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Abstract

Fleet Cleaner B.V. is a company that specializes in the cleaning of ship hulls of oceanic trade
vessels using a mobile robot. The mobile robot mainly operates out of sight of the operator,
making accurate localization of the robot crucial to its operation. However, the absence of
absolute localization and sources for error build-up like wheel slip and sensor noise, increase
the error between the estimated location and true location over time. Therefore, the goal
of this thesis is to minimize the amount of error build-up between the estimated position and
the true position of the robot, to allow more efficient operation of the robot and to ultimately
allow the robot to operate autonomously.

The main sources for error build-up are determined by simulating the position estimator with
modeled sensor- and perturbation models and evaluating their individual effect on the position
estimator. Algorithms that combat the error build-up are established by synthesizing working
principles from literature and extensively testing these principles using simulated data and
finally verifying them using real but limited data.

The analysis of the sensor noise and perturbations revealed that the EKF is best suited to
estimate the position of the robot and that the main sources for error build-up are wheel slip
and IMU heading drift. The addition of a slip detection and velocity correction algorithm
reduced the average error build-up per meter traveled by a factor of four. The addition of the
heading correction algorithm reduced the error build-up by a factor of three and mitigates
the need for intermittent resetting of the robot heading by the operator.

The velocity and heading correction algorithms improve the position estimator allowing the
operator to more efficiently control the robot. In order to further reduce the error build-up,
it is recommended to add two more wheel encoders to the robot. However, the error will still
be unbounded, making the position estimator unsuitable for autonomous operation.
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Preface

This thesis is a continuation on the literature survey, finalized in March 2017, ‘Sensor fusion
and localization for the positioning system of a ship hull cleaning robot’ – that was conducted
to provide the necessary information to improve the localization system of the Fleet Cleaner
robot.
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Chapter 1

Introduction

This chapter serves to motivate and propose a goal for the writing of this thesis. Firstly, some
background information about Fleet Cleaner and a motivation for designing a localization
system is provided. After the practical introduction, a problem statement is formed in Section
1-3 by examining the current state of the robot’s localization system and the desired state.
The design of such a localization system is constrained by practical limitations, described in
Section 1-4, narrowing the scope of the research topic. In Section 1-5 a set of localization
system requirements is proposed to alleviate the robot from the problems described in Section
1-3 and such that the constraints stated in Section 1-4 are satisfied. Finally, the thesis
approach to achieve the stated goals is described in Section 1-6.

1-1 Fleet Cleaner ship hull cleaning robot

Fleet Cleaner is a start up company that utilizes a mobile robot, as illustrated in Figure 1-1,
to rid ship hulls of fouling such as barnacles and algae, that grow on the ship hull over a
period of time. Depending on the amount of fouling, the fuel costs of ships with a fouled hull
can increase by 20.4% compared to a hydraulically smooth1 hull [2]. Fleet Cleaner reports
fuel costs savings of up to 5% on ships that they have cleaned in the past. Such fuel cost
savings make the Fleet Cleaner robot an attractive cleaning solution for shipping companies
and reduces environmental cost of the shipping industry.

The robot propels itself with three hydraulically actuated wheels across the surface of the
ship hull, while cleaning the surface with high pressured water jets. The high pressured jets
are attached to three rotating cylinders pointed towards the ship hull surface, allowing a total
of twelve water jets to clean the ship hull along the entire width of 1.65 [m] of the robot. The
robot stays attached to the surface by using three permanent magnets that attract the robot
to the metal ship hull.

1Hydraulically smooth means that the roughness on the ship hull surface is less the thickness of the laminar
sublayer of the turbulent flow [1].
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Figure 1-1: Render of Fleet Cleaner robot cleaning the hull of a ship. The figure also displays
the convention of the coordinate frames used throughout the thesis [3].

In order to track the robot while it is under water, the location and orientation of the robot
is probed by a multitude of sensors, summarized in Table 1-1.

Sensor Variable Unit Description
IMU orientation q, R, or (φ, θ, ψ) [rad] Orientation of robot.
IMU gyroscope ωimu [rad/s] Rotational velocity of robot.

IMU accelerometer aimu [m/s2] Acceleration of robot.
Depth meter ydepth [m] Depth of robot.
Wheel encoder vodo [m/s] Velocity of front wheel

Steering angle encoder α [rad] Steering angle of front wheel

Table 1-1: Table summarizing the available sensor inputs. The orientation can be provided in
quaternions, rotation matrices or Euler angles.

Motivation for localization of the robot The localization of the robot on a map of the ship
is essential to the operator controlling the robot for a couple of reasons. Firstly, for the vast
majority of the time during a cleaning operation, the robot is out of sight of the operator
because it is under water. This makes operating the robot without any form of localization
difficult since the operator will have to rely on the Forward Looking Sonar (FLS), which has
a range of 10 [m], for navigation. Furthermore, the localization of the robot is important to
clean the ship hull in a time efficient manner. Fleet Cleaner cleans ships of up to 450 [m] in
length so it is essential to minimize the overlap between cleaned sections of the ship hull [4]
to maximize time efficiency.

The localization of the robot is not only of importance to the operator. After a cleaning
is completed, the customer of Fleet Cleaner is provided with a map of where the robot has
cleaned the ship hull. In order to ensure the customer of a thorough cleaning, a realistic
trajectory must be presented on a 2D side view of the ship hull. Finally, in order to cut back
on operational cost, Fleet Cleaner intends to make the robot autonomous in the future. This
again requires a reliable localization of the robot, as it will prevent the robot from running
into obstacles on the ship hull.

K. Cassee Master of Science Thesis



1-2 Basic concepts 3

1-2 Basic concepts

Before a problem statement can be made, it is necessary to explain some basic principles that
are used throughout the thesis.

Estimator An estimator is a function θ̂ that estimates an unknown parameter θ on which
a data set x[n] depends. The estimation of the parameter θ̂ = g(x[0], x[1], ..., x[n]) is the
problem of parameter estimation [5].

Error build-up In this thesis, error build-up is a term to describe the amount of error between
the true position and estimated position that accumulates per true meter traveled. The error
build-up is defined as

EBU = 100% · ||pest(T )− ptrue(T )||∑T
i=T−N ||ptrue(ti)− ptrue(ti−1)||

, (1-1)

where ptrue(T ) is the true position at time instance T and pest(T ) is the estimated position
at time instance T and N is the size of the data sequence over which the error build-up is
calculated.

Absolute and relative localization In this thesis a distinction is made between absolute and
relative localization. Absolute localization can only be achieved if the position or orientation
with respect to a ship hull fixed frame can be gauged directly by some sensor. Because
absolute sensors can gauge the position and orientation directly, integration of position and
orientation derivatives is not needed and measurement errors do not accumulate. Relative
localization can be used to gauge a position or orientation by integrating a measurement that
is a derivative of the position or orientation [6]. Integrating the wheel encoder velocity output
in order to obtain a position estimate is an example of relative localization [7]. Because of
the accumulation of velocity measurement errors the estimated position drifts away from the
true position over time [8]. This amount of drift is quantified by the error build-up score,
depicted in Equation (1-1).

1-3 Problem statement

The need for a localization system was motivated in Section 1-1. In this section, it is discussed
how error build-up deteriorates the performance of the localization system and why it induces
extra workload on the operator. Furthermore it is discussed what the culprits of the error
build-up in the current position estimator are.

Operator workload The most time efficient way of cleaning the ship is by maneuvering the
robot along the length, or x−direction, of the ship between a start marking, like a weld line,
and a final marking, like depth markers. This movement is illustrated in Figure 1-2. Ideally,
the operator tracks the position of the robot on a 2D side-view map 2 and cross-references this

2This 2D side-view map will henceforth be referred to as ‘the map’.
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position to the sonar imagery once the map shows the robot is near the final marking to ensure
it has covered the length of the ship. However, due to the error build-up between the true
and estimated position, as shown in Figure 1-2, the map will often indicate that the robot is
near the final marking but the true position of the robot will be further away. This forces the
operator to constantly monitor the sonar imagery, in order to avoid missing the final marking.
Additionally, the error build-up requires the operator to reset the estimated position of the
robot on the map intermittently so that when it is provided to the client, it shows a realistic
cleaning trajectory. The resetting of the position estimate is done by cross-referencing land
marks, detected by the FLS, to the map of the ship. This cross-referencing of the FLS imagery
with the map to avoid missing the final mark and to provide a comprehensive map to the
client, puts additional work load on the operator, which distracts from other occupations.
The main causes for error build-up in the position estimate are discussed below.

Figure 1-2: Illustration of the error between the true and estimated position of the robot while
it is moving between a start and final marking. The red and blue triangles represent the true and
estimated robot locations, respectively. The sonar beam of the FLS is represented by the white
triangle. The length between the start and final marking is denoted ‘L’.

2D position estimator The current position estimation is achieved with the kinematics of
a mobile robot on a flat 2D surface with front steering, assuming no-slip conditions. The
kinematics of the front wheel location can be described by [9]

ẋẏ
ψ̇

 =

cos (ψ(t) + α(t))
sin (ψ(t) + α(t))

sin (α(t))
l

 vodo(t), (1-2)

where ψ(t) is the orientation of the robot with respect to a fixed frame, vodo(t) is the wheel
speed of the front wheel, α(t) is the steering angle and ‘l’ is the wheel base, displayed in
Figure 1-3.

The position estimator described in (1-2) assumes the robot moves on a plane, which induces
errors in the position estimate since the robot actually moves on a 3D curved surface. In
order to reduce the error build-up caused by the 2D kinematics, the position estimator must
be extended to a 3D position estimator.
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Figure 1-3: Illustration display-
ing the parameters that are used
to describe the 2D robot kinemat-
ics. The front wheel steering an-
gle is denoted α, the front wheel
speed is denoted vodo and the dis-
tance between the front wheel and
the rear wheel axis, also called
wheel base, is denoted L. The ori-
entation of the robot is denoted ψ
and the position is expressed in x
and y.

Unreferenced heading Extending the position estimator to three dimensions increases the
degrees of freedom of the robot to six, namely three positions (x, y, z) plus three rotations,
parameterized here as extrinsic Euler angles, (φ, θ, ψ), depicted in Figure 1-4. Due to the
presence of three large magnets, the IMU can not employ a magnet, causing the orientation ψ
to be unreferenced which induces heading drift over time [10]. Since the coordinate convention
is selected as displayed in Figure 1-4, the rotation around the ship hull fixed y−axis, θ becomes
unreferenced instead.

Figure 1-4: Image displaying the coordinate system axes and their associated rotations using the
right hand rule. This convention is used throughout the thesis.

Relative localization The position estimator currently only has an absolute measurement
input for the y−coordinate position estimate, using the depth meter. For the estimation of
the x− and z−coordinate position, the position estimator solely relies on relative localiza-
tion. As was previously discussed, such relative localization methods inherently suffer from
the problem of error build-up [8]. In most cases, the main source for error build-up of mobile
robots that use relative localization to estimate the position on slippery or uneven surfaces
is wheel slip [11]. The sensor noise also adds to the error build-up since small errors in the
wheel encoder velocity measurements, steering angle measurement, and orientation measure-
ment accumulate over time due to error integration.

To summarize, the main problem is that the error build-up in the position estimate puts
additional workload on the operator. The main causes for error build-up are listed below.

1. The robot is assumed to be on a flat plane, while in reality it is on a curved 3D surface.
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2. The heading orientation of the IMU is unreferenced, causing it to drift over time.

3. The x− and z− coordinate position estimates are estimated using relative localization,
which inherently suffers from error build-up.

The constraints to which a solution to these problems is subjected is discussed next.

1-4 Localization system constraints

Together with the system constraints, this section also defines a scope to which the operations
of the localization system designed in this thesis limits itself. At the end of this section
the system constraints are combined with the problem statement, discussed in the previous
section, to formulate a thesis goal.

Practical constraints The previously described problem of localization and error build-up
is a common topic in the design of localization systems for Unmanned Underwater Vehi-
cle (UUV)s [12, 13, 14] and land based mobile robots [15, 16, 17]. Generally, these localiza-
tion systems rely on the combination of a model predicted position estimate and absolute
localization systems such as acoustic beacons, in the case of UUVs, or Global Positioning Sys-
tem (GPS) in the case of land vehicles, to counter error build-up. In fact, absolute localization
systems like an acoustic beacon system [4] have been proposed for the Fleet Cleaner robot in
the past. However, the implementation of an external absolute localization systems was never
pursued by Fleet Cleaner due to time and financial constraints and will not be available for
the localization of the robot during this thesis. The localization system will thus be limited
to the sensors listed in Table 1-1 and the computational hardware currently available.

Localization system scope The localization of the robot while it is above water and on the
bottom of the ship brings a whole set of different challenges. Firstly, when the robot is above
water, the localization system loses its absolute reference in y direction since the depth gauge
measurement becomes unavailable. Secondly, when the robot is on the bottom of the ship,
it mainly moves in x and z direction, again making the depth gauge measurement futile for
tracking the robot position – and the robot mainly rotates around the unreferenced y-axis. It
is expected that the set of sensors listed in 1-1 do not suffice to reliably estimate the position
of the robot when it is above water or on the bottom of the ship and therefore these modes of
operation are disregarded in this thesis. Furthermore, the robot operates on the side of the
ship for 75% of the time, so the localization algorithm that functions on the side of the ship
is more urgent.

Thesis goal Combining the problem statement of Section 1-3 with the above discussed
system constraints, the main goal of this thesis is thus to reduce the error build-up in the
unreferenced (x, z)-position estimates, while the robot is underwater and on the side of the
ship, without the use of additional hardware.

In the next section it is discussed what requirements the localization system must fulfill to
achieve this goal to a high enough degree.
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1-5 Localization system requirements

The underlying reason of reducing the error build-up in the position estimate is to reduce the
workload on the operator, as was discussed in Section 1-3. Since the x− and z−coordinate
positions are unreferenced, occasional position estimate adjustment of the operator will be
required. In order to minimize the workload, it is proposed that such an adjustment should
only be required once per cleaning lane. A cleaning lane is defined as the trajectory between
a known start marking at t = T1 and a known final marking at t = T2, depicted in Figure
1-5. The robot performs consecutive cleaning lanes, each at a greater depth, to clean the ship
hull.

Figure 1-5: Illustration of a cleaning lane executed by the robot on a ship hull. The red and
blue triangles represent the true and estimated robot locations, respectively. The sonar beam of
the FLS is represented by the white triangle. The length between the start and final marking is
denoted ‘L’.

In order to satisfy the requirement that the operator should only have to cross-reference the
estimated position with the sonar imagery once per cleaning lane, the error between the true
position and the estimated position should stay within the range −5 and 5 [m], where a
negative error indicates that the true robot position is greater than the estimated position,
as depicted in Figure 1-5 at t = T2. If the error stays within this range, the final marking and
all other objects specified on the map that lie in between the start and final marking, should
be immediately visible in the sonar imagery once the estimated position indicates that the
robot is removed 5 [m] from that object or final marking. Once the final marking is detected
the operator can reset the position estimate on the map. Any error higher than 5 and lower
than −5 [m] counts as workload, since the operator will have to cross-reference the estimated
position with the sonar imagery intermittently to detect the final marking.
The position error acquired at t = T2 depends upon the error build-up of the position estimator
and the length of the ship. The fore and aft of each ship hull side is usually cleaned separately,
so that the FLS always faces the for or aft of the ship. Currently, the largest ship in the world
is the the Prelude FLNG, at 488 [m] long. If the side of the ship is cleaned in two parts, the
error per cleaning lane needs to stay between −5 and 5 [m] over a cleaning lane of 244 [m].
Using Equation (1-1), the error build-up thus needs to stay below 2.05%.
The quantitative and qualitative requirements of the position estimator are summarized be-
low.

• Quantitative
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– The localization system must have an error build-up below 2.05%.
– The localization system must be able to output a position estimate at a frequency

of at least 3 [Hz]3.

• Qualitative

– The position estimator must require a minimal amount of operator resets.
– The localization system must output an informative map that displays where the

robot has cleaned the ship.

The thesis structure that is used to achieve the goal stated in Section 1-4 is discussed below.

1-6 Thesis approach

In order to achieve the thesis goal, the thesis is divided into two parts: Analysis and System
design. In short, the objective of the first part is to identify and study the sources for error
build-up and the objective of the second part is to alleviate the position estimator from these
sources.

Part 1: Analysis

The objective of the first part of the thesis is to gain understanding into the effect that per-
turbations and sensor noise have on the error build-up in the position estimate, such that this
knowledge can be used to efficiently reduce the error build-up. This objective is achieved by
studying sensor data obtained in real life tests to model realistic sensor noise and perturbation
models and testing these models on a well tuned position estimator to evaluate their effect
on the position estimate. The simulated sensor data is also used to evaluate algorithms that
combat the sources for error build-up where real data is unavailable or very limited.

Part 2: System design

The objective of the second part of the thesis is to reduce the error build-up in the position
estimate by countering the identified sources for error build-up. In Chapter 4, 5 and 6 this is
achieved using the following design structure.

Conceptual design Conceptual design specifies the principal solution to the sub-problems.
For each respective chapter this means that the objective is to find and establish a working
principle to reduce the error build-up. This objective is mainly achieved through the review
of literature relevant to the identified error build-up sources.

3Fleet Cleaner states that in order to ultimately make the robot autonomous, an accuracy of within 10 [cm]
is required. The robot travels at 0.3 [m/s], and so the update rate needs to be at least 3 [Hz], otherwise the
true position of the robot exceeds the 10 [cm] accuracy limit.
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Simulation The objective of the simulation part of each chapter is to evaluate the perfor-
mance of the working principles with respect to a simulated ground truth and to identify the
limits of the working principles. It was noted in [18] that it is unlikely that a permanent
ground truth system will be available and so in order to make statements about the per-
formance of algorithms, simulated sensor inputs are necessary. The generation of simulated
data, which is a demanding task, is justified by the following reasons:

1. The performance of working principles can be evaluated for multiple noise realizations.
Under these conditions stronger statements can be made about the robustness to noise
of the working principles.

2. Using the simulated ground truth model, the correct implementation of the position
estimators can be verified in a noise-free test.

3. The current method of using real data to evaluate algorithms does not allow for contin-
uous tracking but only allows for the algorithm performance to be evaluated at certain
points [18].

4. Sources for error build-up identified in Part 1, can be isolated, so that their effect on
the position estimate can be studied individually.

5. External perturbations can be manually modified so that the limits of the working prin-
ciples can be explored and quantitative statements can be made about their robustness.

Validation The validation part of the implementation chapters have as objective to validate
the simulated performance of the working principles using real sensor data. The validation
of the working principles using real data is problematic due to the unavailability of a ground
truth measurement and the limited amount of validation data. Validation of the working
principles is achieved using ad hoc measures to establish a ground truth measurement using
real data that can be used to evaluate the performance of the working principles and assessing
if it is consistent with the simulated performance. The tacit assumption is that if it is, stronger
statements can be made with respect to the performance of the working principle.
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Chapter 2

Sensor data modeling

Recall the objective of Part 1 of the thesis: to gain understanding into the effect that pertur-
bations and sensor noise have on the error build-up in the position estimate. The achievement
of this objective is impeded by two factors:

1. The lack of knowledge about sources for error build-up such as sensor noise and external
perturbations.

2. The lack of a ground truth to evaluate the effect that the sources for error build-up
have on the position estimate.

The acquired knowledge about the sensor noise and external perturbations is pivotal, since it
is used in Chapter 3 to establish a working principle for the 3D position estimator and used in
this chapter to produce sensor noise and perturbation models. Furthermore, the sensor noise
and perturbation models are used in Chapter 3 to evaluate the effect that they have on the
position estimate. The sensor data models and ground truth model are also used to evaluate
the working principles proposed in Chapter 4, 5 and 6 for the reasons listed in Section 1-6
under paragraph ‘Simulation’.

The objective of this chapter is thus to acquire knowledge about the sensor noise and external
perturbation characteristics and to generate sensor data models and a ground truth model.

This is achieved through the analysis of the sensor noise characteristics and external pertur-
bations in Sections 2-1 and 2-2. After which noise, perturbation and ground truth models are
established in Sections 2-3 and 2-4, respectively. In Section 2-5 the objective stated at the
beginning of this chapter is reflected upon.

2-1 Sensor noise characteristics analysis

Currently, Fleet Cleaner only posses sensor noise characteristics specified in the technical
documents of the sensors. These characteristics are likely underestimated since they are
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recorded in a laboratory and do not capture the noise that is induced by the magnetic field
of the ship, the magnets, robot motion and the noise induced by the 150 [m] long umbilical
cord that the robot is attached to.

The appropriate selection of a position estimator for the Fleet Cleaner robot partly depends
upon how the sensor data is distributed statistically as is discussed by S. Thrun et al., in
[17, p. 39] and [17, p. 96]. Likewise, the selection of appropriate modelling techniques for
simulated sensor data also depend upon the statistical distribution of that data [19]. Common
position estimators like the Extended Kalman Filter (EKF) assume that the sensor inputs are
corrupted by Additive White Gaussian Noise (AWGN), meaning completely random noise [17,
p. 39]. However, many sensor noise Power Spectral Density (PSD)s are non-white, and may
not be normally1 distributed, which may upset the position estimator. Thus, the statistical
distributions and colour of the sensor data sequences must be analyzed to select an appropriate
position estimator and to produce noise models to test the position estimator.

The objective of this section is to determine the statistical distributions of the sensors sum-
marized in Section 1-1 and to determine if the PSDs of the sensor noise can be accurately
approximated by a white noise sequence.

2-1-1 Sensor noise distribution analysis

The classification of a data sequence distribution is often done by using a Probability Density
Function (PDF) as a PDF is a function that describes the distribution of random data and
variables [5]. There exists a long list of PDFs that are used to describe data of which the
normal distribution, also known as the Gaussian distribution is the most ubiquitous. If
the noise distributions can approximately be represented by a Gaussian distribution this is
beneficial since it would make the modeling of sensor noise less time consuming [19] and allow
for the implementation of more common position estimators like the EKF [17, p. 39]. So it is
checked if the sensor noise distributions can be approximated with a Gaussian distribution.

Sensor noise data acquisition In order to evaluate the sensor noise distributions, data
sequences of the sensor outputs are obtained of when the robot is in a stationary, underwater
position. To include the effect of wave perturbations on the distribution of the depth sensor,
the data sequence used for the depth gauge distribution was taken at a depth of 60 [cm] in
rough water conditions.

The histograms of the sensor data sequences displayed in Figure A-1.1 show that only the
gyroscope outputs, and depth meter follow an approximate Gaussian distribution. The roll,
pitch, yaw and acceleration data in x− and y−direction have multi-modal2 distributions and
do not appear to be symmetric and so are not approximately Gaussian.

1A normal distribution and a Gaussian distribution are identical and the terms normal and Gaussian are
used interchangeably.

2a multi-modal distribution is a distribution with two or more maxima.
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Sensor Approximately Gaussian Std. deviation σ
Depth sensor Yes 0.0068
Gyroscope x Yes 0.0031
Gyroscope y Yes 0.0030
Gyroscope z Yes 0.0031
Roll No 0.0039
Pitch No 0.0038
Yaw No 0.0031
Steering angle No 0.0004
Wheel encoder No 0.0057
Accelerometer x No 0.0056
Accelerometer y No 0.0052
Accelerometer z No 0.0060

Table 2-1: Table summarizing if the histogram of the stationary sensor data sequence is approx-
imately Gaussian distributed – and the standard deviations of the stationary data sequences.

2-1-2 Sensor noise colour analysis

In the frequency domain, the PSD of the sensor noise is often characterized by its ‘colour’. If
the PSD exhibits so called ‘white’ behaviour, this means that the noise is completely random,
making it less time consuming to model since it can be modeled using a random sequence in
Matlab.
To determine the if AWGN is an accurate model, the data sequences are evaluated using the
Auto Correlation Function (ACF) [20]. The auto-correlation function is defined as [21, p. 101]

Rx(k, l) = E
[
x(k)x(l)T

]
. (2-1)

If the ACF of the sensor data sequence lies within the Rx(k, l) = ± 2√
N

confidence bounds
where N is the sample size, there is a 95% confidence that the sequence can be assumed to
be random and thus white. If the ACF of the sensor data sequence significantly falls outside
these bounds, indicating a high correlation between samples, the sensor noise can be assumed
to be non-white [22, p. 28].
In order to evaluate the PSDs of the sensor noise, the data sequences used to evaluate the
sensor noise distributions are used. Using the ACF of the sensor data sequences, displayed
in Figure A-2.1 it is determined that from the set of sensors listed in Section 1-1 only sensor
noise PSDs of the gyroscope output can be represented using white noise data sequences. The
rest of the sensor noise PSDs are considered to be non-white.

2-1-3 Overview

The objective of this section was to acquire knowledge about the sensor noise characteristics
of the sensors listed in Section 1-1, so that an appropriate position estimator can be selected
and sensor noise can be accurately modeled. In Table 2-2 the sensor noise characteristics are
summarized. The table shows that most sensors are not normally distributed and do not have
white PSDs.
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14 Sensor data modeling

Sensor Approximately Gaussian White noise
Depth sensor Yes No
Gyroscope x Yes Yes
Gyroscope y Yes Yes
Gyroscope z Yes Yes
Roll No No
Pitch No No
Yaw No No
Steering angle No No
Wheel encoder No No
Accelerometer x No No
Accelerometer y No No
Accelerometer z No No

Table 2-2: Table summarizing per sensor if the distributions follow an approximate Gaussian
distribution and if the PSD of the noise is white.

Limitations The sensor noise distribution and PSD results have a limited reliability because
they do not include the effects of vibrations or motion of the robot. Furthermore, it is assumed
that the sensor data distribution are constant over the entire frequency range, which they are
not in reality [23].

2-2 External perturbation analysis

Wheel slippage, and the deterioration of the position estimate, is a problem frequently en-
countered by mobile robots that operate on loose or slippery underground [24, 11]. During
cleaning sessions it is frequently observed that the Fleet Cleaner robot also suffers from wheel
slip, especially when the ship hull surface is extremely slippery due to heavy fouling. Another
major source for error build-up is the IMU heading drift. Usually IMUs use a compass and
the earth’s magnetic field to estimate the heading. However, the IMU employed by the Fleet
Cleaner robot does not posses such a compass, because of the large permanent magnets at-
tached to the robot, and thus the heading estimate drifts away from the true heading over
time [10]. Although both wheel slip and heading drift are expected to be major sources for
error build-up in the position estimate of the Fleet Cleaner robot, no knowledge exists on
precisely how much.

The acquisition of knowledge about the characteristics of the previously described external
perturbations is two-fold. Firstly, the knowledge is needed to design perturbation models that
can be used in simulations for reasons described in Section 1-6 under ‘Simulation’. Secondly,
knowledge about the perturbations can be used at a later stage to establish working principles
that mitigate error build-up induced by the perturbations.

The objective of this section is thus to obtain knowledge about what characteristics can be
used to describe the external perturbations and to quantifying them such that they can be
used later on to generate perturbation models and to combat the perturbations efficiently.
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2-2-1 Wheel slip

Before the characteristics of wheel slip can quantified two types of wheel slip are distinguished
based upon observations namely longitudinal slip and orthogonal slip.

Longitudinal slip causes the associated wheel encoder to register revolutions, even though
these revolutions do not correspond to a linear displacement of the wheel, inducing an error
between the measured velocity and the true velocity. If the wheel registers less revolutions of
the wheel compared to the linear displacement, this is called skidding [25].

Orthogonal slip occurs when the front wheel slips orthogonal to its rolling direction. If
orthogonal wheel slip occurs while the robot is moving in the x−direction on the side of the
ship, as depicted in Figure 1-5, it will induce and error in the y−coordinate position estimate
and in the robot fixed ψ orientation. Both these dimensions have an absolute measurement
available to them and so it is expected that the error build-up induced by orthogonal wheel
slip is negligible. The modelling and evaluation of orthogonal wheel slip is therefore omitted.

Longitudinal wheel slip

In Figure 2-1 longitudinal wheel slip is captured in a sequence of three images. It can be seen
that the pattern on the ship hull surface remains the same while the wheel is rotating, thus
indicating longitudinal wheel slip.

Figure 2-1: Images captured of wheel slipping in longitudinal direction. The red dots mark the
same spoke in a time span of 1 second. The images show that although the wheel is rotating,
the robot remains stationary.

Two types of slip that are observed during operations, so called stationary slip and non-
stationary slip or dynamic slip. The former is a mode of slippage where the front wheel, or
one of the rear wheels slips while the true velocity of the robot is zero. The latter is a mode
of slippage where one of the wheels start slipping while the true velocity of the robot is not
zero. From Figure 2-2 it can be observed that the magnitude of the wheel encoder output is
greater when stationary slip is detected compared to dynamic slip.

Longitudinal wheel slip characteristics From the ranges that are marked as slip in Figure
2-2 it is notable that the output displays oscillatory behaviour. This oscillatory behaviour
is especially visible in the range of [85 − 108] seconds. It can be determined from the data
associated to Figure 2-2 that the frequency at which slip occurs is about once every 23
seconds3, with an average slip length of 7.2 seconds and an magnitude of between 0 and 0.15

3The frequency of occurrence of wheel slip will be adjusted in Chapter 3 based on multiple data sets. This
first requires the development of a position estimator.
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Figure 2-2: Graph displaying the wheel encoder velocity output, stationary and dynamic slip
labels. It can be observed that when stationary slip occurs, the wheel encoder output is higher in
comparison to when dynamic slip occurs.

[m/s]. The transition between dynamic and stationary occurs at approximately 50% of the
maximum longitudinal wheel slip magnitude. Using the camera images, the dynamic slip is
estimated to be approximately 30% of the velocity when the wheel has traction, denoted the
nominal velocity. The oscillatory behaviour is quantified using the standard deviation of the
signal. When no slip is detected in the data sequence displayed in Figure 2-2 the standard
deviation is 0.0066, as opposed to 0.0370 when it is slipping. These values were determined
from the data associated to the ranges [25 − 34] seconds and [106 − 115] seconds in Figure
2-2, respectively.

2-2-2 Heading drift

The occurence of heading drift is reflected in the roll, pitch, yaw data of the IMU in a
stationary situation, displayed in Figure 2-3.

