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Abstract—A new method to jointly detect and classify drones
using a moving surveillance radar system (’radar on-the-move’)
and computer vision is presented. While most conventional
counter-drone radar-based techniques focus on time-frequency
distributions to obtain classification features, such approaches
are limited in volumetric spatial coverage. To compensate for
this, surveillance radars that offer full spatial coverage are used,
but the determination of the best detection and classification
approach to be applied on the resulting data is still an open
challenge. In this paper a framework is proposed that combines
deep learning approaches from computer vision, specifically the
You Only Look Once (YOLO) network, with data from the moving
surveillance radar produced by Robin Radar Systems B.V. This
framework allows to jointly detect and label targets based on
range-Doppler images generated in real-time. The method is
validated on experimental data, with preliminary results on a
small dataset showing precision, recall, mean average precision
(mAP@0.5) and Area Under Curve (AUC) of over 99%.

Index Terms—drone detection, drone classification, surveil-
lance radar, YOLO

I. INTRODUCTION

Drone tracking and classification systems have received
significant attention due to the exponential growth of the
Unmanned Aerial Vehicles (UAVs) market, and the related
concerns for accidental or intentional misuses of such plat-
forms. To address this need of reliable monitoring capabilities,
radar systems can provide robust detection and classification
in any weather or light condition, as well as the direct
determination of range and velocity of targets [1]. For this
reason, counter-drone radar systems have become a safety
requirement in a wide array of public and private events and
at critical locations such as airports or power plants. Drone
detection and tracking systems that are anchored on moving
vehicles have also gained remarkable interest due to an ever
increasing need for protection against rogue UAVs that might
appear anywhere near and around an asset to be protected.

The ability to distinguish drones from other types of targets
is typically achieved in literature thanks to the fast-rotating
propellers that induce unique micro-Doppler modulations.
Conventionally, micro-Doppler signatures are obtained using
radars with fixed beams with high dwell time on target
[2]–[4]. While this allows to capture a continuous sequence
of samples necessary to obtain good-quality time-frequency
signatures, such systems suffer of limited spatial coverage
due to their static nature, so that the targets of interest may
not be always present in the radar beam. In order to achieve

full spatial coverage in a cost-effective manner, surveillance
radars that use rotating antennas are adopted [5], [6]. However,
this may result in losing the most salient features for drone
classification due to the limited time on target. This limitation
can be solved by staring radar systems that ensure wide spatial
coverage continuously at all time [7], [8], but at the cost of
higher system complexity and a very large amount of data to
be processed. In terms of classification algorithms, machine
and deep learning methods have gained a lot of momentum
given their high performances in many applications including
drone-related ones [9]–[13]. These approaches aim to solve a
classification problem, i.e. assigning labels to detected targets.
Hence, a detector is firstly needed to find the targets of interest
before the classification stage.

In this paper, an approach that jointly solves the detection
and classification problem of drones with a single algorithm
is presented. The ’You Only Look Once’ (YOLO) [14] frame-
work from computer vision is chosen given the real-time
inference speed of its small models, while retaining high
accuracy for small objects identification and bounding boxes
prediction. Essentially, YOLO exploits deep learning (DL) for
both detection (finding a bounding box for the detected object)
and classification (assigning a label to the box), rather than
using DL only for classification tasks [10].

To the best of our knowledge, the usage of the YOLO
framework and networks on radar range-Doppler plots for
drone detection and classification is novel, as it has been
primarily used only on optical images or videos. The system
considered in this paper for the validation of the proposed ap-
proach is a surveillance radar with rotating antennas by Robin
Radar Systems B.V., but with the additional complexity of its
movement on the ground to patrol a certain area or asset of
interest. The data used for classification via YOLO are range-
Doppler plots generated by this radar, achieving multi-class
and multi-instance object detection. The initial validation with
experimental data reported in this paper showed promising
results with precision, recall, and area under the precision-
recall curve of over 99% in real-time.

The rest of the paper is organized as follows. Section II
presents the radar system. The signal processing chain and
YOLO-based detector are presented in Section III. The dataset
is discussed in Section IV. Section V presents the experimental
results, and the conclusion is drawn in Section VI.
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Fig. 1. Signal processing chain block diagram, from input radar data cube to an example of detection output generated by the YOLO.

