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Abstract

Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-
ided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-
ided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline

onstruction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models.
he proposed almost-C1 splines are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on
lacements or number of extraordinary vertices). They are C1 smooth at all regular and extraordinary vertices. Moreover, they
re C1 smooth across all edges between regular vertices and C0 smooth across all edges that are adjacent to an extraordinary
ertex. The splines thus form H2-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured
pline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several
-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-C1 splines are described in an explicit
ézier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned
nd exhibits optimal approximation behaviour.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: almost-C1 splines; Isogeometric analysis; Unstructured quadrilateral meshes; Analysis-suitable splines; Optimal approximation

1. Introduction

In this article we present a new approach for building analysis-suitable biquadratic spline spaces on fully
nstructured quadrilateral meshes, so-called almost-C1 splines. In particular, with the recent mixed smoothness

spline construction from [1] as the starting point, we build splines that are C1 smooth at all mesh vertices and
1 smooth across most edges, as long as the control points are in a generic position. Thus, the construction

ields H 2-nonconforming spline spaces that can be used to solve fourth-order problems. We test this on several
model problems, such as the biharmonic problem, Kirchhoff–Love thin shells, a surface Cahn–Hilliard model and
the surface Laplace–Beltrami eigenvalue problem. We obtain almost-C1 splines by employing approximate C1
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Fig. 1. The above figures show how almost-C1 splines can enable analysis-suitable model reconstructions. For a crash simulation vehicle
odel of the Dodge Neon (not shown) [18], figure (a) shows a watertight bilinear quadrilateral mesh generated using Rhinoceros®. Figure

(b) shows an analysis-suitable spline model reconstructed using almost-C1 splines; figure (c) shows the underlying Bézier mesh. Note that
watertight mesh generation for CAD models is itself an active area of research; for instance, see the recent article [19]. Note also that
we used the quad-mesh in figure (a) to automatically compute control points used in figure (b); in practice this reconstruction step can be
improved by using information from the original (CAD or finite element) model.

smoothness at a fixed number of mesh edges (depending only on mesh topology and independent of its refinement
level) and classical, parametric C1 smoothness at all other edges. The motivation for doing so is manifold.

.1. Motivation

This spline construction is inspired by the general aim of Isogeometric Analysis (IGA), introduced in [2], which
s the integration of a finite element-like analysis within Computer-Aided Design (CAD) [3], cf. [4]. Achieving
his objective would lead to a uniform and significantly more efficient design-through-analysis workflow for many
ngineering applications. In contrast, in the current setup a significant portion of the time is spent neither on design
or on analysis but is dominated by generating analysis-suitable reconstructions of CAD models (studies suggest
p to 80%, cf. [5]).

Thus, our focus lies on developing splines that enable model reconstruction as well as simulation of high-order
DEs on the reconstructed models (cf. Fig. 1). The goal is to achieve such analysis-suitable spline reconstructions
or arbitrary topology geometries. While IGA was first introduced on single NURBS patches, that is, on structured
uadrilateral meshes, to handle general bivariate geometries (planar domains and surfaces), one must be able to
efine analysis-suitable splines on general unstructured meshes.

To increase the geometric flexibility of the construction, the almost-C1 splines are only approximately C1

smooth near extraordinary vertices. Nonetheless, it is known that approximately C1 smooth function spaces can
be used to build optimally convergent finite element methods for partial differential equations (PDEs) in variational
form requiring H 2 regularity; see, e.g., [6]. By relaxing the C1 smoothness constraints in a specific manner, the
ingularities that appear for parametrically smooth spline constructions can be avoided (cf. [7]) and, potentially,
etter numerical convergence than non-singular geometrically smooth spline constructions (e.g. as in [8]) could be
btained.

Since we provide explicit descriptions of the almost-C1 splines, they form a viable alternative to other approxi-
mately smooth constructions that are based on a weak imposition of smoothness, such as Nitsche’s method [9,10],
the mortar method [11–13] or a mixed approach [14]. A similar, explicit construction for approximately C1 smooth
sogeometric multi-patch spaces is presented in [15,16].

Finally, the proposed almost-C1 splines allow a construction with a highly local footprint and fewer restrictions
han the available parametrically or geometrically smooth alternatives, cf. [17].

With this motivation in mind, we begin by highlighting some prior work in these areas in Section 1.2, then we
ummarize the main properties of almost-C1 splines in Section 1.3 and present a short outline of this article in
ection 1.4.

.2. Smooth splines over unstructured quadrilateral meshes

In the following we discuss other approaches that are related to the construction of almost-C1 splines presented
1
n this paper. Since almost-C splines are smooth splines over quadrilateral meshes, we mostly focus the discussion

2
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on similar, quad-based spline constructions. Note that this is an extensive area of active research and we do not
attempt to present an exhaustive overview; instead we point the readers to the comprehensive literature reviews
recently presented in [17]. For instance, we focus here on constructions which build spline functions by smoothly
joining polynomials on quadrilateral patches. This is in contrast to spline manifolds as in [20] where the functions
are locally defined by composition of polynomials with suitably chosen blending functions, and which have been
used to build bivariate [21–23] and trivariate splines [23] for IGA.

In the context of piecewise-polynomial splines over quadrilateral meshes, one can distinguish two types of
moothness — parametric and geometric. While parametrically smooth splines assume (at least locally) a joint
arameter domain for neighbouring faces, in which the smoothness is prescribed, geometric smoothness is defined
irectly in physical space. As we will see in the following, many constructions rely on both parametric and geometric
moothness. While geometric smoothness between Bézier or B-spline patches is a well-known concept in CAD
3, Chapter 8], it has only recently been used for simulations.

One possibility to create parametrically smooth surfaces from unstructured meshes is to use subdivision, see
24–26]. While subdivision is a process that can be defined entirely on a mesh, its limit surface can be interpreted
s a piecewise polynomial spline. This limit surface has a finite representation in regular regions of the mesh
e.g. equivalent to bicubic B-splines in case of Catmull–Clark subdivision) and is composed of an infinite number
f spline rings around extraordinary vertices, cf. [27]. When using subdivision surfaces in IGA, this peculiar property
ust be taken into account, e.g. when performing numerical quadrature [28]. While the approximation properties

re in general sub-optimal for both second- and fourth-order problems, see [8,29–34], recent work has shown that
uned subdivision schemes [35] can yield optimal approximation at least for second-order problems.

It is also possible to employ parametric smoothness over a quadrilateral mesh composed of finitely many faces.
hile such a construction yields B-splines (or locally refined splines, such as T-splines) in structured regions of the
esh, singularities are introduced at extraordinary vertices. This phenomenon was studied and used in [36,37] to

reate smooth but singular spline surfaces. In this setup, additional geometric smoothness has to be imposed at the
xtraordinary vertex. This results in smooth but degenerate Bézier patches, so-called D-patches. Such constructions

were used for IGA in [7,38–40] by incorporating them within bicubic splines. Even though the spline geometries are
singular, the spaces possess other favourable properties for both design and analysis. They can be used to discretize
high-order PDEs, see e.g. [41,42], since they possess the required H 2-regularity properties, cf. [43]. The spaces
onstructed in [7,39] also demonstrate optimal convergence under mesh refinement when applied to fourth-order
roblems. Finally, while [7,39] assumed that the extraordinary vertices were separated by regular vertices, [40]
howed that this assumption was not necessary for guaranteeing linear independence of the spline basis.

Alternatively, one can increase the flexibility of smooth splines over quadrilateral meshes by creating polar
ingularities, which are the result of edges mapped onto single points. General Ck smooth splines, for k ≥ 0,
ere developed in [44] over singular Bézier patches and in [45] over general polar quad meshes. An explicit C1

mooth construction was presented in detail in [46] and used for simulations on smooth, deforming surfaces in [47].
When constructing smooth splines over singular or polar configurations, additional geometric continuity has to

e imposed at the singular or polar point to achieve the desired smoothness. Similar constructions can be employed,
f parametric smoothness of higher order is enforced only for those edges that are away from extraordinary vertices,
hile at those edges near extraordinary vertices geometric smoothness is imposed, such as in [48,49]. The dimension
f such locally defined, geometrically smooth spline spaces over topological, mixed quadrilateral–triangle meshes
as studied in [50]. Later, approximation properties could be shown for G1 smooth isogeometric elements over
lanar, quadrilateral [51] and mixed [52] meshes.

In the following we give an overview of constructions that rely on geometric smoothness not in such a
ocal, but in a global sense. Geometrically C1 smooth isogeometric discretizations can be defined over bilinear
ézier elements [53], over bilinear spline patches [54], or over more general planar multi-patch domains [55–57].
ecently, constructions for C2 smoothness over multi-patch domains were developed in [58,59].

It has been shown in [55], that C1 smooth spaces over multi-patch domains possess optimal approximation
roperties only in the case of so-called analysis-suitable G1 parameterizations. While this condition can be fulfilled
or planar domains following a reparameterization [60], for general planar multi-patch domains and surfaces it
s not satisfied. Thus, to increase the geometric flexibility and allow for constructions over general domains, one

ay increase the polynomial degree locally [61,62] or reduce the smoothness requirements by replacing exact
1 1
smoothness by approximate C smoothness [15,16]. In this paper we follow a similar approach, but instead

3
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of enforcing approximate C1 smoothness along entire interfaces between patches, we impose approximate C1

moothness only at mesh edges near extraordinary vertices. In the following we give an overview of the most
mportant properties of the almost-C1 splines that we propose in this paper.

.3. Properties of almost-C1 splines

Given an unstructured mesh T consisting of quadrilaterals (we allow both planar and non-planar meshes of
rbitrary topology), almost-C1 splines are biquadratic splines on T that extend the construction developed in [1].
he following briefly outlines some features of our construction; they are elaborated upon later in the article.

• Definable on fully unstructured meshes: We allow all types of manifold quadrilateral meshes with no
restrictions on the numbers or placements of extraordinary vertices (e.g., multiple extraordinary vertices per
quadrilateral are allowed, boundary extraordinary vertices are allowed).

• Well-conditioned B-spline-like basis: The spline basis functions have several useful B-spline-like properties:
partition of unity, non-negativity, local support and linear independence, cf. Proposition 3.8. The spline degree-
of-freedom structure is simple and allows simple control of the geometry and functions at the boundary.
Furthermore, the spline basis is non-singular and well-conditioned.

• Almost-C1 smoothness: If the control points are in a generic (non-degenerate) position, then the resulting
splines are globally C0 smooth and in addition C1 smooth (in an isogeometric sense) at all vertices of
the mesh, C1 smooth across all edges between regular vertices, and approximately smooth across edges
containing extraordinary vertices, cf. Proposition 3.9. This is in contrast to [1], where the splines are only
C0 at extraordinary vertices for almost all control point configurations.

• Easy implementation: We utilize and extend the non-nested refinement process from [1] which is convergent
and nested, when restricted to the boundaries. As outlined in [1], this has two benefits which improve
upon nested refinements of spline spaces of mixed smoothness (e.g., see [7,63]). The non-nestedness of
the refinement allows us to “shrink” the neighbourhoods of approximate C1 smoothness and leads to a
very simplified computer implementation and, furthermore, in the limit of infinite refinements, converges to
a smooth limit surface. At the same time, the refinement process leaves the spline invariant on the mesh
boundary; this is especially useful if the boundaries of a spline geometry are composed of special curves such
as conic sections.
Numerical tests indicate that the spline spaces also demonstrate optimal approximation behaviour in the L2,
H 1 and H 2 norms for second- and fourth-order problems under mesh refinement. Conceptually, this approach
can be seen as an amalgamation of the “design” and “analysis” philosophies from [7] – it offers the ease of
working with the design space while also being suitable for analysis.

