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Summary

Software engineering, fundamental to modern technological advancement, profoundly

influences various aspects of society by enhancing efficiency, accessibility, and security.

This discipline involves systematically applying engineering principles to software systems’

design, development, testing, and maintenance. Innovations in software engineering

have revolutionized industries such as communication, finance, healthcare, and education,

democratizing access to information and connecting global communities. As software

systems become increasingly complex, the need for efficient, secure, and reliable software

analysis tools becomes paramount.

The thesis focuses on improving the actionability and scalability of software analysis

by integrating machine learning (ML) techniques. Traditional static analysis tools often

struggle with large codebases, leading to high false positive rates and high computational

costs. Machine learning, particularly deep learning architectures like Transformers, offers a

promising solution by capturing long-range dependencies in code and learning hierarchical

representations. This capability enables MLmodels to automate tasks such as bug detection,

source code summarization, and program repair, providing developers with actionable

insights and improving overall productivity and code quality.

A significant contribution of this thesis is the development of ML-based techniques for

type inference in Python and call graph pruning. An ML-based type inference approach,

namely Type4Py, was proposed, which accurately predicts type annotations for Python

code, enhancing code quality and reducing runtime errors. ML models with conservative

pruning strategies were proposed for call graph pruning, which learns from dynamic traces

obtained by executing programs to identify and eliminate false edges, thereby minimizing

false positives and improving precision. Additionally, the thesis explores the application of

call graphs in vulnerability analysis, demonstrating that granular assessments provide more

accurate and actionable insights than more straightforward, dependency-level analyses.

In summary, this thesis advances the field of software analysis by harnessing machine

learning to address two important issues related to the actionability and scalability of soft-

ware analysis tools. The proposed ML-driven tools and techniques enhance the precision

and reliability of software analysis and support developers in maintaining robust, secure,

and maintainable software systems. These contributions pave the way for future research

in applying ML techniques to various aspects of software engineering, promising further

improvements in software development practices.
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Samenvatting

Software engineering, fundamenteel voor moderne technologische vooruitgang, beïnvloedt

diepgaand verschillende aspecten van de samenleving door efficiëntie, toegankelijkheid en

veiligheid te verbeteren. Deze discipline omvat het systematisch toepassen van technische

principes op het ontwerp, de ontwikkeling, het testen en het onderhoud van softwaresyste-

men. Innovaties in software engineering hebben industrieën zoals communicatie, financiën,

gezondheidszorg en onderwijs gerevolutioneerd, toegang tot informatie gedemocratiseerd

enwereldwijde gemeenschappen verbonden. Naarmate softwaresystemen steeds complexer

worden, wordt de behoefte aan efficiënte, veilige en betrouwbare software-analysetools

steeds belangrijker.

De scriptie richt zich op het verbeteren van de bruikbaarheid en schaalbaarheid van

software-analyse door integratie van machine learning (ML) technieken. Traditionele

statische analysetools hebben vaak moeite met grote codebases, wat leidt tot hoge foutpo-

sitieve percentages en hoge computatiekosten. Machine learning, met name deep learning-

architecturen zoals Transformers, biedt een veelbelovende oplossing door langeafstands-

afhankelijkheden in code vast te leggen en hiërarchische representaties te leren. Deze

mogelijkheid steltML-modellen in staat om taken zoals bugdetectie, broncode-samenvatting

en programmareparatie te automatiseren, waardoor ontwikkelaars bruikbare inzichten

krijgen en de productiviteit en codekwaliteit in het algemeen verbeteren.

Een belangrijke bijdrage van deze scriptie is de ontwikkeling van ML-gebaseerde

technieken voor type-inferentie in Python en call graph pruning. Een ML-gebaseerde

type-inferentiebenadering, namelijk Type4Py, werd voorgesteld, die nauwkeurig type-

annotaties voor Python-code voorspelt, de codekwaliteit verbetert en runtime-fouten

vermindert. ML-modellen met conservatieve snoeistrategieën werden voorgesteld voor

call graph pruning, die leren van dynamische traceringen verkregen door programma’s

uit te voeren om valse randen te identificeren en te elimineren, waardoor foutpositieven

worden geminimaliseerd en de precisie wordt verbeterd. Daarnaast onderzoekt de scrip-

tie de toepassing van call graphs in kwetsbaarheidsanalyse, waarbij wordt aangetoond

dat gedetailleerde beoordelingen nauwkeurigere en bruikbaardere inzichten bieden dan

eenvoudigere, afhankelijkheidsniveau-analyses.

Samenvattend, deze scriptie bevordert het veld van software-analyse door machine

learning te gebruiken om twee belangrijke problemen met betrekking tot de bruikbaarheid

en schaalbaarheid van software-analysetools aan te pakken. De voorgestelde ML-gedreven

tools en technieken verbeteren de precisie en betrouwbaarheid van software-analyse en

ondersteunen ontwikkelaars bij het onderhouden van robuuste, veilige en onderhoudbare

softwaresystemen. Deze bijdragen effenen het pad voor toekomstig onderzoek naar de

toepassing van ML-technieken op verschillende aspecten van software engineering, wat

verdere verbeteringen in softwareontwikkelingspraktijken belooft.
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Introduction

Software engineering, a cornerstone of modern technological advancement, plays a pivotal

role in shaping society. It involves the systematic application of engineering principles to

the design, development, testing, and maintenance of software [1]. This discipline not only

focuses on functionality and performance but also on ensuring the reliability and security

of software systems. As a result, software engineers have created complex systems that

power everything from global communication networks and financial systems to personal

computing devices and medical equipment [2, 3].

The impact of software engineering on society is profound and multifaceted. It has dras-

tically transformed how we work, communicate, and live, making processes more efficient

and information more accessible [1]. Innovations such as the internet, mobile applications,

and cloud computing, all software engineering products, have revolutionized industries

such as computer games, music, and film and television [4]. Moreover, these advances

have democratized access to information, connected global communities, and facilitated

advancements in other fields such as healthcare, education, and transportation [5].

Building on the foundational aspects of software engineering, software analysis is a

critical component that ensures software systems are efficient, secure, and error-free. This

analytical process includes analyses such as type inference and call graph construction,

which help optimize code and enhance its performance [6]. Type inference automatically

determines the types of expressions in a programming language without explicit type anno-

tations, simplifying code maintenance and improving readability. Call graph construction,

meanwhile, focuses on finding all possible function calls within a program, providing a

visual and analytical map that developers use to optimize execution paths and enhance

performance [7].

The actionability of software analysis tools is a critical factor influencing their adoption

and effectiveness in software development. Actionability refers to the tool’s ability to

provide developers with clear, practical steps to resolve detected issues. This is vital

because actionable warnings help developers quickly understand and address problems,

thus enhancing productivity and code quality. Conversely, false warnings, or false positives,

are instances where the tool incorrectly flags non-issues as problems. High rates of false

positives can lead to "alert fatigue," where developers become desensitized to warnings and
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may start ignoring or turning off the analysis tools altogether. Minimizing false warnings

and maximizing actionability are prominent. Tools that produce too many false positives

are seen as unreliable and can erode trust among developers, leading to decreased usage

and effectiveness. On the other hand, tools with high actionability support developers in

maintaining and improving code quality. Balancing these factors is crucial for the practical

adoption of static analysis tools in real-world software development environments [8, 9].

Scalability is a significant problem in software analysis due to large-scale software

systems’ increasing complexity and resource demands. Larger codebases mean more lines

of code, more functions, and more intricate interdependencies to analyze, all requiring

considerable processing power and time. Also, maintaining up-to-date analysis in the face of

frequent incremental changes, such as new features and bug fixes, poses another scalability

challenge. Ensuring accurate analysis without reprocessing the entire codebase necessitates

sophisticated techniques for partial analysis and data caching. Balancing precision and

performance becomes increasingly difficult as more detailed analyses demand significant

computation.

Recently, machine learning has shown impressive performance in tackling various

tasks in software analysis, particularly those involving the examination and manipulation

of source code. Over recent years, the use of ML techniques for software analysis tasks

has expanded and diversified significantly. These tasks include but are not limited to

automated testing, bug detection, source code summarization, program repair, and type

inference [10]. The success of ML in software analysis largely derives from its ability to

learn from vast datasets of source code, which subsequently facilitates the automation of

traditionally manual and error-prone tasks. For instance, ML methods have been applied

to enhance software testing by automating the generation of test cases and optimizing

testing workflows [11]. Additionally, in the area of program repair, ML models are trained

to predict and rectify bugs automatically, significantly reducing the manual effort required

in debugging.

A key advantage of ML in this domain is its ability to provide actionable predictions

that directly aid developers. For instance, in bug detection, ML models can be trained on

large codebases to learn patterns associated with common bugs. When analyzing a new

program, these models do not just flag potential issues but can pinpoint specific lines or

methods likely containing bugs or vulnerabilities [12], offering developers concrete starting

points for debugging. Similarly, in program repair tasks, ML models trained on pairs of

buggy and corrected code can suggest exact changes, such as modifying a condition in

an if-statement or adding a null check—providing developers with ready-to-implement

fixes [13].

Moreover, ML models scale better with the size and complexity of programs. As

mentioned, traditional static analysis tools often struggle with large codebases, as their

rule-based approaches lead to exponential growth in analysis time or a surge in false

positives. In contrast, ML models, particularly those based on deep learning architectures

like transformers, excel at capturing long-range dependencies in code [14]. When trained

on diverse, large-scale datasets, these models learn hierarchical representations, from

token-level patterns to class-level structures, enabling them to understand the context of a

given code snippet within its broader class or module. This hierarchical learning allows

ML models to maintain high accuracy even when analyzing large programs.
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In this thesis, we aim to improve the actionability and scalability of software analysis by

leveraging the power of machine learning. Our primary focus is on addressing two signifi-

cant challenges: improving type inference for Python and refining call graph construction.

These areas present substantial uncertainty, particularly in the realms of predicting type

annotations accurately and constructing call graphs precisely. Python’s dynamic nature

and flexibility can lead to ambiguous type information, making traditional static analysis

methods less effective. This ambiguity can cause issues such as missed type errors and less

efficient code analysis, ultimately impacting code quality. To mitigate these uncertainties,

we seek to explore ML-based techniques to predict type annotations in Python code. Ma-

chine learning models can learn from vast amounts of code corpus to identify patterns

and infer types more accurately than traditional heuristic-based methods. By doing so, we

aim to improve code quality, reduce runtime errors, and enhance the developer experience

through more accurate code analysis and features like auto-completion.

Similarly, call graph construction faces challenges due to dynamic method calls and

runtime behavior that static analysis may over-approximate. Traditional static analysis can

result in call graphs with unnecessary or false edges, leading to false positives and reduced

trust in the analysis tools. We propose employing machine learning models to analyze

dynamic traces from program executions. By integrating insights from these dynamic

traces, we can refine static call graphs, pruning unnecessary or false edges, and thereby

reducing false positives. Our approach aims to align with developer preferences for fewer

false alerts, increasing the trust and reliance on software analysis tools. We anticipate that

enhancing the precision of call graphs will positively impact various downstream analyses,

such as security assessments, making them more efficient and actionable. Machine learning

offers a promising solution to handle the inherent uncertainties in software analysis,

providing a more robust and scalable approach to improving type inference and call graph

construction.

Additionally, we explore the application of call graphs in vulnerability analysis. Our

approach involves adopting a granular methodology to identify at-risk Maven packages

accurately, demonstrating that the value of granular vulnerability assessments over simpler,

dependency-level analyses. Through this work, we aim to highlight the value of fine-

grained vulnerability assessments in offering actionable insights for improving security

practices in software development. Overall, this thesis aspires to push the boundaries of

software analysis by developing powerful, ML-driven tools. These tools are intended to

empower developers to build robust, secure, and maintainable software systems, addressing

the pressing challenges of modern software development with promising solutions.

1.1 Background
Software analysis is a critical phase in the software development lifecycle that involves

examining and evaluating a software product to understand its structure, functionality, and

behavior. This process is essential for identifying potential issues, ensuring compliance

with specifications, and verifying that the software meets its intended objectives. Software

analysis can be divided into various forms, including static, dynamic, and formal methods,

each serving unique purposes and providing different insights into the software system.

Static analysis refers to examining the software’s behavior without executing the

program. This type of analysis is conducted using tools that inspect the source code to
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detect possible vulnerabilities, coding errors, and style issues. It is beneficial for finding

syntax errors, type mismatches, and other anomalies that could lead to software failure, all

of which can be identified without running the program. Static analysis tools automate

much of the review process, enabling developers to identify issues early in the development

cycle. This not only helps in improving code quality but also reduces the time and cost

associated with later stages of testing and maintenance.

On the other hand, dynamic analysis involves analyzing the software while it is running.

This method checks the software’s behavior in a real-time environment and validates its

output against expected results. Dynamic analysis is crucial for identifying issues that

may not be evident through static analysis alone, such as memory leaks, performance

bottlenecks, and concurrency issues [15]. Tools used for dynamic analysis can simulate

a range of conditions under which the software might operate. They can help verify the

software’s functional correctness, ensuring it behaves as expected under different scenarios.

Together, these two methods form a comprehensive approach to software evaluation,

each contributing uniquely to the overall quality and reliability of the final product. By

integrating static and dynamic analysis, developers can better understand the software’s

operational characteristics and potential weaknesses, leading to more robust and error-free

software.

1.1.1 Call Graph Construction
A call graph is a crucial compile-time abstraction in software analysis, representing the

calling relationships among the procedures or methods in a program. It comprises nodes

(procedures or methods) and directed edges (calls from one procedure to another). Con-

structing call graphs involves analyzing the program’s source code to determine these

relationships. While this is straightforward in procedural languages where calls are ex-

plicit, this task becomes complex in object-oriented languages due to dynamic dispatch or

first-class functions [16].

Control Flow Analysis (CFA) is integral to constructing call graphs in these complex

scenarios. CFA assesses the flow of calls and the potential value expressions that might

be taken at various program points. In languages that support dynamic features, deter-

mining the targets of calls involves sophisticated inference of possible function or method

targets dynamically determined by runtime data. The level of CFA can vary from sim-

ple, context-insensitive analyses (0-CFA) to more detailed but computationally intensive

context-sensitive analyses (k-CFA) [17].

The construction of call graphs often involves a trade-off between precision and sound-

ness. Call graphs are over-approximated to include potential calls that may never actually

occur in any execution of the program, ensuring that all actual calls are represented but

possibly including false positives, harming precision. A sound call graph guarantees that it

accurately reflects all potential executions of the program, which is particularly critical in

security-focused applications [18].

The applications of call graphs extend across several domains. Compilers use them to

optimize code by enabling function inlining, dead code elimination, and recursion optimiza-

tion. They are also used in software maintenance to aid in understanding and modifying

code, in security to identify potential vulnerabilities, and in generating automated doc-

umentation to aid in program understanding. However, the construction and use of call
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graphs in dynamic or complex environments pose ongoing challenges. Balancing the

precision of call graphs without significantly impacting performance and adapting call

graph analyses to modern programming paradigms like asynchronous programming and

microservices are areas of active research [19]. New algorithms that effectively balance

precision, scalability, and computational overhead are continually explored to improve call

graph generation.

1.1.2 Type Inference
Type inference is used in programming languages to determine the types of expressions

without explicit type annotations automatically. This technique is fundamental in statically

typed languages, where every variable and expression type must be known at compile-

time. It is also increasingly applied in dynamically typed languages, such as Python’s PEP

484 [20], TypeScript [21], and PHP [22], to improve performance and provide early error

detection. Type inference enhances language usability by reducing code verbosity and

facilitating generic programming, allowing developers to write more abstract and flexible

code without the overhead of constant type declarations.

The challenges of type inference stem from the complexity and diversity of program-

ming language features. One primary challenge is balancing type inference precision with

complexity. More sophisticated type systems, which include features like generics, union

types, or intersection types, require more complex inference algorithms, impacting the

compiler’s performance and the clarity of error messages. Additionally, features such

as polymorphism, higher-order functions, and implicit conversions can complicate the

inference process, necessitating advanced algorithms like constraint-based type inference

or type hints to guide the process effectively [23].

In dynamically typed languages, the challenges of type inference are amplified by their

flexible type systems. For example, Python supports features such as duck typing, where

an object’s operations are determined by its current attributes rather than its type. This

flexibility complicates type inference, as a variable’s type can change over its lifetime, and

mixed-type containers can further obscure type flows. Python also allows runtime behaviors

like dynamically adding attributes to objects and supports first-class functions [24], which

can be created and passed around at runtime like other objects. Similarly, TypeScript

and PHP introduce complexities with their dynamic typing and runtime behaviors. These

characteristics make static type inference particularly challenging because type information

can change during execution.

1.1.3 Machine learning for software analysis
Machine learning has advanced the state-of-the-art in various domains [25], namely, image,

text, and speech, including software engineering, where it significantly enhances source

code analysis. Integrating ML techniques into software analysis tasks utilizes the ability of

these models to recognize patterns and make predictions based on big code corpus. This

intersection of ML and software engineering, known as Machine Learning for Software

Engineering (ML4SE), has recently experienced considerable growth due to advancements

in ML algorithms, the increased availability of open-source code, and improvements in

compute resources [10].

One primary motivation for incorporating ML into software analysis is the complexity



1

6 1 Introduction

and size of modern software systems, which render traditional analysis methods less

effective and scalable. ML techniques can automate various tasks such as bug detection, code

completion, refactoring, and vulnerability analysis by learning from historical code data

and identifying patterns that indicate potential issues. For instance, deep learning models,

a specialized subset of ML, have demonstrated significant potential in understanding and

generating code, thereby assisting in tasks like code summarization and synthesis [26].

A crucial concept within ML4SE is software naturalness. Traditional software analysis

relies on rigorous, logical approaches, such as gathering and resolving constraints related

to a program. This method is particularly effective for proving that certain parts of the code

are unreachable and can thus be eliminated. However, only some problems fit into this

structured approach. Issues involving human factors or lacking a definitive correct solution

are often more amenable to statistical techniques [27]. For instance, determining the most

"natural" name for a specific variable is a task better suited for these methods. Recently,

deep neural networks have become a potent tool in this realm, leading to the development

of neural software analysis. In this context, machine learning models are trained using

vast quantities of program data annotated with the desired analysis results. These models

are then applied to new, unseen problems, effectively leveraging the concept of software

naturalness to improve code readability, maintainability, and overall quality. This approach

complements traditional methods and addresses their limitations by providing more flexible

and adaptive solutions for complex, real-world software engineering challenges.

The advantages of ML for source code analysis are evident in the improvements in effi-

ciency and accuracy reported in numerous studies. By automating routine tasks, ML allows

developers to concentrate on more creative aspects of software development. Furthermore,

the predictive capabilities of ML models facilitate the early detection of defects and vulner-

abilities, thereby enhancing software quality and security. To this end, researchers have

employed various ML techniques, ranging from traditional models like Decision Trees

and Support Vector Machines to advanced neural networks such as Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), Large Language Models (LLMs),

each tailored to specific analysis tasks. Despite these advancements, the field faces several

challenges, including the necessity for large, labeled datasets, the interpretability of ML

models, and integrating these models into existing development workflows [28].

1.1.4 Software Ecosystem
Software ecosystems encompass an interconnected network of software components,

libraries, and tools that developers use to build and maintain applications [29]. A common

approach to software reuse within these ecosystems involves incorporating open-source

software (OSS) libraries from centralized code repositories like Maven or PyPI. Developers

simply list the third-party libraries on which their project depends, and automated tools

fetch these libraries into the project’s development environment. However, significant

incidents like the LeftPad event [30], which caused numerous websites to malfunction, the

Equifax security breach, which compromised vast numbers of credit card details, the Log4j

incident in 2021 [31], which exposed millions of systems to potential cyberattacks, and the

newly discovered vulnerability in XZ utils identified in 2024 [32], have shown that relying

on external software libraries can pose considerable operational and compliance risks.

These incidents also highlight the challenges in assessing the security risks associated with
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these dependencies.

Addressing these challenges is crucial for software development firms to deliver high-

quality products rapidly. By tackling the issues associated with OSS dependencies, compa-

nies can confidently leverage the benefits of open-source code, such as reduced development

costs and faster time-to-market, without compromising on security and compliance. In

response to these pressing needs, the FASTEN project [33], Fine-Grained Analysis of

Software Ecosystems as Networks, has developed a comprehensive solution by providing

fine-grained, method-level tracking of dependencies, going beyond the capabilities of exist-

ing dependency management systems. By offering a more granular and robust approach to

managing OSS dependencies securely, FASTEN empowers software development firms to

mitigate the risks associated with external libraries while reaping open-source software’s

benefits. This solution has the potential to revolutionize the way companies handle OSS

dependencies, ensuring a more secure and efficient software development process.

The FASTEN project funds this thesis, a European Union’s Horizon 2020 (Grant No.

825328). The core idea of FASTEN is to make dependency management more robust and

intelligent by tracking program dependencies at the call graph level. Specifically, the

project performs more sophisticated analyses of i) security vulnerability propagation, ii)

licensing compliance, and iii) dependency risk profiles. To accommodate adoption, FASTEN

integrates those analyses into popular package managers, namely, Maven, PyPi, and

Debian, to help developers manage their program’s dependencies more confidently. More

specifically, The FASTEN approach goes beyond the capabilities of existing dependency

management systems by:

• Creating sound call graphs that show exactly which methods in external libraries or

dependencies are being used by the project.

• Enabling more accurate vulnerability propagation analysis by tracing the call paths

to which vulnerabilities could affect the methods.

• Allowing for more nuanced dependency risk profiles based on the actual usage

patterns of code from third-party libraries.

• Facilitating more precise licensing compliance checks by identifying which library

files are in use.

1.2 Research Direction
In this thesis, we explore two main research directions, type inference for Python and call

graph pruning as follows:

Machine learning-based type inference for Python Machine learning can help infer

type annotations for Python by learning from large codebases that contain explicit type

annotations or inferred types. ML models trained on these annotations can predict the

types of variables, function return values, and arguments in code. This helps reduce

runtime errors by enabling early detection of type mismatches. It enhances programming

environments through features like auto-completion and more accurate code analysis,

making the development process more efficient and less error-prone.
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Machine learning-based call graph pruning Machine learning offers a promising

solution for pruning call graphs by analyzing dynamic traces from program executions to

identify unnecessary or false edges in statically constructed call graphs. By doing so, ML

can help reduce the over-approximation typically seen in static call graph constructions,

thereby minimizing the number of false positives. This reduction is critical as it aligns with

developer preferences for fewer false alerts [8], which can enhance trust and reliance on

software analysis tools. Enhanced precision in call graphs would also benefit downstream

analyses like security analysis, making it faster and more actionable.

In this thesis, we also aim to answer the following high-level research questions:

RQ1 How effective is call graph pruning for security-focused applications?

The motivation for exploring the effectiveness of call graph pruning in security-focused

applications arises from the need to enhance the efficiency and scalability of security

analyses in software systems. Call graphs are fundamental in various security-related

analyses, such as vulnerability detection and malware analysis. However, these graphs

can become exceedingly big and complex, especially in large software systems, leading

to significant computational overhead and slower analysis time. By employing call graph

pruning techniques, which strategically remove irrelevant or less critical nodes and edges

from the graph, it is hypothesized that the resulting simplified graph will retain essential

information for security tasks while being significantly smaller. This reduction could also

speed up security analyses considerably.

RQ2 How does the call graph-based approach aid in reducing false positives in the vulner-

ability propagation analysis?

While helpful in identifying potential security risks, traditional dependency analyses of-

ten lack the precision and context needed to accurately trace how vulnerabilities might

propagate through actual execution paths in software. This inherent limitation in naive

dependency-level analyses has motivated us to study how call graph-based approaches

can reduce false positives in vulnerability propagation analysis. Call graphs provide a

more nuanced and accurate representation by mapping the potential interactions between

functions within an application as they occur during execution. This fine-grained ap-

proach allows for a more targeted analysis, potentially distinguishing between genuine

vulnerabilities and benign code behaviors. By leveraging call graphs, security analysts

can more effectively pinpoint the paths that a vulnerability may actually traverse, thereby

reducing the incidence of false positives, which are common in broader, dependency-based

approaches. The fine-grained approach enhances the effectiveness of security measures

and optimizes the allocation of resources toward addressing the most critical vulnerabilities

first.

RQ3 How effective is machine learning in inferring type annotations for Python?

While flexible, Python’s dynamic typing system can lead to ambiguities that need to be

clarified for the intent and correctness of code, particularly in large and complex codebases.

Asmentioned previously, type annotations in Python help programmers to explicitly declare

the intended data type of variables and function parameters, thus enhancing code clarity,
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reducing errors, and facilitating better tooling for static analysis such as code completion.

However, manually annotating types can be laborious and prone to human errors. We

hypothesize that machine learning presents a promising solution to this challenge by

potentially automating the inference of type annotations. By analyzing a large Python code

corpus, machine learning models could learn patterns and contexts that dictate variable

types, aiding in automatically generating type annotations with high accuracy. This can

ultimately boost developers’ productivity, improve code quality, and bolster the overall

robustness of Python applications.

1.3 Research Methodology
This thesis adapts the common research methodology used in (machine learning for)

software engineering papers, which often involves three main steps: mining software

repositories, training ML models, and performance evaluation. We explain each of these

steps as follows.

Mining software repositories Mining software repositories involves extracting and

analyzing data from version control systems like GitHub to understand software devel-

opment practices and trends. This process includes collecting information such as code

commits, issues, pull requests, and other metadata. By analyzing this data, researchers

and developers can identify patterns, detect bugs, measure productivity, and gain insights

into software evolution [34]. Tools and techniques used for mining can range from simple

scripts to advanced machine learning algorithms, which help in automating the extraction

and analysis of large volumes of data efficiently.

For this thesis, we will specifically create datasets for training ML models by either

analyzing Abstract Syntax Trees (ASTs) or dynamic call graphs, which involves parsing the

source code into its syntactic structure or execution flow. ASTs represent the hierarchical

structure of the code, capturing the syntactic relationships between different code elements,

which can be used to understand code semantics and identify potential patterns for machine

learning models. On the other hand, dynamic call graphs represent the runtime interactions

between different parts of the code, providing insights into the actual execution paths

and dependencies. These representations can be transformed into feature sets suitable for

machine learning, enabling the training of models for tasks such as type inference and call

graph pruning.

Training machine learning models Training deep learning techniques for software

analysis tasks involves leveraging (large-scale) datasets of source code to teach models

to understand and generate code. Deep learning models, particularly those based on

architectures like Transformers [35], can be pre-trained on extensive corpora of code

from repositories such as GitHub. These models learn code’s syntactic and semantic

patterns, enabling them to perform various tasks [14]. Fine-tuning these pre-trained

models on specific tasks, such as type inference or call graph pruning, requires additional

task-specific data. For type inference, the model learns to predict the data types of variables

in dynamically typed languages, improving code comprehension. Fine-tuning for this task

involves providing examples of code with explicit type annotations.
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Dynamic call graphs represent the execution behavior of a program at runtime by

capturing the interactions between different functions or methods during execution (i.e.,

running unit tests). Fine-tuning code language models to prune edges in these call graphs

involves training the models to identify and remove irrelevant calls. This pruning enhances

the precision of downstream analysis and reduces computational overhead. The process

involves feeding themodel examples of dynamic call graphswith annotated edges indicating

which calls are essential and which are false. By learning these patterns, the model can

accurately predict and prune unnecessary edges in unseen call graphs, thus improving

the overall usability of program analysis tools. This approach leverages transfer learning,

where a pre-trained model is adapted to new, related tasks, resulting in fine-tuned models

that aid significantly in the aforementioned code-related tasks.

Performance evaluation We will assess trained ML models for tasks like type inference

and call graph pruning from two key perspectives: accuracy and scalability. Accuracy

refers to the model’s ability to perform the task for which it was trained correctly. For type

inference, accuracy is measured by how effectively the model predicts the data types of

variables in dynamically typed languages, often benchmarked against a labeled dataset

with known type annotations. High accuracy in type inference translates to fewer errors

in predicted types, leading to more robust and maintainable code. For call graph pruning,

accuracy is evaluated based on themodel’s ability to correctly identify and remove irrelevant

or false calls, ensuring that the essential execution paths are preserved while unnecessary

calls are removed. Precision, recall, and F1 score are standard metrics that quantify accuracy

in these contexts.

Scalability, on the other hand, examines how fast the model performs as the size of the

input data increases. A scalable model for type inference should reasonably be fast even

when analyzing large codebases with thousands of lines of code. Similarly, for call graph

pruning, scalability is assessed by the model’s ability to handle large static call graphs.

This includes the model’s computational requirements and how effectively it can process

and prune large call graphs within a reasonable time frame. Evaluating both accuracy

and scalability ensures that the ML-based software analysis techniques are accurate in

their predictions and practical for real-world applications involving large-scale software

systems.

1.4 Thesis Overview
Figure 1.1 shows an overview of the work presented in this thesis, which is divided into two

parts, proposed techniques and explored applications. The thesis is organized as follows.

• In Chapter 2, we addressed the RQ1 and conducted an empirical study on the effec-

tiveness of ML-based call graph pruning. We addressed the limitations of previous

research, such as a lack of a benchmark dataset, imbalanced training data, and re-

duced recall, which impacts practical downstream applications. To overcome these

challenges, the study introduces the NYXCorpus, a new dataset comprising real-

world Java programs with comprehensive test coverage. Our work also explores

conservative pruning strategies during both the training and inference phases of

ML-based CG pruners to improve the balance between recall and precision. Findings
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Figure 1.1: Overview of this PhD thesis.

reveal the inherent difficulties of CG pruning in real-world Java projects, show-

ing substantial improvements in precision at the cost of reduced recall. Despite

these challenges, pruned CGs demonstrate comparable quality to those produced by

context-sensitive 1-CFA analysis but are significantly smaller and faster to generate,

offering nearly identical outcomes in downstream analyses. Using the proposed

conservative strategies, ML-based CG pruning can achieve a more efficient balance

between precision and recall, thereby enhancing the utility of static CGs in practical

downstream applications.

