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Efficient Optical Flow and Stereo Vision for Velocity Estimation and
Obstacle Avoidance on an Autonomous Pocket Drone

Kimberly McGuire', Guido de Croon', Christophe De Wagter!, Karl Tuyls? and Hilbert Kappen?

Abstract—Micro Aerial Vehicles (MAVs) are very suitable for
flying in indoor environments, but autonomous navigation is
challenging due to their strict hardware limitations. This paper
presents a highly efficient computer vision algorithm called Edge-
FS for the determination of velocity and depth. It runs at 20 Hz on
a 4 g stereo camera with an embedded STM32F4 microprocessor
(168 MHz, 192 kB) and uses edge distributions to calculate optical
flow and stereo disparity. The stereo-based distance estimates are
used to scale the optical flow in order to retrieve the drone’s
velocity. The velocity and depth measurements are used for fully
autonomous flight of a 40 g pocket drone only relying on on-board
sensors. This method allows the MAV to control its velocity and
avoid obstacles.

Index Terms—Aerial Systems: Perception and Autonomy, Au-
tonomous Vehicle Navigation, Micro/Nano Robots, Visual-Based
Navigation

I. INTRODUCTION

EPLOYMENT of Micro Aerial Vehicles (MAVs) is
Dimportant for indoor tasks such as inspections, search-
and-rescue operations, green house observations and more.
Tiny MAVs, also called pocket drones (<50 g, as in Fig. 1),
are ideal for maneuvering through very narrow spaces, as
often occurs in indoor environments. In order for them to
autonomously navigate through a GPS-deprived area, there
are several on-board sensors to consider (laser rangers, motion
sensors, infrared rangers, sonar). The pocket drone’s sensor of
choice is a RGB camera. It is the most energy efficient and
versatile sensing option, as multiple variables can be observed
from the image stream: obstacles, motion, object recognition
and more.

Using cameras enables the Micro Aerial Vehicle (MAV) to
extract essential information for autonomous navigation. A
stereo vision setup with two cameras has been particularly
successful, for instance for obstacle avoidance [1]. Since
there are strict limitations on energy expenditure, sensing,
and processing capabilities on a pocket drone, even relatively
efficient stereo vision methods [2][3] are computationally too
heavy to run on-board a microprocessor. Therefore, an even
more efficient stereo vision algorithm was developed, which
is able to run at 10 Hz on a 20 g flapping wing MAV, the
DelFly Explorer [4]. It is still the lightest fully autonomous
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Fig. 1. Pocket drone with a lightweight forward looking 4g stereo camera.
A very efficient vision algorithm runs embedded on the STM32F4 processor
(168 MHz, 192 kB), to determine velocity and depth necessary for the pocket
drone’s visual navigation.

MAV to this date, which can fly through a room and avoid
obstacles with purely onboard sensing and processing [5].

Since tailed flapping wing MAVs such as the DelFly
Explorer are passively stable, there is no need to compute
their velocity to compensate for drift. However, for inherently
unstable platforms like a quadcopter, velocity estimation is
necessary for stabilization when navigating in constrained
areas. Optical flow is the way in which objects move in two
sequential images and is the most important visual cue for
velocity estimation. It can be calculated in a dense manner
(Horn-Schunck [6], Fiarneback [7]) or a sparse manner, e.g.,
by tracking features such as Shi-Tomasi [8] or FAST [9] over
time with a Lucas-Kanade tracker [10]. These types of tech-
niques have proven themselves on numerous occasions [11],
nonetheless do require a platform with a decent amount of
computing power. On a pocket drone such standard optical
flow methods either cannot be run in real-time or take consist
of an unpractically large part of the processing time, leaving
little to no room for other types of processing. Especially when
autonomous flight is the final goal, optical flow determination
will only constitute a part of what the MAV has to do, as much
more information can be retrieved from the image stream.