• Lowest-order unstructured spline construction for fourth-order problems: Our spline construction only
uses biquadratic polynomial pieces and is thus the lowest-order unstructured spline construction suitable for
fourth-order problems. Note that it is well-known that for certain problems (e.g., from structural mechanics)
higher polynomial degrees might help alleviate locked or non-convergent approximations; similar ad-hoc
solutions can also be derived for lower polynomial degrees (for instance, by utilizing reduced quadrature).

Note that, on planar geometries, the construction from [1] also yields optimal convergence rates, at least for
he biharmonic problem, with the almost-C1 splines offering smaller errors in the broken H 2 norm and in the
orresponding DG error norm. However, on surface geometries, the construction from [1] is in general not smooth
t extraordinary vertices and does not yield a smooth surface in the limit, unless special care is taken at the
xtraordinary vertices.

.4. Outline of the paper

In Section 2 we introduce the relevant notation for the unstructured quadrilateral meshes that we focus on.
hen, in Section 3 we present the construction of unstructured biquadratic splines over such meshes, culminating

n the definition of almost-C1 splines in Section 3.5. Their useful properties are presented in Propositions 3.8
nd 3.9. Next, in Section 4, we discuss the (non-nested) refinement of almost-C1 spline spaces and geometries.
roposition 4.3 characterizes our refinement rules. Finally, in Section 5 we present some numerical tests focusing on

he analysis-suitability of the proposed B-splines, including the Scordelis–Lo thin shell benchmark, a Cahn–Hilliard
roblem on a closed surface and the analysis of a Laplace–Beltrami eigenvalue problem.
4
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Fig. 2. An example of almost-C1 splines as defined in Section 3, with the underlying mesh in (a), the dof-structure in (b) and an example
geometry in (c).

2. Unstructured quadrilateral meshes

We are interested in modelling complex, smooth, 2-dimensional geometries of arbitrary topology and in solving
scalar and vector-valued PDEs on such geometries. For instance, planar geometries in R2 or surfaces in R3. Then,
plines defined on unstructured meshes can help create such complex geometries, and can thereafter be used for
umerically solving PDEs on them. We focus here on unstructured quadrilateral meshes. In this section, we define
ome relevant notation for such meshes, which are the basis for defining almost-C1 splines; see Fig. 2(a) for
eference.

Before we begin, we would like to point out that we consider T as a topological construct only — in general,
he quadrilaterals in T will not be assumed to occupy a common parametric domain. Similarly, the meshes are
ot restricted to be planar or of trivial topology either. Representations as in Fig. 2(a) will only be for the purpose
f specifying the connectivity of the different quadrilaterals with each other. As such, spline geometries and spline
unctions on those geometries will be built by appropriately selecting the degrees of freedom for splines on T . An
xample corresponding to the mesh in Fig. 2(a) is shown in Fig. 2(c); see Section 3.5 for details on the construction
f almost-C1 splines. Note that the spline construction presented there is based on local geometric data around
xtraordinary vertices. However, the construction can easily be generalized to a purely topological one, as explained
n Remark 3.4 and Appendix B.

We will denote all quadrilateral meshes with T . We assume that T is without any hanging nodes and that the
nteriors of all quadrilaterals are disjoint. Each quadrilateral in T will be called a face of T , or simply a face.

ore generally, for k ≤ 2, the k-dimensional geometric components of the mesh will be collected in sets Tk . That
is, vertices in T0, edges in T1, and faces in T2.

We assume that T is such that each edge is shared by at most two faces of the mesh. If any edge is contained
in only one face then it is called a boundary edge, otherwise it is called an interior edge; boundary edges have
been displayed with slightly thicker lines in Fig. 2(a). Any vertices that lie on a boundary edge are called boundary
vertices, otherwise they are called interior vertices. We denote the sets of boundary edges and vertices with T B

1

and T B
0 , respectively. The set of interior vertices and edges will be denoted by

◦

Tk for k = 0 and 1, respectively. We
also assume that there are no ‘kissing vertices’ in the mesh. That is, for any two faces σ, σ ′ that share a common
vertex γ , there is a sequence of faces σ0, . . . , σℓ that all contain γ such that σ0 = σ , σi = σ ′, and σi ∩ σi−1 ∈

◦

T1
for i = 1, . . . , ℓ.

We always assume faces and edges to be closed sets. Thus, we define the valence of a vertex, edge or face of T
to be the number of faces that contain it. For φ ∈ Tk , k ≤ 2, we will denote the valence of φ with µφ . In particular,

• the valence µσ of any face σ is exactly 1 since each face contains itself;
• the valence µτ of a boundary or interior edge τ is 1 or 2, respectively, by the above definitions.

ertices γ of T will be called extraordinary vertices if they are interior vertices with valences µγ ̸= 4, or if they are

boundary vertices with valences µγ > 2. Vertices of valence 1 will be called corner vertices and will be collected

5
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Fig. 3. The degree of freedom structure for the spline space B∗ on the mesh T from Fig. 2(a). There is one dof associated to each face,
boundary edge and corner vertex of the mesh T .

in the set T C
0 ⊆ T B

0 = T0\
◦

T0. For visual consistency, we will always denote the extraordinary and corner vertices
f a mesh by respectively placing red stars and yellow squares on them; see Fig. 2(a). Moreover, we call all edges
hat contain one or more extraordinary vertices as spoke edges and all faces that contain one or more extraordinary
ertices as extraordinary faces. Otherwise, we call them regular edges and regular faces, respectively. We denote
he set of all extraordinary vertices and faces with T E

0 and T E
2 , respectively.

3. Unstructured biquadratic splines

In this section we present the construction of splines over unstructured quadrilateral meshes T as defined above.
The construction is based on two steps. First, we summarize a biquadratic spline basis construction from [1] which
depends purely on topological properties of the mesh (Sections 3.1–3.3). These functions span the space B∗, which
is biquadratic on every face, C0 at all extraordinary points and across all spoke edges and C1 across all other edges

f the mesh. In the second step the basis functions of B∗, which have support on extraordinary faces, are modified
uch that they have vanishing value and gradient at each extraordinary point. Consequently, three additional functions
or each extraordinary vertex are introduced that locally span all linear functions. These functions can be defined
sing some geometric information of the mesh. The resulting functions constitute the almost-C1 splines over the
esh T , spanning the space B (see Section 3.5). The almost-C1 splines are then C1 smooth at all vertices and

omposed of modified functions from B∗ as well as three new functions associated to each extraordinary vertex.

.1. Degree-of-freedom structure for B∗

The degrees of freedom, or dofs in short, corresponding to B∗ are divided into three categories; the spline
onstruction will be specified for each category separately.

• Face dofs: We associate one degree of freedom to each face of T , i.e., one degree of freedom for each member
of T2.

• Boundary edge dofs: We associate one degree of freedom to each boundary edge of T , i.e., one degree of
freedom for each member of T B

1 .
• Corner vertex dofs: We associate one degree of freedom to each corner vertex of T , i.e., one degree of freedom

for each member of T C
0 .

We create a basis for B∗ by associating one function to each dof, which we summarize using the index set

I ∗
:= T2 ∪ T B

1 ∪ T C
0 . (1)

or visual consistency, in the topological description (as in Fig. 2(b)), we will denote each dof by placing an unfilled
lue circle on the associated face/boundary edge/corner vertex of T , and the connectivity of the dofs will be denoted

ith thin dotted lines; see Fig. 3.

6
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l

Fig. 4. Here we take a submesh of the one from Fig. 2(a) to illustrate how the extraction coefficients will be graphically denoted. Given a
face σ ∈ T and φ such that φ ∩ σ = φ, B∗

φ will be defined graphically by specifying its Bernstein–Bézier coefficients on σ ; see figure (a).
This description will be extended to neighbouring faces of T with zero coefficients denoted here with a · in figure (b). See Section 3.2 for
further elaboration.

Following this categorization of the dofs, we will also call the associated splines face, boundary edge and corner
vertex splines, respectively. Denote these spline functions as B∗

φ , φ ∈ I ∗. The associated spline space on T is then
going to be defined as

B∗
:= span

(
B∗

φ : φ ∈ I ∗
)

,

where I ∗ is defined as in (1).
In Section 3.3, we define the B-splines B∗

φ , φ ∈ I ∗. This will be done by specifying their local polynomial
descriptions in terms of Bernstein–Bézier polynomials on quadrilaterals via so-called extraction matrices. Extraction
matrices specify how the face-local Bernstein–Bézier polynomials can be linearly combined to yield the face-local
description of a spline basis function; these were introduced in [64,65] and have been used, for instance, for defining
splines on unstructured quadrilateral meshes in [7,45,63] and for multi-degree splines in [66,67]. We explain our
extraction matrix convention in Section 3.2, and the B-spline definitions are subsequently presented in Section 3.3.

3.2. Extraction matrix convention

We will graphically denote the extraction matrix for each B-spline. For all B-splines, this will be done by
specifying their Bernstein–Bézier coefficients on a single face of T ; the face-local description will be extended
to the neighbours. We elaborate upon this convention here and use Fig. 4 for reference. For visual consistency
and to differentiate local Bernstein–Bézier coefficients from spline dofs, all local polynomial coefficients will be
displayed inside magenta coloured disks.

Consider a face σ ∈ T2 and let B∗

φ be a spline associated either to σ or to a boundary edge/corner vertex that
belongs to σ , i.e., φ ∩ σ = φ. Then, we will present the definition of B∗

φ graphically as on the left in Fig. 4(a) by
specifying 9 coefficients {c jk[B∗

φ; σ ]}2
j,k=0. The shown coefficients are to be interpreted as defining the following

ocal spline description,

Bφ
∗
⏐⏐
σ =

2∑
c jk[B∗

φ; σ ]b0
jk,□ , (2)
j,k=0

7
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a

Fig. 5. This figure defines all B-splines that may be associated to a face, boundary edge or a corner vertex. In (a), the local mesh
neighbourhood of a face of T are shown with vertices γi and edges τi . In (b), the face-local coefficients of a B-spline associated to σ are
presented. In (c), assuming that τ1 is a boundary edge, the face-local coefficients of a B-spline associated to τ1 are presented. Finally, in
(d), assuming that γ1 is a corner vertex, the face-local coefficients of a B-spline associated to γ1 are presented.

where b0
jk,□ is the ( j, k)th biquadratic Bernstein–Bézier polynomial defined on σ by interpreting it as the unit square

[0, 1]2 (the origin is placed at the corner with the coefficient c00) and local coordinates ξ := (u, v),

b0
jk,□(ξ ) :=

(
2
j

)(
2
k

)
(1 − u) j (1 − v)ku jvk . (3)

Thus, c jk[ f ; σ ] denotes the ( j, k)th coefficient of the function f restricted to the face σ .
Finally, the face-local descriptions specified as above on any face σ are extended to any neighbouring face σ ′

with the help of zero coefficients; see Fig. 4(b). Note that on a planar quadrilateral mesh such a representation
corresponds to representing the dof-structure of the C0-smooth piecewise biquadratic space using domain points,
s e.g. in [68]. With this graphical convention in place, let us now define the three different types of splines B∗

φ ,
φ ∈ I ∗, in the following section.