• In Chapter 3, we also addressed RQ1 and presented OriginPruner, a novel tech-

nique for pruning edges in static call graphs. Static CGs commonly face challenges

like over-approximation, which compromises their utility by inflating their size

and introducing imprecision. OriginPruner leverages the concept of method ori-

gin, identifying methods that introduce a signature within a class hierarchy and

are often overridden to prune false edges effectively. Additionally, by integrating

localness analysis, which assesses the scope of method interactions, OriginPruner

can confidently identify and eliminate edges related to origin methods, thereby

enhancing CG precision. Key findings show that specific dominant origin methods,

such as Iterator.next, significantly influence CG sizes; the derivatives of such

origin methods are predominantly local, allowing for their safe pruning without

detrimentally impacting downstream inter-procedural analyses. Also, OriginPruner

can significantly reduce CG size while preserving the soundness required for se-

curity applications like vulnerability propagation analysis, and it achieves these

improvements with minimal computational overhead. These findings imply that
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incorporating domain knowledge about the type system into CG pruning strategies

offers a viable and promising path for enhancing the performance of static program

analysis.

• In Chapter 4, we addressed RQ2 and explored the application of call graphs in vulner-

ability analysis and studied the effect of transitivity and granularity on vulnerability

propagation in the Maven ecosystem. Past studies assess vulnerability impact at the

dependency level, which arguably overestimates the actual risk to projects. Focusing

on the Maven ecosystem, we adopt a more granular approach by analyzing a dataset

of 3 million recent Maven packages, including their full transitive dependencies,

to construct call graphs and perform reachability analysis. This allows for a more

accurate identification of genuinely at-risk Maven packages. The findings reveal

that while a significant portion of packages appears vulnerable when considering all

transitive dependencies, a small percentage have reachable paths to vulnerable code,

indicating a lower risk than previously found. Also, limiting dependency tree depth

could efficiently reduce the computational load of a granular analysis. The chapter

concludes with implications for software engineering, highlighting the value of gran-

ular vulnerability assessments over simpler, dependency-level analyses, providing

actionable insights for improving security practices in software development.

• In Chapter 5, we addressed RQ3 and proposed Type4Py, a deep similarity learning-

based hierarchical neural network model. While enhancing developer flexibility

and productivity, the lack of static typing in dynamic languages like Python can

lead to runtime exceptions. Python’s PEP 484 introduced optional type annotations

as a means to address these issues. However, it is a daunting task to retrofit types

into existing codebases manually. Type4Py learns to distinguish between similar

and dissimilar types in high-dimensional space, facilitating type inference through

the nearest-neighbor search. Unlike the previous work, which relied on potentially

unsound human-provided type annotations, Type4Py is trained and evaluated on a

type-checked dataset, offering a more reliable assessment of its practicality through

mean reciprocal rank (MRR). Empirical results show that Type4Py significantly outper-

forms state-of-the-art approaches, achieving a substantial increase in MRR, therefore

indicating its effectiveness in inferring type annotations. Additionally, the chapter

discusses the development of a Visual Studio Code extension that employs Type4Py

to assist developers with ML-based type auto-completion for Python, further aiding

in retrofitting types into existing codebases and enhancing productivity and code

quality. Type4Py’s inferred types can be used to aid applications like call graph con-

struction and unit test generation for Python. In this thesis, we have not explored

these applications.

Also, Table 1.1 shows research methods used in each chapter.
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Chapter Mining Software Repositories Training ML Models Performance Evaluation

Chapter 2 ✔ ✔ ✔

Chapter 3 ✔ ✔

Chapter 4 ✔

Chapter 5 ✔ ✔ ✔

Table 1.1: Chapters and the research method used

1.5 Origins of Chapters
Except for Chapter 3 currently under submission, all chapters of this thesis have been

published in software engineering conferences (ICSE, MSR, and SANER). Each chapter of

this thesis is self-contained and has its introduction, related work, and evaluation.

• Chapter 2 is based on the published paper On the Effectiveness of Machine Learning-

based Call Graph Pruning: An Empirical Study by Amir M. Mir, Mehdi Keshani,

and Sebastian Proksch at the 21st International Conference on Mining Software

Repositories (MSR) 2024.

• Chapter 3 is based on the paper OriginPruner: Leveraging Method Origins for

Guided Call Graph Pruning by Amir M. Mir, Mehdi Keshani, and Sebastian Proksch.

We are planning to submit this work to a software engineering conference by the

end of 2024.

• Chapter 4 is based on the published paper On the Effect of Transitivity and Granu-

larity on Vulnerability Propagation in the Maven Ecosystem by Amir M. Mir, Mehdi

Keshani, and Sebastian Proksch at IEEE International Conference on Software Anal-

ysis, Evolution and Reengineering (SANER) 2023.

• Chapter 5 is based on the published paper Type4Py: Practical Deep Similarity

Learning-Based Type Inference for Python by Amir M. Mir, Evaldas Latoškinas,

Sebastian Proksch, and Georgios Gousios at the 44th International Conference on

Software Engineering (ICSE) 2022. Also, the Type4Py model was trained and evalu-

ated on the published dataset paper ManyTypes4Py: A Benchmark Python Dataset

for Machine Learning-based Type Inference by Amir M. Mir, Evaldas Latoškinas,

and Georgios Gousios at the 18th International Conference on Mining Software

Repositories (MSR) 2022.
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On the Effectiveness of
Machine Learning-based

Call Graph Pruning

Static call graph (CG) construction often over-approximates call relations, leading to sound,

but imprecise results. Recent research has explored machine learning (ML)-based CG pruning

as a means to enhance precision by eliminating false edges. However, current methods suffer

from a limited evaluation dataset, imbalanced training data, and reduced recall, which affects

practical downstream analyses. Prior results were also not compared with advanced static CG

construction techniques yet. This study tackles these issues. We introduce the NYXCorpus,

a dataset of real-world Java programs with high test coverage and we collect traces from

test executions and build a ground truth of dynamic CGs. We leverage these CGs to explore

conservative pruning strategies during the training and inference of ML-based CG pruners.

We conduct a comparative analysis of static CGs generated using zero control flow analysis

(0-CFA) and those produced by a context-sensitive 1-CFA algorithm, evaluating both with and

without pruning. We find that CG pruning is a difficult task for real-world Java projects and

substantial improvements in the CG precision (+25%) meet reduced recall (-9%). However, our

experiments show promising results: even when we favor recall over precision by using an

F2 metric in our experiments, we can show that pruned CGs have comparable quality to a

context-sensitive 1-CFA analysis while being computationally less demanding. Resulting CGs

are much smaller (69%), and substantially faster (3.5x speed-up), with virtually unchanged

results in our downstream analysis.

This chapter is based on the paper, Mir, A. M., Keshani, M., & Proksch, S. (2024). On the Effectiveness of Machine

Learning-based Call Graph Pruning: An Empirical Study. In the 21st International Conference on Mining Software

Repositories (MSR’24). [36].
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2.1 Introduction
Call graphs (CG) represent function invocations within programs [7, 37]. Their construction

is a crucial component of static program analysis, like security analysis, dead code identifi-

cation, performance profiling, and more. An ideal CG would be both sound, i.e., not missing

any legitimate function call, and precise, i.e., not containing unnecessary function calls.

However, constructing a sound and precise CG is challenging even for small programs [38].

In practice, static CG construction will over-approximate the call relations to boost sound-

ness at the cost of precision: popular tools like WALA [39] or Petablox [40] create imprecise

CGs with up to 76% false edges [41]. To address this imprecision, previous work [40, 42, 43]

have enhanced pointer analysis, which builds the backbone of numerous CG construc-

tion algorithms, by improving the context-sensitivity or flow-sensitivity. Unfortunately, a

flawless pointer analysis is principally infeasible [44], and pointer analyses often require a

tradeoff between scalability and precision [45]. For instance, WALA’s context-sensitive

analysis only reduces the false positive rate by 8.6% compared to a context-insensitive

analysis, despite significantly slowing down performance [41].

Recent work has introduced Machine Learning (ML)-based call graph pruning ap-

proaches to improve the precision of call graphs by pruning false edges in call graphs as

a post-processing step. Techniques like CGPruner [41] and AutoPruner [46] learn from

dynamic traces that are collected in actual program executions to identify unnecessary

edges in a static CG. CGPruner only leverages features of the CG structure, while Auto-

Pruner combines structural features with automatically extracted semantic features from

the source code that are encoded with the code language model (CLM), CodeBERT [47].

Although these previous approaches show intriguing results, they suffer from several

limitations: (1) Both have been trained and evaluated on the NJR-1 dataset [48], which

lacks real-world projects and suffers from a notoriously low branch coverage (68%). (2)

The over-approximation of static call graph construction results in many unnecessary

edges [49] while dynamic CGs contain much fewer edges. As a result, the training and

evaluation of the ML models have to deal with a highly imbalanced dataset. (3) After CG

pruning, the recall drops substantially by more than 25% [46], which makes the pruned

CGs impractical for client analyses, especially for security-focused applications. (4) The

previous work used a 0-CFA algorithm to generate static CGs, which is context-insensitive

and less precise. It is unclear how advanced, context-sensitive CG algorithms like 𝑘-CFA

algorithms [17] perform in comparison.

In this chapter, we will address these issues by (1) introducing a meta dataset, NYX-

Corpus, which includes the existing datasets NJR-1 [48], and XCorpus [50]. We also added

YCorpus, which is based on another dataset of projects with a high test coverage of 88% [51].

In contrast to NJR-1, both XCorpus and YCorpus contain real-world projects. We combined

these three datasets and generated dynamic traces through test execution to create a unified

benchmark. (2) To address the second and third issues, we explore a conservative pruning

strategy during the learning phase and different confidence levels for the inference of ML

models to prune CG edges. These two strategies help to deal with an imbalanced dataset

and mitigate the recall drop after pruning. (3) In addition to 0-CFA, we also use 1-CFA to

generate static CGs and compare both algorithms with and without pruning in terms of

quality and scalability.

We will answer the following research questions to investigate the impact of these
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three improvements:

RQ1 How do ML-based CG pruning models generally perform at a CG pruning task?

RQ2 Can conservative training/pruning strategies improve the results?

RQ3 How do context-sensitive CG generators compare in terms of quality and scalability?

RQ4 Is CG pruning practical for a security application like vulnerability analysis?

Ourmain results show that CG pruning is difficult on real-world Java projects. Although

ML-based call graph pruning techniques are effective at boosting the precision of static

CGs, the recall drops as a result. Our experiments report F2 values to prioritize recall

over precision, but even then the tradeoff is in favor of the ML pruners. Pruned CGs

have comparable quality to a context-sensitive 1-CFA analysis, while their creation is

computationally less demanding.

Our pruners can be configured by incorporating weights in the learning process or

confidence levels when pruning to control the resulting precision and recall. Our experi-

ments show that a well-configured pruner can improve the quality of a 0-CFA CG more

than running a more advanced 1-CFA analysis would. We will show that both have a

similar execution time, but that the pruned CG has a higher quality and is smaller. We

use the resulting CGs in a use case analysis of a security-focused application, in which

we investigate the reachability of vulnerable methods. We can show that analyses using

pruned CGs generate very minimal false negatives (less than 2%) while benefiting from a

faster analysis time of up to 5 times due to the reduced size of pruned CGs.

Overall, this paper makes the following main contributions.

• We created a new benchmark dataset, NYXCorpus, from pre-existing datasets and

tailored it to the call graph pruning task. It has Java programs of various sizes

including real-world ones.

• We adapt existing ML models to support weighted training and customizable pruning

through confidence levels.

• We present an empirical study on the effectiveness of ML-based call graph pruning,

which studies current issues, proposes solutions, and evaluates their effects.

The rest of this chapter is organized as follows. We describe related work in section 2.2.

We explain our research methodology in section 2.3. The evaluation setup for this study is

described in section 2.4. We present the obtained empirical results in section 2.5. We discuss

the implications of the obtained results in section 2.6. We describe threats to validity and

limitations in section 2.7. Finally, we conclude our empirical study in section 2.8.
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2.2 Related Work
Call Graph Construction Call graph construction has been widely studied. ML-based

call graph pruner does not utilize run-time information and hence it falls into the category

of static approaches [18, 52, 53] for constructing call graphs. Approaches that use dynamic

analysis [54, 55] result in fewer false positives and higher precision, but they are less

scalable.

Also, research has been conducted to enhance the precision of call graphs. Lhotak [56]

created an interactive tool to help understand the root cause of discrepancies between

different static and dynamic analysis tools. Sawin and Rountev [57] proposed specific

heuristics to manage dynamic features like reflection, dynamic class loading, and native

method calls in Java. This approach improved the precision of the Class Hierarchy Anal-

ysis (CHA) algorithm [58] while maintaining decent recall levels. Moreover, Zhang and

Ryder [59] worked on generating precise application-only call graphs by distinguishing

false-positive edges between the standard library and the application. Similar to the de-

scribed work, ML-based CG pruners [41, 46] aim to improve CG precision as a data-driven

post-processing approach by removing false edges.

Call graph comparison Xie and Notkin [54] quantitatively and qualitatively compared

dynamic and static call graphs from two Java micro-benchmarks. They found that static call

graphs tend to be conservative but imprecise due to computational complexity. Dynamic

call graphs, on the other hand, are more straightforward and reflect the actual invocations.

Lhotak [56] presented a technique to find the root causes of call graph differences and

the PROBE framework. PROBE facilitates comparing dynamic and static call graphs to

identify sources of imprecision. In this study, we compare pruned static call graphs for

Java programs to their dynamic call graphs, and we analyze the differences between them

in terms of precision and soundness.

Machine learning-based call graph pruning As of this writing, there are currently

two ML-based call graph pruning models, CGPruner [41] and AutoPruner [46]. Utture

et al. [41] introduced an ML-based technique called CGPruner, with the goal of reducing

the false-positive rate of static analysis tools, making them more attractive to developers.

CGPruner prunes the static call graph, which is at the core of many static analyses, by

removing false-positive edges while retaining true edges. The technique achieves this

balance using an ahead-of-time learning process involving executing static and dynamic

call-graph constructors. The dynamic call graphs were only used during a training phase on

a training set of programs. CGPruner was shown to significantly decrease the false-positive

rate, in one case, from 73% to 23%.

CGPruner does not consider source code semantics. To address this limitation, Le-Cong

et al. proposed AutoPruner [46] to prune false positives in call graphs by leveraging both

structural and statistical semantic information. The semantic features extracted from the

caller and callee functions’ source code. Specifically, AutoPruner uses CodeBERT [47], a

pre-trained Transformer model [35] for code, fine-tuning it to capture semantic features for

each edge and combines them with handcrafted structural features, and employs a neural

classifier to classify each edge as true or false-positive.
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Machine Learning for Software Engineering In recent years, the application of ma-

chine learning for software engineering has been a hot topic of research [60, 61]. MLmodels

have been used to perform various tasks, such as code completion, code summarization,

defect prediction, code classification, and code translation tasks. Recently, large-scale code

language models (CLMs) [62] such as CodeBERT [47] and CodeT5 [63] have achieved

state-of-the-art performance on numerous SE tasks mentioned above. In general, ML can

offer opportunities to improve or automate several aspects of the traditional software

development process. The scale of software artifact data, automated feature engineering

provided by ML techniques, robustness and scalability of optimization techniques, and

transferability of traditional ML applications to SE artifacts all indicate the potential of

ML to improve the traditional software development process. This research area is called

Machine Learning for Software Engineering (ML4SE).

2.3 Approach
In this section, we first define the research problem under study. Then, we introduce

the various ingredients of our research methodology: the datasets that we use in our

experiments, a description of the call-graph generation (both static and dynamic), an

explanation ofMLmodels used in previous works [41, 46], and recent suitable code language

models for this task; lastly, we describe the different code features that we use for training

call graph pruners. Figure 2.1 shows an overview of our research methodology used

in this empirical study. Overall, our proposed methodology consists of three datasets,

static/dynamic CG construction, post-processing like filtering/sampling edges, training of

ML models, and empirical evaluation. All these steps are presented later in the paper.

2.3.1 Problem definition
This paper studies CG pruning, which takes a static call graph 𝔾 as initial input. A CG is a

directed graph created using a static analysis tool. The vertices 𝑉 of the graph represent

defined functions, which are identified by a function signature (name, parameters, return

type). The edges 𝐸 represent calls from one function to another. Each edge within 𝐸 is

defined as a tuple, that consists of the calling function (caller), the function being called

(callee), and the site within the caller where the call is made (offset).

The output 𝔾
′
is a refined version of the original CG, where 𝔾

′
= (𝑉

′
,𝐸

′
), 𝑉

′
= 𝑉 ,

and 𝐸
′
is a subset of 𝐸. The reduction is achieved through a binary classifier, 𝐶, which is

designed to decide per edge 𝑒 ∈ 𝐸, whether the edge should be copied to 𝔾
′
or pruned. Our

validation is based on dynamic CGs that we construct from traces of actual program and

test executions and that we use to validate the pruned call graph 𝔾
′
.

2.3.2 Datasets
In this section, we describe the three datasets of our study, that we use to train and evaluate

the ML-based CG pruning models.

NJR-1 Normalized Java Resource (NJR) [48] is an infrastructure to leverage the potential

of Big Code. The normalization enables searchability, scriptability, and reproducibility.

The NJR comprises 100,000 executable Java programs, a set of pre-existing tools, which
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Figure 2.1: Overview of our approach used in this study

facilitate the development of novel research tools. For evaluating the ML-based call graph

pruning models, we use a subset of the NJR1 dataset, created by the work of Utture et

al. [41]. The subset contains 141 programs from the NJR-1 benchmark suite, of which 100

programs are used for training the models and 41 programs for evaluation. The selection

of 141 programs from NJR-1 programs was based on criteria such as each program having

at least 1,000 methods and 2,000 static call graph edges as per Wala, executing a minimum

of 100 distinct methods during runtime, and exhibiting high coverage, i.e., executing a

large portion of the methods that can be reached from the main method (with an average

coverage of 68%). On average, each selected program comprises around 560,000 lines of

code, excluding the standard library [41].

XCorpus The XCorpus dataset [50] contains a set of 76 executable Java programs, which

includes 70 from theQualitas Corpus [64]. This corpus combines both built-in and generated

test cases, offering better branch coverage than the DaCapo benchmark [65]. While the

DaCapo benchmark and Qualitas Corpus are curated datasets for benchmarking and static

analysis, respectively, XCorpus combines the strengths of both—being executable (like

DaCapo) and diverse and extensive (like Qualitas Corpus). Such a dataset is useful for

research on program analysis, studies combining static and dynamic analyses, or studies on
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program transformations that evaluate impact through program execution pre- and post-

transformation. The average coverage for XCorpus’ programs is moderate, with 62.35% for

built-in and 60.25% for generated tests by Evosuite [66]. On average, each program has an

average of around 36K lines of code. XCorpus has been used in the empirical studies on

the soundness of Java call graphs [18, 53].

YCorpus For this work, we created a new dataset, namely, YCorpus, based on an existing

dataset used in a recent empirical study by Khatami and Zaidman [51], which investigates

state-of-the-practice in quality assurance in Java-based open source software development.

Specifically, they have studied 1,454 popular Java projects on GitHub with more than 100

stars. Given this, we selected 40 Java projects with the criteria that each project has higher

than 80% test coverage. These 40 projects have 88% test coverage on average, which is

substantially higher than that of XCorpus and NJR-1. Also, YCorpus contains real-world

Java projects such as Apache Commons IO, AssertJ, and MyBatis 3, and each project has

an average of around 50K lines of code. Both XCorpus and YCorpus have been reduced to

the programs that we could build and for which we were able to construct both static and

dynamic CGs.

NYXCorpus In the remainder of the paper, we will refer to NYXCorpus as a dataset to

indicate that we have based our experiments on the joined data of all three corpora.

Source Code Recovery The original NJR-1 dataset lacks source code for the dependen-

cies of its programs. However, call graphs contain nodes/methods related to dependencies

and code language models need source code to learn the call graph pruning task. We

have identified dependencies in the NJR-1 dataset, located their respective repositories

(often on platforms like GitHub), and downloaded the necessary source code to extend the

dataset with the original code, including comments, for deeper code understanding. For

XCorpus and YCorpus, we downloaded sources JARs for their programs via the Maven or

Ant command-line tools.

2.3.3 Call-Graph Generation
This subsection describes our dynamic and static CG generation and explains our filter

and sampling criteria for program edges.

Dynamic Call Graphs To evaluate (pruned) static call graphs, we need to establish an

"oracle", a known ground truth that represents actual program behavior. In this context,

the oracle refers to vertices in a call graph which represents methods. These methods are

recognized using a mix of the class name where the method is defined, the method’s name,

and a descriptor, as per the Java language specification [67], to account for overloading.

The edges in call graphs are formed by pairs of source and target methods. To obtain such

an oracle, we utilize unit tests that are commonly available and can be an effective way

to initiate program executions. In fact, built-in test cases offer a unique insight as they

represent the intended behavior of a program, mirroring the experience an end-user might

have when using the software in a real-world setting [18].
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To collect the method calls of a program, we have instrumented it via Wiretap [68], a

tool to trace information from a running Java program. Specifically, we wrote a recorder to

insert probes at Java method entries and exits to record call relationships. We then ran all

available unit tests to gather execution paths, creating dynamic call graphs for the actual

execution paths, serving as an oracle or "ground truth" for evaluating ML-based call graph

models. We use this dynamic data to train a model for detecting and pruning irrelevant or

infeasible paths in static CGs.

Static Call Graphs We employ the WALA framework [39] to generate static CGs using

both context-insensitive and context-sensitive control flow analysis (CFA). Control flow

analysis is essential for understanding how functions call each other in a program and this

is required for program analysis and optimization. Specifically, we use context-insensitive

0-CFA (Zeroth-order Control Flow Analysis) [17], which creates call graphs by tracking

function calls without considering their calling context or parameter values, providing

a basic but imprecise approximation of runtime behavior. We also employ the context-

sensitive 1-CFA algorithm, which improves precision by distinguishing function calls based

on their most recent calling context, allowing for more accurate interprocedural analysis

than 0-CFA [17]. However, the improvement in precision comes at a computational cost,

as 1-CFA requires significantly more resources and time to analyze programs compared to

0-CFA.

For this study, we chose WALA over alternatives like DOOP [69] and Soot [70] as it has

better support for Java language features such as lambda expressions and, as of this writing,

it supports Java bytecode up to JDK 17 [71]. We follow prior research work [41, 46] and do

not use WALA’s handler for Java reflection, which can potentially miss some execution

paths that involve reflective calls. In short, given a Java program, we perform the following

steps to construct a static CG using the WALA framework:

• We consider each project’s main JAR file as the application scope and its transitive

dependencies as the extension scope.

• We perform a Class Hierarchy Analysis [58], which involves constructing the class

inheritance hierarchy to facilitate the resolution of method call targets.

• All non-private methods within all public classes are used as entry points for WALA’s

call graph builder.

• The obtained entry points and the CHA structure are used to construct 0/1-CFA

static CGs.

Filtering edges Considering the call graph pruning problem, we are interested in call

graph edges related to the application itself and its dependencies. We follow previous work

and opt for removing edges to/from the Java standard library as its enormous size would

dominate the dataset and skew the evaluation [41]. Specifically, we remove all call edges

that start with the following prefixes: java/, javax/, sun/, com/sun/, jdk/.
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Large Programs Utture et al. [41] observed that a few programs in the NJR-1 dataset

have a very large number of call-graph edges (over 20K), and they randomly sampled 20K

edges from the edge sets of those programs. Following this, we also randomly sampled 20K

edges from the edge sets of 5 programs in the XCorpus and YCorpus datasets to alleviate

the skewness in the dataset distribution. This also prevents bias towards large programs

when training a model/classifier. Also, we do not remove or sample edges where they exist

in both dynamic and static call graphs, as fewer of these true edges exist. A removal of true

edges would harm the performance of the ML models at retaining true edges, i.e., recall.

2.3.4 Call-Graph Pruning Models
In this subsection, we describe several machine learning techniques, including code lan-

guage models, which we extend and employ for our CG pruning task.

Random Forest [72] An ensemble learning method, constructs decision trees on boot-

strapped datasets using Bagging [73], considering a random feature subset at each node.

Predictions are derived from majority voting for classification or averaging for regression

tasks. The algorithm is versatile and adept at handling numerous inputs, missing values,

and errors in unbalanced datasets. However, it can be a "black box" model and may overfit

noisy datasets.

CodeBERT [47] A bimodal pre-trained model for programming language (PL) and nat-

ural language (NL) tasks, leverages a Transformer-based architecture [35] and a hybrid

objective function inclusive of replaced token detection during pre-training. It utilizes both

bimodal and unimodal data, helping to learn better generators. Trained on CodeSearch-

Net [74], which contains GitHub repositories in six languages, it is similar to multilingual

BERT without explicit language markers. Empirical results show that fined-tuned Code-

BERT has superior performance on natural language code search and code documentation

generation tasks. Without parameter fine-tuning, zero-shot setting tests also indicate the

superiority of RoBERTa [75], suggesting its effective learning and application in NL-PL

tasks. CodeBERT has a parameter size of 125M.

CodeT5 [63] Built on the T5 architecture [76], utilizes denoising sequence-to-sequence

pre-training for both understanding and generation tasks in natural language. A novel

identifier-aware pre-training task is introduced for better leveraging code semantics. Similar

to CodeBERT, it is pre-trained on CodeSearchNet [74] data and additional data from open-

source GitHub C/C# repositories. It is fine-tuned on most CodeXGLUE benchmark tasks

and supports multi-task learning. Experimental results reveal that CodeT5 outperforms

CodeBERT on various tasks, demonstrating enhanced capture of semantic information

from code. The CodeT5 base model has a parameter size of 220M.

CodeT5+ [77] An adaptable family of encoder-decoder Large Language Models (LLMs)

designed for code tasks, combining different pre-training objectives, including span denois-

ing, contrastive learning, text-code matching, and causal language modeling, for flexible

applications in various modes. Initiated with frozen off-the-shelf LLMs [78], it circum-

vents training from scratch, promoting efficient scaling. Upon evaluating 20+ code-related
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benchmarks, CodeT5+ exhibits superior performance in tasks including code generation,

completion, and text-to-code retrieval. The CodeT5+ base model has a parameter size of

770M.

2.3.5 Code Features
We use the following features or code representations to train our ML-based CG pruning

models. The intuition behind all features is to provide information about the usefulness of

an edge.

Structural Utture et al. [41] engineered a set of structural features encapsulating vital

contextual and semantic call edge details, adhering to three criteria: linear-time computa-

tional complexity, interpretability/generalizability, and black-box nature. The proposed

feature set is a combination of local and global information extracted from static call graphs

(more info in [41]). The structural features, 𝑓𝑠𝑡𝑟𝑢𝑐𝑡 , build a 𝑘𝑠-dimensional vector (𝑘𝑠 = 11):

𝐟𝑠𝑡𝑟𝑢𝑐𝑡 = [𝑥
𝑠𝑡𝑟𝑢𝑐𝑡

1
, 𝑥

𝑠𝑡𝑟𝑢𝑐𝑡

2
, ..., 𝑥

𝑠𝑡𝑟𝑢𝑐𝑡

𝑘𝑠
] (2.1)

Semantic Semantic features are extracted from the source code of the caller and callee

functions, which is also used in the work of Le-Cong et al. [46]. Unlike hand-crafted struc-

tural features, semantic features are automatically learned by using code language models.

They can generate a high-dimensional vector that captures the statistical relationships

between caller and callee functions. Thus, each edge in the call graph has an associated

embedding that represents the semantic relationship between the caller and the callee.

Conceptually, semantic features are represented as follows:

[CLS]⟨caller’s source⟩[SEP]⟨callee’s source⟩[EOS] (2.2)

The semantic features, 𝑓𝑠𝑒𝑚, are represented as a 𝑘𝑐-dimensional vector (𝑘𝑐 = 768), which

are the output embeddings of a code language model such as CodeT5.

𝐟𝑠𝑒𝑚 = [𝑥
𝑠𝑒𝑚

1
, 𝑥

𝑠𝑒𝑚

2
, ..., 𝑥

𝑠𝑒𝑚

𝑘𝑐
] (2.3)

Signature-based AutoPruner [46] extracts features from caller and callee method sig-

natures to supplement CG nodes without source code [79], namely, class & method name,

parameters, and return types. This code feature provides minimal code context but is help-

ful when source code is unavailable. Signature-based features, 𝑓𝑠𝑖𝑔 , are represented as a

𝑘𝑐-dimensional vector:

𝐟𝑠𝑖𝑔 = [𝑥
𝑠𝑖𝑔

1
, 𝑥

𝑠𝑖𝑔

2
, ..., 𝑥

𝑠𝑖𝑔

𝑘𝑐
] (2.4)

Combined Le-Cong et al. [46] proposed a combined feature set, which takes advantage

of both structural and semantic features, to prune call graph edges effectively. It has empir-

ically shown that AutoPruner [46], CodeBERT, with the combined feature set, outperforms

a RandomForest model trained on structural features. The combined features, 𝑓𝑐𝑜𝑚𝑏, are

represented as the concatenation of two vectors 𝐱𝑠𝑒𝑚 and 𝐱𝑠𝑡𝑟𝑢𝑐𝑡 :

𝐟𝑐𝑜𝑚𝑏 = 𝐱𝑠𝑡𝑟𝑢𝑐𝑡 ⊕𝐱𝑠𝑒𝑚 (2.5)



2.3 Approach

2

25

2.3.6 Model Training
We fine-tune our code language models for two epochs. Specifically, only the encoder

module of the CLMs is fine-tuned, which generates embedding for code features mentioned

in subsection 2.3.5. To speed up training, we utilized mixed precision training with a

floating point precision of 16-bit, which effectively reduces the GPU memory consumption

without sacrificing the model’s performance. We used an initial learning rate of 1×10
−5
,

which was found to be effective for training such models without causing instability in the

learning process [46]. We use cross-entropy loss as the loss function, which is suitable for

binary classification problems:

𝐿(𝑦, �̂�) = −

1

𝑁

𝑁

∑

𝑖=1

[𝑤1 ∗ 𝑦𝑖 ∗ 𝑙𝑜𝑔(�̂�𝑖)+𝑤2 ∗ (1−𝑦𝑖) ∗ 𝑙𝑜𝑔(1− �̂�𝑖)] (2.6)

Where 𝐿(𝑦, �̂�) is the loss function comparing the true labels 𝑦 and the predicted labels �̂�. 𝑁

is the total number of samples. 𝑤1 and 𝑤2 are the weights associated with the positive and

negative classes, respectively. This allows us to define pruning strategies like "conservative"

by giving a higher weight to the positive class. The conservative strategy prioritizes high

recall by maintaining as many edges as possible and only prunes when certain. We study

the effect of these weights on pruning call graphs in RQ2.

