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Abstract

The term peat is commonly used to describe organic soils, composed of fragmented plant re-
mains and fibers. Despite the extensive research on the behaviour of peat during the last 50
years, the vast majority of the attention was devoted to the volumetric behaviour. Only few
attempts are reported to model the deviatoric behavior of peat, which is fundamental in many
geotechnical applications as dykes founded on peat layers. This Thesis represents an attempt
to understand the current knowledge on the deviatoric behaviour of peat with the aid of an
hierarchical simple elasto-plastic model.

The constitutive model was conceptually developed aiming for the use of a limited number
of parameters with an easy way of determination. This choice aligns with the needs of engi-
neering practice, which demands the use of models with few and comprehensive parameters.
The constitutive ingredients of the model have been derived from direct experimental evidences.
The model requires 10 parameters, 5 out of them are the classical parameters of the well-known
Modified Cam-clay model.

The high compressibility of the peat along with its high friction angle intensify the end re-
straints occurring due to the platens of triaxial apparatus. In order to account for the effects
of the boundaries, the constitutive model has been implemented in the Finite Element Pro-
gramme LAGAMINE and the tests have been simulated as Boundary Value Problems. The
model is in qualitative agreement with the experimental data and, in particular, with quanti-
tative agreement until 20% of strain for the case of consolidated drained triaxial tests. To be
able to reproduce properly the case of consolidated undrained triaxial tests which impose an
isochoric response, one parameter associated with the flow rule of the model should be changed.
This change of a parameter is related to the fact that the fibers in the peat specimen are not
considered explicitly in the constitutive equations, although they can alter the deformational
response of peat under some kinematic constraints and influence the mechanical response in a
predominant way at high strain levels.

Overall, the constitutive model developed in this Thesis gives good quantitative results un-
til 20% of axial strain. Further research on the influence of fibers on the response of peat under
different strain paths and on the consequent matrix-fiber interaction should be done in order to
have a model with predictive capabilities until high strain levels.
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Chapter 1

Introduction

1.1 Problem Statement

The subsurface of the Netherlands is extensively composed of peat and organic soils, ensuing a
plethora of construction challenges to be dealt. The problems arising from the presence of peat
can be attributed to two parts of the behavior of peat, the volumetric and the deviatoric.

From experimental point of view, several researchers have studied the shear behavior of fibrous
peat, composed of fragmented plant remains fossilized under water and pressure (Radforth,
1969; van der Heijden et al., 1994), and concluded that the peat strength is of frictional nature
with small cohesion intercepts mainly due to fibers entanglements rather than cohesive bonds
(Landva and La Rochelle, 1983; Yamaguchi et al., 1985). Mesri and Ajlouni (2007) state that
fibrous peat presents exceptionally high frictional resistance as it can be seen in the Table 1.1
(Mesri and Ajlouni, 2007). More specifically, Yamaguchi et al. (1985) determined from triaxial
tests, that the friction angle varies from 35 to 55 depending on the orientation of principal
stresses with respect to the predominant (horizontal) orientation of fibers. Farrell et al. (1999)
showed lower values of frictional angle obtained from direct shear and ring shear tests. The
difference between the values of φ′ obtained by the triaxial and direct/ring shear tests can be
attributed to the fact that the latter tests estimate the frictional resistance of the matrix without
the reinforcing effect of fibers which are activated during a triaxial test. However, several doubts
still remain.

Previous research on the geotechnical response of peat has mainly focused on the volumetric
behaviour from a constitutive viewpoint. Only few attempts to model the deviatoric behaviour
of peat are reported. Yamaguchi et al. (1985) firstly attempted to model the deviatoric be-
havior of peat, based on the Modified Cam clay (Roscoe and Burland, 1968) coupled with an
experimentally based stress-dilatancy law. Following attempts include the application of the
Soft Soil Creep model and its anisotropic version (den Haan and Feddema, 2013; den Haan,
2014) and the elastic-plastic model by Li and Dafalias (2000) (Yang et al., 2016). Despite the
capability of these attempts to capture the ultimate state of peat detected in the laboratory
tests, their major limitation was the significant overestimation of the stiffness in the deviatoric
stress-strain response. This cannot be neglected, as in geotechnical designs where peats are
encountered, the serviceability limits rule the design criteria. These considerations call for an
adequate geotechnical description of the pre-failure response of peat.