3.3. The face-local spline representations

Face splines
Consider a face σ ∈ T2 and let B∗

σ be the B-spline associated to its dof. Let the edges and vertices of σ be numbered
as shown at the top in Fig. 5(a). Then, the face-local coefficients for B∗

σ are defined as in Fig. 5(b). The figure uses
a boundary flag for vertices and edges which is a characteristic function defined as follows for φ ∈ Tk , k = 0, 1,

χ∂,φ =

{
1 , φ ∈

◦

Tk ,

0 , otherwise .
(4)
8
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Boundary edge splines
Consider a face σ ∈ T2. Let the edges and vertices of σ be numbered as shown at the top in Fig. 5(a), and let τ1
be a boundary edge and B∗

τ1
the B-spline associated to its dof. Then, the face-local coefficients for B∗

τ1
are defined

as in Fig. 5(c). The figure uses a corner flag for vertices which is a characteristic function defined as follows for
∈ T0,

χ∧,γ =

{
0 , γ ∈ T C

0 ,

1 , otherwise .
(5)

orner vertex splines
onsider a face σ ∈ T2. Let the edges and vertices of σ be numbered as shown at the top in Fig. 5(a). Let γ1 be
boundary vertex that has been chosen to be a corner vertex, and let B∗

γ1
the B-spline associated to its dof. Then,

he face-local coefficients for B∗
γ1

are defined as in Fig. 5(d).

.4. Spline functions

Given the above B-spline definitions, we can create a spline function f ∗
∈ B∗ by linearly combining the

-splines with coefficients f ∗

φ ∈ R,

f ∗
:=

∑
φ∈I ∗

f ∗

φ B∗

φ . (6)

ollowing the piecewise definition of B-splines, the above definition is also interpreted in a piecewise manner. That
s, for any σ ∈ T2 and local coordinates ξ as in Eq. (3),

f ∗
⏐⏐
σ (ξ ) =

∑
φ∈I ∗

f ∗

φ B∗

φ

⏐⏐
σ (ξ ) , (7)

here Bφ
∗
⏐⏐
σ follows from Section 3.3. Similar to (2), we thus have

f ∗
⏐⏐
σ (ξ ) =

2∑
j,k=0

c jk[ f ∗
; σ ]b0

jk,□(ξ ) ,

here

c jk[ f ∗
; σ ] =

∑
φ∈I ∗

f ∗

φ c jk[B∗

φ; σ ] .

These kinds of linear combinations can be used, for instance, to create a bivariate spline geometry x∗
∈ (B∗)d .

his can be done by choosing appropriate control points x∗

φ ∈ Rd , φ ∈ I ∗, and defining

x∗
:=

∑
φ∈I ∗

x∗

φ B∗

φ . (8)

e also have a local representation for the geometry x∗,

c jk[x∗
; σ ] =

∑
φ∈I ∗

x∗

φc jk[B∗

φ; σ ].

he functions {B∗

φ}φ∈I ∗ are linearly independent. They also form a non-negative, local partition of unity, thus the
oefficients x∗

φ can be seen as classical spline control points. See [1] for a discussion of other properties of B∗.

.5. The almost-C1 splines B

In the following we discuss how B∗ and its basis can be modified to build almost-C1 splines spanning the space
. We focus on one specific construction which uses geometric data, i.e., which is based on an underlying geometry
apping x∗

∈ (B∗)d , or equivalently on underlying control points x∗

φ ∈ Rd , φ ∈ I ∗, as well as on extraordinary-
E
ertex normals nγ , for each extraordinary vertex γ ∈ T0 . Note that the construction depends only on a small

9
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T

neighbourhood of each extraordinary vertex, that is, on the control points corresponding to extraordinary faces
φ ∈ T E

2 ⊂ I ∗. A completely geometry independent construction is also possible, as developed in Appendix B.
First, the set of degrees of freedom I for B is given by the dofs from I ∗ enriched by three additional dofs for

ach extraordinary vertex γ ∈ T E
0 . More precisely, we set

I =
{
σ ∈ T2 : ∃γ ∈ T0 \ T E

0 s.t. γ ∈ σ
}⋃ {

τ ∈ T B
1 : ∃γ ∈ T0 \ T E

0 s.t. γ ∈ τ
}⋃

T C
0

⋃ (
T E

0 × {1, 2, 3}
)

,

(9)

and describe a basis Bφ , φ ∈ I , in the following. Note that there are no splines in B associated to those faces and
boundary edges where all incident vertices are extraordinary. The space B is defined as the span of Bφ ,

B := span
(
Bφ : φ ∈ I

)
.

B-splines on regular faces are identical
Let φ ∈ I ∗ be a dof of the spline space B∗. Then we define the corresponding basis function Bφ of B such that

Bφ|σ := B∗

φ|σ , ∀σ ∈ T2\T
E

2 .

B-splines on extraordinary faces are subdivided and truncated
For φ ∈ I ∗ and σ ∈ T E

2 , we will define Bφ|σ by modifying (i.e., subdividing and truncating) the local
representations B∗

φ|σ ; the modification will impose vanishing values and derivatives for Bφ at all γ ∈ T E
0 . If

the modifications imply that Bφ ≡ 0, then φ will not be a dof for the spline space B; otherwise, Bφ will be the
basis function corresponding to the dof φ. In particular, the former situation will arise only if all vertices incident
upon φ are extraordinary.

First, for any σ ∈ T E
2 , consider the local representation of B∗

φ|σ ,

B∗

φ|σ =

2∑
j,k=0

c jk[B∗

φ; σ ]b0
jk,□ ,

and define the matrix of coefficients c[ f ; σ ] :=
(
c jk[ f ; σ ]

)
jk . Let the four vertices of σ be ordered 1 through 4 in

counter-clockwise manner starting from the bottom-left, as in Fig. 5(a). Then, we locally define Bφ to be a modified
representation of B∗

φ as

Bφ|σ :=

3∑
j,k=0

ĉ jk[Bφ; σ ]b1
jk,□ , (10)

where b1
jk,□ is the ( j, k)th C1 tensor-product B-spline corresponding to the knot vector (0, 0, 0, 1

2 , 1, 1, 1) in both
parametric directions, and

ĉ[Bφ; σ ] :=
(
Kc[B∗

φ; σ ]KT ) 4⨀
i=1

Ti ,

ith ⊙ signifying the Hadamard product (or, element-wise product) of matrices. In the above, K is the univariate
-spline knot-insertion matrix that takes a quadratic Bézier element [0, 1] and inserts a single knot at 0.5,

K =

⎡⎢⎢⎢⎣
1
1
2

1
2
1
2

1
2

1

⎤⎥⎥⎥⎦ , (11)

nd Ti is the truncation matrix associated to the i th vertex of σ as ordered above. If the i th vertex is not extraordinary,
is defined to be a 4 × 4 matrix with all entries equal to 1. Else, if the i th vertex is extraordinary, i = 1, . . . , 4,
i

10
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C

Fig. 6. An extraordinary vertex γ ∈ T E
0 surrounded by its 1-ring, composed of the extraordinary faces σ1, σ2, . . . , σµ. The coefficients

c jk [x∗
; σi ] as well as the once refined coefficients ĉ jk [x∗

; σi ] of x∗ within the 1-ring neighbourhood of γ are depicted in (a) and (b),
respectively. In (c) the relevant coefficients needed to define B(γ,ν), as in (13), are highlighted in purple. The control triangle covering the
relevant coefficients is visualized in (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

we respectively define

T1 =

⎡⎢⎢⎣
0 0 1 1
0 0 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ , T2 =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1

⎤⎥⎥⎦ , T3 =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

⎤⎥⎥⎦ , T4 =

⎡⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ . (12)

Note that if all vertices of σ are extraordinary, ĉ[Bφ; σ ] = 0 since ⊙
4
i=1Ti = 0. In particular, if ĉ[Bφ; σ ] = 0 for σ

such that σ ∩ φ = φ, then Bφ will be globally zero since the corresponding B∗

φ is supported only on extraordinary
faces and is entirely truncated on each face in its support. Furthermore, for all φ ∈ I ∗ such that φ ∩ γ = ∅ for all
γ ∈ T E

0 , we have Bφ = B∗

φ . That is, all regular (face, boundary edge and corner) B-splines are unchanged by the
subdivision and truncation.

Remark 3.1. A similar construction can be achieved if the functions b1
jk,□ in (10) are replaced by bicubic

polynomials and if K is replaced by a degree elevation matrix instead of the knot insertion matrix, leading to almost-
1 splines being bicubic polynomials on extraordinary faces. Note that both constructions are computationally

equivalent and yield spaces of the same dimension. Moreover, the numerical performance of the two approaches is
indistinguishable. Here we present only the construction based on knot insertion since we consider in the following a
global mesh refinement scheme based on bisection of all edges and faces. Thus, the knot insertion based construction
facilitates this refinement scheme as it yields a purely piecewise-biquadratic spline space. Details on the construction
based on degree elevation can be found in Appendix A.

Extraordinary vertex splines B(γ,i) are added
Let γ ∈ T E

0 be an extraordinary vertex of valence µ and let the faces around it be denoted by σ1, σ2, . . . , σµ.
Given a prescribed normal direction nγ at the vertex, cf. Remark 3.3, we introduce a tangent plane through x∗

|γ

which is orthogonal to the vector nγ . Then, the 1-ring x∗
|⋃µ

i=1 σi
is projected orthogonally onto the tangent plane.

We denote this projection by Pγ . Since the construction is affine invariant, this is equivalent to projecting the
Bernstein–Bézier coefficients of the function x∗

|σi for each face σi , i.e.,

Pγ (x∗)|σ j =

3∑
j,k=0

Pγ (ĉ jk[x∗
; σ j ])b1

jk,□.

Remark 3.2. Note that Pγ (x∗)|σ j could have self-intersections but that is irrelevant for our construction where we
only need the projections of 4 specific face-local coefficients in the vicinity of γ to be regular; see Fig. 6, Eq. (13)

and Remark 3.3.

11
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Thus, Pγ results in a planar configuration of faces around the extraordinary vertex, see Fig. 6. We select the
local control points

ci
jk := Pγ (ĉ jk[x∗

; σi ]), with i ∈ {1, . . . , µ}, ( j, k) ∈ {0, 1}
2 , (13)

which are relevant for the basis construction. These local control points ci
jk , as highlighted in Fig. 6(c), are then

overed by a triangle (x(γ,1), x(γ,2), x(γ,3)), shown in Fig. 6(d). The triangle is selected such that it is the smallest
triangle that contains all points ci

jk in its interior (or of similar size to the smallest triangle, cf. Remark 3.5). We
denote the barycentric coordinates of a point c with respect to the triangle (x(γ,1), x(γ,2), x(γ,3)) by λ1(c), λ2(c) and

3(c), i.e., we have

c = λ1(c)x(γ,1) + λ2(c)x(γ,2) + λ3(c)x(γ,3) ,

ith λ1(c) + λ2(c) + λ3(c) = 1. By construction, we have λν(ci
jk) ≥ 0 for all ν ∈ {1, 2, 3}, ( j, k) ∈ {0, 1}

2 and
∈ {1, . . . , µ}.