We used the AdamW optimizer [80], a variant of the Adam optimizer that corrects

its weight decay regularization, boosting generalization and controlling over-fitting. A

dropout rate of 0.25 was applied to the models’ encoder output to prevent overfitting

further [81]. Also, we adopted a linear scheduling policy [82] with a warmup phase of

100 steps. This method gradually ramps up the learning rate from zero to the specified

maximum (1×10
−5

in this case) during the warmup phase to avoid large gradient updates

early in training, thus aiding in better convergence.

2.3.7 Model Inference
Given a fine-tuned code language model, we prune CG edges as follows. Let 𝐱 be an input

to the CLM and the linear neural network (NN) produces raw scores for the two classes, 𝑧0

and 𝑧1. Then, the softmax function converts these raw scores into probabilities.

𝑝(𝑦 = 𝑖|𝐱) =

𝑒
𝑧𝑖

𝑒
𝑧0 + 𝑒

𝑧1

(2.7)

Where 𝑖 is the class label which can take values 0 or 1 and 𝑝(𝑦 = 𝑖|𝐱) is the probability

of class 𝑖. Finally, we use a decision function with a threshold (e.g., 𝜏 = 0.5) to decide the

predicted class as follows.

�̂� =

{

1 if 𝑝(𝑦 = 1|𝐱) > 𝜏

0 otherwise

(2.8)

In many cases with NNs having two output neurons, since the probabilities produced by

the softmax function for both classes sum to 1, a threshold of 0.5 is commonly used. If

𝑝(𝑦 = 1|𝐱) > 0.5, it automatically implies 𝑝(𝑦 = 0|𝐱) < 0.5 and vice versa.



2

26 2 On the Effectiveness of Machine Learning-based Call Graph Pruning

Table 2.1: Stats for the datasets used in evaluation

Dataset Num. Edges Num. Tokens P/R Ratio
1

Train Test Train Test

NJR-1 859K 405K 262M 124M 18.7

XCorpus 269K 57K 22M 8M 2.4

YCorpus 242K 72K 35M 9M 3.7

NYXCorpus 1.37M 534K 319M 141M 7.6

1
Ratio of to-be-pruned and to-be-retained edges.

2.4 Evaluation Setup
In this section, we explain the evaluation metrics for evaluating (pruned) call graphs, the

implementation details, model training, and the characteristics of the datasets used in this

study.

Evaluation Metrics Similar to the previous work [41, 46], to assess the accuracy of a

static call graph, we use the common evaluation metrics, precision and recall. We denote

the edge set generated by a static call-graph constructor as 𝐸𝑆 , and the edge set created by

Wiretap as 𝐸𝐷. The proportion of incorrect identifications is represented by (1-Precision).

To obtain the average precision and recall values for the complete test set, we calculate the

mean precision and recall values of individual programs and the 𝐹𝛽 measure.

Precision =

|𝐸𝑆 ∩𝐸𝐷|

|𝐸𝑆 |

Recall =

|𝐸𝑆 ∩𝐸𝐷|

|𝐸𝐷|

𝐹𝛽 =

(1+𝛽
2
) ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽
2
×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

where 𝛽 determines the weight of precision in the combined score. 𝛽 < 1 gives more

weight to precision, while 𝛽 > 1 favors recall. We report 𝐹1 and 𝐹2 in our evaluation.

Implementation and Environmental setup To parse and extract Java methods’ source

code, we utilized a Java parser [83]. We used PyTorch 2.0 [84, 85] with PyTorch Lightning

2.0 [86] to train and evaluate code language models described in section 2.3.4. We used the

pre-trained code language models from HuggingFace’s transformers library [87]. To imple-

ment the CGPruner model, i.e., RandomForest, we employed the scikit-learn library [88].

We used NetworKit [89], a toolkit for large-scale network analysis with optimized algo-

rithms to process graph data and extract structural features. We also used JGraphT [90] in

Java to do graph traversals and reachability analysis. We performed all the experiments on

a Linux workstation (Ubuntu 22.04 LTS) with Intel Core i9 13900KS@6GHz, an RTX 4090

24GB, and 2x48GB (96GB) DDR5 RAM.

Datasets characteristics Table 2.1 shows the characteristics of the NJR-1, XCorpus, and

YCorpus datasets. NJR-1 has 1.2M samples/edges, whereas XCorpus and YCorpus have
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326K and 314K edges, respectively. We also have a "meta" dataset, namely, NYXCorpus, by

combining the training and test sets of the three datasets. This allows us to compare the

performance of the models across all datasets and their programs.

In Table 2.1, we also reported the P/R ratio for each dataset, representing the number

of to-be-pruned edges divided by the number of true edges. It can be seen that NJR-1 has a

P/R ratio of 18.7, which is much higher than that of XCorpus and YCorpus. This means

that the NJR-1 dataset is massively imbalanced. For XCorpus and YCorpus, a lower P/R

ratio means that more static edges are observed during test execution at run-time. Also, as

expected, NYXCorpus is placed between NJR-1 and Y/XCorpus given its P/R ratio.

2.5 Evaluation
This section presents the motivation, methodology, and empirical results for all research

questions that were defined before.

2.5.1 RQ1: How do ML-based CG pruning models generally per-
form at a CG pruning task?

As the first step of our evaluation, we want to explore the overall performance of the

different ML models and their capacity to prune static CGs. This first assessment provides

insights into their abilities and allows us to reduce the list to the most promising candidates

for the rest of the paper.

Methodology We used our three datasets (NJR-1, XCorpus, and YCorpus) for this ex-

periment. Specifically, for the NJR-1 dataset, we trained and evaluated the models in the

same way prior work did [41], using 100 programs for training and 41 for evaluation.

For XCorpus/YCorpus, we trained the models on 12/15 programs and evaluated them on

4/3 programs, respectively. The results also list NYXCorpus, which is a combination of

the three datasets that helps us with choosing the overall best-performing models. For

all datasets, Wala’s static CGs were constructed using 0-CFA and there is no overlap of

programs in the training and test sets. We should also point out that, for the CLMs, we use

semantic features if source code is available for an edge/sample. Otherwise, we use the

signature-based feature as a fallback.

To find the optimal hyper-parameters for CGPruner (i.e., RandomForest), similar to

the work of Utture et al. [41], we performed 4-fold cross-validation with grid search. In

addition to the all models described in subsection 2.3.4, we also considered a random binary

classifier, which prunes/retains edges with an equal probability, i.e., 0.5. To assess the

quality of pruned static call graphs by the ML models, we used the evaluation metrics

described in section 2.4.

Results Table 2.2 shows the general performance of all the models on four datasets,

namely, NJR-1, XCorpus, YCorpus, and NYXCorpus. In addition to the traditional F1 score,

we have also included the F2 score in our evaluation, which puts a higher importance on

the recall of an approach. The results show that all the ML models substantially outperform

the random classifier across all datasets and all metrics, with the exception of the recall in

the XCorpus, which seems to be an outlier. The code language models (i.e., AutoPruner,
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Table 2.2: Comparison of the models on the NJR-1, XCorpus, YCorpus, and NYXCorpus datasets

NJR-1 XCorpus YCorpus NYXCorpus

Models P R F1 F2 P R F1 F2 P R F1 F2 P R F1 F2

Random Classifier 0.23 0.47 0.31 0.39 0.39 0.48 0.43 0.46 0.22 0.45 0.29 0.37 0.25 0.47 0.33 0.40

CGPruner 0.66 0.48 0.56 0.51 0.49 0.28 0.36 0.30 0.71 0.24 0.36 0.28 0.61 0.43 0.50 0.46

AutoPruner 0.62 0.66 0.64 0.65 0.53 0.41 0.46 0.43 0.50 0.51 0.50 0.51 0.60 0.61 0.60 0.60
CodeBERT 0.62 0.68 0.65 0.67 0.52 0.47 0.50 0.48 0.50 0.48 0.49 0.49 0.59 0.60 0.60 0.60
CodeT5 0.65 0.69 0.67 0.68 0.54 0.31 0.39 0.34 0.50 0.48 0.49 0.48 0.63 0.58 0.61 0.59

CodeT5+ 0.63 0.73 0.67 0.70 0.61 0.23 0.34 0.27 0.54 0.46 0.50 0.48 0.65 0.57 0.61 0.58

Average 0.57 0.62 0.58 0.60 0.51 0.36 0.41 0.38 0.49 0.44 0.44 0.43 0.55 0.54 0.54 0.54

Wala 0.24 0.95 0.38 0.59 0.39 0.95 0.55 0.73 0.22 0.90 0.35 0.55 0.25 0.95 0.39 0.60

CodeBERT, and CodeT5(+)) generally perform better than CGPruner at the CG pruning

task. This is expected as the CLMs leverage code semantics whereas CGPruner only relies

on structural features.

From Table 2.2, we also observe that all the models perform better on the NJR-1 dataset

compared to XCorpus and YCorpus. This is because both XCorpus and YCorpus contain

popular real-world Java projects in contrast to NJR-1, which focused on automation over

popularity when selecting Java projects [48] and popular projects seem to be more difficult

for the models. In addition, the ML models perform best on NYXCorpus after NJR-1 with an

F2 score of 0.54. This score shows that the gained precision comes at the price of a reduced

recall when compared to Wala. While the average F2 score is only 0.54 on NYXCorpus, the

best models can match the quality of Wala’s 0-CFA analysis. Based on these results, we

decided to use CodeBERT and CodeT5 for the subsequent RQs. These two models perform

better than others concerning the F2 score and they do not require structural features,

unlike AutoPruner. Also, they are faster compared to CodeT5+ considering both training

and inference.

However, these results also bring two follow-up questions. First, the comparatively

low recall and many missing edges can prove impractical for client analyses. We will

explore the effect of more conservative training and pruning strategies in RQ2. Second,

a context-sensitive CG generator might achieve the same performance gain with better

soundness. As such, we will compare the quality and scalability of the results when using

a 1-CFA analysis in RQ3.

2.5.2 RQ2: Can conservative training/pruning strategies im-
prove the results?

The three datasets of our evaluation are imbalanced, especially NJR-1, as can be seen from

the P/R ratio in Table 2.1. There are substantially more edges that need to be pruned than

edges to be kept. If both true and false edges are treated equally in the training phase,

the ML models will get biased towards pruning. Indeed, the results of RQ1 have shown

that the recall drops significantly, so we will experiment with more conservative strategies

during training and pruning to limit the effects of the imbalance. The goal is to keep as

many edges as possible to minimize the false pruning decisions.
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Methodology We use the two most suitable ML-based CGs pruners from RQ1, i.e.,

CodeBERT and CodeT5, and experiment with two conservative enhancements. First,

we assign a weight 𝑤 during the learning process to the positive class (i.e., retaining

edges) in the cross-entropy loss function (see Equation 2.6) to fine-tune two models

separately. Second, we consider the confidence of the pruning decision and require reaching

a configurable threshold 𝜏, before an edge gets pruned. We investigate the effects in two

separate experiments. In the first experiment, we perform a grid search over the training

weights {0,6,0.7,0.8,0.9,0.95,0.99} to investigate the effect of the weighted loss function. In

the second experiment, we used the unweighted version of the two models that have been

used in RQ1 already, and performed another grid search over the confidence threshold

values {0,6,0.7,0.8,0.9,0.95} in the decision function defined in Equation 2.8 to find the

best-performing confidence level. The higher the value of 𝜏, the more conservative we are

when pruning CG edges. Both experiments use 0-CFA-based static CGs.

Results Figure 2.2 shows the performance of the models while fine-tuning them with

different weights to the positive and negative classes. For instance, a weight of 0.70 to the

positive class means that the negative class is given a weight of 0.30. Overall, for both

CodeBERT and CodeT5, we observe that the F2 score increases and precision decreases by

giving higher weight to the positive class.

The results suggest that the weights of 0.95 and 0.99 are the most interesting configura-

tions. While the F2 score drops slightly when moving from 0.95 to 0.99, it is to be expected

that the resulting CG is also larger. It seems that 0.95 can be considered as the "sweet spot"

to achieve a recall close to Wala’s while gaining higher precision. The use case for 0.99

is the application where soundness is essential, like vulnerability analysis. In short, with

weights given to the classes, it is possible to maintain a relatively high recall while having

better precision compared to Wala’s static call graphs.

Figure 2.3 indicates the performance of the models considering different confidence

levels for pruning call graph edges. It can be seen that the higher the confidence level, the

higher the F2 score is, which is expected as the model is more confident when pruning edges.

Overall, it becomes obvious that the differences to the unweighted results in Figure 2.3

are minimal, and also here, the 0.95 and 0.99 levels are the best-performing configurations.

The confidence-based filtering seems to be as effective as using weights in the loss function,

while not requiring the additional overhead of fine-tuning.

The similar F2 scores of the original and the pruned CG beg the question of how large

the effect of the pruning is in practice. We will investigate the impact on a client analysis

and the performance implication of a substantially reduced CG on runtimes in RQ4.

2.5.3 RQ3: How do context-sensitive CG generators compare
in terms ofqality and scalability?

The results of RQ1 have shown that ML-based CG pruning can improve a 0-CFA-based

CG with a small computational overhead. The interesting question is how this overhead

compares to running more advanced, context-sensitive CG algorithms like k-CFA (i.e.,

1-CFA), which has higher precision but is also computationally more expensive. In this

section, we will investigate how using a 1-CFA analysis in the CG generation compares to

0-CFA (with and without pruning) in terms of performance and scalability.
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Figure 2.2: Performance of the models with different weights to the positive class (retaining edges)
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Figure 2.3: Performance of the models by considering different confidence thresholds
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Methodology First, we generate static CGs using both 0-CFA and 1-CFA algorithms for

the training and test programs in the NYXCorpus dataset. We reused the CodeBERT and

CodeT5 models that have been fine-tuned on the 0-CFA CGs in RQ1. We also fine-tuned

both CLM models on 1-CFA CGs of the NYXCorpus training set with no weight given to

the loss function. When pruning static CGs, we use a confidence threshold of 0.95, which

we found to be an effective configuration in RQ2.

In our second experiment, we measure the CPU time for generating a static call graph

using 0-CFA and 1-CFA. In addition, we show how long it takes to prune call graphs by

measuring feature extraction and model inference time separately. Lastly, we sum up the

CPU time for both static CG generation and CG pruning to show the total computational

time of the whole process. For each measurement, we report the average and the standard

deviation across the NYXCorpus programs.

Results Table 2.3 shows the performance of the CodeBERT and CodeT5 models when

fine-tuned on 0-CFA and 1-CFA call graphs for the call graph pruning task. The first

observation is that, unsurprisingly, Wala’s context-sensitive 1-CFA CGs have a 9% higher

precision than Wala’s 0-CFA CGs. Also, the achieved recall is higher, which in combination

results in a substantial increase of both F1 and F2 scores by 11%. It is interesting to see

that this CG improvement is barely visible in the pruned CGs, which only see a 1-2%

improvement in their F1 and F2 scores.

Table 2.4 provides an overview of the runtimes of the different configurations of 0/1-

CFA with and without pruning to allow an assessment of the results in terms of scalability.

CG pruning consists of feature extraction, i.e., tokenizing code sequences and creating

semantic features, and model inference, i.e., querying the CLM model to prune call graph

edges. Clearly, the CG pruning task adds additional computational overhead on top of the

static CG generation. The table therefore splits the different stages and shows the averages

and standard deviations for static CG generation, feature extraction and inference, and the

total runtime in seconds.

The results show that a 1-CFA-based static CG generation takes 42.3s, which is almost

twice as long as the 0-CFA algorithm without pruning (21.4s). The 1-CFA alternative is

therefore as expensive as 0-CFA with pruning (≈ 42s), however, its standard deviation is

much higher (120s vs. 65s). This is likely caused by the computational complexity of static

analysis, which, unlike ML models that have a constant runtime per query, does not scale

linearly with the program size. The results suggest that context-sensitive analysis can be

beneficial for small programs, while ML-based approaches scale better. It is worth noting

that the improved CGs of the 1-CFA analysis also have a positive impact on the runtime of

the ML approaches. As the CGs are smaller and contain fewer edges, the runtime of the

pruner goes down and deviates less.

2.5.4 RQ4: Is CG pruning practical for a security application
like vulnerability analysis?

All previous experiments have used statistical means to assess the pruning performance of

the ML models by comparing ground truth and pruned CG through metrics such as F2-

score. Previous works have employed client analyses on the pruned CGs, like null pointer

exceptions (NPE), to show the effects of the pruning on static analyses in practice [41, 46].
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Table 2.3: Model Performance with 0/1-CFA algorithm

Models NYXCorpus

P R F1 F2

0-CFA

CodeBERT 0.47 0.89 0.61 0.76
CodeT5 0.51 0.85 0.63 0.75

Wala 0.25 0.95 0.39 0.60

1-CFA

CodeBERT 0.49 0.91 0.64 0.78
CodeT5 0.53 0.86 0.65 0.76

Wala 0.34 0.97 0.50 0.71

Table 2.4: Runtime of 0/1-CFA algorithms with CG pruning

Models CG Gen. [s] Pruning [s] Total Time [s]
Feature Infer.

0-CFA

CodeBERT
21.4 ± 57.0 2.8 ± 3.5

18.6 ± 30.9 42.7 ± 65.2

CodeT5 18.9 ± 31.4 43.0 ± 65.4

1-CFA

CodeBERT
42.3 ± 120.5 1.4 ± 0.8

11.7 ± 11.2 55.1 ± 122.6

CodeT5 14.5 ± 20.0 57.9 ± 123.9

We follow this example and study the effects of CG pruning on vulnerability propagation,

a security-sensitive analysis that requires the traversal of call graphs [91]. We will report

on the resulting CG sizes and the runtime of the client analysis. We expect a significant

speed-up in finding vulnerable call paths using pruned static call graphs, though pruned

CGs may be susceptible to false negatives, which needs to be investigated.

Methodology We used WALAs 0-CFA static CGs as the baseline and we employ the

CodeBERT and CodeT5 models that have been fine-tuned on the training set of NYXCorpus.

We use two configurations for the comparison. The conservative configuration does not

add weights to the loss function but uses a 0.95 confidence threshold. The paranoid

configuration reuses the CodeBERT and CodeT5 models that have been fine-tuned with a

weight of 0.99 to the positive class and applies a confidence level of > 0.95 for pruning.

Our experimental design builds upon the availability of method-level vulnerability

information, which is provided by tools like Prospector [92]. We did not use real-world

vulnerabilities for programs in NYXCorpus though, as the NJR-1 dataset does not include

Maven coordinates for its dependencies, plus many projects without vulnerabilities would
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Table 2.5: Vulnerability Propagation Analysis on (pruned) CGs

Models CG Size Reachable ... Time (ms)
Edges Nodes

1
.. Paths .. Nodes

Wala 5227.1 1420.2 853.9 99.8% 8.1 ± 26.6

Conservative Pruning (> 0.95 confidence)

CodeBERT 1736.4 1048.2 515.3 86.0% 2.3 ± 8.1

CodeT5 1498.2 950.5 388.6 82.0% 1.5 ± 4.8

Paranoid Pruning (0.99 weight, > 0.95 confidence)

CodeBERT 3728.4 1392.2 778.9 98.4% 6.6 ± 23.0

CodeT5 3503.5 1337.3 832.5 96.9% 6.7 ± 23.0

1
#Nodes with at least an incoming and/or out-going edge

have to be filtered. As such, we decided to randomly mark 100 methods as vulnerable in

each program of the NYXCorpus test set. All marked CG nodes represent non-application

nodes that are defined in the dependencies of a program. Our experimental goal is then to

measure how long it takes to compute all paths that start in the application and reach a

vulnerability with a simple reachability analysis through a Breadth-first-search (BFS). We

calculate the fraction of vulnerable methods that are reachable in a given CG, before and

after pruning. Also, there is no reason to believe that our artificial vulnerabilities are easier

to reach than actual vulnerabilities. To accurately measure the analysis time, we first run

the code three times to warm up the JVM and let the JIT compilation do its optimization.

We then compute the reachability another three times and average the required execution

time.

It is worth pointing out that while the absolute number of identified paths is lower in

a pruned CG, we believe that the crucial information is whether a vulnerable method is

reached at all. Moreover, it is irrelevant for the actionability of the results, whether 1 or 10

affected paths can be found for a given vulnerability.

Results Table 2.5 shows the results of vulnerability propagation for both 0-CFA-based

static CGs and their pruned version. Note that the reported numbers for CG size, the number

of reachable vulnerable paths and nodes are average per test program in NYXCorpus.

WALA is the baseline for the comparison. It is obvious that both pruning strategies

are able to substantially reduce the original CG size from 5.2K edges to 1.5-1.7K (≈ 33%)

with the conservative setting and 3.5-3.7K (≈ 69%) in the paranoid setting. This results in

substantial reductions in the runtime of the client analysis to only 1.5ms (5.4x speedup) in

CodeT5 and 2.3ms (3.5x speedup) in CodeBERT. While the concrete reachability analysis

is very fast even on the original CG, we have already seen earlier in the paper that static

analyses scale non-linearly, so every reduction in the size of a CG will have a substantial

impact in more advanced analyses.

The substantial reduction of the conservative setup comes at the price of only reaching

86% of the vulnerable nodes. However, the paranoid setup is able to retain the reachability
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of 96-98% of the vulnerable nodes, which comes very close to the WALA baseline. We

find that the reduced size and substantial speedup make this result very attractive for

large-scale analyses, but the best CG choice always depends on the task and the context.

A security-focused application might accept the slower execution time of an unpruned

1-CFA-based CG analysis to gain a sound result. For other use cases, a paranoid setup

might be all that is required, or even a conservative analysis could work, when performance

is the main issue. It is noteworthy that, at least in the presented analysis, the pruning does

not introduce any false positives and only introduces a small fraction of false negatives.

2.6 Discussion
When reflecting on the obtained evaluation results, we believe that several points are

noteworthy and should be considered by researchers and practitioners.

Call graphpruning is an openproblem As shown throughout the paper, code language

models like CodeBERT and CodeT5 have the potential to substantially improve the precision

of static CGs. However, we have also seen that CG pruning is challenging, especially for

the real-world programs in the XCorpus and YCorpus. While the precision is good, the

main challenge is achieving a reasonably good recall as well. The probabilistic nature of

CLM models makes it easy to introduce pruning thresholds, however, the parameters of

our current approaches must be fine-tuned in a small range at the extremes. Our models

can present a promising step in the right direction, but they do not give an exhaustive

answer to the larger problem. More work is required to find a more robust approach with

a more differentiated confidence measure and better results overall. Future work could

explore hybrid approaches that combine heuristic (non-) pruning rules with a CLM model.

Data Imbalance We believe that the main limitation that we have faced in our ex-

periments is the massive imbalance of the dataset, as seen in the P/R ratio in Table 2.1).

Naturally, trained ML models will be biased towards pruning edges rather than retaining

them. We believe that future work should continue to emphasize recall over precision, as we

have done by using the F2 measure when optimizing their models. However, this is only the

first step and further approaches need to be taken to counter the imbalance. Our technique

for building the ground truth was executing test suites for collecting relevant edges. Future

work could extend this endeavor and trace more extensive program executions and build

more complete dynamic CGs.

Hybrid Static Analysis Recent works have introduced advancements in ML-based CG

pruning, but also advanced program analysis approaches that consider call site sensitivity

and more context to improve the precision of static CGs [93, 94]. Unfortunately, the

ML-based approaches and advanced static analyses are still often seen as related, but

separate solutions to the CG generation problem. Likely, because both are very advanced

topics in their respective fields and because it is hard to find researchers who are experts

in both areas. We strongly believe though that a hybrid static analysis that integrates

ML-based approaches into the static analysis instead of running it as a separate step

would be very promising. Our experiments have shown that even the best static CG
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generator that we included could not reach 100% of the vulnerable nodes. This is, for

example, caused by calls through the Java reflection API, which could be suggested through

complementing probabilistic approaches. Another potential combination would be the use

of ML to improve the performance of advanced static analyses, which would otherwise not

scale to large programs, for example, by accepting unsound results for less important parts

of the program.

Feature Engineering In contrast to mostly structural features and graph metrics that

have been used in previous work, we used semantic features that are based on the source

code that surrounds the potential call site. Overall, we believe that the obtained results

are positive, but the feature engineering idea should be investigated more closely. It is

likely that considering full methods for sources and targets exceeds the attention of ML

models, therefore important information is not taken into consideration by the model.

Future work could investigate new ways to encode the surrounding context of a method

call to find better, semantic features, which might carry more relevant information about

the likelihood of a call relation between two methods.

2.7 Threats to Validity and Limitations
In this section, we describe the limitations of our work, possible threats to the validity of

our empirical findings, and how we address them. We have picked F2 as the main metric

to judge the CG quality of our pruned CGs. While it could be possible that the metric still

does not emphasize the importance of recall enough, we believe that our results in the

vulnerability analysis confirm the suitability of the metric in our experiments.

Our experimental result rests on the ground truth that we have generated through the

instrumentation and execution of test suites, which might not be complete or representative

of other programs. We selected programs with a high test coverage, which makes us

confident that the results are reliable. Larger benchmark datasets will certainly contain

more cases that might be missed in this work, but they would also provide more data to

train the ML models. Overall, we are confident about the representativeness of our data,

confirming the data with larger datasets will be left for future work.

We have chosen a vulnerability analysis as a client analysis that is built upon a CG. We

do not even start to object that this choicemight not be representative of other analysis tasks.

However, we think that the generated results and the insights still hold, as the described

downsides of static analyses only get worse with larger programs or more advanced static

analysis algorithms.

Lastly, we filter call graph edges based on package names as described in subsection 2.3.3.

This may cause the exclusion of call graph edges related to Graphical User Interface (GUI)

components or event-driven programming aspects from the evaluation. This is not a threat

but a limitation of the filtering strategy we used, following the previous work [41, 46],

which filters such edges if their CG node’s URI starts with any of those filtered packages

like java/. Future work should propose a more robust approach to filtering call graph

edges before the training phase.
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2.8 Summary
This chapter presents an empirical study on the effectiveness of machine learning-based

call graph pruning. We identified several key issues in the current state of research on

ML-based call graph pruning such as a lack of a suitable benchmark dataset, data imbalance

due to static analysis over-approximation, significant recall drop in CG pruning, and no

comparison between pruned 0-CFA-based call graphs with context-sensitive algorithms

like 𝑘-CFA. To address these challenges, we have introduced (1) the NYXCorpus dataset,

combining NJR-1, XCorpus, and YCorpus. (2) and a conservative strategy to prune CG

edges more confidently, which can be tuned by giving weights to classes in the learning

process or considering different confidence levels when pruning. Our empirical findings

show substantial improvement in CG precision. Specifically, ML-based CG pruning can

boost precision by 24-34% while reducing the recall by 2-10%. Even though our experiments

favor recall over precision, we can show through a comparison with a more advanced

1-CFA-based CG generation that the overall tradeoff is in favor of the ML-based approaches.

We show in a client analysis that by tweaking our model parameters to a paranoid setup, it

is possible to achieve virtually identical results to a static analysis while being 3.5x faster

and operating on a reduced CG with 69% of its original size.
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3
OriginPruner: Leveraging

Method Origins for Guided
Call Graph Pruning

In static program analysis, Call Graphs (CGs) are essential for various tasks, including security

vulnerability. Static CGs often suffer from over-approximation to ensure soundness, resulting

in inflated sizes and imprecision. Recent research has employed machine learning (ML) models,

aiming to prune false edges and enhance CG precision. However, these models have limitations.

They require real-world programs with high test coverage to generalize effectively and a lofty

inference cost. Motivated by this, in this chapter, we present OriginPruner, a novel call graph

pruning technique that leverages method origin, which is a method that first introduces a

signature within a class hierarchy and is often overridden. Also, by incorporating insights from

a localness analysis, finding the scope of method interactions, into our approach, OriginPruner

confidently identifies and prunes edges related to these origin methods. Our key findings reveal

that (1) dominant origin methods, such as Iterator.next, which significantly impact

CG sizes; (2) derivatives of these origin methods are primarily local, enabling safe pruning

without affecting downstream inter-procedural analyses; (3) OriginPruner achieves a signifi-

cant reduction in CG size while maintaining the soundness of CGs for security applications like

vulnerability propagation analysis; and (4) OriginPruner introduces minimal computational

overhead. These findings underscore the potential of leveraging domain knowledge about the

type system for more effective CG pruning, offering a promising direction for future work in

static program analysis.

We are planning to submit this chapter to a software engineering conference by the end of 2024.
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3.1 Introduction
In the realm of program analysis, call graphs (CGs) are essential for various tasks, including

static program analysis, performance profiling, and security vulnerability assessment.

Call graphs representing function invocations within programs [7, 37]. Creating this

representation poses a significant challenge, even for small-scale programs [38], as it is

necessary to achieve a balance between soundness, i.e., ensuring no legitimate function calls

are missed, and precision, i.e., avoiding the inclusion of superfluous calls. Despite recent

initiatives towards more practical static analyses [95], this trade-off is usually decided in

favor of soundness, and CGs are typically over-approximated and imprecise [36, 41, 96].

This leads to a major issue, especially in object-oriented programming languages, where

the scalability of CGs suffers from ubiquitous subtyping. For every call site in a program, a

CG generator has to identify all possible target types through a class-hierarchy analysis.

For example, a single call to the target method Object.toString will be expanded

by adding several edges to all overridden variants of this method that have been created in

subtypes. This will add a huge fan out to every call-graph node that contains such a call,

which is a major limiting factor to the scalability of analyses. As a result, CGs are very big,

which affects the performance of downstream static analyses. Research on static analysis

tries to improve the precision by pruning unreachable types, for example, using enhanced

pointer analysis based on context-sensitivity or flow-sensitivity [40, 42, 43]. However, such

techniques are very computationally expensive even for small improvements [91].

Recent efforts have introduced novel machine-learning-based pruning techniques that

can reduce the size of call graphs by eliminating false edges, e.g., CGPruner [41] and

AutoPruner [46]. These approaches learn to prune false CG edges from dynamic traces of

actual program executions. CGPruner uses structural features while AutoPruner learns

from a combination of structural and semantic features. ML-based CG pruning approaches

greatly enhance CG precision by up to 45%, though they cause a substantial loss in the

recall/soundness of call graphs, which renders these approaches impractical for security-

focused applications like vulnerability propagation. To alleviate this, very recently, Mir

et al. [91] conducted an empirical study on the effectiveness of ML-based CG pruning

approaches. Essentially, they proposed a conservative strategy to have a slight loss in recall

while benefiting from higher precision.