1



Chapter 1. Introduction

Table 1.1: Friction Angle of Fibrous Peats from Triaxial Compression Tests on Vertical
Specimens (Mesri and Ajlouni, 2007)

The vast majority of the previous models for the deviatoric behaviour of peat have been cal-
ibrated and tested based on experimental results coming from undrained triaxial compression
tests. However, triaxial tests pose severe limitations to the direct determination of the main
constitutive ingredients. An essential assumption when considering triaxial tests is the unifor-
mity of deformation of the specimen, as every representative information (volumetric changes
and axial displacement are used to calculate radial and axial stresses respectively) about the
true material behavior obtained from the test arises from this convention. Apart from the
insufficient drainage, membrane effect and self-weight which constitute causes of non-uniform
deformation of a triaxial specimen, the most crucial cause of this non-uniformity is the end
restraint (Sheng et al., 1997).

End restraint is the formation of dead zones at the ends of the sample caused be the radial
friction forces coming from the end platens of the triaxial specimens. Consequently, shear
stresses develop at the cap and base forming dead zones which provide an additional confinement
to the specimen. In addition, barreling effect and concentration of dilation in local zones
are caused, not allowing to obtain information for the true material behavior. To overcome
this limitation, Taylor (1941) has proposed length to diameter ratio of 2 to 1 or the use of
frictionless ends in length to diameter ratio of 1 to 1. The former ratio has been proposed by
other researchers too after having executed a large number of experiments in sands and clays
(Shockley and Ahlvin, 1960; Rowe and Barden, 1964). It has to be explained that the use of
frictionless ends is difficult to be applied in real laboratory conditions, but it is the only way to
achieve a uniform deformation and a plastic zone failure (Lade and Tsai, 1985), so as to obtain
representative shear strength parameters.

It seems that the problem of end restraints has been thoroughly investigated, but for the case of
peat the use of widely adopted ratios is rather questionable as the compressibility of peat is 5 to
20 times the compressibility of soft clay in the same range of pressures (Mesri and Ajlouni, 2007).
This can be explained by looking into Figure 1.1, where the comparison in the failure mode

2



Chapter 1. Introduction

between a typical clay and peat specimen with friction ends is depicted. It is clearly observed
that the peat specimen is subjected to a larger deformation and the portion of the sample not
affected by the dead zone is significantly smaller than for the case of clay sample. This problem
arises the concern of possible misinterpretation of triaxial tests on peat with possible severe
mistakes in shear strength and stiffness parameters obtained from the tests which cannot be
neglected as in the case of sand or clay (Bishop and Green, 1965). From a modelling viewpoint,
each experimental test should then be treated as a boundary value problem.

Figure 1.1: Deformation of clay and peat specimen with the use of friction ends

In the engineering practice, where the safety assessment of existing dykes or the design of
new embankments is necessary, the development of a reliable constitutive model is essential.
Constitutive models for soils are usually based on experimental behavior observed in laboratory
tests. It is therefore important that such tests are performed unbiased and the recorded data
truly represent the stress-strain behavior of the soil. This can be achieved only by applying
adequately uniform conditions in triaxial tests. However, the boundary conditions imposed to
the sample with standard laboratory devices may be far from uniform.

1.2 Research Questions

The main objective of this master Thesis is to advance the current modelling approach for the
deviatoric behaviour of peat by proposing a simple constitutive model with a limited amount of
parameters in the framework of elasto-plasticity.

The purpose of this Thesis is to attempt to reproduce the deviatoric behavior of the peat
by numerical means with a simple and straightforward model. The well-established Modified
Cam clay model Roscoe and Burland (1968) seems adequate to offer this possibility without
developing advanced notions of constitutive modelling. In addition, the previous aforemen-
tioned modelling attempts was based mainly on the MCc framework indicating that this path
is possible.