II. MOVING RADAR SYSTEM CHARACTERISTICS

The radar system used in this paper is the IRIS FMCW
Drone Radar developed by Robin Radar Systems B.V., oper-
ating at 9.25 GHz with a saw-tooth bandwidth modulation of
50 MHz [15]. The sampling rate is 15.625 MHz with a Sweep
Repetition Frequency (SRF) of 4 kHz. A full rotation in the
azimuth plane takes 2 seconds per antenna, and given that
there are two antennas facing opposite directions, a full scan
takes 1 second in total. The Coherent Processing Interval (CPI)
consists of 100 consecutive sweeps that take 25 milliseconds
and cover 4.5 degrees in azimuth. In the elevation plane, the
radar has two phased array antennas, each with 8 elements.
The radar was anchored on a moving platform on the ground
and can detect, track and classify drones while cruising at
approximately 50 km/h (’radar on-the-move’).

III. DATA PROCESSING PIPELINE

A. Signal processing chain

The signal processing chain is described in this section and
depicted in Fig. 1. After the received signals are transformed
into the radar data cube, beamforming in elevation is applied
combining the data from the 8 receiver channels in order to
increase the target Signal to Noise Ratio (SNR) at specific
angles. Given the radar is both moving on the ground and
mechanically rotating, care needs to be taken when applying
clutter filtering techniques. Specifically, three different pre-
processing steps are applied one after the other on the data:

• Pulse subtraction: this acts as a moving target indicator
(MTI) or low-pass filter. It removes the weak static
clutter centered around 0 Hz caused by the reflections
received by the antenna back-lobe pointing in the opposite
direction of the main lobe. Since these are mostly due
to the mechanical setup of the radar, they yield a null
Doppler shift as they move together with the vehicle.

• Notch filter: this is an adaptive autoregressive moving
average filter that cuts a specific frequency band. Given
the velocity of the platform and the orientation of the
antenna is known a-priori, the cut-off frequency can be

estimated in real-time. It removes the strongest dynamic
clutter created from the ground reflections which is no
longer static due to the movement of the sensor.

• Amplitude averaging: this processing step divides the
absolute value of each range bin by the mean absolute
value of all range bins in a single sweep. This helps
attenuate the effect of background noise and remaining
clutter in view of the subsequent steps.

After digital beamforming is applied and the sweeps are
filtered as described above, a 2D Fast Fourier Transform
(FFT) is used to obtain the range-Doppler plots. These are the
inputs to the YOLO network. While traditional micro-Doppler
approaches focus on time-frequency distributions such as
spectrograms, due to the rotating nature of this radar, not
enough samples are captured to perform this operation [3].
While spectrograms can offer rich micro-Doppler information
[4], the Doppler signature of the drone’s propellers can still
be seen within the range-Doppler images [6], as in Fig. 2.

Conventionally, the absolute value of these range-Doppler
matrices can be directly fed as input to neural networks for
classification. However, given that YOLO was initially created
for optical images, a further image processing step is applied
to the range-Doppler matrices to generate visualisations such
as the example shown in Fig. 2.

Essentially, this step is a colour transformation that maps
the received signal power in the range-Doppler matrix to a
color map designed to maximize the RGB contrast between the
drone blades’ signature (colored in white) and the background
(colored in black), while retaining the drone bulk Doppler in
red. The proposed color mapping is shown in Fig. 3.

This visualization facilitates the interpretation of the data
by the YOLO network, making the contrast between different
salient elements in the image more evident (e.g., the Doppler
modulation due to the blades of the drones).

B. YOLO detector and its training
The chosen object detection & classification pipeline is

YOLOv5s [14]. While there are deeper YOLO models avail-
able, due to the small size of the data set used and the relatively
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Fig. 2. Example of filtered range-Doppler containing a drone used as input
for YOLO for detection and classification. The bulk Doppler and the micro-
Doppler of the drone’s propellers are both highlighted.