While ML-based CG pruning approaches offer promising results, we believe that their

quality is conceptually limited by the choice of features that are used to model the CG. In

this chapter, we will approach the pruning problem from a different perspective. In contrast

to existing approaches that are based on basic graph features (like in-degree of a node)

or pseudo-semantic features (source code as plain text), we propose to base the pruning

decision on domain knowledge about the type system. We will investigate in this chapter,

whether a novel CG-pruning approach can use actual semantic knowledge about the type

system to improve its pruning decisions. The idea is rooted in object-oriented programming,

where methods can be overridden in subclasses. We extract the first definition of each

method signature, the origin method, and find that, in practice, a small number of origin

methods like Object.hashCode or Iterator.next are frequently subtyped and

used so often throughout typical code bases that they are responsible for a large fraction of

the overall CG size. We believe that instead of investigating general CG pruners, it is more

promising to identify and prune only those problematic edges. We evaluate our intuition
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through four research questions:

RQ1 Which origin methods impact CG sizes the most?

RQ2 How local are the derivatives of the most common origin methods?

RQ3 What are the effects of OriginPruner on the size and usefulness of CGs?

RQ4 What is the computational overhead of OriginPruner?

By answering these research questions, we found several dominating origin methods,

most of which are related to the Java object type or the collection API. We found that origin

methods are mostly local and seem to be prunable without affecting compatible downstream

analyses. We have implemented a vulnerability propagation analysis as one particular client

analysis to investigate the effect of CG pruning on its result. Using OriginPruner we can

reduce the CG size by 14-58%, which translates to a substantial boost in the analysis time of

the vulnerability propagation, while only observing a marginal effect on the vulnerability

results of vulnerability analysis. Our results show that an ML-based approach is on par

with a simple heuristic, which can be computed much faster, which is a promising direction

for future research.

Overall, this paper presents the following main contributions:

• We propose a novel CG pruning approach that leverages the method origin.

• We show that the origin methods with the most significant effects on CG sizes are

usually local and typically have low effects on inter-procedural analysis, making

them a good candidate for pruning.

• Through our evaluation of a vulnerability propagation analysis, we illustrate the

need for better feature engineering for ML-based pruning models, as current state-

of-the-art pruners cannot outperform a basic pruning heuristic.

3.2 Background
Static call graphs build the foundation for many static software analyses. They represent the

calling relationships between methods within a program and model which source methods

call which target methods. Static analyses can easily extract the static call sites from the

abstract syntax tree of a program, which represents the locations in which an invocation is

supposed to take place. However, the static call site might refer to an interface type without

implementation of that method or during runtime, the target type is a more specific subtype

of the static type. For example, imagine a method with a parameter of type Object, on
which toString is called, while likely thousands of toString implementations exist

in all loaded classes out of which one will be the actual target of the call in a program

run. The challenge is to identify the set of implemented methods that might be called

when the call site is dispatched. To be sound, a call graph needs to be able to represent

all possible executions. To achieve this, CG generators usually perform a class-hierarchy

analysis to expand a local call site and include invocations of all known implementations

(interface methods) or extensions (overridden methods) that exist throughout the code
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base and its dependencies. Naturally, this includes very commonly overridden methods

such as Object.toString. Including edges for these methods ensures that the call

graph accurately reflects all possible method invocations to make the static analysis sound,

which is crucial for tasks like impact analysis, optimization, and vulnerability analysis.

Identifying Problematic Methods Especially methods that are defined in Java key

classes, e.g., in the collection API, have an abundance of implementations in every code

base and are used virtually everywhere (e.g., Iterator.next). Including all these

subtype invocations leads to a significant increase in the size and complexity of the static

call graph, potentially making analysis less efficient and more difficult to interpret.

At the same time, most of these basic methods are only used to access data of data

structures. Our intuition says that these methods will be mostly local and that they would

not affect static analyses like taint analyses or vulnerability propagation analyses, which

follow inter-class data flow. In this chapter, we explore whether we can automatically

identify such problematic methods and whether it is possible to guide CG pruning by

starting from only these problematic cases.

Origin Analysis While different implementations of the same interface or overridden

versions of a method can have completely different method behavior, a good design should

be constrained by the contract that is established by the first definition of a method signature

(i.e., design by contract [97]). We refer to these first declarations as origin methods. As

formulated in Liskov’s Substitution Principle [98]), these origin methods define requirements

for subtyping relation. The principle essentially states that an overridden method must

be usable as a drop-in replacement by an unaware caller of the base method, for example,

it should not introduce new and unanticipated side-effects or throw Exception types

that clients of the base method do not expect. In our processing, we will link every method

in the dataset to its origin method.

Pruning Call Graphs The task of CG pruning is initiated with a static CG denoted as

𝔾, a directed graph that is generated via static analysis. The nodes 𝑉 within this graph

symbolize the defined methods, each distinguished by their method signature that includes

the name, parameters, and return type. The edges 𝐸 between these nodes are expressed

as tuples and mark the invocation of one method (callee) by another (caller). The CG

pruner transforms the set of edges 𝐸
′
= 𝑓𝑝𝑟𝑢𝑛𝑒(𝐸) through a pruning function 𝑓 , which uses

heuristics or ML-based classifiers to decide on the edges that should be retained. In this

work, we will propose a novel tool that uses information about origin methods to guide the

pruning decision. A refined call graph, 𝔾
′
= (𝑉 ,𝐸

′
), is generated that preserves all vertices,

but uses the transformed edge set.

3.3 Related Work
Call Graph Construction The study and development of call graphs have been a subject

of significant interest. (ML-based) call graph pruning techniques, which do not incorporate

real-time data, are categorized under static methods for call graph generation [18, 52, 53].
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Conversely, dynamic analysis methods [54, 55] have been shown to reduce false positives

and improve precision, albeit at the cost of scalability.

Additionally, efforts have been made to enhance the accuracy of call graphs. Lhotak

[56] introduced an interactive tool designed to elucidate the discrepancies between various

static and dynamic analysis tools. Sawin and Rountev [57] proposed heuristics to better

handle dynamic features such as reflection, dynamic class loading, and native method

calls in Java. This technique improved the precision of the Class Hierarchy Analysis

(CHA) algorithm [58], while maintaining satisfactory recall rates. Moreover, Zhang and

Ryder [59] focused on producing accurate application-specific call graphs by identifying

and eliminating false-positive edges between the standard library and the application

itself. Recently, Antal et al. [96] studied the challenge of generating precise call graphs

for JavaScript due to its dynamic nature, and hence they conducted a comparative study

of static and dynamic call graph generation tools for JavaScript. They found that while

dynamic tools offer perfect precision, the recall of both static and dynamic approaches

are very similar, ranging from 58% to 69%. Keshani et al. proposed Frankenstein [95],

a fast and lightweight call graph construction technique for software builds. The main

idea is to create partial call graphs for each dependency in a program and then merge

the resulting CGs into one whole program CG. Their approach is faster and has a small

memory footprint, which makes it suitable for software build systems.

Machine learning for enhancing call graphs Currently, there are two notable ML-

based models for call graph pruning: CGPruner [41] and AutoPruner [46]. Utture et al.

introduced CGPruner, an ML-based approach aimed at reducing the false-positive rate

of static analysis tools to enhance their appeal to developers [41]. CGPruner prunes

unnecessary false-positive edges from the static call graph, which is integral to numerous

static analyses. This is accomplished through a pre-execution learning process that involves

the application of static and dynamic call-graph constructors, with dynamic call graphs

utilized solely during the training phase on a set of training programs. This approach

notably reduced the false-positive rate, in certain instances, from 73% to 23%.

However, CGPruner does not analyze the semantics of the source code. To overcome

this shortcoming, Le-Cong et al. [46] introduced AutoPruner, which aims to eliminate

false positives within call graphs by harnessing both the structural and semantic statistical

information from the source code of caller and callee functions [46]. AutoPruner employs

CodeBERT [47], a pre-trained Transformer-based model [35] designed explicitly for code.

It fine-tunes this model to discern semantic features of each edge, integrates these with

manually crafted structural features, and utilizes a neural classifier to classify each edge as

either true or false positive.

Very recently, Mir et al. [36] has studied the effectiveness of ML-based call pruning and

proposed a benchmark dataset, namely NYXCoprus, for this task. Among their findings,

they found that CGPruner and AutoPruner produce pruned call graphs with notoriously

low recall, which renders these approaches unsuitable for security-focused applications

like vulnerability analysis. To alleviate this issue, they introduced a conservative strategy

to fine-tune the code language models (CLMs) to maintain a high recall, close to static CGs,

and benefit from better precision. This made pruned call graphs produced by CLMs useful

for vulnerability analysis while benefiting from faster analysis.
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So far, all the discussed papers have tackled the call graph pruning problem with

machine learning. There is also a recent work on discovering true edges for JavaScript’s

call graphs [99]. Their proposed technique combines structural and semantic information

and employs Graph Neural Networks (GNNs) [100] to identify true edges. The experimental

results show a significant improvement to true positive rates in vulnerability detection.

3.4 Methodology
Figure 3.1 shows the overview of our approach. We used Java programs from the YCorpus

dataset [91] including their transitive dependencies to feed our pipeline. First, we generate

static call graphs as a baseline for our evaluation. Then, we perform two types of analyses on

these call graphs, namely, origin finder and localness analysis. The origin finder identifies

places, in which method signatures have been first introduced. The localness analysis then

determines how local these methods are, i.e., if the methods rely solely on the Java standard

library or use functionalities from methods implemented in the dependencies. Given the

results of these two analyses, we identify a set of origin methods that we use as candidates

for edge pruning in static CGs. These candidates get pruned in two different strategies:

a simple heuristic exhaustively prunes all calls that are related to these popular origin

methods, and a second strategy employs an ML-based CG pruning model to make the

pruning decision. We implement a vulnerability propagation analysis to evaluate the effect

of the pruning on the reachability of vulnerabilities. The following subsections provide

more details about the individual steps.

3.4.1 Call Graph Generation
To create static call graphs, we employed the OPAL framework [101, 102], an advanced

and well-established tool tailored for bytecode analysis. This methodology is based on

employing the Class Hierarchy Analysis (CHA) algorithm, renowned for its straightfor-

ward yet effective approach to dealing with the complexities inherent in object-oriented

programming languages. Specifically, within the OPAL framework, the generation of

static call graphs entails a meticulous examination of Java bytecode, aiming to pinpoint

potential method invocations. This process culminates in a directed graph, where methods

are depicted as nodes, and the possible calls between them are represented as edges. A

crucial aspect of this analysis involves scrutinizing not only the application’s bytecode but

also its transitive dependencies and the Java Runtime Environment (JRE)’s core libraries,

OriginPruner

Filtering Candidate
EdgesYCorpus

Call Graph
Generation (OPAL)

Origin Finder

Localness Analysis

Fake CVEs
Generation

Vulnerability
Propagation

Analysis
Evaluation

ML-based CG
pruner SQL DB

Figure 3.1: Overview of our proposed approach
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particularly the runtime JAR file or rt.jar. The inclusion of rt.jar is pivotal as it con-

tains the classes necessary to run Java applications, including the standard Java API. By

analyzing rt.jar, the framework can construct a more accurate and comprehensive class

hierarchy. This hierarchy lays the foundation for resolving virtual method calls, a task

achieved by identifying all potential callee methods in light of Java’s polymorphism and

inheritance mechanisms. With the consideration of the rt.jar file, the call graph is

enriched with essential runtime context, thereby enhancing the accuracy of identifying

and resolving method calls that occur during the actual execution of a Java application.

This enriched context is especially beneficial for security vulnerability analysis, as it allows

for a more thorough inspection of how an application interacts with the Java standard

library, potentially uncovering vulnerabilities that might not be evident through static

analysis alone. By integrating the static CGs generated through CHA with insights from

Java’s runtime environment, we are better positioned to conduct comprehensive security

assessments, thereby enhancing the detection and mitigation of security threats.

3.4.2 Origin finding
As described in Section 3.2, certain methods can cause an "explosion" in the number of

edges in call graphs. In this chapter, we define them as "origin methods". They play a

pivotal role in understanding and managing the complexity of call graphs in object-oriented

programming like Java. These are the methods where a particular method signature is

first introduced in a class hierarchy, acting as the root for any subsequent overrides or

derivative methods. The concept of origin methods is crucial because it helps identify the

source of method signatures that proliferate across subclasses through inheritance and

polymorphism. When a method in a superclass is overridden by multiple subclasses, each

override is considered a derivative method. This inheritance and overriding mechanism

can lead to a significant increase in the number of edges in a call graph, especially for

origin methods high up in the type hierarchy with many subclasses. The explosion of edges

attributable to these origin methods reflects the potential paths of method invocations,

which can be particularly challenging to analyze due to the increased complexity and size

of the call graph.

To tackle the challenge posed by origin methods and their derivatives in static analysis,

we proposed an algorithm that is designed to identify and assess the impact of thesemethods

on the structure of call graphs. This algorithm, outlined in the provided pseudocode in

Algorithm 1, systematically examines each edge in a call graph to find the origin method

responsible for the method invocation represented by the edge. It iterates through the

edges of the CG, tracing each target method’s type back through its hierarchy until it

finds the highest type where the method signature was first declared. By mapping each

method to its origin, this approach allows us to investigate the extent to which a single

origin method can influence the call graph, quantifying the number of edges it effectively

generates. This information is invaluable for optimizing CG analyses, as it highlights the

methods that are most influential in the complexity of the graph, guiding efforts to simplify

or focus the analysis on the most impactful areas.

The identification of "origin methods" through the aforementioned algorithm enables a

systematic way of pruning call graphs, significantly enhancing the efficiency and focus of

static analysis. This approach is particularly useful because it allows for the reduction of
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call graph complexity without substantial loss of essential information. For instance, in sce-

narios where the analysis aims to identify potential security vulnerabilities or performance

bottlenecks, focusing on the most impactful parts of the call graph, the origin methods,

and their immediate derivatives can yield quicker, more relevant insights. Pruning based

on origin methods systematically reduces the graph’s size, making it more manageable

and easier to navigate, while preserving the integrity of the analysis by maintaining the

critical paths of method invocations. This methodological pruning, therefore, enhances the

practicality of static analysis tools, making them more adaptable to large-scale software

projects where unpruned call graphs could become impractical to work with.

Algorithm 1 Finding origin methods of a call graph

1: function findOrigins(𝐶𝐺)

2: 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ← 𝑒𝑚𝑝𝑡𝑦𝑀𝑎𝑝𝑂𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑠()

3: for all 𝑒𝑑𝑔𝑒𝑖 ∈ 𝐶𝐺.𝑒𝑑𝑔𝑒𝑠() do
4: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑒𝑑𝑔𝑒𝑖.𝑡𝑎𝑟𝑔𝑒𝑡()

5: 𝑡𝑎𝑟𝑔𝑒𝑡𝑡𝑦𝑝𝑒 ← 𝑡𝑎𝑟𝑔𝑒𝑡.𝑡𝑦𝑝𝑒()

6: for all 𝑝𝑎𝑟𝑒𝑛𝑡𝑡𝑦𝑝𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑡𝑦𝑝𝑒 .𝑝𝑎𝑟𝑒𝑛𝑡𝑠() do
7: if 𝑝𝑎𝑟𝑒𝑛𝑡𝑡𝑦𝑝𝑒 .𝑖𝑠𝐹 𝑖𝑟𝑠𝑡𝐷𝑒𝑐𝑙𝑎𝑟𝑒(𝑡𝑎𝑟𝑔𝑒𝑡.𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒()) then
8: 𝑜𝑟𝑖𝑔𝑖𝑛𝑠.𝑝𝑢𝑡(𝑡𝑎𝑟𝑔𝑒𝑡,𝑝𝑎𝑟𝑒𝑛𝑡𝑡𝑦𝑝𝑒)

9: end if
10: end for
11: end for
12: return 𝑜𝑟𝑖𝑔𝑖𝑛𝑠

13: end function

3.4.3 Identifying Localness Levels
The concept of localness in relation to the derivatives of an origin method introduces a

nuanced framework for analyzing the scope and impact of method invocations within

an application. This framework categorizes methods based on the extent of their inter-

actions with other components of the system, ranging from purely internal functionality

to interactions that cross package boundaries. To this end, we define four categories of

localness:

• Level 0: A method does not call anything or it only calls Java functionalities.

• Level 1: A method does call other functionalities than Java but it does not exit its

class or its class hierarchy.

• Level 2: A method calls at least one function from outside of its class hierarchy, but

it remains within the same project.

• Level 3: A method calls at least one function from outside of its class hierarchy and

the target of this call is also in another package.

By labeling the target methods within a call graph with these localness levels, it

helps to better understand an application’s architecture and the dependencies between its

components. For instance, a derivative method with a localness level of 0 or 1 indicates a

high degree of cohesion within the class or class hierarchy, suggesting that the functionality
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is tightly integrated and likely easier to maintain. On the other hand, a derivative with

a localness level of 3 points to a broader scope of interaction, which might be necessary

for the application’s functionality but also introduces more dependencies, potentially

increasing the complexity of maintenance and testing. Algorithm 2 shows how to find the

localness level of target methods in call graphs.

Algorithm 2 Localness algorithm

1: function Categorize(𝑚𝑒𝑡ℎ𝑜𝑑,𝐶𝐺)

2: 𝑙𝑎𝑏𝑒𝑙 ← 0

3: if isDefinedInJava(method) then
4: return 𝑙𝑎𝑏𝑒𝑙

5: end if
6: for all 𝑒𝑑𝑔𝑒𝑖 ∈ 𝐶𝐺.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠𝑂𝑓 (𝑚𝑒𝑡ℎ𝑜𝑑) do
7: 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 ← 𝑒𝑑𝑔𝑒𝑖.𝑡𝑎𝑟𝑔𝑒𝑡()

8: if !𝑖𝑠𝐷𝑒𝑓 𝑖𝑛𝑒𝑑𝐼𝑛𝐽 𝑎𝑣𝑎(𝑡𝑎𝑟𝑔𝑒𝑡𝑖) then
9: if 𝑙𝑎𝑏𝑒𝑙 < 2 ς 𝑖𝑛𝑆𝑎𝑚𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖) then
10: 𝑙𝑎𝑏𝑒𝑙 ← 1

11: else
12: if 𝑎𝑟𝑒𝐼𝑛𝑆𝑎𝑚𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖) then
13: 𝑙𝑎𝑏𝑒𝑙 ← 2

14: else
15: 𝑙𝑎𝑏𝑒𝑙 ← 3

16: break
17: end if
18: end if
19: end if
20: end for
21: return 𝑙𝑎𝑏𝑒𝑙

22: end function

3.4.4 Pruning Strategy
After performing the origin-finding analysis, we have the origin methods and their deriva-

tives for Java programs. These methods are frequently overridden or extended across

different classes and packages within programs in the dataset. By considering Top-𝑛 most

frequent origin methods, we create an "exclusion list" of 𝑛 elements. Given this, we prune

call graphs edges for which their target type is a derivative of an origin method in the list.

Algorithm 3 shows pseudo-code for pruning call graph edges using the described pruning

strategy.

3.4.5 Dataset
For this work, we used the YCorpus dataset, which was created by Mir et al. [36]. It has

23 Java projects with the criteria that each project has higher than 80% test coverage. Its

programs contain the JARs of transitive dependencies plus source code. Despite its small

size, YCorpus is suitable for evaluating (ML-based) call-pruning models, as it contains

real-world Java projects such as Apache Commons IO, AssertJ, and MyBatis 3, and each

project has an average of around 50K lines of code.
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Algorithm 3 Pruning call graphs with a pruning strategy

1: function PruneCG(𝐶𝐺,𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑠𝑡)

2: 𝑝𝑐𝑔 ← 𝑛𝑒𝑤𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐺𝑟𝑎𝑝ℎ()

3: for all 𝑐𝑎𝑙𝑙𝑆𝑖𝑡𝑒 ∈ 𝐶𝐺.𝑔𝑒𝑡𝐶𝑎𝑙𝑙𝑆𝑖𝑡𝑒𝑠() do
4: 𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑐𝑎𝑙𝑙𝑆𝑖𝑡𝑒.𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒()

5: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑐𝑎𝑙𝑙𝑆𝑖𝑡𝑒.𝑔𝑒𝑡𝑇 𝑎𝑟𝑔𝑒𝑡()

6: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒 ← 𝑐𝑎𝑙𝑙𝑆𝑖𝑡𝑒.𝑔𝑒𝑡𝑇 𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒()

7: 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑇 𝑦𝑝𝑒𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑠𝑡.𝑔𝑒𝑡(𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒.𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒())

8: if 𝑁𝑜𝑡𝐼𝑛𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑇 𝑦𝑝𝑒𝑠(𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑇 𝑦𝑝𝑒𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒) then ⊳ The ML-based model is queried here

for this edge if using the selective approach

9: 𝑝𝑐𝑔.𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡)

10: end if
11: end for
12: return 𝑝𝑐𝑔

13: end function
14: function NotInExcludedTypes(𝑒𝑥𝑐𝑙𝑠𝑢𝑖𝑜𝑛𝐿𝑖𝑠𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒)

15: for all 𝑡𝑦𝑝𝑒 ∈ 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑇 𝑦𝑝𝑒𝑠 do
16: if 𝑡𝑦𝑝𝑒.ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒) then
17: return False

18: end if
19: end for
20: return True

21: end function

3.4.6 ML-based call graph pruning
ML-based call graph pruning aims to prune superfluous or false edges in static call graphs

by learning from actual program execution paths, i.e., dynamic call graphs. For this work,

specifically, we employ a well-known code language model, CodeBERT [47], which lever-

ages semantics embedded within code. We use the ultra-conservative strategy introduced

in the work of Mir et al. [91], known as "paranoid pruning", which particularly uses a

weight of 0.95 in the learning process and a confidence level of over 95%. This method

prioritizes the retention of edges, i.e., very cautiously pruning only when there is high

confidence, thus minimizing the risk of losing true call graph edges. With the described

strategy, CodeBERT not only enhances the precision of call graphs but also maintains

high recall, almost identical to that of static call graphs, which is crucial for downstream

analyses, such as vulnerability detection at the method level.

We employ the ML-based CG pruner in combination with our proposed approach,

which leverages the results of the origin finder and localness analysis to prune edges.

Specifically, we query the ML model to decide whether a candidate edge for pruning, i.e.,

a derivative of the origin methods, should be pruned. We expect that this makes our

approach more conservative. In the paper, we refer to this combination as OriginPruner

with Selective, ML-based pruning.

3.4.7 Generating Artificial Vulnerabilities
To study the effect of our proposed call graph pruning on vulnerability propagation, we

follow the methodology of previous work and create artificial CVEs to make the evaluation

more scalable [91]. We first separate application nodes from those of dependencies in

the whole-program static call graph. This distinction is crucial since the aim is to inject
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vulnerabilities exclusively into the dependency nodes. We randomly mark 100 of these

dependency nodes to be associated with one of the artificial vulnerabilities. The selection

should be random to ensure that the simulated vulnerabilities are spread unpredictably

across the dependencies, mirroring the nature of real-world vulnerabilities.

3.4.8 Vulnerability Propagation Analysis
To find whether vulnerable nodes/methods in static call graphs are reachable from the

main application’s methods, we perform an inverse Breadth-First Search (BFS) from nodes

identified as vulnerable in the project’s dependencies. This analysis has two main advan-

tages. First, it is much faster than performing BFS from application nodes to vulnerable

nodes. Because we already know the vulnerable nodes in the call graph and hence we

initiate the search from these nodes rather than from all applications nodes. Second, we

can pinpoint the sequences of calls that might expose the application to risks emanating

from its dependencies. This is crucial for understanding the impact of vulnerabilities in

third-party libraries and enabling developers to prioritize and remediate threats more

effectively.

3.4.9 Implementation
We implemented most of the components in our proposed approach in Java 11 such

as CG generation, origin finding, localness categorization, vulnerability analysis, and

artificial CVEs generation. We used Apache Kafka to stream data into our end-to-end

pipeline. We employed the JGraphT framework [90] to work with graphs and implement

vulnerability propagation analysis. Also, we implemented an ML-based CG pruner, a

fine-tuned CodeBERT, as an inference service in Python 3.10 using PyTorch 2.2 [84, 85]

and Ray Serve [103]. We used the PostgreSQL database to cache the predictions of the

inference service. This is helpful to speed up the ML-based CG pruning process when we

consider different sizes of filters in our experiments.

We conducted all the experiments in this chapter on aworkstationmachine with Ubuntu

22.04 LTS, 2xAMD EPYC 7H12 64-core processor, and 512 GB of RAM. The ML-based CG

pruner model inference was done on an RTX 3080 10 GB.

3.5 Results
3.5.1 RQ1: Which origin methods impact CG sizes the most?
We study the origin methods in call graphs as they can provide insights to better understand

the complexity of Java applications. Fundamentally, origin methods introduce a method

signature subsequently overridden by derivative methods across various types. In other

words, the proliferation of derivative methods from a single origin can dramatically increase

the complexity of call graphs, which map the interactions and dependencies between

different parts of a software system. This complexity is not merely a research problem but

also has practical implications for software maintenance, optimization, and vulnerability

analysis. By studying the impact of origin methods on the expansion of call graphs, we can

identify patterns and anomalies that help us to form a set of heuristics or rules for pruning

call graph edges.
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Table 3.1: Top 10 most common origin methods in YCorpus

Method
a

Frequency

/j.u/Iterator.next()/j.l/Object 15,795,483

/j.u/Iterator.hasNext()/j.l/BooleanType 13,691,858

/j.l/Iterable.iterator()/j.u/Iterator 5,243,680

/j.u/Collection.size()/j.l/IntegerType 2,317,670

/j.u/Map.get(/j.l/Object)/j.l/Object 2,274,769

/j.u/Map.put(/j.l/Object,/j.l/Object)/j.l/Object 1,364,892

/j.u/List.get(/j.l/IntegerType)/j.l/Object 1,211,656

/s.a.X11/XWrapperBase.toString()/j.l/String 869,519

/j.u/Collection.contains(/j.l/Object)/j.l/BooleanType 693,782

/j.u/Enumeration.nextElement()/j.l/Object 693,372

a
For brevity, package names are abbreviated with their first

letter.

Methodology To find origin methods in the YCorpus dataset, we first generate static

call graphs using OPAL, which is explained in Section 3.4.1. By iterating through the edges

of the generated static CGs, we follow the origin-finding procedure to find the origin of

target nodes. We aggregate each project’s discovered origin methods to report the Top-10

origin methods in the dataset. In addition, we report the number of unique derivatives for

the Top-10 origin methods.

Results Table 3.1 shows the Top-10most frequent originmethods for YCorpus. Iterator.next()
is the most common origin method with over 15M frequency, which is used to iterate over el-

ements in data structures like Set, List, etc. Considering this, our intuition in Section 3.2
is backed up, providing that methods like toString() or next() are very frequent in

static call graphs. Moreover, it can be observed that XWrapperBase.toString()
is the 8th most common origin method, which is part of Java Runtime Environment (JRE)

and is used for building graphical user interfaces, particularly for X11 windowing systems.

As described in Section 3.4.1, we included JRE libraries when building static call graphs.

Also, Table 3.2 shows the number of unique derivatives for the Top-10 frequent

origin methods. Interestingly, Iterator.next() does not have the most unique

derivates given that it is the most common origin method in the YCorpus dataset. In fact,

PrivilegedAction.run() has the most unique derivatives among other origin

methods. Overriding this method allows developers to encapsulate security-sensitive

operations in a single, reusable component. This can make the code more readable and

maintainable, as the security-related code is localized and not scattered throughout the

application. Overall, considering the most frequent origin methods and their derivatives,

our observation here hints at the fact that these methods can potentially be a candidate for

pruning edges in static call graphs. We should also point out that we only reported the

Top-10 most common origin methods due to the limited space in the paper. Readers can

refer to our replication package for the extensive list.
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Table 3.2: No. of unique derivatives for the most common origin methods

Origin methods #Derivatives

/j.s/PrivilegedAction.run()/j.l/Object 18,465

/j.u/ListResourceBundle.getContents()/j.l/Object[][] 7,576

/j.i/Closeable.close()/j.l/VoidType 5,945

/j.u/Iterator.next()/j.l/Object 5,370

/j.l/Iterable.iterator()/j.u/Iterator 4,842

/j.u/Iterator.hasNext()/j.l/BooleanType 4,692

/j.u/Collection.size()/j.l/IntegerType 4,644

/j.u/Iterator.remove()/j.l/VoidType 4,282

/j.s/PrivilegedExceptionAction.run()/j.l/Object 3,987

/j.u.f/Function.apply(/j.l/Object)/j.l/Object 3,691

3.5.2 RQ2: How local are the derivatives of the most common
origin methods?

We investigate the localness of origin methods as it can provide additional valuable insight

for pruning call graphs to reduce their size and complexity. By categorizing origin methods

and their derivatives based on their scope of interaction, we can pinpoint critical junctures

where vulnerabilities are likely to propagate or unnecessary paths could be eliminated

through a systematic pruning of call graphs.

Methodology Given the generated CGs for YCorpus from RQ1, we iterate over the nodes

to determine how local they are by following the algorithm for the localness analysis,

explained in Section 3.4.3. Next, we label the derivatives of the origin methods, found in

RQ1, from Level 0 to Level 3. We aggregate the number of each level for all the derivatives

of the Top-10 origin methods and report the relative frequency of the four labels for the

Top-10 origin methods.

Results Figure 3.2 shows the relative frequency of localness levels for the derivatives

of the Top-10 origin methods. First, we observe that 72% of derivatives of the most

common origin method Iterator.next() has Level 0 localness. This means that

they do not call any other methods or may call only internal JRE functions. In other

words, the derivatives of the method Iterator.next() are quite "local", in the

sense that they can be removed from call graphs without potentially losing crucial paths

or information. Overall, it can be seen that most of the methods that override one of

the Top-10 origin methods are quite local. They call either no other methods or call

method(s) from their inherited class hierarchy. Of these 10 origin methods, interestingly,

only Collection.contains(Object) has around 63% of derivatives that call

method(s) outside its class hierarchy or program’s dependencies. One more observation

is all the derivatives of the origin method XWrapperBase.toString() have a lo-

calness of Level 0. This is expected as this method is part of the JRE library and does not

use any external functionalities. Given the results of this RQ, we are now more confident
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Figure 3.2: Relative frequency of localness levels for the derivatives of the top 10 origin methods

in using a pruning strategy based on the common origin methods as their derivatives are

mostly Level 0 or 1 in terms of localness.