Heading drift characteristics From the data associated to Figure 2-3 it is determined that
the heading direction drifts at a rate between 0 and 0.0037 [rad/s], observed at T = 370 and
T = 580, respectively.
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Figure 2-3: Graph of roll, pitch, yaw data of the IMU in a stationary situation on the deck of
the ship. Note that the yaw (yellow line) of the robot drifts even though the robot is stationary.

2-2-3 Overview

The sub-objective of this section was to obtain knowledge about what characteristics can be
used to describe the external perturbations and to quantifying them such that they can be
used later on to generate perturbation models and to combat the perturbations efficiently.
The external perturbation characteristics are summarized in Table 2-3.

Perturbation Characteristics

Wheel slip

Increase in wheel encoder output of up to 0.15 [m/s].
Increase in standard deviation of wheel encoder output of
about five times the normal value.
The true velocity is approximately 30% of the nominal ve-
locity during dynamic slip and zero during static slip.
The slip mode transitions between stationary and dynamic
at about 50% of the maximum slip magnitude.

Heading drift Drift in the yaw output of between 0 and 0.0037 [rad/s].

Table 2-3: Table summarizing the characteristics of the wheel slip and heading drift perturbations

Limitations The sensor data under consideration, displayed in Figure 2-2 originates from
operating on the HS Tosca, which was considered a medium fouled ship. The quantification
of the perturbation characteristics was based on this data but may vary significantly from
ship to ship because of different degrees of fouling. Furthermore, the drift in the IMU yaw
orientation was estimated while the robot was stationary on the deck of the ship and so the
IMU was unaffected by vibration and electronic interference that may be prevalent during
normal operation.
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2-3 Sensor noise and perturbation modeling

The testing of algorithms, such as the auto-pilot4 algorithm and 2D localization algorithm, is
currently done using real sensor data obtained from cleaning sessions. Repeating the reasons
stated in Section 1-6, using real sensor data to test algorithms is somewhat limited because:

1. The obtained test results cannot be compared against a ground truth.

2. The effects of disturbances like sensor noise, wheel slip and heading drift cannot be
tested individually. It is thus unclear if these disturbances are present in the data and
how they would affect the algorithm.

3. It is difficult to specify the performance limits of the algorithm with respect to said
disturbances since the disturbances are unknown.

4. The algorithms are tested using a small amount of different data sets. This reduces
the reliability of the performance results because they are only evaluated for a small
amount of noise realizations.

In Chapter 3 the effects of the disturbances on the position estimator are studied. In order to
do this and to be able to compare them against a ground truth the disturbances thus need to
be applied to the simulated data sequence individually. In Chapters 4, 5 and 6 algorithms are
established to combat the disturbances, it is therefore again required that the disturbances
are isolated. Furthermore, direct control of the disturbance characteristics allows for the
evaluation of the limits of the algorithm’s performance. The evaluation of algorithms using
multiple noise realizations ensures that the obtained performance results are robust.

The objective of this section is thus to design sensor noise and perturbation models so that
the disturbances can be isolated in the simulated data sequences, the characteristics of the
disturbances can be controlled and multiple sensor noise realizations can be established.

The modeling of real phenomenon like sensor noise and external perturbations can be made
increasingly complex as the models approximate the phenomenon closer and closer. To limit
the amount of time that is spent on modeling the disturbances a set of requirements is provided
that needs to be fulfilled by the perturbation models.

The requirements for the sensor noise models are that they:

• Capture the uncertainty present in the sensor signals. Meaning that the standard de-
viation of the model should at least be as high as the standard deviation of the sensor
signal.

• Approximate the non-white behaviour present in the signals. This requirement ensures
that position estimators that assume AWGN are tested on their robustness to non-white
noise.

The requirements for the external perturbation models are that they:
4This algorithm ensures that the robot stays at the same depth level to reduce the work load on the operator.
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• Capture the varying characteristics present in the external perturbations due to varia-
tion in external conditions. In Section 2-2 a range was assigned for the magnitude of
most perturbations. The models should be able to reflect this range.

• Have the same occurrence frequency and magnitude as the perturbations observed in
real data. This ensures that the effect of the perturbations on the position estimator
reflects that of the real data.

2-3-1 Sensor noise modeling

Sensor noise modeling approaches can be divided into frequency domain methods [26] and
time domain methods [20] of which the frequency domain methods are most often used to
model background noise [23]. The frequency domain modeling approach is selected to model
the sensor noise since the sensor data was obtained from a stationary situation and can thus
be considered to be background noise.

Spectrum fitting method Modeling of background noise using frequency domain methods
can be further divided into spectrum fitting and so called statistical analysis methods. Spec-
trum fitting methods capture the sensor noise by fitting a Transfer Function (TF) to the PSD
of the sensor data to capture the average noise spectrum, assuming that the input of the TF
is white Gaussian noise [19, 27]. A downside to this method is that it assumes a constant
distribution of the data over all frequencies. In order to include the random behaviour of
the noise at each individual frequency, statistical analysis methods can be used [23]. These
methods estimate the PDF of the data at different frequency ranges and in doing so obtain
more accurate noise models. The downside of statistical analysis methods is that appropri-
ate5 sensor data needs to be abundant in order to estimate the PDFs over a wide spectrum
of frequencies. Examples of this are Meng et al. [23] who, in order to obtain PDFs over a
frequency range of 0 to 30 [MHz], used a sensor data set that was obtained over 175 hours
and Benyoucef et al., [19] who, used a data set measured using 56 different sensors to obtain
2600 samples per day with a sample size of 401 in each case, over multiple days. The size
of the data set that was used was thus in the order of 106. Such abundance of appropriate
sensor data is not available for Fleet Cleaner and so the noise is modeled using a more simple
and time efficient spectrum fitting method.

Spectrum fitting design procedure The sensor noise models are designed by first fitting a
continuous time TF to the stationary sensor data PSD. The sensor noise PSD is obtained using
Welch’s method [28], which can be implemented using the pwelch() function in Matlab. After
the continuous time TF is obtained, it is discretized using a zero order hold discretization
method [29, p. 307] with the c2d() function in Matlab. An example of the spectrum fitting
method, employed to model the sensor noise, is provided in Appendix A-3.

Sensor noise model scaling The application of the spectrum fitting method on the non-
Gaussian sensor data reveals its limitations. For instance, the time domain evaluation of the

5appropriate meaning that the data was obtained in a static situation, in the case of Fleet Cleaner robot.
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simulated sensor noise for the IMU orientation has a standard deviation of 0.0570, whereas
the real IMU orientation data has a standard deviation of 0.0031. In order to not overestimate
the simulated sensor noise uncertainty, the noise is scaled with scaling factor

ξ = std(x)
std(x̂) , (2-2)

where std(x) is the standard deviation of the real sensor data and std(x̂) is the standard
deviation of the simulated sensor data. Using the same methodology to determine the noise
model for the depth sensor, the scaled sensor noise model transfer functions summarized in
Table 2-4 were obtained.

Sensor Sensor model TF

Depth gauge Hdepth(z) = 0.002247z−0.0009659
z2−1.067z+0.08081

IMU Euler angles H(φ,θ,ψ)(z) = 0.0007999
z−0.9692

IMU acceleration data Ha(z) = 0.0003205z+0.0002603
z2−1.535z+0.5351

Steering angle encoder Hα(z) = 0.0001892z+8.784e−05
z2−0.6394z+0.1011

Wheel encoder Hodo(z) = 0.004121
z−0.5879

Table 2-4: Table summarizing the scaled sensor noise models. These models are used throughout
the thesis to model the sensor noise.

The simulated sensor signals, corrupted by noise are denoted

s̃i = si +Hi · η(k), (2-3)

where si is the nominal signal of sensor i, Hi is the noise TF associated to sensor i and η(k)
is a normally distributed, unit standard deviation, zero mean data sequence. The gyroscope
noise is simulated by substituting the standard deviation of the gyroscope signal for Hi in
Equation (2-3), summarized in Table 2-1.

2-3-2 External perturbation modeling

In this section the characteristics quantified in Section 2-2 are used to produce external
perturbation models.

Longitudinal wheel slip modeling

The longitudinal wheel slip characteristics specified in Section 2-2 dictate that:

• The longitudinal wheel slip occurs once every 23 seconds,

• The longitudinal wheel slip lasts for 7.2 seconds on average each occurrence.6

6The intensity of the wheel slip is scaled such that it occurs once every 10 seconds with a duration of 3.13
seconds.
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• The wheel encoder output increases between 0 and 0.15 [m/s] during slippage

• The standard deviation of the signal increases by a factor of five.

Using these characteristics, the combined sensor noise and perturbation model depicted below
is formed.

vodo(k) =
{
vnom(k) + ·Hodo · η(k) if SlipMag = 0
vnom(k) + 5 ·Hodo · η(k) + SlipMag if SlipMag > 0

. where SlipMag is the magnitude of the longitudinal slip and vnom the nominal front
wheel velocity under no-slip conditions. The parameter SlipMag varies between 0 and
SlipMagMax = 0.15 [m/s]. The simulated wheel encoder output, corrupted by the sen-
sor noise and longitudinal wheel slip is shown in Figure 2-4.
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Figure 2-4: Graph of simulated wheel encoder data corrupted by the sensor noise model and
longitudinal wheel slip. The velocity profile ‘SlipMag’ is fixed, however, its maximum magnitude
‘SlipMagMax’ can be varied.

Heading drift modeling

The characteristics that describe the heading drift prescribe that the global heading orienta-
tion, provided by the IMU, should drift with a drift rate of between ±0.0037 [rad/s]. The
drift is simulated using

θ(k + 1) = θ(k) +Drift · Ts, (2-4)

where θ(k) is the IMU heading output, depicted in Figure 1-4, at sample k, Drift is a
parameter between [−0.0037 0.0037], and Ts is the sampling time.
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2-3-3 Overview

The objective of this section was to design sensor noise and perturbation models so that
the models fulfill the requirements stated at the beginning of this section. A PSD fitting
method was used to capture the time correlation of the sensor noise that is prevalent in
the sensor output, obtaining the discrete time transfer functions summarized in Table 2-4.
Variable parameters, depicted in Table 2-5 are added to the perturbation models such that
the characteristics can be modified for algorithm evaluation purposes.

Perturbation Parameter Value Unit
Maximum longitudinal slip magnitude ‘SlipMagMax’ [0 0.15] [m/s]
Slip mode transition point ‘SlipTrans’ [0 100] %
Heading drift rate ‘Drift’ [−0.0037 0.0037] [rad/s]

Table 2-5: Table summarizing the external perturbation parameter ranges. The parameters are
used in Chapters 4, 5 and 6 to simulate the proposed working principles with respect to different
parameter settings. The specific tuning of the parameters settings can help gain insight into what
limitations the working principles have.

Limitations The frequency spectrum fitting method is limited in the sense that it assumes
the noise is normally distributed over the entire frequency spectrum. However, this is not
the case and so the influence of the non-Gaussian distribution of the sensor noise can not be
studied. Furthermore, the method only captures background noise since the measurements
were done in a stationary situation. Both the noise models and the perturbation models are
limited as the characteristics were obtained from a single operation and it is likely that these
characteristics vary from operation to operation. However, the external perturbation models
were designed such that varying conditions can be emulated.

2-4 Ground truth modeling

As was already stated in Section 2-3, Fleet Cleaner currently uses real sensor data to evaluate,
among others, new localization algorithms. The downside of this method is that it is difficult
or even impossible to evaluate the absolute performance of the localization algorithms because
no absolute localization, or ground truth, is available.
A ground truth model is needed that outputs the orientation and position of the robot in
three dimensions, given the control inputs α(t) and vtrue(t). Assuming that this ground truth
model is correct, it can be used to verify the correct working of a 3D position estimator by
checking if the position estimator tracks the trajectory of the ground truth model. It can also
be used to simulate curved surfaces like that of a ship hull to evaluate algorithms designed in
coming chapters.
The objective of this section is thus to produce a ground truth model that can be used to validate
the 3D position estimator such that the effect of the external perturbations and sensor noise
on the position estimator and the effectiveness of the working principles that limit the error
build-up can be evaluated.
The requirements for the ground truth models are:
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• The ground truth model must output an orientation and position given the inputs
α(k) and vtrue(k). It is assumed that if the orientation provided by the ground truth
model is used in conjunction with the same inputs by a position estimator and the two
trajectories coincide, the position estimator is validated.

• The ground truth model must produce an orientation that changes in all possible direc-
tion, i.e. it cannot produce a set of orientations that only span a flat surface.

• The position of the robot must be linked to its orientation. The purpose of this is that
it will simulate that the robot is confined to a three dimensional surface.

2-4-1 Ground truth velocity and acceleration models

In Section 2-2 it was shown that the true velocity of the robot during slippage depends on
whether dynamic or stationary slip occurs. From the camera images it was observed that
the robot velocity during stationary slip is zero. The true velocity during dynamic slippage
cannot be gauged due to a lack of an absolute velocity sensor. It is assumed that the true
velocity of the robot during slippage is about 30% that of the nominal wheel velocity. The
true velocity is modeled using

vtrue(k) =


0 if 0 < SlipMag ≥ SlipTrans · SlipMagMax

0.3 · vnom(k) if 0 < SlipMag < SlipTrans · SlipMagMax

vnom(k) if SlipMag = 0

. where ‘SlipTrans’ is a parameter between 0 and 1 that determines at what percentage of the
maximum longitudinal slip magnitude the slip mode transitions from dynamic to stationary
slip. The true acceleration is modeled using with

acc(k) = (vtrue(k)− vtrue(k − 1))
Ts

. (2-5)

2-4-2 Frenet-Serret model

The use of the Frenet-Serret model [30] allows for the generation of a trajectory on a manifold,
given control input vtrue(t) and α(t) as will be shown next.

The trajectory in x-,y-,z-coordinates on a three dimensional real manifold along with the
orientation represented by the Frenet trihedron vectors T ,N and B ∈ R3, as displayed in
Figure 2-5, given the forward velocity ds

dt , can be generated using [30]

d

dt


µ
T
N
B

 =


0 1 0 0
0 0 κ 0
0 −κ 0 τ
0 0 −τ 0



µ
T
N
B

 · dsdt , (2-6)

where µ(t) ∈ R3 is the vector representing the x-,y-,z-coordinates of the robot, ds
dt is the

velocity in the tangential direction of the space curve and κ and τ ∈ R are the curvature and
torsion parameters that describe the shape of the manifold [31].
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Figure 2-5: Illustration of T,N and B along a space curve [32].

In order to include the 2D kinematics in the Frenet-Serret model, let

ω = sin (α) · vtrue
l

·N

be the vector that describes rotation, induced by the 2D kinematics, around the unit normal
vector N. The rate of change of the Frenet trihedron vectors under rotation ω can then be
described by

d

dt

TN
B

 =

ω × Tω ×N
ω ×B

 . (2-7)

Adding Equation (2-7) to the Frenet-Serret model in Equation (2-6) yields

d

dt


µ
T
N
B

 =


0 1 0 0
0 0 κ 0
0 −κ 0 τ
0 0 −τ 0



µ
T
N
B

 · dsdt +


0

ω × T
ω ×N
ω ×B

 . (2-8)

In the Frenet-Serret framework the scalar ds
dt specifies the velocity of the Frenet trihedorn

in the direction of unit vector T . Furthermore, it is preferred that the vector T , coincides
with the robot body axis for all steering angle inputs α. The origin of the trihedron and the
direction of T thus must be chosen in a point where the only direction of movement is in the
direction of T and where T coincides with the robot body axis. One such point is on the
intersection of the robot body axis and the robot wheel axis, denoted point ‘O’, displayed
in Figure 2-6. Let the velocity in the trihedron origin be denoted vO, the steering angle of
the front wheel be denoted α and the forward velocity of the front wheel be denoted vodo.
Furthermore, it is assumed that the wheels do not slip and therefore that the wheels share
an instantaneous axis of rotation in p2 with magnitude ωp2, displayed in Figure 2-6.

The velocity in the origin of the trihedron is then calculated with

vo = ωp2 · |p2 −O|, ∈ R (2-9)
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Figure 2-6: Illustration of top-
down view on robot. The parame-
ter α describes the steering angle
of the robot, vodo the wheel en-
coder velocity, O the origin of the
Frenet trihedron comprised by the
vectors (T,N,B), p1 the rotation
axis of the front wheel and p2 the
instantaneous axis of rotation of
all the wheels.

using Equation (1-2) it can be seen that

ωp2 = sin (α) · vtrue
|p1 −O|

. (2-10)

Furthermore, using Figure 2-6 it is determined that

|p2 −O| =
|p1 −O|
tan (α) . (2-11)

Substituting Equations (2-11) and (2-10) into Equation (2-9) yields

vo = sin (α)
tan (α) · vtrue = cos (α) · vtrue. (2-12)

This yields the robot fixed velocity vector

vO = T · vo =
[
vo 0 0

]
, ∈ R3. (2-13)

Substituting |vO| in Equation (2-8) yields

d

dt


µ
T
N
B

 =


0 1 0 0
0 0 κ 0
0 −κ 0 τ
0 0 −τ 0



µ
T
N
B

 · vo(t) +


0

ω × T
ω ×N
ω ×B

 , (2-14)

which is the continuous-time Frenet-Serret model, used to model the ground truth trajecto-
ries.

2-4-3 Overview

The objective of this section was to produce a ground truth model that can be used to validate
the 3D position estimator and so that the curved surface of a ship hull can be simulated.
Using the Frenet-Serret framework a model was established that produces the position µ(t)
and orientation R(t) using the inputs vtrue(t) and α(t). Furthermore, µ(t) and R(t) are not
arbitrary, they are confined to the robot moving on a manifold M parameterized by κ and τ .
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2-5 Conclusion

The objective of this chapter was to acquire knowledge about the sensor noise and external
perturbation characteristics and to generate sensor data models and a ground truth model.
The sensor noise characteristics were determined by evaluating the PSDs and histogram distri-
butions of stationary sensor data sequences. Furthermore, the heading drift and longitudinal
wheel slip were identified as the most significant external perturbations. The heading drift
rate was determined by measuring the rate of change in the IMU heading output while the
robot was stationary. The longitudinal wheel slip characteristics were determined by analyz-
ing camera footage of the front wheel and the data associated to that footage.
Using a spectrum fitting method, transfer functions were designed that capture the noise
correlation and uncertainty of the sensor noise. External perturbation models were designed
that capture the characteristics of the observed external perturbations. In order to emulate
the movement of the robot on a curved manifold, the Frenet-Serret model was employed,
providing a simulated ground truth trajectory.

Results The analysis of the sensor signals revealed that the only the depth sensor and the
gyroscope signal are normally distributed and that only the noise of the gyroscope has an
approximately white PSD. The analysis of camera footage revealed that the front wheel of
the robot suffers greatly from wheel slip, inducing a bias in the wheel encoder output of up
to 0.15 [m/s]. The analysis of the IMU heading output revealed that the heading drifts up to
a rate of 0.0037 [rad/s]. The control inputs to the robot, external perturbation parameters
and Frenet-Serret model parameters that are used throughout the thesis to simulate sensor
data and ground truth trajectories, are summarized in Table 2-6. A schematic overview of the
simulated ground truth and sensor models is provided in Appendix A-4. The model allows
for the simulation of ship hull-like curved surfaces, the validation of the 3D position estimator
and provides a simulated ground truth for the evaluation the algorithms designed in coming
chapters.

Description Parameter Value Unit
Robot control inputs

Desired nominal forward velocity vnom [0 0.3] [m/s]
Steering angle α [0 0.6] [rad]

External perturbation parameters
Max. longitudinal wheel slip magnitude ‘SlipMagMax’ [0 0.15] [m/s]
Slip mode transition point ‘SlipTrans’ [0 100] [%]
Heading drift rate ‘Drift’ [−0.0037 0.0037] [rad/s]

Frenet-Serret manifold parameters
Curvature κ R -
Torsion τ R -
Length of simulation Tfinal [0 ∞] [s]

Table 2-6: Table summarizing simulated robot control inputs, external perturbation parameters
and Frenet-Serret model parameters.
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Limitations The spectrum fitting method, used to obtain the sensor noise models, is limited
because it assumes that the noise is normally distributed over the entire spectrum, which was
not the case. The method was chosen because it is an easy first approximation of the sensor
noise PSDs and it does not require the evaluation of the sensor noise distribution over the
entire frequency range and the evaluation of the sensor noise PSD over time. More modest
external perturbations like orthogonal wheel slip, wheel deformation, sensor misalignment
and water pressure waves were left out of consideration. The observed external perturbation
characteristics were obtained from camera footage originating form a single cleaning operation,
reducing the reliability of the characteristics. Furthermore, the characteristics were modeled
using parameters and no dynamics were taken into consideration.

Recommendations If more realistic sensor noise models are required, it is recommended
that large data samples are taken at different time instances to model the sensor noise using
more complex statistical analysis methods [23]. The reliability of the identified longitudinal
wheel slip characteristics can be improved by adding a ground truth velocity sensor to the
robot. This will allow for the evaluation of the wheel encoder output with respect to a ground
truth velocity. If such a ground truth velocity is available it will improve the analysis of the
longitudinal wheel slip characteristics analysis. Furthermore, it will be possible to identify a
dynamic model between the wheel encoder output and the true velocity.
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Chapter 3

Position estimation

Currently, the position of the robot is estimated in only two dimensions using the non-linear
kinematics equation depicted in Equation (1-2). This induces error build-up since the robot
operates on a three dimensional curved surface and is incompatible with aspirations to making
the robot autonomous. Furthermore, it is yet unknown to what degree the perturbations,
discussed in Chapter 2 affect the position estimate.

Fleet Cleaner thus requires a 3D position estimate to reduce error build-up and so that the
robot can ultimately be made autonomous. Additionally, knowledge of how much the 3D
estimated trajectory is corrupted by the perturbations discussed in Chapter 2 is valuable
information in itself, but will also help to set-up a strategy to effectively combat the error
build-up in the position estimate.

The objective of this chapter is thus to design a 3D position estimator and evaluate the effect
of the simulated perturbations on the position estimator, designed in Chapter 2.

In Section 3-1 literature is reviewed to establish a working principle that can be used to
estimate the position in three dimensions. After a working principle is established, its workings
are validated in Section 3-2 and the effects of the simulated perturbations designed in Chapter
2 on the position estimator are studied. Finally, in Section 3-3 the obtained results will be
summarized and a strategy for reducing error build-up is proposed.

3-1 3D position estimators

As was previously discussed, the current position is estimated in only two dimensions and in
order to reduce error build-up - and to ultimately make the robot autonomous - a suitable 3D
position estimator is required. In order to design a suitable position estimator several facets
of position estimator design need to be reviewed, which is elaborated on next.

Position estimation for mobile robots is almost always achieved using some sort of Bayesian
filter [33, 34, 35] depicted in Algorithm 1 [17, p. 27], as it accommodates the fusion of a
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dynamic or kinematic model prediction with sensory inputs and uses their respective uncer-
tainty to obtain an optimal estimator. Essentially a Bayesian filter estimates the belief1 of
the orientation and position (or pose) of the mobile robot, denoted µt, by alternating be-
tween predicting the belief using control input ut in step 2 with a state transition model

Algorithm 1 Bayes filter
1: function BF(bel(µt−1),ut,zt)
2: bel(µ̄t) =

∫
p(µt|µt−1, ut)bel(µt−1)dµt−1

3: bel(µt) = η · p(zt|µt)bel(µ̄t)
4: return bel(µt)

and adjusting this predicted belief with a sensor measurement zt in step 3. These steps are
called the prediction step, yielding a prior distribution of the state, and measurement update,
yielding the posterior distribution of the state, respectively [36]. The Bayes filter framework
is very general and leaves a couple of degrees of freedom for the design of a position esti-
mator. Firstly a choice has to be made about what algorithm will be used to estimate the
prior density and the posterior density of the state. Secondly, possible ways of fusing sensor
data in step 3 to improve the estimate need to be reviewed. And thirdly, based on the two
previous design steps sensor and process noise models that are used to estimate the prior and
posterior densities of the state need to be designed.

The objective of this section is thus to establish a working principle for a 3D position estimator
suitable for the Fleet Cleaner robot by answering the following questions:

1. What is a suitable position estimator for the Fleet Cleaner robot given the sensor
noise characteristics, external perturbation characteristics and non-linear state transi-
tion function?

2. What fusion capabilities are there to improve the position estimate?

3. How should the process and measurement noise models be set-up, given the choices
made in the previous two points?

3-1-1 Position estimator comparison

A multitude of position estimators have been used to localize underwater mobile robots,
the more popular ones [37] ranging from parametric filters like the EKF [38] and Unscented
Kalman Filter (UKF) [39] to non parametric filters like the Particle filter (PF) [36]. The EKF,
PF and UKF workings are depicted in Appendices A-5, [17, p. 96] and [17, p. 65], respectively.
In this section the three different filters compared and a selection is made among them.

EKF The EKF is popular because it is an extension on the famous Kalman Filter (KF) for
non-linear state transition models, it is relatively easy to design and code and often provides
good prediction accuracy [40]. Additionally, the EKF is computationally efficient, where each

1The belief reflects the knowledge about the orientation and position of the robot that is not gauged directly
by a sensor measurement but is rather inferred from data using a model.
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update requires time O(k2.4 +n2), where k = dim(zt) and n = dim(µt). In the face of highly
non-linear state transition models the EKF produces bad estimates because the linearization
step doesn’t adequately approximate the non-linear system [40], [17, p. 61]. If a Gaussian
with a low uncertainty is mapped by a non-linear function, the image may still approximate a
Gaussian. However, the higher the uncertainty of the Gaussian that is being mapped by the
non-linear state transition function, the less its image will approximate a Gaussian [17, p. 61],
making the EKF unsuitable for systems with highly non-linear state transition functions. The
EKF framework is based on the assumption that the measurement noise PSD is white.

Particle filter Non-parametric filters like the PF are desirable when the state transition
function is highly non-linear [41], because they don’t rely on a first-order approximation like
the EKF. Another advantage of PFs is that they allow for arbitrary sensor noise characteristics
and the state and measurement inputs do not have to have a Gaussian distribution [36]. This
does, however, require the modeling of the sensor noise distributions. In situations where the
states my abruptly change because of a sudden displacement, the PF is able to recover from
this so called ‘robot kidnapping’ [17, 36, 42], whereas the EKF will not. This is a significant
feature especially in global localization, where the initial location of the robot is unknown.

A drawback of the PF is that the improved robustness and versatility is burdened with an
high computational cost of O(cn), c > 1 [40, 43], this is especially prominent when the state
dimension is high [41], meaning 8 or higher [40].

Unscented Kalman filter It is often asserted that due to the non-linearity in the state-
transition model of mobile robots, the UKF is superior to the EKF when localizing mobile
robots [44, 45, 46, 47]. This is because the non-linear approximation properties of the UKF
are generally better than those linear approximation of the of the EKF [48]. A drawback of
the UKF with respect to the EKF is that it has a higher computational complexity [49].

The advantages of all the position estimators are summarized below to get a good overview.

Comparison

The main advantage of the UKF and the PF over the EKF seem to be that they can better
handle the non-linear state transition model of the robot kinematics, depicted in Equation
(1-2). Advantages that solely the PF has over the EKF is that it can handle non-Gaussian
sensor inputs, that it can approximate the non-Gaussian distribution of the posterior distribu-
tion and that it can recover from robot kidnapping. Below the advantages and disadvantages
are compared to each other and a selection among the position estimators is made.

System non-linearity L. D’Alfonso et al., conducted a comparative experiment on a mobile
robot similar to the Fleet Cleaner robot and showed that the linearization errors induced by
the first order Taylor approximation made in the EKF are negligible [48]. They state that this
is probably due to the fact that the non-linearities in the system model ‘are not bad enough
to highlight any substantial difference’. The same conclusion was reached by M. St-Pierre
et al., in a comparative study between the UKF and EKF in localizing a mobile robot [39].
The estimation performance of the UKF and the EKF in estimating quaternions using noisy
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sensor signals was studied in [49] and they also conclude that the UKF, although it has higher
computational complexity, has equivalent performance to that of the EKF. They ascribe this
to the fact that the covariances of the quaternions are significantly smaller (10−4 to 10−6)
than unity, making the higher order moments very small and thus a Gaussian approximation
of the distributions more appropriate. Furthermore, if the sampling rate is sufficiently high,
meaning 25 [Hz] or higher, the quaternion dynamics behave in a quasi linear fashion, making
the linearization error of the EKF minimal. The fact that the Fleet Cleaner robot is physically
bigger and slower moving than the aforementioned researcher’s robots, and that the sampling
frequency 32 [Hz], makes the linear approximation even more apt at capturing the necessary
dynamics.

Colored noise An argument is to be made in favor of the PF because it can handle the
arbitrary noise distributions that were observed in Section 2-1. However, in order to take
advantage of this feature the sensor noise distributions need to be modeled first and as was
already stated in Section 2-1, the distributions are difficult to obtain in dynamic situations
and are not constant. Furthermore, the EKF has been applied with great success in state
estimation problems that violate the underlying assumptions of the noise being AWGN [17,
p. 61]. Adding to this, the covariances of the sensor inputs are in the order of 10−5 to 10−6,
making them more suitable to approximate with a Gaussian [49].

Robot kidnapping The case of robot kidnapping also does not really apply to the Fleet
Cleaner robot since if the robot is dislodged from he ship hull, the states are initialized on the
side of the ship hull, using the depth gauge, absolute orientation measurements and operator
input.

Selection The PF and UKF thus do not have a significant advantage over the EKF in
dealing with the system non-linearity and non-Gaussian sensor distributions and so the EKF
is used to estimate the position of the robot. It is not argued that the EKF is the best position
estimator, however comparing different position estimators using simulations would take up
too much time compared to the amount of performance increase it is expected to yield.

3-1-2 Sensor fusion

The current fusion scheme is displayed in Appendix A-6, Figure A-6.1 (Left). This method
of position estimation leaves a lot of available sensor inputs unused, namely the rotational
velocity provided by the 2D kinematics, depicted in Equation (1-2) and the linear acceleration
output of the IMU. Methods for incorporating the acceleration data and rotational velocity
data in the position estimate are discussed next.

Rotational velocity fusion The accuracy of the position estimate, to some degree, relies on
the accuracy of the orientation estimate, which is currently provided by the IMU. In their
paper, Zhou et al., [50] have shown that the position estimate error of an indoor mobile robot
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can be reduced by up to 4.5% by fusing2 an orientation estimate obtained by a model such as
the one depicted in Equation (1-2) with an absolute orientation input. Such a fusion scheme
is displayed in Appendix A-6, Figure A-6.1 (Right).