In order to design a computationally much more efficient
optical flow algorithm, we have drawn inspiration from the
study in [12], which proposed using spatial edge distributions
to track motion in the image. Specifically, in [13], we pre-
sented EdgeFlow, which improved upon the work in [12] by
introducing a variable time horizon for determining sub-pixel
flow. EdgeFlow ran embedded at 30 Hz on a lightweight stereo
camera positioned underneath a pocket drone. The stereo
camera was pointing down and was estimating optical flow
and a global height estimate, assuming that it was looking
at a flat ground surface. With these, the MAV determined
its own velocity and used this in a guided control, where
it autonomously matched externally-given velocity references.
However, a 4 g stereo camera for a 40 g pocket drone is
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significant, so it is a waste to have this “heavy” sensor looking
downward and not using it to avoid obstacles in the flight
direction.

This paper presents a major extension of EdgeFlow, which
enables the stereo camera to face forward on a MAV, so it
can be used for navigation purposes. As the pocket drone will
now be facing hallways, rooms, doors etc., the assumption of
looking straight at a flat plane will not hold anymore. The same
matching paradigm used to determine EdgeFlow, will now be
used to not only calculate optical flow but also stereo depth
over the entire image. EdgeStereo, as called for convenience,
uses the so-determined distances to properly scale the locally
observed optical flow in order to retrieve a velocity estimate.
This combination of EdgeFlow and EdgeStereo will be called
Edge-FS.

Our main contribution is that the presented method provides
both velocity and distance estimates, while still being compu-
tationally efficient enough to run close to the frame rate on a
very limited embedded processor. As such, the method enables
unstable MAVs such as tiny quadcopters to perform fully
autonomous flights in unknown environments. The EdgeFlow
and EdgeStereo methods will be explained in more detail in
section II. Off-line results for velocity estimates with a set
of images is shown in section III. From here, the algorithm is
embedded on the lightweight stereo camera and placed on 40 g
pocket drone for velocity estimation (section IV-B). Finally,
the velocity estimate is used together with EdgeStereo-based
obstacle detection to perform fully autonomous navigation in
an environment with obstacles (section IV-C). This is followed
by some concluding remarks.

A. Related Work

In related research, several works have achieved optical flow
based control of a MAV, e.g., [14][15][16]. As mentioned
in the introduction, the standard optical flow methods are
computationally too heavy to run on a quadcopter of less than
50 g. For instance, Dunkley et al. have flown with a 25 g
quadcopter before, while computing optical flow for visual
odometry [17]. However, this was done on an external com-
puter. As miniaturization of hardware also poses a limitation
on communication bandwidth, this can result in a significant
delay in the controls. To obtain full autonomy, it would be
wise to uncouple a MAV of any external dependencies.

To design extremely lightweight MAVs for autonomous
flight, some researchers looked into EMD sensors [18] and
other 1D signal sensors [19]. Briod et al. [20] proposed the
design of a 45 g quadcopter for optical flow based control
with 1D flow sensors. They followed up with this research
on a heavier 278 g platform containing 8 of these sensors
pointing in all directions [21]. With this they could hover the
quadcopter in various cluttered environments. The results are
impressive, nevertheless they were achieved by using multiple
single purpose sensors. As they can only sense motion, it does
not leave much room to detect other variables necessary for
navigation.

More similar to our research, Moore et al. implemented
an efficient optic flow algorithm on a small lightweight (2 g)

omnidirectional camera system on a 30 g helicopter [22]. With
a ring of 8 low-resolution image chips (64 x 64 pixels), the
MAV could compute optical flow. It did this by computing the
edges, compressing the images and calculate the displacement
by block matching which resulted in translational optical flow.
The vision calculations where done on-board the helicopter
with 10 Hz, yet the flight controls where computed off-board.
Although the potential of a full on-board implementation is
there, the redundancy lies in the ratio of cameras to sensed
variables. One camera has the potential of detecting flow in 3
directions; they used 8 to only detect 2 (forward and sideways
velocity).