In Figure 1.2 the prediction of the MCc model in terms of stress path, deviatoric stress-strain
and excess pore water pressure development is depicted in comparison with the corresponding
experimental curves. It is observed that the MCc fails to reproduce the response of peat as it
clearly overestimates the stiffness in the deviatoric stress-strain response (1.2c) and the rate of
the excess pore pressure (1.2b). Finally, the stress path of Normally Consolidated clay, predicted
by the MCc model is not representative for a material like peat.

3
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(a) Effective stress path

(b) Excess pore pressure vs deviatoric strain (c) Deviatoric stress-strain

Figure 1.2: Response of peat in laboratory and MCc prediction

The drawbacks of the MCc model outlined above indicate that the main ingredients of this
model should be adopted in order to deal with the response of the peat. Hence, the research
questions can be organized to the basic ingredients of plasticity, as the development of a new
constitutive model based on the Cam clay framework is dictated by these ingredients. So, the
proposed research questions are here formulated:

Is associated plasticity suitable for describing the pre-failure behavior of peat spec-
imens affected by end restraints? Which method of measuring global stresses and
strains is more suitable for describing the pre-failure stress-strain response of peat?

The impact of flow rule is not only important at failure in soils, which has been shown nu-
merically by Gens and Potts (1988) and Lagioia and Panteghini (2014), among others, but is
also significant at reproducing the pre-failure response. It is well known that the MCc suffers
from the overestimation of K0 values (Gens, 1982; Alonso et al., 1990), meaning that the shear
strains are over-predicted. Thus, various approaches to tackle this issue has been proposed.

In addition, Sheng et al. (1997) demonstrated that the effects of non-uniformities on the analysis
of stress-strain and strength properties of the soil also depend on how the global stresses and
strains are computed from triaxial tests data.

Why the yield surface introduced by the Modified Cam clay model (Roscoe and Bur-
land, 1968) is inappropriate to describe the peat behavior and how the formulation
of the yield surface should be modified in order to have satisfying results?

4
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The majority of the constitutive models have been developed to investigate the behavior of
materials, like sands and clays. The MCc model has been developed to examine primarily the
mechanical response of the clay of Cam river. Hence, it is reasonable to consider that this type
of yield loci (Modified Cam clay) cannot represent the yield surface of the examined peat.

Is the hardening law used in the majority of constitutive models based on Cam clay
theory appropriate for capturing the stress strain behavior of peat? If not, how can
this be tackled?

Classical critical state models traditionally assume that the expansion of the yield locus (i.e.
hardening of the soil) is controlled merely by the plastic volumetric strain. Indirect information
on the hardening of peats can be found from undrained compression triaxial tests, where a
“hook” is exhibited. This “hook” can be comparable to the undrained behavior of sands, where
a mixed hardening law has been employed (Nova and Wood, 1979).

How the model performs if the experiments are treated numerically as a Boundary
Value Problem?

Due to the intense end restraint formation in peat specimens, single element tests are not
adequate to model triaxial tests of peat. Hence, the experiments should be modelled as a
Boundary Value Problem.

1.3 Methodology

The work of this Thesis is based on laboratory tests conducted by Muraro (2018). Consolidated
Undrained triaxial Test (TxCU) and Consolidated Drained Triaxial Test (TxCD) on reconsti-
tuted peat samples were conducted both with rough and smooth end platens. These laboratory
results constitute the base on which the data from numerical analyses will be compared.

To answer the research questions, the work must be subdivided into several domains:

• The triaxial compression test is a boundary value problem which can be simulated by a
finite element (FEM) program. In this master Thesis, Lagamine is the preferred FEM
program. An appropriate mesh should be constructed where the platens of triaxial spec-
imen are modelled either as rough or smooth to investigate the effect of end restraints.
The reason for modelling only the platens as rough or smooth initially lies to the fact that
diameter of peat triaxial specimens during the tests is not altered during the shearing and
remains in full contact with the platens.

