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Abstract

Wind turbine blades in standstill or parked conditions often experience large angles of attack (AoA), where vortex-induced
vibrations (VIV) may occur that increase the risk of structural damage. To better understand the VIV of airfoils at high AoA
from an aerodynamic perspective, we conducted experimental investigations into the vortex dynamics of a surging airfoil at
a 90° incidence undergoing forced vibrations. Experiments were conducted at two reduced frequencies (k) to demonstrate
the lock-in effect, where the vortex shedding frequency aligns with the motion frequency. Results indicate distinct vortex
shedding behaviors: at higher k value of 0.38, downstream wake vortices form when the airfoil is moving upwind, while
upstream vortices emerge during the downwind motion, interacting with the downstream vortices and leading to an outward
flow. At lower k value of 0.19, the wake remains directed to the downwind side, regardless of the airfoil’s motion direction.
Lock-in is evident in both cases, with one vortex pair shed per cycle at lower k and two pairs at higher k. Furthermore, the
study examines the influence of vortex dynamics on unsteady aerodynamic loads. The results show that drag peaks when
the airfoil moves upwind near the center position of its trajectory; at higher k, negative drag occurs as the airfoil moves
downwind near the center, driven by the interactions among convection, turbulent momentum, pressure, and viscous forces.
A reduced-order load estimation model for a flat plate is applied to the experimental data, showing good agreement during
the upwind motion of the airfoil, which is the design condition for the original flat plate model. However, during the down-
wind motion, as the flow condition does not match the original flat plate design condition, the circulatory part of the model
is modified to account for the presence of two pairs of vortices in the flow field, yielding improved agreement with the drag
values determined from the measured flow field. The findings highlight distinct flow patterns and vortex interactions for the
two motion cases, offering insights into their impact on aerodynamic loads.

1 Introduction

Wind energy plays a vital role in fulfilling the worldwide
increasing need for renewable energy. In the last ten years
(2013-2023), the worldwide installed wind power capacity
has increased by three times (Statista 2024). However, dur-
ing certain incoming wind conditions of wind shear events,
extreme wind speed and rapid change in wind speed and
direction (IEC 2005), the wind turbine needs to remain idle
or even parked to maintain its integrity. When a wind turbine
is parked, the pitch angle of the blade is much higher than in
normal operating conditions; for example, the SCADA data
shows a pitch angle of 78° or 88.3° for the standstill/parked
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wind turbine in the Belwind wind farm in the north sea
(Shirzadeh et al. 2015). In this case, the slender wind turbine
blades might experience vortex-induced vibrations (VIV),
increasing the blade fatigue loads and leading to structural
damage. VIV happens when the vortex shedding frequency
synchronizes with the structural frequency, resulting in
large structural displacements and structural loads (Wil-
liamson and Govardhan 2004). Such a phenomenon occurs
in many engineering situations, such as bridges, offshore
structures, transmission lines, etc. In the past few decades,
much research has been conducted on this topic, as demon-
strated by the reviews from Bearman (1984), Williamson
and Roshko (1988), and Sarpkaya (2004). A relevant phe-
nomenon occurring in Vortex Induced Vibrations is the so-
called lock-in effect. In Bearman’s review (1984), the lock-in
region, also called the "range of capture,” refers to a narrow
range of reduced velocities- defined as the ratio of the free-
stream velocity to the product of the bluff body’s character-
istic dimension and its oscillation frequency- where the flow
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conditions around the bluff body, as well as the force coeffi-
cient, change rapidly. Williamson and Roshko (1988) define
the lock-in as the condition where the structural oscillation
frequency and the vortex formation frequency are close to
the structure’s natural frequency. The authors also point out
that large amplitude motion can be triggered at frequencies
that are hundreds of times larger than the structural natural
frequency. This is confirmed in the work of Sarpkaya, who
showed that lock-in can happen at the super-harmonics of
the natural frequency (Sarpkaya 2004).

Although much research has been conducted on VIV,
it mainly focuses on cylindrical structures, which are
representative of many engineering setups. Instead, lim-
ited research can be found on airfoil VIV, a topic that has
recently become more relevant owing to the increasing size
of wind turbines. Most of the latter research uses numerical
simulations; the most pertinent works are presented here.
Heinz et al. (2016) studied the aero-elastic response of a
DTU 10MW wind turbine blade; their results suggest that
with a certain combination of wind speed and incidence,
the blade tip vibration can reach several chord lengths.
Skrzypinski et al. (2013) numerically investigated the VIV
on an airfoil at 90° AoA. The forced vibration (in the chord-
wise direction) case showed that negative aerodynamic
damping happened for oscillation frequencies near the static
vortex shedding frequency. A recent research from Pirrung
et al. (2024) conducted a full turbine-level simulation in a
fluid—structure interaction setup to study the effect of VIV.
The results showed that VIV induces both edgewise and
flapwise motions onto the three blades, whose amplitude
depends on the incoming wind condition and turbine setup.
As these results focused on the whole blade and wind turbine
level, the detailed flow structures around the blades were not
investigated, thus leaving open questions about the physics
behind lock-in.

