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Abstract

The human microbiome, the ensemble of microorganisms found in and on the hu-
man body, plays a key role in human health and disease. However, the current state
of microbiome analysis represents a significant challenge for machine learning algo-
rithms. Datasets of microbiome sequences are often characterized by a regime of large
dimensionality and relatively few labels, making it difficult for a model to discriminate
features from random noise and avoid overfitting. It is, therefore, paramount to reduce
the dimensionality of the input data while preserving their structure and information
for a model to properly learn from them. K-mer frequency vectors and learnable rep-
resentations through encoders are some of the embedding methods that have been
proposed in literature to reduce the dimensions of the input space for machine learning
algorithms operating on biological sequences. This work aims to compare how various
embedding techniques influence the performance of a downstream disease detection
task from microbiome sequencing data. In particular, the research shows that k-mer
frequency vectors lead to better classification metrics (AUC = 0.88) compared to Neu-
roSEED [1] embeddings (AUC = 0.76) on euclidean space. The work also presents
how the classification problem formulation is critical to improving the overall disease
detection performance.

1 Introduction
The human microbiome is the set of bacteria, archaea, fungi, protists, and viruses that in-
habit our tissues and biofluids. An increasing number of scientific studies have shown how
the microbiome plays a key role in human health and disease [2]. Its impact and mutation
were studied across a plethora of diseases ranging from cancer to autism spectrum disorders
(ASD) [3, 4, 5].

The exponentially decreasing cost of genome sequencing [6] and the rising number of large-
scale open-source datasets [7, 8] is providing a solid ground for the application of machine
learning (ML) in microbiome analysis, which has the potential to revolutionise the field of
personalised medicine. However, microbiome data are characterised by large dimensionality
and relatively few labels, making it complex for models to properly learn on it. This enhances
the risk of overfitting as generalisable features are harder to discriminate from random noise
when these features are extremely sparse in the input space. The overfitting problem leads to
an overestimation of the accuracy of the model that performs poorly on unseen data samples.

A preliminary step common to most ML tasks in literature for microbiome data analy-
sis is transforming the microbe DNA sequences into numerical vectors. In this research, the
step is not regarded merely as a transformation from biological sequences to vectors: it also
offers the opportunity to address the aforementioned dimensionality problem. Embedding
models in literature have proposed various methods to construct embeddings from biological
sequences that reduce the size of the input space for downstream machine learning tasks.
Some of these use particularly meaningful (and interpretable) features, like the microbe
abundance profiles [9]. Others use a simpler, alignment-free approach based on k-mer fre-
quency vectors [10]. Finally, NeuroSEED uses encoders to learn low-dimensional geometric
representations [1].

This project aims to evaluate the effectiveness of different embedding models through a
binary classification (disease detection) task (Fig. 2). The dataset was picked based on the
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number of samples, annotations available, and balance between cases and controls, without
searching for a specific pathology. One of the largest, open-access datasets found is on In-
flammatory Bowel Disease (IBD) [11], an umbrella term that describes disorders involving
chronic inflammation of the gastrointestinal tract. Therefore, the task presented consists of
distinguishing between patients with Crohn’s (pathology of the IBD group) and controls.
The performance of an embedding model is measured through the Area Under Curve (AUC)
of the Receiver Operating Characteristic (ROC) of the classifier (Fig. 5). Each sample (pa-
tient) in the dataset is characterized by a variable number of sequences (microbes), with the
cardinality spanning 102—106. A diagram of the percentage of samples against the cardinal-
ity is provided in Figure 1. The data-to-signal ratio is deemed particularly low as thousands
of sequences spanning the order of 102 dimensions are associated to a single binary label.
Considering that not all the embedding methods have the same overhead, a reflection on
the performance metrics and the associated embedding model complexity is provided in the
conclusions of this paper.

Figure 1: A histogram of the cardinality of the samples in the dataset. The plot is displayed
on a logarithmic scale on the x-axis and linear for the y-axes. The blue line represents the
cumulative ratio of samples and the purple line its complement. The graph shows that more
than 70% of samples have at least 104 sequences and ∼99% have at least 103 sequences.

