
readable chinese texts. In Proceedings of the Twenty-Ninth Interna-
tional Conference on International Joint Conferences on Artificial
Intelligence, pages 2533–2539, 2021.

[63] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hivt:
Hierarchical vector transformer for multi-agent motion prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8823–8833, 2022.

[64] Yi Zhu, Chenglin Miao, Foad Hajiaghajani, Mengdi Huai, Lu Su,
and Chunming Qiao. Adversarial attacks against lidar semantic seg-
mentation in autonomous driving. In Proceedings of the 19th ACM
conference on embedded networked sensor systems, pages 329–342,
2021.

[65] Yi Zhu, Chenglin Miao, Hongfei Xue, Yunnan Yu, Lu Su, and Chun-
ming Qiao. Malicious attacks against multi-sensor fusion in au-
tonomous driving. In Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking, pages 436–451,
2024.

[66] Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani, Lu Su,
and Chunming Qiao. Can we use arbitrary objects to attack lidar
perception in autonomous driving? In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1945–1960, 2021.

Appendix

A Generalizability Across Models
To extend our analysis beyond Trajectron++, the primary tra-
jectory prediction model utilized in this study, we apply our at-
tack to AgentFormer [58], another advanced trajectory predic-
tor, to assess its generalizability. We follow the same experi-
mental settings as those used in the dataset-based experiments,
and the AgentFormer model is also trained on the nuScenes
dataset using its default configuration. Fig. 14 compares the
Average Trajectory Distance (ATD), Planning-Response Error
(PRE), and Collision Rate (CR) metrics between our inverse
attack method and the brute-force sampling method when
applied to the victim AV system utilizing AgentFormer. The
number of queries ranges from 100 to 500. The results show
that our inverse attack consistently outperforms the brute-
force sampling method on three metrics across all query limi-
tations. These outcomes, similar to those presented in Fig. 5,
further demonstrating the generalizability of our attack.

B Supplementary Experiments
B.1 Experiments on Dataset

Fig. 15 shows the Average Trajectory Distance (ATD) and
Planning-Response Error (PRE) of our inverse attack method
under varied object displacements. Fig. 16 demonstrates how
different object sizes affect the ATD and PRE metrics of our
inverse attack method. Fig. 17 illustrates the ATD, PRE, and
CR metrics in the attack transferability experiments, where

100 200 300 400 500
The Number of Queries

4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8

AT
D

 (
m

)

Brute-force
Inverse

100 200 300 400 500
The Number of Queries

1.0

1.2

1.4

1.6

1.8

PR
E

(m
)

100 200 300 400 500
The Number of Queries

20
25
30
35
40
45
50

CR
 (

%
)

Figure 14: ATD, PRE and CR under brute-force sampling
attack and our inverse attack on victim AV using AgentFormer
trajectory predictor.

0.00 0.05 0.10 0.15 0.20
Location Error (m)

5.00
5.25
5.50
5.75
6.00
6.25
6.50

AT
D

 (
m

)

Inverse

0.00 0.05 0.10 0.15 0.20
Location Error (m)

1.2

1.3

1.4

1.5

1.6

PR
E

(m
)

Figure 15: Attack robustness against object displacement.

0.1 0.2 0.3 0.4 0.5
Object Size (m)

5.00
5.25
5.50
5.75
6.00
6.25

AT
D

 (
m

)

Inverse

0.1 0.2 0.3 0.4 0.5
Object Size (m)

1.2

1.4

1.6

1.8

2.0

PR
E

(m
)

Figure 16: Attack robustness against object size.

100 200 300 400 500
The Number of Queries

5.8

6.0

6.2

6.4

6.6

AT
D

 (
m

)

Brute-force
Inverse

100 200 300 400 500
The Number of Queries

0.8

0.9

1.0

1.1

PR
E

(m
)

100 200 300 400 500
The Number of Queries

18
20
22
24
26
28
30
32

CR
 (

%
)

Figure 17: ATD, PRE, and CR under brute-force sampling
attack and our inverse attack in the black-box scenario. The
attack is planned using Trajectron++ predictor and evaluated
on the AgentFormer model.

the attack is planned using the Trajectron++ predictor and
evaluated on the AgentFormer model.