Sarpkaya (2004) also pointed out that, during the free
vibration motion, the frequency of object oscillation and
vortex shedding at lock-in cannot remain constant over time
due to the continuous change of added mass. Instead, the
problem has often been addressed by considering forced
vibration conditions, whereby the frequency and ampli-
tude of the object’s motion can be maintained constant. It is
important to note that under the forced vibration condition,
the classical definition of lock-in needs to be modified. For
the forced oscillation of a circular cylinder, Bishop and Has-
san (1964) define lock-in/synchronization when the forcing
frequency (f) approaches the vortex shedding frequency (f;,).
This is the definition used in this research, which is also used
in Besem et al. (2016) and Tang and Dowell (2014).

Since the pioneering research into establishing invis-
cid models for unsteady airfoils from Theodorsen (1935),
Sears Sears (1938) and Mayo Greenberg (1947), several
related works have been performed over the past decades.

@ Springer

The following discussions highlight the most relevant top-
ics related to vortex dynamics, the lock-in effect, and aero-
dynamic loads for an airfoil setup.

Young and Lai (2004) studied the wake structures of a
plunging airfoil by varying the motion’s oscillation fre-
quency and amplitude. The results showed that the leading
edge separation is the dominant effect in the aerodynamic
force until a specific reduced frequency (k). Detailing the
wake structures revealed that the reduced frequency k has
a significant role in the vortex shedding frequency. The
plunging and surging airfoil was studied by Choi et al.
(2013), who found out that, for different motion ampli-
tudes, there exist two separate ranges of k values where the
lift force generated by the moving airfoil is maximized and
minimized, respectively. However, this result only con-
siders the cycle-averaged force, whereas the evolution of
the loads along a cycle and the associated vortices were
not investigated. By studying the wake structure, Young
and Lai (2007) classified the wake shedding modes of the
plunging airfoil, and defined an asymmetric lock-in bound-
ary about the natural shedding frequency. The authors
attributed this asymmetry to the sharp trailing edge of the
airfoil that forces the vortex to shed from the windward
side of the airfoil for most of the plunging cycle. Even
though these results provide valuable insights into vortex
dynamics and frequency lock-in on the airfoil, they focus
on a limited range of low angles of attack (typically below
15°). In contrast, the unsteady aerodynamics of airfoils at
high angles of attack (AoA) have not been investigated.

The present work is motivated by the need for addi-
tional insight into the VIV of airfoils at high AoA from an
aerodynamic perspective. Following the same approach as
Young and Lai (2004) and Choi et al. (2013) which inves-
tigate forced vibrations on airfoils, the case of an airfoil
undergoing forced surging motion is considered. The main
goal is to investigate the vortex structures from forma-
tion, evolution to shedding and their role in the aerody-
namic forces. In the following sections, the experimental
approach and analysis methodology are introduced. Then,
an overview of vortex kinematics and flow development
is provided for the two motion cases at each phase of the
measurement. The main results detailing the aerodynamic
forces are discussed in two sections: (i) the overall force
and the contribution of each force component and (ii) the
comparison of the experimental data with the flat plate
reduced-order model.
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2 Methodology
2.1 Experimental setup
2.1.1 Wind tunnel setup

The experiments were conducted in the open jet facil-
ity (OJF) of Delft University of Technology. The OJF is
a closed-circuit wind tunnel with an open, 2.85 X 2.85m
octagonal test section. The setup is depicted in Fig. 1 and is
described in detail in Xu et al. (2024).

2.1.2 Wing model

A 40 cm span wing with NACAO0021 airfoil of 7.5 cm chord
was used in the experimental campaign. The model was 3D
printed, and carbon fiber strips were attached at the loca-
tion of the one-quarter chord to enhance its stiffness. The
AoA of the wing was fixed at 90°. A motor with a slider-
crank mechanism was used for the surging motion of the
wing. The wing is subjected to the sinusoidal surging motion
(i.e., parallel to the free-stream direction), with a nominal
amplitude of 1.1c, similar to the simulation from Heinz et al.
(2016). The motion frequency was set to 5 Hz and 2.5 Hz,
yielding the reduced frequencies (k = zfc/U ) of 0.38 and
0.19, respectively. In order to trigger lock-in phenomenon,
an appropriate combination of motion frequency and ampli-
tude needs to be considered. As was discussed by Koopmann
(1967), Anagnostopoulos (2000), and Meneghini and Bear-
man (1995), the boundary of the lock-in region presents a
V-shape: the larger the departure of the frequency ratio f/f;,
from unity, being f;, the static vortex shedding frequency, the
larger the amplitude required to trigger lock-in. Consider-
ing that the static vortex shedding frequency was f,, = 6.4
Hz (the procedure to obtain the static shedding frequency
is discussed in the results section), and the limitations of
the motor, at the highest motion frequency of 5 Hz, the fre-
quency ratio was f/f,, = 0.78, corresponding to a reduced
frequency k£ = 0.38. The motion frequency 2.5 Hz was also
investigated in the experiments, yielding f/f,, = 0.39 and