The way in which the rotational velocity is fused with the orientation output of the IMU de-
pends on the parameterization of the attitude3 of the robot. Common attitude representations
are exponential coordinates, Euler angles and Quaternions. Like exponential coordinates, Eu-
ler angles have the downside that the rotation matrix becomes singular for some rotations [51,
p. 31]. Fundamentally, such singularities arise using 3-dimensional attitude representations
[51, p. 33]. Quaternions give a global parametrization of SO(3) meaning that, unlike the Euler
angle representation, singularities do not arise [51, p. 33]. Quaternions are commonly applied
in spacecraft for on-board inertial navigation [52, p. 412] and have been proven effective in
fusing inertial data from a gyroscope with orientational IMU data [53], which is equivalent to
fusing the rotational velocity, predicted by the steering angle and forward wheel velocity, with
IMU data as is the case for the Fleet Cleaner robot. Considering the previously discussed
advantages and disadvantages of different representations the quaternion is most preferable
for the Fleet Cleaner robot.

Linear acceleration fusion A common use for the accelerometer data is to design a so called
‘strap-down’ [54] filter that fuses the gyroscopic output with that of the accelerometer to
obtain a better attitude4 estimation [55, 56]. The orientation provided by the IMU is already
calculated using such a strap-down filter [10, p. 16-18] and so using the acceleration data to
improve the attitude estimation is superfluous. However, fusing the accelerometer data with
that of the wheel encoder may improve the position estimate since the acceleration data does
not become biased like the wheel encoder output when wheel slip occurs.

Fusion schemes

The two different fusion schemes previously discussed leave a total of four fusion schemes to
be evaluated, namely:

1. The current fusion scheme, displayed in Appendix A-6, Figure A-6.1 (Left).

2. The rotational velocity - IMU orientation fusion scheme, displayed in Appendix A-6,
Figure A-6.1 (Right).

3. The wheel encoder - IMU acceleration fusion scheme, displayed in Appendix A-6, Figure
A-6.2 (Left).

4. The wheel encoder - rotational velocity - IMU scheme, which is basically a combination
of the two previous fusion schemes, displayed in Appendix A-6, Figure A-6.2 (Right).

The models for the fusion schemes are derived next.
2Sensor fusion is the practise of combining sensory data from different sensors such that the resulting data

has less uncertainty than those data sources would have individually [41].
3Attitude is a synonym for orientation.
4The attitude of a mobile robot refers to its orientation with respect to a global frame.
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Fusion scheme 1 A vector x in R3 can be rotated by a quaternion using [57]5

x′ = R(q)x, (3-1)

where

R(q) =

(1− 2q2
2 − 2q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (1− 2q2

1 − 2q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (1− 2q2
1 − 2q2

2)

 . (3-2)

The time derivative of the location of the robot can then be calculated by rotating the robot
fixed velocity vector vO, in Equation (2-13), to the ship hull frame using the model

ẋ(t) = g(x(t),u(t)) =

µ̇1
µ̇2
µ̇3

 =

vodo · cos (α)(1− 2q2
2 − 2q2

3)
2 · vodo · cos (α)(q1q2 − q0q3)
2 · vodo · cos (α)(q1q3 + q0q2)


y(t) = h(x(t),u(t)) = y =

[
µ2
]
,

(3-3)

where u(t) = [vodo(t) α(t) q0 q1 q2 q3]T and x(t) = [µ1(t) µ2(t) µ3(t)]T . The
quaternion components are denoted qi, the coordinates [x(t) y(t) z(t)]T = [µ1(t) µ2(t) µ3(t)]T ,
vodo(t) is the wheel encoder output and α(t) is the steering angle.

Fusion scheme 2 Let ω = [ωx ωy ωz]T = [ω1 ω2 ω3]T be the rotational velocities
expressed in the robot frame and q = [q0 q1 q2 q3]T the quaternion describing the orien-
tation of the robot with respect to the ship hull fixed reference frame. The time evolution of
the quaternion [58] can then be described by

q̇ = 1
2q
[

0
ω

]
, (3-4)

using the quaternion product [59] between q and ω. The non-linear model describing the
time-evolution of the quaternion can be represented by


q̇0
q̇1
q̇2
q̇3

 =


1

2||q||(−ω1q1 − ω2q2 − ω3q3
1

2||q||(−ω3q2 + ω1q0 − ω2q3)
1

2||q||(ω2q0 + ω1q2 − ω3q1)
1

2||q||(−ω1q2 + ω2q1 + ω3q0)



y =


q0
q1
q2
q3

 .
(3-5)

By inserting the rotational velocity predicted by Equation (1-2) into Equation (3-5) for ω3,
a model prediction for the quaternions is obtained and can thus be fused with the IMU
quaternion output using the standard EKF framework.

5The notation indicating time dependency of the variables is omitted
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Combining Equations (3-5), (1-2) and (3-1) yields the centralized non-linear model that de-
scribes the time evolution of the quaternions and positions:

ẋ(t) = g(x(t),u(t)) =



q̇0
q̇1
q̇2
q̇3
µ̇1
µ̇2
µ̇3


=



1
2||q||(−ω1q1 − ω2q2 − vodo sin (α)

l q3
1

2||q||(−vodo
sin (α)
l q2 + ω1q0 − ω2q3)

1
2||q||(ω2q0 + ω1q2 − vodo sin (α)

l q1)
1

2||q||(−ω1q2 + ω2q1 + vodo
sin (α)
l q0)

vodo · cos (α)(1− 2q2
2 − 2q2

3)
2 · vodo · cos (α)(q1q2 − q0q3)
2 · vodo · cos (α)(q1q3 + q0q2)



y(t) = h(x(t),u(t)) = y =


q0
q1
q2
q3
µ2

 .

(3-6)

where u(t) = [vodo(t) α(t) ω1(t) ω2(t)]T , x(t) = [q0 q1 q2 q3 µ1(t) µ2(t) µ3(t)]T
and l is the wheel base, depicted in Figure 1-3.

Fusion scheme 3 The acceleration data is fused by making the forward velocity of the robot
origin a state of the system and using the wheel encoder velocity as a sensor input to the
system, depicted in Equation (3-7) and shown in Appendix A-6, Figure A-6.2 (Left). In this
fusion scheme the quaternions are not estimated and are used as a model input.

ẋ(t) = g(x(t),u(t)) =


v̇o
µ̇1
µ̇2
µ̇3

 =


ax

vo · (1− 2q2
2 − 2q2

3)
2 · vo · (q1q2 − q0q3)
2 · vo · (q1q3 + q0q2)


y(t) = h(x(t),u(t)) = y =

[
vo
µ2

]
.

(3-7)

where u(t) = [ax(t) q0(t) q1(t) q2(t) q3(t)]T and
x(t) = [vo(t) µ1(t) µ2(t) µ3(t)]T . The robot frame fixed velocity is denoted vo = cos (α)vodo,
as shown in Equation (2-9).
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Fusion scheme 4 The rotational velocity and acceleration fusion schemes can also be com-
bined as displayed in Appendix A-6, Figure A-6.2 (Right) and depicted in Equation (3-8).

ẋ(t) = g(x(t),u(t)) =



v̇o
q̇0
q̇1
q̇2
q̇3
µ̇1
µ̇2
µ̇3


=



ax
1

2||q||(−ω1q1 − ω2q2 − vodo sin (α)
l q3

1
2||q||(−vodo

sin (α)
l q2 + ω1q0 − ω2q3)

1
2||q||(ω2q0 + ω1q2 − vodo sin (α)

l q1)
1

2||q||(−ω1q2 + ω2q1 + vodo
sin (α)
l q0)

vo · (1− 2q2
2 − 2q2

3)
2 · vo · (q1q2 − q0q3)
2 · vo · (q1q3 + q0q2)



y(t) = h(x(t),u(t)) = y =



vo
q0
q1
q2
q3
µ2


,

(3-8)

where u(t) = [vodo(t) α(t) ω1(t) ω2(t)]T and
x(t) = [vo q0 q1 q2 q3 µ1(t) µ2(t) µ3(t)]T .

Linearization and discretization The EKF framework depicted in Appendix A-5 requires
the calculation of the linearized system matrices Gt, Ft and Ht. Furthermore, the linearized
system matrices need to be discretized such that they can be implemented on Fleet Cleaner
computer hardware. The linearized system matrices are calculated by first calculating the
Jacobian of g() and h() with respect to the states and model inputs using the Matlab function
jacobian(). The Jacobian of the non-linear system is then evaluated at each time step t for
the non-linear model predicted states x̄t, and ut to obtain the linearized system matrices.
The linear system matrices are then discretized using the forward Euler integration method.

3-1-3 Noise matrix design

The process noise matrices of the EKF is often tuned by trial-and-error. Because this method
can take up a considerable amount of time, the noise matrix is often made diagonal so that
a minimal amount of parameters require tuning. This however negates the cross-correlation
between states and can result in poor filter performance [60]. Furthermore, improper design
of the noise matrices Q and R can greatly reduce the performance of the EKF, and can even
cause it to diverge [61]. The sensor noise matrix R in all cases is set as [60]

R =

var(s1) . . . 0
... . . . ...
0 . . . var(sM )

 , (3-9)

where var(sj) is the variance of the jth sensor input, estimated in Chapter 2.
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As was determined in the previous section, the position estimator may have up to 8 states.
The process noise matrix will thus be an 8× 8 matrix with 8(8 + 1)/2 tuneable noise matrix
entries, assuming Q is symmetric [21]. It is thus apparent that an automated method for
designing the process noise matrix is needed to limit the amount of time spent tuning the
matrix. Furthermore, estimating the cross-correlations between states using such an approach
may improve the estimator performance beyond that of an estimator using a diagonal process
noise matrix.

Methods for estimating the process noise covariance can be broadly classified into four cate-
gories: covariance matching, correlation techniques, Bayesian and maximum likelihood meth-
ods, among which the maximum likelihood methods seem to be the most promising for es-
timating process noise covariance matrices associated with non-linear systems [62]. Valappil
and Georgakis [60] developed an algorithm for determining a time-varying process noise ma-
trix, depending on the uncertainty in the process model parameters.

The time-varying process noise matrix is calculated with

Q(t) = kQJp̂(t)Cp̂JTp̂ (t), (3-10)

where
Jp̂(t) =

(
∂f

∂p

)
x(t),u(t),p̂

, (3-11)

f is the non-linear state transition function, p̂ is the parameter, Cp̂ is the covariance matrix
associated with the identification of the parameters and kQ is a tuning parameter, usually set
at 1. Instead of using a time-varying process noise matrix Q(t), Schneider et al. construct a
time-invariant process noise matrix

Q = 1
KN

K∑
j=1

N−1∑
k=0

Qjii(tk), (3-12)

where Qjii(tk) are the diagonal entries of the time-varying Q matrix at time step tk of simula-
tion run j, K is the amount of simulation runs and N the amount of samples per run. They
conclude that the time-invariant process noise matrix achieves similar performance to that
of the time-varying process noise matrix [61], while being less computationally demanding
and more simple. However, the time-invariant process noise matrix does not capture the
cross-correlation of the states. In Section 3-2 the performance of the two design methods is
compared in order to determine if it is worthwhile using a time-varying process noise matrix
with off diagonal entries.

3-1-4 Overview

The objective of this section was to establish a working principle for a 3D position estimator
suitable for the Fleet Cleaner robot, by determining a suitable filter to estimate the states,
determine fusion possibilities and to determine a suitable method to determine the process
noise models.

In Table 3-1 the position estimator selection and possible fusion scheme and process noise
matrix designs are summarized.
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Position estimator selection EKF PF UKF
Fusion schemes FS1 FS2 FS3 FS4
Process noise matrix Time-invariant Q Time-varying Q

Table 3-1: Table summarizing position estimator selection and possible combinations of fusion
schemes and process noise matrix designs to be tested. Fusion scheme 1 is the current fusion
scheme, fusion scheme 2 with added rotational velocity data fusion, fusion scheme 3 with added
acceleration data fusion and fusion scheme 4 is a combination of fusion scheme 2 and 3.

3-2 Extended Kalman Filter simulation

In the previous section, an EKF in conjunction with several fusion schemes, using a time-
variant process noise matrix, was proposed a suitable 3D position estimator. This leaves open
the following questions:

1. Does the EKF properly estimate the position in three dimensions?

2. Does the linear approximation of the EKF sufficiently capture the non-linear kinematics?

3. Is the time-varying process noise matrix design method an improvement over the time-
invariant process noise matrix design method in reducing estimation error induced by
noise?

4. What fusion scheme provides the best estimator performance with respect to the sim-
ulated sensor noise, and external perturbations?

5. What source for error build-up - i.e. sensor noise, wheel slip and heading drift - con-
tributes most to the error build-up between in the position estimate?

The first two questions will be answered by comparing the EKF estimated position against
a trajectory generated by the ground truth model designed in Chapter 2, without sensor
noise. The third question will be answered by comparing the estimator performance using
the time-varying and time-invariant process noise matrices, with added sensor noise on the
sensor inputs. The fourth and fifth question will be answered by corrupting the sensor inputs
with the noise and perturbation models, designed in Chapter 2, and comparing the fusion
scheme estimation performance. In Appendix A-7 a schematic overview is given of the possible
different process noise and fusion schemes combinations.

3-2-1 Ground truth trajectory

Generating a ground truth trajectory using the Frenet-Serret model of Equation (2-6) requires
the specification of the intrinsic parameters (κ, τ) and the inputs (α(t), vodo(t)). In order to
evaluate if the EKF properly estimates the position in three dimensions it suffices to generate
a trajectory on a sphere by setting τ = 0 and κ = 1/R, where R is the radius of the sphere.
The accuracy of the linear approximation of the EKF reduces as the radius of the sphere
becomes smaller. In order to provide a worst case scenario for the linear approximation of the
EKF, the curvature parameter κ is set at 1/2.5 [m], which is the minimal curvature radius
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that the robot is designed to traverse. The Fleet Cleaner technical documentation specifies
that the maximum velocity of the robot is 0.3 [m/s] and that the maximum steering angle
is 0.61 [rad]. Using this information the modeling parameters are set to the values shown in
Table 3-2. Furthermore, the sensor noise is switched off.

vnom(t) α(t) SlipMagMax SlipTrans Drift κ τ Tfinal

0.3 · cos (0.01t) 0.61 · sin (0.1t) off off off 1/2.5 0 600

Table 3-2: Table summarizing the control, perturbation and Frenet-Serret inputs used to evaluate
the EKF working.

3-2-2 EKF workings validation

The workings of the 3D position estimator and the accuracy of the linear approximation of
the EKF is evaluated by comparing the open loop EKF estimated position using noise free
sensor inputs to the simulated ground truth trajectory provided by the Frenet-Serret model,
displayed in Figure 3-1 by the red line. The prediction accuracy is evaluated using the RMSE,
which is a common metric for evaluating estimator performance, defined as [63]

RMSE =

√∑N
i=1 (µ̂i − µi)2

N
, (3-13)

where µ̂i is the estimated position at instance i and µi is the simulated ground truth position
at time instance i [49]. As an example, the noise free sensor inputs generated in the previous
section are used to estimate the trajectory components displayed in Figure 3-1 using fusion
scheme 1. The estimation of the position using fusion scheme 1 yielded an RMSE score of
0.0052 [m]. The RMSE scores of all the fusion schemes are summarized in Table 3-3. From
Figure 3-1 and Table 3-3 it is concluded that all the fusion schemes correctly estimate the
position in three dimensions and also that the linear approximation of the EKF induces very
little estimation error. The fact that the linear approximation induces very little estimation
error in part justifies the selection of the EKF as a suitable position estimator since this is
often advertised as a main drawback of the EKF.

Fusion scheme 1 Fusion scheme 2 Fusion scheme 3 Fusion scheme 4
RMSE 0.0052 [m] 0.0096 [m] 0.0050 [m] 0.0071 [m]

Table 3-3: Table summarizing the RMSE scores between the simulated ground truth trajectory
and the estimated position of the four different fusion schemes. The estimated trajectory was
obtained using the modeling parameters specified in Table 3-2 and the sensor inputs were void of
noise.

3-2-3 Process noise matrix design method comparison

The performance of the fusion schemes is evaluated using the time-invariant process noise
matrix of Equation (3-12) and the time-variant process noise matrix of Equation (3-10) to
determine the best process noise matrix design method.
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Figure 3-1: Frenet-Serret generated trajectory using intrinsic parameters (τ, κ) = (0, 1
2.5 ) and

inputs (α(t), vodo(t)) = (0.61 · sin (0.1t), 0.3 · cos (0.01t)), for a duration of 600 seconds.

The modeling parameter settings summarized in Table 3-2 are used. Also, noise is added to
the sensor signals using the sensor noise models depicted in Table 2-4. The realization of the
noise affects the estimator performance, so to incorporate this randomness in the RMSE score
of the estimators each simulation is iterated 1000 times6.
The test results shown in Figure 3-2 show that the fusion schemes have comparable esti-
mator performance. The time-varying process noise matrix slightly improves the estimator
performance for the second and third fusion schemes and slightly decreases performance for
the second and fourth fusion schemes. From these results it is concluded that the added
estimation performance of the time-varying process noise matrix is doubtful for this set-up.
Furthermore, the fact that it is time-varying makes it computationally more expensive, mak-
ing it less desirable. For these reasons the time-invariant process noise matrix is selected as
most appropriate process noise matrix design method.

Fusion scheme comparison

In order to select the best fusion scheme for the position estimator, the fusion schemes are
simulated with sensor inputs corrupted by noise and external perturbations. The simulation

6Any amount of iterations beyond K = 250 approximated the same RMSE distribution in terms of the
mean and standard deviation of the distribution.
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Figure 3-2: Graph displaying RMSE score distributions of the fusion schemes using a time-
invariant process noise matrix (Left) and time variant process noise matrix (Right) using boxplots,
consisting of K = 1000 samples. The sensor inputs used by the estimators were corrupted by the
sensor noise models.

parameters are set to the values displayed in Table 3-4. Noise is added to the sensor signals
using the sensor noise models. Each simulation is iterated K = 1000 times to incorporate the
randomness of the sensor noise into the RMSE scores.

vnom(t) α(t) SlipMagMax SlipTrans Drift κ τ Tfinal

0.2 · cos (0.01t) 0.61 · sin (0.1t) 0.15 50 0.0037 1/2.5 0 60

Table 3-4: Table summarizing the control, perturbation and Frenet-Serret inputs used to compare
the fusion schemes with respect to the external perturbations.
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Figure 3-3: Graph displaying RMSE score distributions of the fusion schemes, using the time-
invariant process noise matrix. The sensor inputs were corrupted by both noise and perturbations.
The boxplots are assembled from K = 1000 RMSE values.

In Figure 3-3 the distributions of the RMSE scores are displayed. The figure shows that
fusion scheme 4 obtains the best estimator performance compared to the other fusion schemes.
Fusion scheme 4 is thus henceforth used to estimate the position.
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Source for error build-up comparison

The effect of the sources for error build up on the position estimate is evaluated individually
by corrupting the noise free sensor inputs, using the perturbation parameters displayed in
Table 3-5. In order to evaluate the simulated error build-up scores to the error build-up
scores using real data, the simulated ground truth trajectory is a straight line, with α(t) = 0
and κ = 0.

vnom(t) α(t) SlipMagMax SlipTrans Drift κ τ Tfinal

0.2 0 0.15 50 0.0037 0 0 60

Table 3-5: Table summarizing the control, perturbation and Frenet-Serret inputs used to evaluate
error build-up of the EKF with respect to each perturbation individually.

The error build-up scores between the estimated position and the simulated ground truth tra-
jectory are summarized in Table 3-6. The table shows that wheel slip is the main contributor
to the overall error build-up score of the position estimator.

None Noise Wheel slip Heading drift All
Error build-up 0.19% 0.99% 114.47% 6.18% 118.22%

Table 3-6: Table summarizing the error build-up scores between the estimated positions, obtained
by the EKF in conjunction with fusion scheme 4 and a time-invariant process noise matrix, and
simulated ground truth trajectory with the sensor inputs corrupted by noise, wheel slip and heading
drift.

Source for error-build up validation

A way that the simulated error build-up values methods can be validated, without the use
of additional resources, is by comparing the EKF estimated position (or travel distance) to
that of trajectory with a known distance. The distance of such a ground truth trajectory can
be determined by using the FLS images to detect and trace the weld lines on the ship hull
surface, as shown in Figure 3-4, and by linking them to the associated sensor input.

Validation data The data that is selected to validate the performance of the velocity cor-
rection methods is only suitable if

• there exists FLS imagery that can be associated to the data,

• it is associated to a situation where the robot is traveling in a straight line such that it
can be compared against the measured distance between the weld lines detected using
the FLS and so that it can be compared against the simulated error build-up scores.

Using these restrictions, five different data sets summarized in Table 3-7 are obtained, origi-
nating from three different cleaning operations.
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Data set Ship Date Run time
1 Mineral China 10th of September 2017 13:02:06.8-13:04:21.5
2 Mineral China 12th of September 2017 17:49:00.8-17:49:52.6
3 OOCL 1st of August 2017 18:53:03.9-18:54:13.7
4 HS Tosca 7th of July 2017 00:02:14.6-00:02:56.2
5 HS Tosca 7th of July 2017 00:56:43.0-00:58:29.2

Table 3-7: Table summarizing the real data sets used to evaluate the error build-up of the
position estimators.

Only a limited amount of ground truth data sets are available since only a small portion of
the FLS imagery is stored due to a limited amount of storage space.

Figure 3-4: Images of robot being at a distance of 8.7 [m] and 3.0 [m] from the weld line.
Images originate from operation on the HS Tosca on the 7th of July 2017, 00:02:14.6-00:02:56.2.

True error build-up The EKF estimated travel distances and true travel distances, using the
sensor data associated to the validation data sets listed above, are summarized in Table 3-8.
The respective error build-up values, as defined in Equation (1-1), are summarized in Table
3-9. Tables 3-6 and 3-9 show that the simulated error build-up scores (118.22%) overestimate
the maximum true error build-up (57.14%), which is probably mainly due an overestimate in
the wheel slip frequency of occurrence. In order to have the simulated error build-up scores
closer to the scores obtained using real data, the longitudinal wheel slip occurrence is scaled
by a factor of 57.14/118.22 = 0.4833 from once every 10 seconds to once every 20 seconds,
yielding the simulated error build-up scores summarized in Table 3-10.

Data set → 1 2 3 4 5
True 4.4 [m] 3.5 [m] 6.5 [m] 5.7 [m] 11.9 [m]

Estimated 6.8 [m] 5.5 [m] 8.7 [m] 6.5 [m] 11.6 [m]

Table 3-8: EKF predicted travel distances compared to the true travel distances, determined
using the FLS.

Data set → 1 2 3 4 5 Mean
Error build-up 54.55% 57.14% 33.85% 14.04% 2.52% 32.42%

Table 3-9: Error build-up scores between the EKF estimated and true position using real data.
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None Noise Wheel slip Heading drift All
Error build-up 0.19% 0.99% 46.02% 6.19% 54.72%

Table 3-10: Table summarizing the corrected simulated error build-up scores between the esti-
mated positions, obtained by the EKF in conjunction with fusion scheme 4 and a time-invariant
process noise matrix, and simulated ground truth trajectory with the sensor inputs corrupted by
noise, wheel slip and heading drift. The wheel sleep occurrence has been decreased from once
every 10 seconds to once every 20 seconds, to better match the error build-up scores obtained
using real data.

3-2-4 Overview

The objective of this section was to verify the workings of the EKF, evaluate the performance
of the fusion schemes and time-invariant process noise matrix, and determine the effect that
the perturbations have on the position estimate.

Using an open loop noise and perturbation free simulation it was shown that all fusion schemes
correctly estimate the position in three dimensions. The selection of the fusion scheme and
process noise model design method is summarized in Table 3-11.

Position estimator selection EKF PF UKF
Fusion scheme selection FS1 FS2 FS3 FS4
Process noise matrix design selection Time-invariant Q Time-varying Q

Table 3-11: Table summarizing position estimator, fusion scheme and process noise matrix design
selection.

The individual simulation of the perturbations revealed that wheel slip induces the most
error build-up, followed by heading drift, inducing an error build-up of 46.02% and 6.19%,
respectively.

3-3 Conclusion

The objective of this chapter was to design a 3D position estimator and evaluate the effect of
the simulated perturbations on the position estimator designed in Chapter 2. This knowledge
can then be exploited to develop a strategy for reducing the error build-up in the position
estimate.

The review of literature on non-linear position estimators, possible fusion schemes and process
noise matrix design was used to establish working principles for estimating the position of
the robot. Simulations were used to compare the performance of the working principles -
which revealed that an EKF fusing the acceleration data with model predicted rotational
velocity data, using a time-invariant process noise matrix - obtains the lowest RMSE values
with respect to the simulated ground truth.

The effects of the sensor noise and perturbation were studied by applying the noise and
perturbation models designed in Chapter 3 on the EKF and comparing the error build-up
scores between the estimated positions and a simulated ground truth trajectory.
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Results The simulations revealed that the time-varying process noise matrix did not add
significant performance to either of the four fusion schemes. Furthermore, it was revealed
that fusion scheme 4 yields the lowest RMSE score when faced with sensor noise and external
perturbations. Fusion scheme 4 in combination with a time-invariant process noise matrix
is henceforth used to estimate the position of the robot. The simulations also revealed that
the main culprit of the error build-up in the position estimate is wheel slip, which induces an
error build-up up to 46.02%. The heading drift of 0.0037 [rad/s] induced an error build-up of
6.18%. The noise and linear approximation of the EKF induced an error build-up of 0.99%
and 0.19%, respectively. Using real data error build-up scores between 2.52% and 57.14%,
with a mean of 32.42%, were obtained.

Limitations The conclusion that the main source for error build-up is wheel slip, was based
upon simulated results, which has inherent limitations due to sensor noise and perturbation
modeling assumptions. The claim does bear some merit as many researchers point at lon-
gitudinal wheel slip as a main source for error in mobile robots localization using odometry
[64, 65]. The ground truth used to validate the error build-up scores was obtained by visual
inspection of the FLS imagery, which induces errors of approximately 10 [cm]. This chapter
concludes the analysis phase of this thesis, of which it was the objective to gain understanding
into the effect that perturbations and sensor noise have on the error build-up in the position
estimate, such that this knowledge can be used to efficiently reduce the error build-up. Based
on the results obtained in this chapter it is proposed that in order to reduce the error build-up
to within 2.05% the wheel slip and heading drift must both be accounted for.
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Chapter 4

Wheel slip Detection

In the previous chapter it was shown using simulations that wheel slip is the main source for
error build-up in the position estimate. The error build-up in the position estimate violates
the requirement of a maximum error build-up of 2.05% and puts additional workload on the
operator, as was discussed in Section 1-3. In order to reduce error build-up in the position
estimate, which in turn reduces workload on the operator and improves the cleaning trajectory
presented to the client, the wheel slip must be detected and accounted for.

In most cases, the detection of wheel slip is achieved by training a classifier on real labeled1

sensor data. The trained classifier is then used to detect wheel slip by labeling incoming data
in slip (1) and non-slip (0) classes. As was shown in Section 2-2, the slip labeling process
involves the cross-referencing of camera footage to sensor data, which is very labour intensive
making real labeled sensor data limited in numbers but also restricted to a certain type of
ship hull condition. Due to these restrictions of real labeled data, it is expected that the
classifier label prediction accuracy will degrade when faced with varying ship hull conditions.

The objective of this Chapter is thus to design a wheel slip detection algorithm that attains
a high as possible slip label prediction accuracy and retains this accuracy when faced with
varying ship hull conditions.

The design of the wheel slip detector is achieved by firstly reviewing literature on wheel
slip detection in comparable robots to establish working principles. The working principles
designed in Section 4-1 are simulated in Section 4-2, using the sensor and perturbation models
designed in Chapter 2, so that they can be tested under varying ship hull conditions. Finally,
the working principles are validated in Section 4-3 to verify the workings and performance of
the principle using real sensor data.

1Data is labeled when data points have been assigned a label denoting whether they belong to an instance
where the robot is slipping (1) or where it is not (0).
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4-1 Wheel slip detection working principle

Wheel slip detection is a common topic in the design of localization systems for mobile robots
that use odometry to estimate the position of the robot. This is especially true for robots that
operate on loose, uneven or slippery surfaces [66, 67]. As was mentioned before, the detection
of slip is often achieved using a classifier that labels incoming sensor data as belonging to
the slip class (1) or non-slip class (0), denoted deltat. The incoming sensor data is often
arranged in feature vectors, denoted ft. These feature vectors are obtained by transforming
the input data using some function such that a higher prediction accuracy can be attained
by the classification algorithm [68]. In order to account for the imbalance between positive
and negative labels the balanced accuracy metric is used as the prediction accuracy metric,
denoted [69]

Accuracy = (TP/P + TN/N)
2 , (4-1)

were TP is the amount of true positive predictions, TN the amount of true negative predic-
tions, and P and N the total amount of positive negative class labels respectively. In order
to reduce the error build-up as much as possible, the slip detection algorithm must attain a
high as possible slip label prediction accuracy.

Wheel slip detector accuracy requirement In Chapter 3, Table 3-9 it was estimated that
46.02% of the error build-up was due to wheel slip and 0.99% due to combined non-linearity
and noise. In order to reduce the error build-up to 2.05%, assuming the error build-up due to
heading drift can be completely eliminated and the true velocity can be perfectly estimated,
46.02−(2.05−0.99)

46.02 = 97.7% prediction accuracy is required at minimum. Typically, slip detection
algorithms used in mobile robots attain a label prediction accuracy of between 94% and 98%
[11, 25, 70], where an accuracy of 98% is only achieved when the researchers have access to
multiple wheel encoders [11]. Due to the limited amount of training data and access to only
a single wheel encoder, it is unlikely that an accuracy of 97.70% can be achieved. Instead,
emphasis is put maximizing the label prediction accuracy given that limited training data is
available and the ship hull surface conditions are varying.