2 Methodology
The research was conducted on a microbiome dataset [11] from the Quiita database [7]
of 1359 Inflammatory Bowel Disease (IBD) patients and controls. The sequences are raw
reads of the 16S rRNA gene (specifically the V4 hypervariable region) of the microbes in the
specimen. In this dataset, each of the samples is associated to one of the following classes:
inflammatory colitis, ulcerative colitis, Crohn's disease, and control. This work focuses on
distinguishing cases of Crohn's disease from controls, hence the samples associated with the
other categories were dropped, leaving 1052 samples.
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Figure 2: Diagram representing the data flow from the specimen to the output of the
classification model. Each specimen corresponds to a sample taken from a patient. The
DNA strings are referred to as "sequences" and the set of sequences as a dataset "sample".
The set of sequences is produced from the microbiome specimen via targeted sequencing of
the 16S gene (V4 region) of the microbes in the sample. The performance of the classification
(2) are utilized to evaluate the various embedding models under test (1).

Data pipeline. The diagram in Fig. 2 provides an overview of the flow of data in this
study. The sequencing machine takes a microbiome specimen and returns a set of sequences
representing the raw reads of the 16S V4 region for the microbes in the sample. Each set of
strings is then converted to a set of numerical vectors by using the embedding models under
test. This process effectively creates a dataset for each embedding method. Afterwards,
the binary classification model is trained on each embedding-dataset to output probabilities
for the disease and control classes. Finally, the performance of the classification model, as
measured by the AUC of the ROC curve, is utilized to establish which embedding technique
performs best.

The following subsections will introduce the formulation of the classification and embed-
ding problem presented in step 1 and 2 of Fig. 2.

2.1 Embedding problem formulation
In microbiome analysis literature, sequences are transformed into numerical vectors (step
1 of Fig. 2) prior to classification. Most of the techniques proposed to construct feature
vectors involve either k-mer distributions or using encoder models. This study will review
and compare a technique taken from each of the forementioned classes:

K-mer based embeddings. K-mers frequencies are one of the most widespread ways to
encode DNA sequences into numerical vector representations. The process involves counting
the occurrences of each unique k-length sub-string in the sequence and then normalizing the
vector. The frequencies are computed by sliding a window of size k over the sequence, as
Fig. 3 shows. Each DNA sequence is made up of four symbols (namely the DNA bases: A,
C, T, G), thus the length of the k-mer frequency vector is 4k. K-mers are fast to compute as
they only take O(n) time, with n corresponding to the length of the sequence. Because of
the limited RAM resources of the machine available, this work presents the results only for
3-mers and 4-mers frequency vectors.

Learning-based embeddings. Recently, Corso et al. introduced NeuroSEED, a learning-
based framework to encode biological sequences into a low-dimension geometrical space (Fig.
3). The dataset of sequences used in the experiments referred in Fig. 4, 5 as 'NeuroSEED'
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Figure 3: On the left, an illustration of 3-mers and 4-mers in a given sequence. k-mers
frequency vectors are computed by sliding a k-sized window over the sequence, counting the
occurrences of every possible k-length string and then normalizing the vector. On the right,
a visualization of the NeuroSEED [1] framework, designed to learn and encoder function fθ
that preserves the edit distances between the sequence and vector space (D and d).

was encoded through a Convolutional Neural Network (CNN) on a 128-dimensioned eu-
clidean space. The framework, however, supports encoding on an arbitrary target space.
The geometry on which the embeddings lie is particularly relevant for the downstream
machine learning model, as the classification performance obtained are bounded to the ca-
pability of the model to learn on that embedding space.

2.2 Classification problem formulation
The problem of disease detection from microbiome data (step 2 of Fig. 2) can be formulated
as a binary classification task over sets of vectors. A few models were introduced in liter-
ature to work specifically on unordered collections of vectors, one of the firsts being Deep
Set [12]. More models were later introduced, all deriving from the concepts presented by
Deep Set [13, 14]. The attention mechanism implemented by transformers [15] is believed
to be particularly useful for the classification task under study, as it enables the model to
reason about interactions between parts of sequence embeddings. The research presented in
this paper will both use Deep Set [12] and Set Transformer [14], a modified version of a
transformer model without positional encoding.