The triangle (x(γ,1), x(γ,2), x(γ,3)) serves as a control triangle to determine the coefficients of the three new basis
unctions B(γ,ν), with ν ∈ {1, 2, 3}. Such control triangles are commonly used for defining smooth splines on
riangulations and go back to [69]. The coefficients of B(γ,ν)|σi are given as the barycentric coordinates corresponding
o the local control point x(γ,ν), i.e., the function B(γ,ν) is defined to be

B(γ,ν)|σi =

3∑
j,k=0

ĉ jk[B(γ,ν); σi ]b1
jk,□ , (14)

ith

ĉ jk[B(γ,ν); σi ] =

{
λν(ci

jk) , ( j, k) ∈ {0, 1}
2 ,

0 , otherwise .

oreover, B(γ,ν)|σ = 0 for all σ /∈ {σ1, σ2, . . . , σµ}.
Once the above process is repeated for all extraordinary points, the geometry description is updated from x∗ to

x ∈ Bd , with the latter defined to be

x =

∑
φ∈I

xφ Bφ . (15)

emark 3.3. The prescribed normal vector nγ must be given such that the projection is well-defined in
neighbourhood of the extraordinary vertex, i.e., nγ ̸= 0, and the projected surface Pγ (x∗) is regular in a

eighbourhood of γ . This implies a mild regularity assumption on the geometry x∗. If no normal vector is
rescribed, a suitable normal vector can be constructed e.g. through averaging of local normals in a neighbourhood
f γ .

emark 3.4. The projection onto the tangent plane prescribed by nγ introduces a dependence of the almost-C1

plines on the geometry x∗. This is not necessary. Instead, for all valences that appear in the mesh T , one can also
rescribe regular templates that enforce coplanarity in a geometry independent manner. The resulting coefficients
or such templates are given in Appendix B for some common valences.

emark 3.5. The choice of the control triangle has no effect on the resulting space but only on the properties of the
onstructed basis. Thus, the properties desired from the basis can also inform the choice of the control triangle. We
riefly mention two cases here: one concerning the conditioning of the basis, and another concerning basis functions
t the boundary. First, regarding conditioning, the control triangle should be chosen to be sufficiently regular (such
hat the smallest angle is bounded away from zero) and not too large. See [70] where control triangles were used
o specify values and derivatives for splines over triangulations. Second, in case of an extraordinary vertex γ at
he boundary, one can select the control triangle to obtain a basis that behaves like the usual C1 quadratic B-spline
asis when restricted to the boundary. Let τ1, τ2 ∈ T B

1 be the two spoke edges containing γ , and let the projected

ontrol points that correspond to one or both of these boundary edges be c1
1, c2

1 and c0 :=
c1

1+c2
1

2 . Then all other
rojected control points in (13) lie on one side of the line through c1 and c2. Thus, choosing a control triangle
1 1

12
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such that this line contains one of its edges, only two of the basis functions B(γ,ν) will be non-zero restricted to the
mesh boundary; the effect of the corresponding control points on the boundary will be analogous to the effect of
the control points of a univariate C1 quadratic spline curve.

3.6. Properties of almost-C1 splines

We collect the properties of x and B in the following results. In particular, the definitions of spline functions
outlined in Section 3.5 immediately imply properties that are useful in numerical simulations.

Lemma 3.6. For γ ∈ T E
0 , consider the set of local control points {xφ : γ ∈ φ ∈ I ∗

}. Let all control points in
his set be coplanar, with the common plane defined by the normal nγ . Then, in Eq. (13), ci

jk = ĉ jk[x∗
; σi ].

orollary 3.7. For all γ ∈ T E
0 , let the set of local control points {xφ : γ ∈ φ ∈ I ∗

} be coplanar with the
ommon plane defined by the normal nγ . Then, x = x∗.

roposition 3.8.

(a) The total number of dofs satisfies

n := |I | ≤ |T2| + |T B
1 | + |T C

0 | + 3|T E
0 | . (16)

If no face and no boundary edge of the mesh contains only extraordinary vertices, then the above relation
becomes an equality.

(b) Non-negativity: On any σ ∈ T2 and any φ ∈ I , Bφ

⏐⏐
σ

≥ 0.
(c) Partition of unity: On any σ ∈ T2,

∑
φ∈I Bφ

⏐⏐
σ

≡ 1.
(d) Local support: If Bφ is such that φ ∈ Tk , k = 0, 1, 2, then Bφ

⏐⏐
σ

= 0 for any σ ∈ T2 such that σ ∩ φ = ∅.
Similarly, if γ ∈ T E

0 with neighbouring faces {σ1, . . . , σµ}, then B(γ,k)|σ = 0 for any σ ∈ T2 \ {σ1, . . . , σµ}.
(e) Boundary Kronecker–Delta: All Bφ with φ ∈ T2 are identically zero on the boundary of T .
(f) Linear independence: {Bφ : φ ∈ I } form a basis for B.

roof. Property (a) can be shown by a simple counting exercise. Properties (b)–(d) can be deduced easily from the
epresentation of the splines in Bernstein–Bézier form, or in local B-spline form as in (10), on each face. One can
ee directly that all Bernstein–Bézier (and B-spline) coefficients are non-negative (in case of the extraordinary vertex
plines this is due to the control triangle being large enough), thus the basis functions are non-negative. Due to the
runcation and the control triangle construction, all Bernstein–Bézier (and B-spline) coefficients of functions sum
o one, thus all functions sum to one. The local support property can also be deduced directly from the Bernstein–
ézier form. Property (e) follows by definition, cf. Fig. 5(b). The linear independence stated in property (f) can be
erived from the linear independence of the basis functions {B∗

φ : φ ∈ I ∗
} for B∗, which was shown in [1]. After

he local modifications, the truncated and non-truncated functions stay linearly independent and the new functions
hat are introduced for each extraordinary vertex are linearly independent with respect to the others as well as
etween themselves, due to the control triangle being non-degenerate. This concludes the proof. ■

roposition 3.9. The almost-C1 splines spanning B are C1 at all vertices, that is, any surface x ∈ Bd possesses
well-defined tangent plane in every vertex, if the parameterization is regular. Moreover, the splines are C1 across

ll edges between regular vertices (i.e. inner vertices of valency four and boundary vertices of valency two or three)
nd C0 across all other edges.

roof. The C1 smoothness at all regular vertices and across all edges between regular vertices follows from the
act that the almost-C1 splines are locally equivalent to biquadratic tensor-product B-splines, cf. [1]. All functions
ssociated to faces, boundary edges and corner vertices are C1 at all extraordinary vertices due to the truncation.
ll extraordinary vertex functions are C1 smooth in an isogeometric sense at the associated vertex due to the local

0
-spline control points being coplanar. Finally, the global C smoothness follows by construction. ■

13
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Fig. 7. The above figure shows how the mesh faces are split when performing refinement. Each quadrilateral face is split into 4 new faces
as shown in (a). Figure (b) shows how the mesh topology changes after refinement for the mesh previously shown in Fig. 2(a); it is also
shown how the corner/extraordinary vertices retain their labels after refinement. See Section 4 for details.

In contrast to B∗, which is only C0 smooth at extraordinary vertices, the almost-C1 splines spanning B are
1 at all vertices, assuming that the spline control points are in a non-degenerate position. The tangent plane is

rthogonal to the prescribed normal vector nγ for each extraordinary vertex γ ∈ T E
0 . Furthermore, for any spline

urface x ∈ Bd or x∗
∈ (B∗)d the boundary of the domain can be interpreted as a collection of quadratic B-

pline curve segments with uniform (open) knot vectors. Similar to tensor-product B-splines, rational representations
erived from B yield boundary curves that are quadratic NURBS. If the control points also satisfy xγ = x∗

γ for
ll γ ∈ T C

0 , xτ = x∗
τ for all τ ∈ T B

1 , then the control points corresponding to boundary extraordinary vertices
∈ T E

0 ∩ T B
0 can be chosen such that the boundary curves of x and x∗ coincide.

In Appendix C we present an alternative construction of almost-C1 splines, which does not rely on subdividing
he faces near extraordinary vertices. This results in a space that possesses no dofs corresponding to extraordinary
aces, while three dofs per extraordinary vertex remain. The functions are biquadratic polynomials on all faces.

. Refining almost-C1 splines

Refinement of the mesh can help improve the resolving power of splines for the purpose of, for instance, obtaining
better approximation to the solution of a PDE. Moreover, in our setting, the spline function and the surface will

lso become smoother by refining as the region of reduced smoothness will shrink. Assume that we are given a
esh T , the associated almost-C1 spline space B, and control points xφ, φ ∈ I , that define a spline geometry

x. In this section, we outline precisely how they can be refined. We start by describing the refinement of T in
ection 4.1; next, in Section 4.2 we explain the motivation behind the refinement scheme for x and B, the latter

s described in Sections 4.3–4.5. Finally, we discuss some properties of the refinement scheme in Section 4.6. Our
efinement scheme is closely related to the one presented recently in [1].

.1. Refining T

To refine T , which only contains topological information, we only need to specify how the connectivity and
uadrilateral-composition of T are to be updated. In this document, we adopt a simple global refinement approach
hereby all quadrilaterals are split into 2 × 2 quadrilaterals; see Fig. 7. We will denote refined quantities with a

hat” — for instance, the refined mesh will be denoted as T̂ . During this process, no hanging nodes are introduced,
.e., |T1| + |T2| new mesh vertices are added. We assume that the old mesh vertices retain their labels as perˆ
ection 2. Moreover, since the old vertices retain their labels, the corner and extraordinary vertices of T are

14
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p

Fig. 8. The above schematic depicts the motivation for our non-nested refinement scheme (c.f. Section 4.2 and Proposition 4.3). In (a) is a
2-neighbourhood of an extraordinary vertex; it is assumed that except the central vertex, all other vertices in this neighbourhood are regular.
In (b) is the refinement of the coarse neighbourhood from (a). In both (a) and (b), splines (in B and B̂, respectively) are not C1 smooth
across the interiors of the bold red edges. In (b), the flat shaded faces correspond to those where the refined spline geometry is identical
to the coarse geometry; the filled disks correspond to points where the refined spline geometry interpolates the coarse geometry; and the
central shaded parallelogram indicates that the coarse and refined spline geometries have identical normals at the extraordinary vertex. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

respectively chosen to be identical to the corner and extraordinary vertices of T , i.e., T̂ C
0 = T C

0 and T̂ E
0 = T E

0 .
Finally, the refined dof index sets Î ∗ and Î are defined for T̂ exactly as outlined in Section 3. We directly obtain

Î = T̂2

⋃
T̂ B

1

⋃
T̂ C

0

⋃
(T̂ E

0 × {1, 2, 3}).

4.2. Motivation behind refinement of x and B

In the next three subsections, we describe the refinement scheme in three steps. First, in Section 4.3, we use
B-spline knot insertion to refine the face-local restrictions x|σ on all faces σ of T . Let the thus refined face-local
control points for σ be indexed as ĉσ

jk , 0 ≤ j, k ≤ 3. Next, in Section 4.4, we obtain the refined spline control
oints x̂∗

φ, φ ∈ I ∗, as linear combinations of the control points ĉ jk,σ . These define a geometry x̂∗
∈ (B̂∗)d on T̂ .

Finally, in Section 4.5, we use x̂∗ and the extraordinary-vertex normals nγ , γ ∈ T̂ E
0 , to define both B̂ and x̂. It

is worth mentioning that, as shown in Section 4.6, x̂ will be identical to x̂∗.
Thus, the refinement scheme as outlined above will only ensure that x̂ = x̂∗

≈ x and, in general, the
spline spaces will be non-nested, i.e., B ̸⊂ B̂∗ and B ̸⊂ B̂. We opt for such non-nested refinements because
nested refinements would necessarily require involved bookkeeping (e.g., introduction of additional dofs with a
refinement-level-dependent structure [7,63]) which we seek to avoid.

The non-nested refinement scheme implies that the map x ↦→ x̂ can be specified in different ways. For instance,
if there is a ‘true geometry’ X (e.g., the geometry at the coarsest refinement level or an underlying smooth surface),
then at any given refinement level x̂ can be computed so as to minimize ∥x̂ − X∥

2 in a suitable norm. Alternatively,
the refined geometry x̂ can be computed so that certain desirable properties of x are preserved — this is the approach
we adopt. We formulate a refinement scheme that only uses local information and achieves two objectives. Firstly,
it ensures that x and x̂ are equal in the structured parts of the mesh T — in these parts x coincides with a tensor-
product biquadratic spline, and thus B-spline knot insertion is sufficient for achieving this objective. Secondly,
certain values and derivatives of x and x̂ are equal in the unstructured parts of T . See Fig. 8 for a more precise
visual overview of the scheme.