Supervised versus unsupervised An important distinction in types of classification methods
is the amount of supervision required to train the classifier. In general, supervised classifica-
tion methods attain higher label prediction accuracy than unsupervised classification meth-
ods. However, the former requires labeled data to train the classifier whereas the latter does
not. The manual labeling of sensor data is very time consuming as was discussed in Section
2-2, limiting the amount of labeled sensor data available to training the classifier. Further-
more, it was also established in Section 2-2 that the slip characteristics may vary significantly
depending upon the ship hull surface conditions. If the limited classifier training set is not
general enough to encompass all the varying ship hull conditions, a unsupervised method may
be preferred since they can be trained on a larger, more general, unlabeled data set and have
better adaptive capabilities.

Because of this trade-off, in this section three classification methods, ranging from supervised
to unsupervised, as displayed in Figure 4-1 are proposed in this section.
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Figure 4-1: Schematic overview of expected pre-
diction accuracy of classification methods in de-
scending order of supervision under unvarying and
varying conditions. For instance, Method 1 is a
supervised classification algorithm, thus requiring
labeled data to train the algorithm. Since labeled
data is scarce and therefore limited to one type of
ship hull condition, it is expected that the super-
vised classifier prediction accuracy degrades when
faced with varying ship hull conditions. Under
nominal conditions, meaning that the ship hull
conditions associated to the incoming data are
roughly the same to that of the training data, it
is expected that the supervised method will attain
the highest prediction accuracy.

The objective of this section is to design features that can be used for classification and to pro-
pose three classifiers, ranging from supervised to unsupervised, such that the most appropriate
classifier can be selected based on simulations, simulating the varying ship hull conditions, in
Section 4-2.

Firstly, features that are used to detect slip are designed in Section 4-1-1 - and secondly, three
classification methods are proposed in Section 4-1-2. At the end of the section an overview
of the design choices is given.

4-1-1 Feature engineering

In order to get better classifier prediction accuracy, the sensor data must first be transformed
into features. Features that are commonly used in wheel slip detection for mobile robots are
described below. The features that are discussed have all been employed in slip detection for
mobile robots, where a label prediction accuracy of 94% or higher was attained.

Model predicted velocity feature

The detection of wheel slip can be achieved by comparing the wheel encoder output to a
model predicted wheel speed output, given the input to the motor or, in the case of the
Fleet Cleaner robot, to the hydraulic valves. The model predicts the wheel speed under the
conditions that the wheel is not slipping. If the wheel starts slipping, the model prediction
of the wheel speed and the wheel encoder output will diverge. This information can in turn
be used to detect slip. This feature was shown to be effective by Ojeda et al., [24] in their
design of a slip detection algorithm for a mobile robot operating on a loose sandy surface.

A Single Input Single Output (SISO) ARX model is used to predict the true velocity under
no slip conditions, using the signal to the hydraulic valve as an input. The ARX model is
one of the most simple models used in system identification, making its implementation time
efficient. The ARX model assumes a model of the form [71]

yt + a1yt−1 + ...+ anayt−na = b1ut−1−nk + ...+ bnbut−nb−nk + et, (4-2)
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where yt is the output at time instance t, ut−1 is the input at time instance t− 1, ‘na’ is the
number of poles, ‘nb’ is the number of zeros 2, ‘nk’ is the delay before the input occurs in the
output, and ‘et’ is a white noise disturbance. The parameters ai and bj are estimated using
the LLS solution [21, p. 28]. The tuning of the ARX has three degrees of freedom, namely
the amount of zeros ‘nb’, the amount of poles ‘na’ and the input delay ‘nk’. The tuning of
these parameters is discussed next.

ARX model tuning In order to reduce the chances of overfitting the ARX model to the
tuning data set [72], a K-fold cross-validation on a data set with sample size N = 1281 in
combination with a grid search is used to tune the parameters set (na, nb, nk). More advanced,
faster methods exist for finding the optimal parameter set, however, the grid search is easy
to implement and can yield the same classifier performance [73].
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Figure 4-2: Graph of model fit between wheel encoder velocity and ARX model. The graph
shows that despite a RMSE score of 0.0128 [m/s] on the validation set, the model predicted
velocity has little bias with respect to the wheel encoder velocity output.

The grid search is conducted by selecting different combinations for (na, nb, nk) and 4-fold
cross-validating the ARX model on the tuning data set, as displayed in Figure A-8.1. This
yields four model performance evaluations per parameter combination. The optimal pa-
rameter set (na, nb, nk) is found by evaluating the RMSE, depicted in Equation (3-13) for
parameter sets na = [1 : 10], nb = [1 : na− 1] and nk = [1 : 10]3.

Using a 4-fold cross-validation the optimal parameters were found to be (na, nb, nk) = (2, 1, 2),
yielding an average RMSE score of 0.0122 [m/s] on the tuning data set and an RMSE score
of 0.0128 [m/s] on the validation data set. The tuned ARX model scored an average error of

2The amount poles and zeros are equivalent to the amount of terms in the denominator and numerator of
a transfer function, respectively.

3In this thesis, the notation [a : b] is used to describe a vector containing only integer values which increase
from a to b with increments of 1. e.g. [1 : 4] = [1 2 3 4]
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−1.6355 ·10−6 and 2.4679 ·10−5 on the tuning and validation data set respectively, indicating
there is little bias between the model prediction and the wheel encoder output. The model
fit between the wheel encoder velocity and ARX model is displayed in Figure 4-2.
The discrete time TF model used to predict the velocity is

G(z) = 2.278 · 10−6z−2

1− 0.9467 · z−1 + 0.0822z−2 , T s = 0.03125, (4-3)

where G(z) is a discrete-time transfer function between the hydraulic valve input U(z) and
the robot velocity V (z), denoted vmodel, z is the lag operator - and Ts is the sampling time.
The feature that gauges the discrepancy between the model predicted velocity and the wheel
encoder velocity is denoted

f1(k) = |vodo(k)− vmodel(k)|. (4-4)

Model mismatch Changing environmental parameters, like the current velocity of the water
and roll resistance of the front wheel, cause a model mismatch between the predicted velocity
and the wheel encoder output. It is expected that this mismatch will degrade the performance
of a classification algorithm that is using f1 as a feature. Such a model mismatch is displayed
in Figure 4-3, where the I/O model of Equation (4-3) is used to predict the front wheel
velocity using a data set from a different cleaning operation. From the figure it can be seen
at T = 326.3 [s] a steady state model mismatch occurs of 100% · ((0.11/0.092)− 1) = 19.56%.
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Figure 4-3: Graph displaying mismatch between the wheel encoder velocity output and the model
predicted velocity. At T = 325 a steady state mismatch of 20% is observed.

The model mismatch between the model predicted velocity and wheel encoder velocity is
modeled such that it can be used in Section 4-2 to evaluate its effect on the classifier prediction
accuracy. The model mismatch is modeled with

vmodel(k) = vnom(k) +MM · vnom(k), (4-5)
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where ṽnom(k) is the nominal velocity without longitudinal wheel slip perturbation and
MM = [−20 20]% is the parameter specifying the amount of model mismatch. The pa-
rameter is added to the user specified modeling parameters under ‘external perturbation
parameters’ in Table 2-6.

Model predicted rotational velocity feature

If the wheel encoder output is perturbed by longitudinal wheel slip, using Equation (1-2) it
can be seen that

ωztrue = vnom ·
sin (α)
l
6= ωzmodel = vodo ·

sin (α)
l

,

∀α, vnom, vodo s.t α, (vnom − vodo) 6= 0
(4-6)

where ωztrue and ωzmodel are the true and model predicted rotational velocity around the robot
fixed frame z−axis, respectively. Since ωztrue is gauged by the IMU gyroscope, these quantities
are often used to detect slip [66, 25, 74]. The feature that gauges the difference between the
model predicted and gyroscope rotational velocity is denoted

f2(k) = |ωzmodel(k)− ωzgyro(k)|. (4-7)

Variance of sensor inputs feature

The variance of the sensors signals is often used as a feature to detect robot immobilization
[11, 70, 75]. The variance is calculated over a sliding window with

Featvarx (k) = 1
N

k∑
i=k−N

(x(i)− µ)2, (4-8)

where µ is the sliding window average and N the size of the sliding window. In order to get
the best label prediction accuracy, the parameter N needs to be tuned. The sliding window
variance is applied to the wheel encoder velocity output and the gyroscope rotational velocity
output, yielding the features

f3(k) = 1
N

k∑
i=k−N

vodo(i)− 1
N

k∑
j=k−N

vodo(j)

2

, (4-9)

and

f4(k) = 1
N

k∑
i=k−N

ωzgyro(i)− 1
N

k∑
j=k−N

ωzgyro(j)

2

, (4-10)

A tuning method to find an optimal window length ‘N ’ is discussed next.
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Feature parameter tuning A simple method to check the ‘goodness’ of a feature is by
evaluating its correlation to the class labels using the Pearson Correlation Coefficient (PCC)
[68], defined as

PCC = cov(fi, Y )√
var(fi) · var(Y )

, (4-11)

where Y are the true class labels of the data points and fi the feature vectors. The PCC is a
measure of correlation between a feature and the hand labeled data. The PCC takes values
in the range of [−1 1], where PCC> 0 indicates a positive correlation, PCC< 0 a negative
correlation and PCC = 0 indicates zero correlation. The more correlated a feature is to the
truth labels, the better it can be used by a classification algorithm to classify the data [68].
The PCC method is used in Section 4-2 to evaluate the optimal value of the window length
‘N ’ for the features in Equation (4-8).

To summarize, the standardized feature vector 4 that is used to detect slip is denoted

ζ =


std(f1)−1 0 0 0

0 std(f2)−1 0 0
0 0 std(f3)−1 0
0 0 0 std(f4)−1

 ·


f1
f2
f3
f4

−

mean(f1)
mean(f2)
mean(f3)
mean(f4)


 . (4-12)

Feature standardization5 the input features is important when features with different units
are used and has shown to increase classifier performance [76].

4-1-2 Supervised machine learning

Supervised machine learning algorithms can be broadly divided into logic based algorithms
such as decision trees [77] and rule based classifiers [25], perceptron based classifiers such
as the Feed Forward Neural Network (FF-NN) [78], statistical learning algorithms such as
the naive Bayes classifier [79], instance based learning such as the kNN [80] and State Vector
Machine (SVM) learning [81]. In general, the SVM and FF-ANN attain the highest prediction
accuracy when dealing with multi-dimensional continuous features, given that enough training
data is available, whereas decision trees and rule based classifiers perform better with discrete
or categorical features [82]. The naive Bayes approach is insensitive to overfitting on the
training data as it is a high-bias learning algorithm [82]. The flip side is that it has lower
prediction accuracy than high-variance learning algorithms like the SVM and the FF-ANN.
The kNN is a simplistic classification method with very short training time. It is easy to
implement since it only requires the tuning of a single parameter k [80]. It generally has
slightly higher prediction accuracy than the naive Bayes method and slightly lower prediction
accuracy than the FF-ANN and the SVM [82]. Among these possibilities the FF-ANN and
the SVM are expected to have the highest label prediction accuracy.

In a study, conducted by Gonzalez et al., 2016, comparing several classification methods
against each other in a pursuit to detect wheel slip of a Mars rover it is concluded that the
SVM has a slightly better label prediction accuracy than the FF-ANN, 95.5% versus 94.0%
when the classifiers are used to detect wheel slip [70]. Another advantage of the SVM over

4Meaning that the feature is zero mean and unit variance.
5In literature it is also called ’normalization’.

Master of Science Thesis K. Cassee



54 Wheel slip Detection

FF-NN is that the optimization required is a convex optimization, mitigating the possibility
of converging to a local minimum [82]. For the reasons discussed the SVM is used as the
supervised classification method.

SVM algorithm SVMs were introduced by V.Vapnik in 1992 as a novel method for classifying
data [81]. The SVM segregates data by finding a hyperplane that leads to the maximum
separation between clusters in the input space. This classification line is denoted

y(i) = sign(wTΦ(ζ(i)) + b), (4-13)

where y(i) is the class label that takes the values (1,−1), w a weighting factor, ζ an input
feature vector, sign() is a function that maps R+ → 1 and R− → −1 – and Φ() is a non-linear
kernel, discussed in the next section. The class labels −1 are mapped to 0 using

delta(i) = max(0, y(i)). (4-14)

The optimization that needs to be conducted to find the weight wT and b is

min 1
2w

Tw

s.t y(i)(wTΦ(ζ(i)) + b) ≥ 1 i = 1, ..., n
(4-15)

where y(i) is the hand labeled output, and n the number of samples.

If the data points in the input space are not linearly separable the linear classification SVM is
easily extended to a nonlinear classifier, by mapping the input data into a high-dimensional
feature space. By choosing an adequate mapping, the data points can become (mostly)
linearly separable [83]. The performance of the SVM thus largely depends upon the mapping,
or kernel, that is used. There are, however, no theories concerning how to choose a good
kernel in a data dependent-way [83], making the selection an empirical exercise.

SVM kernel selection The three most popular kernels used for the SVM are the Radial
Basis Function (RBF) (or Gaussian kernel), defined as [84]

K(ζ, ζ(i)) = exp
{
−γ||ζj − ζ(i)||2

}
, (4-16)

where ζj are the support vectors [84] and γ the reciprocal of the width of the Gaussian. There
is also a polynomial kernel, denoted

K(ζ, ζ(i)) = (ζTj ζ(i) + a)d, (4-17)

and the linear kernel, which is just a first order polynomial kernel. The Gaussian kernel is
often preferred above the polynomial kernel because it has less hyper parameters that need
tuning [73] and it usually outperforms the polynomial kernel in both accuracy and convergence
time [85]. There are some situations in which a Gaussian kernel is not suitable, particularly
when the feature vector is of high dimension. A linear kernel is then preferred [73].

If the data set is separable, the largest margin is found by minimizing Equation (4-15). If
the data set is not separable, even after using a kernel transformation, some data points will
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fall within the margin calculated by the SVM, called margin errors. To allow for such margin
errors, a slack variable ξi is introduced into the inequality constraints to allow a data point
to be in the margin (0 ≤ ξi ≤ 1) or to be misclassified (ξi > 1). The objective function of
Equation (4-15) is extended to

min 1
2w

Tw + C
n∑
i=1

ξ(i),

s.t y(i)(wTΦ(ζ(i)) + b) ≥ 1− ξ(i),
ξ(i) ≥ 0,

(4-18)

where the tune-able parameter C puts a penalty on the amount of data points that are
misclassified or within the margin. Since the classification problem at hand is of low dimension
and the Gaussian kernel has been shown to produce good results, it is used as the SVM kernel.
To optimize the prediction accuracy of a SVM using a Gaussian kernel, two parameters need
to be tuned: the reciprocal of the width of the Gaussian γ and the soft margin parameter C.

SVM hyper parameters The tuning of the Gaussian parameter γ greatly influences the
accuracy and robustness of the SVM classifier. Choosing a small value for γ will generally
lead to a smooth decision boundary, which counters overfitting. Choosing a high value for γ
allows more flexibility in the decision boundary which can obtain higher prediction accuracy.
However, a high γ value may induce overfitting on the training data [85]. As discussed before
the margin parameter C penalizes the margin error data points. Choosing a high C will
lead to less margin errors, however this may also reduce the margin seperating the rest of
the data points. If C is reduced, allowing for some margin error, the optimization may find
a hyperplane with a bigger margin separating the rest of the data points [85]. The tuning
method that is used to tune the SVM hyper parameters is discussed at the end of this section.

Threshold classification

Thresholding is a classification technique often used to detect wheel slip, the difference be-
tween thresholding techniques often being the way in which the threshold is determined. A
binary threshold classifier classifies incoming features using the rule

delta(i) =
{

1 if
∑N
j=1(ζj(i) ≥ Tj) > 1,

0 if
∑N
j=1(ζj(i) ≥ Tj) = 0,

where ζj is the jth entry of the feature vector and Tj the to that dimensions correspond-
ing threshold, both at data sample i. A popular way of determining the threshold for the
maximum torque that can be exerted on the surface, is by using the Mohr-Coulomb tire-soil
interaction model [24, 25, 86]. The threshold is calculated by first calculating the maximum
torque τmax that can be exerted on the soil without slipping,

τmax = c+ σmax tan (φ), (4-19)

where c is the cohesion of the soil, φ the internal friction angle of the soil and σmax the normal
component of the stress region at the wheel-terrain interface. The maximum allowable torque
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is then related to the input current to the wheel motors, which is linearly proportional to
the torque exerted by the motor [24]. However, it is pointed out by C. Ward el al., that
determining the parameters in the Mohr-Coulomb model requires accurate measurements and
the technique is terrain-specific [87], they like others [67, 66, 87] instead opt for tuning the
threshold empirically, which mitigates the issue of parameter estimation. The empirical tuning
the threshold requires labeled data, since the prediction accuracy needs to be determined for
each specific threshold, making it a supervised method. The threshold approach does however
retain some adaptability compared to the previously discussed SVM, as the thresholds may
be tuned online by the operator if it is observed that they have bad label prediction accuracy.
The threshold method requires the tuning of the four thresholds (T1, T2, T3, T4). The tuning
method that is employed to tune the threshold is discussed at the end of this section.

4-1-3 Unsupervised machine learning

Since the training of the unsupervised classifier is not restricted to the use of labeled data,
the training data set is of large scale, requiring a classification method that can cope with
large scale data. Furthermore, the dimension of the data is low, since only four features are
being used. An added requirement to the selection of the unsupervised classification method
is that it must also posses good adaptive properties.
The K-means algorithm is suitable for large scale data of low dimension [88] and has a low
computational complexity. Furthermore, it has been widely applied as an adaptive clustering
method [89, 90, 91] and has even been used for detecting wheel slip [70]. Among all the
clustering techniques it is one of the most simplest and easily implemented algorithms which
made it a popular classification method for researchers and have made it a base for more
complex variants [80].

K-means algorithm

The K-means algorithm partitions an n-dimensional data set in K clusters such that some
distance norm between the empirical mean of each cluster and the points in the cluster is
minimized. The incoming data is assigned to a cluster by minimizing

min
j

d(ζ(i),µj), (4-20)

where µj is the jth cluster center of the K clusters, d(·) is some distance norm and ζ(i) is
the input feature vector point – and assigning the input vector label j that minimizes the
function.
The cluster centers µj are trained by initializing the cluster centers at an arbitrary or specified
initial points µj(0) and updating the cluster centers by assigning the training data ζ(i) to
the cluster center j that minimizes

min
j

d(ζ(i),µj) (4-21)

and updating the cluster centers using

µj = 1
Nj

Nj∑
i=1
ζj(i), (4-22)
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where Nj is the number of samples belonging to the same cluster and ζj(i) the ith sample
belonging to cluster j. Using the K-means algorithm as described above would only partition
the data. In order to assign slip labels {1, 0} to the data, the cluster j that minimizes

min
j

d(0,µj) (4-23)

is assigned as the non-slip cluster. Note that this is the cluster where the difference between
the model predicted velocities vmodel and ωmodel - and the velocities provided by the sensors
vodo and ωgyro is the smallest. This cluster j is denoted ‘NoSlip’ and the other clusters ‘Slip’.
Incoming data points ζ(i) can now be classified using

delta(i) =


1 if min

j
d(ζ(i),µj) 6= d(ζ(i),µNoSlip),

0 if min
j

d(ζ(i),µj) = d(ζ(i),µNoSlip),

K-means distance function Typically the Euclidean distance metric

dj = ||ζ(i)− µj || (4-24)

is used to determine what cluster center is nearest to the input feature ζ(i). As a result, the
K-means clustering algorithm finds ball shaped clusters in the data [80]. It is unclear to what
extent the features have the same order of magnitude, so to account for the mismatch be-
tween the cluster shape and the distribution of the feature points, the standardized Euclidean
distance is used, defined as [88]

dj = ||ζ(i)− µj ||
stdj

, (4-25)

where stdj is the standard deviation of cluster j. Note that this is equivalent to standardizing
the features.

The K-means algorithm converges to a local minimum depending on its cluster initializations
[80]. To overcome this problem the algorithm can be started multiple times and the the best
solution, in terms of the sum of squared errors, can be chosen as the best partition [92].
Furthermore, the K-means algorithm only has a single parameter that needs to be tuned,
namely the amount of clusters ‘K’. The selection of the amount of clusters is simply achieved
by evaluating the label prediction accuracy for different values of ‘K’. The method employed
to find the optimal amount of clusters ‘K’ is discussed next.

Classifier parameter tuning method

The proposed classification methods require the tuning of method specific parameters. Table
4-1 summarizes the method specific tuning parameters.

SVM Threshold K-means
Parameters (C, γ) K (T1, T2, T3, T4)

Table 4-1: Table summarizing the classification specific tuning parameters.
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The grid search method used to tune the ARX model parameters is also used to tune the
classifier parameters summarized in Table 4-1. The optimization of the parameter sets is
achieved by a K-fold cross-validation on the tuning data set for different combinations of
tuning parameters [73]. The parameter set that yields the highest label prediction accuracy,
averaged over the K folds, is then selected as the optimal parameter set. The classifier
prediction accuracy is validated on a separate validation data set. After the moving window
sizes N have been determined the feature order is randomized to reduce the chances of
overfitting. In Figure A-9.1 a schematic overview is given, explaining the steps used to tune
classifier parameter sets and to validate the classifier label prediction accuracy.

4-1-4 Overview

The objective of this section was to design features used for classification and to propose three
classifiers, ranging from supervised to unsupervised, such that the most appropriate classifier
can be selected with respect to the limited amount of labeled data and the varying ship hull
surface conditions. In Table 4-2 the selected features and classifiers that will be evaluated in
the next section are summarized.

Features
Velocity feature f1(k) = |vodo(k)− vmodel(k)|
Rotational velocity feature f2(k) = |ωzmodel(k)− ωzgyro(k)|
Velocity variance f3(k) = 1

N

∑k
i=k−N

(
vodo(i)− 1

N

∑k
j=k−N vodo(j)

)2

Rotational velocity variance f4(k) = 1
N

∑k
i=k−N

(
ωzgyro(i)− 1

N

∑k
j=k−N ω

z
gyro(j)

)2

Classifiers

Supervised SVM
Threshold

Unsupervised K-Means

Table 4-2: Table summarizing the selected features and the classifiers to be evaluated in Section
4-2.

Limitations A set of four features was selected based upon their respective successful im-
plementations in literature. The selection of the features leaves out of consideration different
combinations of the four features and other possible features.

4-2 Slip detection simulation

Features that can be used to detect wheel slip and three classification methods, ranging from
supervised to unsupervised, were established in the previous section. In Section 2-2 it was
established that the maximum longitudinal wheel slip magnitude will vary depending upon the
ship hull surface conditions and in Section 4-1 it was established that there will be a mismatch
between the model predicted velocity and the wheel encoder velocity output, depending on
surface conditions. These variations affect the features designed in the previous section and
thus affect the classifier prediction accuracy.
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It is expected that the SVM will achieve the highest prediction accuracy under nominal
conditions meaning that the ship hull conditions corresponding to the input data remain
similar to the data used to train the classifiers. If the input sensor data characteristics depart
too far from the training data characteristics, the K-means classifier may achieve a higher
prediction accuracy assuming it can be made adaptive so that it can account for the variations
in ship hull conditions.

The objective is thus to determine what classification method is best suited to detect wheel
slip with respect to the limited amount of labeled data and the varying ship hull conditions.

Firstly, the nominal performance of the classifiers will be compared. The nominal evalua-
tion of the classification methods will show the respective label prediction accuracy of the
classification methods in the ideal case of unchanging ship hull characteristics. The nomi-
nal evaluation of the classifiers thus serves as a best case scenario of their respective label
prediction accuracy.

Secondly, the performance of the classification methods will be evaluated under variable slip
characteristics and model parameters, simulating variable ship hull conditions.

4-2-1 Nominal performance

The nominal performance of the classifiers is evaluated to establish what the performance of
the classifiers is in the best case scenario of unchanging perturbation parameters, mimicking
unchanging ship hull conditions. Furthermore, the perturbation parameters are set such
that the classifier prediction accuracy is high, relative the other parameter possible settings
specified in Table 4-3. The prediction accuracy of the classifiers under nominal conditions
can thus be regarded as the best case scenario.

Simulation data

In order to pose a best case scenario, the modeling parameters are set such that the fea-
tures become easily separable by the classifiers. For instance, maximizing the slip magnitude
parameter values also maximizes the segregation between the slip and non-slip clusters in
standardized feature space6, displayed in Figure 4-4, increasing classifier prediction accuracy.
The parameter settings for the nominal evaluation of the classifiers are summarized in Table
4-3.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 · cos (0.01t) 0.61 · sin (0.1t) 0.15 50 0 0 0 0 30

Table 4-3: Table summarizing the perturbation parameter settings for the slip detector classifier
training data and nominal performance evaluation.

6Feature space is the co-domain of the sensor data after it has been transformed using the feature functions.
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Figure 4-4: Scatter plot of labeled feature vector data points of training data set. The red
circles represent the feature data points when the wheel is not slipping and the blue plus markers
represent the feature data points when the wheel is slipping.

Feature parameter tuning

Using the labeled training data set, displayed in Figure 4-4, the optimal value for ‘N ’ in
Equation (4-8) is determined by evaluating the PCC between the features f3 and f4 – and
the slip labels for different ‘N ’. Evaluating the PCC for N = 2 : 100, the highest PCC values
are obtained at N = 38 and N = 16 for f3 and f4, respectively, as displayed in Figure 4-5.
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Figure 4-5: Graphs displaying the evaluation of the PCC between f3, f4 and the slip labels for
an increasing moving window length ‘N ’.

Classifier parameter tuning

Using the previously discussed grid search method the grids specified in Table 4-4 are searched,
obtaining the classifier parameters summarized in Table 4-5. In order to find the optimal
parameters for the SVM and the threshold classifier, three consecutive grid searches are
conducted, using a higher resolution grid each step. The parameter values that correspond
to the maximum prediction accuracy are used as the midpoint of the search grid of the
next iteration. As was previously discussed, the cluster centers of the K-means classifier
also depend upon the initial clusters µ0. To prevent overfitting, the K-means training is
multistarted 100 times for each K.
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SVM Threshold K-means
Parameters (C, γ) (T1, T2, T3, T4) K

Grid 1 (10[−5:5],10[−5:5]) (−2 : 6,−2 : 6,−2 : 6,−2 : 6) (2 : 20)
Grid 2 (50 : 150, 5 : 1.5) (0.5 : 1.5,−0.5 : 0.5, 3.5 : 4.5, 1.5 : 2.5) -
Grid 3 (85 : 95, 4.5 : 5.5) (−0.25 : 0.35,−0.10 : 0.00, 3.75 : 3.85, 1.75 : 1.85) -

Table 4-4: Table summarizing search grids used to determine optimal classifier parameters.

SVM Threshold K-means
Parameters (C, γ) (T1, T2, T3, T4) K

Values (92, 5.0) (−0.34,−0.09, 3.77, 1.77) 3

Table 4-5: Table summarizing optimal classifier parameters obtained using the grid search ranges
specified in Table 4-4.

Nominal performance evaluation

The nominal performance of the classification methods is evaluated by generating 1000 data
sets, using the modeling parameters displayed in Table 4-3. The prediction accuracy, calcu-
lated using Equation (4-1), of the classifiers is evaluated on the same 1000 data sets. This
ensures that the respective classifier performance does not depend on differences between data
sets.

The results are summarized in Table 4-6. From the table it is clear that the SVM and
the threshold method have the highest label prediction accuracy, followed by the K-means
classifier.

Classification method Minimum 1st quartile Median 3rd quartile Maximum
SVM 95.63% 95.94% 96.05% 96.15% 96.36%

Threshold 95.11% 95.53% 95.73% 95.84% 96.25%
K-means 88.03% 88.24% 88.35% 88.45% 88.76%

Table 4-6: Table summarizing the nominal label prediction accuracy of the classification methods.

It can be concluded that under nominal conditions the SVM performs best. Under nominal
conditions all the classification methods except the K-means classifier fall within the range
of 94% to 98% prediction accuracy that is normally seen in wheel slip detection, as was
discussed at the beginning of this chapter. It is assumed that the K-means algorithm can
retain its nominal performance under varying conditions if made adaptable and thus the
88.35% prediction accuracy serves as a lower bound to compare the SVM and Threshold
algorithm against.

Limitations The data that was used posed a best case scenario for the classification algo-
rithms, so the label prediction accuracy that was obtained in this section is probably at the
high end of what is realistic. Furthermore, the labeled data that was used to tune the classi-
fiers was labeled perfectly, which also results in an overestimate the the classifier prediction
accuracy since this is not the case in a realistic setting. This perfect labeling of data is not
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realistic when real sensor data is used, since the data is labeled by visually cross-referencing
camera footage to data sequences.

The next section evaluates the effect of varying ship hull surface conditions on the prediction
accuracy of the classification methods.

4-2-2 Performance under variable characteristics

The environmental conditions within which the Fleet Cleaner robot operates are variable,
which in turn affect the features used by the classifiers to detect wheel slip. In this section
the prediction accuracy of the classifiers under variable environmental conditions is tested
by evaluating the prediction accuracy for varying values of slip magnitude and mismatch
between the wheel encoder velocity and model predicted velocity. The same classification
models as in the previous section are used in this section. There is thus a mismatch between
the training and validation data, emulating the scenario where the ship hull conditions corre-
sponding to the sensor data on which the classifier was trained severely deviate from the ship
hull conditions corresponding to the input sensor data. Firstly, the results of the classifier
prediction accuracy will be shown. At the end of the section the results, and their limitations,
are discussed.

Performance under varying model mismatch and maximum longitudinal wheel slip

The prediction accuracy of the classifiers under model mismatch between the model predicted
velocity and the wheel encoder velocity is simulated by setting all the perturbation parameters
at their nominal values, summarized in Table 4-3 and letting the model mismatch parameter
‘MM ’increase from −30% to 30% in K = 61 steps. Similarly, the prediction accuracy of
the classifiers under varying longitudinal wheel slip magnitude is simulated by letting the
maximum longitudinal wheel slip parameter ‘SlipMagMax’ increase from 0 to 0.2 in K = 21
steps. Each step is iterated 1000 times to simulate different noise realizations.

The label prediction accuracy under varying model mismatch and maximum longitudinal
wheel slip are displayed in Figures 4-6 and 4-7, respectively. In theoretical label prediction
accuracy of an adaptive K-means classifier is also plotted in the figures.
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Figure 4-6: Graph displaying the label prediction accuracy of the classification methods under a
model mismatch ranging from −30% to 30%.
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Figure 4-7: Graph displaying the label prediction accuracy of the classification methods under a
longitudinal slip magnitude ranging from 0 to 0.15 [m/s].