Fig. 1 Experimental setup of
the experiments in the OJF,
looking in the upstream direc-
tion. The relevant components
are: 1. Flow outlet 2. LaVision
Imager sCMOS camera 3.Air-
foil model 4. Quantel Evergreen
Nd:YAG laser 5. The base
plate 6. Surging mechanism.
Note that the schematic plot of
the experimental setup (on the
right) is not to scale

k = 0.19. The experimental parameters are summarized in
Tablel (Xu et al. 2024). The wing’s kinematic motion is
driven by a slider-crank linkage, which transfers a circular
motion to a linear motion. The wing’s actual motion ampli-
tude 4 is obtained by physically tracking the airfoil leading
edge position from the phase-averaged particle image veloci-
metry (PIV) images. The velocity / and acceleration / of the
motion were calculated by temporal derivatives of the wing’s
positions. The results of the wings kinematics are shown in
Fig. 2a, and the relative locations are shown in Fig. 2b for
four phases of the motion: 0° and 180°, corresponding to
the wing’s position close to the center of its trajectory, 90°
and 270°, corresponding to the most upwind and downwind
positions, respectively.

2.1.3 PIV measurements

Stereoscopic PIV measurements were performed to
evaluate the flow fields surrounding the wing. A SAFEX
smoke generator created water-glycol droplets with a
median diameter of 1 ym to seed the flow within the tun-
nel. The illumination was provided by a Quantel Ever-
green Nd: YAG laser (200m] pulse energy, maximum 15Hz
repetition rate, 532nm wavelength). To acquire the three
velocity components within the measurement domain, two

Table 1 Experimental parameters

Parameter Symbol Value
Freestream velocity U, 3.1m/s
Model chord c 0.075m
Reynolds number Re 1.5x 10*
Static vortex shedding frequency St 6.4 Hz
Model angle of attack AoA 90°

Model span s 0.4m
Model aspect ratio AR 5.33
Motion frequency f 2.5Hz, SHz
Reduced frequency k 0.19, 0.38
Frequency ratio flfa 0.39,0.78
Motion amplitude Piax 0.083m(1.1¢)

@ Springer
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Fig.2 a The actual motion amplitude (%) based on the leading edge
of the airfoil, velocity (h) and acceleration (/1) of the surging motion
for two motion frequencies. Note that the lines for & overlap each
other since two cases have the same travel distance. The bottom panel
represents the relative wind speed (U,y = U,, — k) experienced by the
airfoil. b The relative locations of the airfoil at four different phases:
0° and 180° where the wing is near the center of its trajectory, 90° and
270°, where it is in the most upwind and downwind positions, respec-
tively

LaViSion Imager sCMOS cameras (2560 x 2160 pixel, 16
bit, 6.5 X 6.5 um pixel size) were installed at the tunnel’s
side at a relative angle of 40°, as shown in Fig. 1. The
size of a single field of view (FoV) is 269.4 X 331.8 mm,
which corresponds to approximately 3.6¢ in the stream-
wise direction and 4.4c in the cross-flow direction. The
image magnification factor is 0.05 with a digital reso-
lution of 7.92 pixels/mm. The experimental procedure
involved two stages: initially, a measurement with the
static wing was performed to determine the static vortex
shedding frequency f,, which was then used to select the
frequencies for unsteady measurements. Two single FoVs
were stitched together, giving the total FoV of 5.2¢ in the
streamwise direction and 4.2¢ in the cross-flow direction.
Secondly, the unsteady measurements were performed for
the surging airfoil. The measurement plane was placed at
a distance of 3¢ from the tip of the wing where the flow
is less affected by the three-dimensional effects occurring
at the wing tip. To achieve a broader FoV, the entire PIV
system was traversed twice in the streamwise direction,
which gives the total FoV of 8c in the streamwise direction
and 4.2¢ in the cross-flow direction. Phase-averaged acqui-
sitions were obtained at 12 phases: 0°, 45°, 80°, 90°, 100°,
135°,180°, 225°,260°, 270°, 280°, and 315°. For each phase
at each local FoV, 200 image pairs were captured, and the
time interval between the images of a pair is 120 ms.

@ Springer

User-defined region S

3 Illustration of I'; method

2.1.4 Uncertainty analysis of the PIV measurements

The uncertainty of the PIV measurements can be estimated
from the ensemble data size and the flow velocity fluctuation
(Ye et al. 2016). For each phase measured, 200 uncorrelated
snapshots were taken; hence, the standard uncertainty of the
phase-average flow velocity is equal to:

O-M
SR o

o, is the representative standard deviation value of the
streamwise velocity component (o, /U, is approximately
0.1 in the wake of the wing) and N represents the number
of uncorrelated samples. This equation yields £, = 0.7% for
the present experiment.

