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3.6      A CMOS Resistor-Based Temperature Sensor with a 
          10fJ∙K2 Resolution FoM and 0.4°C (3σ) Inaccuracy From 
          −55°C to 125°C After a 1-point Trim

Sining Pan, Kofi A. A. Makinwa

Delft University of Technology, Delft, The Netherlands

Energy efficiency and accuracy are important specifications of CMOS temperature
sensors. BJT-based sensors achieve state-of-the-art accuracy [1], while
Wheatstone-bridge (WhB) sensors achieve lower accuracy but state-of-the-art
energy efficiency [2,3]. This paper presents a WhB sensor that is read out by an
energy-efficient continuous-time delta-sigma modulator (CTDSM). Compared to
[2,3], the modulator achieves better energy efficiency with the help of a return-
to-CM (RCM) DAC and an OTA with a tail-resistor linearization scheme. Moreover,
better accuracy is achieved by embedding the DAC in the bridge and by using
more sensitive silicided-diffusion resistors instead of silicided-poly resistors.
Compared to the state-of-the-art [3], the proposed sensor achieves a 2×
improvement in resolution FoM (10fJ∙K2), and a 2× improvement in inaccuracy
(0.4°C (3σ) from -55°C to 125°C after a 1-point trim). 

As shown in Fig. 3.6.1, the WhB is made from resistors Rp and Rn with positive
and negative temperature coefficients (TCs). As in [2,3], it is read out by a CTDSM,
which balances the bridge via a multi-level resistor DAC, thus forcing the average
error current (Ierr) to zero. A multi-level DAC reduces the swing of Ierr, which
reduces the power dissipation of the modulator’s 1st integrator, and the size and
area of its integration cap Cint [2,3]. To minimize spread, the DAC resistors are of
the same type as the Rn resistors and also have a negative TC.  To balance the
bridge, however, some of the DAC resistors (RDAC1) will be connected in parallel
with the Rp resistors, reducing the sensitivity of the bridge, and hence, its energy
efficiency. 

In this design, the DAC resistors are switched to the common-mode voltage VCM

of the bridge when they are not required for bridge-balancing (Fig. 3.6.1, bottom).
Compared to [3], this RCM approach preserves bridge sensitivity, and improves
its energy efficiency by ~30%. Furthermore, since their values are now quite
similar, the Rn and RDAC resistors can be merged into a single array with 6 unit
elements (all 370kΩ), leading to better matching and greater accuracy. As in [2,3],
Rp (105kΩ) is a silicided resistor, while RDAC is made from non-silicided n-poly. 

As shown in Fig. 3.6.2, the CTDSM consists of a 2nd-order modulator with a FIR-
DAC [3]. VCM is realized by connecting unused DAC resistor pairs together.
Compared to a return-to-open approach, this equalizes the rising/falling edges of
the DAC currents, mitigating ISI and thus preventing quantization noise (Q-noise)
folding. Both the modulator’s feedforward stabilization and the FIR-DAC’s delay-
compensation are realized by a switched-capacitor (SC) 2nd-stage [3]. To make
optimum use of the modulator’s dynamic range, Rp is trimmed (3b) to
compensate for process spread [3], and only 4 of the 6 unit elements of RDAC are
switched.

To maximize its energy efficiency, the 1st integrator should employ a single-stage
OTA, so that its thermal noise is fully defined by its bias current. However, this
OTA must also be linear enough to handle the output of the FIR-DAC without
incurring Q-noise folding, as this will degrade the CTDSM’s noise floor [4].
Simulations show that a conventional current-reuse OTA would then require
significantly more (4×) bias current than that indicated by thermal-noise
considerations alone.  

Much better linearity can be achieved by replacing the OTA’s tail current sources
with tail resistors [5]. Assuming that the MOSFET pairs are in weak inversion, the
optimum tail resistance Rtail is equal to nVT/(2Itail). This temperature-dependent
resistance can be emulated by combining a fixed resistor with a PTAT biasing
circuit, resulting in a 22dB improvement in HD3 (Iout = 0.4∙Itail) over PVT.  The
actual OTA employs an energy-efficient current-reuse topology (Fig. 3.6.3). As in
[6], it is biased via Rb and capacitively-coupled to the WhB via Cb. Chopping
enables the amplification of the bridge’s DC output signal, and also suppresses
the OTA’s offset, even-order distortion and 1/f noise. To minimize the noise
contribution of the biasing network, its time constant (Cb∙Rb) should be kept well
below the chopping frequency (fchop = 125kHz). To do this, a delay-line-based
pulse generator is used to duty-cycle Rb at 2∙fchop, thus boosting its effective

resistance by >500×. As a result, the area of Cb (2pF) and Rb (700kΩ) is quite
small (<4×0.002mm2). From simulations, the OTA has 80dB gain, and consumes
9μA at room temperature (RT), which is 1.8× less than the opamp in [3].
Compared to the WhB (17μA at RT), it contributes only 25% of the input-referred
noise. The 2nd stage is also built around a standard current-reuse OTA. It also
has 80dB gain, but consumes only 1μA.