Discussion

SVM vs. K-means As was previously discussed, under nominal conditions the SVM has
a far better prediction accuracy than that of the K-means classifier. It was argued that the
K-means may be preferred if the prediction accuracy of the SVM under variable conditions
drops below that of the K-means classifier under nominal conditions, assuming the K-means
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classifier can be made adaptive such that it retains its nominal prediction accuracy under
all conditions. The prediction accuracy of the SVM only falls below that of the nominal
prediction accuracy of the K-means classifier in the presence of a longitudinal slip magnitude
lower than 0.06 [m/s] and a model mismatch beyond 21%. The advantage of the K-means
classifier over the SVM with respect to the model mismatch can be disregarded since a model
mismatch of up to 20% is expected. Only in the range of 0 to 0.06 longitudinal slip magnitude
improvements can be made by using an adaptive K-means classifier. Since the SVM performs
considerably better in all other ranges, this does not justify the design of an adaptive K-means
classifier.

SVM vs. Threshold Under nominal and varying conditions, except for varying longitudinal
slip magnitude, the SVM has a better label prediction accuracy than the threshold classifier. It
can however be argued that, like the K-means classifier, the threshold classifier can be adapted
such that it can retain its nominal prediction accuracy. In the case of the threshold classifier
this assertion is less credible than in the case of the K-means algorithm since it requires an
operator to adjust the thresholds online. The amount of online adjustment depends upon
how sensitive the prediction accuracy of the threshold classifier is with respect to the varying
conditions. Unfortunately, the prediction accuracy is very sensitive to model mismatch. Any
model mismatch beyond ±5% would require the operator to tune the thresholds, since a
theoretical adaptive K-means classifier would be preferred beyond that point. The adapting
of the thresholds puts additional work load on the operator, which is in direct violation with
one of the objectives of this thesis, namely to reduce the workload on the operator.

Although the SVM is the best classifier compared to the other classifiers, it does not retain
its nominal performance under varying conditions. The label prediction accuracy falls below
its minimal nominal performance of 95.63% at an longitudinal slip magnitude of less than 0.1
[m/s] and a model mismatch beyond −14% to 13%. It is therefore expected that an SVM
trained on the limited real data set currently available will not suffice to accurately detect
slip when faced with varying ship hull conditions.

On the basis of the simulated results it is thus concluded that the SVM classifier is best suited
to detect wheel slip for the Fleet Cleaner robot. In the Section 4-3 the results are validated
using real sensor data.

4-2-3 Overview

The objective of this section was to determine what classification method is best suited to
detect wheel slip with respect to the limited amount of labeled data and the varying ship hull
conditions.

The median label prediction accuracy of the classifiers under nominal conditions is summa-
rized in Table 4-7. Furthermore, it is summarized if the classifiers can retain their nominal
performance under varying conditions.

Limitations Although the simulated results indicate that the SVM is likely to have the
best performance, the results also have some limitations. In evaluating the performance of
the classifiers under varying conditions it was tacitly assumed that all variations are equally
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SVM Threshold K-means
Nominal label prediction accuracy 96.05% 95.73% 88.35%
Retain performance under varying ship
hull conditions?

No No No

Table 4-7: Table summarizing the nominal median label prediction accuracy of the classifiers
and if the classifiers can retain their nominal performance under varying ship hull conditions.

as likely. This was done because in the Chapter 2 the occurrence rate of the perturbation
values was not studied. For instance, the performance with respect to model mismatch was
evaluated in the range of −30% to 30% and based on the entire range it was concluded
that the threshold classifier has the worst performance. However, it could be the case that
a model mismatch of ±5% is far more likely than one of, for instance, 10%. In that case
the performance of the threshold method is not as bad as was concluded now. Furthermore,
the classifiers were trained on a perfectly labeled data set. This limits the evaluation of the
classifier performance since under realistic circumstances, where the data is labeled by visually
cross-referencing camera footage to data sequences, the data will not be perfectly labeled.

4-3 Slip detection validation

In the previous section it was determined that the SVM classifier has the best overall per-
formance with respect to the varying ship hull conditions and a limited amount of labeled
training data. However, the results were obtained using simulated data which has inherent
limitations and so to validate the results, real sensor data is used to evaluate the classifiers.

The objective of this section is thus to validate the simulated classifier performance results
using real sensor data.

Firstly, a data set is selected for evaluation and the parameter ‘N ’ of the variance features f3
and f4 is tuned in Sections 4-3-1 and 4-3-2, respectively. After the features have been tuned,
the classifier parameters are tuned in Section 4-3-3. Finally, the performance of the classifiers
is validated in Section 4-3-4.

4-3-1 Validation data

The hand labeled data that is used to train and evaluate the classifiers originates from an
operation on the HS TOSCA, on the 6th of July, 2017. The data corresponds to the wheel
encoder velocity output displayed in Figure 2-2. This data set is currently the only available
labeled data set.

4-3-2 Feature tuning

Using the same technique as described in the previous section, the optimal moving window
length ‘N ’ for the features f3 and f4 are determined by evaluating the PCC between the
features and the slip labels for a varying amount of ‘N ’. As is shown in Figure 4-8, the
optimal values are found to be N = 127 and N = 36 for f3 and f4, respectively.
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Figure 4-8: Graphs displaying the evaluation of the PCC between f3, f4 and the slip labels for
an increasing moving window length ‘N ’.

4-3-3 Classifier parameter tuning

The parameters of the classifiers are tuned a grid search, 4-fold cross-validation method,
as discussed at the end of Section 4-1. The grid ranges that are used to find the optimal
parameters are summarized in Table 4-8 and the optimal classifier parameters are summarized
in Table 4-9.

SVM Threshold K-means
Grid 1 [10−4:4,10−4:4] [−2 : 6,−2 : 6,−2 : 6,−2 : 6] [2 : 20]
Grid 2 [5 : 15, 0.5 : 1.5] [0.5 : 1.5,−0.5 : 0.5, 4.5 : 5.5, 4.5 : 5.5] -
Grid 3 - [0.85 : 0.95,−0.10 : 0.10, 4.50 : 4.60, 4.80 : 4.90] -

Table 4-8: Table summarizing search grids used to determine optimal classifier parameters.

SVM Threshold K-means
Parameters (C, γ) (T1, T2, T3, T4) K

Values (10, 0.5) (0.93,−0.08, 4.54, 4.83) 8

Table 4-9: Table summarizing optimal classifier parameters obtained using the grid search ranges
specified in Table 4-8.

4-3-4 Classifier performance

The trained classifiers are evaluated on a separate validation data set that also originates
from the data set displayed in Figure 2-2. The classifier label prediction accuracy scores
summarized in Table 4-10 are obtained. As was expected from the simulated results, the
SVM attains the highest prediction accuracy followed closely by the threshold classifier. In
both cases the K-means classifier has the lowest prediction accuracy. Based on the simulated
and validation results, the SVM is selected as the most suitable classifier to detect wheel slip
for the Fleet Cleaner robot.
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SVM Threshold K-means
Label prediction accuracy 96.85% 94.06% 84.97%

Table 4-10: Table summarizing the classifier prediction accuracy on the validation data set.

Limitations Although the prediction accuracy of the SVM falls in the range specified at the
beginning of the chapter, it cannot be assumed that this prediction accuracy will be attained
in all situations. This is because the data that was used to train the classifiers originates
from a single operation and therefore does not encompass all possible ship hull conditions.
Furthermore, the data was labeled using camera, so it includes an unknown amount of falsely
labeled data. This again reduces the reliability of the validation results.

4-4 Conclusion

The objective of this chapter was to design a wheel slip detection algorithm that attains a high
as possible slip label prediction accuracy and retains this accuracy when faced with varying
ship hull conditions. In order to satisfy the requirement of a maximum error build-up score of
2.05% a label prediction accuracy of 97.70% was required. Typically, such prediction accuracy
is only attained by slip detectors with access to multiple wheel encoders and so more emphasis
was put on designing a slip detector that maintains a high prediction accuracy under varying
ship hull conditions. Three classification methods, in descending order of supervision, were
evaluated in determining what the best method is for detecting slip, namely

• SVM,

• Threshold,

• K-means.

In order to evaluate the classifier performance with respect to varying ship hull conditions the
classifiers were trained on a simulated data set emulating a real data set obtained from an
operation with one type of ship hull condition - and tested on data sets emulating the entire
range of expected ship hull conditions. The simulated results were validated using real sensor
data.

Results and Conclusion The simulations results show that under nominal conditions the
SVM performs best, achieving a label prediction accuracy of 96.05%. The simulated results
were validated using real sensor data, which revealed that the SVM attains a prediction
accuracy of 96.85%. When faced with varying longitudinal and model mismatch, the SVM
has the highest prediction accuracy compared to the other classifiers except for conditions
with a longitudinal slip magnitude beneath 0.1 [m/s]. Based on the simulated and validation
results the SVM was selected as the best suited classifier to detect wheel slip.

The simulated results show that an SVM trained on limited data can only maintain its nominal
performance for a small range of varying external perturbation parameters. So although the
validation results yield a prediction accuracy of 96.85%, it cannot be expected that it will
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attain this accuracy under all ship hull conditions, since the training data originates from a
single ship with limited ship hull surface conditions.

The simulations also reveal that for low wheel slip magnitudes, the prediction accuracy of
the SVM deteriorates. It is expected that this decrease in accuracy can not be omitted, due
to the fact that it only has access to a single wheel encoder. If multiple wheel encoders had
been available, the difference in wheel encoder output could have been used to detect slip
even when the wheel slip magnitude is low.

Limitations The simulations only included variations in model mismatch, and slip magni-
tude. This limits the analysis of the robustness of the classifiers since other factors that may
change with varying ship hull conditions were not included. Such factors may for instance be
the PSD of the noise, the noise magnitude or other unforeseen factors.

The main drawback of the classifier validation procedure is that the training and tuning of
the classifiers were based upon hand labeled data, originating from a single ship, that was
obtained using a camera. This caused the amount of available data to be very limited, which
is why it cannot be assumed that the SVM will have good performance in all conditions.
Furthermore, the use of a camera to label the data is not very accurate so the SVM is trained
on a set where an unknown amount of data was falsely labeled.

Recommendations It is recommended that two more wheel encoders are added to the robot
such that a higher label prediction accuracy can be maintained in case of low wheel slip
magnitude. Based on literature [11] it is anticipated that with the addition of two more
wheel encoders a label prediction accuracy of 97.70% can be achieved.

In order to train the classifier such that it encompasses most of the possible surface conditions,
a time efficient method for labeling the sensor data is required. One proposition is to first
add two wheel encoders and to only actuate two of the three wheels. The third wheel will
function as an absolute velocity measurement, which can be used to label data as slip (1)
when a discrepancy between the third wheel and either of the two other wheels is detected.
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Chapter 5

Velocity Correction

As was previously discussed, the main source for error build-up in the position estimate is
wheel slip. This violates the requirement that the error build-up should stay within 2.05%. In
this chapter a velocity correction algorithm is designed such that it can be used in conjunction
with the previously designed EKF position estimator and SVM slip detector to improve the
position estimate.
In Chapter 4 it was concluded that it is unlikely that an error build-up of 2.05% can be
achieved, since the SVM slip detector cannot maintain its prediction accuracy over a wide
range of varying ship hull conditions.
The objective of this chapter is thus to design a velocity correction algorithm, that can be used
in conjunction with the EKF and the SVM, that attains an as low as possible error build-up
score.
In Section 5-1, literature on velocity correction for mobile robots using odometry is reviewed
and a design direction for the velocity estimator is chosen. In Sections 5-2 and 5-3, the
velocity correction algorithm is tested on simulated and real data and compared against more
common velocity correction methods.

5-1 Velocity correction working principle

The literature on possible ways to correct velocity is vast and so three system requirements
are listed below to narrow down the search for a adequate working principle.

Velocity correction working principle requirements

1. The working principle must work in conjunction with the SVM slip detector and EKF
position estimator.

2. Absolute data measurements using additional hardware is not needed to train the work-
ing principle.
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The objective of this section is thus to find a velocity correction method consistent with the
system requirements that achieves an as low as possible error build-up score.

Firstly, velocity correction methods used in literature are reviewed in Section 5-1-1. Based
on the velocity correction methods used in literature and on their shortcomings a velocity
correction method is proposed in Section 5-1-2. Finally, the proposed working principle is
reflected upon with respect to the set objectives and its limitations are discussed.

5-1-1 Interactive multi model approach

The literature on velocity estimation and slip correction can broadly be divided into the
Interacting Multiple Model (IMM) approaches and a centralized approaches. IMM’s operate
by alternating between two (or more) models that predict the position of the robot in non-slip
and slip conditions [93, 74, 94], whereas centralized approaches [95, 96, 97] rely on a single
model that is continuously adapted using some external reference to correct the velocity.
Considering the above stated requirements, an IMM approach is best suited to estimate the
true velocity and will be further considered.

The IMM estimates the true velocity by taking linear combinations of multiple prediction
models i.e. one that estimates the states when the robot is not slipping and on that estimates
the states when it is. The general workings of the conventional IMM are described in Figure
5-1. It is common that both prediction models use a Bayesian filter like the KF, EKF or PF
to predict the states, in which case the IMM switches between the models or takes a weighted
average of the models by comparing the likelihood of the predicted states given their respective
measurement inputs. When applied to mobile robots that are prone to slip, it is common
that the model that predicts the position of the robot in non-slip conditions uses the wheel
encoder velocity as a measurement update for the states, whereas the slip model uses the IMU
acceleration as a measurement update [94, 93, 74]. Researchers that have employed the IMM
to estimate the position of a mobile robot on uneven or slippery surfaces typically report an
accuracy improvement of 60.53% to 84.44% [94, 93, 74], depending on how uneven or slippery
the surface is. The accuracy improvement is defined as

Accuracy − improvement = Acc1 −Acc2
Acc1

· 100%, (5-1)

where Acci is the error between method i and the ground truth [94].

This range will be used to compare the velocity correction methods designed in this chapter
against.

SVMIMM Although it is common practice to use the likelihood of the innovation step as a
model selection method, J. Jung et al., [74] have shown that using an external classification
method to detect slip, which in their case was an SVM, improves the performance of the IMM
over the conventional method. Since an SVM has already been implemented, the SVMIMM
proposed by J Jung et al., [74], may prove to be a cost effective velocity correction method.
Their approach is to estimate the velocity by taking a weighted average between the wheel
encoder output and the IMU velocity output, using the posterior likelihood of the class labels
conditioned on the feature input as a weight, depicted in Appendix A-10-1. R. Sidharthan
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Figure 5-1: Schematic overview of IMM framework [74]. In step 1-2 a linear combination of
the states estimated by EKF 1 and EKF 2 in the previous time step is taken, using the mode
probability µt−1 as a weight. In step 3 the linear combination is used updated by both EKF 1
and EKF 2, yielding the respective covariances Λ(i)

k and the state predictions X(i)
k . The mode

probability is updated in step 4 using the covariance matrices of EKF 1 and EKF 2. Finally, in
step 5 the optimal state is calculated using a linear combination of the covariance matrices and
the states.

et al., [94] observe that this slip detection method may be inadequate because wheel slip
characteristics differ from one robot to another vary depending on the surface that the robot
is on. This is in agreement with the simulations conducted in Chapter 4, which showed
that the SVM slip detector is susceptible to varying ship hull conditions. If the modes are
miscalculated, valuable acceleration data may not be incorporated in the velocity estimate.
Another pitfall of the conventional IMM is the use of the IMU to estimate the velocity during
slippage, which drifts due to acceleration error accumulation. In Chapter 2 it has been
observed that prolonged slippage occurs during operation. In Figure 2-2 for instance, it can
be seen that the front wheel is slipping for periods greater than 20 seconds. It is expected that
because of this long slip duration, the use of IMU by the SVMIMM to estimate the velocity
becomes inaccurate due to integration error accumulation.

Velocity correction method proposal In order to improve the velocity estimate during
slippage it is proposed to make use of so called weak constraints. Weak constraints can be
viewed as virtual measurements, used as measurement inputs to the position estimator, based
on physical insight into the system [87]. The covariance associated to the constraints decides
how ‘weak’ the constraint is and is used in the measurement noise matrix R. Opposed to
this is the so called strong constraints where the covariance is zero. An example of a strong
constraint is if the input to the hydraulic actuators of the wheels is zero, the input velocity to
the EKF may be assumed to be zero as well. This mitigates the possibility of integrating wheel
encoder noise while the robot is stationary, theoretically improving the position estimate.
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The use of weak constraints instead of integrated IMU accelerations to estimate the velocity
during slippage mitigates the chance of error accumulation and is therefore expected to yield
more accurate velocity estimates over long periods of slippage. This expectation is tested by
comparing the SVMIMM and the proposed constrained IMM in Sections 5-2 and 5-3. The
constrained IMM is designed in the next sections.

5-1-2 Constrained IMM design

In Chapter 2, two types of slip were distinguished, so called stationary slip and non-stationary
slip or dynamic slip. The former is a mode of slippage where the front wheel, or one of the
rear wheels slips while the true velocity of the robot is zero. The latter is a mode of slippage
where one of the wheels start slipping while the true velocity of the robot is not zero. It is
important that the two are distinguished because both modes affect the true velocity very
differently. Following the standard IMM framework, the two slip modes are made interactive
using weights calculated by a mode probability predictor. In Figure 5-2 the design structure
of the proposed constrained IMM is displayed. The mode probability predictor and dynamic
slip model are designed in the next sections.

Figure 5-2: Schematic overview of
proposed constrained IMM design. The
incoming sensor data is classified by the
previously designed SVM slip detector
assigning the class labels [1] and [0] de-
noting slip and non-slip, respectively. If
the wheel is not slipping, the EKF uses
the wheel encoder velocity output to es-
timate the position. If it is slipping, the
velocity is estimated by a velocity cor-
rection model and used as a weak con-
straint input to the EKF. The velocity
correction model distinguishes between
stationary and dynamic slip and takes
a weighted average of the two, to es-
timate the velocity while slipping. The
weights µ1 and µ2, weighting the slip
models, are estimated with a so called
mode probability predictor.

Mode probability predictor

As was previously discussed, in the normal IMM framework the mode probability is calculated
using the covariances of the states. As was shown in [74], the use of an external classifier to
calculate the mode probabilities can improve the position estimate. The use of a classifier
requires the selection of features and the classifier itself, discussed next.

Feature selection As was discussed in Chapter 2, Figure 2-2, it can be observed that the
wheel encoder velocity is greater when stationary slip is detected compared to dynamic slip.
This can be understood by considering the following.

K. Cassee Master of Science Thesis



5-1 Velocity correction working principle 73

The rotary motion of a slipping wheel with mass m, friction coefficient c, angle φ(t) and
torque input τ can be described by the second order ODE

φ̈(t)Im + φ̇(t)c = τ(t), Im, c > 0. (5-2)

Given the step input τ(t) = τstep, the rotational velocity of the system will converge to its
steady state after some transient such that

φ̇ss(t)c = τstep(t). (5-3)

From Equation (5-3) it can now be seen that if the friction coefficient c decreases, the steady
state rotational velocity will increase. Thus, the lesser the grip, which is equivalent to a low
friction coefficient, the higher the rotational velocity of the wheel will be, given a constant
τ(t).

Using this insight that the difference between the model predicted velocity and the wheel en-
coder velocity is proportional to the friction coefficient, the feature f1, described by Equation
(4-4), is used to differentiate between stationary and dynamic wheel slip. In Figure 5-3 it is
shown that the difference between the model predicted velocity and wheel encoder output is
greater during stationary slip compared to dynamic slip.
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Figure 5-3: Graph displaying the wheel encoder velocity output, model predicted velocity and
stationary slip labels. In the left image, stationary slip occurred due to the front wheel encountering
ship hull fouling while in the right image it occured due to an encounter with a weld line.

Label probability calculation The selection of a classifier to calculate the mode probabilities
is quite arbitrary since there is only one feature. The only requirement is that the classifier is
also able to output the posterior probability P (Ck|f1), where Ck is the class label. This ability
has been developed for most classifiers. The SVM with a linear kernel is used to calculate the
label probabilities since it produced good label prediction accuracy in the previous chapter
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Figure 5-4: Graph of sigmoid with A = 2 and B = 1. The figure shows that the probability
output input f1 belonging to class Ck depends upon the value of f1.

and it has already been employed by [74] for this application. Using the Matlab function
fitcsvm() a sigmoid described by

p(fi) = 1
(1 + exp (Afi +B)) , (5-4)

where fi is the feature value and A and B are estimation parameters, is fitted to the P (Ck|f1)
data points, as described in [98]. This yields a sigmoid, like the one shown in Figure 5-4,
which outputs the likelihood of the label Ck, conditioned on the input feature value fi. Using
the estimated sigmoid, the weights of the modes are calculated with [74] µ1 = p(fi) and
µ2 = 1− p(fi). The corrected velocity and velocity covariance is then calculated with

v̂ = µ1 · Stationary − slip+ µ2 ·Dynamic− slip,
Σ̂v = µ1 · Σss + µ2 · Σds.

(5-5)

Since it is assumed that the robot velocity is zero when stationary slip occurs, Equation (5-5)
reduces to

v̂ = µ2 ·Dynamic− slip,
Σ̂v = µ2 · Σds.

(5-6)

In the next section the dynamic slip model will be derived.

Dynamic slip velocity correction

The derivation of the true velocity of the robot during dynamic slip is complicated since there
is no absolute velocity reference. However, under some circumstances it can be assumed
that the wheel encoder velocity does provide an absolute velocity reference while the robot is
slipping.

When the robot is moving backward during normal operation, it is common that one of the
rear wheels will be exposed to the fouling, making them more likely to slip, as displayed in
Figure 5-5.
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Figure 5-5: Illustration of circumstances in which rear wheel slip likely to occur (Left) and graph
displaying data associated to rear wheel slip (Right). In the left image, the robot is moving
backward, with its right rear wheel on a section that is fouled and thus likely to slip. Note that
in the right image the magnitude of the model predicted output is higher than that of the wheel
encoder output while moving backward, indicating rear wheel slippage.

In Figure 5-5 (Right) data associated to such occurrences is displayed.

Hydraulic wheel actuation To understand why the wheel encoder velocity is lower than the
model predicted velocity when one of the rear wheels starts slipping, consider the following:

Figure 5-6: Illustration of distribution of hydraulic fluid flow over the robot wheels.

All three wheels share the same hydraulic pressure valve, as shown in Figure 5-6, such that
the flow rate Qi to each wheel satisfies

Q = Q1 +Q2 +Q3, Qi ∝ vi, Q ∝ u (5-7)

where vi is the rotational velocity of each individual wheel, u is the input to the pressure
valve and Q is the flow rate coming from the pressure valve. The ARX model of Equation
(4-3) was identified under circumstances where the wheels were not slipping such that

Q1 = Q2 = Q3 = Q

3 , (5-8)

u · PVgain = Q, (5-9)
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and
vmodel = c · Q3 = c ·Q2 = vodo, (5-10)

where is c a constant.

However, if the right rear wheel starts slipping, such that

Q3 > Q1, Q2, Q1 = Q2, (5-11)

it follows that
vmodel = c · Q3 > c ·Q2 = vodo, (5-12)

assuming a constant pressure valve input u.

Under these conditions it can thus be assumed that one of the rear wheels is slipping and
the front wheel is not, providing an absolute velocity measurement. The wheel encoder data
associated to such conditions can thus be used to identify an model between the hydraulic
valve input and the true velocity during wheel slippage.

Identification data In order to make the identification suitable for identifying a dynamic
slip model, the data displayed in Figure 5-5 (Right) is modified such that it:

• Excludes data where the wheel encoder speed is zero or near to zero, since this behaviour
is already captured by the stationary slip model,

• Only includes data points that have been labeled as ‘slip’ by the SVM slip detector,

• Only includes data points where the model predicted velocity magnitude is higher than
that of the wheel encoder,

• Only includes data samples with a sample size higher than 100 samples1.

In order to incorporate varying surface conditions into the identification data, data from
operations on the HS Tosca, OOCL and Mineral China is used, yielding a total of 21 data
samples with a sample size of 100 each. One data set is used as a validation set, and the other
data sets are used to train the dynamic slip model using a 20-fold cross-validation, similar to
the K-fold tuning method described in Section 4-2. In Appendix A-11.1 a schematic overview
of the dynamic slip model identification is provided.

Dynamic slip model identification As was stated in the system requirements in Chapter 1
a maximum error build-up of 2.05% is allowed. If the robot moves in only one direction, the
error between the ground truth position and the estimated position can be calculated with

derror(T ) =
∣∣∣∣∣
∫ T

0
vest(t)dt−

∫ T

0
vtrue(t)dt

∣∣∣∣∣ , (5-13)

1Since identification data is abundant, this reduces the amount of samples and also ensures that the slower
dynamics are captured by the model.
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and the error build-up with

error build− up = 100 ·
∣∣∣∣∣
∫ T

0
vest(t)dt−

∫ T

0
vtrue(t)dt

∣∣∣∣∣ /
∫ T

0
vtrue(t)dt. (5-14)

A Single Input Single Output (SISO) ARX model is used to predict the true velocity, using
the signal to the hydraulic valve as an input. In order to find the numerator and denominator
size nb and na and input delay nk, a 20-fold cross-validation is conducted on a search grid
of na = [2 : 20] by [nb = 2 : na − 1] by [nk = 0 : 10]. Essentially, the same training
method as in Section 4-1 to develop a model prediction for the velocity is employed. For
each parameter combination, the RMSE score between the model prediction and the ground
truth is evaluated 20-fold after which the average RMSE score over the 20-fold evaluation is
calculated. Using this method, the parameter combination yielding the highest RMSE score
is (na, nb, nk) = (18, 7, 1). The model is validated on a separate validation set, yielding the
model fit displayed in Figure 5-7. The error build-up calculated using Equation (5-14) is
0.15%, satisfying the requirement of 2.05%.

The average of the 20-fold RMSE scores between the model predicted velocity and the ground
truth velocity, using the optimal parameters, is 0.0084 [m/s], which equals the average stan-
dard deviation. The square of this value, 0.00842 = 7.0560 · 10−5 which equals the variance,
is used as the uncertainty of the weak constraint Σds, depicted in Equation (5-5).
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Figure 5-7: Graph of wheel encoder velocity and dynamic slip predicted velocity during slippage.
The error build-up induced by the mismatch between the true wheel encoder velocity and the
modeled wheel encoder velocity is 0.15%.

Now that the mode probability predictor and the dynamic slip model have been designed,
the design of the constrained IMM algorithm is completed. The algorithm is depicted in
Appendix A-10.
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5-1-3 Overview

The objective of this section was to find a velocity correction method consistent with the
system requirements that achieves an as low as possible error build-up score.

The constrained IMM is proposed as an alternative to the more conventional IMM for the
reasons summarized in Table 5-1.

Characteristics

Conventional IMM Acceleration data error accumulation
Performance affected by mode miscalculation

Constrained IMM No use of noisy acceleration data
Less affected by mode miscalculation

Table 5-1: Table summarizing advantages of the proposed constrained IMM over the conventional
IMM.

Limitations Like the SVM designed in the previous chapter, the tuning of the mode predict-
ing SVM relies on hand labeled data, which was labeled using camera footage. This induces
the mislabeling of data, reducing the label prediction accuracy by an unknown amount.

The dynamic slip model used by the constrained IMM was based on the very strong assump-
tion that the wheel encoder provides a ground truth velocity measurements under specific
conditions. Because of this, the error build-up score attained using the dynamic slip model
is probably overestimated, since the wheel encoder output under these specific conditions
does not necessarily equal the ‘true’ ground truth velocity. A simple linear SISO ARX model
was used to estimate the velocity during dynamic slip, which achieved the set requirement of
an error build-up of 2.05%. However, due to the non-linear behaviour of the robot velocity
during slippage it is expected that the model is only valid under limited conditions.

5-2 Velocity estimator simulation

In the previous section a constrained IMM was proposed as a working principle for estimating
the velocity while slipping. The SVM that is used to calculate the mode probabilities makes
use of the feature f1, depicted in Equation (4-4), which is susceptible to model mismatch
and variations in longitudinal wheel slip magnitude, which are caused by varying ship hull
conditions.

In order to evaluate the performance deterioration of the constrained IMM when faced with
such variations in ship hull surface conditions, the constrained IMM is simulated using vary-
ing perturbation model parameters. The constrained IMM, depicted in Appendix A-10-2 is
also compared against the SVMIMM, depicted in Appendix A-10-1, proposed in [74]. Block
schemes of the simulation environments of the constrained IMM and the SVMIMM are pro-
vided in Appendix A-12.1 and A-13.1, respectively. The IMM designed by Jung et al., [74] is
used as a comparison because it uses the IMU acceleration data to estimate the true velocity
while slipping, which is a common approach in IMM design. It is expected that the use of
IMU acceleration data to estimate the true velocity yields inaccurate results due to the long
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duration of wheel slip. By comparing the constrained IMM to a conventional IMM it can
thus be shown that the conventional method is unsuitable for the Fleet Cleaner robot.

The objective of this section is thus to determine if the proposed constrained IMM is a sig-
nificant improvement over the conventional IMM under varying ship hull surface conditions.

In order to evaluate the velocity correction methods, firstly a ground truth velocity is modeled.
Secondly, the SVM mode predictor is trained and thirdly, the correction methods will be
evaluated under nominal and varying conditions. At the end of the section, the obtained
results are discussed in an overview and the objective of the section is reflected upon.

5-2-1 Simulation data modeling

Similar to Chapter 4, the point of interest is to evaluate what the performance of the ve-
locity corrector is under nominal conditions and if the performance is preserved when faced
with varying external perturbation parameters that affect the velocity corrector. To reiterate,
nominal conditions are conditions where the modeling parameters used to evaluate the ve-
locity corrector are the same as the modeling parameters used to generate the training data,
providing an upper bound for the expected performance.

SVM mode predictor training data The nominal perturbation parameters used to generate
training data for the SVM mode predictor are summarized in Table 5-2.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 0 0.15 [0→ 100] 0 0 0 0 60

Table 5-2: Table summarizing the nominal perturbation parameter settings for training the mode
predictor.