Optical flow can also be used to detect obstacles [23],
however the MAV needs to be constantly on the move. This
is not required if stereo vision is used for depth information.
With this, Oleynikova et al. developed a reactive avoidance
controller for a quadcopter (30 cm in diameter) [24]. From
the obtained stereo disparity map, they accumulated the values
along the columns to get a summed disparity factor. Assuming
that the obstacles are vertical and long, these can be detected
quickly. The stereo map was calculated over the entire image
first before accumulation to a vector. This significantly im-
pacts the amount of computation making it less suitable for
implementation on a smaller MAV.

II. VELOCITY AND DEPTH FROM EDGES

To achieve autonomous navigation with a camera on an un-
stable pocket drone, we need to obtain two variables: velocity
and depth. In the introduction we mentioned that many of the
mainstream computer vision will be computationally too heavy
to run on the pocket drone. In [13], we presented EdgeFlow,
which can detect optical flow within the image in a semi-
dense but computationally efficient manner, embedded on a4 g
stereo board. During the experiments, the stereo camera looked
down to the ground, estimating the pocket drone’s forward and
sideways velocity. This section will explain the modifications
that are necessary to make the stereo camera point forward
and still be able to measure those variables. EdgeFlow will be
concisely recapped. Subsequently, we will present its extension
with EdgeStereo to Edge-FS, which will be used for obstacle
detection in the experiment part of this paper.

A. From Camera to State

When looking orthogonally at a planar ground surface while
moving, the optical flow field is rather simple and allows
for easy determination of the forward and sideways velocities
with the help of a single height measurement. But to navigate
without bumping into anything, the MAV needs to see objects
in the direction of motion, which in this study is forward. Due
to the likely non-planar (3D structure) of the environment in
forward direction, the optical flow field will become more
complex. Moreover, the forward velocity now can only be
observed by means of the divergence of optical flow, which
is more difficult to determine, especially close to the focus
of expansion. Here we delve into how we determine the
velocities with the help of forward facing stereo images. In
principle, the unscaled velocities and the rotation rates can
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Wy Y
Fig. 2. The MAV’s body fixed coordinates with respects to the camera axis,
shown for the left camera (XYZ). The conventional aircraft coordinates of
east north up is used for the MAV as the camera. The image coordinates in
width and height are represented as w and v respectively.

be determined from the image alone, according to the paper
of [25]. Longuet-Higgins and Prazdny implied that measured
flow (0,) is the summation of a translational flow (ol) and
rotational component (o). Before estimating the horizontal
planar velocity, we first have to determine of.

Although [25] assumes rotations in all directions, we can
make simpler assumptions for the pocket drone. Fig. 2 shows
the placement and axis definition of the drone and camera.
For obstacle avoidance it is essential to look in the direction
of motion, which in this case is the direction of the positive
x axis. Here, correctional pitch and roll motion for drift
compensation will be relatively small, but yaw rotations will
be more common. Assuming that the latter only has significant
effect on the optical flow, o can be approximated (assuming
small angles) using the gyroscopes on the on-board IMU of

the pocket drone:

R w
0, ; Wz (1)
’ afFov
R R R
o, = [owl, e 7ou,w] 2)

where w is the width of the image, apoy is the angle of the
Field of View (FOV) and wy is the yaw rotation measured
from the gyroscopes.

Now that o is known, we can isolate o to determine the
pocket drone’s forward (v,) and sideways velocity. With the
coordinate system we use in this paper (Fig. 2), Longuet’s
equation of o! is expressed as:

0, = (—vy +xv,)/dy 3)

d,ol = —v, +xv, “4)

Where x is an array of indices of the image columns. Depth,
d,, scales the optical flow resulting in motion parallax, as
close objects appear to move faster than objects far away.
In [13], a global height estimate was used to scale the optical
flow back to velocities, which is sufficient if the camera is
looking at a flat floor or perpendicular to a straight wall. This
assumption will not hold when the MAYV is flying towards a
wall at an angle or whenever obstacles at different distances
are in the field of view. This non-constant depth needs to
be accounted for when scaling the optical flow, therefore the
stereo depth is needed over the entire size of the image for