The refinement scheme will be depicted graphically in the following sections. The old control points will not
be shown in the figures and, following our earlier convention, the new control points will be shown as filled blue

circles. To further declutter the figures, only the indices of the new control points will be annotated.
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Fig. 9. The above figures show (a) a face σ that belongs to the coarse mesh T , (b) the refined face-local control points corresponding to
the coarse spline geometry x|σ (see Section 4.3), and (c) the faces of T̂ obtained by refinements of σ . In particular, these figures are used
s reference to explain the refinement scheme in Section 4.4.

.3. Refining face-local representations x|σ

On face σ of T , consider the restriction x|σ . If σ ∈ T2\T
E

2 , then x|σ is a linear combination of the
ernstein–Bézier polynomials b0

jk,□ for some face-local control points c jk[x; σ ],

x|σ =:

2∑
j,k=0

c jk[x; σ ]b0
jk,□ . (17)

imilarly, if σ ∈ T E
2 , then x|σ is a linear combination of the C1 biquadratic B-splines b1

jk,□ for some face-local
ontrol points c jk[x; σ ],

x|σ =:

3∑
j,k=0

c jk[x; σ ]b1
jk,□ . (18)

hen, for any σ ∈ T2 and with the matrix c[x; σ ] :=
(
c jk[x; σ ]

)
jk , we define the face-local refined control points

ĉ jk[x; σ ], 0 ≤ j, k ≤ 3, as

ĉ[x; σ ] =

{
K c[x; σ ]K T , σ ∈ T2\T

E
2 ,

c[x; σ ] , σ ∈ T E
2 ,

(19)

here K is the univariate B-spline knot-insertion matrix as in (11). Note that for all faces σ in T2, we have

x|σ =

3∑
j,k=0

ĉ jk[x; σ ]b1
jk,□ . (20)

or later reference, we will use the schematic shown in Fig. 9 where we use the shorthand ĉσ
jk := ĉ jk[x; σ ] for

onvenience.

.4. Defining x̂∗ and B̂∗

The spline space B̂∗ and the associated dof index set Î ∗ are defined on T̂ following the approach in Section 3.3.
hen, we define a geometry x̂∗

∈ (B̂∗)d by computing the associated control points x̂∗

φ , φ ∈ Î ∗, as linear
combinations of the face-local control points ĉ[x; σ ], σ ∈ T2, from Section 4.3. We split this computation in four
parts: corner vertex control points, boundary-edge control points, face control points in locally structured regions,

and face control points in locally unstructured regions.
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Corner vertex control points
As mentioned earlier, the number of corner vertices remains fixed during refinement (see Fig. 7 for an example)
and these vertices retain their labels. With reference to Fig. 9(a) and (c), let γ ∈ T̂ C

0 = T C
0 and let x̂∗

γ be the
refined spline control point associated to it. Then, we set

x̂∗

γ := ĉ00[x; σ ] . (21)

Boundary-edge control points
With reference to Fig. 9(a), let τ ∈ T B

1 be refined into two new boundary edges τ̂L , τ̂R ∈ T̂ B
1 , as shown in Fig. 9(c).

Then, the control points corresponding to τ̂L and τ̂R , respectively denoted as x̂∗

L and x̂∗

R here, are defined as,

x̂∗

L := ĉ10[x; σ ] , x̂∗

R := ĉ20[x; σ ] .

Face control points: locally structured regions
A locally structured part of T is composed of boundary edges and faces that do not contain any extraordinary
vertices. With reference to Fig. 9(a), let σ ∈ T2 be a face containing no extraordinary vertices. Let σ be refined
into four new faces σ̂i , σ̂ j , σ̂k and σ̂ℓ, as shown in Fig. 9(c). Then, the corresponding control points, respectively
denoted as x̂∗

i , x̂∗

j , x̂∗

k and x̂∗

ℓ , are defined as,(̂
x∗

i , x̂∗

j , x̂∗

k , x̂∗

ℓ

)
:=
(
ĉ11[x; σ ], ĉ21[x; σ ], ĉ22[x; σ ], ĉ12[x; σ ]

)
.

Face control points: locally unstructured regions
An unstructured part of T is a face that contains one or more extraordinary vertices. Since we opt for non-nested
refinements, it is not possible to exactly preserve the geometry in the unstructured parts of T during refinement.
Nevertheless, the following approach ensures that x̂∗ interpolates the midpoints of the coarse spoke edges when all
faces of T contain at most one extraordinary vertex.

First, with reference to Fig. 9(a), let σ ∈ T2 be a face containing either more than one extraordinary vertices,
or containing an extraordinary vertex that is in the 1-ring of another extraordinary vertex. This σ is being refined
into four new faces σ̂i , σ̂ j , σ̂k and σ̂ℓ, as shown in Fig. 9(c). Then, similarly to the locally structured case, the
corresponding control points, respectively denoted as x̂∗

i , x̂∗

j , x̂∗

k and x̂∗

ℓ , are defined as(̂
x∗

i , x̂∗

j , x̂∗

k , x̂∗

ℓ

)
:=
(
ĉ11[x; σ ], ĉ21[x; σ ], ĉ22[x; σ ], ĉ12[x; σ ]

)
.

Now we tackle the final remaining case: refinement of faces around an extraordinary vertex that is not contained
in the 1-ring of any other extraordinary vertex. We first consider the case where this extraordinary vertex is an
interior vertex and later when it is a boundary vertex.

Let γ ∈ T E
0 ∩

◦

T0 be an interior extraordinary vertex of valence µ and let the labelling of the coarse faces
and their refined face-local control points in the neighbourhood of γ be as in Fig. 10(a). Then, the corresponding
refined control points x̂∗

r,i , x̂∗

r, j , x̂∗

r,k and x̂∗

r,ℓ, r = 1, . . . , µ, are computed as below, where we employ the shorthand
cr

jk := ĉ jk[x; σr ],⎡⎢⎣x̂∗

r, j

x̂∗

r,k

x̂∗

r,ℓ

⎤⎥⎦ =

⎡⎢⎣̂cr
21

ĉr
22

ĉr
12

⎤⎥⎦ , r = 1, . . . , µ ,

⎡⎢⎢⎢⎢⎣
x̂∗

1,i

x̂∗

2,i
...

x̂∗

µ,i

⎤⎥⎥⎥⎥⎦ =
◦

Sµ

⎡⎢⎢⎢⎢⎣
ĉ1

01

ĉ2
01
...

ĉµ

01

⎤⎥⎥⎥⎥⎦+
◦

Qµ

⎡⎢⎢⎢⎢⎣
ĉ1

11

ĉ2
11
...

ĉµ

11

⎤⎥⎥⎥⎥⎦ ,

(22)

here
◦

Sµ and
◦

Qµ are circulant matrices. If µ is odd, they are defined to be
◦ ( ) ◦
Sµ = circulant 1, − 1, 1, − 1, . . . , − 1, 1 , Qµ = 0 , (23)

17
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ˆ

Fig. 10. The above shows the refinement of face control points in the locally unstructured regions of the mesh. Let σ1, . . . , σµ ∈ T2 be
quadrilaterals that share an extraordinary vertex and, moreover, this is the only extraordinary vertex that each face contains; figure (a) shows
the case for an interior extraordinary vertex and figure (b) for a boundary extraordinary vertex. Then, the refined control points x̂∗

m,i , x̂∗

m, j ,
x∗

m,k and x̂∗

m,ℓ are obtained using Eqs. (22), (23) and (24) for figure (a), and Eqs. (25) and (26) for figure (b). Note that the labelling of
face control points with the subscripts i, j, k, ℓ corresponds to the refined face labelling shown in Fig. 9(c), assuming that the extraordinary
vertex in the above figures coincides with γ in Fig. 9(a).
18
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a

T

4

p

and if µ is even, they are defined to be

◦

Sµ = circulant
(

2 −
2
µ

, −

(
2 −

4
µ

)
, 2 −

6
µ

, −

(
2 −

8
µ

)
, . . . , 0

)
,

◦

Qµ =
1
µ

circulant (1, − 1, 1, − 1, . . . , − 1) .

(24)

Next, let γ ∈ T E
0 ∩T B

0 be a boundary extraordinary vertex of valence µ, and let the labelling of the coarse faces
and their refined face-local control points in the neighbourhood of γ be as in Fig. 10(b). Then, the corresponding
refined control points x̂∗

r,i , x̂∗

r, j , x̂∗

r,k and x̂∗

r,ℓ, r = 1, . . . , µ, are computed as below, where we again employ the
shorthand ĉr

jk := ĉ jk[x; σr ],⎡⎢⎣x̂∗

r, j

x̂∗

r,k

x̂∗

r,ℓ

⎤⎥⎦ =

⎡⎢⎣̂cr
21

ĉr
22

ĉr
12

⎤⎥⎦ , r = 1, . . . , µ ,

⎡⎢⎢⎢⎢⎣
x̂∗

1,i

x̂∗

2,i
...

x̂∗

µ,i

⎤⎥⎥⎥⎥⎦ = S∂
µ

⎡⎢⎢⎢⎢⎣
ĉ1

01

ĉ2
01
...

ĉµ−1
01

⎤⎥⎥⎥⎥⎦+ Q∂
µ

⎡⎢⎢⎢⎢⎣
ĉ1

11

ĉ2
11
...

ĉµ

11

⎤⎥⎥⎥⎥⎦ ,

(25)

where S∂
µ is defined to be

S∂
µ =

Rµ + JµRµJµ−1

2
, (26)

nd Q∂
µ, Rµ and Jk are defined to be the following matrices of sizes µ×µ, µ×(µ−1) and k×k, k ≥ 1, respectively,

Q∂
µ =

1
µ

(
(−1) j+k)

jk , Rµ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −
4
µ

−

(
4 −

8
µ

) (
4 −

12
µ

)
· · · (−1)µ 4

µ(
4 −

8
µ

)
−

(
4 −

12
µ

)
· · · (−1)µ+1 4

µ(
4 −

12
µ

)
· · · (−1)µ+2 4

µ

. . .
...

(−1)2µ−2 4
µ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Jk =

⎡⎢⎢⎢⎢⎣
1

. .
.

1
1

⎤⎥⎥⎥⎥⎦ .

4.5. Defining the refined almost-C1 spline geometry x̂ and B̂

Finally, starting from x̂∗ and the extraordinary-vertex normals nγ , γ ∈ T̂ E
0 = T E

0 , we define both B̂ and x̂.
his is done exactly as outlined in Section 3.5.

.6. Properties of the refinement scheme

The following results outline the properties of the refinement scheme explained in the previous sections. These
roperties were previously visually depicted in Fig. 8.
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Lemma 4.1. The control points in the set
{

x̂∗

r,i : r = 1, . . . , µ
}

defined by Eqs. (22) and (25) are coplanar, with
he common plane defined by the normal vector nγ .

roof. By definition of x and ĉ[x; σ ], σ ∈ T2, the face-local control points{
ĉ jk[x; σr ] : ( j, k) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} , r = 1, . . . , µ

}
,

re coplanar. More precisely, the plane in which they lie is orthogonal to the normal vector nγ specified for the
xtraordinary vertex in Fig. 10.

Then, first considering the interior vertex case, and observing that each row of
◦

Sµ +
◦

Qµ sums to 1, we have⎡⎢⎢⎢⎢⎢⎣
x̂∗

1,i − ĉ1
00

x̂∗

2,i − ĉ1
00

...

x̂∗

µ,i − ĉ1
00

⎤⎥⎥⎥⎥⎥⎦ =
◦

Sµ

⎡⎢⎢⎢⎢⎣
ĉ1

01 − ĉ1
00

ĉ2
01 − ĉ1

00

...

ĉµ

01 − ĉ1
00

⎤⎥⎥⎥⎥⎦+
◦

Qµ

⎡⎢⎢⎢⎣
ĉ1

11 − ĉ1
00

ĉ2
11 − ĉ1

00
...

ĉµ

11 − ĉ1
00

⎤⎥⎥⎥⎦ .