One core difference of the proposed data pipeline from the work previously done in litera-
ture is the formulation of the classification problem. Most of the research papers available in
literature [10, 9] for disease classification from microbiome define step 2 of Fig. 2 as a vector
classification problem rather than classifying sets of vectors. This is carried out by either
defining sample-wise features, such as microbe abundance profiles [9] or by aggregating the
set of embeddings with a predetermined function. MicroPheno [10], which is an instance of
the latter case, uses the mean of the vectors as aggregation function. Nonetheless, aggre-
gating the sample’s sequences with the mean prevents the downstream classification model
to learn from potential interactions among the microbes in the sample, which are known to
affect the final control/disease classification.
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Hence, the advantage of formulating the problem as a classification of sets of vectors is
preserving the original set structure of the data. Potentially, this translates to the capabil-
ity to learn the complex interactions between the sequences (microbes), that could otherwise
not be modelled if there was a single, aggregated vector per sample. Furthermore, by work-
ing on sets of sequences it is not necessary to come up with a function that aggregates
all the vector representations of the sequences into a single one. The only disadvantage of
using a model working on sets of vectors is the limited amount of pre-built models designed
specifically for the task.

3 Experimental Work and Results
This section discusses the performance of each of the embedding models under test and
evaluates the proposed set classification approach, comparing it to baseline models widely
adopted in microbiome analysis literature. The section starts by explaining how the data
were processed prior to running the classification task.

3.1 Dataset preprocessing
The final dataset comprises 333 controls and 719 cases and was subdivided in train, validation
and test set following a 0.7, 0.15, 0.15 partition scheme. The 1052 dataset samples went
through a pre-processing phase where sequences with ambiguous nucleotide bases1 were
dropped. Additionally, for each patient, a random sample of 1000 sequences was selected to
keep the dataset small enough to be loaded in memory 2. Crohn’s disease cases were mapped
to the label 1 and controls to 0. Oversampling of the underrepresented label was applied
to the training set to mitigate the effects of class imbalance. The logic was implemented
through the pytorch's WeightedRandomSampler that at each epoch would be used by the
DataLoader to build balanced batches for training.

3.2 Embedding model evaluation
As mentioned in the introduction, the metric used to compare the performance of the clas-
sifiers is the area under curve of the receiver operating characteristic (Fig. 5). The improve-
ments over time of the model are shown through the cross-entropy loss curves on the train
and validation set (Fig. 4).

Loss curves. The set classification task was performed with two models: Set Transformer
[14] and Deep Sets [12]. Regularization through weight decay was applied to reduce overfit-
ting on all the training tasks performed. Nevertheless, the loss curves on k-mers embeddings
(Fig. 4) show signs of overfitting, possibly due to the sub-sampling step described in 3.1.
Specifically, the divergence between validation and training loss (3-mer and 4-mer graphs,
Fig. 4) appeared to be influenced by which samples were distributed to train, validation, and
test set, hinting that some dataset records might be more meaningful than others to learn
generalized features from (an argumentation for the claim is provided in the Limitations
section under the paragraph "Deviation of results"). Figure 4 shows how the classification

1Ambiguous nucleotide bases are reads where the sequencing machine could not determine the actual
base.

2The training was performed on a compute instance provided by Google Colab Pro. The machine features
12.6 GB of RAM and an NVIDIA Tesla P100 (GPU RAM 16 GB).
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models learn better from k-mers compared to NeuroSEED embeddings. Additionally, a
higher k-value appears to improve the model’s learning capacity, although this hypothesis
should be thoroughly tested in future research by going above k = 4. The loss curve on
NeuroSEED embeddings is particularly interesting, as it suggests that both Deep Set and
Set Transformer cannot learn from the feature vectors generated by the framework on the
euclidean space. Different results might be obtained by changing the classification model
architecture or geometry of the space where NeuroSEED embeddings lie.

Figure 4: Cross-entropy loss for Deep Sets and Set Transformer on train and validation
set as a function of the number of epochs. On the left, the plot shows the classification
improvements on the NeuroSEED’s embeddings, at the center the 3-mers and on the right 4-
mers. The second and third figures from the left show signs of overfitting (divergence between
training and validation loss), for which a possible explanation is reported in "Deviation of
results" under Limitations.