3.5.3 RQ3: What are the effects of OriginPruner on the size and
usefulness of CGs?

In the previous two RQs, we studied the Top-10 most common origin methods in call graphs

and how local their derivatives are. Using the gained insights and findings, we prune edges

in call graphs to study the effect of pruning on the size and complexity of call graphs. Also,

we use the vulnerability propagation analysis as a case study to investigate the effectiveness

of our proposed pruning technique for security applications where soundness is essential.

In other words, if one vulnerable method is missed in the analysis due to pruning, it can be

costly for developers or users by allowing attackers to exploit the vulnerable method.

Methodology First, we prune edges call graphs by following our filtering strategy, which

is an exclusion list of Top-1000 frequent origin methods. Specifically, we consider a filter of

different sizes from the set {1,2,3,5,10,25,50,100,1000} to prune edges. Basically, for each

program in YCorpus, we end up with nine different pruned call graphs. Given 203 pruned

CGs, we report the average and standard deviation for nodes, edges, and relative size

reduction for every nine different filters, compared to the baseline, which is OPAL’s static

CGs. In addition, we evaluate our proposed approach in combination with an ML-based CG

pruning technique, called OriginPruner with Selective, ML-based Pruning. This approach

gives edges to derivatives of the origin methods to the ML model which makes the final

decision for pruning.

Second, we perform a vulnerability propagation analysis (described in Section 3.4.8)

for OPAL’s static CG and all the pruned CGs from the previous step, given the artificial

CVEs. We report the average number of vulnerable paths, reachable vulnerable nodes,

and analysis time for OPAL’s static cg as a baseline and every nine different filters or an
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exclusion list. We also repeated this experiment for OriginPruner with Selective, ML-based

pruning. To accurately measure analysis, we consider JVM’s Just-in-Time compilation

by warming up the analysis program, running it three times, and reporting the average

analysis time across runs.

Results Table 3.3 shows the effect of pruning call graph size. We compare the baseline

results of an OPAL call graph with different configurations of OriginPruner𝑁 , which prunes

calls to all methods that are related to the Top-N origin methods, either exhaustively or

selectively using an ML-based pruning classifier. OPAL’s static CGs are shown as a baseline

at the top of the table. On average, across all programs in YCorpus, there are around 186K

and 4.9M nodes and edges, respectively. Considering exhaustive pruning, just pruning the

Top-1 origin method Iterator.next() already reduces the size of call graphs from

4.9M to 4.22M on average, a reduction in size by 14%. Notably, pruning the Top-10 origin

methods reduces the CG size by 37% to 3M edges on average. This implies that, on average,

more than one-third of edges are a call to a method that overrides one of those Top-10

most common origin methods reported in Table 3.1. From Top-10 to Top-1000, we still

observe a steady decrease in the size of call graphs to the point where Top-1000 reduces

the number of edges by more than half on average, i.e., 58%.

Compared to exhaustive pruning, selective pruning uses an ML-based classifier to make

individual pruning decisions for each edge. This approach also consistently reduces the

size of call graphs, even though it prunes fewer edges. For instance, selectively pruning the

Top-10 origin methods has almost the same effect on the CG size as exhaustive pruning

of the Top-5 origin methods. It is interesting to see that the ML-based CG pruner seems

to implicitly learn the concept of origin methods from its training data: the underlying

CodeBERT model is usually very conservative in its pruning decisions, yet it learns that a

less aggressive pruning is required for the origin methods.

Table 3.3 shows the effect of call graph pruning on the vulnerability propagation

analysis. Starting with OPAL as a baseline, we observe that, on average, there are around

18K reachable paths and 76% of 100 artificial CVEs are reachable from application nodes.

The artificial CVEs are randomly distributed among CG nodes, which means that they are

also not necessarily reachable in the unpruned static call graphs. When pruning the Top-1

origin methods, OriginPruner improves the analysis time by around 19% while preserving

the same vulnerable node reachability through vulnerable paths as the unpruned CG (i.e.,

76%). This trend continues when more is pruned. By considering the derivatives of Top-10

most common origin methods for pruning, we observe a small 2% decrease in the average

number of reachable vulnerable nodes while the analysis time can be reduced from 72s to

49s (33% faster). Using OriginPruner, it is, therefore, possible to select a trade-off between

CG accuracy and size by selecting the number of origin methods to prune. Accepting a small

decrease in the soundness of the vulnerability analysis can result in a significant lowering

of the computational time. We also see that there is a sweet spot. Pruning Top-100+ origin

methods substantially reduce the CG sizes, but the effects on reachability become larger

with a 10+% decrease in reachable vulnerable nodes. This makes these configurations

impractical for vulnerability analysis as it can cause developers to miss the presence of

vulnerabilities in their application or its dependencies. With the selection, it is possible

to obtain the same number of reachable vulnerable nodes as OPAL while using a Top-3
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Table 3.3: The effect of pruning on the size of call graphs and vulnerability propagation

Reachable ...

Approach #CG Nodes #CG Edges Reduction (%) # Paths Nodes (%) Analysis Time (s)

OPAL 186k ± 27K 4.9M ± 1.5M 0.0 18.8K ± 42.8K 0.76 ± 0.17 72.94 ± 25.47

OriginPruner with Exhaustive Pruning

OriginPruner1 186K ± 27K 4.2M ± 1.3M 0.14 ± 0.01 18.7K ± 42.3K 0.76 ± 0.17 61.22 ± 18.18

OriginPruner2 186K ± 27K 3.6M ± 1.1M 0.26 ± 0.02 18.6K ± 41.8K 0.75 ± 0.17 57.55 ± 15.84

OriginPruner3 186K ± 27K 3.4M ± 1.0M 0.29 ± 0.03 18.5K ± 41.8K 0.75 ± 0.17 55.71 ± 15.83

OriginPruner5 186K ± 27K 3.3M ± 0.9M 0.33 ± 0.04 18.5K ± 41.8K 0.75 ± 0.17 53.49 ± 15.27

OriginPruner10 186K ± 27K 3.0M ± 0.9M 0.37 ± 0.04 18.2K ± 41.6K 0.74 ± 0.17 49.59 ± 12.87

OriginPruner25 186K ± 27K 2.8M ± 0.7M 0.43 ± 0.05 18.1K ± 41.6K 0.73 ± 0.16 47.76 ± 12.23

OriginPruner50 185K ± 27K 2.6M ± 0.7M 0.47 ± 0.05 17.7K ± 40.5K 0.72 ± 0.16 43.83 ± 10.41

OriginPruner100 185K ± 27K 2.4M ± 0.6M 0.50 ± 0.05 15.9K ± 37.2K 0.65 ± 0.15 38.82 ± 9.15

OriginPruner1000 180K ± 27K 2.0M ± 0.5M 0.58 ± 0.05 13.0K ± 30.6K 0.55 ± 0.13 29.76 ± 6.90

OriginPruner with Selective, ML-based Pruning

OriginPruner1 186K ± 27K 4.3M ± 1.4M 0.13 ± 0.01 18.7K ± 42.3K 0.76 ± 0.17 57.12 ± 16.67

OriginPruner2 186K ± 27K 3.7M ± 1.2M 0.25 ± 0.01 18.6K ± 41,8K 0.76 ± 0.17 54.53 ± 16.57

OriginPruner3 186K ± 27K 3.6M ± 1.1M 0.27 ± 0.02 18.6K ± 41.8K 0.76 ± 0.17 54.22 ± 15.11

OriginPruner5 186K ± 27K 3.4M ± 1.1M 0.31 ± 0.02 18.6K ± 41.8K 0.75 ± 0.17 51.23 ± 14.06

OriginPruner10 186K ± 27K 3.2M ± 1.1M 0.34 ± 0.03 18.4K ± 41.7K 0.75 ± 0.17 50.11 ± 14.12

OriginPruner25 186K ± 27K 3.0M ± 1.0M 0.40 ± 0.03 18.3K ± 41.6K 0.74 ± 0.17 48.35 ± 13.84

OriginPruner50 185K ± 27K 2.8M ± 0.9M 0.44 ± 0.03 18.0K ± 40.6K 0.73 ± 0.17 45.21 ± 12.65

OriginPruner100 185K ± 27K 2.6M ± 0.9M 0.47 ± 0.03 16.5K ± 37.7K 0.67 ± 0.16 41.55 ± 15.25

OriginPruner1000 181K ± 27K 2.2M ± 0.8M 0.54 ± 0.03 13.9K ± 32.0K 0.58 ± 0.14 33.16 ± 12.23

filter for pruning. Overall, the results of the selective approach show that the ML-based CG

pruner makes our proposed approach slightly more conservative by pruning fewer edges.

However, the practicality of the selective approach is still a question given its additional

computational overhead.

3.5.4 RQ4: What is the computational overhead of OriginPruner?
The previous RQ has shown that OriginPruner can leverage origin methods to guide the

CG pruning, which can greatly reduce the size of call graphs with minimal loss in the

accuracy of the analysis. While this speeds up the graph search, these benefits must need

to be computed first as call-graph pruning is a post-processing step that adds additional

overhead to the call-graph generation process itself. Therefore, we want to investigate the

additional computational cost of OriginPruner compared to basic CG generation.

Methodology First, we report the average time of call graph generation using the OPAL

framework for all the programs in YCorpus. Then, we report the average pruning time of

OriginPruner for processing the Top1-1000 origin methods. Note that we do not report

the computational cost of the origin finder and localness analysis as they only need to

be executed once for a dataset, similar to training an ML-based CG pruner. Lastly, we

report the average time for OriginPruner with Selective, ML-based pruning which involves

querying a CodeBERT-based model for pruning edges found by our approach.
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Table 3.4: Run-time of CG generation and pruning

Pruning Time [s]

Approach Exhaustive Selective

Top-1 10.6 ± 3.1 726.9 ± 935.5

Top-2 10.1 ± 3.0 705.1 ± 897.3

Top-3 9.8 ± 2.9 694.4 ± 844.9

Top-5 9.5 ± 2.8 611.4 ± 766.6

Top-10 9.3 ± 2.7 545.7 ± 711.5

Top-25 9.1 ± 2.6 521.8 ± 716.5

Top-50 8.9 ± 2.6 481.8 ± 687.6

Top-100 8.8 ± 2.5 439.2 ± 655.8

Top-1000 8.8 ± 2.6 436.4 ± 639.0

Note: All approaches require the same

CG generation (30.58s ± 5.06s) and

Origin and localness analysis (99.96s

± 26.36s).

Results Table 3.4 shows the computational time of call graph generation and the com-

putation time of OriginPruner, both in the mutually exclusive, our proposed CG pruning

approach, and the selective approach. The average time for CG generation using OPAL is

around 30.5s for all programs in the dataset. Also, the average time of the origin finder

and localness analysis is about 100s. This is a one-time cost, meaning that it is similar

to training an ML model, which needs to be done once for a dataset. We observe that

exhaustive pruning only adds ∼9-10s (∼33%) overhead to the CG generation. For instance,

to prune the Top-10 origin methods, the CPU time is around 9.2 seconds on average. Such

a small overhead can usually be justified by further time savings that a reduced CG size

will introduce in other downstream analyses and a smaller memory footprint.

We also see that selective pruning is much more computationally expensive. This is

expected as the CodeBERT-based CG pruner model is queried for all the edges identified

by OriginPruner. Even though we have provided caching mechanisms to speed up the

model predictions, it becomes clear that the ML model does not scale well with relatively

large CGs.

3.6 Discussion
In this section, we discuss the implications of the obtained results and directions for future

research.

Promising Results Overall, our empirical results have shown that using an origin

analysis to identify the locations in the call graph that are the main culprits for large

CG sizes allows to better guide the pruning, so it only has marginal effects on analysis

results. It also seems feasible to make CG pruning part of the CG generation process. As

shown in RQ4, CG pruning can be considered as a post-processing step, which adds a small
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overhead to CG generation, and it can even be configured to prune more or fewer origin

methods, or disable the pruning altogether. It also becomes clear that CG pruning can

benefit from using truly semantic features over purely structural features even though it

requires domain knowledge to tap this potential. Future work should investigate whether

other statically available facts, e.g., the distance of packages, or the existence of specific

types in a class context, could be use to improve the exhaustive pruning heuristic.

Localness Levels In the RQ2, we have validated our intuition that most of the common

origin methods are indeed very local to justify the exhaustive pruning. However, the

extracted localness level could also be used as a feature that can inform the pruning decision.

Maybe instead of just pruning all the Top-N origin methods, also the typical localness

of subtypes for each of the Top-N origin methods should be taken into consideration

and OriginPruner should only prune such methods from the Top-N that have a very big

fraction of level 0 methods. Future work could further differentiate our localness levels in

the pruning or could devise new levels or an alternate definition of localness that might be

better suited for the task.

Limited ML Performance CLMs have achieved a big success in software engineering

tasks like code generation, thanks to their billion-parameter-scale size [104]. For the

CG pruning task, however, it looks like are currently not yet able to outperform simple

heuristics. It is interesting to see that an ML approach would pick up a strategy for pruning

origin methods that is similar to our heuristic solution and, therefore, results in a similar

performance. It does so at a massive computational cost though, which is a strong limitation.

We think that future work is necessary in two dimensions to make ML-based pruning

relevant. First, it does not seem to be sufficient to train models with basic structural features

or plain source code, as the semantic features are hard to pick up during model training.

Future work needs to investigate better feature engineering or code representation to

make it possible to leverage semantic features that usually require a static analysis for

extraction. Second, it is necessary to improve the scalability of ML-based pruners to make

them feasible in practice. The most promising direction is to avoid treating the pruning as

a post-processing step and instead make it an integral part of a hybrid CG generator. Note

though that this optimization is also available for heuristic approaches, which makes it a

particularly interesting direction to explore.

3.7 Threats to Validity
The empirical results of our work are subject to several potential threats to validity. We

will introduce these threats and our mitigation strategies.

Correctness Our codebase is small and only has around 4K LoC (Java/Python). The

authors have reviewed the algorithms multiple times to prevent bugs. Also, the CG

generation and pruning have been integrated into the FASTEN project and have been used

and tested by other users.
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Representativeness Our choice of ML model could negatively affect selective pruning.

To mitigate this problem, we have re-used a fine-tuned CodeBERT model that has been

shown to be effective for CG pruning before [91].

For vulnerability propagation analysis, we followed the methodology of the previous

work and randomly injected artificial CVEs to call graph nodes to assess the effectiveness

of OriginPruner [36]. While we have not tested the evaluation with actual CVEs, we do

not see any reason to doubt the representative of the artificial CVEs. However, future work

should investigate this assumption.

Dataset We used an existing dataset of 23 Maven libraries, YCorpus. We believe that

our findings also hold in larger datasets. Furthermore, the reported numbers for origin

methods will only increase in our favor for larger projects, as more subtypes exist, which

emphasizes the problem even more.

3.8 Summary
In this chapter, we presented OriginPruner, a novel approach to call graph pruning, based

on the origin methods and their locality to address the limitations in ML-based call graph

pruning techniques, which are lack of generalization beyond training set and high inference

cost. Our proposed approach leverages the insights from the origin methods, specifically,

methods that introduce a signature in a class hierarchy and are frequently overridden,

and their locality to prune unnecessary edges in call graphs efficiently. This approach

significantly reduces the call graph size and complexity, making downstream analyses more

practical for large-scale software projects. Based on the YCorpus dataset, our empirical

findings reveal that specific origin methods, such as Iterator.next(), play a pivotal

role in call graph complexity by being frequently overridden across different classes. We

found that these methods and their derivatives have predominantly localness of Level 0 or

1, providing a solid basis for pruning without sacrificing the soundness required for tasks

like vulnerability analysis. Moreover, the obtained results show that our proposed call

graph pruning approach could reduce call graph size by up to 58%, significantly improving

analysis speed (up to 2.4x times) with no or minimal impact on the accuracy of downstream

applications like vulnerability propagation analysis. Additionally, our approach was shown

to be computationally more efficient than existing ML-based approaches, highlighting its

practicality for real-world applications.
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4
On the Effect of
Transitivity and
Granularity on

Vulnerability Propagation
in the Maven Ecosystem

Reusing software libraries is a pillar of modern software engineering. In 2022, the average Java

application depends on 40 third-party libraries. Relying on such libraries exposes a project

to potential vulnerabilities and may put an application and its users at risk. Unfortunately,

research on software ecosystems has shown that the number of projects that are affected by

such vulnerabilities is rising. Previous investigations usually reason about dependencies on the

dependency level, but we believe that this highly inflates the actual number of affected projects.

In this work, we study the effect of transitivity and granularity on vulnerability propagation

in the Maven ecosystem. In our research methodology, we gather a large dataset of 3M recent

Maven packages. We obtain the full transitive set of dependencies for this dataset, construct

whole-program call graphs, and perform reachability analysis. This approach allows us to

identify Maven packages that are actually affected by using vulnerable dependencies. Our

empirical results show that: (1) about 1/3 of packages in our dataset are identified as vulnerable

if and only if all the transitive dependencies are considered. (2) less than 1% of packages have

a reachable call path to vulnerable code in their dependencies, which is far lower than that of a

naive dependency-based analysis. (3) limiting the depth of the resolved dependency tree might

be a useful technique to reduce computation time for expensive fine-grained (vulnerability)

analysis. We discuss the implications of our work and provide actionable insights for researchers

and practitioners.

This chapter is based on the paper, Mir, A. M., Keshani, M., & Proksch, S. (2023, March). On the Effect of

Transitivity and Granularity on Vulnerability Propagation in the Maven Ecosystem. In 2023 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER’23) (pp. 201-211). [91].
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4 On the Effect of Transitivity and Granularity on Vulnerability Propagation in the Maven

Ecosystem

4.1 Introduction
Software reuse is one of the best practices of modern software development [105]. De-

velopers can easily access reusable libraries through the online open-source repositories

of popular package management systems such as Maven, NPM, or PyPi. Snyk reports that

a prolific number of libraries is used in projects (40 for the average Java project) and

that security vulnerabilities have steadily increased over the past few years in software

ecosystems such as Maven and NPM [106]. While reusing libraries can substantially reduce

development efforts, research has shown that it may pose a security threat [107] and that

many applications rely on libraries that may contain known security vulnerabilities [108].

Lauinger et al. [109] found that 37% of websites in top Alexa domains have at least one

vulnerable JavaScript library. Once fixed, developers need to update their dependencies to

use the new version, however, researchers have found that developers often keep outdated

dependencies, making their applications vulnerable to attacks and exploits [110]. A lack of

awareness regarding available updates, added integration efforts, and possible compatibility

issues might represent factors that lead to this phenomenon.

Timing is crucial. The Heartbleed vulnerability, a security bug in the OpenSSL library

that was introduced in 2012, remained unnoticed until April 2014 [111]. An Apache Log4j

vulnerability was discovered end of 2021 that affected around 35K Java projects, which

propagated to around 8% of the complete Maven ecosystem [112]. These examples show

that it is crucial to release fixes timely to not give attackers a chance to develop exploits.

We also need to gain a better understanding of how fast vulnerabilities are discovered, how

they affect an ecosystem, and how long it takes until a fix is available.

In recent years, a number of studies have investigated the impact of security vulner-

abilities and their propagation in the software ecosystems [113–116]. The reasoning of

these studies is limited to package-level analysis: they consider a project vulnerable if

any (transitive) dependency contains a known vulnerability. However, a package-level

analysis cannot detect whether a client application actually uses the vulnerable piece of

code, which can cause false results. Recent works [117, 118] have overcome this limitation

by performing fine-grained analysis of dependency relations in call graphs, which, as a

result, increases the precision of vulnerability detection. However, due to the computational

cost of such analysis, these papers have only considered a limited number of projects.

In this chapter, we want to investigate both dimensions at once to understand how

vulnerabilities propagate to projects in theMaven ecosystem. There is a trade-off to bemade

between the extent of the ecosystem coverage and the precision of the analysis, so we will

investigate the effect of two opposing forces: transitivity (direct vs. transitive dependencies)

will substantially increase the search space, while a lower granularity (package-level vs.

method-level) has the chance to improve precision. We will answer the following research

questions for the Maven ecosystem:

RQ1 How are security vulnerabilities distributed in Maven?

RQ2 How does vulnerability propagation differ for package-level and method-level analy-

ses?

RQ3 How do vulnerabilities propagate to root packages?

RQ4 Is it necessary to consider all transitive dependencies?
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By answering the formulated research questions, we aim to provide new insights on the

potential impact of software vulnerabilities in the Maven ecosystem. Different from similar

studies on the NPM and PyPi ecosystems [113, 114, 116], our research methodology for

RQ2-4 is based on both coarse and fine-grained analysis. Specifically, from the transitivity

perspective, we will investigate how vulnerabilities propagate to Maven projects by going

from direct dependencies to transitive ones. Additionally, we will investigate the difference

between coarse-grained analysis (i.e., package-level) and find-grained analysis (i.e., method

level) in vulnerability propagation. To answer the above RQs, we have gathered a large

dataset of 3M Maven projects and 1.3K security reports.

Our main empirical findings shows that, (1) transitivity has a substantial impact on the

vulnerabilities propagation in Maven. Of 1.1M vulnerable projects, only 31% have known

vulnerabilities in their direct dependencies. (2) The level of granularity is prominent when

studying vulnerability propagation in the ecosystem. Only 1.2% of 1.1M transitively affected

projects are actually using vulnerable code in their dependencies. (3) Among popularMaven

projects, a vulnerability may impose higher security risk to other dependent projects if

call-graph based analysis is considered. (4) Limiting the maximum considered depth of

transitive dependencies can be useful to reduce the cost of computationally-expensive,

fine-grained analyses. A slight decrease in the recall of an analysis can be traded off for a

reduced computation time.

Overall, this paper presents the following main contributions:

• We compile a public dataset for Maven that allows to study vulnerability propagation

in Maven.
1

• We combine insights from previous works and closely investigate 1) a substantial

part of the Maven ecosystem 2) using method-level analysis.

• We propose a differentiated view on transitivity that considers the distance of de-

pendencies to an application.

The rest of the chapter is organized as follows. Section 4.2 presents related work.

Section 4.3 defines the terminologies used across the paper. We present our approach to

answer the formulated research questions in Section 4.4. Section 4.5 presents obtained

empirical results. We discuss the implications of the obtained results in Section 4.6. Possible

threats to the validity of our results are explained in Section 4.7. Finally, we conclude our

work in Section4.8.

1
https://doi.org/10.5281/zenodo.7540492
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4.2 Related Work
Software Ecosystem Analysis Different characteristics of software ecosystems have

been studied over the past decade. In 2016, Wittern et al. [119] studied the evolution of

the NPM ecosystem from two perspectives: (1) the growth and development activities

(2) the popularity of packages. They found that package dependencies have increased

by 57.9% from 2011 to 2015. Kikas et al. [120] proposed a network-based approach for

studying the ecosystems of JavaScript, Ruby, and Rust. Their study shows that the growth

of dependency networks for JavaScript and Ruby. Also, the removal of a single package can

affect more than 30% of projects in the ecosystem. Decan et al. [121] conducted an empirical

analysis of the similarities and differences between the evolution of seven different software

ecosystems. Their finding shows that the package dependency network grows over time,

both in size and number of updates. Also, a small number of packages account for most

of the package updates. Wang et al. [122] conducted an empirical study on the usages,

updates, and risks of third-party libraries in the Java ecosystem. The study found that

60.0% libraries have at most 2% of their APIs called across projects. Chowdhury et al. [123]

conducted an empirical study to understand the triviality of trivial JavaScript packages. By

considering the project and ecosystem usage, they found that removing one trivial package

can affect up to 29% of the entire NPM ecosystem.

Different from the aforementioned work, our work provides a new perspective on

vulnerability propagation in Maven by considering the effect of both transitivity and

granularity.

Impact of vulnerabilities on software ecosystems In recent years, researchers have

been studied the potential impact of security vulnerabilities in evolving software ecosystems.

One of the earliest works is the master thesis of Hejderup [124]. By considering 19 NPM

packages, he studied how many dependent packages are infected by a vulnerability and

how long it takes to release a fix after the publication of a security bug. Decan et al. [113]

studied the impact of security vulnerabilities on the NPM dependency network. Their

study shows that approximately 15% of vulnerabilities are considered high risk as they

are fixed after their publication date. Zimmermann et al. [115] studied security threats

in the NPM ecosystem. They found that a small number of JavaScript packages could

impact a large portion of the NPM ecosystem. This implies that compromised maintainer

Project A v0.1 (root) Project B v1.2

Direct Dependency

Main() Foo() Bar() Fun()

Project C v0.5
(vulnerable)

Zeta()

Transitive dependency

Figure 4.1: A toy example that shows a root project is transitively affected by a vulnerable dependency
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Figure 4.2: Overview of our data processing pipeline

accounts could be used to inject malicious code into the majority of the NPM packages.

Pashchenko et al. [125] performed a qualitative study to understand the role of security

concerns on developers’ decision-making for updating dependencies. The study found

that developers update vulnerable dependencies if they are severe and the adoption of

their fix does not require substantial efforts. Inspired by the work of Decan et al. [113],

Alfadel et al. [114] conducted an empirical analysis of security vulnerabilities in the PyPi

ecosystem. Their findings show that PyPi vulnerabilities are discovered after 3 years and

50% of vulnerabilities are patched after their public announcement. Recently, Liu et al. [116]

studied vulnerability propagation and its evolution in the NPM ecosystem by building a

complete dependency knowledge graph. Among their findings, they found that 30% of

package versions are affected by neglecting vulnerabilities in direct dependencies.

Considering the mentioned empirical studies on the impact of security vulnerabilities,

their research methodology is based on dependency/package-level analysis, which highly

over-estimates the number of packages using vulnerable dependencies. In contrast, we

analyze projects in a lower granularity, i.e., call graph level in addition to the package level.

4.3 Terminology
In this section, using Figure 4.1, we define the terminologies that we use throughout the

paper.

1. A project is a reusable software component, e.g., junit. We use Maven projects/-

packages interchangeably in the text.

2. A (versioned) package is a unique release of a project, for example, junit-4.12.
3. A dependency is a relation to a package whose functionalities are re-used to develop

new software. Dependencies can be direct or transitive, e.g., the relation A→ B is

direct, while the relation A→ C is transitive (through B).
4. A root package is the root of the dependency tree (e.g., an application) and (transi-

tively) depends on other packages.

5. A vulnerability is a defect of software that can be exploited by attackers, e.g., to gain

unauthorized system access [126].

6. A call graph is a directed control-flow graph that represents the calling relationship

between methods/callables in a package. For instance, in Figure 4.1, Bar(), defined
in Package B, is a callable.
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7. A vulnerable call chain is a sequence of function calls that ends in a vulnerable

callable. In Figure 4.1, the call chain A.Main()→ A.Foo() ⋯→ C.Zeta()
is one such example. Also, in this example, A.Main()→ A.Foo() is an internal

call as both callables are defined in Package A, whereas A.Foo()→ B.Bar() is

an external call as B is a dependency of A.

8. A patch is a set of code changes that fixes a vulnerability or bug in software.

9. A patch link is a URL or reference that points to the location where a patch can be

found, typically in a version control system.

10. A patch commit is a specific version control commit that contains the implementation

of a patch.

4.4 Approach
This section introduces our approach and the experimental methodology. The overview of

our data processing pipeline is shown in Figure 4.2.

4.4.1 Vulnerability pipeline
Vulnerability parser In order to create a knowledge base of vulnerability data, we

gather information from various public sources (see Table 4.1 for details). Each data source

represents vulnerabilities in its own format and may not have complete information about

a vulnerability. Therefore, we have created a single vulnerability format that aggregates

common metadata for further analysis. The various fields of our vulnerability format are

described in Table 4.2. Our vulnerability knowledge base contains 1,306 security reports.

Patch finder Patch information is not always available in the references of vulnerabilities

by security advisories. Therefore, it requires manual effort to tag a reference as a patch link.

Also, to find vulnerable callables/methods, we do need patch commits that show modified

methods after fixing a vulnerability.

We have devised a patch-finding procedure to automate the gathering of patch commits

by analyzing vulnerability references. We perform the following steps to find patch commits

from references.

• For GitHub, GitLab or BitBucket references, if a reference points to a commit, we

directly parse the commit. In the case of pull requests, we look for the merging

commit and parse it. For issues, we look for linked pull requests or commits that

mention them.

Table 4.1: List of sources for gathering vulnerability data

Source License Updates

National Vuln. Database (NVD) Public Domain 2 hours

GitHub Advisories Public Domain Daily

project-kb (by SAP) Apache License 2.0 n/a

oss-fuzz-vulns (by Google) CC-BY-4.0 Daily
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Table 4.2: Description of our common vulnerability format

JSON Field Description

ID A unique id (E.g. CVE-2018-9159)

Purls Universal URLs that represent vulnerable packages [127]

CPE A structured naming scheme that represents information technology

systems, software, and packages [128]

CVSS score A numeric value for showing the severity of software vulnerabilities

from 0.0 to 10.0 [129]

CWE A list of software weakness types [130]

Severity level Qualitative severity rating scale based on CVSS scores [129]

Published date The date that a vulnerability is publicly announced

Last modified date The date that a vulnerability’s metadata is updated

Description An English description of what software systems are affected by a

vulnerability

References Extra web links that provide more information about a vulnerability

Patch Links to patch information and commits

Exploits Links to how to exploit a vulnerability

• In references to issue trackers (Bugzilla and Jira), we look for attachments or refer-

ences in the comments of an issue.

• If a reference points directly to a Git commit, SVN or Mercurial revisions, we parse

the linked code.

After parsing a patch commit, we compute the diff of modified files in the commit.

Then we create pairs of filenames and their modified line numbers. This enables us to

locate modified callables in the patch commit.

4.4.2 Package/callable mapper
Determine vulnerable package versions Considering the package-level analysis of

vulnerabilities, we first identify the releases of a project that is affected by a vulnerability.

To do so, we extract and analyze vulnerability constraints in security reports. Of all the

considered vulnerability sources in Table 4.1, we only use the GitHub Advisory database
2

to extract vulnerability constraints as these get reviewed by an internal security team

before publication.