Thus the vectors on the left hand side and the vectors on the right hand side are coplanar and the claim follows.
The boundary vertex case can be similarly shown since each row of S∂

µ + Q∂
µ also sums to 1. ■

Corollary 4.2. The geometry x̂ is identical to x̂∗, i.e., x̂ = x̂∗
∈ (B̂ ∩ B̂∗)d .

roof. The claim follows from Corollary 3.7 and Lemma 4.1. ■

Proposition 4.3. Let x̂ be obtained from x via the refinement process outlined in Sections 4.3–4.5. Then the
ollowing hold true.

(a) Translation and rotation invariance: Let A be the matrix mapping the coarse control points xφ to the refined
control points x̂φ . If T and R denote a translation and a rotation, then

A ◦ T = T ◦ A , A ◦ R = R ◦ A .

In particular, the rows of A sum to 1.
(b) Boundary preservation: Let τ be a boundary edge of T and xτ the local representation of x restricted to

τ . With reference to Fig. 9, let the origin of local coordinates [0, 1] on τ be at the left end. Then,

x̂ |̂τL = xτ |[0,0.5] , x̂ |̂τR = xτ |[0.5,1] .

(c) Structured quadrilateral preservation: Let σ be a quadrilateral of T that contains no extraordinary vertices
and no corner vertices of valence >1, and xσ the local polynomial representation of x restricted to σ . With
reference to Fig. 9, let the origin of local coordinates [0, 1]2 on σ be at the bottom-left vertex γ . Then,

x̂|σ̂i = xσ |[0,0.5]2 , x̂|σ̂ j = xσ |[0.5,1]×[0,0.5] , x̂|σ̂k = xσ |[0.5,1]2 , x̂|σ̂l = xσ |[0,0.5]×[0.5,1] .

(d) Midpoint interpolation on interior spoke edges: Consider the settings shown in Fig. 10(a) and (b) with the
extraordinary vertex γ . Let τ be an interior spoke edge in the figures such that γ corresponds to its first
endpoint, and let it be refined into edges τ̂a and τ̂b such that γ now corresponds to the first endpoint of τ̂a .
Denote as xτ the local representation of x restricted to τ . Then,

x̂ |̂τa (1) = xτ (0.5) .

(e) Normal vector preservation: The refined geometry x̂ has well-defined normal vectors at all vertices, and
these are identical to the normal vectors for the coarse geometry x.

(f) Dimension of the refined spline space: We have Î = Î ∗
∪ (T̂ E

0 × {1, 2, 3}) and

n̂ := |Î | = |T̂2| + |T̂ B
1 | + |T̂ C

0 | + 3|T̂ E
0 | . (27)
(g) Convergent refinement scheme: The limit surface exists and has a well-defined tangent plane at all points.
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Proof. It is easy to see that (a), (e) and (f) hold by construction. Following the same line of reasoning adopted
in [1, Proposition 4.2], it can be seen that properties (b)–(d) hold for the geometry x̂∗. Then, from Corollary 4.2,
properties (b)–(d) also hold for x̂. Finally, from [1, Appendix], the limit surface exists when the refinement scheme
is applied to geometries in (B∗)d . Thus, from Corollary 4.2, the same is true for geometries in Bd . While this limit
surface may not have a well-defined tangent plane at extraordinary points for all geometries in (B∗)d , it will be
smooth there for geometries in Bd by virtue of property (e). This implies property (g) and completes the proof. ■

5. Numerical tests

In this section we test the approximation properties and conditioning of almost-C1 splines for several second
and fourth order PDE model problems of practical relevance. We start out by summarizing the implementation-
related considerations in Section 5.1. Convergence tests and condition number growths for the Poisson and
Biharmonic problems are presented in Section 5.2, the Scordelis–Lo thin shell benchmark in Section 5.3, the surface
Cahn–Hilliard problem in Section 5.4 and the surface Laplace–Beltrami eigenvalue problem in Section 5.5.

5.1. A summary of the implementation

In the following we present the basic structure of the implementation. First we describe how an almost-C1 spline
surface can be constructed from (the dual of) a quadrilateral mesh. Then we explain the ingredients needed to set
up a finite element implementation.
Construction of almost-C1 splines surface
Given a quadrilateral mesh (e.g., as in Fig. 2(a)) where each face, boundary edge and corner vertex has a control
point associated to it (e.g., as visualized in Fig. 3), the following steps help build an almost-C1 spline geometry
(control points, patch-local coefficients and patch parameterizations).

1. Initialize spline coefficients:
Associate to each non-boundary edge the average of the two adjacent face control points, then associate to
each non-corner vertex the average of the adjacent edge control points. This yields face local coefficients as
in Fig. 4(b).

2. Create initial spline surface:
For each face, the 3 × 3 control points associated to the vertices, edges and face can be interpreted as the
Bernstein–Bézier coefficients of a biquadratic Bézier patch. The resulting spline, given by the collection of
all Bézier patches is C1 across all edges that do not contain an extraordinary vertex.

3. Refine extraordinary faces:
For each face that contains an extraordinary node perform one refinement step by bisection in both directions,
as in (18), cf. Fig. 9.

4. Perform local averaging around extraordinary vertices:
For each extraordinary vertex, collect all (refined) control points within its one ring, i.e., the nearest 2 × 2
control points on each face adjacent to the vertex (those highlighted in purple in Fig. 6(c)). Find the best
approximating plane through these control points and project all of them onto the plane.

5. Create final spline surface:
For each extraordinary face, the new (refined and projected) 4 × 4 control points can be interpreted as
the spline coefficients of a biquadratic B-spline patch with one inner knot in each direction. The resulting
almost-C1 spline, given by the collection of all Bézier patches for regular faces and all B-spline patches for
extraordinary faces is C1 across all edges that do not contain an extraordinary vertex and G1 at all vertices.

inite element implementation
n the almost-C1 spline geometry built as above, one can now set up all ingredients needed for a finite element

mplementation using almost-C1 splines, i.e., the ingredients needed for assembling mass and stiffness matrices by
ooping over all faces (or, alternatively, over all basis functions).

1. Build dof structure:
The almost-C1 spline dofs are implied by the given mesh structure, i.e., one per face, one per boundary edge,

one per corner vertex and three per extraordinary vertex, cf. Fig. 2(b).
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2. Initialize face-local tensor-product basis:
Loop over all faces and initialize the corresponding local tensor-product basis at the face-local quadrature
points. Any spline function supported on a mesh face can be represented as a linear combination of the
corresponding face-local basis. There are two relevant cases to consider.

• Regular faces: Here the local basis is formed by tensor-products of b0
jk,□ and standard Gauss quadrature

points can be distributed on the face.
• Extraordinary faces: Here the local basis is formed by tensor-products of b1

jk,□ and the local quadrature
rule needs to account for the face-internal split. (For instance, standard Gauss rules can be used on each
of the 2 × 2 sub-faces.)

3. Loop over dofs and store face-local extraction operators:
The basis function associated to a given dof is supported on only a few mesh faces. On these faces, each
basis function is a linear combination of the face-local tensor-product basis, and so we only need to store the
corresponding extraction coefficients. The extraction coefficients are presented in Sections 3.3–3.5; 3 × 3
extraction coefficients for regular faces and 4 × 4 for extraordinary faces. The following are the relevant
cases.

• Corner dofs and regular face dofs: The corresponding splines are simply C1 biquadratic tensor-product
B-splines. They can be supported on both regular and extraordinary faces. The local representations on
extraordinary faces are subdivided; truncation is unnecessary as it leaves the face-local representation
invariant.

• Boundary edge dofs and extraordinary face dofs: The corresponding splines can be supported on both
regular and extraordinary faces; the local representations on extraordinary faces are subdivided and
truncated.

• Extraordinary vertex dofs: The corresponding splines are supported only on extraordinary faces; the
local representations on extraordinary faces are obtained from Eq. (14).

.2. Poisson and Biharmonic problems

We start by investigating the convergence behaviour of almost-C1 splines under mesh refinements. For this
urpose, we solve H 1 and H 2 projection problems on meshes containing a single extraordinary vertex. The exact
olution of the problem for all Ω is chosen to be

fexact(x, y) = sin
(
πx +

π

3

)
sin
(
πy +

π

5

)
. (28)

he following trial and test function spaces were used for the problem,

S0 :=
{

f ∈ B : f = f0 on Γ
}

, V0 :=
{
w ∈ B : w = 0 on Γ

}
,

S1 :=
{

f ∈ S0 : f,n = f1,n on Γ
}

, V1 :=
{
w ∈ V0 : w,n = 0 on Γ

}
,

where Γ = ∂Ω is the boundary of Ω , n is the unit normal to Γ , a,n := ∇a ·n, and f0 ∈ B and f1 ∈ S0 are defined
such that,∫

Γ

w f0 dΓ =

∫
Γ

w fexact dΓ , ∀w ∈ B, w ̸= 0 on Γ ,∫
Γ

w,n f1,n dΓ =

∫
Γ

w,n fexact,n dΓ , ∀w ∈ B, w,n ̸= 0 on Γ .

The weak form of the problems using the above trial and test spaces is

P1 : Find f ∈ S0 :
∫
Ω

∇w · ∇ f dΩ = −

∫
Ω

w∆ fexact dΩ , ∀w ∈ V0 , (29)

P2 : Find f ∈ S1 :
∫
Ω

∆w∆ f dΩ =

∫
Ω

w∆2 fexact dΩ , ∀w ∈ V1 . (30)

For different valent extraordinary points, the spline geometries Ω at the coarsest refinement level are shown on the
left in Fig. 11. The error convergence with mesh refinement is shown in the plots on the right, with the error norms
22
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Fig. 11. The above plots show the error convergence with mesh refinement when solving the Poisson (middle) and Biharmonic (right)
problems in Eqs. (29) and (30), respectively, on the different spline geometries (left).
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Table 1
The above table shows the condition numbers (κ) of the system matrices corresponding to problems P1 and P2
from Eqs. (29) and (30), respectively. The condition number at the i th refinement level is denoted as κi . The
increase in condition numbers is as expected from the nature of the two problems — proportional to n and
n2 for P1 and P2, respectively, with

√
n as a stand-in for the mesh size. Note that, from Proposition 3.8 and

Fig. 11, the number of dofs at the i th refinement level is ni = µ(2i+1
+ 1)2

+ 3.

Problem µ κ0 κ1 κ2 κ3 κ4 κ5

3 5.10e+0 1.56e+1 5.51e+1 2.16e+2 8.78e+2 3.55e+3
5 1.19e+1 2.30e+1 7.99e+1 3.04e+2 1.20e+3 4.85e+3
6 1.20e+1 2.25e+1 8.77e+1 3.50e+2 1.40e+3 5.69e+3

P1

7 1.35e+1 2.89e+1 1.12e+2 4.51e+2 1.82e+3 7.44e+3

∝ n

3 2.94e+1 6.23e+2 9.64e+3 1.55e+5 2.51e+6 4.09e+7
5 3.63e+1 5.64e+2 8.46e+3 1.32e+5 2.10e+6 3.35e+7
6 3.39e+1 5.44e+2 8.27e+3 1.29e+5 2.07e+6 3.37e+7

P2

7 4.32e+1 7.30e+2 1.13e+4 1.80e+5 2.95e+6 4.80e+7

∝ n2

plotted against the inverse of the square root of the number of dofs. With the error e := f − fexact, we plot the
following four error norms to investigate the approximation behaviour of the almost-C1 spline space,

∥e∥2
0 :=

∫
Ω

e2 dΩ , ∥e∥2
1 :=

∫
Ω

|∇e|2 dΩ ,

∥e∥2
2 :=

|T2|∑
i=1

∫
Ωi

(∆e)2 dΩ , ∥e∥2
[] := n

1
2

|T2|∑
i=1

∫
∂Ωi \Γ

[
de
dn

]2

dΓ ,

(31)

here Ωi is the geometric image of the i th mesh face, and
[ de

dn

]
is the jump in the normal derivative of e across

the interior mesh edges. For a biquadratic spline space demonstrating optimal approximation behaviour, one would
expect ∥e∥0 and ∥e∥1 to converge with orders 3 and 2 for problem P1, and ∥e∥0, ∥e∥1, ∥e∥2 and ∥e∥[] to converge

ith orders 2, 2, 1 and 1 for problem P2, respectively. As is clear from Fig. 11, the spline spaces demonstrate
ptimal convergence rates for all error norms. (Note that ∥e∥[] is relevant only for the problem P2 and therefore
nly plotted in the rightmost column of plots in Fig. 11.) Only a slight deterioration is visible in the L2 norm
≈ 1.8) for the Biharmonic problem at high refinement levels; this is similar to the results for bicubic splines in [7].
inally, for both problems we show the condition numbers of the system matrices in Table 1, as can be seen, the
onditioning is as expected from a well-conditioned basis without singularities.

emark 5.1. Imposition of boundary conditions for values of unstructured splines is very simple here, given the
oundary Kronecker–Delta property from Proposition 3.8. Boundary conditions for normal derivatives are also not
roblematic as they only involve the basis functions for the boundary dofs and the layer of dofs adjacent to boundary
ofs (i.e., the adjacent face dofs and dofs for boundary extraordinary vertices).