Classification performance. The two set classification models, perform similarly on ev-
ery embedding-dataset, suggesting that the macro-performance of the classification depends
on the embedding method and formulation of the task (i.e set classification vs. vector clas-
sification) rather than on the model itself (Fig. 5). The hypothesis is confirmed by the
average of the Area Under curve of ROC (AUROC) across all the tested models (Fig. 6),
which yields a 0.715 for NeuroSEED, 0.758 for 3-mers, and 0.822 for 4-mers with only a
marginal increase in standard deviation. The overall best classifier is SetTransformer on
4-mers, reaching an AUROC of 0.884 (Fig. 5, 6).

Baselines performance. With the aim of providing a reference for the performance of
Set Transformer [14] and Deep Sets [12], ROC curves and their AUC are also provided
for a set of baseline vector classification models. To turn the set classification problem into
a vector classification problem, each set of sequences was reduced to a single one by using
an element-wise mean as described in [10] and then normalized. In the vector classification
task (i.e. on baseline models), the dataset was divided into train and test sets, with train
accounting for 70% of the samples. The baselines analyzed in this research are Random
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Figure 5: Receiver Operating Characteristic curves for models operating on sets of vectors
and baselines operating on vectors. From left to right, the embeddings where generated
with NeuroSEED, and 3-mer, and 4-mer frequency vectors. The AUROC scores are also
presented table in 6 for easier interpretation.

Forest, K-Nearest Neighbours, Multi-Layer Perceptron, and a Support Vector Machine with
Radial Basis Function kernel. Figure 5, provides a snapshot of the performance of all
the models, where Random Forest is the best baseline for two out of three embedding
methods. Overall, the models working on sets outperform the ones working on vectors for
each embedding method (Fig. 6), proving that the proposed set classification approach
is more effective than the widely-adopted vector classification from microbiome analysis
literature.

4 Responsible Research
Reproducibility of the experiments was ensured by utilizing a publicly available dataset,
sharing the processed embedding-dataset and creating a public GitHub repository for the
full codebase. Furthermore, a minimal version of the code to train and evaluate an embed-
ding method through the set classification task is provided via a Colab notebook. The link
to the notebook is available below.

Further steps were also taken to mitigate the classification model’s bias (oversampling, as
described in 3.1) and overfitting (regularization through weight decay, as described in 3.2) to
avoid overestimating the model’s performance. Additionally, baseline results (section 3.2)
were presented to give a clear picture of what can be considered the performance of the
approach previously used in literature.

4.1 Dataset availability
The raw dataset is avaiable through the Quiita database [7]. The three processed embedding-
dataset can be downloaded as a collection of numpy (.npz) archives at the following link.

4.2 Source code
The source code of the project is available in two forms: a GitHub repository and a Google
Colab notebook. The repository contains the whole code and helper scripts used for the
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project. The Colab notebook contains a minimal implementation to run the classification
model training and evaluation. The notebook is designed to automatically download the
dataset required. Running the code on a GPU instance will significantly speed up the
training process.

5 Limitations
This paragraph introduces the limitations of the presented work. These can be seen as
starting points for future research.

Scope of the research. Due to time constraints, the research could only be conducted
on a single dataset of IBD patients. The performance obtained with this dataset might not
be representative of the performance obtainable on a dataset of another pathology. Further
research should be conducted on multiple datasets to understand the generalizability of the
work presented.

Alignment-based embeddings. This study compared only alignment-free embedding
methods. Another methodology adopted in literature to build feature vectors utilizes se-
quence alignment to construct Operational Taxonomic Units (OTU). This method is de-
scribed by DeepMicro [9], which uses as input for the classifier microbe profiles encoded in a
latent space through various encoder models. Their reported AUC for the best-performing
model on a different IBD dataset is 0.95. Although this result might look impressive com-
pared to the one presented in this work, it is hard to understand whether it is could be
reproduced on a minimally different setup. The dataset they used contains only 110 sam-
ples, with the minority class (controls) accounting for a small 23% of the total amount of
samples. The test set contains only 22 records (thus ∼5 controls) and the model’s loss
during training is computed on the validation set instead of the training set. No technique
to mitigate the model bias was deployed. The authors do not disclose the mapping of the
binary class to 0 and 1, which is relevant to understanding how the ROC’s True Positive
and True Negative ratio are computed. As TP and TN ratios are particularly sensitive to
class imbalance, the results presented are hard to interpret and compare.