To explain the analysis of vulnerability constraints, consider the vulnerability constraint

>1.0,<2.0 which shows that every version between 1.0 and 2.0 is vulnerable. To

compute affected releases of a project, we perform a similar approach to the previous

studies [113], which is described as follows. Let us denote a project and its versions/releases

by 𝑃 and the set 𝑉 , respectively. To find the vulnerable versions of 𝑃 , denoted by 𝑉𝑛, affected

by the vulnerability 𝑉 , The package mapper (See Figure 4.2) automatically performs the

following steps:

2
https://github.com/github/advisory-database
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1. Compute the set 𝑉 by scraping available releases on Maven Central at the time of

the request.

2. To obtain the set 𝑉𝑛:

(a) Analyze every vulnerability constraint defined in 𝑉 and find affected versions

if they exist in 𝑉 ,

(b) Add all affected versions to 𝑉𝑛, i.e., 𝑉𝑛 ⊂ 𝑉 .

To obtain dependents that are affected by the vulnerable project 𝑃 , we simply check if

dependents rely on one of the affected versions in 𝑉𝑛.

Determine vulnerable callables Given a vulnerability with patch information and an

affected versioned packages, to identify vulnerable callables, the callable mapper automati-

cally annotates the nodes of its call graphs with vulnerability data as follows:

1. Identify the last vulnerable version 𝑃𝑙𝑣 and the first patched version 𝑃𝑓 𝑝 .

2. For both 𝑃𝑙𝑣 and 𝑃𝑓 𝑝 , find files that are modified in the patch commit.

3. Locate callables whose start and end lines include the modified lines in the patched

file(s) in 𝑃𝑓 𝑝 .

4. For located callables, propagate the vulnerability to all the affected versions for which

we can find the same callables.

4.4.3 Metadata pipeline
Maven index crawler For our study, we gather versioned packages from Maven Central,

which is one of the most popular and widely used repositories of Java artifacts. We

consider packages that were released between Sep. 2021 and Sep. 2022. The resulting

dataset consists of about 3M unique versioned packages of about 200K projects. In Maven,

versioned packages are differentiated by a unique Maven coordinate that consists of ids for

group, artifact, and version (i.e., g:a:1.2.3).

POMAnalyzer Maven projects are described in a central configuration file, thepom.xml [131].

We parse these files using the same utils that are built into Maven and extract metadata

information such as release date, Maven coordinate, repository/sources URL, and the list

of dependencies defined in the POM file.

4.4.4 Storage
The results of both vulnerability and metadata pipelines are stored in a relational SQL

database. The database schema has two SQL tables for storingmetadata and dependencies of

versioned packages. For storing vulnerability data, there is a SQL table to store vulnerability

IDs and their corresponding statement in a JSON field. Due to the space constraint, readers

can refer to our replication package for more information on the database schema.
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4.4.5 Analyzer pipeline
Dependency resolution To assess how a vulnerability in a Maven package affects

other projects, it is necessary to reconstruct the dependency set of a versioned package.

We resolve all versioned packages that are included in our dataset using Shrinkwrap,
3

a Java library for Maven operations. This downloads both the pom.xml files and the

.jar files of all relevant packages into the local .m2 folder. Shrinkwrap can resolve a

complete dependency set for a given coordinate. By statically analyzing the pom files, we

can reconstruct dependency trees from this dependency set, which allows us to limit the

resolution and, for example, to only include dependencies up to a certain depth.

Call-graph construction To study the effect of granularity on vulnerability propagation

we perform callable-level analysis on call graphs. We generate whole-program static call

graphs for a given Maven package using OPAL [101, 132, 133], a state-of-the-art static

analysis framework for Java programs. We configure OPAL to use a Class Hierarchy Anal-

ysis (CHA) for the call graph construction [16, 132], which scales well for performing a

large-scale study. We also configured OPAL to run with an open-package assumption (OPA),

which will treat all non-private methods as entrypoints for the analysis. This makes con-

servative worst-case assumptions and produces sound call graphs [132], which is useful

for security analysis such as our vulnerable call chain analysis.

Identification of vulnerable call chains To determine whether any method of a

versioned package calls vulnerable code from one of its transitive dependencies, we need to

find at least one reachable path from the method to another vulnerable method. To achieve

this, we perform a Breadth-First Search (BFS) on the whole-program call graph of the

versioned package plus its transitive dependencies. While traversing the graph, we compute

the shortest path from the versioned package’s nodes to the vulnerable node(s). Finally, we

end up with a list of vulnerable call chains and their corresponding vulnerabilities.

4.4.6 Implementation details & experimental setup
Our whole data processing pipeline (Figure 4.2) is written in Java. The pipeline has

extensible components that communicate with each other either via Apache Kafkamessages

or through a Postgres database. We used JGraphT for graph traversal and operations, which

provides fast and memory-efficient data structures. We ran our experiments on a Linux

server (Ubuntu 18.04) with two AMD EPYC 64-Core CPUs and 512 GB of RAM. We used

Docker and Kubernetes to have multiple instances of our vulnerability analyzer application

to perform fine-grained analysis at a large scale. Using the above Linux machine, it took

about 2 months to analyze the whole dataset with 3M versioned Maven packages.

3
https://github.com/shrinkwrap/resolver
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4.5 Empirical Results
In this section, we present the results of our empirical study. For each RQ, we describe

a motivation, the methodology used to answer the research question, and discuss the

obtained results of our analysis.

4.5.1 RQ1: How are security vulnerabilities distributed in
the Maven ecosystem?

Previous work has shown a steady increase of projects/packages in the NPM and PyPi

ecosystems [113, 114]. At the same time, security vulnerabilities have become more

prevalent over the past decade. As expected, an increase in the infection of projects by

vulnerabilities was observed [114]. This also creates an opportunity for attackers to craft

exploits. Hence, in this RQ, we are motivated to study the distribution of security vulnera-

bilities in our dataset from three angles: (1) the evolution of discovered vulnerabilities over

time (2) how many versioned packages are affected by vulnerabilities; and (3) what are the

most commonly identified types of vulnerabilities in Maven.

The results of RQ1 do not present an extensive analysis of Maven vulnerabilities.

Instead, we follow the example of previous empirical studies [113, 114] and present useful

statistics from our vulnerability dataset that can inform future research.

Methodology To answer the RQ1, we follow the methodology of Alfadel et al. [114]

by performing three analyses as follows. In the first analysis, we group the discovered

security vulnerabilities for the Maven projects by the time they were reported. Then, we

show how vulnerabilities and affected Maven projects evolve per year. Additionally, we

group newly discovered vulnerabilities per severity level. This helps to quantify the threat

levels in the ecosystem.

In the second analysis, given that a vulnerability can potentially affect many versioned

packages, we show how vulnerable Maven versioned packages are distributed. To do so,

we consider the version constraint in our dataset to identify the list of affected versions by

a vulnerability.

In the third analysis, we group the most commonly identified vulnerability types in

the Maven ecosystem. In our dataset, each vulnerability is associated with a Common

Weakness Enumeration (CWE), a category of software weaknesses. Finally, we count the

frequency of vulnerability types to show the most common vulnerabilities in the Maven

ecosystem. Similar to the first analysis, we break the analysis by severity levels to show

the distribution of threat levels for each vulnerability type.

Findings From Figure 4.3, it can be seen that both vulnerabilities and affected projects

have steadily increased in the Maven ecosystem. For instance, in 2014, 15 Maven projects

were affected by vulnerabilities. In 2018, 223 Maven projects were affected, an increase of

almost 15 times.

Figure 4.4 shows the vulnerability introduction by severity level. Overall, we observe

that vulnerabilities with critical and high severity levels have increased significantly over

the past couple of years. Considering vulnerabilities with high severity, in 2017, 64 vul-

nerabilities were discovered, this number doubled in 2021, i.e., 128 vulnerabilities. This
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Table 4.3: Top 5 most commonly found vulnerability types in Maven

Frequency by Severity

Vulnerability type (CWE) Freq. Critical High Moderate Medium Low

Deserialization of Untrusted Data (CWE-502) 166 52 85 17 12 0

Cross-site Scripting (CWE-79) 108 0 2 72 27 7

Improper Input Validation (CWE-20) 88 6 47 15 20 0

Improper Restriction of XML External Entity Reference (CWE-611) 78 21 32 10 11 4

Path Traversal (CWE-22) 65 4 24 18 19 0

Total 505 83 190 132 89 11

suggests that attackers may have a higher chance to craft an exploit and damage the

affected software systems.

From Figure 4.5a, it can be observed that Maven projects release often with a median

of 81 unique versions. The median Maven project also has 26 vulnerable versions, which

shows that 32% of all projects are affected considering available versions at the time of

vulnerability discovery.

Our dataset contains 114 distinct software weaknesses (CWEs). Table 4.3 shows the top 5

common software weaknesses in the Maven projects. Overall, these 5 software weaknesses

account for 37% of all the discovered vulnerabilities. The most common vulnerability type

is the deserialization of untrusted data (CWE-502), most of which are of critical or high

severity levels. This indicates a major threat to the affected Maven projects by CWE-502.

Comparison to the NPM and PyPi ecosystems Similar to the existing studies on these

two ecosystems [113, 114], we also observe that security vulnerabilities have increased

over time. However, Maven packages have substantially more releases, on median, 81

releases whereas PyPi, on the median, has 29 releases. Also, as expected, Maven packages

have more vulnerable versions, i.e., 26, on the median, compared to 18, on the median, in

PyPi.

4.5.2 RQ2: Howdovulnerabilities propagatetoMavenprojects
considering dependency- and callable-level analyses?

In the RQ2, we are interested in studying the effect of transitivity and granularity on

the propagation of security vulnerabilities to Maven projects. This is different from prior

similar studies [115, 116], which considered a project as vulnerable if one of its dependencies

contain a vulnerability. This overestimates the number of affected projects and hence it

may introduce false positives. Moreover, as shown in a recent study [134], a project is

not affected if it does not call vulnerable code in its dependencies. Specifically, from the

transitivity perspective, we want to find out how many versioned packages are potentially

affected by a known vulnerability in their direct or transitive dependencies. From the

granularity perspective, we want to know how many versioned packages are actually

affected by calling vulnerable code.

Methodology To answer RQ2, we perform our experiment on our Maven dataset using

four distinct analysis settings:
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Figure 4.5: Vulnerability distribution among projects in the dataset

𝐷𝑝(𝑚𝑎𝑥): A package-level analysis that includes all transitive dependencies.

𝐷𝑝(1): A package-level analysis on only direct dependencies.

𝐷𝑚(𝑚𝑎𝑥): A callable-level analysis that includes all transitive dependencies. It computes

how many versioned packages are actually affected by calling vulnerable code from

their transitive dependencies. In the whole-program call graph that we create using

the OPAL framework, we mark nodes as vulnerable if modified functions in the patch

commit match the signature of the node. If there is at least a path from a node of

the root project to a vulnerable node in its transitive dependencies, we consider the

versioned project affected by a vulnerability.

𝐷𝑚(1): A callable-level analysis that is similar to 𝐷𝑚(𝑚𝑎𝑥), but which only considers direct

dependencies.

The subsequent sections will refer to these four defined settings.

Findings Figure 4.3 shows the number of affected versioned packages considering the

four described analyses in the methodology of the RQ2. Notice that the x-axis is scaled using

𝑙𝑜𝑔10. Considering the 𝐷𝑝(𝑚𝑎𝑥) analysis, we observe that about 10
6
versioned packages are

affected by a known vulnerability in their transitive dependency set. This amounts to 40%

of versioned packages in our dataset, affected by 517 CVEs. Considering the 𝐷𝑝(1) analysis,

however, only 369K package versions are affected by using vulnerable direct dependencies,

which is significantly lower than that of the 𝐷𝑝(𝑚𝑎𝑥) setting. This is expected as the full

transitive dependency set is larger than a direct dependency set.

From Figure 4.6, we also observe that the callable level analysis, 𝐷𝑚, detects much

lower vulnerable versioned packages compared to the package level analysis, 𝐷𝑝 , i.e.,

10
4.15

≪ 10
6
. This is because, for the 𝐷𝑚 setting, we perform reachability analysis to

determine whether the vulnerable method in (transitive) dependencies is used whereas



4

72

4 On the Effect of Transitivity and Granularity on Vulnerability Propagation in the Maven

Ecosystem

0 1 2 3 4 5 6
# vulnerable versioned projects (log10 scale)

Dp(max)

Dp(1)

Dm(max)

Dm(1)

se
tti

ng
s
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the 𝐷𝑝 setting is naive as it only checks the presence of a known vulnerability in the

(transitive) dependency set. Another intriguing observation is that the set |𝐷𝑚(1)| = 10
3.88

contains more than half of the vulnerable versioned packages in the set |𝐷𝑚(𝑚𝑎𝑥)| = 10
4.15

,

i.e., |𝐷𝑚(1)∩𝐷𝑚(𝑚)|/|𝐷𝑚(𝑚)| = 0.53.

4.5.3 RQ3: How does the propagation of security vulnerabili-
ties affect root packages?

A security vulnerability in a popular package can propagate to affect many other packages

in the package dependency network. This is also confirmed by a recent study [115], showing

that a small number of JavaScript packages can affect a large portion of the NPM ecosystem.

Therefore, we want to study how the propagation of security vulnerabilities can affect a

large portion of packages and versioned packages in the Maven ecosystem. We analyze

this research question from two perspectives: (1) how vulnerabilities propagate to root

packages by considering transitive dependencies and (2) how vulnerabilities propagate to

root packages by considering the usage of vulnerable code in dependencies.

Methodology We combine two different strategies to investigate how vulnerabilities

propagate to root packages. First, at the package level, we iterate through the full transitive

dependency set of versioned packages, which is already obtained from the RQ2, i.e., the

𝐷𝑝(𝑚𝑎𝑥) setting. We check if at least one element in the dependency set has a known

vulnerability, if yes, we consider the root versioned package as vulnerable. We list the top

10 frequent vulnerabilities that exist in the dependency trees of all the versioned projects

in our dataset. This approach overestimates the number of affected root packages, but it

follows previous work [116].

Second, to analyze vulnerability propagation through vulnerable callables, we use

the whole-program call graphs of versioned packages and their transitive dependencies

from RQ2, i.e., 𝐷𝑚(𝑚𝑎𝑥), and then we extract known vulnerabilities, CVEs, and their

corresponding vulnerable call chains. Given these, we obtain the number of versioned

packages that are actually affected by the top 10 frequent CVEs.
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Table 4.4: Top-10 CVEs that potentially/actually affect most package versions

Number of Packages %Proportion1

CVE ID Project Potentially Affected Actually affected 𝐷_𝑝(𝑚𝑎𝑥) 𝐷_𝑚(𝑚𝑎𝑥)

CVE-2020-36518 com.fasterxml.jackson.core:jackson-databind 233,430 1,153 19.6 8.1

CVE-2022-24823 io.netty:netty-codec-http 142,177 90 11.9 0.6

CVE-2022-24329 org.jetbrains.kotlin:kotlin-stdlib 82,060 32 6.9 0.2

CVE-2021-37137 io.netty:netty-codec 57,535 525 4.8 3.7

CVE-2021-22569 com.google.protobuf:protobuf-kotlin 57,095 390 4.8 2.7

CVE-2018-1000632 dom4j:dom4j 47,820 1,438 4.0 10.1

CVE-2022-25647 com.google.code.gson:gson 47,372 171 4.0 1.2

CVE-2020-8908 com.google.guava:guava 42,084 84 3.5 0.6

CVE-2022-22965 org.springframework:spring-webflux 38,882 572 3.3 4.0

CVE-2018-20200 com.squareup.okhttp:okhttp 38,466 30 3.2 0.2

1
The percentage of affected packages in the set 𝐷

𝑝/𝑚
(𝑚𝑎𝑥).

See the methodology of the RQ2 for the definition of 𝐷
𝑝/𝑚

(𝑚𝑎𝑥).

Findings Table 4.4 shows the top-10 CVEs that affect most versioned packages in the

Maven dataset considering both dependency- and callable-level analysis. It can be observed

that the two Maven projects jackson-databind and netty-codec-http po-

tentially affect 375,607 versioned packages in the Maven ecosystem, which is substantially

higher than any other CVEs reported in Table 4.4. Also, even considering just the top-10

CVEs, together they already affect 786,921 versioned Maven projects, which accounts for

66.1% of all the identified vulnerable versioned packages in the whole dataset (see 𝐷𝑝(𝑚𝑎𝑥)

in Figure 4.6).

The results of the callable-level analysis paint a different picture. Only 4,485 ver-

sioned Maven packages are actually affected by the top-10 CVEs. This clearly illustrates

that vulnerability analyses that only consider the package level result in a significant

overestimation of vulnerable packages in the Maven ecosystem. A second important ob-

servation is that any threat estimation will come to different conclusions, depending on

whether a package-level or a callable-level granularity is being considered. For instance,

CVE-2022-24823 (second row), accounts for 11.9% of all potential affections, but only

for 0.6% actually affected elements. On the other hand, CVE-2018-1000632 (sixth

row) looks much less problematic on first glance, being responsible for only 4% of the

potential affections. However, the number of actual affections that we found is even higher

than the top-1 vulnerability in the list. This suggests that 𝐷𝑝(𝑚𝑎𝑥) and 𝐷𝑚(𝑚𝑎𝑥) do not

necessarily correlate with each other when studying the vulnerability propagation and its

impact on other projects.

4.5.4 RQ4: Is considering all transitive dependencies neces-
sary?

The 𝐷𝑚(𝑚𝑎𝑥) setting can be deemed as the "best" approach to achieve high recall and

precision in the vulnerability analysis. However, to perform such analysis, one needs

to compute a whole-program call graph of a versioned package plus its full transitive

dependency set. This can be a very expensive task if done at the ecosystem level, i.e., a

large-scale study with millions of versioned packages. This research question investigates if

it is possible to "cut-off" dependencies that are distant in the dependency tree. Such pruning

will reduce the size of the dependency set and has a chance to speed up the fine-grained
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Figure 4.7: Number of vulnerable packages on various dependency depths

analysis at the cost of a decrease in the recall of the analysis. We want to analyze this

tradeoff.

Methodology We perform two analyses. First, we construct whole-program call graphs

for all the elements of 𝐷𝑚(𝑚𝑎𝑥) and perform a reachability analysis at the dependency

levels 1 to 5. This analysis produces five sets, i.e., 𝐷𝑚(1),… ,𝐷𝑚(5). All of them are a

subset of 𝐷𝑚(𝑚𝑎𝑥) (e.g., 𝐷𝑚(2) ⊂ 𝐷𝑚(𝑚𝑎𝑥)). In the second analysis, we find the maximum

dependency depth for each versioned package in 𝐷𝑚(𝑚𝑎𝑥). With this information, we

iterate over the elements of 𝐷𝑚(𝑚𝑎𝑥) and count the number of reachable vulnerabilities at

each dependency level until the maximum level is reached. We repeat this process for the

other sets.

Findings Figure 4.7 shows the number of vulnerable versioned packages while perform-

ing callable-level analysis and considering different dependency levels. Using only direct

dependencies, i.e., 𝐷𝑚(1), 55.8% of vulnerable versioned packages are detected comparing

to 𝐷𝑚(𝑚𝑎𝑥). This observation is in line with the findings of RQ2 (see Figure 4.3). Every

additional layer can identify more vulnerable packages, but dependency level 3 already

reaches 94% coverage. Cutting off at this level will result in an analysis that will miss some

vulnerabilities. While this might not be acceptable for security-sensitive analyses, other

analyses could leverage this finding to potentially save substantial computation time.

Figure 4.8 investigates these results with a different visualization. The different plot

lines represent packages with vulnerabilities on the exact dependency level 1,2, ...,6+. The

y-axis shows how many of the existing vulnerabilities can be found when the dependency

tree is cut of at depth 𝑑. As expected, vulnerable versioned packages with transitive

dependencies tend to be affected by more vulnerabilities than versioned packages with

only direct dependencies. However, we see a common pattern across the different plots:

the increase slows and starts to converge at dependency level 3-4. Programs that have such
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Figure 4.8: Number of vulnerabilities on various dependency depths

deep dependency levels also have large dependency set, so for these projects, the potential

saving in the analysis effort seems to be particularly beneficial.

To estimate how much computation time can potentially be reduced, we approximate

the required computation time with the size of the transitive dependency set. This is

likely a lower bound, as the number of call-graph edges grows much faster than linearly.

Figure 4.9 shows the distribution over the dependency set sizes for all packages in𝐷𝑚(𝑚𝑎𝑥),

which have a dependency tree with the exact height. For example, the first box plot in the

diagram contains all versioned packages that only have direct dependencies. The average

size of their dependency set is close to 0, whereas packages with 3 dependency levels have

a median of 24 dependencies, and 6+ dependency levels even go up to a median of 147

dependencies. Even if we only assume a linear growth in computation time, filtering the

large applications to dependency level 3 would lead to an enormous analysis speed-up of

about 6 times. These large applications are usually also the limiting factor when it comes

to computation timeouts or memory consumption of analyses.

4.6 Discussion
In this section, we discuss actionable results and provide insights from our study.

Granularity Matters When studying security vulnerabilities, granularity matters. As

shown in RQ2 and RQ3, dependency-level analysis highly overestimates the number of

vulnerable packages in the Maven ecosystem. A project is not affected if the vulnerable

code/callable is never reached. This is also acknowledged in the previous related stud-

ies [113, 116]. Also, for the NPM ecosystem, a similar observation was found by saying

that dependency-level analysis produces many false positives [117]. To address this, the

callable-level analysis should be considered as it gives a more precise answer to whether

a user’s project actually uses the vulnerable code in its dependencies. The results of our

dependency-level analysis look worrying: we found about 175K vulnerable versioned

packages in 2021 alone. The good news is that very few seem to use vulnerable code,

so most cases are actually not affected. The looming threat of importing vulnerabilities
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from open-source ecosystems is in fact much lower than popular believe. More research is

required to study this discrepancy.

Towards Intelligent Software Composition Analysis A number of free and com-

mercial software composition analysis (SCA) tools exist that analyze the open-source

components of a project for security risks and license compliance. Each of them differs

widely in terms of accuracy, the quality of the vulnerability database, and the level of

granularity [135]. For instance, OWASP DC [136] analyzes dependency files of a project

and notifies developers if known vulnerabilities are present in the project’s transitive

dependencies. However, as mentioned earlier, this level of granularity suffers from impre-

cision, and it is also not helpful for developers to better assess and mitigate the potential

risk of using vulnerable dependencies in their projects. Also, free tools like GitHub’s

Dependabot perform package-level analysis, though its fine-grained analysis feature is in

the beta state for the Python ecosystem as of this writing [137]. Overall, we believe that

the next generation of SCA tools should have at least these core features when analyzing

vulnerabilities in projects: (1) dependency depth (2) callable-level analysis (3) providing

users with a detailed description of what part of their code is affected by vulnerabilities by

showing, for example, vulnerable call paths and required actions to mitigate the security

risk.

Transitivity Matters Transitivity matters when analyzing projects’ dependencies for

the presence of vulnerabilities. Considering the results of RQ2 and RQ4, many versioned

packages are affected by known vulnerabilities in the transitive dependencies no matter

the granularity level, i.e., dependency- or callable-level. For developers, this means that

updating direct dependencies may not eliminate the potential security threat by a vulnera-

bility. It is suggested that developers use an SCA tool and integrate it into their workflow

or continuous integration pipeline, which helps to frequently monitor the transitive de-

pendencies of their projects for the presence of vulnerabilities and update them if needed.
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For the developers of SCA tools, it is essential to analyze the whole transitive dependency

set of projects to improve the reliability of their tools. We believe that SCA tools are not

practical or useful if they naively only consider direct dependencies.

Popularity Popular vulnerable projects do not necessarily have the largest impact on

the ecosystem. RQ3 shows that a security vulnerability in a popular package can poten-

tially affect many other dependent packages. This confirms previous results in the NPM

ecosystem [115], which stated that several popular JavaScript packages (in)directly affect

thousands of other packages. However, this observation is based on a basic package-level

analysis of transitive dependencies, which is not precise enough to show the true impact of

vulnerabilities in the ecosystem. The results change, when analyzed on the method-level.

For instance, we found that a vulnerability, CVE-2021-37137 in the popular Maven

project netty-codec-http potentially affects 142K other packages when analyzed on

the package level. However, through a method-level analysis, we only found 90 versioned

packages that were actually affected. On the other hand, the CVE-2018-1000632 in

the less popular Maven project dom4j only affects 47K other packages on the package

level, but we found 1,400+ actually affected packages through a method-level analysis.

These results imply that popularity might not be as good an indicator for ecosystem impact

as originally thought. Better strategies to identify the critical packages are required to

protect ecosystems as a whole.

Expensive Analyses Running ecosystem-wide, fine-grained analyses are expensive.

While fine-grained analysis provides a new perspective in studying a software ecosystem,

it can be very computationally expensive to analyze millions of projects. In this study, we

managed to analyze 3 million versioned Maven packages and study the effect of transitivity

and granularity on vulnerability propagation in Maven. From our experience, ecosystem-

wide fine-grained analysis requires costly, powerful machines and sufficient time to perform.

Given the result of the RQ4, one insight that might be useful for future work is to consider

a lower dependency level (e.g., 3 or 4) in call graph-based analysis assuming that a slight

loss of recall/precision is acceptable. This also may potentially reduce the search space and

computation time.

4.7 Threats to Validity
In this section, we describe possible threats to the validity of the obtained results and

findings and how we addressed them.

Dataset In this study, we gathered aMaven dataset that consists of 3M versioned packages

over a period of one year (from 2021-2022). We chose to gather data for one year mainly

for two reasons: (1) In our approach, we generate call graphs for fine-grained analysis,

which can be expensive. For us, it is not computationally feasible to perform this step for

the whole history of the Maven ecosystem, which has over 9.8M versioned packages [138]

as of this writing. (2) The main goal of this study is to show the effect of transitivity and

granularity on vulnerability propagation via fine-grained analysis in Maven. Therefore,

following the guidelines for empirical software engineering research [139], we believe that
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our sample size, 3M versioned packages, is sufficient to achieve the said goal. With such a

large sample size, we are very confident that our findings would also hold for the whole

history of the Maven ecosystem.

Vulnerability mapping to package versions As described before, we analyze vul-

nerability constraints in security reports to find the affected versions of a package by a

vulnerability. Based on our observation, vulnerability constraints often only specify an

upper bound on the range of affected versions. This may falsely render older releases as

vulnerable. No trivial solution can address this limitation. However, with callable-level

analysis, we can check whether the vulnerable method even exists in the previous releases,

which can automatically eliminate many incorrect cases.

Call graph analysis We configure OPAL to use an Open-Package Assumption to iden-

tify entrypoints when generating call graphs. OPA prioritizes soundness over precision,

meaning that call graphs might have spurious edges, which may lead to false positives

when finding vulnerable call chains. However, we argue that, for security-focused analysis,

false negatives can be more expensive and dangerous. If a method is falsely identified as

safe to use, it can potentially harm its users and their organizations [140]. In contrast, false

positives prevent users to use a method and they can also be reviewed manually by security

experts if the needed functionality is costly to implement. Moreover, as pointed out by

Nielsen et al. [118], for security-focused applications, a few false negatives are likely more

desirable than a large number of false positives.

In addition, our call graph analysis does not consider control flow when assessing

the reachability of vulnerable code or methods. This means that a false positive alarm is

produced if the required input to trigger the vulnerability is not provided [141].

4.8 Summary
In this chapter, we have studied the effect of transitivity and granularity on how vulnerabil-

ities propagate to projects via fine-grained analysis in the Maven ecosystem. The method-

ology of our study is based on resolving transitive dependencies, building whole-program

call graphs, and performing reachability analysis, which allows us to study vulnerability

propagation at both dependency and callable levels. Among our findings, we found that, for

security-focused applications, it is important to consider transitive dependencies regardless

of the granularity level to minimize the risk of security threats. Also, with the callable-level

analysis, it is possible to provide a lower bound for the analysis of vulnerability propagation

in the ecosystem and also overcome the over-approximation issue of the dependency-level

analysis. Overall, the implication of our results suggests that call graph-based analysis

seems to be a promising direction for future studies on software ecosystems.
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5
Type4Py: Practical Deep

Similarity Learning-Based
Type Inference for Python

Dynamic languages, such as Python and Javascript, trade static typing for developer flexibility

and productivity. Lack of static typing can cause run-time exceptions and is a major factor

for weak IDE support. To alleviate these issues, PEP 484 introduced optional type annotations

for Python. As retrofitting types to existing codebases is error-prone and laborious, machine

learning (ML)-based approaches have been proposed to enable automatic type inference based

on existing, partially annotated codebases. However, previous ML-based approaches are trained

and evaluated on human-provided type annotations, which might not always be sound, and

hence this may limit the practicality for real-world usage. In this chapter, we present Type4Py,

a deep similarity learning-based hierarchical neural network model. It learns to discriminate

between similar and dissimilar types in a high-dimensional space, which results in clusters of

types. Likely types for arguments, variables, and return values can then be inferred through

the nearest neighbor search. Unlike previous work, we trained and evaluated our model on

a type-checked dataset and used mean reciprocal rank (MRR) to reflect the performance

perceived by users. The obtained results show that Type4Py achieves an MRR of 77.1%, which

is a substantial improvement of 8.1% and 16.7% over the state-of-the-art approaches Typilus

and TypeWriter, respectively. Finally, to aid developers with retrofitting types, we released a

Visual Studio Code extension, which uses Type4Py to provide ML-based type auto-completion

for Python.

This chapter is based on the paper, Mir, A. M., Latoškinas, E., Proksch, S., & Gousios, G., Type4py: Practical Deep

Similarity Learning-based Type Inference for Python. In Proceedings of the 44th International Conference on

Software Engineering (ICSE’22) (pp. 2241-2252). [142].
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5.1 Introduction
Over the past years, dynamically-typed programming languages (DPLs) have become ex-

tremely popular among software developers. The IEEE Spectrum ranks Python as the

most popular programming language in 2021 [143]. It is known that statically-typed lan-

guages are less error-prone [144] and that static types improve important quality aspects of

software [145], like the maintainability of software systems in terms of understandability,

fixing type errors [146], and early bug detection [145]. In contrast to that, dynamic lan-

guages such as Python and JavaScript allow rapid prototyping which potentially reduces

development time [146, 147], but the lack of static types in dynamically-typed languages

often leads to type errors, unexpected run-time behavior, and suboptimal IDE support.