The uncertainty of the root mean square (RMS) of the
velocity fluctuations is estimated as (Sciacchitano and Wie-
neke 2016):

3

Uu

Su/ —
U, V2(N-1) 2)

The expression yields €, = 0.5%.

2.2 Vortex identification method and calculation
of circulation

Following the approach from Laurent Graftieaux et al.
(2001) and Morgan et al. (2009), the so-called I'; method
is introduced here, which is employed to identify the vortex
center(s) in the flow field.

The illustration of the method is shown in Fig. 3. Given
a two-dimensional flow field as those measured by PIV, a
user-defined rectangular region S is selected, composed of
N data points. Let P be a fixed center point in this region.
At each point M within the region S, 6,, is the angle
between the location vector PM and the velocity vector
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uy;. The sine of the angle ,, can then be calculated, which
gives the dimensionless scalar function I'; at P:

1 PM X uy,
I(P)=— _—
1P) N; IPM]] - [yl

Z sin(6,,) (3)

The value of I'; is calculated for all the data points in the
measurement domain. Notice that|I"; | is bounded by 1; such
bound is reached at the center of the vortex if the vortex
is axisymmetric. Typically, |I';| near the vortex center is
between 0.9 and 1.

Once the center of the vortex has been identified using
the I''; criterion, the circulation I of the vortex can be com-
puted by integration of the vorticity @ within a certain
area A:

F=//codA (4)

A

The area A can be selected based on the vortex boundary,
identified using the I, method (Laurent Graftieaux et al.
2001; Morgan et al. 2009). However, in the present work,
because the vortices are shed from the leading and trailing
edges and separated, a user-defined area is selected as fol-
lows. For each phase of measurement, a rectangle boundary
is set around each vortex in the flow field; the region is large
enough to cover more than the area of the vortex. Then,
the integration for the circulation using Eq. 4 is performed,
excluding the contribution from the vortices in the opposite
direction (opposite sign of vorticity). The schematic plot is
shown in Fig. 4.

2.3 Load estimation method

Due to the highly unsteady character of the flow, unsteady
load measurements are difficult to conduct with conven-
tional load cells. However, from the PIV velocity data,
the derivative-moment transformation method (Rival and
Oudheusden 2017) can be used to infer the aerodynamic
loads for incompressible unsteady flows. The method is
explained below.

Fig. 4 Demonstration of the
user-defined area for circula-
tion calculation. The dashed
rectangle represents the user-
defined area. The red and blue

curls represent the vortices with

opposite signs

First, the pressure gradient can be obtained through the
Reynolds Averaged Navier—Stokes equation:

op) ow) _ oy, %(u, 0(“’ 0
_1o®) o) | o) O )
p ox; ot ! ox; 0x;0x; 0x;

where u; represents the time-average velocity component for
the static case (and phase-average for the surging case) in
the i direction, p is the time-average pressure for the static
case (and phase-average for the surging case), v is the kin-
ematic viscosity, p is the air density and u:uj’ represents the
Reynolds stress tensor. The pressure p can then be calculated
by reformulating the problem as the Poisson equation for
pressure, as described by Van Oudheusden (2013), with
appropriate boundary conditions: for the inlet of undisturbed
flow, the Dirichlet boundary condition is applied; for the
remaining boundaries, Neumann boundary conditions are
applied.

Second, for two-dimensional evaluation, the aerodynamic
forces can be evaluated via the conservation of momentum in a
control contour around the airfoil body (Rival and Oudheusden
2017), following the approach employed by Ragni et al. (2011)
and Van De Meerendonk et al. (2016) for load evaluations
from phase-locked PIV measurements:

—p— //(xlulnl)dl —p//uuna’lz—p//uu’nja’l2
//pndlz+p\///<—+—>na’l2

(6)
with [ the control contour and n;, n; the normal unit vector
(pointing outward) in the i and j directions, respectively.
From left to right of the right-hand side of the equation,
the integrals represent the contributions to the aerodynamic
loads from the flow unsteadiness, mean convection, turbu-
lence momentum transfer, pressure and mean viscous stress.
Note that in the present approach of phased-locked PIV
measurements, the FoV is fixed for different phases. Thus,
the flow unsteadiness term (the first term on the right-hand
side) in Eq. 6 can be written as:

il
—p% // (in)dl’ = —p // <x[§ni>dlz %)
1 1

Specifically, % is obtained from the consecutive phases
measured, as shown in Eq. 8:
o, _ O Oy _ Oy . Hikert — Hi-i

= = ! N -2
or  d¢, ot J¢, % a1 — b &l ®)
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Here, ¢, denotes the phase at the k-th point in the cycle and
¢ = 2xft. u; .,y and i; . are the phase-averaged velocities
at the adjacent phases.