Deviation of results. It is noteworthy that during training the difference between val-
idation and train loss (overfitting, noticeable in Fig. 4) seemed to change based on how
samples of the dataset were distributed between train, validation and test set. The under-
lying causes of this behaviour are most likely two: a (relatively) low amount of records in
the dataset and sub-sampling of the sequences per patient. While the former is a constraint
that characterizes most microbiome datasets, the latter could be improved. In this work,
the random sub-sampling selected 103 sequences from every patient record due to the lim-
ited resources available (i.e. RAM and compute time). As Fig. 1 shows, more than 70%
of patients have at least 104 sequences. For those records, the sub-sampling is getting at
most a tenth of the actual amount of sequences. The question of whether picking a random
sample of a tenth of the microbial population is sufficient to represent the original distribu-
tion is still unanswered. Future research should further quantify this aspect and show the
variation in classification performance as the cardinality of the sub-sample approaches the
actual amount of sequences of the patient.
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6 Conclusions and Future Work
Section 3 discussed the experimental work, whereas this section aims at taking a more
holistic approach, analyzing the insights and introducing future work.

Best embedding method. Overall, the best AUC was obtained on 4-mer embeddings
running Set Transformer (AUC = 0.884), with Deep Set nearly matching the performance
(AUC = 0.864), as shown by Fig. 6. At first thought, k-mers might not seem particularly
meaningful features to provide a model for disease detection. Looking at the performance
metrics, however, they yield reasonably good performances, especially if the signal-to-noise
ratio is taken into account. This likely means that, as features, k-mers do encode useful
information for disease detection tasks. For instance, it could be that certain microbes used
as diagnostic biomarkers for Crohn’s disease present a higher concentration of certain muta-
tions. This would make a specific subset of k-mers a good predictor for the disease. Due to
time constraints, the testing of NeuroSEED was limited to the embeddings generated in the
euclidean space. In the future, using other geometrical spaces or model architectures might
boost the classification performance on NeuroSEED embeddings. However, the picture is
clear on the tested embedding models: k-mers offer easier-to-learn features compared to
NeuroSEED (which leads to better classification metrics), with an interesting trend aris-
ing from the k-value. Higher k-values appear to improve the model’s capability to learn,
although for every k increment there is a four-fold increase in the dimensions of the embed-
ding. Thus, the k-mer size increase is still bounded to low k-values. Future research should
evaluate NeuroSEED embeddings on other geometries, test k-mers for higher k-values and
provide a rigorous comparison with an alignment-based approach.

Figure 6: Area Under curve of ROC (AUROC) by classifier and embedding model. Displayed
on yellow background the models working on sets of vectors, while on white background
models working on vectors. Models working on sets show consistently higher performance
compared to baselines.

Classification task formulation. Section 3 shows how the formulation of the classifica-
tion problem influences the results of the classification itself. In particular the proposed set
classification formulation, adopting models such as Set Transformer and Deep Set, was
demonstrated to be more effective than the widely adopted vector classification in micro-
biome analysis literature. As mentioned in the previous paragraph, a rigorous comparison
with alignment-based embedding methods would complete the current analysis, providing
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an important insight to researchers working on disease detection from microbiome: is it
possible to achieve the same disease-detection performance with alignment-free embedding
methods? This question is particularly relevant for the field as the multiple sequences align-
ment problem is NP-complete. Being able to skip its computation would save time and
resources.

In conclusion, this work presented how alignment-free embedding methods perform on a
disease detection task from microbiome sequencing data. The best results were achieved
by 4-mer embeddings, however, future research should investigate the influence of the sub-
sampling step and the geometry of the space where the embeddings lie. As expected, for-
mulating the problem as a set classification yields better performances compared to vector
classification. Readers interested in reproducing the results can use the links provided in
section 4 to download the dataset and codebase or simply run the notebook through Google
Colab.
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