(b) Compress Edge distribution

to edge distribution
e MLA.AM

image width i
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Stream of images
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Displacement [pxj™
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Fig. 3. The matching algorithm for both EdgeFlow as EdgeStereo. The
images’ gradients (a) calculated by a Sobel filter, (b) summed up to an edge
distribution. These are (c) matched with other edge distribution. The gray
areas are excluded sections (equal to the range plus half SAD block size).
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Fig. 4. The temporal pixel disparities per column of EdgeFlow is (d) scaled
by EdgeStereo. Following (4), e) a line fit is done on this array of values,
from which the forward and sideways velocities can be extracted from the
slope and intercept, respectively.

a better velocity estimate. Local right-left image disparity
from a stereo camera can be transformed to actual depth in
meters by using the camera parameters, with the following
approximation:

w-er

d, ~ (&)

QFOV " Sy
where r is the baseline between the two cameras, and the
stereo disparities in pixels along the image columns is s,,.

With depth d, and translational optical flow oZ, it is now
possible to calculate the MAV’s sideways and forward velocity
by fitting a linear model to (4). In the next section we will
explain how to obtain both optical flow and stereo depth from
a stream of low resolution stereo images.

B. Procedure for Edge-FS

The matching principle of EdgeFlow is shown in Fig. 3. The
images A and B are first filtered with a Sobel filter to get the
horizontal gradients (Fig. 3(a)). These gradients are summed
along the rows (compressed) to a (spatial) edge distribution
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(Fig. 3(b)). From image A and B, the edge distributions are
compared with Sum of Absolute Differences (SAD) block
matching (Fig. 3(c)). This locates the similar patches of the
edge distributions within a certain distance from each other,
to obtain the pixel displacement between the two.

If image A and B from Fig. 3 are two temporal sequential
images (¢ with £ —1) in time, this will result in the pixel flow,
thus EdgeFlow as presented in [13]. Based on the previous
flow value, EdgeFlow adaptively chooses how far in time
(t — n) it will compare the current edge distribution to. On
top of that, the flow shift predicted by a yaw rotation (o,
as calculated in (2) will shift the start of the block matching
scheme. This and the adaptive time horizon will be present
for the experiments in this paper. Note that in [13], also the
direction along the image height was used to estimate the
forward velocity (as the camera was looking down). In this
paper, it will not be used as the forward velocity (v,) will
now be subtracted from the divergence of Edge-FS.

Previously in [13], the entire edge distribution of the left and
right image were matched to obtain a global depth estimate.
To get a better velocity estimate with a forward camera, we
need to use pixel disparity per column. To calculate both
column-wise optical flow and stereo vision and keep the
algorithm computationally efficient, the exact same matching
principle of EdgeFlow (Fig. 3) is used, resulting in EdgeStereo.
Disparity to depth in meters is calculated with the known
camera parameters and (5) from the last section. Sequentially,
EdgeStereo scales EdgeFlow to compensate for the motion
parallax (see Fig. 4(d)), which results in the left side of (4).
These values will then be fitted to a linear model (Fig. 4(e)),
which gives us the slope and intercept of the line. With the
camera parameters, the forward and sideways velocities are
estimated (Fig. 4(f)).

III. OFF-LINE VISION EXPERIMENTS

Before implementing the algorithm on the actual stereo
board, EdgeFlow was run on a set of stereo-images in MAT-
LAB (version R2015b on a Dell Latitude E7450, i7-5600U
CPU @ 2.60GHz processor). Fig. 5(a) shows screen shots of
the data set used in this section, where the camera moves
towards obstacles at different distances. In Fig. 5(b), EdgeFlow
scaled by EdgeStereo, now dubbed as Edge-FS, results in the
velocity estimates.