Equation 6 is valid when the flow is incompressible and
the body is thin (Rival and Oudheusden 2017). In this work,
the airfoil NACA 0021 at 90° AoA acts as a bluff body, thus
yielding an additional body force term on the right side of
Eq. 6:

_ _,po
F(t)y = —pBS ©)

where B is the surface area of the airfoil’s cross section and

oh - . . .
518 the airfoil’s acceleration.

2.4 Analytical solution for the surging airfoil
2.4.1 Accelerating motion in one direction

Since the surging airfoil has a fixed AoA of 90°, its shape
and the resulting flow dynamics resemble that of a flat plate
normal to the free-stream direction, whereby the leading and
trailing edge vortices are dominant. This research compares
a low-order model of a flat plate at 90° incidence presented
by Corkery et al. (2017) with the loads estimated from PIV.
In the low-order model, the vortices are assumed to be con-
centrated into two parts: a leading edge vortex (LEV) and a
trailing edge vortex (TEV). The analytical solution for the
accelerating flat plate is presented below.

This method decomposes the force into the added mass
force (non-circulatory force) and the circulatory force. The
former is due to the acceleration induced by the plate to the
flow and is equal to the product between added mass and
acceleration:

2
nc
F p

non-circ — Th (10)
This force can be non-dimensionalized with respect to
the dynamic pressure force (1/ 2ch§°) to obtain the force
coefficient:

ﬂc .
Cnon-circ = m (11

The circulatory force, instead, is ascribed to the vortex
pair generated by the impulsive motion of the plate. If the
strengths of the two vortices are +I", with the distance d
between the cores of the two, the impulse (momentum)
(Lamb 1945) of the vortex pair is:

J = pI'd (12)

The time derivative of Eq. 12 gives the force in the stream-
wise direction:

@ Springer

F. = p(Td +Td) (13)

where I" and d are the time derivative of circulation and vor-
tex distance, respectively. The schematic plot of the model
is shown in Fig. 5.
The circulatory force can then be non-dimensionalized

with respect to dynamic pressure force (1/ 2ch§o) as:
Cope = ——(Id +Td

cire = @( +TI'd) (14)
The total drag force coefficient C, is the sum of the non-
circulatory and circulatory terms:
zc

I T .
_2U2 h+ _U2 C(Fd +1I'd) 15)

Cd = Cnon—circ + Ccirc =
Equation 15 presents the low-order force solution with the
contribution from virtual mass and circulatory force, where
the circulatory force component is influenced by both the
growth of the vortices and the relative motion between LEV
and TEV.

2.4.2 Modified model for surging motion

One limitation of the reduced-order model (Eq. 15) is that
it only considers the accelerating motion of a flat plate,
assuming that the motion is only in one direction. In the
case of the surging wing, accelerations and decelerations
occur, with the wing moving both upwind and downwind.
In particular, a vortex pair is generated downstream of
the wing during the upwind motion, as for the flat plate.
Instead, during the downwind motion, depending on
the reduced frequency k, vortices can also be generated
upwind of the wing, resulting in a situation where both
upwind and downwind vortices are present. In this case,
Eq. 15 cannot be applied anymore. Let us consider, for
instance, the case when the wing is moving downstream
in a surging case, as illustrated in Fig. 6. The downstream
motion of the wing causes the formation of two upwind

TEV
Uso h
—_— D Fci re d
LEV

Fig.5 Illustration of the airfoil’s vorticity field and circulatory force
moving in the upstream direction. I" represents the absolute value of
the circulation from LEV and TEV. "+" represent the vortex cores.

F,. represents the circulatory drag force
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Fig. 6 Illustration of the airfoil’s vorticity field and circulatory force
moving in the downstream direction during a surging motion. The
circulatory force and circulation are split into two groups. The ones
with the underscore "us" represent the circulatory force and circula-
tion generated by the wake velocity Uy, during the downwind motion
of the wing. The ones with the underscore "ds" represent the circula-
tory force and circulation generated during the upwind motion of the
wing

vortices of circulation (I'j and -T"), whose contribution
to the drag is F. .. However, the wing is moving in a
region of flow directed upstream at a velocity Uy,. In this
flow region, two vortices are present, generated from the
previous upwind motion of the wing, whose circulation is
'y and -y, which contribute to the drag force via F 4.
Considering this situation in the flat plate model (Eq. 15),
the circulatory force in the updated model is computed as
the sum of the circulatory forces from each vortex pair.
Thus, during the downstream motion in certain cases, the
drag coefficient is calculated as:

1
Cd = (Fnon—circ + Fcirc,us - Fcirc,ds)/<§pUzoC> (16)

Using Eq. 10 to calculate F, and Eq. 15 to calculate

on-circ

Fcirc,us and Fcirc,ds? Eq' 16 becomes:
c - 2 . . . "
Cd = 202 h+ m(rusdus + 1—‘usdus - I_‘dsdds - Fdsdds)

an

Fig.7 Streamwise velocity field
it/ U, and vorticity field @c/U,,
of the static wing at 3¢ location
from the tip