.3. Kirchhoff–Love shells: The Scordelis–Lo benchmark problem

We now solve a Kirchhoff–Love benchmark problem — the Scordelis–Lo test case. A curved cylinder with
imensions (r, L , θsector) = (25, 50, 2π/3) is loaded under gravity and has the following material parameters:

Young’s modulus, E = 4.32 × 108 ,

Poisson’s ratio, ν = 0.0 ,

Thickness, t = 0.25 .

The shell formulation used is based on the Kirchhoff–Love thin shell theory in which transverse shear strains
are zero. The end result is a rotation-free formulation requiring C1 continuous trial functions. Necessarily, since
ransverse shear strains are suppressed, one would anticipate the theory would result in smaller deformations than

or Reissner–Mindlin shell theory, which accounts for transverse shear strains. As observed in [71] and elsewhere,
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w

Fig. 12. For the Scordelis–Lo benchmark problem (Section 5.3), Figure (a) shows the solution at one of the refinement levels, while
Figure (b) shows the convergence of the error e := |1 −

w
wref

| under mesh refinement, where w is the vertical displacement computed at the
midpoint of one of the non-curved edges of the cylindrical roof and wref is a reference solution based on Kirchhoff–Love theory [71]. Our
results are based on Kirchhoff–Love thin shell theory in which transverse shear deformations are suppressed, and as one would expect, the
Kirchhoff–Love converged displacement is somewhat less than that for Reissner–Mindlin theory.

the Kirchhoff–Love theory leads to a converged maximum downward vertical displacement wref = 0.3006, while
the Reissner–Mindlin theory yields 0.3024; in the following we use the former as the reference solution.

We start from a rectangular planar geometry defined using a mesh T with two interior extraordinary points
(valences 3 and 5); the planar control points are chosen such that the planar geometry coincides with the projection
of the cylindrical roof on the xy-plane. To build the cylindrical roof, we first refine the planar geometry a desired
number of times and then perform an L2-projection to find the height of the control points. Note that since we are
trying to match a given target geometry here, it is reasonable to perform this fitting for each new refinement.

Solving the Kirchhoff–Love problem on the geometry thus obtained, the solution is as shown in Fig. 12(a); the
deformations have been scaled up by a factor of 15 for the purpose of visualization. The vertical displacement
at the mid-point of the free edges converges toward the reference Kirchhoff–Love reference solution of wre f ; the
normalized error in the computed solution is shown in Fig. 12(b). Note that since we did not exploit any symmetry
conditions in the simulation, we display the error against the square root of a quarter of the number of degrees
of freedom n for the spline space defined on T . This brings the results in line with those of [71] which assumed
four-fold symmetry and plotted the error versus the number of control points per edge of their rectangular mesh. The
performance of our construction is indistinguishable from the results of [71] which used standard tensor-product
B-splines.

5.4. Surface Cahn–Hilliard problem

We now solve the fourth-order non-linear Cahn–Hilliard problem on the topologically complex surface Ω shown
in Fig. 13. The non-dimensional strong form of the problem is as below (see [72] for the associated weak form):

∂c
∂t

= ∇Ω · (c(1 − c)∇Ω (N2µc − ∆Ωc)) on Ω × [0, T ] ,

c(x, 0) = c0(x) on Ω ,

here ∇Ω and ∆Ω are the surface gradient and Laplace–Beltrami operators, respectively, and µc :=
1
3 log

( c
1−c

)
+

1 − 2c. The unstructured mesh had 18,432 quadrilateral faces and 18,552 degrees of freedom, and we solved the
equations for initial volume fraction c̄ = 0.5 and the corresponding value of N2 was 41.7313. The initial value

of c, namely c0, was determined by randomly perturbing c̄, as described in [73,74]. The results are shown in
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Fig. 13. These figures show the initial volume fraction distribution (t = 0) over a surface of non-trivial topology (top row), which is the
domain of interest for the surface Cahn–Hilliard problem (Section 5.4), and the rows below show its time-evolution. The meshes used for
the computation contained 18,552 degrees of freedom. (The left and right columns show different views of the geometry and solution.)
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Fig. 13. Steady state was reached for the configuration in 600 time-steps with the aid of an adaptive time-stepping
scheme [74]. At all times, the solution coefficients were strictly between 0 and 1. Then, since the spline basis
functions are non-negative and form a partition of a unity, it easily follows that the computed solution is pointwise
between 0 and 1 at all times.

5.5. Laplace–Beltrami eigenvalue problem

For the final set of tests, we showcase the application of our splines for reconstructing a complex CAD
eometry and solving an eigenvalue problem on it. The geometry, a portion of a BMW car, is freely available
s a Blender® model. This model was imported into Rhinoceros® where a quadrilateral mesh consisting of 4482

faces was created; this mesh contained both boundary and interior extraordinary points. Using our splines built on
this mesh (5330 dofs), we reconstructed the geometry and solved a Laplace–Beltrami eigenvalue problem [75] on
the spline geometry. This problem is defined as: find f ∈ S and λ ∈ R such that∫

Ω

∇Ωg · ∇Ω f dΩ =

∫
Ω

g f dΩ , ∀g ∈ S , (32)

where S := { f ∈ B : f |Γb = 0} and Γb is the union of the two bottom edges of the car hull. The spline geometry
and select eigenmodes for the problem are shown in Fig. 14.

6. Conclusions

We have presented the construction and refinement of almost-C1 splines, that is, analysis-suitable biquadratic
spline spaces on fully unstructured quadrilateral meshes, for building smooth spline surfaces of arbitrary topology as
well as for solving fourth-order problems on them. Several numerical examples of challenging fourth-order problems
have been presented to exemplify this. The corresponding almost-C1 spline basis functions are well-conditioned and
have several B-spline-like properties such as partition of unity, non-negativity, local support and linear independence.
Furthermore, we have described the construction explicitly and in a self-contained manner using Bézier extractions
for enabling immediate implementation.

We use approximate smoothness in an explicit manner for our construction and strongly believe that this is a
powerful approach for arriving at spline constructions that can circumvent many of the obstacles faced by strongly
smooth unstructured splines, while at the same time retaining many of the latter’s advantages. In this first paper
we focus on the construction itself and while the numerical results are highly encouraging, a theoretical analysis
of convergence is an interesting topic for future research. It is our opinion that such a theoretical analysis may be
simpler for almost-C1 splines than for constructions that employ singularities in the definitions of the spline basis
functions (although they are strongly smooth, nested and demonstrate optimal convergence in numerical tests; the
singularities usually pose significant difficulties for any standard approximation proofs). A possible way to prove
convergence for almost-C1 splines may be to follow strategies for non-conforming finite elements, such as in [6].

Furthermore, within this new framework, there are many extensions possible which will be the focus of our
uture work. Some of these are the formulation of similar constructions for higher polynomial degrees and higher
rders of approximate smoothness, as well as incorporation of local refinement. For the latter, we note that since our
onstruction is highly local, it can be readily embedded within locally refined spline constructions (e.g., similarly
o [39]) by assuming sufficient separation between hanging nodes and extraordinary vertices — for biquadratic
plines, a 2-ring distance between extraordinary vertices and hanging nodes is expected to be sufficient. As an
lternative approach for local refinement, a generalization similar to hierarchical B-splines may also be possible, even
hough the spaces on different refinement levels are not nested. Finally, other minor extensions include generalizing
he set of corner vertices to include boundary vertices of valence higher than 1, as well as reducing the smoothness

cross select interior edges to create geometries with creased features.
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Fig. 14. The figure in the top row shows a part of a BMW car — the model is a Blender® demofile, a coarse quadrilateral mesh for it
was generated using Rhinoceros® and the spline geometry was constructed on that mesh using our unstructured splines. The bottom rows
show select eigenmodes corresponding to the Laplace–Beltrami eigenvalue problem (Section 5.5) solved on this geometry. The mesh contains
4482 faces and 5330 dofs.
28



T. Takacs and D. Toshniwal Computer Methods in Applied Mechanics and Engineering 403 (2023) 115640

h

D

A

p
s
3

A

a

A

T

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgements

The research of Deepesh Toshniwal is supported by project number 212.150 awarded through the Veni research
rogramme by the Dutch Research Council (NWO), Netherlands. The research of Thomas Takacs is partially
upported by the Austrian Science Fund (FWF) and the government of Upper Austria through the project P
0926-NBL entitled “Weak and approximate C1-smoothness in isogeometric analysis”.

ppendix A. Alternative construction 1: Truncation using degree elevation

A construction similar to the one explained in Section 3.5 can be achieved if the functions B∗

φ ∈ B are degree
elevated on every extraordinary face, i.e., B∗

φ|σ is represented as a bicubic polynomial for each σ ∈ T E
2 . Then

Bφ|σ is given as the truncated, degree elevated version of B∗

φ|σ . Algorithmically, the only change is in the matrix
K , which has to be replaced by the degree elevation matrix

Kd.e. =

⎡⎢⎢⎢⎣
1
1
3

2
3
2
3

1
3

1

⎤⎥⎥⎥⎦ , (A.1)

and in the local basis b1
jk,□ in (10), which is replaced by bicubic Bernstein polynomials. The truncation step as well

s the basis construction for the extraordinary vertex splines remain the same.

ppendix B. Alternative construction 2: Geometry-independent templates

In the following we discuss how the basis functions B(γ,ν), ν ∈ {1, 2, 3}, can be defined independently of the
geometry. This is achieved by replacing the projection onto a prescribed tangent plane, as in (13), by a template
configuration depending only on the valence. We assume that the control triangle is always given as

(a1, a2, a3) =

⎛⎝(0, 1)T ,

(
−

√
3

2
, −

1
2

)T

,

(√
3

2
, −

1
2

)T
⎞⎠ .

hen we define points ci
jk , with ( j, k) ∈ {0, 1}

2, i ∈ {1, . . . , µ} to be

ci
00 = (0, 0)T

ci
11 =

1
2

(− sin(2π (i − 1)/µ), cos(2π (i − 1)/µ))T

ci
10 = ci+1

01 =
1

4 cos(π/µ)
(− sin(2π (i − 1/2)/µ), cos(2π (i − 1/2)/µ))T ,

see Fig. B.15.
Consequently, the coefficients of the basis functions B(γ,ν) are again given as the barycentric coordinates with

respect to the vertices of the triangle, i.e.,

B(γ,ν)|σi =

3∑
ĉ jk[B(γ,ν); σ j ]b1

jk,□ ,
jk=0
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I

Fig. B.15. Templates for valencies 3, 5 and 6.