To mitigate these shortcomings, the Python community introduced PEP 484 [20], which

adds optional static typing to Python 3.5 and newer. Static type inferencemethods [148, 149]

can be employed to support adding these annotations, which is otherwise a manual,

cumbersome, and error-prone process [150]. However, static inference is imprecise [151],

caused by dynamic language features or by the required over-approximation of program

behavior [152]. Moreover, static analysis is usually performed on full programs, including

their dependencies, which is slow and resource-intensive.

To address these limitations of static type inference methods, researchers have re-

cently employed Machine Learning (ML) techniques for type prediction in dynamic lan-

guages [153–156]. The experimental results of these studies show that ML-based type

prediction approaches are more precise than static type inference methods or they can also

work with static methods in a complementary fashion [155, 156]. Despite the superiority

of ML-based type prediction approaches, their type vocabulary is small and fixed-sized

(i.e. 1,000 types). This limits their type prediction ability for user-defined and rare types.

To solve this issue, Allamanis et al. [156] recently introduced Typilus which does not

constraint the type vocabulary size and it outperforms the other models with small-sized

type vocabulary.

While the ML-based type inference approaches are effective, we believe that there are

two main drawbacks in the recent previous work [155, 156]:

• The neural models are trained and evaluated on developer-provided type annotations,

which are not always correct [150, 157]. This might be a (major) threat to the validity

of the obtained results. To address this, a type checker should be employed to detect

and remove incorrect type annotations from the dataset.

• Although the proposed approaches [155, 156] obtain satisfying performance for Top-

10, it is important for an approach to give a correct prediction in Top-1 as developers

tend to use the first suggestion by a tool [158]. Like the API recommendation

research [159, 160], the Mean Reciprocal Rank (MRR) metric should also be used for

evaluation, which partially rewards an approach where the correct API is not in the

Top-1 suggestion.

Motivated by the above discussion, we present Type4Py, a type inference approach

based on deep similarity learning (DSL). The proposed approach consists of an effective

hierarchical neural network that maps programs into type clusters in a high-dimensional

feature space. Similarity learning has, for example, been used in Computer Vision to
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discriminate human faces for verification [161]. Similarly, Type4Py learns how to distinguish

between different types through a DSL-based hierarchical neural network. As a result,

our proposed approach can not only handle a very large type vocabulary, but also it can

be used in practice by developers for retrofitting type annotations. In comparison with

the state-of-the-art approaches, the experimental results show that Type4Py obtains an

MRR of 77.1%, which is 8.1% and 16.7% higher than Typilus [156] and TypeWriter [155],

respectively.

Overall, this paper presents the following main contributions:

• Type4Py, a new DSL-based type inference approach.

• A type-checked dataset with 5.1K Python projects and 1.2M type annotations. Invalid

type annotations are removed from both training and evaluation.

• AVisual Studio Code extension [162], which providesML-based type auto-completion

for Python.

To foster future research, we publicly released the implementation of the Type4Pymodel

and its dataset on Zenodo.
1

The rest of the chapter is organized as follows. Section 5.2 reviews related work on

static and ML-based type inference. The proposed approach, Type4Py, is described in

Section 5.3. Section 5.4 gives details about the creation of the type-checked dataset for

evaluation. The evaluation setup and empirical results are given in Section 5.5 and Section

5.6, respectively. Section 5.7 describes the deployment of Type4Py and its usage in Visual

Studio Code. Section 5.8 discusses the obtained results and gives future directions. Finally,

we summarize our work in Section 5.9.

1
https://doi.org/10.5281/zenodo.5913787
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Table 5.1: Comparison between Type4Py and other learning-based type inference approaches

Approach Size of type vocabulary ML model

Type hints Supported Predictions

Contextual Natural Logical Argument Return Variable

Type4Py Unlimited HNN (2x RNNs) ✓ ✓ ✗ ✓ ✓ ✓
JSNice [163] 10+ CRFs ✓ ✓ ✗ ✓ ✗ ✗
Xu et al. [164] - PGM ✗ ✓ ✓ ✗ ✗ ✓

DeepTyper [153] 10K+ biRNN ✓ ✓ ✗ ✓ ✓ ✓
NL2Type [154] 1K LSTM ✗ ✓ ✗ ✓ ✓ ✗
TypeWriter [155] 1K HNN (3x RNNs) ✓ ✓ ✗ ✓ ✓ ✗

LAMBDANET [165] 100
a

GNN ✓ ✓ ✓ ✗ ✗ ✓
OptTyper [166] 100 LSTM ✗ ✓ ✓ ✓ ✓ ✗
Typilus [156] Unlimited GNN ✓ ✓ ✗ ✓ ✓ ✓
TypeBert [167] 40K BERT ✓ ✓ ✗ ✓ ✓ ✓

a
Note that LAMBDANET’s pointer network model enables to predict user-defined types

outside its fixed-size type vocabulary.

5.2 Related Work
Type checking and inference for Python In 2014, the Python community introduced

a type hints proposal [20] that describes adding optional type annotations to Python

programs. A year later, Python 3.5 was released with optional type annotations and the

mypy type checker [168]. This has enabled gradual typing of existing Python programs

and validating added type annotations. Since the introduction of type hints proposal, other

type checkers have been developed such as PyType [169], PyRight [170], and Pyre [171].

A number of research works proposed type inference algorithms for Python [148, 172,

173]. These are static-based approaches that have a pre-defined set of rules and constraints.

As previously mentioned, static type inference methods are often imprecise [151], due to

the dynamic nature of Python and the over-approximation of programs’ behavior by static

analysis [152].

Learning-based type inference In 2015, Rachev et al. [163] proposed JSNice, a prob-

abilistic model that predicts identifier names and type annotations for JavaScript using

conditional random fields (CRFs). The central idea of JSNice is to capture relationships

between program elements in a dependency network. However, the main issue with JSNice

is that its dependency network cannot consider a wide context within a program or a

function.

Xu et al. [164] adopt a probabilistic graphical model (PGM) to predict variable types

for Python. Their approach extracts several uncertain type hints such as attribute access,

variable names, and data flow between variables. Although the probabilistic model of Xu

et al. [164] outperforms static type inference systems, their proposed system is slow and

lacks scalability.

Considering the mentioned issue of JSNice, Hellendoorn et al. [153] proposed Deep-

Typer, a sequence-to-sequence neural network model that was trained on an aligned corpus

of TypeScript code. The DeepTyper model can predict type annotations across a source

code file by considering a much wider context. Yet DeepTyper suffers from inconsistent

predictions for the token-level occurrences of the same variable. Malik et al. [154] proposed

NL2Type, a neural network model that predicts type annotations for JavaScript functions.

The basic idea of NL2Type is to leverage the natural language information in the source
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code such as identifier names and comments. The NL2Type model is shown to outperform

both the JSNice and DeepTyper at the task of type annotations prediction [154].

Motivated by the NL2Type model, Pradel et al. [155] proposed the TypeWriter model

which infers type annotations for Python. TypeWriter is a deep neural network model that

considers both code context and natural language information in the source code. Moreover,

TypeWriter validates its neural model’s type predictions by employing a combinatorial

search strategy and an external type checker. Wei et al. [165] introduced LAMBDANET, a

graph neural network-based type inference for TypeScript. Its main idea is to create a type

dependency graph that links to-be-typed variables with logical constraints and contextual

hints such as variables assignments and names. For type prediction, LAMBDANET employs

a pointer-network-like model which enables the prediction of unseen user-defined types.

The experimental results of Wei et al. [165] show the superiority of LAMBDANET over

DeepTyper.

Given that the natural constraints such as identifiers and comments are an uncertain

source of information, Pandi et al. [166] proposed OptTyper which predicts types for

the TypeScript language. The central idea of their approach is to extract deterministic

information or logical constraints from a type system and combine them with the natural

constraints in a single optimization problem. This allows OptTyper to make a type-correct

prediction without violating the typing rules of the language. OptTyper has been shown to

outperform both LAMBDANET and DeepTyper [166].

Except for LAMBDANET, all the discussed learning-based type inference methods

employ a (small) fixed-size type vocabulary, e.g., 1,000 types. This hinders their ability to

infer user-defined and rare types. To address this, Allamanis et al. [156] proposed Typilus,

which is a graph neural network (GNN)-based model that integrates information from

several sources such as identifiers, syntactic patterns, and data flow to infer type annotations

for Python. Typilus is based on metric-based learning and learns to discriminate similar

to-be-typed symbols from different ones. However, Typilus requires a sophisticated source

code analysis to create its graph representations, i.e. data flow analysis. Very recently,

inspired by "Big Data", Jesse et al. [167] presented TypeBert, a pre-trained BERT model

with simple token-sequence representation. Their empirical results show that TypeBert

generally outperforms LAMBDANET. The differences between Type4Py and other learning-

based approaches are summarized in Table 5.1.
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Figure 5.1: Overview of Type4Py approach

5.3 Proposed Approach
This section presents the details of Type4Py by going through the different steps of the

pipeline that is illustrated in the overview of the proposed approach in Figure 5.1. We first

describe how we extract type hints from Python source code and then how we use this

information to train the neural model.

5.3.1 Type Hints
We extract the Abstract Syntax Tree (AST) from Python source code files. By traversing

the nodes of ASTs, we obtain type hints that are valuable for predicting types of function

arguments, variables, and return types. The obtained type hints are based on natural

information, code context, and import statements which are described in this section.

Natural Information As indicated by the previous work [154, 174], source code contains

useful and informal natural language information that is considered as a source of type

hints. In DPLs, developers tend to name variables and functions’ arguments after their

expected type [175]. Based on this intuition, we consider identifier names as the main

source of natural information and type hint. Specifically, we extract the name of functions

(𝑁𝑓 ) and their arguments (𝑁𝑎𝑟𝑔𝑠) as they may provide a hint about the return type of

functions and the type of functions’ arguments, respectively. We also denote a function’s

argument as 𝑁𝑎𝑟𝑔 hereafter. For variables, we extract their names as denoted by 𝑁𝑣 .

Code Context We extract all uses of an argument in the function body as a type hint.

This means that the complete statement, in which the argument is used, is included as

a sequence of tokens. Similarly, we extract all uses of a variable in its current and inner

scopes. Also, all the return statements inside a function are extracted as they may contain

a hint about the return type of the function.

Visible type hints (VTH) In contrast to previous work that only analyzed the direct

imports [155], we recursively extract all the import statements in a given module and its

transitive dependencies. We build a dependency graph for all imports of user-defined classes,

type aliases, and NewType declarations For example, if module A imports B.Type and

C.D.E, the edges (A, B.Type) and (A, C.D.E) will be added to the graph. We expand
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wildcard imports like from foo import * and resolve the concrete type references.

We consider the identified types as visible and store them with their fully-qualified name

to reduce ambiguity. For instance, tf.Tensor and torch.Tensor are different

types. Although the described inspection-based approach is slower than a pure AST-based

analysis, our ablation analysis shows that VTHs substantially improve the performance of

Type4Py (subsection 5.6.3).

5.3.2 Vector Representation
In order for a machine learning model to learn from type hints, they are represented as

real-valued vectors. The vectors preserve semantic similarities between similar words. To

capture those, a word embedding technique is used to map words into a 𝑑-dimensional

vector space, ℝ
𝑑
. Specifically, we first preprocess extracted identifiers and code contexts

by applying common Natural Language Processing (NLP) techniques. This preprocessing

step involves tokenization, stop word removal, and lemmatization [176]. Afterwards, we

employ Word2Vec [177] embeddings to train a code embedding 𝐸𝑐 ∶ 𝑤1,… ,𝑤𝑙 → ℝ
𝑙×𝑑

for

both code context and identifier tokens, where 𝑤𝑖 and 𝑙 denote a single token and the length

of a sequence, respectively. In the following, we describe the vector representation of all

the three described type hints for both argument types and return types.

Identifiers Given an argument’s type hints, the vector sequence of the argument is

represented as follows:

𝐸𝑐(𝑁𝑎𝑟𝑔 ) ◦ 𝑠 ◦𝐸𝑐(𝑁𝑓 ) ◦𝐸𝑐(𝑁𝑎𝑟𝑔𝑠)

where ◦ concatenates and flattens sequences, and 𝑠 is a separator
2
. For a return type, its

vector sequence is represented as follows:

𝐸𝑐(𝑁𝑓 ) ◦ 𝑠 ◦𝐸𝑐(𝑁𝑎𝑟𝑔𝑠)

Last, a variable’s identifier is embedded as 𝐸𝑐(𝑁𝑣).

Code contexts For function arguments and variables, we concatenate the sequences

of their usages into a single sequence. Similarly, for return types, we concatenate all the

return statements of a function into a single sequence. To truncate long sequences, we

consider a window of 𝑛 tokens at the center of the sequence (default 𝑛 = 7). Similar to

identifiers, the function embedding 𝐸𝑐 is used to convert code contexts sequences into a

real-valued vector.

Visible type hints Given all the source code files, we build a fixed-size vocabulary

of visible type hints. The vocabulary covers the majority of all visible type occurrences.

Because most imported visible types in Python modules are built-in primitive types such as

List, Dict, and their combinations. If a type is out of the visible type vocabulary, it is

represented as a special other type. For function arguments, variables, and return types,

we create a sparse binary vector of size 𝑇 whose elements represent a type. An element of

the binary vector is set to one if and only if its type is present in the vocabulary. Otherwise,

the other type is set to one in the binary vector.

2
The separator is a vector of ones with appropriate dimension.
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5.3.3 Neural Model
The neural model of our proposed approach employs a hierarchical neural network (HNN),

which consists of two recurrent neural networks (RNNs) [178]. HNNs are well-studied and

quite effective for text and vision-related tasks [179–181]. In the case of type prediction,

intuitively, HNNs can capture different aspects of identifiers and code context. In the neural

architecture (see Fig. 5.1), the two RNNs are based on long short-term memory (LSTM)

units [182]. Here, we chose LSTMs units as they are effective for capturing long-range

dependencies [183]. Also, LSTM-based neural models have been applied successfully to

NLP tasks such as sentiment classification [184]. Formally, the output ℎ
(𝑡)

𝑖
of the 𝑖-th LSTM

unit at the time step 𝑡 is defined as follows:

ℎ
(𝑡)

𝑖
= tanh(𝑠

𝑡

𝑖
)𝜎

(

𝑏𝑖+∑

𝑗

𝑈𝑖,𝑗𝑥
(𝑡)

𝑗
+∑

𝑗

𝑊𝑖,𝑗ℎ
(𝑡−1)

𝑗

)

(5.1)

which has sigmoid function𝜎, current input vector 𝑥𝑗 , unit state 𝑠
𝑡

𝑖
and hasmodel parameters

𝑊 , 𝑈 , 𝑏 for its recurrent weights, input weights and biases [183]. The two hierarchical

RNNs allow capturing different aspects of input sequences from identifiers and code tokens.

The captured information is then summarized into two single vectors, which are obtained

from the final hidden state of their corresponding RNN. The two single vectors from RNNs

are concatenated with the visible type hints vector and the resulting vector is passed

through a fully-connected linear layer.

In previous work [154, 155], the type prediction task is formulated as a classification

problem. As a result, the linear layer of their neural model outputs a vector of size 1,000

with probabilities over predicted types. Therefore, the neural model predicts unkonwn

if it has not seen a type in the training phase. To address this issue, we formulate the

type prediction task as a Deep Similarity Learning problem [161, 185]. By using the DSL

formulation, our neural model learns to map argument, variable, return types into real

continuous space, called type clusters (also known as type space in [156]). In other words,

our neural model maps similar types (e.g. str) into its own type cluster, which should be

as far as possible from other clusters of types. Unlike the previous work [154, 155], our

proposed model can handle a very large type vocabulary.

To create the described type clusters, we use Triplet loss [186] function which is recently

used for computer vision tasks such as face recognition [186]. By using the Triplet loss,

a neural model learns to discriminate between similar samples and dissimilar samples

by mapping samples into their own clusters in the continuous space. In the case of type

prediction, the loss function accepts a type 𝑡𝑎, a type 𝑡𝑝 same as 𝑡𝑎, and a type 𝑡𝑛 which is

different than 𝑡𝑎. Given a positive scalar margin 𝑚, the Triplet loss function is defined as

follows:

𝐿(𝑡𝑎, 𝑡𝑝 , 𝑡𝑛) = 𝑚𝑎𝑥(0,𝑚+
‖
‖
𝑡𝑎− 𝑡𝑝

‖
‖
− ‖𝑡𝑎− 𝑡𝑛‖) (5.2)

The goal of the objective function 𝐿 is to make 𝑡𝑎 examples closer to the similar examples

𝑡𝑝 than to 𝑡𝑛 examples. We use the Euclidean metric to measure the distance of 𝑡𝑎 with 𝑡𝑝

and 𝑡𝑛.

At prediction time, we first map a query example 𝑡𝑞 to the type clusters. The query

example 𝑡𝑞 can be a function’s argument, the return type of a function or a variable. Then

we find the 𝑘-nearest neighbor (KNN) [187] of the query example 𝑡𝑞 . Given the 𝑘-nearest
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examples 𝑡𝑖 with a distance 𝑑𝑖 from the query example 𝑡𝑞 , the probability of 𝑡𝑞 having a type

𝑡
′
can be obtained as follows:

𝑃(𝑡𝑞 ∶ 𝑡
′
) =

1

𝑁

𝑘

∑

𝑖

𝕀(𝑡𝑖 = 𝑡
′
)

(𝑑𝑖+ 𝜀)
2

(5.3)

where 𝕀 is the indicator function, 𝑁 is a normalizing constant, and 𝜀 is a small scalar

(i.e. 𝜀 = 10
−10

).

5.4 Dataset
For this work, we have created a new version of our ManyTypes4Py dataset [188], i.e.,

v0.7. The rest of this section describes the creation of the dataset. To find Python projects

with type annotations, on Libraries.io, we searched for projects that depend on the mypy
package [189], i.e., the official and most popular type checker for Python. Intuitively, these

projects are more likely to have type annotations. The search resulted in 5.2K Python

projects that are available on GitHub. Initially, the dataset has 685K source files and 869K

type annotations.

5.4.1 Code De-duplication
On GitHub, Python projects often have file-level duplicates [190] and also code duplication

has a negative effect on the performance of ML models when evaluating them on unseen

code samples [191]. Therefore, to de-duplicate the dataset, we use our code de-duplication

tool, CD4Py [192]. It uses term frequency-inverse document (TF-IDF) [193] to represent

a source code file as a vector in ℝ
𝑛
and employs KNN search to find clusters of similar

duplicate files. While assuming that the similarity is transitive [191], we keep a file from

each cluster and remove all other identified duplicate files from the dataset. Using the

described method, we removed around 400K duplicate files from the dataset.

5.4.2 Augmentation
Similar to the work of Allamanis et al. [156], we have employed a static type inference

tool, namely, Pyre [171] v0.9.0 to augment our initial dataset with more type annotations.

However, we do note that we could only infer the type of variables using Pyre’s query
command. In our experience, the query command could not infer the type of arguments

and return types. The command accepts a list of files and returns JSON files containing

type information.

Thanks to Pyre’s inferred types, the dataset has now 3.3M type annotations in total. To

demonstrate the effect of using Pyre on the dataset, Figure 5.2 shows the percentage of

type annotation coverage for source code files with/without using Pyre. After using Pyre,

of 288,760 source code files, 65% of them have more than 40% type annotation coverage.

5.4.3 Type Checking
Recent studies show that developer-provided types rarely type-check and Python projects

may contain type-related defects [150, 157, 194]. Therefore, we believe that it is essential

to type-check the dataset to eliminate noisy ground truth (i.e. incorrect type annotations).

Not only noisy ground truth can be considered a threat to the validity of results but also it



5

88 5 Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python

0 50000 100000 150000 200000 250000 300000
File number (sorted by the value of y axis)

0

20

40

60

80

100

%
 o

f t
yp

e 
an

no
ta

tio
n 

co
ve

ra
ge

w/o Pyre
w/ Pyre

Figure 5.2: The effect of using Pyre on the type annotation coverage of source code files

may make the discrimination of types in type clusters more difficult [195]. To clean the

dataset from noisy ground truth, we perform basic analysis as follows:

• First, we use mypy to type-check 288,760 source files in the dataset. Of which, 184,752

source files are successfully type-checked.

• Considering the remaining 104,008 source files, for further analysis, we ignore source

files that cannot be type-checked further by mypy due to syntax error or other fatal

exceptions. This amounts to 63,735 source files in the dataset.

• Given 40,273 source files with type errors, we remove one type annotation at a

time from a file and run mypy. If it type-checks, we include the file. Otherwise, we

continue this step up to 10 times. This basic analysis fixes 16,861 source files with

type errors, i.e, 42% of the given set of files.

5.4.4 Dataset Characteristics
Table 5.2 shows the characteristics of our dataset after code de-duplication, augmentation,

and type-checking. In total, there are more than 882K functions with around 1.5M argu-

ments. Also, the dataset has more than 2.1M variable declarations. Of which, 48% have

type annotations.

Figure 5.3 shows the frequency of top 10 most frequent types in our dataset. It can be

observed that types follow a long-tail distribution. Unsurprisingly, the top 10 most frequent
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Table 5.2: Characteristics of the dataset used for evaluation

Metrics
a,b

Our dataset

Repositories 5,092

Files 201,613

Lines of code
c

11.9M

Functions 882,657

...with return type annotations 94,433 (10.7%)

Arguments 1,558,566

...with type annotations 128,363 (14.5%)

Variables 2,135,361

...with type annotations 1,023,328 (47.9%)

Types 1,246,124

...unique 60,333

a
Metrics are counted after the ASTs extraction phase of our

pipeline.

c
Comments and blank lines are ignored when counting lines of

code.

Table 5.3: Number of data points for train, validation and test sets

Argument type Return type Variable type

Training 90,114 37,803 426,235

Validation 9,387 3,932 48,518

Test 24,121 10,444 118,319

Total 108,888 (16.06%) 45,667 (6.74%) 523,271 (77.20%)

types amount to 59% of types in the dataset. Lastly, we randomly split the dataset by files

into three sets: 70% training data, 10% validation data, and 20% test data. Table 5.3 shows

the number of data points for each of the three sets.

5.4.5 Pre-processing
Similar to the previous work [155, 156], before training ML models, we have performed

several pre-processing steps:

• Trivial functions such as __str__ and __len__ are not included in the dataset.

The return type of this kind of functions is straightforward to predict, i.e., __len__
always returns int, and would blur the results.

• We excluded Any and None type annotations as it is not helpful to predict these

types.
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Figure 5.3: Top 10 most frequent types (Any and None types are excluded)

• We performed a simple type aliasing resolving to make type annotations of the same

kind consistent. For instance, we map [] to List, {} to Dict, and Text to str.

• We resolved qualified names for type annotations. For example, array is resolved

to numpy.array. This makes all the occurrences of a type annotation across the

dataset consistent.

• Same as the work of Allamanis et al. [156], we rewrote the components of a base

type whose nested level is greater than 2 to Any. For instance, we rewrite
List[List[Tuple[int]]] to List[List[Any]]]. This removes very

rare types or outliers.

5.5 Evaluation Setup
In this section, we describe the baseline models, the implementation details and the training

of the neural models. Lastly, we explain evaluation metrics to quantitatively measure the

performance of ML-based type inference approaches.

5.5.1 Baselines
We compare Type4Py to Typilus [156] and TypeWriter [155], which are recent state-of-the-

art ML-based type inference approaches for Python. Considering Table 5.1, Type4Py has

an HNN-based neural model whereas Typilus’s neural model is GNN-based. However,
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Table 5.4: Value of hyperparameters for neural models

Hyperparameter Type4Py TypeWriter Typilus

Word embedding dimension (i.e. 𝑑) 100 100 N/A

Size of visible type hints vocabulary (i.e. 𝑇 ) 1024 1024 N/A

LSTM hidden nodes 256 256 N/A

GNN hidden nodes N/A N/A 64

Dimension of linear layer’s output 1536 1000 N/A

Number of LSTM’s layers 1 1 N/A

Learning rate 0.002 0.002 0.00025

Dropout rate 0.25 0.25 0.1

Number of epochs 25 25 500
a

Batch size 5864 4096 N/A

Value of 𝑘 for nearest neighbor search 10 N/A 10

Tripet loss’ margin value (i.e. 𝑚) 2.0 N/A 2.0

Model’s trainable parameters 4.6M 4.7M 650K

a
The model stopped at epoch 38 due to the early stopping technique.

Typilus has the same prediction abilities as Type4Py and has no limitation on the size of type

vocabulary which makes it an obvious choice for comparison. Compared with Type4Py,

TypeWriter has two main differences. First, TypeWriter’s type vocabulary is small and

pre-defined (i.e. 1,000 types) at training time. Second, TypeWriter cannot predict the type

of variables, unlike Type4Py and Typilus.

5.5.2 Implementation Details and Environment Setup
We implemented Type4Py and TypeWriter in Python 3 and its ecosystem. We extract the

discussed type hints from ASTs using LibSA4Py [196]. The data processing pipeline is

parallelized by employing the joblib package. We use NLTK [197] for performing standard

NLP tasks such as tokenization and stop work removal. To train the Word2Vec model, the

gensim package is used. For the neural model, we used bidirectional LSTMs [198] in the

PyTorch framework [84] to implement the two RNNs. Lastly, we used the Annoy[199]

package to perform a fast and approximate nearest neighbor search. For Typilus, we used

its public implementation on GitHub [200].

We performed all the experiments on a Linux operating system (Ubuntu 18.04.5 LTS).

The computer had an AMD Ryzen Threadripper 1920X with 24 threads (@3.5GHz), 64 GB

of RAM, and two NVIDIA GeForce RTX 2080 TIs.

5.5.3 Training
To avoid overfitting the train set, we applied the Dropout regularization [81] to the input

sequences except for the visible types. Also, we employed the Adam optimizer [201] to

minimize the value of the Triplet loss function. For both Type4Py and TypeWriter, we

employed the data parallelism feature of PyTorch to distribute training batches between the

two GPUs with a total VRAM of 22 GB. For the Type4Pymodel, given 554K training samples,
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a single training epoch takes around 4 minutes. It takes 7 seconds for the TypeWriter model

providing that its training set contains 127K training samples
3
. Aside from the training

sample size, Type4Py is a DSL-based model and hence it has to predict the output of three

data points for every single training batch (see Eq. 5.2). Typilus completes a single training

epoch in around 6 minutes
4
. For all the neural models, the validation set is used to find the

optimal number of epochs for training. The value of the neural models’ hyperparameters

is reported in Table 5.4.

5.5.4 Evaluation Metrics
We measure the type prediction performance of an approach by comparing the type

prediction 𝑡𝑝 to the ground truth 𝑡𝑔 using two criteria originally proposed by Allamanis et

al. [156]:

Exact Match: 𝑡𝑝 and 𝑡𝑔 are exactly the same type.

Base Type Match: ignores all type parameters and only matches the base types. For

example, List[str] and List[int] would be considered a match.

In addition to these two criteria, as stated earlier, we opt for the MRR metric [193],

since the neural models predict a list of types for a given query. The MRR of multiple

queries 𝑄 is defined as follows:

𝑀𝑅𝑅 =

1

|𝑄|

|𝑄|

∑

𝑖=1

1

𝑟𝑖

(5.4)

The MRR metric partially rewards the neural models by giving a score of
1

𝑟𝑖
to a prediction

if the correct type annotation appears in rank 𝑟 . Like Top-1 accuracy, a score of 1 is given

to a prediction for which the Top-1 suggested type is correct. Hereafter, we refer to the

MRR of the Top-𝑛 predictions as MRR@𝑛. We evaluate the neural models up to the Top-10

predictions as it is a quite common methodology in the evaluation of ML-based models for

code [155, 156, 160].

Similar to the evaluation methodology of Allamanis et al. [156], we consider types that

we have seen more than 100 times in the train set as common or rare otherwise. Additionally,

we define the set of ubiquitous types, i.e., {str,int,list,bool,float}. These types
are among the top 10 frequent types in the dataset (see Fig. 5.3) and they are excluded from

the set of common types. Furthermore, Unlike Type4Py and Typilus, TypeWriter predicts

unknown if the expected type is not present in its type vocabulary. Thus, to have a valid

comparison with the other two approaches, we consider other predictions by TypeWriter

in the calculation of evaluation metrics.

3
Note that TypeWriter uses only argument and return samples as it lacks the variable prediction ability.

4
The public implementation of Typilus does not take advantage of our two GPUs.
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Table 5.5: Performance evaluation of the neural models considering different top-𝑛 predictions

Top-𝑛 predictions Approach

% Exact Match % Base Type Match
a

All Ubiquitous Common Rare All Common Rare

Top-1

Type4Py 75.8 100.0 82.3 19.2 80.6 85.2 36.0

Typilus 66.1 92.5 73.4 21.6 74.2 81.6 41.7
TypeWriter 56.1 93.5 60.9 16.2 58.3 64.4 19.9

Top-3

Type4Py 78.1 100.0 87.3 23.4 83.8 90.6 43.2

Typilus 71.6 96.2 83.0 26.8 79.8 88.7 49.2
TypeWriter 63.7 98.8 79.2 20.8 67.3 83.5 27.9

Top-5

Type4Py 78.7 100.0 88.6 24.5 84.7 92.1 45.5

Typilus 72.7 96.7 85.1 28.2 80.9 90.1 51.0
TypeWriter 65.9 99.6 84.9 23.0 70.4 89.1 32.1

Top-10

Type4Py 79.2 100.0 89.7 25.2 85.4 93.3 46.9

Typilus 73.3 97.04 86.4 28.9 81.5 90.9 51.9
TypeWriter 68.2 99.9 90.8 25.5 73.2 93.8 36.5

MRR@10

Type4Py 77.1 100.0 85.1 21.4 74.1 79.9 29.4

Typilus 69.0 94.4 78.5 24.4 67.4 75.8 32.8
TypeWriter 60.4 96.1 71.3 19.1 56.5 68.0 19.7

a
Ubiquitous types are not a base type match. However, they are considered in the All column.

5.6 Evaluation
To evaluate and show the effectiveness of Type4Py, we focus on the following research

questions.

RQ1 What is the general type prediction performance of Type4Py?

RQ2 How does Type4Py perform while considering different predictions tasks?

RQ3 How do each proposed type hint and the size of type vocabulary contribute to the

performance of Type4Py?