3 Results and discussion
3.1 Velocity and vortex dynamics
3.1.1 Static case

The static wing case is discussed first regarding velocity and
vorticity fields. Figure 7 shows the time-averaged (from 200
samples) streamwise velocity i#/U,, and vorticity @c/U,,
field at 3¢ distance from the wing’s tip, with the airfoil at
AoA = 90°. The gray area in the plots represents the shadow
region where the airfoil blocked the laser light from the bot-
tom, as shown in Fig. 1; hence, no velocity measurement
is possible in that region. At such large AoA, the airfoil
generates a large wake, whose width scales with the airfoil’s
chord, where a significant flow reversal occurs (velocity up
to about 0.3 of U,). Vortices are shed alternatively from the
leading and trailing edges but are not visible in the mean
flow field. Instead, high vorticity is present in the shear lay-
ers emanating from the leading and trailing edges.

Flow fields are captured 2.5¢ downstream of the wing to
determine the vortex shedding frequency of the static wing.
The distance is defined between the airfoil chord line to the
left boundary of the FoV. Two instantaneous flow fields at
t=10.27s and = 15.65s are shown in Fig. 8a and b. In the
figure, the vortex shedding from the leading edge and trail-
ing edge is visible, resulting in a sinusoidal shape of the
wake. Proper orthogonal decomposition (POD) analysis is
performed on the flow fields to identify the most energetic
modes associated with the wake dynamics (Smith et al.
2005). The first two modes feature a comparable energy
content of 9.5% and 8.1% (as shown in Fig. 9) and are in
quadrature of phase; the first two modes of the cross-flow
velocity component v, shown in Fig. 8c and d, represent the
convection of the streamwise vortices shed from the leading
and trailing edges of the wing. The distance between the
two neighboring peaks in the streamwise direction (1.88¢)
in Fig. 8c represents half of the wavelength of the vortex.
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Fig. 8 Instantaneous streamwise velocity field u/U, 2.5¢ down-
stream from the airfoil at a r= 10.27 s, (b) = 15.65 s and the first
two modes of the cross-flow velocity component v (¢) and d from the
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Fig. 9 Energy content at different mode number

Based on the convective velocity in the shear layer, which
is estimated as 60% of the free stream, the vortex shedding
frequency f;, for the static wing (defined as velocity divided
by wavelength) is calculated as 6.4 Hz, resulting in a Strou-
hal number St = f,,c/U_, = 0.159.

3.1.2 Surging cases

The surging motion was conducted at 5 Hz and 2.5 Hz.
Based on the f; obtained from the static measurements,
the corresponding frequency ratio of the motion frequency
f with respect to f,, is 0.78 and 0.39. The phase-averaged
streamwise velocity fields superimposed with stream-
lines are shown in Fig. 10 during a cycle of motion for the
reduced frequency k = 0.38 (Animation provided in Online
Resource 1). In total, 12 phases were captured, and the result
is shown in a vortex formation order in the wake instead
of the phase-increasing order. When the airfoil moves in
the upstream direction (for instance, phases ¢ = 0° and
45°), the flow shares similarity with that of the static wing,
even though with a stronger velocity deficit inside the wake
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POD analysis. Note that distance of the FoV with respect to the air-
foil is defined as the distance between the airfoil chord line and the
left boundary of the FoV

and a larger flow acceleration outside of the wake. When
the airfoil moves in the downstream direction, instead, a
region of velocity higher than U_ is formed upwind of the
wing, whereas the wake downwind of the wing elongates
on the top and bottom of the wing in the upwind direction
(see for instance phases ¢ = 180° and 225°). The phase-
averaged vorticity fields superimposed with streamlines for
the same k are shown in Fig. 11 (Animation provided in
Online Resource 2). The green crosses in Fig. 11 represent
the vortex cores identified using the I'l method explained in
the methodology section. For the k = 0.38 surging case, the
vortex formation in the wake starts from ¢ = 270°, where
the airfoil is at the most downstream position. At this phase,
the wing starts moving upwind from zero velocity; thus, a
vortex pair starts to form at the leading and trailing edges.
As the wing moves upwind, the vortices grow in size and
strength, fed by the vorticity of the shear layers. The end
of the vortex formation period can be determined through
the circulation of each phase, which for the leading edge
vortices is shown in Fig. 12. The circulation is calculated
using Eq. 4, excluding the points where the vorticity has
the opposite sign with respect to that of the vortex. For the
k = 0.38 case, I' reaches the maximum at ¢ = 80° (close
to the most upwind location) and remains approximately
constant afterward. From ¢ = 80°(Fig.11g) to ¢ = 100°
(Fig. 11i), the wake vortices increase their distance in the
cross-flow direction, while shrinking their size in the stream-
wise direction. Before ¢p = 80°, the vortex pair builds up and
the vortex formation length (the distance between the airfoil
and the vortex core) elongates. When the airfoil decelerates
toward ¢ = 90°, the trailing vortices decelerate, because
their motion is obstructed by the airfoil itself. When the
airfoil starts to move in the downwind direction (¢ > 90°),
it induces an increase of pressure between the vortices: as
a consequence, the vortices detach and move apart in the
cross-flow direction. From ¢ = 90° (the most upstream posi-
tion) onwards, as the airfoil moves downwind, the vortices
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Fig. 10 Streamwise velocity field /U, for k =0.38 surging case
for all the measured phases. Instead of showing the increasing phase
order, the same order as Fig. 11 is shown here. The black arrow