• The laboratory tests are also simulated using the Modified Cam clay model (MCc) which
can incorporate either an associative flow rule (classical Modified Cam clay) or a non-
associated flow rule. Herein, it is attempted to understand at what degree the MCc
captures the pre-failure behavior of peat.

• Having found the limitations of MCc, single element tests are performed through a pre-
existing constitutive driver to investigate the effect of the other constitutive ingredients
on the response of peat. The goal of theses analyses is to investigate the influence of the
inclusion of a mixed hardening law in a critical state model like MCc.

• However, the triaxial tests cannot be modelled adequately by a single element test as they
constitute a boundary value problem and multiple elements are demanded in order to be
modelled sufficiently. The model with the modified constitutive ingredients is implemented
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into the Finite Element software LAGAMINE and the corresponding analyses to the
laboratory tests are executed.

1.4 Limitations

This research project comprises an extensive literature study regarding peat response in triaxial
compression and different constitutive models. Furthermore, numerical analyses are executed
in order to compare different constitutive ingredients and to establish a basis on which a con-
stitutive model can be developed. This model is desired to capture the peat behavior in triaxial
compression tests.

Although the peat specimens in the laboratory are subjected to creep deformations, the models
used in the numerical analyses do not deal with time dependent behavior. All the tests have
been performed with the same strain rate in order not to induce different creep effects in the
tests. Hence, the study of creep is out of the scope of this Thesis.

Moreover, the peat is assumed to contain a certain amount of gas bubbles due to the biogenic
degradation of the organic matter, which are expelled during the triaxial compression. The
influence of gas bubbles in the hydro-mechanical response of the material is not examined in
this Thesis.

In addition, the isotropic consolidation on which they specimens were subjected prior to the
shear stage, which contributes to the response of the peat to a certain extent, was not modelled
in this Thesis.

Finally, all Finite Element models investigated are axisymmetric (2D). Despite the three-
dimensional (3D) type of triaxial compression, the computational gains of 2D axisymmetric
analysis render the implementation of 3D numerical model unprofitable.

1.5 Thesis outline

With regards to the above considerations, the Thesis is organized in six chapters in total.

Chapter 1 introduces the motivation and the objective along with the research questions of the
Thesis.

In Chapter 2 the theoretical framework of the elastoplacity and the MCc model is presented.
In addition, the extensions of the new model are discussed along with the motivation of them.

Chapter 3 provides an overview of the methodology of analyzing globally the results of the
numerical triaxial tests. Moreover, some preliminary analyses are performed to establish the
appropriate flow rule.

Chapter 4 investigates the influence of the mixed hardening law in a critical state model in
single element tests.

Chapter 5 addresses the incorporation of the new constitutive model in LAGAMINE. Further-
more, the results of the simulations on TxCU and TxCD are discussed and summarized.

Finally, Chapter 6 concludes with a summary and outlooks for future works.
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Chapter 2

Literature review

2.1 Introduction

The purpose of this chapter is to present the basic theoretical background knowledge utilized
in the Thesis. First, the elastoplasticity theory and the Modified Cam clay (MCc) model are
presented, as the proposed model is based on this well-established framework. Following up,
the shortcomings of the MCc are demonstrated. In addition, methods of addressing these
disadvantages are introduced so as the proposed model to be able to predict the mechanical
response of the material under investigation.

2.2 Constitutive Modelling

2.2.1 Elasticity

The simpler idealization of soil behavior employed in the constitutive modelling involves the
use of elastic law. The basic elastic law adopted before yielding is the generalized Hooke’s law
assuming the stresses are uniquely determined by the strains, which are totally recoverable.
Two parameters, Young’s modulus E′ and Poisson’s ratio ν ′, are needed to describe the elastic
behavior of a homogeneous isotropic material. For soil, it is preferable to use the two more
fundamental parameters: bulk modulus K and shear modulus G to describe elastic behaviour,
so that the elastic deformation to be distinguished into a volumetric and distortional part
respectively. These parameters can be either linear on non-linear functions of the applied
effective stresses. Hence, the stress strain relationships are as follows:

dσ′ = Ddε (2.1)

where:

dσ′ =
[
dσ′x dσ′y dσ′z dτxy dτyz dτzx

]T
dε =

[
dεx dεy dεz dγxy dγyz dγzx

]T
D : is the elastic stiffness matrix
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The elastic stiffness matrix D can be expressed as the following:

D =



K +
4

3
G K− 2

3
G K− 2

3
G 0 0 0

K− 2

3
G K +

4

3
G K− 2

3
G 0 0 0

K− 2

3
G K− 2

3
G K +

4

3
G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


(2.2)

The relationships coupling effective bulk modulusK and shear modulusG with Young’s modulus
E′ and Poisson’s ratio ν ′ are as follows:

K =
E′

3(1− 2ν ′)
(2.3)

G =
E′

2(1 + ν ′)
(2.4)

For sake of simplicity, the elastic response can be fully uncoupled into the volumetric and
deviatoric deformation using bulk modulus K and shear modulus G in the triaxial stress space
under triaxial test conditions as: [

dεep

dεeq

]
=

 1

K
0

0
1

3G

[dp′
dq

]
(2.5)

where:

p′ =
σ′1 + 2σ′3

3
(2.6)

q = σ′1 − σ′3 (2.7)

dεp = dε1 + 2dε3 (2.8)

dεq =
2

3
(dε1 − dε3) (2.9)

p′ is the mean effective stress, q is the deviatoric stress, dσ′1,3 is the effective stress increment
in principal directions, dεp is the volumetric strain increment, dεq is the deviatoric strain incre-
ment, dε′1,3 is the strain increment in principal directions and the superscript e denotes elastic
component.

Despite the elastic laws being easy and simple to use, they are unable to predict the real soil
behavior, as the soil deforms purely elastically in shear strains less than 10-5, making them
useful in rough approximations in engineering practice.

2.2.2 Critical State

The Critical State theory developed in the 1960s based on the pioneer work of Roscoe et al.
(1958) and it is a fundamental theory for developing elastoplastic constitutive models. Three
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parameters are needed to describe the soil state in the conventional triaxial space, namely p′,
q and the specific volume v, i.e. the volume of soil containing unit volume of solid material,
v=1+e. The Critical State concept states that upon shearing the soil material changes its
volume (either expansion or contraction) depending on its initial state described by the above
parameters, until it reaches a critical void ratio where the soil flows as a frictional fluid (Schofield
and Wroth, 1968), and subsequently, no volumetric change is observed despite the continuous
shearing. This state is called Critical State where any further distortional strain does not cause
any change in mean effective stress p′, deviatoric stress q or specific volume v, so as the following
to apply:

dεp
dεq

=
dq

dεq
=
dp′

dεq
= 0 (2.10)

According to Schofield and Wroth (1968) the well-defined critical state of a soil is determined
by two unique equations:

q = Mp′ (2.11)

v = Γ− λ ln p′ (2.12)

where:

M : is the slope of CSL in p′-q space, related with the friction angle of soil

Γ : is the intercept of CSL with v axis in v-ln p′ space

λ : is the soil compression index

Also, in the same basis it is assumed that under isotropic compression the isotropic normal
compression line (NCL) depicts the plastic compression of normally consolidated soils. In addi-
tion, the unloading and reloading of a soil is idealized by unique k-lines (URL). The two unique
equations are as follows respectively:

v = N − λ ln p′ (2.13)

v = vκ − κ ln p′ (2.14)

where:

N : is the specific volume when p′=1kPa

vκ : is dependent on stress history

κ : is the soil swelling index
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Figure 2.1: Normal Compression Line (NCL) and Unloading-Reloading Line (URL) on the
compression plane (ln p′ : v)

2.2.3 Elastoplasticity

As it was mentioned in Section 2.2.1 elastic models are rarely accurate in predicting the soil
behavior. Thus, the concept of elastoplasticity becomes relevant in understanding the material
response. In elastoplasticity the strain can be decomposed into recoverable elastic strains dεe

and irrecoverable plastic strains dεp. Hence, total strains are described by:

dε = dεe + dεp (2.15)

In order to be able to better understand the elastoplastic modelling, the concept of yielding
should be explained. The transition from elastic strains to plastic strains is called yielding and
may occur for different stress combinations. These stress combinations define the yield points
which formulate a surface boundary, namely called yield surface or yield locus. According to
Muir Wood (1990) a yield surface marks the boundary between the region of purely elastic strain
to the region with combined elastic and plastic strain.