Edge-FS is contrasted against the well-known optical flow
method developed by Firneback [7], a dense optical flow
method (Fig. 5). Although less used than a more conventional
KLT-tracker [10], preliminary analyses indicated it to be more
suited for the low-resolution images used here. With its default
parameters set as in MATLAB R2015b, the sparse magenta
line illustrates that the KL T-tracker indeed has difficulties with
the low-quality, low-resolution images (128 x 96 pixels).

For Férneback, depth is determined by matching the stereo-
images with each other and converting the resulting pixel
disparity to a distance. To get velocity, the same line-fit is
used as for EdgeFlow', but here the whole image is considered

IThe EdgeFlow code as embedded on the stereo camera has a mean
computation time for EdgeFlow is 0.00134 seconds (compiled for Linux)
and for Firneback is 0.00466 seconds on the same stereo-image data set.

e
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Fig. 5. (a) Several screen shots of the set of images used for off-line estimation
of the velocity. Here the diversity in amount of texture can be seen. (b) Off-
line velocity estimate calculated by Edge-FS and Férneback, held against the
ground truth for the forward moving camera’s data set.

rather than the compressed form like the edge distributions.
After comparison of the methods with different parameters,
both Edge-FS and Férneback are set up with a window size
of 11 pixels and a search range of 15 pixels (Fidrneback’s
pyramid level at 1). Both forward (x) and sideways (y) velocity
measurements, shown in Fig. 5, are compared against the
“ground truth” as obtained with an OptiTrack motion capture
system?, with 24 infrared cameras. The plots also include
several values to determine the quality of the velocity esti-
mates: Mean Squared Error (MSE), Variance (VAR) and Nor-
malized Maximum Cross-Correlation Magnitude (NMXM).
A low MSE indicates greater similarity and low VAR is a
smaller spread of the measurement from the ground truth. A
high NMXM stands for a better shape correlation between
the two. All these metrics indicate Edge-FS to obtain more
accurate results on this data set than the computationally more
expensive Fiarneback method.

It is important to note that because of the nonlinear relation
between pixel disparity and depth in stereo vision, far dis-
tances are measured less accurately. The disparities for further
distances will become sub-pixel and hard to determine. This
is especially relevant to the small stereo board used in this
study, which we set up to use 128 x 96 pixel images for the
57.4 x 44.5 deg FOV. Also, the translational optical flow of
objects is harder to measure when they are further away, since
it becomes sub-pixel as well. Hence, both terms on the left in
(4), s, and d, become less accurate at far distances. This
correlation between distance and accuracy can be seen in the
box plot of Fig. 6.

Besides the difficulty with larger distances, which is fun-
damental to stereo vision, Edge-FS also has a bit difficulty
determining the forward flow when there is a large lateral

2www.optitrack.com
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Fig. 6. Boxplot of the absolute velocity estimate error of Edge-FS, compared
against the mean observed depth.

motion. Sideways velocity has a 0" order effect on the
flow, while forward velocity information is captured by the
divergence of the flow field, which is a 1%t order effect.
Therefore, the forward velocity is more subject to noise and
harder to estimate (this can be observed in Fig. 6 as the errors
are generally higher for the x-direction than the y-direction).
In this work, the MAV will mostly fly forward. In this situation
lateral flow is kept very small while the divergence is larger
and more observable. A larger SAD window size and filtering
are used to correct for the remaining noise. While further
analysis of the noise is beyond the scope of this article, the
reader is encouraged to look at it in more detail by using our
MATLAB code for Edge-FS including a large diverse image
data-set®.

IV. EXPERIMENTS ON THE POCKET DRONE

In this section, we explain the implementation of Edge-FS
on-board a pocket drone and how it is used in an autonomous
obstacle avoidance task. We will first present the velocity
estimates by Edge-FS during flight on the stereo board.
Subsequently, a closed loop flight is shown, where the drone
autonomously navigates through a room, while maintaining its
velocity and avoiding obstacles.