Fig. 3. Mapping of the range-Doppler matrix intensity values into the custom-
defined RGB color map.

simple Doppler modulations of the propellers, this small model
shows the best trade-off between speed and performance.
YOLO is a one-stage detector that looks at the entire input
image when processed, compared to two-stage detectors that
use sliding windows. The architecture consists of a backbone,
a neck and a head. The backbone is made of Convolutional
Neural Networks (CNNs) used to obtain the feature maps via
the receptive field based on multiple convolutions and pooling
operations. The neck aims to mix and combine high-level
features with low-level ones (feature pyramids), which are then
propagated to the head. The head is therefore responsible for
the output, i.e. predicting the bounding boxes.

Nevertheless, one of the main issues of deep learning
approaches applied to radar data remains the small size of
datasets. To address this issue, the network weights were
initialized using transfer learning from a pre-trained model for
300 epochs over the COCO dataset [16]. The model was then
trained over range-Doppler plots of drones for an additional
150 epochs, using the Stochastic Gradient Descent (SGD) and
Adam as optimizers.

Moreover, data augmentation was included during the train-

ing stage to help mitigate overfitting and improve the per-
formance metrics where possible. It should be noted that
radar images embed the kinematics of targets that should
not be altered, otherwise, the augmented propellers’ Doppler
modulations risk to be not realistic and not encountered in true
experimental data. Thus, the data augmentation methods used
in this approach are flip, translation, mosaic, hue, saturation,
and value, denoted as ’albumentations’ [17]. While the library
contains over 60 data augmentation methods, techniques that
preserve the kinematics coherence were chosen. For example,
the flip is only done from left to right or up and down, but
the image is never rotated because the Doppler signatures
would then be horizontal instead of vertical, which is never
encountered in real world. The transformation of images is
done stochastically, such that the model never sees the same
image twice.

A second step to help the model generalize better over
unseen data is including weights decaying. At each epoch,
a specific percentage of the weights is removed in order to
prevent the model from learning too much from the specific
training data, similarly to L2-regularization.

As discussed also in Section V, it was noted that the
model initially yielded false alarms due to wind-turbines in
the field of view that had similar Doppler modulations due
to the rotation of their blades. By fine-tuning the training
hyperparameters for this specific application using a genetic
algorithm implemented by the YOLOv5 creator, the model
became more robust against these incorrect detections [18].

IV. DATASET GENERATION AND COMPOSITION

The data was recorded using pre-defined test scenarios with
a Autel Evo I drone and the radar moving back and forth
at different velocities. The IRIS Drone Radar was anchored
on a moving vehicle, and the tests were taken with driving
velocities ranging from 0 km/h up to 50 km/h. It should
be noted that the data was collected in a clutter-rich area
with a plethora of other targets, such as wind turbines in the
background, vegetation moving with the wind, birds, trains,
ships, cars, cyclists, and other objects that can occur in real-
life environments and may yield false alarms. However, in this
feasibility test the drone was always located relatively close to
the radar, up to 500 meters, hence the data had good SNR. It
is expected that data with lower SNR and less visible Doppler
modulations of the propellers will reduce the performance in
terms of precision, and this will be investigated in future work.

To label data, a bounding box is drawn around the range
and Doppler bins containing the drone. Given the fast rotating
propellers, usually all Doppler bins are covered by the pro-
pellers’ signature, whereas with the available range resolution
the drone tends to appear as a point-like target in range,
occupying only a few range bins. The label then consists of 5
elements: the class ID and the bounding box coordinates (i.e.,
top left corner abscissa and ordinate coordinates, box height
and box width).

The final model was trained using 188 drone range-Doppler
images, and an equal amount of plots containing non-drone
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targets as described in Table I. As shown, the data was split
as 60-20-20% between training, validation, and test sets to
verify the performances of the model during training, but also
the scalability over unseen data. It should be noted that to
separate the training and test sets and to obtain natural data
diversity, the training and validation data sets were collected
in June, while the test set was collected in December. This
separation ensures that during testing the model did not see
data correlated to the validation and training set.