Hence, the concepts of elasticity, plasticity and yielding are combined into an elasto-plastic
model. In order to define an elasto-plastic model four ingredients should be defined:

• Elastic Properties

• Yield Criterion

• Plastic Potential

• Hardening Rule(s)

Elastic Properties

Deformations inside the yield surface are purely elastic and, thus, obey an elastic law, the one
it was described in 2.2.1. In the Eq. (2.5) the volumetric strain and deviatoric strains are
de-coupled and are linked with the mean effective stress p′ and deviatoric stress q. By rewriting
Eq. (2.14) into incremental format, as the elastic volumetric strain can be described by the
unloading-reloading lines, one can obtain:

dve = −κdp
′

p′
(2.16)
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By definition the increment of volumetric strain is equal to the change of volume divided by
the initial volume:

dεp =
−dv
v

(2.17)

By combining Eq.(2.16) and (2.17) the volumetric elastic strain is formulated as:

dεep =
κdp′

vp′
(2.18)

Thus, the bulk modulus in the elastic region results from combining Eq.(2.5) and (2.18):

K =
vp′

κ
(2.19)

By combining Eq.(2.3) and (2.20) and assuming a constant Poisson ratio, the shear modulus G,
which is necessary for the calculation of elastic deviatoric strains, can be expressed associated
with the bulk modulus K as:

G =
3(1− 2ν ′)K

2(1 + ν ′)
(2.20)

Yield Criterion

The second ingredient for describing an elastoplastic constitutive model is the yield surface. An
incremental stress change will lead to the generation of purely elastic strains or elasto-plastic
strains depending on the values of yield surface. The material behavior according to the value
of yield surface F (σ,κ) is summarized in the Table 2.1:

Table 2.1: Current state of the model

Situation State Strains

F (σ,κ)>0 Not Allowable (-)
F (σ,κ)<0 Purely Elastic (dε=dεe)
F (σ,κ)=0 Elasto-plastic (dε=dεe+dεp)

where κ is a set of hardening/softening variables controlling the change of size of yield locus. If
κ is constant, the yield locus is constant and perfect plasticity is utilized. If κ is related with
plastic strains, hardening/softening plasticity is employed.

Plastic Potential

The plastic potential is the ingredient which controls the direction of plastic strains specifying
the relative magnitudes of components of plastic deformation. The plastic potential Q(σ,β)
is a function of stresses and the hidden hardening/softening variables which control the size
of the plastic potential. The plastic strain increment vector must be orthogonal always to the
plastic potential in the outward direction. The plastic potential may coincide with the yield
surface resulting to an associated flow rule. In this case the material obeys the postulate of
stability through normality (Drucker, 1959). Otherwise, a non-associated flow rule is employed
if the plastic potential differs from the yield surface. The plastic response, in general, can be
expressed as:

dεp = dλ
dQ

dσ
(2.21)
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Hardening Rule

The hardening rule is the last ingredient necessary for the full description of an elasto-plastic
model. The hardening law defines the absolute magnitude of the plastic strains by linking them
with the changing size/shape of the yield surface. This rule prescribes how the hidden variables
κ vary with plastic strains through the plastic multiplier dλ of Eq. (2.21). The hardening
law may be isotropic, depending on the volumetric plastic strains (volumetric hardening), on
the deviatoric plastic strains (deviatoric hardening) or on a combination of previously referred
strains, kinematic or mixed.