are pushed away from the airfoil, causing the vortex pair to
detach from the airfoil’s leading edge and trailing edge. This
is identified by the fact that at 135°(Fig. 10j), the two vortices
are cut off from the supply of fluid circulation from the shear
layer connected to the airfoil leading and trailing edges.
Starting from ¢ = 135°, another pair of starting vortices,
in the upwind direction, starts generating and growing until
¢ = 225°. At ¢ = 180°, while the upwind vortices grow in
size and strength, the downwind vortices gradually move
away in the cross-flow direction from the wing. Similar to
the downwind vortices, from ¢ = 225° the upwind vorti-
ces start to separate from the wing due to the deceleration
of the latter. At ¢ = 280°, they move away from the wing
at a comparable speed as the downwind vortices. As the
airfoil moves downstream, it moves within its own wake,
characterized by low streamwise velocity generated during
its upwind motion. With the relatively low incoming velocity

x/c

(k) ¢ = 180°

x/c

(1) ¢ = 225°

represents the scaled relative velocity U, and the red arrow repre-
sents the scaled motion velocity 4. (Animation provided in Online
Resource 1)

and the relatively high wing motion velocity, the vortices
shed upwind remain roughly at the same streamwise location
during the donwnwind motion of the wing. It is noticed that
one pair of downwind vortices (generated during the upwind
motion) and one pair of upwind vortices (generated during
the downwind motion) are shed simultaneously during one
cycle of motion. Hence, it is concluded that, for the current
case (frequency ratio f/f,; = 0.78), lock-in occurs between
the vortex shedding and wing’s motion.

Figure 13 displays the superimposed streamlines with
streamwise velocity fields for all the measured phases for
the k = 0.19 case (Animation provided in Online Resource
3). Compared with the k = 0.38 case, the wing’s velocity
is lower, meaning that the perceived wind of the airfoil is
closer to the free-stream velocity; as a consequence, the
resulting flow fields exhibit higher similarity to that of the
static wing case shown in Fig. 7a. In particular, during the
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Fig. 11 Contours of the phase-averaged spanwise vorticity com-
ponent superimposed with streamlines. Vortex identified using I,
method for k& = 0.38 surging case. The vortex center is marked as

downwind motion of the wing (phases between ¢ = 90°
and ¢ = 270°), the wing’s velocity is not high enough to
move the downwind vortices laterally. Furthermore, the flow
stagnation always occurs on the upwind side of the wing,
whereas the wake is always on the downwind side. From the
vorticity fields, illustrated in Fig. 14 (Animation provided in
Online Resource 4), two main observations can be made: (i)
contrary to the kK = 0.38 case, vortices are shed only on the
downwind side of the wing and not on the upwind side: this
result is because the wing motion velocity is low compared
with the free-stream velocity, hence no starting vortex is
formed when the wing moves downwind; (ii) Although dif-
ferent from the k = 0.38 case where two pairs of vortices
(one pair upwind and one pair downwind) shed, at k = 0.19,
during one period of motion, only one pair of counter-rotat-
ing vortices is shed, which indicates a different form of lock-
in between the wing motion and the vortex shedding. The
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crosses in green. The black arrow represents the scaled relative veloc-
ity U, and the red arrow represents the scaled motion velocity /.
(Animation provided in Online Resource 2)

first observation implies that the motion kinematics of the
wing dominates the upwind vortex shedding, thus highlight-
ing the importance of motion-reduced frequency on the flow
dynamics. From the measured data, the start of the vortex
generation is at ¢ = 225°, where a pair of small vortex blobs
starts to form downstream of the airfoil. From Fig. 12, it is
noticed that, for the k = 0.19 case, I" increases until ¢p = 90°
and decreases afterward. At ¢ = 135°, it is observed that the
vorticity exhibits a "noisy" pattern between x/c = 1 and 2.
Although this is ascribed to the limited ensemble size (it is
reminded that the phase-average flow fields were obtained
from 200 instantaneous fields), it indicates that the wake
vortices are not stable and dissipate to the surrounding flow.
At ¢ = 180°, the vorticity is spread in a larger area, and
only the leading edge vortex core can be found in the meas-
urement domain. Compared with k = 0.38 case, when the
wing is moving upwind, the wake generated in the k = 0.19
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Fig. 12 Circulation I" of the wake vortex in the downstream side from
the leading edge at different phases in a cycle. The solid horizontal
arrow pointing right on top of the plot represents the downstream
motion, and the dashed arrow pointing left represents the upstream
motion of the airfoil