A combination of the data sets displayed in Figure 5-8 is used for the training data set to
avoid the labeled data to be perfectly separable by the SVM mode predictor. A perfectly
separable data set would yield a step function class label probability function p(Ck|f1(k))
instead of a sigmoid, yielding mode weights µ1, µ2 = {0, 1} instead of [0, 1].
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Figure 5-8: Scatter plot illustrating the effect of shifting slip transition parameter ‘SlipTrans’.
The graphs show that as ‘SlipTrans’ increases from 25% to 75%, the stationary and dynamic
slip labels are shifted in feature space.
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5-2-2 Simulated SVM mode predictor tuning

The simulated SVM slip mode predictor is tuned using a 4-fold cross-validation grid search,
as was previously done for the SVM slip detector. Since a linear kernel is used, only the box
constraint parameter ‘C’, discussed in Section 4-1-2, needs to be tuned. A one dimensional
grid search, discussed in Section 4-1-3, is conducted for C = [10−4 : 104] and C = [0.5 : 1.5],
consecutively. The grid search revealed an optimal prediction accuracy on the test data set of
96.57% with C = 1. On the validation set the tuned SVM scores a label prediction accuracy
of 94.11%. The sigmoid parameters that are obtained by fitting a sigmoid, described by
Equation (5-4), to the posterior distribution, as was discussed in Section 5-1-2, are (A,B) =
(−2.33, 0.27).

5-2-3 Velocity correction performance

As was discussed at the beginning of this section, the performance of the constrained IMM is
expected to be susceptible to variations in ship hull conditions. To repeat, the changing ship
hull conditions affect the model mismatch parameter ‘MM ’ in Equation (4-5) and the longi-
tudinal slip magnitude represented by ‘SlipMagMax’ in Equation (2-3-2). These parameters
in turn affect the feature f1, which is used by the velocity correction method to estimate the
true velocity. The performance of the proposed constrained IMM is tested with respect to
these changing parameters. In order to evaluate the effectiveness of the proposed constrained
IMM, the velocity correction method is also compared against the SVMIMM of Jung et al.,
[74] and against the EKF without any velocity correction method.

Velocity correction working validation

Firstly, it is validated if the velocity correction methods are working in an optimal situation.
The modeling parameters are set to the values summarized in Table 5-3. The noise is switched
off and the true slip labels are used. Additionally, both velocity correction methods have a
perfect dynamic slip and stationary slip model. In figure 5-9 the estimated velocities using
the velocity correction methods are shown. The figure shows that when the sensor inputs are
noise free and the data is perfectly labeled, both velocity correction methods work properly.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 0 0.15 50 0 0 0 0 30

Table 5-3: Table summarizing modeling parameters used for velocity correction method valida-
tion.
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Figure 5-9: Graph illustrating the estimated velocities using the velocity correction methods.

Performance under varying model mismatch

The influence of a model mismatch between the model predicted velocity vmodel and the wheel
encoder velocity vodo is simulated by fixing perturbation parameters at the values specified in
Table 5-4, except the model mismatch parameter, which is increased from −30% to 30% in
K = 12 steps.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 0 0.15 50 0 0 0 0 60

Table 5-4: Table summarizing modeling parameters used for velocity method validation.

Each step is iterated N = 1000 times to simulate different noise realizations. The error
build-up per meter traveled between the simulated ground truth and the EKF estimated
position in conjunction with the two velocity correction methods is shown in Figure 5-10.
The figure shows that the constrained IMM has the lowest error build-up except in the
range beyond ±20%. However, this is off less concern since a maximum model mismatch of
±20% is expected, as was discussed in Section 4-1. Overall, the constrained IMM has the
best performance with respect to varying model mismatch and therefore attains the highest
accuracy improvement over the EKF without velocity correction, as shown in Table 5-5.
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Figure 5-10: Graph of error build-up scores between simulated ground truth position and es-
timated position using different velocity correction methods under a varying model mismatch
parameter ‘MM ’.

No VC SVMIMM Cons. IMM
Nominal error build-up 47.24% 31.26% 3.64%
Average error build-up 47.24% 31.00% 7.04%
Accuracy improvement - 34.38% 85.10%

Table 5-5: Table summarizing error build-up and the accuracy improvement of the EKF in
conjunction velocity correction methods under varying model mismatch. The average error build-
up scores are obtained by taking the average error build-up score in the range of [−20 20]%.

Performance under varying longitudinal slip magnitude

The influence of a varying longitudinal slip magnitude ‘SlipMagMax’ on the velocity cor-
rection method is evaluated by fixing the perturbation parameters at the values specified in
Table 5-4 and letting ‘SlipMagMax’ increase from 0 to 0.15 [m/s] over a series of 11 steps,
iterating each step N = 1000 times to simulate different noise realizations. In Figure 5-11 the
error build-up scores between the simulated ground truth and the estimated position using
the velocity correction methods are plotted for an increasing longitudinal slip magnitude.
The figure shows that for longitudinal slip magnitudes close to 0.0 [m/s], the three position
estimator attain similar error-build up scores. The figures also shows that as the longitudinal
slip magnitude increases, the position estimator using the constrained IMM as the velocity
estimator, has significantly better performance than the SVMIMM. This increase in perfor-
mance is reflected in Table 5-6, summarizing the respective average accuracy improvements
of the velocity correction methods.
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Figure 5-11: Graph of error build-up scores between simulated ground truth position and esti-
mated position using different velocity correction methods under varying longitudinal slip magni-
tude parameter ‘SlipMagMax’.

No VC SVMIMM Cons. IMM
Nominal error build-up 47.42% 31.61% 3.43%
Average error build-up 33.66% 27.57% 10.65%
Accuracy improvement - 18.09% 68.36%

Table 5-6: Table summarizing the nominal and average error build-up – and the accuracy im-
provement of the EKF in conjunction velocity correction methods under a varying longitudinal
wheel slip magnitude.

Discussion

Constrained IMM The simulated results show that under nominal conditions error build-
up of between 3.43 − 3.64% is attained by the constrained IMM and so it does not satisfy
the requirement of a maximum error build-up of 2.05%. The simulated results also show
that the performance of the constrained IMM degrades with respect to external perturbation
parameters. The performance of the constrained IMM is mainly degraded when the longi-
tudinal slip magnitude is below 0.1 [m/s] or when the model mismatch exceeds ±20%. As
was shown in Chapter 4, Figure 4-7, the accuracy of the SVM slip detector starts to degrade
for longitudinal slip magnitudes below 0.1 [m/s]. As a result, the SVM slip detector fails to
detect slip causing the performance of the constrained IMM to approach that of the EKF
without velocity correction. An increase in model mismatch beyond ±20% also decreases the
prediction accuracy of the SVM slip detector, as shown in Figure 4-6. However, the degrad-
ing performance when faced with, for instance varying model mismatch, is not all due to
the SVM slip detector. For instance, at a model mismatch of −20% the SVM slip detector
has an accuracy of 90%, as displayed in Figure 4-6. Using the values in Table 3-9, a perfect
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velocity corrector would reduce the error build up by 46.02%·90% = 41.42% to approximately
50.50% − 41.42% = 9.08%. However, Figure 5-10 shows that the error build-up is only re-
duced to 32.84%, indicating that the varying external perturbation parameters also degrade
the velocity corrector. Increases in model mismatch produce higher values for f1, depicted in
Equation (4-4), causing the velocity corrector to more frequently detect stationary slip, thus
underestimating the true velocity. Similarly, a reduction in longitudinal wheel slip causes
the velocity corrector to more frequently detect dynamic slip, thus overestimating the true
velocity.

SVMIMM The SVMIMM does not attain the performance indicated by [74] since under
nominal conditions the SVMIMM only achieves an error build-up score of 36.20%− 37.65%.
Similar to the constrained IMM, the performance severely degrades for a model mismatch
beyond ±20%. This because the SVM slip detector over estimates the amount of slip, causing
the SVMIMM to integrate the acceleration in order to estimate the true velocity. Since
slip is detected during prolonged a duration, errors in the acceleration data accumulate,
inducing large position errors. An additional problem of the SVMIMM is that when the SVM
slip detector fails to detect slip, the SVMIMM misses crucial acceleration data it needs to
approximates the true velocity. The performance of the SVMIMM is thus much more sensitive
to degrading performance of the SVM slip detector compared to the constrained IMM, since
the constrained IMM simply makes an assumption on the true velocity when slip is detected.

5-2-4 Overview

The objective of this section was to determine if the proposed constrained IMM is a significant
improvement over the conventional IMM under varying ship hull surface conditions.

The average error build-up scores obtained by the velocity correction methods under nominal
and varying ship hull conditions are summarized in Table 5-7.

Average error build-up No VC SVMIMM Cons. IMM
Nominal conditions 47.42% 32.61% 3.43%
Varying model mismatch 47.42% 31.00% 7.04%
Varying longitudinal wheel slip 33.66% 25.57% 10.65%

Table 5-7: Table summarizing the average error build-up scores of the velocity correction methods
under nominal, varying model mismatch and varying longitudinal wheel slip conditions.

Limitations The evaluation of the velocity correction methods is limited. Firstly, the con-
strained IMM is assumed to have a perfect model of the dynamic slip mode, modelled in
Section 2-4-1. In comparing the velocity estimators to each other this is obviously in the
favor of the constrained IMM. Another limitation is that the velocity correction methods
were only evaluated for a fixed longitudinal slip magnitude ‘SlipMagMax’ and a varying
model mismatch ‘MM ’ and vice versa. The correction methods were thus not evaluated for
all possible combinations of those two parameters. Like in the previous chapter, the SVM slip
detector used by both the SVMIMM and the constrained IMM - and the SVM mode predictor
used solely by the constrained SVM as a mode predictor, were trained on a perfectly labeled
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training data set. This is unrealistic, since the real sensor data is hand labeled using camera
footage, which is susceptible to mislabeling.

5-3 Velocity estimator validation

In the previous section it was determined that the EKF using the constrained IMM as a
velocity estimator yields the lowest error build-up between the simulated ground truth and the
estimated position and the highest accuracy improvement with respect to the EKF without
velocity correction. The results were however obtained in a simulated environment which
suffers from inherent limitations, discussed in the previous section.

The objective of this section is thus to verify the simulated performance of the EKF using the
constrained IMM as a velocity estimator, using real sensor data.

Firstly, the SVM mode predictor used by the constrained IMM is tuned. Secondly, the EKF
estimated position using the two velocity correction methods and the EKF without velocity
correction are compared using the real data sets also employed in Section 3-2-3. Finally, The
results are discussed at the end of this section.

5-3-1 SVM mode predictor tuning

The data that is used to tune the mode prediction SVM is labeled using camera footage and
originates from operation on the HS TOSCA, on the 6th of July, 2017. The labeled data used
to tune and validate the classifier is depicted in Figure 5-3. The data displayed in the figures
is adjusted such that only the data points where slip is observed remain, yielding a sample
size of N = 1516. The data is then labeled such that when dynamic slip occurs the class label
is 1 and when stationary slip occurs, the class label is 0.

The box constraint parameter ‘C’ is tuned by evaluating the average prediction accuracy of
a 4-fold cross-validation on a tuning data set, as displayed in Figure A-9.1, for different C.
A one dimensional grid search was conducted for C = [10−3 : 103], followed by a grid search
from [0.2 : 1.8], obtaining the optimal box constraint parameter C = 1, with an average
label prediction accuracy of 94.14% on the tuning data set. Validating the tuned SVM on the
separate validation set yielded a label prediction accuracy of 96.37%. The sigmoid parameters,
used in Equation (5-4) to predict the mode probabilities are (A,B) = (−1.826,−0.480).

5-3-2 Velocity estimator performance

The same validation data sets as used in Section 3-2-3 are used here to evaluate the velocity
estimator performance. The EKF estimated travel distances, using the two different velocity
correction methods, are summarized in Table 5-8. The respective error build-up values, as
defined in Equation (1-1), are summarized in Table 5-9. The tables show that the constrained
IMM in all but one case improves the error build-up quite significantly over both the EKF
without the use of velocity correction and the EKF in conjunction with the SVMIMM.
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Data set No correction SVMIMM Cons. IMM True
1 6.8 [m] 6.7 [m] 3.9 [m] 4.4 [m]
2 5.5 [m] 4.9 [m] 3.6 [m] 3.5 [m]
3 8.7 [m] 9.8 [m] 7.1 [m] 6.5 [m]
4 6.5 [m] 6.3 [m] 5.5 [m] 5.7 [m]
5 11.6 [m] 11.2 [m] 10.0 [m] 11.9 [m]

Table 5-8: Table summarizing position estimates using various velocity estimation methods.

Data set No correction SVMIMM Cons. IMM
1 54.55% 52.27% 12.82%
2 57.14% 40.00% 2.86%
3 33.85% 50.77% 9.23%
4 14.04% 10.53% 3.51%
5 2.52% 5.88% 15.97%

Average error build-up 32.42% 31.89% 8.88%

Table 5-9: Table summarizing error build-up in position estimates per true meter traveled using
various velocity estimation methods.

Discussion

The validation results depicted in Table 5-9 confirm that the constrained IMM attains the
lowest error build-up score, reducing the average error build-up of the EKF without velocity
correction by a factor of four to 8.88%.

The results also show that the SVMIMM hardly improves the EKF without velocity correc-
tion, only improving the error build-up score by 0.53%.

The variation in error build-up score and the predicted travel distances summarized in Table
5-8 suggest that the high error build-up scores of the constrained IMM are mainly due to
the SVM slip detector detecting slip when the robot is not slipping, undershooting the true
distance traveled.

The results show that the constrained IMM reduces the error build-up in most cases with
respect to the EKF using no velocity correction method and the EKF using the SVMIMM as
a velocity correction method, thus confirming the simulated results. Overall, the constrained
IMM produced an accuracy improvement of 72.60% over the EKF without velocity correction.
This accuracy improvement falls in the middle of the accuracy improvement range of 60.53% to
84.44%, encountered in comparable mobile robots, discussed at the beginning of this chapter.
Contrary to what was expected from the simulations, the SVMIMM does not improve the
EKF position estimate without any velocity correction method. It is expected that this is
due to the noise present on the acceleration data, and the fact that the SVMIMM is prone to
missing valuable acceleration data if slip is not detected by the SVM slip detector.
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5-4 Conclusion

The objective of this chapter was to design a velocity correction algorithm, that can be used
in conjunction with the EKF and the SVM, that attains an as low as possible error build-up
score. This objective is achieved by first proposing working principles by reviewing literature
on velocity correction methods for mobile robots - and testing and validating these working
principles using simulated data and real sensor data, respectively.
Since the velocity correction method has to work in conjunction with the EKF and also the
SVM designed in the previous chapter the IMM was selected as the most suitable working
principle to correct the velocity during slippage. Conventionally, IMMs estimate the velocity
during slippage by integrating the IMU acceleration output. However, due to the prolonged
duration of slippage observed during several operations and the amount of sensor noise on
the IMU acceleration output of the Fleet Cleaner robot, this solution seemed questionable.
Instead, a constrained IMM making use of a mode predicting SVM, mixing a dynamic and
stationary slip model was proposed to estimate the velocity during slippage.
Like the SVM designed in Chapter 4, the mode predicting SVM makes use of a feature that
is susceptible to varying ship hull conditions and so the constrained IMM was simulated
using data emulating these conditions. The constrained IMM was also juxtaposed against
a conventional IMM using the IMU to estimate the velocity during slippage. Finally, the
simulated results were validated using real sensor data and the accuracy improvement was
compared to that of wheeled mobile robots in comparable circumstances.

Results and conclusions The simulated results showed that the EKF in conjunction with the
constrained IMM retains an error build-up score of 3.64% to 32.84% under varying ship hull
conditions, yielding an average accuracy improvement range of 68.36%−85.10% over the EKF
without velocity correction. The simulated results also suggested that the constrained IMM is
an improvement over the conventional IMM which only achieved an accuracy increase in the
range of 18.09%− 34.38%. The simulated results indicate that the decreasing performance of
the constrained IMM coincides with the decrease in performance of the SVM slip detector.
However, the simulated results also show that the increase in error build-up when faced with
varying ship hull conditions is due to a reduction in velocity corrector performance. So even
if a perfect slip detector was available, the constrained IMM would not suffice to reduce the
error build-up to within 2.05%.
The average error build-up using real sensor data of five independent data sets, originating
from three different cleaning operations, was reduced from 32.42% to 8.88%. The constrained
IMM thus does not satisfy the requirement of a maximum error build-up of 2.05% but it does
reduce the error build-up of the EKF by a factor of 3.65, significantly reducing workload on
the operator.

Limitations The design of the constrained IMM that is proposed in this chapter is limited
since it made use of an SVM that was trained on data hand labeled using camera footage. As
was already seen in Chapter 4 such data is susceptible to mislabeling. Furthermore, the dy-
namic model was trained using data that was assumed to be a ground truth velocity. However,
this assumption has not been verified on the basis of experimentation due to the lack of re-
sources. The performance of the velocity correction methods was tested using simulated data
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mimicking the varying conditions of a ship hull. The variability of the conditions was however
limited to model mismatch ‘MM ’ and the longitudinal slip magnitude ‘SlipMagMax’. The
performance of the velocity correction methods was only evaluated for a fixed ‘MM ’ and a
variable ‘SlipMagMax’ - and vice versa, since evaluating the performance for each possible
combination would be too time consuming. The dynamic slip model data is limited because it
is very questionable if the ‘true’ velocity used to identify the model is in fact the true velocity.
However, the identification of the model was limited to this data since no true velocity data
is available.

Recommendations Following the previously discussed limitations it is recommended that
additional wheel encoders are installed to track the true velocity of the robot. If wheel slip
occurs for all but one wheel, wheel encoder output associated to the wheel that is not slipping
can be used to estimate the true velocity. If no wheel encoders are added to the robot it is
recommended that some test is conducted to obtain better true velocity data with which the
dynamic slip model is identified. Both the simulated results in Chapter 4 and in this chapter
showed that the performance of the slip detector and velocity corrector will steeply degrade
when faced with model mismatch. So if no additional wheel encoders are added to the robot,
it is recommended that the ARX model that estimates the velocity of the robot when it is
not slipping is made adaptive.
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Chapter 6

Heading Correction

In Chapter 3 it was shown that the position estimation is corrupted due to drift in the IMU
heading output, inducing an error build-up of 6.19% over a time period of 60 seconds. This
is problematic as it induces large errors between the estimated position and the true position
and puts additional workload on the operator of whom it is currently required to reset the
estimated heading intermittently.

In order to alleviate the position estimate of the aforementioned problems, the drift in the
IMU heading output must be accounted for. The reduction of the IMU heading drift will
not only improve the heading estimate of the IMU, but also reduce the error build-up in the
x- and z-position estimates, thus reducing workload on the operator and producing a more
realistic trajectory map for the customer.

The objective is thus to design a heading correction algorithm that accounts for the heading
drift of the IMU output, and reduces the error build-up position estimate.

In Section 6-1 a working principle is proposed that accounts for the IMU heading drift and
reduces error build-up. In Section 6-2 this working principle is tested using simulated data
to verify the workings of the principle and to determine its shortcomings. In Section 6-3 the
simulated results are validated using real data.

6-1 Heading correction working principle

Although IMUs with a referenced heading, using the earths magnetic field exist they cannot
be employed by the Fleet Cleaner robot as it utilizes large magnets which will distort the
magnetometer [10]. Another approach, employed by Barshan et al., [99], is to estimate a drift
model by evaluating the sensor drift when the IMU is known to be stationary. This would
yield a constant drift rate value but as was shown in Section 2-2, the drift rate varies with
time. A different method for accounting for the heading drift thus needs to be devised.

In this section it is proposed that knowledge about ship hull shapes can be used to combat
the drift in the IMU heading orientation. The general idea is based on the fact that most
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oceanic trade vessels, that Fleet Cleaner has cleaned so far, have a flat ship hull side section1

– and the assertion that this section can be detected using sensor data. If the ship side is
detected, the heading orientation, defined by θ in Figure 1-4, can be reset to its initial value,
assuming the IMU was initialized on the ship side. Incidentally, if the ship side of the ship is
detected, the z−coordinate position estimate can also be reset to its initial value, eliminating
the error build-up in the z−coordinate position estimate, also shown in Figure 1-4.

Heading corrector requirement Resetting the heading and z-coordinate position estimate
can improve the position estimator will reduce the error build-up in the position estimate.
However, if the heading and z−coordinate position estimate are reset while the robot is on the
bow of the ship, a so called false positive – it may in fact induce very large errors and increase
error build-up. In order to decrease the chances of this happening the ship side detector is
required to

1. have an false positive rate of less than 0.0005 per bow crossing 2,

2. retain the nominal error build-up score obtained by the constrained IMM when faced
with heading drift rate in the range of [−0.0037 0.0037] [rad/s].

Proposed heading corrector workings The workings of the proposed heading corrector are
displayed in Figure 6-1. As is shown in the figure, the detection of the ship side using sensor
data requires the selection of an appropriate classifier, the design of features used by the
classifier to detect the flat side of the ship and a state resetting method.

Figure 6-1: Illustration of proposed heading cor-
rection algorithm. The incoming sensor data and
the corrected wheel encoder velocity is used by a
classifier to determine if the robot is on the flat
side of the ship hull. If the flat side of the ship
hull is detected, the heading and the z−coordinate
position estimate can be reset to their respective
initial values, as long as the robot has been initial-
ized on the flat side of the ship hull.

The objective of this section is thus to design features and select a suitable classifier to detect
the flat side of the ship hull such that the IMU heading and z−coordinate position estimate
can be corrected.
The section is structured as follows. In Section 6-1-1 features are selected that can be used
to detect the side of the ship. In Section 6-1-1 a classifier is selected that suits the selection
of features and other to be determined requirements. In Section 6-1-4 a method for resetting
the heading and z− coordinate position estimate is proposed. Finally, in Section 6-1-5 an
overview is given of the design choices that were made and their possible shortcomings

1This flat ship hull side section will be referred to simply as ‘the side of the ship’ or ‘ship side’.
2This failure rate was discussed with Fleet Cleaner
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6-1-1 Feature engineering

In Chapter 4 the features were determined by reviewing research done on wheel slip detection
for mobile robots on uneven or loose surfaces. This tactic can not be used to determine
appropriate features for the detection of the flat side of the ship hull as the topic is uncommon.
Instead the features are determined based upon physical insight into the shape of ship hulls.

Roll feature

A property of the side of the ship is that it is vertical, and so an obvious way to detect the flat
side of the ship hull is by gauging the extrinsic roll φt. If the robot is initialized on the side
of the ship such that φ0 = 0, the roll will deviate from zero when it approaches the underside
of the ship or the bow of the hull, as displayed in Figure 6-2 (Left).

Figure 6-2: Images of oceanic trade vessels, displaying the ship hull shape. Left: Mc-Kinney
Møller, container transport vessel [100]. Right: Teseo, crude oil tanker [101].

A drawback to this feature is that it can only be used for the detection of the side of the
ship if the side of the ship is the only vertical ship hull section. As can be seen in Figure 6-2
(Right) ship hull shapes exist where the bow of the ship, although curved, is still vertical.
If a classifier is solely using the roll feature, it would in this case not be able to distinguish
between the curved front part of the ship hull and the flat side of the ship hull. Therefore
an additional feature that measures the curvature of the surface the robot is on is proposed
next.

Curvature feature

The difference between the side and the bow of ship displayed in Figure 6-2 (Right), is that
movement over the bow will yield a curved trajectory and movement over the side will yield a
straight trajectory. The curvature ‘κ’ of a path q(s), parameterized in the path length ‘s’, is
defined as the directional change of the tangent ‘T (s)’ of q(s) in the direction of the surface
normal vector ‘N(s)’ [102], as shown in Figure 2-5. A flat surface will have a curvature of
κ = 0. There are different ways to estimate this curvature, and the selection of the appropriate
estimation method depend upon the feature requirements, discussed next.
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Feature requirement It is required of the feature that it can be used to distinguish the side
of the ship from the bow of the ship. This task becomes more difficult as the curved section of
the ship hull is less curved, and κ→ 0. Such small curvatures occur on very large oceanic oil
tankers, such as the HS Teseo displayed in Figure 6-2 (Right). The HS Teseo has a width of
44 [m] [103], and so its curvature is estimated to be approximately κ = 1

R = 0.0455. In order
to be able to distinguish flat surfaces from curved surfaces, the curvature feature estimate ‘κ̂’
requires at maximum bias of E[κ̂] − κ < 0.0455. Furthermore, the lower the variance of the
estimate, the better the clusters become separated, the higher the prediction accuracy of the
classifier will be. A low estimator variance is thus also required.

Estimator selection Curvature estimation can be broadly divided into analytic and the
more simplistic numerical estimation methods. Analytic estimation methods rely on fitting
a surface to a spatial point cloud near the point of interest and determining the derivatives
of that surface at the point of interest to determine the curvature. Numerical estimation
methods estimate the curvature using the difference in normal direction of the surface between
adjacent spatial points. In their research P. Flynn et al., [104] compare analytic curvature
estimation methods to numerical methods by simulating trajectories to obtain orientational
vectors in each point along the trajectory, similar to what was done in this thesis using the
Frenet-Serret model, adding zero mean Gaussian noise with standard deviation 0.03 to the
orientational vectors and using different methods to estimate the true curvature. P. Flynn et
al., have shown that numerical curvature estimation methods can be as accurate as analytic
techniques. In their research they also point out that it is difficult to get the curvature
estimates better than 10% accuracy if the surface is not flat. However, surfaces with zero
curvature were estimated to within 2.57 · 10−2 using a numerical approach, calculating the
curvature using the change of the surface normal. Flynn et al., added noise to the simulated
sensor signals with a standard deviation of 0.03. As was summarized in Table 2-1, the noise
on the orientation data provided by the IMU is an order of magnitude smaller. It is therefore
expected that the results of Flynn et al., can be reproduced.The curvature is thus estimated
numerically, by calculating the change in the surface normal.

Research [102, 105] has shown that noise severely deteriorates the curvature estimation accu-
racy. To get reliable results using numerical curvature estimation, a Gaussian filter is must
used to reduce the noise on the input data [102, 105].

Surface normal change estimator The surface normal change method used to estimate the
curvature is described below [106]. Let p be the point of interest for calculating the curvature
and qn,m be a point in a two dimensional N ×M neighbourhood of p. The curvature at p in
the direction of qn,m is

κ̂p,q =


||np−nq ||
||p−q|| if ||p− q|| < ||(np + p)− (nq + q)||
− ||np−nq ||
||p−q|| if ||p− q|| > ||(np + p)− (nq + q)||

.

where np and nq are the surface normals at point p and q, respectively. In order to increase
the estimator accuracy, κ̂ is calculated over an N × N [104] range and estimated using the
LLS [21, p. 28] solution. A downside of this method is that the length of the chord between
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q and p is taken as the distance between points instead of the geodesic distance, reducing
estimation accuracy [106].

A way to alleviate this problem is by using the Frenet-Serret model described by Equation
(2-6), as it relates the change in the tangential vector Tt in the surface normal direction to the
distance traveled over the manifold dt = v̂t−1 ·h+dt−1 through intrinsic manifold parameters
κ and τ , which represent curvature and torsion respectively.

Using forward Euler integration to discretize the continuous time Frenet-Serret model yieldsT (k + 1)
N(k + 1)
B(k + 1)

 =

 0 κ 0
−κ 0 τ
0 −τ 0


T (k)
N(k)
B(k)

 · v̂(k) · Ts +

T (k)
N(k)
B(k)

 , (6-1)

where v̂(k) is the estimated velocity using the EKF in conjunction with the constrained IMM
and Ts is the sampling time. Rearranging yieldsT (k + 1)

N(k + 1)
B(k + 1)

−
T (k)
N(k)
B(k)


︸ ︷︷ ︸

y

=

 N(k) · v̂(k) · Ts 0
−T (k) · v̂(k) · Ts B(k) · v̂(k) · Ts

0 −N(k) · v̂(k) · Ts


︸ ︷︷ ︸

H

[
κ
τ

]
︸︷︷︸
x

, (6-2)

which can be solved using LLS solution [21, p. 28]. The vector y can be obtained using the
IMU orientation output and H using the IMU orientation output and the estimated velocity.
In order to attenuate the noise in the curvature estimate κ̂ [104], y and H can be calculated
over the sliding window ranging from k − N to k, where N is the window size. A way for
determining the window size N is discussed in Section 6-1-1.

Gaussian filter smoothing In order to increase the curvature estimation performance the
input data used in y and H is filtered using a Gaussian filter.

xn = 1√
2πσ1

k∑
i=k−N1

exp (n− i)2

2σ2
1
· xi, (6-3)

where, xi is the input at time instance i, ‘N1’ is the window size and σ1 the standard deviation
of the Gaussian. For each sensor input the moving window size N1 and the standard deviation
σ1 is a tuneable parameter, the optimization of which is discussed in Section 6-1-3.

Curvature feature variance

As was discussed in [104], the curvature estimation of flat surfaces using the surface normal
change estimator yields more accurate and precise results compared to the curvature estima-
tion of non-flat surfaces. It is thus anticipated that the variance of the estimator κ̂ can be
used to distinguish between flat surfaces and non-flat surfaces. The uncertainty of the LLS
solution of

y + ε = Hx, (6-4)
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where ε is the standard deviation of the measurement vector y, then the uncertainty of the
LLS solution is [21, p. 110]

E[x̂− x] = (HTH)−1
HTE[εεT ]H(HTH)−1

= (HTH)−1
HTΣ2

yH(HTH)−1
,

(6-5)

where Σ2
y = 1

N

∑N
i=1 (yi − ȳ)(yi − ȳ)T , N is the moving window size and ȳ = 1

N

∑N
i=1 yi.

The sliding window size N is a tuneable parameter, the optimization of which is discussed in
Section 6-1-3.

The previously designed features are combined to form the standardized feature vector

ζ2 =

std(|roll|)−1 0 0
0 std(|κ̂|)−1 0
0 0 std(|var(κ̂)|)−1



 |roll||κ̂|
|var(κ̂)|


−

 mean(|roll|)
mean(|κ̂|)

mean(|var(κ̂)|)

 , (6-6)
with a total of 3 tuneable parameters, namely the Gaussian filter parameters (σ1, N1) and
the sliding window length N .