with

ĉ jk[B(γ,ν); σi ] =

{
λν(ci

jk) , ( j, k) ∈ {0, 1}
2 ,

0 , otherwise .

ndependent of the valence, we always have ĉ00[B(γ,ν); σi ] =
1
3 . For µ = 3 we have

ĉ11[B(γ,1); σ1] =
2
3

ĉ10[B(γ,1); σ1] =
1
2

ĉ11[B(γ,1); σ2] =
1
6

ĉ10[B(γ,1); σ2] = 0

ĉ11[B(γ,1); σ3] =
1
6

ĉ10[B(γ,1); σ3] =
1
2

,

for µ = 5 we have

ĉ11[B(γ,1); σ1] =
2
3

ĉ11[B(γ,2); σ1] =
1
6
≂ 0.166667

ĉ10[B(γ,1); σ1] =
1
2

ĉ10[B(γ,2); σ1] =
3 +

√
15 − 6

√
5

12
≂ 0.354867

ĉ11[B(γ,1); σ2] =
3 +

√
5

12
ĉ11[B(γ,2); σ2] =

9 −
√

5 +

√
30 + 6

√
5

24
≂ 0.556377

ĉ10[B(γ,1); σ2] =
1 +

√
5

12
ĉ10[B(γ,2); σ2] =

11 −
√

5 +

√
30 − 6

√
5

24
≂ 0.534843

ĉ11[B(γ,1); σ3] =
3 −

√
5

12
ĉ11[B(γ,2); σ3] =

9 +
√

5 +

√
30 − 6

√
5

24
≂ 0.637848

ĉ10[B(γ,1); σ3] =
3 −

√
5

6
ĉ10[B(γ,2); σ3] =

3 +
√

5
12

≂ 0.436339

ĉ11[B(γ,1); σ4] =
3 −

√
5

12
ĉ11[B(γ,2); σ4] =

9 +
√

5 −

√
30 − 6

√
5

24
≂ 0.298491

ĉ10[B(γ,1); σ4] =
1 +

√
5

12
ĉ10[B(γ,2); σ4] =

11 −
√

5 −

√
30 − 6

√
5

24
≂ 0.195485

ĉ11[B(γ,1); σ5] =
3 +

√
5

12
ĉ11[B(γ,2); σ5] =

9 −
√

5 −

√
30 + 6

√
5

24
≂ 0.00728413

ĉ10[B(γ,1); σ5] =
1
2

ĉ10[B(γ,2); σ5] =
3 −

√
15 − 6

√
5

12
≂ 0.145133 ,
30
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Fig. B.16. Templates for boundary vertices with valencies 3, 4 and 5. The boundary is assumed to be at the bottom edge of the control
riangle.

nd for µ = 6 we have

ĉ11[B(γ,1); σ1] =
2
3

ĉ10[B(γ,1); σ1] =
1
2

ĉ11[B(γ,1); σ2] =
1
2

ĉ10[B(γ,1); σ2] =
1
3

ĉ11[B(γ,1); σ3] =
1
6

ĉ10[B(γ,1); σ3] =
1
6

ĉ11[B(γ,1); σ4] = 0 ĉ10[B(γ,1); σ4] =
1
6

ĉ11[B(γ,1); σ5] =
1
6

ĉ10[B(γ,1); σ5] =
1
3

ĉ11[B(γ,1); σ6] =
1
2

ĉ10[B(γ,1); σ6] =
1
2

.

The other coefficients are determined via the symmetry of the configuration. While valencies 3 and 6 allow
rotationally symmetric configurations, where all three basis functions look alike, valence 5 yields two different types
of functions (B(γ,2) and B(γ,3) are equivalent up to reflection). Similar templates can be derived for extraordinary
ertices at the boundary. We show three such configurations in Fig. B.16 and leave the computation of coefficients
s an exercise to the readers.

ppendix C. Alternative construction 3: A smooth subspace without local subdivison

In the following we define an approximate C1 subspace B† of the B-spline space B∗ defined in Section 3.1. For
his we need to reduce the number of degrees of freedom. Instead of taking all faces in T2 as degrees of freedom,

we mark faces in such a way, that for each extraordinary vertex exactly three faces in its 1-ring are marked. In
addition, all faces that are not contained in the 1-ring of an extraordinary vertex are marked. Such a marking may
not always be possible. However, by bisecting the mesh once, all 1-rings of extraordinary vertices are disjoint and
a valid marking exists. We collect all marked faces in T †

2 .
Thus, we end up with the following degrees of freedom:

• Face dofs: We associate one degree of freedom to each marked face σ ∈ T †
2 .

• Boundary edge dofs: We associate one degree of freedom to each boundary edge τ ∈ T B
1 .

• Corner vertex dofs: We associate one degree of freedom to each corner vertex γ ∈ T C
0 .

Given an extraordinary vertex γ ∈ T E
0 of valence µ and let σ1, σ2, . . . , σµ be the faces surrounding it. Moreover,

let {i1, i2, i3} ⊂ {1, 2, . . . , µ} denote the marked faces σi1 , σi2 and σi3 . Given a spline geometry x∗, let x∗

i be the

control points corresponding to the faces σi .
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w

Let again P be the orthogonal projection onto the tangent plane given by a prescribed normal nγ . This yields
new control points P(x∗

i ). New basis functions B†
σiν

can now be constructed for σi1 , σi2 and σi3 , via

B†
σiν

=

µ∑
i=1

λν(P(x∗

i ))B∗

σi
,

here λν(c) denotes the νth component of the barycentric coordinates of c with respect to the triangle

(P(x∗

i1
), P(x∗

i2
), P(x∗

i3
)) .

All functions corresponding to regular faces, boundary edges and corner vertices remain unchanged, i.e., B†
φ = B∗

φ

for all φ ∈ T2 \ T E
2 ∪ T B

1 ∪ T C
0 .

Similar to the construction in Section 3.5 one can describe a basis with respect to a control triangle which
is different from the control points of marked faces. Such a construction based on a control triangle is only
feasible if no face contains more than one extraordinary vertex. Alternatively, a construction based on a template
as in Appendix B can be applied as well.

References

[1] D. Toshniwal, Quadratic splines on quad-tri meshes: Construction and an application to simulations on watertight reconstructions of
trimmed surfaces, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114174.

[2] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Comput. Methods Appl. Mech. Engrg. 194 (2005) 4135–4195.

[3] G.E. Farin, J. Hoschek, M.-S. Kim, Handbook of Computer Aided Geometric Design, Elsevier, 2002.
[4] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, 2012.
[5] P.T. Boggs, A. Althsuler, A.R. Larzelere, E.J. Walsh, R.L. Clay, M.F. Hardwick, DART System Analysis, Technical report, Sandia

National Laboratories, 2005.
[6] Z.C. Shi, The FEM test for convergence of nonconforming finite elements, Math. Comp. 49 (180) (1987) 391–405.
[7] D. Toshniwal, H. Speleers, T.J.R. Hughes, Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis

on extraordinary points: Geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Engrg. 327 (2017)
411–458.

[8] T. Nguyen, K. Karčiauskas, J. Peters, A comparative study of several classical, discrete differential and isogeometric methods for
solving Poisson’s equation on the disk, Axioms 3 (2014) 280–299.

[9] Y. Guo, M. Ruess, Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures, Comput. Methods Appl.
Mech. Engrg. 284 (2015) 881–905.

[10] S.E. Moore, Discontinuous Galerkin isogeometric analysis for the biharmonic equation, Comput. Math. Appl. 76 (4) (2018) 673–685.
[11] A. Benvenuti, G. Sangalli, Isogeometric Analysis for C1-continuous Mortar Method (Ph.D. thesis), Ph.D. thesis, Corso di Dottorato in

Matematica e Statistica, Università degli studi di Pavia, 2017.
[12] T. Horger, A. Reali, B. Wohlmuth, L. Wunderlich, A hybrid isogeometric approach on multi-patches with applications to Kirchhoff

plates and eigenvalue problems, Comput. Methods Appl. Mech. Engrg. 348 (2019) 396–408.
[13] D. Miao, Z. Zou, M.A. Scott, M.J. Borden, D.C. Thomas, Isogeometric Bézier dual mortaring: The Kirchhoff–Love shell problem,

Comput. Methods Appl. Mech. Engrg. 382 (2021) 113873.
[14] K. Rafetseder, W. Zulehner, A new mixed approach to Kirchhoff–Love shells, Comput. Methods Appl. Mech. Engrg. 346 (2019)

440–455.
[15] P. Weinmüller, T. Takacs, Construction of approximate C1 bases for isogeometric analysis on two-patch domains, Comput. Methods

Appl. Mech. Engrg. 385 (2021) 114017.
[16] P. Weinmüller, T. Takacs, An approximate C1 multi-patch space for isogeometric analysis with a comparison to Nitsche’s method,

Comput. Methods Appl. Mech. Engrg. 401 (2022) 115592.
[17] T.J.R. Hughes, G. Sangalli, T. Takacs, D. Toshniwal, Smooth multi-patch discretizations in isogeometric analysis, in: Handbook of

Numerical Analysis, Elsevier, 2020.
[18] United States Department of Transportation, National highway traffic safety administration, 2021, https://www.nhtsa.gov/crash-simulati

on-vehicle-models. [Online; accessed 01-December-2021].
[19] K.M. Shepherd, X.D. Gu, T.J.R. Hughes, Isogeometric model reconstruction of open shells via Ricci flow and quadrilateral

layout-inducing energies, Eng. Struct. 252 (2022) 113602.
[20] C.M. Grimm, J.F. Hughes, Modeling surfaces of arbitrary topology using manifolds, in: Proceedings of the 22nd Annual Conference

on Computer Graphics and Interactive Techniques, ACM Press, 1995, pp. 359–368.
[21] M. Majeed, F. Cirak, Isogeometric analysis using manifold-based smooth basis functions, Comput. Methods Appl. Mech. Engrg. 316

(2017) 547–567.
[22] Q. Zhang, T. Takacs, F. Cirak, Manifold-based B-splines on unstructured meshes, in: Conference on Isogeometric Analysis and

Applications, Springer, 2018, pp. 243–262.
32

http://refhub.elsevier.com/S0045-7825(22)00595-3/sb1
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb1
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb1
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb2
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb2
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb2
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb3
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb4
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb5
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb5
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb5
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb6
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb7
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb7
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb7
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb7
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb7
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb8
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb8
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb8
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb9
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb9
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb9
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb10
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb11
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb11
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb11
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb12
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb12
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb12
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb13
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb13
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb13
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb14
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb14
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb14
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb15
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb15
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb15
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb16
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb16
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb16
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb17
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb17
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb17
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb19
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb19
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb19
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb20
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb20
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb20
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb21
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb21
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb21
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb22
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb22
http://refhub.elsevier.com/S0045-7825(22)00595-3/sb22


T. Takacs and D. Toshniwal Computer Methods in Applied Mechanics and Engineering 403 (2023) 115640
[23] K.J. Koh, D. Toshniwal, F. Cirak, An optimally convergent smooth blended B-spline construction for unstructured quadrilateral and
hexahedral meshes, 2021, arXiv preprint arXiv:2111.04401.

[24] D. Doo, M. Sabin, Behaviour of recursive division surfaces near extraordinary points, Comput. Aided Des. 10 (6) (1978) 356–360.
[25] E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. Aided Des. 10 (6) (1978)

350–355.
[26] J. Stam, Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values, in: Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques, ACM Press, 1998, pp. 395–404.
[27] J. Peters, U. Reif, Subdivision Surfaces, Springer-Verlag, 2008.
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