TABLE I
DATASET COMPOSITION AND SPLITTING

Data Training Validation Test
Number of

drone images 188 62 62

Number of
total images 376 124 124

Ratio compared to whole dataset 60% 20% 20%

V. RESULTS

In this section the results generated by the proposed ap-
proach are presented and discussed. In terms of performance
metrics, in computer vision recall can be interpreted as the
area of overlap between the ground truth bounding box and
the predicted one, divided by the area of the detected bounding
box. Similarly, precision measures the same area of overlap,
but this time it is divided by the ground truth object. Lastly, the
mean Average Precision (mAP) is a weighted mean of preci-
sion scores at multiple thresholds, i.e. the area under precision-
recall curve. Each new threshold represents the increment in
the recall score compared to the prior threshold. The result is
then averaged for each class. Thus, mAP highlights a trade-off
between precision and recall that considers both false positives
and false negatives, making it a very popular metric in all
object detection applications. Moreover, mAP@0.5 means the
average precision is computed for Intersection over Union
(IoU) scores of 0.5, while mAP@0.5 : 0.95 represents the
mAP taken for IoU values ranging from 0.5 up to 0.95 with
a step of 0.05.

A. Handpicked hyperparameter space
The performances of two optimizers were analyzed: SGD

and Adam. Additionally, the model was tested using hand-
picked hyperparameters, and the results are juxtaposed with
those obtained by fine-tuning the model via genetic algorithms.
The results are summarized in Table II.

One main difference between SGD and Adam is the emer-
gence of false alarms. During training, SGD creates false
detections over wind turbines that yield wide Doppler modula-
tions due to their fast-rotating blades, as seen in Fig. 4. Adam
on the other hand avoids such false alarms, as seen in Fig. 5.
This is further reflected from the performance metrics, where
Adam tends to have higher precision than SGD. Thus, while
one simple solution to distinguish drones from wind turbines
would be to verify the reflectivity and size of the target,
the false alarms can be successfully removed by analyzing
multiple optimizers for the training.

Fig. 4. Example of output of the proposed model, with detections obtained
using SGD optimizer. A false alarm induced by a wind turbine is reported,
together with a true detection.

Fig. 5. Example of output of the proposed model for the same range-Doppler
plot of Fig. 4, but using Adam as optimizer. The choice of this optimizer did
not yield false detections.

B. Hyperparameters fine-tuning via genetic algorithms

The proposed solution to further adapt the model for the de-
sired application is by fine-tuning the hyperparameters. While
there are multiple methods to explore the hyperparameter
space, in this paper genetic algorithms [18] were investigated
and the new model results are summarized in Table II. The
best combination of the hyperparameter space is chosen based
on the best mAP@0.5 obtained. A mutation for the proposed
dataset took approximately 5 minutes, and a total of 600
mutations were used for each optimizer. Thus, approximately 5
days were required to obtain the new hyperparameters’ values.

Fig. 6 shows an example of results generated with the
hyperparameter space from the genetic algorithm, without the
false detection from the wind turbine. While Adam is less
computationally expensive and did not yield false alarms as
compared to SGD, these examples highlight the importance of
the optimizer choice and proper hyperparameters initialization.
Table II shows the improvements of the model obtained via
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TABLE II
PERFORMANCE DIFFERENCES BETWEEN HAND-PICKED HYPERPARAMETERS AND THOSE OBTAINED VIA GENETIC ALGORITHM.

Model Set Hyperparameters
tuning Optimizer Precision Recall mAP@0.5 mAP@0.5:0.95

1 Validation Hand picked SGD 98.3% 98.4% 99.4% 75.2%
1 Test Hand picked SGD 99.9% 98.4% 99.4% 76.6%
2 Validation Genetic algorithm SGD 98.2% 100% 99.5% 75.7%
2 Test Genetic algorithm SGD 100% 99.7% 99.5% 75.1%
3 Validation Hand picked Adam 100% 98% 99.5% 75.8%
3 Test Hand picked Adam 99.6% 98.4% 99.5% 76.2%
4 Validation Genetic algorithm Adam 100% 98.2% 99.5% 76.5%
4 Test Genetic algorithm Adam 99.9% 100% 99.5% 77.3%

genetic algorithms, especially for the results obtained over the
test set. Nonetheless, while the false alarms were successfully
suppressed for SGD, the mAP at multiple thresholds slightly
decreased when the hyperparameters were initialized using
genetic algorithms. For Adam meanwhile, all the performance
scores improved. This may be due to Adam being an adaptive
optimizer which is more difficult to initialize, but also because
more mutations were required to find an optimal hyperparam-
eter space. Hence, the genetic algorithms were able to find a
better hyperparameter space to yield the best overall results.