Feature parameter tuning

The smoothing using a Gaussian filter and the calculation of κ̂ over a moving window induces
a delay between κ̂ and the true class labels. In order to account for this delay, the true class
labels are shifted by Ndelay. Using this delay, the class labels are predicted as

delta(k −Ndelay) = Classifier(ζ2(k)). (6-7)

Adding Ndelay to the tunable feature parameters, yields the tunable parameter set displayed
in Table 6-1.

Gaussian filter (v̂, T,N,B) Delay κ̂, var(κ̂)
Parameters (σ1, N1) (Ndelay) (N)

Table 6-1: Table summarizing the tuneable parameters of the selected flat ship hull side detection
features.

In Chapter 4 the feature parameters were tuned by evaluating the PCC, depicted in Equation
4-11, of the features with respect to the true class labels for different parameter values. The
SVM slip detector required only the tuning of 2 feature parameters, affecting two of the total
of four features. In this cases there are four tuneable feature parameters affecting two of
the three features, making correct tuning of the feature parameters more urgent. So to get
optimal classifier performance it is decided to tuned the feature parameters simultaneous to
the classifier parameters using a K-fold cross-validation grid search, discussed in Section 4-1-3.

Next, a classifier is selected that is suitable for detecting the flat side of the ship hull using
the features designed in this section.
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6-1-2 Heading correction classifier

The classification method that is suitable to distinguish between the side of the ship and
the bow of the ship, is subjected to different requirements than the slip detection classifier,
designed in Chapter 4. The requirements that the selection of the classifier is subjected to
are discussed next.

Classifier requirements The previously designed SVM was mainly selected on its high pre-
diction accuracy making the true positive rate and false positive rate approximately evenly
high if there are an equal amount of (1) class labels and (0) class labels. High prediction
accuracy is only of secondary importance for the detection of the ship side, and a low false
positive rate is far more important. This is because if a false detection of the ship side is made
while the robot is on the bow of the ship, the EKF states will be reset, inducing large posi-
tion estimate errors. Another requirement of the classification method is that is has a short
training time. This is because the feature vector designed in the previous section requires the
tuning of 4 parameters using a grid search, thus requiring at least K · c4 training iterations,
where K is the amount of folds of the K-fold cross-validation and c are the amount of points
per grid dimension. To summarize, the classification method is required to-

1. acquire a maximum false positive rate of 0.0005,

2. have a short training time such that larger grids can be searched,

3. have a small amount of tuning parameters such that the grid search consumes less time.

Feature characteristics The selection of an appropriate classifier also in large depends upon
the characteristics of the features that are used. As was discussed in [104] and [105], the
numerical estimation of the curvature is sensitive to sensor noise and so it is expected that
the feature |κ̂| will be noisy. Furthermore, the EKF position estimate can be used to determine
if the robot is on the side of the ship or on the bow, up to some safety margin proportional
to the error build-up of the position estimate, making labeled data abundant. The feature
characteristics are summarized below.

1. The curvature estimate κ̂ is expected to be noisy.

2. The feature vector is low dimensional.

3. The classifier has access to a large labeled training data set.

From the classifier requirements and the third feature characteristics it is determined that a
supervised, lazy, probabilistic classifier is most suitable to detect the flat side of the ship hull.
A lazy learning algorithm has zero training time, as it simply stores the labeled data and uses
it directly to classify incoming data. Like the mode probability prediction classifier employed
in Chapter 5, a probabilistic classifier is used to determine the class likelihood P (Ck|fi). A
threshold can be set beyond which P (Ck|fi) is classified as (1) (side of the ship hull), reducing
the false positive rate.
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An algorithm that fits all these requirements is the k-Nearest Neighbours (kNN) classification
algorithm as it supervised, lazy, has only one tuning parameter and can produce a probabilistic
output. Furthermore, the kNN can be tuned to be made robust against noise [107] and has
a label prediction accuracy similar to that of the SVM for classification problems with low
(<50) feature dimensionality [108]. A downside to the kNN being lazy is that it requires more
storage space than an eager classification algorithm, like the SVM, to store its training data
and the classification time increases as the training data sample size increases [109]. However,
this is not problematic if the classification time stays within the sample time of Ts = 0.03125.
For the reasons mentioned, the kNN classifier is used to detect the flat side of the ship hull.

k nearest neighbours algorithm

The kNN is trained by providing data pairs 〈fi, deltai〉, where fi is a feature vector and deltai
is the class label {0, 1} associated to feature fi. Given a set of data pairs 〈fi, deltai〉, unlabeled
feature points fq are classified by evaluating the class labels of its ‘k’ nearest neighbours and
assigning the the most common class among its neighbours to fq [110]. The most common
definition of what the nearest neighbours of point fq are, is the minimum Euclidean distance,
denoted

d(fi,fq) = ||fi − fq||. (6-8)

Although the use of the Euclidean distance is common as a distance norm, it has been often
shown that using distance norms based on labeled training data can significantly improve the
kNN prediction accuracy [111]. The selection of k nearest neighbours is not a trivial matter
and is typically a trade-off. Selecting a low k may provide a higher prediction accuracy on
some data sets but is prone to over fitting on the training set and thus is in most cases not
general enough and not robust to noise. Choosing a high k has the inverse consequences,
the kNN will be more robust against noise but will have a lower prediction accuracy on the
training set [108]. The proposed kNN thus has two degrees of freedom for design: the distance
function and the selection of the amount of nearest neighbours k. The selection of a distance
function is discussed next and the tuning of k is discussed in Section 6-1-3.

kNN distance function Common distance norms used in conjunction with the kNN include
the Euclidian norm, discussed above, the Chi-square norm, cosine norm, Minkowski norm and
Mahalnobis norm. In their paper researching the label prediction accuracy of the kNN using
the former first four distance norms, Hu et al., [112] conclude that the Euclidean distance norm
produces the best kNN prediction accuracy if the feature data is numerical. It is reported by
K. Q. Weinberger et al., that using the Mahalnobis norm instead of the Euclidean norm can
vastly improve kNN performance [113]. In their paper comparing the Mahalanobis norm to
the Euclidian norm, they show that for classification problems with low sample size and input
dimension, using a Mahalanobis norm instead of Euclidian norm can improve the prediction
accuracy of the classifier. Although in this case the sample size is not low, the input dimension
is and so the Mahalanobis norm is used as the distance function. The Mahalanobis norm is
denoted

d(fi,fq) = (fi − fq)Cf (fi − fq)T , (6-9)

where Cf is the covariance matrix of the training feature data f ,
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6-1-3 Feature and classifier optimization

One of the classifier requirements stated that the classifier must have a low false positive rate
in order to prevent large position estimate errors. The false positive rate can be influenced by
adjusting the probability threshold, denoted pThresh, which is the class probability P (Ck|fi)
required for an input feature to be classified as (1), which means the flat side of the ship has
been detected. In order to obtain the highest accuracy this threshold is set at 0.5, however,
for a low false positive rate it is set at for instance 0.8. The consequence of lowering the false
positive rate is a decrease in true positive rate. By increasing the probability threshold the
amount of flat ship hull side detection thus decreases. Note that there is thus a trade-off
between the certainty with which an input feature can be classified as (1) and the amount
of true positive classifications of the flat side of the ship hull. This trade-off is reflected in
the Receiver Operating Characteristics (ROC) of the probabilistic output of a classifier which
evaluates the true positive rate with respect to the false positive rate [114], displayed in Figure
6-3. The ROC plots the true positive rate of the classifier on the y−axis and the false positive
rate of the classifier on the x−axis, obtained using a probability threshold increasing from 0
to 1. The Area Under the Curve (AUC) of the ROC is maximized in order to maximize true
positive rate while false positive rate is reduced to acceptable levels. The AUC of the ROC
has been shown to be an effective metric to evaluate classifier performance if the probability
threshold has not been determined yet [115]. If setting the probability threshold pThresh is

Figure 6-3: Graph displaying ROC curve
of a classifier. The ROC curve depicts the
trade-off between the true positive rate and
false positive rate of a classifier. The graph
shows that as the false positive rate is re-
duced, which is desirable for this applica-
tion, the true positive rate decreases as well.
The sensitivity of the true positive rate to
a change in the false positive rate depends
upon the classifier. Ideally, the true posi-
tive rate should remain as high as possible
for a decreasing false positive rate, which
is achieved by maximizing the AUC value
of the ROC. https://www.medcalc.org/
manual/roc-curves.php

not sufficient to acquire a low false positive rate, the rule that at least an ‘NrCons’ amount of
input data points must be labeled (1) before a data point is actually labeled (1), is employed.
The feature and classifier parameters, summarized in Table 6-2, are optimized by evaluating
the average AUC of a 4-fold cross-validation for different parameter sets (σ1, N1, Ndelay, N,K),
which are varied using a grid search method. The grid point that yields the highest AUC
value is selected as the optimal parameter set.

Gaussian filter (v̂, T,N,B) Delay κ̂, var(κ̂) kNN
Parameters (σ1, N1) (Ndelay) (N) K

Table 6-2: Table summarizing the tuneable parameters of the selected flat ship hull side detection
features and classification method.
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6-1-4 Heading and position correction

Using the flat side detection algorithm designed in the previous section the position in z-
direction and the heading can be corrected. The objective phrased at the beginning of chapter
states that the heading correction algorithm should reduce the error build-up of the position
estimate. In order to achieve this a strong constraint is used as a sensor input to the EKF
designed in Chapter 3. In contrast to the weak constraint employed in Chapter 5, the strong
constraint has zero uncertainty and so the states are forced to the value of the strong con-
straint.

Heading strong constraint

Let θ0 be the heading of the robot after it has been initialized on the flat side of the ship
hull – and φt and ψt the roll and pitch of the robot expressed in the ship hull fixed frame,
depicted in Figure 1-4. Once the flat side of the ship hull is detected, the heading of the robot
is corrected using [116]

q̂t = qcor
q̂∗t
||q̂2

t ||
q̂t−1, (6-10)

where q̂t are the EKF estimated quaternion states at time instance t, and

qcor =


cos (φ/2) cos (θ0/2) cos (ψ/2) + sin (φ/2) sin (θ0/2) sin (ψ/2)
sin (φ/2) cos (θ0/2) cos (ψ/2)− cos (φ/2) sin (θ0/2) sin (ψ/2)
cos (φ/2) sin (θ0/2) cos (ψ/2) + sin (φ/2) cos (θ0/2) sin (ψ/2)
cos (φ/2) cos (θ0/2) sin (ψ/2)− sin (φ/2) sin (θ0/2) cos (ψ/2)

 . (6-11)

z-coordinate strong constraint

In order to combat the drift in z- coordinate position estimate, the state of the EKF repre-
senting the z− coordinate is reset to its initial value z0 when the flat side is detected. As
soon as the flat side of the ship hull is detected, the sensor model of the EKF changes to

y =
[
vodo q̂0 q̂1 q̂2 q̂3 µ2 z0

]T
, (6-12)

where q̂i are the corrected quaternion inputs, µ2 the depth gauge input, and z0 the strong con-
straint for the z−coordinate position estimate. The heading corrector algorithm is depicted
in Appendix A-14.

6-1-5 Overview

The objective of this section was to design features and select a suitable classifier to detect
the flat side of the ship hull such that the IMU heading and z−coordinate position estimate
can be corrected.

The features used to detect the side of the ship and the selection criteria for the kNN classifier
are summarized in Table 6-3.
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Features
Roll feature f1(k) = |φ(k)|
Curvature feature f2(k) = |κ̂(k)|
Curvature feature uncertainty f3(k) = |var(κ̂)(k)|

Classifier selection

kNN

Short training time
Small amount of tuneable parameters
Low dimensional feature vector
Can be made robust against noise

Table 6-3: Table summarizing the features used to detect the side of the ship and the classifier
selection criteria.

Limitations A drawback of the position estimator resetting procedure, used when the flat
side is detected, is that in case of a false positive detection, it severely degrades the position
estimate. In order to prevent false positive detections, additional detection rules, such as an
‘NrCons’ amount of detections must occur in a row before the the flat side is detected, may
be added. Lastly, the heading corrector performance will be limited to ships that have a flat
side.

6-2 Heading and position corrector simulation

In the previous section a working principle was devised that detects when the robot is on the
flat side of the ship hull and resets the heading and z−coordinate position estimate when the
flat side of the ship hull is detected.

As was discussed previously, the drawbacks of the heading corrector are the high noise of the
curvature feature [104], making it difficult to distinguish between the side of the ship and the
curved sections when the curvature is low – and the false positive detection of the side of
the ship, inducing large errors in the position estimate. The false detection of the side of the
ship becomes likely when the robot is operating on a large oil tanker. This is because the roll
feature can not be employed to distinguish the side from the fore of the ship and the SNR
of the curvature feature is low. In order to explore the limitations of the proposed heading
corrector, the algorithm is tested on simulated data emulating the data originating from a
large oil tanker. Furthermore, the heading corrector is evaluated with respect to various ship
hull curvatures and heading drift rates such that the limit of the algorithm can be determined.
The heading correction algorithm is evaluated using the previously discussed requirement and
objective, listed below.

• The heading corrector may not falsely detect the flat side of the ship if it induces a
position error greater than 10 [cm].

• The heading corrector must attain the nominal error build-up score obtained by the
constrained IMM, under varying heading drift rates in the range of [−0.0037 0.0037]
[rad/s].
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The objective of this section is to validate the workings – and determine the performance
limits of the heading corrector with respect to varying ship hull curvature and heading drift,
while satisfying the set requirement.
Firstly, sensor data is simulated emulating the shape of a large oil tanker using the previously
designed sensor noise models and Frenet-Serret model. Secondly, the kNN classifier and
feature parameters are tuned on the simulated data and a suitable probability threshold is
selected. Finally, the performance of the heading corrector is evaluated with respect to the
varying ship hull curvature and heading drift rate. An overview summarizing the simulated
results and its limitations is provided at the end of the section.

6-2-1 Simulation data modeling

The simulated data is used to train the kNN classifier and to evaluate the heading corrector
and EKF performance with respect to varying ship hull curvature. The training data and
heading corrector evaluation data are subjected to the following requirements.
The requirements of the training data are that it emulates the sensor data originating from
a large oil tanker, since this is the worse case scenario from the viewpoint of the classifier,
as was previously discussed. The training data must thus emulate the data from a ship with
a curvature of κ = 0.0455 and a vertical bow section. Furthermore, the training data must
simulate the corruption by sensor noise, wheel slip and heading drift, since these factors all
affect the curvature estimate.
The requirements of the evaluation data are that the curvature can be made varying such
that the detection limits of the classifier with respect to the curvature of the ship hull can be
evaluated. Like, the simulated training data, the evaluation data is also corrupted by sensor
noise, wheel slip and heading drift perturbations.
The Frenet-Serret model devised in Chapter 2 does not suffice to model the varying ship hull
curvature, since the curvature is set as a constant. Therefore, a hybrid Frenet-Serret model
that simulates the transfer from the side of the ship to the bow of the ship is devised next.

Hybrid Frenet-Serret model

In order to simulate the changing curvature of an oil tanker, the hybrid Frenet-Serret model
combines a flat manifold, where

κ = 0
τ = 0,

(6-13)

with a cylindrical manifold, where

κ = cos2 β

R

τ = cosβ sin β
R

,

(6-14)

where β is the pitch of the robot with respect to the cylinder and R is the cylinder radius,
set at R = 22[m] simulating the approximate curvature of a large vessel like the HS Teseo3.

3http://maritime-connector.com/ship/teseo-9038866/
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The hybrid model switches between the flat manifold curvature parameters and cylindrical
manifold parameters using

[
κt
τt

]
=



[
0
0

]
, if µ1 < 0,[

cos2 βt

R
cosβt sinβt

R

]
, if µ1 ≥ 0.

(6-15)

where µ1 is the true position of the robot in x direction. The classifier training data trajectory
is generated using the hybrid Frenet-Serret model using

[
αt
vin

]
=



[
0

0.2

]
, if t < 0.5 · Tfinal,[

0
−0.2

]
, if t ≥ 0.5 · Tfinal

(6-16)

as the steering angle and velocity input. This yields the trajectory displayed in 6-4 emulating
a bow section crossing. The remaining perturbation parameter values are summarized in
Table 6-4.
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Trajectory of robot in x-z plane

Ground truth trajectory

EKF estimated trajectory

Figure 6-4: Graph displaying the trajectory in
x−, z−coordinates of the robot during a bow
crossing. The trajectory starts at (x, z) =
(−2.5, 2.5). The sensor inputs used by the EKF
were corrupted by the perturbation models, using
the perturbation parameters specified in Table 6-
4, and a heading drift of −0.0037 [rad/s]. The
error build-up between the EKF estimated trajec-
tory and the simulated ground truth trajectory is
19.6%.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 0 0.15 50 [−0.0037→ 0.0037] 0 0.0455 0 200

Table 6-4: Table summarizing modeling parameters used for kNN classifier tuning.

6-2-2 Feature and classifier parameter tuning

The optimal feature and classifier parameters are found using a K-fold cross-validation grid
search, discussed in Section 6-1-1 and 6-1-3. Firstly, the feature vector in Equation (6-6) is
computed for some combination of feature parameters (N1, σ1, Ndelay, N, k). Secondly, the
features are ordered randomly and partitioned, as shown in Figure A-9.1. Finally, the kNN is
trained, using some k amount of nearest neighbours and 4-fold cross-validation on the training
and test data, as displayed in Figure A-9.1. This process is repeated for each point in the
search grids specified in Table 6-5. Using this method, the optimal parameter set is found to
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be (N1, σ1, Ndelay, N, k) = (50, 150, 100, 80, 100), scoring an AUC score of 0.9922 on the test
set and 0.9600 on the validation set.

N1 σ1 Ndelay N k

Grid 1 10[1:3] 10[1:3] 10[1:3] 10[1:3] 10[1:3]

Grid 2 10 · [1 : 5] 100 · [1 : 5] 100 · [1 : 5] 10 · [1 : 5] 100 · [1 : 5]
Grid 3 10 · [5 : 9] 50 · [1 : 5] 50 · [1 : 5] 10 · [5 : 9] 50 · [1 : 5]

Table 6-5: Table summarizing the grid search ranges for kNN tuning. The optimal parameter set
was found to be (N1, σ1, Ndelay, N, k) = (50, 150, 100, 80, 100), scoring an average AUC score
on the test data set of 0.9922.

Probability threshold and consecutive detection tuning The probability threshold ‘pThresh’
and the amount of consecutive detections ‘NrCons’ required for a data point to be labeled
1, affects the true positive rate and the false positive rate of the kNN classifier. The param-
eter set (NrCons, pThresh), used to assign class labels to the input features, is determined
by evaluating the true positive rate and false positive rate of the tuned kNN for a varying
pThresh and NrCons, on the training data set, yielding the true positive rate and false
positive rate graphs displayed in Figure 6-5.
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Figure 6-5: Graphs displaying the shifting true positive rate and false positive rate of the kNN
classifier for a shifting pThresh and NrCons. The four grid points selected all have a zero
false positive rates, however, they have different true positive rates. It is expected that the false
positive rate parameter set (NrCons, pThresh) = (181, 0.95) will be most robust against false
positive detections. However, compared to the parameter set (NrCons, pThresh) = (41, 0.69)
it will also be less able to consistently detect the side of the ship, thus increasing error build-up.

The figure shows that at (NrCons, pThresh) = (1, 0.99) the false positive rate is non-zero and
so it is necessary to add the rule that a number of consecutive detections must occur before
input data can be labeled as (1), such that the false positive rate is reduced below 0.0005.
Four threshold parameter combinations, varying in false positive rate and thus varying in
robustness to false ship side detections as displayed in Figure 6-5, are selected to be further
evaluated in the next section.
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6-2-3 Heading correction performance simulation

In the beginning of this section it was discussed that the heading corrector is susceptible
to variations in ship hull curvature and heading drift. Furthermore, it was shown that the
robustness to false detections of the side of the ship depends upon the selection of the threshold
parameters (NrCons, pThresh). In this section a set of threshold parameters is selected that
fulfill the heading correction requirements stated in Section 6-1 and it is evaluated to what
extent the heading corrector improves the position estimate of the EKF with respect to the
variations in ship hull curvature and heading drift.

Simulation data The modeling parameters used to generate the simulation data are set at
the values summarized in Table 6-6. The parameters Drift and κ = 1

R are varied over a to be
specified K amount of steps. Each such step is iterated K = 1000 times to simulate different
noise realizations.

vnom(t) α(t) SlipMagMax SlipTrans Drift MM κ τ Tfinal

0.2 0 0.15 50 0 0 0.0455 0 200

Table 6-6: Table summarizing modeling parameters used for heading corrector simulation.

Performance under varying ship hull curvature

It is expected that the false positive rate of the kNN classifier will increase as the bow
curvature radius increases. The kNN has been trained on simulated data set with a bow
curvature of R = 22 [m]. The influence of a varying ship hull curvature ‘R’ on the kNN
is evaluated by fixing the perturbation parameters at the values summarized in Table 6-6
except for the bow curvature, which is increased from 2.2 to 48.4 [m] in 11 steps. In Figure
6-6 it is shown that the threshold parameter sets (NrCons, pThresh) = (121, 0.95) and
(NrCons, pThresh) = (181, 0.95) maintain a zero false positive rate up to a bow curvature
radius of 48 [m], whereas the less restrictive threshold parameter settings only maintain a
zero false positive rate below a bow curvature of 22 [m].
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Figure 6-6: Graph showing the average false positive rate per bow crossing for variable bow
curvature radius.

Performance under varying heading drift

The influence of a varying IMU heading drift on the EKF, described in A-12.1, in conjunction
with the heading corrector is tested by fixing the perturbation parameters as shown in Table 6-
6 except for the heading drift rate, which is increased from −0.0037 to 0.0037 in K = 21 steps.
From Figure 6-7 it can be seen that as the threshold parameters (NrCons, pThresh) go to
higher values the average error build-up scores increase. In Table 6-7 it can be seen that only
the threshold parameter sets (NrCons, pThresh) = (121, 0.95) and (NrCons, pThresh) =
(181, 0.95) maintain an false positive rate below 0.0005. From Figure 6-7 and Table 6-7 it
can be seen that the heading corrector using the threshold values (NrCons, pThresh) =
(121, 0.95) achieves the lowest error build-up while maintaining a zero false positive rate over
the entire range.

(NrCons, pThresh) → (41, 0.69) (81, 0.77) (121, 0.95) (181, 0.95)
FPR 0.2133 0.0190 0 0

Table 6-7: Table summarizing the average false positive rate per bow crossing over the entire
variable heading drift range, for various threshold parameter settings.

Using the detection thresholds (NrCons, pThresh) = (121, 0.95), an average error build-up
over the entire heading drift range of 8.10% is achieved, which is an accuracy improvement of
41.66% over the EKF without heading corrector, while maintaining a zero false positive rate
thus not increasing the workload on the operator. The figure also shows that for high heading
drift rates, the heading corrector hardly improves the EKF without heading correction. This
is because the true positive rate is very low at high heading drift rates. The figure also shows
that the heading corrector manages to maintain the nominal performance of 3.64%, attained
using the constrained IMM, up to a heading drift range of approximately ±0.002 [rad/s].
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Figure 6-7: Graph displaying the error build-up of the constrained IMM in conjunction with and
without heading correction.

6-2-4 Overview

The objective of this section was to validate the workings – and determine the performance
limits of the heading corrector with respect to varying ship hull curvature and heading drift,
while achieving the set requirement.

In Table 6-8 the improvements in error build-up score are summarized using the heading
corrector. The table also shows the heading drift rates up until where the heading corrector
attains the nominal performance of the constrained IMM.

No HC Heading correction
Average error build-up 41.66% 8.10%
Performance limits - [−0.002 0.002] [rad/s]

Table 6-8: Table summarizing the average error build-up score obtained using the heading
corrector in the heading drift rate range of [−0.0037 0.0037], and the performance limits of the
heading corrector.

Limitations The results are limited since perfectly labeled data was used to evaluate the
heading corrector performance. Furthermore, the performance of the heading corrector was
only evaluated with respect to varying bow curvature and heading drift individually. The
consecutive labeling rule that was employed to reduce the false positive rate is quite simplistic
and reduces both the true positive rate and the false positive rate. More research can be done
to find rules that to a greater degree reduce the false positive rate compared to the true
positive rate, which would yield a lower error build-up while maintaining a zero false positive
rate.
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6-3 Heading and position corrector validation

The simulated results in the previous section showed that the addition of the heading corrector
reduces the error build-up to 8.10% for heading drift rates between −0.0037 and 0.0037 [rad/]
while maintaining a zero false positive rate for bow curvature radii up to 48 [m] and drift
rates in the range of [−0.0037 0.0037]. The results were however obtained in a simulated
environment which inherently suffers from limitations, previously discussed.

The objective of this section is to verify the simulated results obtained by the EKF in con-
junction with the heading corrector, using real sensor data.

Firstly, a suitable data set will be selected and labeled for the training of the kNN classifier
and the validation of the simulated results. Secondly, the kNN classifier will be tuned and
finally, the simulated results are validated using real sensor data.

6-3-1 Validation data acquisition

Data from a cleaning operation on the HS Tosca, displayed in Figure 6-8, is used to validate
the simulated results. The robot was moved back and forward between a weld line and depth
marking on the ship hull. Using this information, a technical drawing of the ship and the
position estimator, the data displayed in Figure 6-9 is labeled as the side of the ship (1) and
the bow of the ship (0). The data used corresponds to a trajectory of the robot where it stays

Figure 6-8: Image of robot cleaning trajectory between a weld line and depth marking on the
hull of the HS Tosca.

vertical. The roll feature can thus not be used, making the classifier reliant solely on the
curvature features. This data is selected to pose a ‘worst case scenario’ from the viewpoint of
the classifier. The data sequence displayed in Figure 6-9 consists of N = 65664 data points,
spanning a time frame of 34.2 minutes. The data is partitioned into 10 partitions by assigning
one in each ten data points to a single partition. One partition is used to train and tune the
classifier and the remaining nine partitions are used to validate the classifier.
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The performance of the EKF in conjunction with the heading corrector is evaluated by cal-
culating the error build-up between the two error build-up point pairs, displayed in Figure
6-9. Since the hull is vertical and the robot is maneuvered between two fixed landmarks, it is
assumed that the x− and z− coordinate positions in these point pairs is the same.
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Figure 6-9: Graph of labeled training data to train the kNN classifier, associated to the trajectory
in Figure 6-8. The error build up is calculated between the two error build-up pairs on the left
and the right of the figure. It is assumed that the x− and z−coordinate position in these point
pairs is the same.

6-3-2 Feature and classifier parameter tuning

Similar to Section 6-2, the parameter set (N1, σ1, Ndelay, N, k) is optimized by evaluating the
kNN AUC score for different combinations of classifier and feature parameters. Each AUC
evaluation is the average of a 4 fold-cross validation using the tuning data set as depicted in
Figure A-9.1. Using the grid search sequences summarized in Table 6-9, the optimal parameter
set was found to be (N1, σ1, Ndelay, N, k) = (600, 100, 10, 300, 400), scoring an AUC score on
the test set of 0.9776.

N1 σ1 Ndelay N k

Grid 1 10[1:3] 10[1:3] 10[1:3] 10[1:3] 10[1:3]

Grid 2 100 · [1 : 5] 10 · [1 : 5] 100 · [1 : 5] 100 · [1 : 5] 100 · [1 : 5]
Grid 3 100 · [5 : 9] 50 · [1 : 5] 10 · [1 : 5] 100 · [1 : 5] 100 · [1 : 5]

Table 6-9: Table summarizing the grid search ranges for kNN parameter tuning. The optimal pa-
rameter set was found to be (N1, σ1, Ndelay, N, k) = (600, 100, 10, 300, 400), scoring an average
AUC score on the test data set of 0.9776.
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Probability threshold and consecutive detection tuning Similar to Section 6-2, four differ-
ent combinations of the probability threshold pThresh and number of consecutive detections
NrCons, displayed in Figure 6-10 are selected to be evaluated in combination with the EKF.
The different combinations all have a zero false positive rate, but as was shown in Section
6-2, they have a different amount of robustness to false detections of the side of the ship. The
threshold parameter combination (NrCons, pThresh) = (181, 0.78) is expected to yield the
most true positive detections but may also be most susceptible to false positive detections.
On the other hand, the combination (NrCons, pThresh) = (601, 0.84) is expected to yield
the lowest amount of false positive detections but may also fail to detect the side of the ship
at all. The threshold parameter combinations are evaluated in conjunction with the EKF in
the next section. The combination that yields the lowest error build-up score while retaining
a zero false positive rate is selected as the most appropriate threshold parameter combination.
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Figure 6-10: Graphs displaying the shifting true positive rate and false positive rate of the kNN
classifier for a shifting pThresh and NrCons. The four grid points selected all have a zero
false positive rates, however, they have different true positive rates. It is expected that the false
positive rate parameter set (NrCons, pThresh) = (601, 0.84) will be most robust against false
positive detections. However, compared to the parameter set (NrCons, pThresh) = (181, 0.78)
it will also be less able to consistently detect the side of the ship, thus increasing error build-up.

6-3-3 Heading corrector performance validation

The performance of the kNN classifier and the four different threshold parameter combinations
are evaluated on the nine remaining validation data sets. The data sets are used by the kNN
to predict 4 × 9 different class label prediction sequences, which in turn are used to correct
the heading and z−coordinate position estimate of the EKF predicted trajectory displayed
in Figure 6-9 (Right). For each threshold parameter combination, the error build-up in
the position estimate per ‘P EBU’ pair, is calculated by taking the average over the nine
error build-up scores originating from the nine different class label prediction sequences per
threshold parameter combination. The average error build-up scores estimate for the four
parameter combinations are summarized in Table 6-10. The table shows that the threshold
parameter combination (NrCons, pThresh) = (181, 0.78) yields the lowest error build-up
while retaining a zero false positive rate. The trajectory generated by the EKF using the
heading corrector is displayed in Figure 6-11.
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Error build-up pair 1 Error build-up pair 2 FPR
No heading correction 1.06% 3.75% -

(NrCons, pThresh) = (181, 0.78) 0.61% 0.94% 0
(NrCons, pThresh) = (311, 0.8) 0.61% 0.95% 0
(NrCons, pThresh) = (431, 0.81) 0.61% 0.96% 0
(NrCons, pThresh) = (601, 0.85) 1.33% 3.77% 0

Table 6-10: Table summarizing the average error build-up of the two point pairs – and the false
positive rate using different parameter threshold combinations.
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Figure 6-11: Graph of EKF generated trajectory with and without heading correction.