A. Hardware specifics

Edge-FS local runs embedded on the stereo camera (as
introduced in [4]). Fig. 7 displays two cameras with 1/6 inch
image sensors, with a baseline of 6 cm and a Field of View
(FOV) of 57.5° x 44.5°. The stereo camera has an embedded
microprocessor, an STM32F4 with a speed of 168 MHz and
196 kB of memory in which the largest consecutive memory
block spans 128 kB. The cameras are configured to output
stereo-images with a size of 128 x 96 pixels to fit within
memory and processing constraints. The maximum reachable
frame rate of the stereo camera is 30 Hz, which is not much
affected by the computation of Edge-FS (approx. 0.0175 sec).

For the experiments, a pocket drone is equipped with a
single front-facing stereo camera. A frame of a Walkera QR
LadyBug” is adopted as a base. An adapted smaller variant of
the Lisa-MX> will be used the auto-pilot. The Lisa-MXs also
carries an STM32F4 microprocessor, with a speed of 168 Hz

3https://github.com/knmcguire/EdgeFlow_matlab
“http://www.walkera.com/
Shttp://wiki.paparazziuav.org/wiki/Lisa/MX

ESP-09 WiFI Stereoboard .
‘Walkera \ .
LadyBird 4 . & §
frame N )

v
~

] Lisa-MXs
N

Fig. 7. The 4 g stereo camera mounted on the pocket drone.

and 1 MB of flash memory. With an ESP-09 WiFi module,
telemetry can be broadcasted to the computer to receive all
the measured variables required for validation. The entire
assembly, including stereo camera and battery, weighs exactly
419 g.

The auto-pilot program flashed on the Lisa-MXs is Pa-
parazzi®. The software runs entirely on-board the micro-
processor which governs all the basic flight controls. An
adaptive Incremental Nonlinear Dynamic Inversion (INDI)
controller [26] is used for the attitude stabilization of the MAV.
The guidance controller resides on top of the stabilization
control, to calculate the desired pitch and roll angle, to achieve
a desired altitude position or airspeed. In this paper, it will
be applied to maintain a desired velocity. It will need the
measurements from the stereo camera, operating in parallel
with the Lisa-MXs.

B. Velocity Estimate

We have shown in section III that EdgeFlow can measure
the camera velocity based on a collection of images. Now
implemented in the 4 g stereoboard and fixed on a pocket
drone, the question remains if it can still retain its quality
with all the additional effects caused by motion and vibrations
during flight.

Fig. 8(a), presents the velocity estimates of Edge-FS, during
a manually controlled flight in front of a textured screen
(screen shot in Fig. 8(b) and position in Fig. 8(c) ). The
same OptiTrack system used for the image data set (Fig. 5(a)),
is monitoring its real velocity. The raw unfiltered velocity
measurements of Edge-FS are contrasted with this ground truth
with NMXM, VAR and MSE. Noticeable is that the forward
velocity shows more noise peaks than the sideways velocity
as expected (see Section III). However, in both directions,
Edge-FS matches the ground truth adequately, which should
be sufficient for the closed-loop flight.

To use the actual raw measurements in flight is undesirable.
The most common way is to fuse these vision-based velocity
estimates with the accelerometers. On a larger MAV than
the pocket drone, this would be possible because of the
damping. However, many vibrations are generated by the small
propellers, which are in close proximity with the autopilot, the
accelerometers readings contain too much noise. Therefore, in
this paper, we only use a vision-only approach applying a
median filter to the 5 last velocity measurements, to keep the
delay to a minimum.

Shttp://wiki.paparazziuav.org/
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C. Autonomous Obstacle Avoidance

In the previous subsection, we showed validation of the
velocity estimate as calculated by Edge-FS. Now we will
present a closed-loop flight, where the pocket drone avoids
obstacles identified by means of its stereo vision, while guided
by its velocity estimates. The main goal of this experiment
is to show the potential of the proposed algorithms for full
autonomous navigation. In this section, the vertical position as
measured by OptiTrack is exclusively used for height control,
as no position measurement is used in the horizontal plane
(solely for validation afterwards). This is where the MAV uses
its velocity estimates by Edge-FS.