Fig. 6. Example of output of the proposed model for the same range-Doppler
plot of Fig. 4 and 5, but using SGD optimizer and genetic algorithm. The
genetic algorithm combined with SGD did not yield false detections.

C. Precision-Recall and ROC curves

The Receiver Operating Characteristic (ROC) curve is a
popular tool to visualize the trade-off between the True
Positive Rate (TPR) and False Positive Rate (FPR). However,
the output of object detection frameworks such as YOLO is
a bounding box surrounding the object of interest. Hence,
the true negatives in this application represent all possible
bounding boxes that were correctly not detected within an
image, which would be in the order of thousands. Thus, the
FPR is non-representative in object detection applications,
which in turn limits the practicality of ROC curves. The
Precision-Recall (PR) curve is proposed as a valid alternative
[19].

The PR curve analyzes the model’s false positive rate
(i.e. the precision score) at multiple probability of detection
thresholds (i.e. the recall score). Based on this curve, the Area
Under the Precision-Recall Curve (AUC-PR) is computed,
which represents the mean Average Precision (mAP). The
AUC-PR constitutes one of the main ways to evaluate the
performances of a model, given that a high AUC (or mAP)
represents a high probability of detection and low false positive
rate. In Fig. 7 the PR curve shows that the precision stays
high as the recall score also increases, and the curve is
almost optimal. The total AUC is 99.5%, which represents
the mAP@0.5.

This high AUC score reflects the high target SNR, and
further research to investigate the scalability and performance
of this method on more challenging datasets is necessary.

Fig. 7. PR curve of the model trained using Adam and genetic algorithm,
highlighting the area under the precision-recall curve (or mAP).

D. Discussion and comparison with traditional algorithms

In these preliminary results, the proposed method was
shown to accurately detect and label drones with high preci-
sion and recall scores based on range-Doppler plots. Moreover,
the YOLO inference time is 1.7ms per image with approx-
imately 0.2ms pre-processing time using a Nvidia GeForce
RTX 3080 graphics card with 10 gigabyte total memory.

To the best knowledge of the authors, no similar computer
vision method was investigated for the specific application
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of jointly detecting and classifying drones using surveillance
radars’ data. In the literature, a detector is firstly used to obtain
the targets of interest, after which a classifier is used to assign
the detected targets’ labels. Thus, two different algorithms
with different performance metrics and outputs are used to
detect and label targets, while the proposed approach with
YOLO solves this problem jointly. This makes the direct
benchmarking of the method not straightforward.

For a drone with an experimental radar cross-section of
approximately −18 dBm2, the same value as the Autel Evo
II drone used in this project, the probability of detection using
a constant false alarm rate detector for a Swerling case IV is
given as below [20]:

cst =
1

1 + SNR
2

(1)

PD =
(
1− cst · (1− cst) · log(PFA)

)
· P cst

FA = 78.08% (2)

The classification however is done based on plots & tracks,
compared to YOLO which labels targets based on range-
Doppler plots. The current deep learning model used by Robin
Radar has a precision score of 80.65% and a recall score
of 97.60%. However, these benchmarks were exhaustively
analysed for many test scenarios with multiple types of drones,
different experimental conditions and a static radar, while the
proposed YOLO model was tested for a radar on-the-move
using the same drone. This calls for additional tests with more
diverse data to be performed as future work.

VI. CONCLUSION

In this paper, a novel approach for joint detection and clas-
sification of drones is proposed. It uses the YOLO framework
on range-Doppler plots captured with a surveillance ’radar on-
the-move’, i.e. a radar with a rotating antenna that is mounted
on a ground moving platform. Different from the conventional
approaches using micro-Doppler signatures from a staring
radar, the proposed approach is shown to be effective when
operating on single range-Doppler images corresponding to
relatively short observation times (or CPI).

The approach has been validated with experimental data
collected by the IRIS FMCW radar developed by Robin Radar
Systems B.V., on a small dataset with a single drone flying
in the scene of interest where other moving targets were
present, including birds, targets on the ground, and wind tur-
bines. Results in terms of precision, recall, and mean average
precision (mAP@0.5) over 99% were obtained, showing the
potential of the method and the opportunity to perform a
broader verification on a larger dataset. This work validates the
potential of applying deep learning methods for joint object
detection and classification tasks in radar applications.
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