Figure 6-11 shows that the error build-up in the position estimate using the heading cor-
rector is mainly due to the error in the x− coordinate position estimate. The error in
the z−coordinate position estimate is reduced to 0.00 − 0.03 [m]. Furthermore, since the
z−coordinate position estimate is reset every time the robot crosses the ship side, the z−coordinate
position estimate error is bounded. The average error build-up obtained using the most fa-
vorable heading corrector settings is 0.77% while the average error build-up without heading
corrector is 2.39%.

6-3-4 Overview

The objective of this section was to verify the simulated results obtained by the EKF in
conjunction with the heading corrector, using real sensor data.
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In Table 6-11 the error build-up scores of the constrained IMM with and without heading
correction are summarized.

No HC Heading corrector
Average error build-up 2.39% 0.77%

Table 6-11: Table summarizing average error build-up scores of the constrained IMM without
heading correction and with heading correction.

Limitations The error build-up in the z−coordinate is not completely bounded, since a
correction of the heading and position estimate only occurs when the algorithm detects the
side of the ship. While the robot is on the bow, the error in the z−coordinate position
estimate is still unbounded. Although the results were based on 9 different data sets, the
data sets originate from the same cleaning operation. It can thus be argued that ships with
larger bow curvatures or if the drift rate is higher, the error build-up will increase. It was
assumed that the x− and z−coordinate positions of the error build-up pairs, displayed in
Figure 6-8 are the same however, in reality they are not. This also limits the reliability of the
results.

6-4 Conclusion

The objective of this chapter was to design a heading correction algorithm that accounts for
the heading drift of the IMU output, and reduces the error build-up position estimate. This
objective was achieved by proposing a working principle, and testing this principle using
simulated and real data.
A ship side detection algorithm was proposed as a heading corrector. The algorithm corrects
the heading and z−coordinate position estimate of the EKF when the side of the ship is
detected. The main challenge of this detector was to be able to distinguish the side of the
ship from the bow, when the ship hull remains vertical from side to bow, which is common for
oil tankers – and to maintain a zero false positive rate, such that the resetting of the position
estimate does not induce large errors in case of a false ship side detection. For such a hull
shape, the extrinsic IMU roll input can not be used to distinguish between the side and the
bow of the ship and so a curvature feature was devised that estimates the curvature of the
ship hull. By assuming the bow of the ship is curved and the side of the ship is flat, the two
ship hull sections can be distinguished. A zero false positive rate was ensured by tuning the
probability threshold ‘pThresh’ of the kNN classifier output and the number of consecutive
ship side detections ‘NrCons’that are required before a data point is labeled as the side of
the ship.

Results The simulated results showed that the performance of the heading corrector de-
creases with an increasing drift rate, but that the false positive rate can be maintained at
zero if the kNN thresholds parameter (NrCons, pThresh) are sufficiently high. The simu-
lated results showed that on average, the error build-up can be reduced from 41.66% to 8.10%,
assuming the heading drift varies between −0.0037 and 0.0037 [rad/s]. Furthermore, the sim-
ulated results showed that the heading corrector can eliminate the error build-up induced by
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the heading drift up to a drift rate of ±0.002 [rad/s]. Using real sensor data, the EKF in
conjunction with the heading corrector achieved an average error build-up of 0.77%, while
maintaining a zero false positive rate. Furthermore, the error at the measurement points in
the z−coordinate position estimate were between 0.03 and 0.00 [m], indicating the the error
in the x−coordinate position estimate is mostly responsible for the error build-up and that
the error build-up in the z−coordinate position estimate is bounded. Based on the validation
results, it can be seen that the heading corrector not only reduces the error build-up, but also
bounds the error of the z−coordinate position estimate, which is ultimately required of the
localization system to make the robot autonomous.

Limitations The current curvature estimator is limited since it only estimates the curvature
locally, and it does not take into account that the ship hull has a fixed shape for each position.
This information can potentially be used to increase estimator performance even further.

The resetting method for the heading and the z−coordinate position estimate is quite simplis-
tic and it does not update the x−coordinate position estimate. Resetting the z−coordinate
position estimate either increases or decreases the estimated trajectory length over some N
past horizon. Assuming the estimated length of the traveled trajectory has zero error, the
x−coordinate position should thus also increase or decrease, to preserve the estimated tra-
jectory length.

The data that was used to validate the heading corrector performance originated from a
cleaning operation on a single ship. The performance of the heading corrector thus has not
been validated for ships with different shapes, and surface conditions.

Due to a lack of absolute localization the error build-up of the position estimator in conjunc-
tion with the heading corrector could only be evaluated at two locations. It can thus not be
stated that the estimated z− coordinate position of the robot remains within 10 [cm] at all
times.

Recommendations In order to improve the curvature estimate, the estimator can be made
recursive such that it estimates the curvature based on the surface normal change estimator
and based on its position, using a previously estimated curvature associated to that position.
Essentially, such a recursive curvature estimator assumes that the robot is on a fixed manifold.

Assuming the velocity correction method can achieve zero error between the estimated velocity
and the true velocity, the x−coordinate position estimate can be improved after the side of
the ship has been detected. This can be done by recalculating the robot trajectory over a
past horizon, such that the trajectory ends at the reset z−coordinate position estimate and
heading.

In order to improve robustness and reliability, the heading corrector should be trained and
validated on data originating from multiple ships. It is recommended that data is used
originating from container vessels and oil tankers, since they differ in bow shape. Also, the
smallest and largest 150− 400 [m] ships should be included in the data set.
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Chapter 7

Closing remarks

In this chapter it will be reviewed to what extent the objectives set at the beginning of the
thesis have been met and, insofar they have not been met, what can be done to fulfill them.

Firstly the thesis goal and thesis structure are reviewed. Secondly, the obtained results are
shown and discussed and a main conclusion is stated. Finally, the shortcomings of the results
with respect to the objectives are used to formulate recommendations.

7-1 Thesis goal

Recall the goal of the thesis, to reduce the error build-up in the unreferenced (x, z)-position
estimates, while the robot is underwater and on the side of the ship, without the use of ad-
ditional hardware. To achieve the objective the thesis was split in two parts, both of which
had their sub-objectives. In order to achieve this goal the requirements listed below had to
be achieved.

• Quantitative

– The localization system may have a maximum error build-up of 2.05%.
– The localization system must be able to output a position estimate at a frequency

of at least 3 [Hz]1.

• Qualitative

– The position estimator must require a minimal amount of operator resets.
– The localization system must output an informative map that displays where the

robot has cleaned the ship.
1Fleet Cleaner states that in order to ultimately make the robot autonomous, an accuracy of within 10 [cm]

is required. The robot travels at 0.3 [m/s], and so the update rate needs to be at least 3 [Hz], otherwise the
true position of the robot exceeds the 10 [cm] accuracy limit.
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Part 1, Analysis

The objective of the first part of the thesis was to gain understanding into the effect that per-
turbations and sensor noise have on the error build-up in the position estimate, such that this
knowledge can be used to efficiently reduce the error build-up. This objective was achieved
by studying sensor data obtained in real life tests to model realistic sensor noise- and per-
turbation models and testing these models on a well tuned non-linear filter to evaluate their
effect on the position estimate.

Part 2, Implementation

The objective of the second part of the thesis was to reduce the error build-up in the position
estimate by countering the, in Part 1, identified culprits for error build-up. In Chapter 4, 5
and 5 this was achieved using the following design structure.

Conceptual design Conceptual design specifies the principal solution to the sub-problems.
For each respective chapter this meant that the objective was to find- and establish a working
principle to reduce the error build-up. This objective was achieved through the review of
literature relevant to the identified error build-up sources.

Simulation The objective of the simulation part of each chapter is to evaluate the per-
formance of the working principles with respect to a ground truth and to identify practical
boundaries of the working principles. Working principles are extensively tested by numerous
simulations using the sensor noise- and perturbation models designed in Part 1. This en-
sured the performance of the working principles under varying sensor noise- and perturbation
conditions.

Validation The validation part of the implementation chapters had as objective to validate
the simulated performance of the working principles using real sensor data. The validation of
the working principles was problematic due to the unavailability of a true reference. Validation
was achieved using ad hoc measures that made use of existing knowledge of environment
conditions.

7-2 Results and conclusions

Part 1, Analysis

7-2-1 Sensor data modeling

Results and Conclusions The static analysis of the sensor data revealed that all the sensor
data sequences listed in Table 1-1, except the gyroscope and depth meter, are non-Gaussian
distributed. Furthermore, all sensors except the gyroscope output of the IMU, have a non-
white noise spectrum. Camera observations during operation on the HS Tosca on the 7th of
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July, 2017 revealed that the front wheel, to which the wheel encoder is attached, suffers from
wheel slip which increases error build-up in the position estimate. Using the measured sensor
noise PSDs and external perturbation characteristics, models were generated that simulate
the correlated sensor noise and emulate the wheel slip and heading drift perturbations.

Limitations Only a limited amount of data was available for the evaluation of the sensor
noise PSDs, so the modeling was done using a simplistic spectrum fitting method. The exter-
nal perturbation characteristics of the wheel slip were determined using by cross-referencing
camera footage to real sensor data, which limits the accuracy with which characteristics can
be determined and modeled.

7-2-2 Non-linear filters

The simulation of the robot trajectory with sensor inputs corrupted by the noise models and
perturbation models revealed the individual simulated error build-up values summarized in
Table 7-1 and the error build-up values using real data, shown in Table 7-2.

None Noise Wheel slip Heading drift All
Error build-up 0.19% 0.99% 46.02% 6.19% 54.72%

Table 7-1: Table summarizing the error build-up scores between the estimated position and the
simulated ground truth for various sources of error build-up.

Data set → 1 2 3 4 5 Mean
Error build-up 54.55% 57.14% 33.85% 14.04% 2.52% 32.42%

Table 7-2: Error build-up scores between the EKF estimated and true position.

The error build-up values summarized in Table 7-1 led to the conclusion that the best way
to reduce the error build-up in the position estimate is to account for the slip perturbation
in the wheel encoder output and account for the drift in the heading direction of the IMU.

Part 2, Implementation

Wheel slip detection

The detection of wheel slip is achieved by classifying sensor input data and labeling it {1, 0},
representing the slip label and non-slip label respectively. In order to reduce the error build-up
to 2.05% a label prediction accuracy of at least 98.11% was required. Due to the cumbersome
method that had to be employed to hand label the training data, only a limited amount of
labeled training data was available. This merited the comparison of three classifiers that had
required different amounts of supervision and adaptability. The three classification methods
that were compared are:

1. SVM classifier. This method is supervised with no online adaptive capabilities.
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2. Threshold classifier. This method is most commonly used in literature. This method is
supervised and can be adjusted online by the operator.

3. K-means classifier. This is an unsupervised method which can be made adaptable.

Results and Conclusions The simulated results revealed that the SVM classifier achieves
the highest prediction accuracy under nominal conditions (96.05%) and maintains the highest
prediction accuracy over a wide range of simulated ship hull conditions compared to the other
classifiers. The simulations also reveal that if the SVM is trained on a limited data set, it will
not be able to maintain a high prediction accuracy when faced with the expected variations
in ship hull surface conditions. The simulated performance results were validated using real
hand labeled data, summarized in Table 7-3.

SVM Threshold K-means
Label prediction accuracy 96.85% 94.06% 84.97%

Table 7-3: Table summarizing the slip detection classifier prediction accuracy results on real
data.

Limitations The validation results are limited since the classifiers were trained and validated
on data originating from the same cleaning operation. Furthermore, the data was labeled
using camera footage, which is prone to mislabeling.

Velocity correction

A constrained IMM was proposed that estimates the true velocity with a weighted average
between two velocity models. This negates the possibility of error accumulation in the velocity
estimate due to integration of the IMU acceleration.

Results and Conclusions Simulated results reveal that the constrained IMM can reduce
the error build-up from 47.24% to 3.71% under nominal conditions. However, when faced
model mismatch the error build-up go as high as 32.84%. Using real sensor data it was shown
the constrained IMM reduces the average error build-up by a factor of four to 8.88%, as
shown in Table 7-4. However, it cannot be assumed the constrained IMM always attains this
performance since an error build-up score of 15.97% was measured on a single data set.

Data set No correction SVMIMM Cons. IMM
Average error build-up 32.42% 31.89% 8.88%

Table 7-4: Table summarizing error build up in position estimates per true meter traveled using
various velocity estimation methods.
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Limitations The simulated and validation results show that the constrained IMM is a sig-
nificant improvement over both the EKF without velocity correction and the SVMIMM.
However, the simulated results also show that even if a perfect slip detector was available, the
constrained IMM would not reduce the error build-up to within 2.05% under varying ship hull
conditions. Both the evaluation of the performance of the slip detector and velocity corrector
reveal that performance significantly decreases with respect to a varying model mismatch.

Heading correction

The heading orientation and z−coordinate estimate are corrected by detecting the flat side of
the ship hull using the kNN as a classification algorithm and resetting the heading orientation
and z−coordinate to their respective initial conditions.

Results and Conclusions The simulated results showed that using the heading corrector,
the error build-up score can be brought back 3.64% for a heading drift rate between ±0.002
[rad/s]. Furthermore, the simulated results showed that a false positive rate per bow crossing
below 0.0005 can be maintained for ship hull curvatures up to at least 48 [m] and a heading
drift rate between ±0.0037 [rad/s], which is important since a false detection would severely
upset the position estimator and the cleaning trajectory presented to the client. Using real
data, the addition of the heading correction improved the error build-up by a factor as shown
in Table 7-5.

No heading correction EKF with heading correction
Average error build-up 2.39% 0.77%

Table 7-5: Table summarizing the average error build-up scores for the EKF with and without
heading correction.

Limitations Although the results are promising, data was used from a single cleaning oper-
ation from a particularly clean ship, thus limiting the reliability of the results.

Main conclusion

The desired error build-up score of 2.05% could not be achieved since the available training
data is too limited for the SVM slip detector and velocity correction models utilized by
the Constrained IMM to maintain a high enough prediction with respect to all the possible
varying ship hull conditions. Even though the set objective was not satisfied, the addition of
the SVM slip detector and constrained IMM velocity corrector did reduce the error build-up
from 32.42%, to an average of 8.88%, significantly reducing the workload on the operator.
The addition of the heading corrector reduced the error build-up of the EKF in conjunction
with the constrained IMM from 2.39% to 0.77%. The heading corrector mitigates the need
for intermittent resetting of the heading orientation by the operator, thus also reducing the
workload on the operator.
Even though the positioning error was reduced, it is still unbounded, making the current
position estimator not suitable for autonomous operation of the robot.
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7-3 Recommendations

The results obtained in this thesis partially complete the set objectives of bounding the
error build-up in the position estimate. To further reduce the error build-up in the position
estimate, or to remove error build-up completely, the following procedures – that fall within
and outside the thesis scope – are recommended.

7-3-1 Within thesis scope

Adaptive model predicted velocity Both the evaluation of the performance of the slip de-
tector and velocity corrector reveal that performance significantly decreases with respect to
a varying model mismatch. The SVM slip detector and constrained IMM performance can
thus be improved by accounting for the model mismatch, for instance by making the velocity
prediction model adaptive.

kNN training data Although it has been shown that the implementation of a heading cor-
rector is feasible and beneficial, it is recommended that data from more ships is included in
the classifier training data. This will ensure that the heading corrector can be employed on
different ship hull shapes.

7-3-2 Outside thesis scope

Additional wheel encoders The current setup of the robot only allows slip detection using
the sensor input data of the front wheel. Mobile robots comparable to the Fleet Cleaner
robots often use wheel encoders on all wheels, which greatly simplifies the detection of wheel
slip. Furthermore, adding additional wheel slip allows for more easy hand labeling of slip
data and slip model identification.

Training data acquisition The slip detection SVM, the slip mode predicting SVM and the
dynamic slip model were trained using a limited hand labeled data set. Using the added
wheel encoders in the previous recommendation, the labeling of slip data can be made more
easy. For instance, if the power to one wheel is cut, it simply tracks the movement of the
robot. Using this data, the classifiers can be better trained and a non-linear model can be
trained to estimate the true velocity during dynamic slip.

Feature analysis The extended data set that is provided by the previous recommendations
will also allow for the uncovering of more features that can be used by the SVM to detect
slip. Adding more features can make the slip detector label prediction accuracy more robust
against varying ship hull conditions.
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Appendix A

Appendix
A-1 Sensor noise distribution
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Figure A-1.1: Graphs of sensor data distributions with normal distribution fitted to the data.
The data was obtained in a stationary situation such that the distribution of the sensor noise can
be probed.
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A-2 Auto-correlation functions
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Figure A-2.1: Auto-correlation graphs of sensors used for position estimation. The data was
obtained in stationary situations such that the stationary noise can be evaluated. The figures
show that only the samples of the rotational velocity data, ωx, ωy, ωz, have little auto-correlation.
The stationary noise associated to the rotational velocities can thus be accurately approximated
with white noise.

A-3 Sensor noise modeling example

The ATM 1st-N depth meter is employed by Fleet Cleaner to gauge the water depth of
the robot and will be used as an explanatory case for designing a sensor noise model. The
data that is used to further evaluate the sensor noise characteristics is displayed in Figure
A-3.1. This particular data sequence is selected because it was recorded in very rough water
conditions while the robot was only 65 [cm] deep in the water. Because of that, it is expected
that in most situations the magnitude of the noise induced by waves will be less than in the
data sequence displayed in Figure A-3.1.
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Figure A-3.1: Sensor output of depth meter in a static situation. The data was obtained during
a test on the HS Tosca.

The PSD of the depth meter data, displayed in Figure A-3.2, was obtained using the pwelch()
[28] function in Matlab. As was expected from the sensor analysis conducted in Section 2-1,
the PSD is non-white.
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Figure A-3.2: Power spectral density of the depth meter data sequence. In the range of 10−1

to 3 · 100 [ rad
s ] the magnitude of the PSD decreases with approximately −20[ dB

dec ]. In the range
of 8 · 100 to 6 · 101 [ rad

s ] the PSD has a slope of 0[ dB
dec ] and after that it again decreases to about

−20[ dB
dec ].

A TF resembling the depth sensor data PSD is obtained by estimating from Figure A-3.2
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that there is a zero at ω = 3[ rads ] and a pole at ω = 80[ rads ] and that the TF has one pure
integrator. In order to limit the amount of drift in the signal due to pure integration, a pole
is used instead of the integrator at ω = 0.5[ rads ]. This pole eliminates the integrator drift,
but preserves the oscillations induced by waves which have a frequency of approximately 2
[rad/s]. In order to match the magnitude of the real signal, the simulated signal is scaled
with a factor of 0.08, obtaining the continuous time TF

Hdepth(s) = 0.08 ·
( 1

30s+ 1)
(2s+ 1)( 1

80s+ 1)
. (A-1)

In order to simulate the sensor noise, the continuous-time TFs need to be discretized. The
TFs are discretized using the zero order hold discretization method with the c2d() function
in Matlab. The sensor data is simulated by inputting a unit variance WGN sequence into the
transfer function Hdepth, shown in Figure A-3.3. From the figure it is determined that the
simulated PSD approximates the real PSD.

Figure A-3.3: Graph of depth meter data sequence PSD (blue), with Hdepth(s) bode plot
(red) and simulated noise PSD (green). The simulated PSD approximates the real PSD in the
frequency range of [5 · 10−1 2 · 102] [rad/s]. This ensures that the simulated PSD includes the
wave oscillations at 1.8 [rad/s] and excludes the integration drift.
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A-4 Simulated ground truth and sensor model schematic overview

Figure A-4.1: Schematic overview of simulated ground truth and sensor signal generator. The
control inputs, external perturbation parameters and Frenet-Serret parameters are all user defined.
The output (red) of the Frenet-Serret model is the simulated ground truth and the output of the
sensor noise models (blue) are used by the position estimator to estimate the true position.

A-5 Extended Kalman filter

The EKF is an extension of the KF such that it is applicable to non-linear models. In essence
the EKF functions the same as the KF, with an added linearization step in each iteration. A
derivation of the EKF can be found in [17, p.59].

EKF assumptions Suppose the kinematics of a robot are represented by the continuous time
non-linear model

ẋ(t) = g(x(t),u(t))
y(t) = h(x(t),u(t)),

(A-2)

where x(t) represents the states, u(t) the input, g(x(t),u(t)) the non-linear state transition
function and h(x(t),u(t)) the non-linear model output. The non-linear state-transition func-
tion of the robot g(x(t),u(t)) can be approximated by a first order Taylor-expansion and
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evaluated at ut and xt−1 to obtain the linear system matrices,

Gt = ∂g(x(t),u(t))
∂x(t) (xt−1,ut),

Ft = ∂g(x(t),u(t))
∂u(t) (xt−1,ut),

(A-3)

where ut is the control input and xt−1 the mean of the state PDF of the previous iteration.
The non-linear model output h(x(t),u(t)) is approximated by a first order Taylor-expansion
and is evaluated at x̄t, which yields

Ht = ∂h(x(t),u(t))
∂x(t) (x̄t,ut), (A-4)

where µ̄t is the state transition function g(x(t), u(t)) evaluated at the posterior mean µt−1
and current input ut. The non-linear model in Equation (A-2) can now be approximated by

ẋ(t) = Gt(x(t)− xt−1) + Ft(u(t)− ut)
y(t) = Ht(x(t)− x̄t).

(A-5)

EKF algorithm workings The EKF algorithm is depicted in Algorithm 2. The EKF algo-
rithm has as inputs the mean of the states of the previous time step xt−1, its corresponding
covariance matrix Σt−1, the current time step control input ut and the sensor measurement
yt. In step 2, the non-linear state transition model from Equation maps xt and Σt into the
prior distribution, where the notation x̄t indicates that the (in this case) mean has not been
updated by a measurement yet. In step 3 and 4 the non-linear state transition model is
linearized around the current state and control input. In step 5 the error covariance matrix
is updated using the linearized model, which is used in step 6 to calculate the Kalman gain.
The prior distribution is then fused with the sensor measurements yt in step 7, called the
innovation step, followed by an update of the error covariance matrix in step 8.

Algorithm 2 Extended Kalman filter
1: function EKF(xt−1,Σt−1,ut,yt)
2: x̄t = g(xt−1,ut)
3: Gt = ∂g(x(t),u(t))

∂x(t) (xt−1,ut)
4: Ht = ∂h(x(t),u(t))

∂x(t) (x̄t,ut)
5: Σ̄t = GtΣt−1Gt

T +Qt
6: Kt = Σ̄tHt

T (HtΣ̄tHt
T +Rt)

−1

7: xt = x̄t +Kt(yt − h(x̄t)︸ ︷︷ ︸
innovation

)

8: Σt = (I −KtHt)Σ̄t

9: return xt,Σt
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A-6 Fusion schemes

Figure A-6.1: Illustration displaying Fusion schemes 1 (Left) and 2 (Right). Fusion scheme 1 is
the scheme currently employed by the Fleet Cleaner robot. Fusion scheme 2 is obtained by fusing
the model predicted rotational velocity with the IMU orientation estimate, proposed in [50].

Figure A-6.2: Illustration displaying Fusion schemes 3 (Left) and 4 (Right). Fusion scheme 3 is
obtained from fusion scheme 1 by additionally fusing the IMU acceleration with the wheel encoder
velocity. Fusion scheme 4 is a combination of fusion scheme 2 and 3.
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A-7 EKF position estimation versus simulated ground truth

Figure A-7.1: Illustration of the different possible set-ups for the EKF and how it is compared
to the simulated ground truth. Note that the red and blue inputs at the top are an extension of
Figure A-4.1.
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A-8 ARX tuning schematic overview

Figure A-8.1: Image illustrating the data preparation and allocation of ARX model training data.
Firstly, the data is partitioned into five folds, leaving out one for validation. Secondly, the ARX
model parameters are tuned 4-fold on the remaining tuning data set. Finally, the performance of
the tuned ARX is evaluated on the separate validation data set.
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A-9 Classifier tuning data allocation

Figure A-9.1: Schematic overview of classifier data design and usage. In the first step the original
sensor data is used to train the moving window length ‘N ’ for the variance features. After the
feature parameters have been tuned the sensor data is transformed into feature space. The order
of the features is then randomized and the entire data set is partitioned, yielding the random
partitioned feature vectors. A selection is then made among the five data sets, partitioning it into
a training set, test set and validation set. The classifiers are trained using the training set and
tuned by evaluating the trained classifier on the test set so that the optimal classifier parameters
can be found. The performance of the classifiers is then evaluated on the validation set.

Master of Science Thesis K. Cassee



130 Appendix

A-10 Velocity correction methods

A-10-1 SVMIMM

Let S(t) be the complete set of available sensor inputs. From this set, the wheel encoder
output vodot , and gyroscope output ωgyrot together with the model predicted velocity vmodelt

and rotational velocity ωmodelt are mapped to standardized feature space in step 2, yielding
the feature vector ζt. In step 3 the class likelihood of the slip and no slip class conditioned on
the input feature is calculated using the SVM classifier. In step 4 - 5 the states and covariance
matrices are predicted using an EKF with the acceleration data as control input and the wheel
encoder output as a measurement output – and an EKF with only the acceleration data as
control input. In step 6-7 a weighted average between the EKF models predicted states and
covariance matrices is calculated using the class likelihood p(ζt).

Algorithm 3 SVMIMM
1: function SVMIMM(St, x̂t−1, Pt−1)
2: ζt = Φ(vodot , vmodelt , ωgyrot , ωmodelt )
3: p(ζt) = SVM(ζt)
4: x1, P1 = EKF (St)
5: x2, P2 = EKFIMU (St)
6: x̂t = p(ζt)x1 + (1− p(ζt))x2
7: Pt = p(ζt)P1 + (1− p(ζt))P2
8: return x̂t, Pt

A-10-2 Constrained IMM

Let S(t) be the complete set of available sensor inputs. From this set, the wheel encoder
output vodot , and gyroscope output ωgyrot together with the model predicted velocity vmodelt

and rotational velocity ωmodelt are mapped to standardized feature space in step 2, yielding
the feature vector ζt. In step 3 the class label is predicted using the SVM classifier with
ζt as input. If the class label is 0, meaning no slip is detected, the velocity input to the
EKF is set to equal vodot . If the class label is 1, meaning slip is detected, the constrained
IMM is used to correct the velocity. In step 7 the wheel encoder output vodot and model
predicted velocity vmodelt are mapped to standardized feature space, yielding the feature ξt.
The posterior class likelihood, conditioned on the input feature is calculated using the mode
probability prediction SVM in step 8. In step 9 the corrected velocity are calculated by
taking a weighted average between the stationary slip (v̂ = 0) and dynamic slip model output
vDynSlipt , using the class likelihood as a weight. The variance calculated in step 10 is used
in the sensor noise matrix R of the EKF.
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Algorithm 4 Constrained IMM
1: function ConsIMM(St)
2: ζt = Φ(vodot , vmodelt , ωgyrot , ωmodelt )
3: deltat = SVM(ζt)
4: if deltat = 0 then
5: v̂t = vodot

6: if deltat = 1 then
7: ξ = Φ2(vodot , vmodelt )
8: p2(ξt) = SVM2(ξt)
9: v̂t = vDynSlipt p2(ζt)

10: Σ̂t = 7.056 · 10−5 · p2(ζt)
11: return v̂t, Σ̂t

A-11 Dynamic slip ARX model identification

Figure A-11.1: Illustration of dynamic slip model identification procedure. Firstly, data from
five different cleaning operations is selected based on the four requirements stated in the figure.
The data that satisfies all four requirements is used to identify an ARX model between the input
vmodel and the output vodo. This ARX model is used to estimate the true velocity when dynamic
wheel slip is detected.
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A-12 Constrained IMM schematic overview

Figure A-12.1: Schematic overview of simulated environment for the constrained IMM. The
figure has two blocks where the output depends upon whether real or simulated data is used. If
real data is used, the ARX models designed in this thesis are used.
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A-13 SVMIMM schematic overview

Figure A-13.1: Schematic overview of simulated environment for the SVMIMM.
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A-14 Heading corrector algorithm

The heading corrector has as an input the sensor data S(k), Constrained IMM estimated
velocity v̂(k), z−coordinate position estimate µ3(k), orientation correction quaternion qcor(k−
1) and estimated quaternions q̂(k−1). In step 2 the kNN classifier is used to label the input
data as the side of the ship (1) or not the side of the ship (0). In step 3-5, if the ship side is
not detected, the z−position coordinate update is set to the current position estimate for the
z−position, µ3(k) and the orientation correction quaternion qcor(k− 1) is left unchanged. In
step 6-8, if the side of the ship is detected, the z−position coordinate update is set to z0 = 0
and the orientation correction quaternion is updated. In step 9 the quaternion is updated
using the orientation correction quaternion.

Algorithm 5 Heading Corrector
1: function HC(S(k),v̂(k),µ3(k),q̂cor(k − 1),q(k − 1))
2: deltaHC(k) = kNN(v̂(k), T (k), N(k), B(k))
3: if deltaHC(k) = 0 then
4: z(k) = µ3(k)
5: qcor(k) = qcor(k − 1)
6: if deltaHC(k) = 1 then
7: z(k) = 0
8: qcor = fcn(φ(k), θ0, ψ(k))
9: q̂(k) = qcor

q̂(k)∗

||q̂(k)2|| q̂(k)
10: return q̂(k), z(k), qcor(k)
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Glossary

List of Acronyms

EKF Extended Kalman Filter

FLS Fuzzy Logic Supervisor

GPS Global Positioning System

KF Kalman Filter

PDF Probability Density Function

PF Particle filter

UKF Unscented Kalman Filter

UUV Unmanned Underwater Vehicle

PSD Power Spectral Density

SVM State Vector Machine

IMM Interacting Multiple Model

AWGN Additive White Gaussian Noise

ACF Auto Correlation Function

PCC Pearson Correlation Coefficient

ROC Receiver Operating Characteristics

AUC Area Under the Curve

kNN k-Nearest Neighbours

RBF Radial Basis Function

FLS Forward Looking Sonar
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TF Transfer Function

SISO Single Input Single Output

FF-NN Feed Forward Neural Network
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