Fig. 9(b) displays the basic control scheme for the naviga-
tion task. It determines a desired velocity to avoid collisions.
The error between the estimate and the desired velocity is the
input to the velocity guidance controller, which sets an attitude
set-point for the stabilization. Subsequently, EdgeStereo deter-
mines the nearest object to camera. If too close, it will produce
a backward velocity reference to the guidance controller (a
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Fig. 10. (a) A position plot of 3 flights, from which the first lasted 91 seconds,
the second 101 seconds and the third 122 seconds. (b) shows screen shots of
the experiments in the flight arena (left) and in a real-world office (right).
Some posters were added to the latter to provide extra texture.

force field), therefore preventing the pocket drone from hitting
the wall face-on. Fig. 9(a) shows the readings from a short
flight of a simple hover with the obstacle force field.

When encountering a wall/obstacle, the pocket drone will
need to move away from the situation. The avoidance scheme
is a simple finite state machine (FSM) with 4 behavioral states
(see Fig. 10(b)). It starts in check mode, where the pocket
drone will check if there is a detected obstacle within 1 meter
by EdgeStereo. If the way is clear, the pocket drone moves
forward with a constant speed (set now to 0.3 m/s), guided
by the velocity estimate from Edge-FS. If it detects an object
on its path, the MAV will first hover for 1 second actively
controlling the forward velocity to zero. Then it will turn
quickly with a constant angle relative to the heading (here
Aty = 60°). Immediately thereafter, the MAV will evaluate
the situation in the check mode and proceeds from there.

We conducted multiple autonomous flights with the pocket
drone. Fig 10(a) shows the result of 3 representative flights
of the pocket drone with the forward looking stereo camera.
The pocket drone has to navigate in a small room of 4 x 4
meter with varying textured surfaces (screen shot of camera
footage). All the flights lasted longer than 90 seconds, from
which the longest duration was 122 seconds (flight 3). When
the pocket drone brushed against the wall, the safety pilot took
over the flight with a remote control for a safe landing. The
most common failure case during the test flights, is that the
MAV will approach the wall with a small angle. After the
turn with constant angle, the drone will fly almost parallel to
the wall which it can not detect due to its limited FOV. This
is the case for flight 2 and 3, except for flight 1, in which
case the pocket drone was facing the observer after a turn.
Several flights of the pocket drone have been done within a
real-world environment (Fig. 10(c)), which can be observed
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with the accompanying video and YouTube list” in Fig. 10(c).

The mentioned failure case for the autonomous flights is
difficult to overcome. If the MAV would turn and face a large
open space, the distance for EdgeStereo could be far enough
to compromise the quality for the velocity estimate due to the
small base line of the stereo camera. As we already observed
in Fig. 6, this would cause the pocket drone to drift, which
is problematic when near a wall/obstacle after the turn. If an
obstacle is not in its FOV, the chances of collision significantly
increases. This could be solved by merging the check and turn
node of the FSM, so it will only stop turning at a significant
clear path. Another solution is to add a lightweight short range
sensor on the sides of the pocket drone, so it will detect
immediately if the drone is flying close and aside an obstacle.

The obstacle avoidance logic will need some additional
work, however the experiments show that Edge-FS can be used
in navigation overall. During the autonomous flight, the pocket
drone was stabilizing itself using the velocity estimates of its
forward camera alone.

V. CONCLUSION

A computationally efficient optical flow and stereo algo-
rithm is presented in this paper, called Edge-FS. It runs
embedded on a very lightweight stereo camera and can be
carried by a 40 g pocket drone for determining velocity and
depth. The presented algorithm allows the stereo camera to
face forward, a direction in which a complex 3D structure can
be expected.

We presented experiments where the pocket drone with the
stereo camera autonomously navigated and avoided obstacles
in an area of 4 x 4 meters. A simple finite state machine
controller showed that the velocity estimates and the depth
measurement can be used for fully autonomous flight. The
current work lays the basis for stabilization and collision
avoidance on pocket drones with a single, small stereo vision
system.
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