case is downwind of the wing, similarly to the k = 0.38
case. However, in the latter case, a higher reverse velocity
is encountered. In this condition, when the airfoil moves
back in the downwind motion, the energy that the wing
feeds into the flow combines with the energy of the wake
flow: because of the lower wing velocity in the k = 0.19
case, the wake remains downwind of the wing, contrary to
the k = 0.38 case, where the wake elongates to the sides
and upwind of the wing. It is noticed that, in the kK = 0.19
case, the vorticity field is significantly different from that
of the k = 0.38 case, indicating that k influences the vortex
dynamics to a large extent. On the other hand, the second
observation (namely the fact that only one pair of counter-
rotating vortices is shed during one motion cycle under this
frequency, which is different from the k = 0.38 case where
two pairs of vortices are generated and shed simultaneously
during one cycle, only one pair of counter-rotating vortices
is shed) indicates that even though the two motion cases
have different vortex dynamics, they all eventually feature
the lock-in effect. While the lock-in from the high reduced
frequency is expected due to f/f;, close to unity, the lock-in
in the low reduced frequency case is ascribed to the large
motion amplitude. The simulation results from Choi et al.
(2015) of an oscillating airfoil indicate that lock-in occurs
for small motion amplitudes for f/f,; closes to unity. In con-
trast, for large motion amplitudes, it can also occur for sub-
harmonics, e.g., f/f,, = 0.5. In the present test case, for the
low reduced frequency (k = 0.19) case, the frequency ratio
is f/fy = 0.39, which, given the motion amplitude of 1.1¢
yields a lock-in between frequency of motion and vortex
shedding.

Figure 15 presents the trajectory of the downwind leading
edge vortex along a cycle. The vortex core is identified using

the I'; method explained in the previous section. Starting
from the beginning of the vortex formation (¢ = 280° for
k = 0.19 case and ¢ = 260° for k = 0.38 case) to ¢p = 45°,
the motion in the streamwise direction follows the sinusoidal
shape. For both the reduced frequencies, up to ¢ = 315°,
the vortex moves slightly downstream because of the free-
stream velocity in the downwind directions; for successive
phases up to ¢ = 45°, the vortex moves upstream instead,
subject to the flow velocity induced by the upwind motion
of the wing. Clearly, such displacement is significantly larger
for the k = 0.38 case due to the higher speed of the wing.
From ¢ = 45°, the vortex moves downstream because of the
decreasing wing velocity (up to ¢ = 90°) and its successive
motion in the downwind direction (from ¢ = 90° onward).
When looking at the transverse displacement of the vortex
(along the y direction, illustrated in Fig. 15b), it can be seen
that, for the lower reduced frequency k = 0.19, the vortex
gradually moves away from the airfoil starting from phase
¢ = 315°. Instead, at the higher reduced frequency k = 0.38,
the vortex transverse position remains approximately con-
stant up to ¢ = 45°; afterward, the vortex quickly moves
away from the wing due to the high wing velocity that has
the effect of displacing the vortex in the vertical direction.

3.2 Load estimation
3.2.1 Static case

The load estimation method based on Eq. 5 to Eq. 6 is
applied to the static wing first; in this case, because the wing
is static and the time-average flow field is considered, the
time derivative term in Eq. 6 is null. The pressure field is
shown in Fig. 16a. The pressure field is non-dimensionalized
asCp = (P — Pw)/(l/Zpro), where P is the static pressure
in the flow field and P is the free-stream pressure. The
shadow region at the top of the airfoil, present in the velocity
fields, was interpolated to allow for the pressure calcula-
tion using the Poisson equation. It is important to note that,
although the shaded area is present, it primarily remains
outside the wake region. For the sake of computation of
the aerodynamic loads via Eq. 6, linear interpolation of the
velocity at the boundaries at the shaded region is performed.
Because in the shaded region, the flow is mainly a potential
flow, and because the aerodynamic loads are evaluated from
the line integral along the control boundaries, the uncer-
tainty associated with this interpolation is deemed negli-
gible. Upwind of the wing, the flow field clearly follows
potential flow theory: As the wind approaches the airfoil,
the speed decreases and the pressure increases, based on
Bernoulli’s principle. Instead, downstream of the airfoil, a
wake is present, where Cp is lower than 0 due to the pres-
ence of wake vortices and reverse flow. The corresponding
force contributions from mean convection (MC), pressure
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Fig. 13 Streamwise velocity field &1/U,, for k =0.19 surging case
for all the measured phases. Instead of showing the increasing phase
order, the same order as Fig. 14 is shown here.The black arrow repre-

(press) and turbulence momentum transfer (TMT) are shown
in Fig. 16b. Note that the positive or negative sign in front
of each term in Eq. 6 is included in the force component.
The mean viscous stress term is not included in the bar
plot because it is several orders of magnitude lower than
the others. Also, for the static case, the body force term is
zero. For the calculation of the for