Four sensors were fabricated on the same die in a standard 0.18μm CMOS
process (Fig. 3.6.7), two with silicided-poly/n-poly WhBs, and two with silicided-
diffusion/n-poly WhBs, the latter having a somewhat (~10%) higher TC. Ambient
temperature drift is rejected by differential measurements on each pair of sensors.
Each sensor consumes 30.5μA (27.5μA analog, 3μA digital) from a 1.8V supply,
and occupies 0.11mm2. To save area, Cint1 (27pF, MIM) is located directly above
the WhB (0.06mm2). The four sensors share two clock-generation circuits
(0.003mm2 each, input clock of 2MHz, BS at 500kHz). For flexibility, the sinc2

decimation filters are implemented off-chip. 

After ceramic DIL packaging and mounting in good thermal contact with a large
metal block, 20 samples from one wafer (40 sensors for each type) were
characterized in a temperature-controlled oven. With the same Rp trimming code,
the residual spread from sample to sample is less than ±3% of full scale at RT
(Fig. 3.6.4, left). After an individual 1st-order fit and a fixed 5th-order polynomial
systematic nonlinearity removal, the silicided-poly/n-poly WhB achieves an
inaccuracy of 0.15°C (3σ) over the military temperature range (Fig. 3.6.4, top
middle). With a single-point trim that exploits the correlation between the fitting
coefficients [2], the inaccuracy is 0.6°C (Fig. 3.6.4, top right). For the silicided-
diffusion/n-poly bridge, however, the inaccuracy is even smaller: 0.1°C after a
1st-order fit and 0.4°C after a single-point trim. The measured supply sensitivities
of the two types of bridges are roughly the same (~0.04°C/V from 1.4 to 2V at
RT), and are mainly determined by the voltage-dependent Ron of the DAC switches. 

FFTs of the sensor’s bitstream output are shown in Fig. 3.6.5 (top). Shorting the
tail resistors in both the OTA and its biasing circuit leaves the OTA’s biasing
current unchanged, but increases its non-linearity. The resulting Q-noise folding
causes an ~3dB increase in the modulator’s noise floor. The sensor’s resolution
is derived by computing the standard deviation of the difference in the output of
two identical sensors from the same die. Over a 1s interval, the silicided-poly/n-
poly bridge achieves 160μKrms resolution in an 8ms conversion time (Fig. 3.6.6,
bottom), while the silicided-diffusion/n-poly bridge achieves 150μKrms, due to its
higher sensitivity. 

Figure 3.6.6 summarises the performance of the proposed FIR-DAC WhB sensor
and compares it with state-of-the-art BJT [1], resistor [2,3] and MEMS [7]based
sensors. It achieves the best FoM, improving on the state-of-the-art [3] by 2×.
Compared to previous resistor-based sensors, it is 1.5× more accurate after a 1st-
order fit, or 2× after a correlation-based 1-point trim. This level of performance
makes this sensor quite competitive in embedded applications where both high
resolution and good accuracy are required.
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Figure 3.6.1: Conventional multi-bit CTΔΣ readout of a Wheatstone bridge
sensor (top left); proposed readout scheme with an embedded RCM DAC
(bottom). Figure 3.6.2: Simplified system block diagram.

Figure 3.6.3: Simplified diagram of the chopped capacitively-coupled 1st-stage
OTA with robust biasing and tail resistor linearization.

Figure 3.6.5: Bitstream spectra (20s interval, Hanning window, 10× averaging)
with tail resistors enabled/disabled (top); resolution vs. conversion time
(bottom). Figure 3.6.6: Performance summary and comparison with previous work.

Figure 3.6.4: Sensor characteristic (left); temperature inaccuracy after a 1st-
order-fit and a 5th-order systematic nonlinearity removal (middle) or a
correlation-based 1-pt trim (right).
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Figure 3.6.7: Die micrograph of the fabricated chip. Figure 3.6.S1: Measurement setup.

Figure 3.6.S2: OTA linearity with zero tail impedance (left), infinite tail
impedance (middle) and the optimum tail resistance (right).
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