USENIX Association 33rd USENIX Security Symposium 6307

(a) Testbed car equipped with
LiDAR and GNSS.

(b) Cardboards affixed to
tripods.

Figure 18: Physical-world experiment setup.

(a) Point cloud view of the left-side
attack scene.

(b) Point cloud view of the right-
side attack scene.

Figure 19: LiDAR point cloud view of two real-world attack
scenarios.

Table 2: ATD and PRE under clean scenario and our inverse
attack at velocities of 5km/h and 10km/h.

Scenario Left Right
Clean 5km/h 10km/h Clean 5km/h 10km/h

ATD 4.78 3.50 4.12 4.71 3.14 3.62
PRE 0.00 1.36 2.01 0.00 1.17 1.83

B.2 Experiments in Physical World

Experimental Settings Fig. 18 provides a detailed view of
the testbed car and cardboards used in the physical-world
experiment. The top LiDAR, marked in the green box, is re-
sponsible for collecting point cloud data. The GNSS Receiver
with RTK, highlighted in blue, enables precise localization
of the testbed car, facilitating the construction of an accu-
rate coordinate system essential for prediction and planning.
Regarding the cardboards, we design them to mimic traffic
signs and billboards, which are common in driving scenarios,
thereby enhancing the stealthiness of our attack.

Attack Effectiveness Figs. 19(a) and 19(b) depict the Li-
DAR point cloud views captured by the victim AV (our testbed
car) in the left- and right-side attack scenarios, respectively.
Notably, cardboards, outlined in red boxes, contribute addi-
tional point clusters to the collected LiDAR point cloud data.
These point clusters serve as the basis of our attack, inducing
perception and prediction errors. Table 2 presents the ATD
and PRE metrics in the absence and presence of our inverse
attack, across evaluation velocities of 5km/h and 10km/h,

(a) Left-side scenario under ran-
dom location attack.

(b) Right-side scenario under
random location attack.

Figure 20: Random location attack scenes.

(a) Orientation shift scene. (b) Coordinate shift (0.3m)
scene.

Figure 21: Scenes with object displacement errors induced by
shifts in object coordinates or orientations.

(a) Driving direction to left. (b) Driving direction to right.

Figure 22: Scenes under various driving directions of the
victim AV.

within both the left- and right-side scenarios. The results indi-
cate that, compared to the clean scenario (without attack), our
inverse attack significantly reduces ATD and increases PRE,
quantitatively demonstrating its effectiveness.

Attack Robustness Fig. 20 shows example scenes of the
random location attack, with their corresponding results pre-
sented in Fig. 11. In each trial, we sample a varied set of
adversarial locations beyond those depicted, including posi-
tions beside and behind the adversarial vehicle.

Fig. 21 illustrates example scenes with object displace-
ments. Specifically, in Fig. 21(a), the cardboards are adjusted
to face forward, deviating from their initial orientations to-
ward the victim vehicle. In Fig. 21(b), the coordinates of
cardboards are shifted by 0.3m from the predetermined ad-
versarial locations, notably moving them toward the road.
In real-world deployment, attackers equipped with distance-
measuring devices, such as a tape measure, can precisely place
objects at specific adversarial locations.

The example scenes depicting various driving directions of
the victim AV are presented in Fig. 22, with the associated
attack results shown in Fig. 13.

6308 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and Related Work
	Autonomous Driving System
	Adversarial Attacks

	Threat Model
	Challenges and Problem Definition
	Attack Challenges
	Problem Definition

	Attack Design
	Approach Overview
	Findings
	Prediction-Side Attack
	Location Matching

	Experiments on Dataset
	Experiment Setting
	Attack Effectiveness
	Attack Robustness
	Attack Transferability

	Experiments in Physical World
	Experimental Settings
	Attack Effectiveness
	Attack Robustness

	Discussions
	A Potential Defense
	Other Possible Defenses
	Limitations and Future Work

	Conclusion
	Acknowledgements
	Generalizability Across Models
	Supplementary Experiments
	Experiments on Dataset
	Experiments in Physical World