5.6.1 Type Prediction Performance (RQ1)
In this subsection, we compare our proposed approach, Type4Py, with the selected baseline

models in terms of overall type prediction performance.

Method The models get trained on the training set and the test set is used to measure the

type prediction performance. We evaluate the neural models by considering different top-𝑛

predictions, i.e., 𝑛 = {1,3,5,10}. Also, for this RQ, we consider all the supported inference

tasks by the models, i.e., arguments, return types, and variables.

Results Table 5.5 shows the overall performance of the neural models while considering

different top-𝑛 predictions. Given the Top-10 prediction, Type4Py outperforms both Typilus

and TypeWriter based on both the exact and base type match criteria (all). Specifically,
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Figure 5.4: The MRR score of the models considering different top-𝑛 predictions

considering the exact match criteria (all types), Type4Py performs better than Typilus and

TypeWriter at the Top-10 prediction by a margin of 5.9% and 11%, respectively. Moreover,

it can be seen that the Type4Py’s performance drop is less significant compared to the

other two models when decreasing the value of 𝑛 from Top-10 to Top-1. For instance, by

considering Top-1 rather than Top-10 and the exact match criteria (all), the performance

of Type4Py, Typilus, and TypeWriter drop by 3.4%, 7.2%, 12.1%, respectively. Concerning

the prediction of rare types, Typilus slightly performs better than Type4Py, which can be

attributed to the use of an enhanced triplet loss function. It is also worth mentioning that

Type4Py achieves a 100% exact match for the ubiquitous types at Top-1, which is remarkable.

As stated earlier, developers are more likely to use the first suggestion by a tool [158].

Therefore, we evaluated the neural models by the MRR@10 metric at the bottom of Table

5.5. Ideally, the difference between the MRR@10 metric and the Top-1 prediction should be

zero. However, this is very challenging as the neural models are not 100% confident in their

first suggestion for all test samples. Given the results of MRR@10, we observe that Type4Py

outperforms both Typilus and TypeWriter by a margin of 8.1% and 16.7%, respectively. In

addition, we investigated the MRR score of the neural models while considering different

values of Top-𝑛, which is shown in Figure 5.4. As can be seen, Type4Py has a substantially

higher score than the other models across all values of 𝑛. Moreover, the MRR score of all

the three neural models almost converges to a fixed value after MRR@3. Given the findings

of the RQ1, we use MRR@10 and the Top-1 prediction for the rest of the evaluation as we

believe this better shows the practicality of the neural models for assisting developers.
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Table 5.6: Performance evaluation of the neural models considering different tasks

Metric Task Approach

% Exact Match % Base Type Match

All Ubiquitous Common Rare All Common Rare

Top-1 prediction

Argument

Type4Py 61.9 100.0 64.5 17.4 63.9 69.3 20.1

Typilus 53.8 83.3 46.6 23.7 57.0 52.5 29.6
TypeWriter 58.4 93.6 61.3 19.6 60.1 64.4 22.1

Return

Type4Py 56.4 100.0 59.3 14.4 60.3 65.4 20.9

Typilus 42.5 84.0 41.6 12.3 49.9 49.5 24.8
TypeWriter 50.7 93.3 59.9 9.2 54.1 64.4 15.0

Variable
a

Type4Py 80.4 100.0 86.8 20.7 85.9 89.1 44.6

Typilus 71.4 95.1 80.5 22.5 80.7 89.1 48.6

MRR@10

Argument

Type4Py 64.2 100.0 69.5 20.7 59.9 62.2 20.6

Typilus 58.7 87.9 55.4 27.5 56.0 52.2 28.1
TypeWriter 63.3 96.2 72.4 23.0 59.6 69.3 22.7

Return

Type4Py 57.9 100.0 63.3 16.1 52.9 55.8 18.5

Typilus 46.0 86.9 49.8 14.3 44.9 46.6 21.4
TypeWriter 54.2 95.9 68.9 10.9 49.9 65.1 14.2

Variable
a

Type4Py 81.4 100.0 89.1 22.7 79.1 85.0 34.1

Typilus 73.7 96.3 84.7 25.1 72.4 82.7 36.1

a
Note that TypeWriter cannot predict the type of variables.

5.6.2 Different Prediction Tasks (RQ2)
Here, we compare Type4Py with other baselines while considering different prediction

tasks, i.e., arguments, return types, and variables.

Method Similar to the RQ1, the models are trained and tested on the entire training

and test sets, respectively. However, we consider each prediction task separately while

evaluating the models at Top-1 and MRR@10.

Results Table 5.6 shows the type prediction performance of the approaches for the

three considered prediction tasks. In general, considering the exact match criteria (all),

Type4Py outperforms both Typilus and TypeWriter in all prediction tasks at both Top-1

and MRR@10. For instance, considering the return task and Top-1, Type4Py obtains 56.4%

exact matches (all), which is 13.9% and 5.7% higher than that of Typilus and TypeWriter,

respectively. Also, for the same task, the Type4Py’s MRR@10 is 11.9% and 3.7% higher

compared to Typilus and TypeWriter, respectively. However, concerning the prediction of

common types and MRR@10, TypeWriter performs better than both Type4Py and Typilus

at the argument and return tasks. This might be due to the fact that TypeWriter predicts

from the set of 1,000 types, which apparently makes it better at the prediction of common

types. Moreover, both Type4Py and Typilus have a much larger type vocabulary and hence

they need more training samples to generalize better providing that both argument and

return types together amount to 22.8% of all the data points in the dataset (see Table 5.3).
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Table 5.7: Performance evaluation of Type4Py with different configurations

Metric Approach

% Exact Match % Base Type Match

All Ubiquitous Common Rare All Common Rare

Top-1 prediction

Type4Py 75.8 100.0 82.3 19.2 80.6 85.2 36.0
Type4Py (w/o identifiers) 72.7 100.0 71.8 17.4 76.5 73.9 30.9

Type4Py (w/o code context) 67.9 100.0 59.2 11.4 70.6 63.3 17.9

Type4Py (w/o visible type hints) 65.4 86.2 71.9 15.8 70.0 74.9 31.5

Type4Py (w/ top 1,000 types) 74.5 100.0 83.3 12.9 79.1 86.3 28.5

MRR@10

Type4Py 77.1 100.0 85.1 21.4 74.1 79.9 29.4
Type4Py (w/o identifiers) 73.8 100.0 74.6 19.2 69.3 66.6 25.1

Type4Py (w/o code context) 69.7 100.0 63.9 13.6 63.8 55.4 17.7

Type4Py (w/o visible type hints) 68.6 89.3 76.2 18.2 65.8 70.1 26.2

Type4Py (w/ top 1,000 types) 75.6 100.0 86.2 14.2 72.4 81.7 22.8

Lastly, in comparison with Typilus, Type4Py obtains 7.7% and 6.7% higher MRR@10 score

for the exact and base type match criteria (all), respectively.

5.6.3 Ablation Analysis (RQ3)
Here, we investigate how each proposed type hint and the size of type vocabulary contribute

to the overall performance of Type4Py.

Method For ablation analysis, we trained and evaluated Type4Py with 5 different config-

urations, i.e., (1) complete model (2) w/o identifiers (3) w/o code context (4) w/o visible

type hints (5) w/ a vocabulary of top 1,000 types. Similar to the previous RQs, we measure

the performance of Type4Py with the described configurations at Top-1 and MRR@10.

Results Table 5.7 presents the performance of Type4Py with the five described configura-

tions. It can be observed that all three type hints contribute significantly to the performance

of Type4Py. Code context has the most impact on the model’s performance compared to the

other two type hints. For instance, when ignoring code context, the model’s exact match

score for common types drops significantly by 23.1%. After code context, visible type hints

have a large impact on the performance of the model. By ignoring VTH, the model’s exact

match for ubiquitous types reduces from 100% to 86.2%. Although the Identifiers type hint

contributes substantially to the prediction of common types, it has a less significant impact

on the overall performance of Type4Py compared to code context and VTH. In summary, we

conclude that code context and VTH are the strongest type hints for our type prediction

model.

By limiting the type vocabulary of Type4Py to the top 1,000 types, similar to TypeWriter,

we observe that the model’s performance for common types is slightly improved while its

performance for rare types is reduced significantly, i.e., 7.2% considering MRR@10. This

is expected as the model’s type vocabulary is much smaller compared to the complete

model’s.
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Figure 5.5: A type auto-completion example from VSC. The code has not been seen during training. The expected

return type is Optional[str].

5.7 Type4Py in Practice
To make the Type4Pymodel practical, we developed an end-to-end solution including a web

server and a Visual Studio Code (VSC) extension. We deployed this as an openly accessible

web service that serves requests from the VSC extension. In this section, we describe the

deployment components of Type4Py.

5.7.1 Deployment
To deploy the pre-trained Type4Py model for production, we convert the Type4Py’s PyTorch

model to an ONNX model [202] which enables querying the model on both GPUs and

CPUs with faster inference speed. Thanks to Annoy [199], a fast and memory-efficient

KNN search is performed to suggest type annotations from type clusters.

5.7.2 Web Server
We have implemented a small Flask application to handle concurrent type prediction

requests from users with Nginx as a proxy. This enables us to have quite a number of

asynchronous workers that have an instance of Type4Py ’s ONNX model plus Type Clusters

each. Specifically, the web application receives a Python source file via a POST request,

queries an instance of the model, and finally it gives the file’s predicted type annotations

as a JSON response.

5.7.3 Visual Studio Code Extension
As stated earlier, retrofitting type annotations is a daunting task for developers. To assist

developers with this task, we have released a Visual Studio Code extension for Type4Py [162],

which uses the web server’s API to provide ML-based type auto-completion for Python

code. Figure 5.5 shows an example of a type recommendation from the VSC IDE. As of this

writing, the extension has 909 installs on the Visual Studio Marketplace. Based on the user’s

consent, the VSC extension gathers telemetry data for research purposes. Specifically,

accepted types, their rank in the list of suggestions, type slot kind, identifiers’ name, and

identifiers’ line number are captured from the VSC environment and sent to our web server.

In addition, rejected type predictions are captured when a type auto-completion window is

closed without accepting a type.

By analyzing the gathered telemetry data from Jul. ’21 to Aug. ’21 and excluding the

author(s), of 26 type auto-completion queries, 19 type annotations were accepted by the
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extension’s users. Moreover, the average of accepted type annotations per developer is

69.6%. Given that the gathered telemetry data is pretty small, we cannot draw a conclusion

regarding the performance of Type4Py in practice. However, our telemetry infrastructure

and concerted efforts to broaden the user base will enable us to improve Type4Py in the

future.

5.8 Discussion and Future Work
Based on the formulated RQs and their evaluation in Section 5.6, we provide the following

remarks:

• We used Pyre [171], a static type inference tool, to augment our dataset with more

type annotations. However, this can be considered as a weakly supervision learning

problem [203], meaning that inferred types by the static tool might be noisy or

imprecise despite the pre-processing steps. To eliminate this threat, we employed a

static type checker, mypy, to remove source files with type errors from our dataset.

Future work can devise a guided-search analysis to fix type errors in source files,

which may improve the fix rate.

• It would be ideal for ML-based models to give a correct prediction in their first few

suggestions, preferably Top-1, as developers tend to use the first suggestion by a

tool [158]. Therefore, different from previous work onML-based type prediction [155,

156], we use the MRRmetric in our evaluation. We believe that the MRRmetric better

demonstrates the potential and usefulness of ML models to be used by developers in

practice. Overall, considering the MRR metric, Type4Py significantly outperforms the

state-the-art ML-based type prediction models, namely, Typilus and TypeWriter.

• Considering the overall type prediction performance (RQ1), both Type4Py and Typilus

generally perform better than TypeWriter. This could be attributed to the fact that

the two models map types into a high-dimensional space (i.e. type clusters). Hence

this not only enables a much larger type vocabulary but also significantly improves

their overall performance, especially the prediction of rare types.

• Given the results of RQ1 and RQ2, our HNN-based neural model, Type4Py, has empir-

ically shown to be more effective than the GNN-based model of Typilus. We attribute

this to the inherent bottleneck of GNNs which is over-squashing information into a

fixed-size vector [204] and thus they fail to capture long-range interaction. However,

our HNN-based model concatenates learned features into a high-dimensional vector

and hence it preserves information and its long-range dependencies.

• According to the results of ablation analysis (RQ3), the three proposed type hints, i.e.,

identifiers, code context, and VTHs are all effective and positively contribute to the

performance of Type4Py. This result does not come at the expense of generalizability;

our visible type analysis is not more sophisticated than what an IDE like PyCharm

or VSCode do to determine available types for, e.g., auto-completion purposes.

• Both Type4Py and Typilus cannot make a correct prediction for types beyond their pre-

defined (albeit very large) type clusters. For example, they currently cannot synthe-

size types, meaning that theywill never suggest a type such asOptional[Dict[str,
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int]] if it does not exist in their type clusters. To address this, future research can

explore pointer networks [205] or a GNN model that captures type system rules.

• We believe that Type4Py’s VSC extension is one step forward towards improving

developers’ productivity by using machine-aided code tools. In this case, the VSC

extension aids Python developers to retrofit types for their existing codebases. After

gathering sufficiently large telemetry data from the usage of Type4Py, we will study

how to improve Type4Py’s ranking and quality of predictions for, ultimately, a better

user experience.

5.9 Summary
In this chapter, we present Type4Py, a DSL-based hierarchical neural network type inference

model for Python. It considers identifiers, code context, and visible type hints as features

for learning to predict types. Specifically, the neural model learns to efficiently map types of

the same kind into their own clusters in a high-dimensional space, and given type clusters,

the 𝑘-nearest neighbor search is performed to infer the type of arguments, variables, and

functions’ return types. We used a type-checked dataset with sound type annotations

to train and evaluate the ML-based type inference models. Overall, the results of our

quantitative evaluation show that the Type4Py model outperforms other state-of-the-art

approaches. Most notably, considering the MRR@10 score, our proposed approach achieves

a significantly higher score than that of Typilus and TypeWriter’s by a margin of 8.1% and

16.7%, respectively. This indicates that our approach gives a more relevant prediction in its

first suggestion, i.e., Top-1. Finally, we have deployed Type4Py in an end-to-end fashion to

provide ML-based type auto-completion in the VSC IDE and aid developers in retrofitting

type annotations for their existing codebases.
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6
Conclusion

In the final chapter, we summarize this thesis’s contributions, discuss the implications of

the obtained results, and state possible research directions for future work.

6.1 Revisiting ResearchQuestions
In this section, we reflect on the high-level research questions defined in the introduction

and discuss the implications of the obtained results for the RQs.

RQ1 How effective is call graph pruning for security-focused applications?

The implications of both machine learning-based and non-learning-based call graph

pruning techniques offer distinctive advantages and disadvantages, particularly in the

context of security-focused applications. Each approach addresses different aspects of

the requirements for practical static analysis, providing a multi-faceted perspective on

enhancing the reliability and efficiency of security tools.

Machine learning-based call graph pruning, as demonstrated in Chapter 2, can signifi-

cantly improve the precision of static call graphs by approximately 25%. This is a crucial

refinement for reducing false positives and enhancing the reliability of downstream analy-

ses. However, this method also introduces a trade-off with reduced recall or soundness,

potentially leading to the omission of critical vulnerabilities due to pruned legitimate edges.

Therefore, while ML-based pruning shows promise for speeding up security analyses

through enhanced precision, it necessitates careful calibration of the balance between

precision and recall, using the proposed conservative strategies, to avoid compromising

soundness in vulnerability detection.

Conversely, the non-learning-based approach, exemplified by the OriginPruner tech-

nique (presented in Chapter 3), leverages domain knowledge and the origin methods to

guide pruning decisions. This technique significantly reduces the size of call graphs with-

out the need for extensive training data and at lower computational costs than ML-based

methods. By focusing on the origin methods within the class hierarchy and localness

analysis, OriginPruner maintains the integrity of security analyses and ensures that no

crucial edges are mistakenly omitted. This approach is particularly beneficial for security
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applications requiring rapid and accurate assessments, as it simplifies the call graphs while

maintaining soundness, i.e., preserving the essential paths for vulnerability analysis.

The contrasting approaches highlight a different perspective to call graph pruning:

the balance between using advanced machine learning techniques that require significant

computational resources and training versus employing static, domain-knowledge-based

methods that are less resource-intensive but might offer less flexibility in handling dynamic

and complex software behaviors. Future research and practical applications in security-

focused software analysis will likely benefit from a hybrid approach that combines the

precision enhancement of ML-based pruning with the efficiency and reliability of non-

learning-based methods. This combined approach could mitigate the limitations of each

method and harness its strengths to improve the scalability and accuracy of security tools

in real-world scenarios.

RQ2 How does the call graph-based approach aid in reducing false positives in the vulner-

ability propagation analysis?

In Chapter 4, we examined the effectiveness of a call graph-based approach in reducing

false positives during vulnerability propagation analysis in software ecosystems, specifically

within the Maven ecosystem. The study leverages empirical methods to demonstrate

how incorporating a fine-grained analysis using call graphs significantly enhances the

accuracy of identifying genuinely vulnerable packages by distinguishing between direct

and transitive dependencies at different levels of granularity.

One key implication of the results is the substantial reduction in false positives when

call graph-based analysis is applied. Traditional methods that evaluate vulnerability based

on package dependencies alone tend to overestimate the security risks by marking the

whole application with a vulnerable dependency as at risk. However, the findings show

that only a few packages have executable paths that reach the vulnerable code within their

dependencies. This distinction is critical because it implies that many software systems may

not be as vulnerable as previously thought due to the lack of invocation of the insecure code.

Thus, the call graph approach not only refines the accuracy of vulnerability assessments

but also prioritizes allocating resources to mitigate critical security threats.

Moreover, the findings highlight the impact of granularity in the analysis of vulnerability

propagation. By examining vulnerabilities at both the package and method levels, the study

provides insights into how different levels of analysis can lead to vastly different results

in the context of security risk assessment. For instance, while a package-level analysis

identifies many potentially vulnerable packages, a method-level analysis using call graphs

often reveals a much smaller subset where the vulnerable code is actively executed. This

granular approach helps focus efforts on genuinely critical issues that require immediate

attention, thus optimizing the effectiveness of security measures.

Another crucial aspect discussed in Chapter 4 is the concept of dependency depth. The

study explores how limiting the depth of analysis to direct dependencies only (ignoring

deeper transitive dependencies) can significantly reduce the computational burden of the

analysis while still capturing a majority of the vulnerabilities that would actually impact

the security of the application. This approach suggests a strategic compromise between

depth of analysis and resource usage, which is particularly valuable for large-scale systems

where extensive dependency chains are common.
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In summary, Chapter 4 provides compelling evidence that call graph-based analysis is

a more precise tool for vulnerability propagation analysis in software ecosystems. This

method improves the accuracy of identifying vulnerable packages and helps efficiently

prioritize security efforts. The insights from this study could guide future research and

practices in software security, particularly in enhancing the tools and methodologies for

vulnerability analysis in increasingly complex software environments.

RQ3 How effective is machine learning in inferring type annotations for Python?

The results presented in Chapter 5 highlight significant advancements in machine

learning-based type inference for Python, showing a notable increase in Mean Reciprocal

Rank over previous models like Typilus [156] and TypeWriter [155]. This improvement

underscores the effectiveness of Type4Py’s deep similarity learning approach, which better

discriminates between similar and dissimilar types, thus enhancing the accuracy of type

predictions. Using a type-checked dataset further adds to the robustness of the model,

ensuring that the training and evaluation are based on sound type annotations, which

mitigates the risk of learning from potentially incorrect data.

Given that Type4Py achieves a higher MRR, particularly in its Top-1 suggestions, this

suggests a significant step forward in practical usability. Developers are more likely to

adopt a tool that consistently provides accurate suggestions at the top of its output list, as

this reduces the effort required to select the correct type annotation manually. This feature

directly translates into increased productivity and reduces the potential for errors in code,

especially in dynamically typed languages like Python, where such errors are common.

Moreover, software maintainability can be significantly improved through accurate type

inference. Type annotations make the code more understandable and easier to navigate,

especially for new developers joining a project or revisiting old codebases. The ability of

Type4Py to retrofit accurate types into existing, untyped, or partially typed codebases can

transform legacy Python code into more maintainable and modern code practices, aligning

with Python’s gradual typing philosophy introduced by PEP 484.

The ability of Type4Py to provide highly accurate type suggestions indirectly affects

developer productivity. Since the tool can reliably suggest the correct type annotation on

the first try, developers spend less time typing and more time on actual problem-solving.

This reduction in cognitive load can lead to faster development cycles, quicker feature

rollouts, and more time allocated to optimizing code and implementing robust features.

Furthermore, integrating such a tool within IDEs, as demonstrated by the Visual Studio

Code extension, brings these benefits directly into the developer’s environment, offering

immediate and accessible benefits to their workflow.

Applying machine learning models like Type4Py to infer type information pushes the

boundary of what is possible with advanced programming practices in dynamically typed

languages. It potentially opens the door to more sophisticated static analysis tools that

were traditionally more effective in statically typed languages. For instance, more accurate

type inference can enhance refactoring tools, code completion features, and sophisticated

code analysis tools that can perform more in-depth checks and optimizations based on

predicted types.
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6.2 Discussion
In this section, based on the work presented in this thesis, we discuss the implications of

the obtained results and research directions for future work.

Gathering high-quality data to train ML models is expensive In Chapter 2 and

Chapter 5, we applied deep learning techniques to tackle call graph pruning and type

inference tasks, respectively. Our proposed model, Type4Py outperformed state-of-the-

art approaches at the time, namely, Typilus [156] and TypeWriter [155]. Despite the

promising results, the proposed techniques must be trained or fine-tuned for the task at

hand. Also, preparing ground truth is a daunting task per se, i.e., finding Python projects

with sound type annotations or Java projects with high test coverage to build dynamic

call graphs. Another alternative is to use heuristics and domain knowledge to solve the

task, as shown in Chapter 3. Very recently, (large) code language models have shown

commendable performance in software engineering tasks due to their emergent capabilities,

i.e., in-context learning [206]. Given this, using code language models might be a viable

direction for future research in software analysis. Recent code language models, such as

Codestral [207], alleviate the need for data thanks to their zero-shot or few-short learning

capabilities.

ML-based developer tools may not generalize beyond training data In this thesis,

we evaluated the trained or fine-tuned ML models on a set of unseen samples, namely,

the test set, which is relatively small compared to the myriad of open-source software

projects on the internet. Although their performance on the test sets was impressive, it

is still unclear how an ML-based developer tool, Type4Py would perform in real-world

scenarios when used on different projects outside the ManyTypes4Py dataset. As described

in Chapter 5, we gathered telemetry data when Type4Py was used by developers in the

Visual Studio Code extension. Similar to the studies done to evaluate code completion

models in IDEs [208, 209], future work can study to what extent developers accept the

inferred type annotations by Type4Py in the IDE. This also gives further insights into the

real-world performance of Type4Py and cases where it fails to infer a correct type annotation.

Also, we generally recommend assessing the real-world performance of ML models trained

for code-related tasks, as the ultimate goal is to boost developers’ productivity by using

these models.

A need for standard and systematic evaluation of ML-based developer tools In

addition to the real-world evaluation of the ML-based developers’ tools, a micro-benchmark

is needed to be developed that covers different language features. This is essential for

assessing the performance of type inference and call graph pruning tools because it provides

a controlled environment to measure and compare their effectiveness, providing modern

applications that often leverage diverse language features [24]. In other words, micro-

benchmarks can isolate specific language features, allowing for precise evaluation of how

well these tools handle various constructs such as generics, lambdas, and reflection. This

granularity helps identify inaccuracies in these tools, enabling researchers or practitioners

to improve these tools systematically for better accuracy and completeness. Prasad et

al. [210] proposed a micro-benchmark containing 845 test cases across 18 categories for
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the type inference task. A similar micro-benchmark should also be created to assess the

effectiveness of call graph pruning techniques. For instance, one can start assessing the

effect of CG pruning against the test suites proposed for CG soundness, known as the

Judge benchmark [53].

Combination of machine learning and static analysis is promising In this thesis,

we showed that machine learning techniques can effectively be applied to tackle soft-

ware analysis problems such as type inference and call graph pruning. However, recent

work [211] has shown that a hybrid approach, i.e., the combination of machine learning

and static analysis, is promising for inferring type annotation. Similarly, future work can

investigate the efficacy of a hybrid call graph pruning approach, i.e., the combination of

ML-based call graph pruners with OriginPruner. Specifically, one can study how to use an

ML-based CG pruner with OriginPruner interchangeably or in combination to prune a CG

edge.

Adoption of machine learning-based features into software analysis tools In

Chapter 2, our empirical findings indicate that machine learning-based call graph pruning

is an effective strategy for enhancing the precision of call graphs while maintaining their

soundness, particularly in security-focused applications. However, similar to the previous

work [41, 46], our approach treats pruning as a subsequent step to constructing the call

graph, which introduces a minor computational overhead. An alternative approach could

involve embedding the ML-based pruning functionality directly within existing static anal-

ysis frameworks such as WALA [39] and OPAL [101]. This feature enables users to prune

edges or methods selectively during the call graph construction phase. This integration has

the potential to yield more precise and compact call graphs and speed up the construction

process. Aside from the pruning feature, one can achieve more accurate method resolution

and variable interaction analysis by embedding a type inference component into the call

graph construction tool for dynamic languages (e.g., Python). This, in turn, enhances the

precision and soundness of the call graphs, making them more useful for tasks such as

static code analysis, security vulnerability detection, and program understanding.

ML-based type inference for dynamic languages is still an open problem In 2022,

we published the Type4Py technique, an ML-based type inference tool for Python. Following

this, several research works have extended Type4Py or proposed other techniques to im-

prove type inference for Python and other dynamic programming languages. These newer

techniques include, but are not limited to, OppropBERT [212], HiTyper [211], TypeT5 [213],

DiverseTyper [214], Stir [215], DeMinify [216], Tipical [217], TypeGen [218], DeepIn-

fer [219], PyAnalyzer [220], and LExecutor [221]. Additionally, Type4Py was utilized as

a type inference tool to address other intriguing research problems, such as docstring

generation for Python [222], unit test generation [223], the development of fuzzing tech-

niques [224], and the study of dynamic typing-related practices in Python [225]. Future

work should look into local (small) large language models for type inference with retrieval

augmented generation (RAG), which can be used inside IDEs. RAG might potentially help

with user-defined type annotations in the project, which the LLM has not seen before.
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Software ecosystem-level analysis is insightful but expensive to perform We

introduced the FASTEN project in Chapter 1, which influenced how developers manage

their projects’ dependencies and assess the impact of security vulnerabilities on their

projects. In short, In this thesis, we proposed a conservativeML-based call graph pruner and

a non-learning-based approach (OriginPruner). Since FASTEN operates at the ecosystem

level, i.e., millions of projects andmore than 10TB of data, these two CG pruning approaches

can be a valuable extension to the FASTEN pipeline to make call graphs smaller and speed

up vulnerability analysis. Also, this thesis investigated the vulnerability propagation in the

Maven ecosystem from the perspective of transitivity and granularity. The obtained results

in Chapter 4 empirically show the advantage of a fine-grained approach (i.e., call graph-

level analysis) to the over-inflated dependency-level approach when analyzing security

vulnerabilities in programs. In other words, we showed that FASTEN could be pretty

helpful for developers in better assessing the risk of vulnerabilities found in their programs

or dependencies used.

6.3 Summary
In this thesis, we showed that machine learning is promising for solving software analysis

tasks like type inference and call graph pruning. Also, we investigated the effectiveness of

dependency- and call graph-level vulnerability assessments in the Maven ecosystem. More

specifically, this thesis makes the following contributions:

• In this thesis, we introducedNYXCorpus, a benchmark dataset for evaluatingmachine

learning-based call graph pruning techniques. By addressing limitations of the

previous work, like imbalanced training data and reduced recall, we could implement

conservative pruning strategies that improved the precision of call graphs while

maintaining practicality for security applications. Our work also demonstrates that

pruned call graphs retain high quality, comparable to context-sensitive analyses

(1-CFA), but are produced faster and with smaller sizes (69%), making downstream

applications, i.e., vulnerability propagation, faster (up to 3.5 times).

• Given that ML models need high-quality data and have lofty inference cost, we

developed OriginPruner, a novel method leveraging method origin and localness

analysis to prune false edges in static call graphs effectively. This approach not only

reduces the size of the graphs but does so without compromising the soundness

necessary for critical security applications, such as vulnerability propagation analysis.

Our results confirm the effectiveness of incorporating domain-specific knowledge

into pruning strategies, improving the precision of static program analysis with little

computational overhead.

• Dependency-level analysis highly inflates the actual number of affected projects

by security vulnerabilities. Motivated by this, this thesis investigated the impact

of transitivity and granularity on vulnerability propagation through an empirical

study in the Maven ecosystem. By shifting from dependency-level to method-level

analysis, we provided a more accurate assessment of vulnerabilities, challenging

the conventional overestimation of security risks in the previous work. Specifically,

we found that less than 1% of the packages have a reachable call path to vulnerable
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code in their dependencies. This fine-grained approach suggests a potential for

significantly more efficient and accurate vulnerability assessments, which assists

software developers in taking required actions to mitigate the vulnerability.

• Retrofitting type annotations to existing codebases can be error-prone and laborious.

To alleviate this, we proposed Type4Py, a state-of-the-art ML-based type inference

technique for Python, a dynamically typed language. By employing a deep similarity

learning model, Type4Py effectively distinguishes between type annotations in high-

dimensional space, significantly improving the inference accuracy compared to the

previous work. Type4Py achieves anMRR of 77.1%, which is a significant improvement

of 8.1% and 16.7% over the state-of-the-art approaches Typilus and TypeWriter,

respectively. Alongside its integration into a Visual Studio Code extension, Type4Py

aids developers by retrofitting type annotations into existing Python codebases,

enhancing both productivity and code quality.

In conclusion, our research lays the foundation for a new era in software analysis,

where machine learning and domain-specific knowledge converge to revolutionize how

we develop and maintain software. Our novel and promising approaches not only push

the boundaries of what is possible in software analysis but also pave the way for devel-

oping more accurate, scalable, and practical tools that will shape the future of software

development. We hope this thesis’s results inspire other researchers to explore ML-assisted

software analysis and investigate how to seamlessly integrate it into developers’ workflows,

ultimately aiding them at various stages of the software development lifecycle.
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