2.2.4 The General Elastoplastic Model

By using the theory outlined in Section 2.2.3, the general formulation of an elasto-plastic model
can be presented. By differentiating the yield function F (σ,κ) and considering that its incre-
ment must obey the consistency condition, it yields:

dF =

{
∂F

∂σ

}T
dσ +

{
∂F

∂κ

}T
dκ = 0 (2.22)

The Eq. (2.22) may be rewritten to:

{
∂F

∂σ

}T
dσ −Adλ = 0 (2.23)

where A is the plastic modulus:

A = −

({
∂F

∂κ

}T
·
{
dκ

dλ

})
= −

({
∂F

∂κ

}T
·
{
dκ

dεp

}{
dεp

dλ

})
(2.24)

Substituting Eq. (2.21) into the Eq. (2.24), the plastic modulus can be rewritten as:

A = −

({
∂F

∂κ

}T
·
{
dκ

dεp

}{
∂Q

∂σ

})
(2.25)

Solving for the plastic multiplier dλ, the Eq. (2.23) yields:

dλ =
1

A

{
∂F

∂σ

}T
dσ (2.26)

Substituting Eq. (2.1) and (2.21) along with Eq. (2.26) into Eq. (2.15), the decomposition
equation returns:

dε = D−1dσ +
1

A

{
∂Q

∂σ

}{
∂F

∂σ

}T
dσ (2.27)

which may be formulated in compact form as:

dε = D−1ep dσ where D−1ep = D−1 +
1

A

{
∂Q

∂σ

}{
∂F

∂σ

}T
(2.28)
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Introducing the Eq. (2.28) in terms of p′ and q yields to:[
dεep

dεeq

]
=

 1

K
0

0
1

3G

[dp′
dq

]
(2.29a)

[
dεpp

dεpq

]
=

−1

∂F

∂κ

(
∂κ

∂εpp

∂Q

∂p′
+
∂κ

∂εpq

∂Q

∂q

)

∂F

∂p′
∂Q

∂p′
∂F

∂q

∂Q

∂p′

∂F

∂p′
∂Q

∂q

∂F

∂q

∂Q

∂q


[
dp′

dq

]
(2.29b)

The Eq. (2.29b) is referred as compliance matrix and is activated only if the yield criterion
is violated and plastic strains are occurring. If the flow rule is associated (F=G), then the
compliance matrix is symmetrical.

In numerical modelling, the incremental stresses are more conveniently determined through the
strain and stiffness matrix and, thus, the elastoplastic matrix should be derived as:

dσ = Ddεe (2.30)

and substituting the elastic strains dεe from the decomposition equation and the plastic strains
dεp from Eq. (2.21) it yields:

dσ = D(dε− dεp) = Ddε−Ddλ∂Q
∂σ

(2.31)

Inserting Eq. (2.31) into the consistency equation (2.23) the plastic multiplier dλ may be
rewritten as:

dλ =

{
∂F

∂σ

}T
Ddε

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (2.32)

Substituting the expression for dλ from Eq. (2.32) into Eq. (2.31) furnishes the standard
elastoplastic stress-strain relations of the form:

dσ = Depdε where Dep = D −
D

{
∂Q

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (2.33)

2.2.5 Modified Cam clay

The modified Cam-clay model was developed by Roscoe and Burland (1968) as an extension of
the original Cam-clay model of Roscoe et al. (1963) in order to estimate the soil response during
triaxial test. This model successfully reproduces the major deformation characteristics of soft
clay and is more widely used for numerical predictions than the original Cam-clay model.

The MCc model uses the basic concepts of elastoplastic models as these have been thoroughly
described. More specifically, these principles are listed as:

1. The recoverable plastic and shear strains are only dependent on p′ and q respectively and
described be Eq. (2.29a).
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2. The associative flow rule is a major concept of the model (Q=F ).

3. The hardening variable of the model is the preconsolidation pressure (κ=p0)

Thus, the yield function can be formulated in the triaxial space as:

F (p′, q, p0) = 0 F = q2 −M2(p′(p′0 − p′)) (2.34)

In order to present the stress strain relationship of the MCc in the form of the compliance
matrix, the derivatives of yield locus F and plastic potential Q with respect to p′ and q which
are equal as associated flow rule is used, and yield locus F with respect to pc are derived:

∂F

∂p′
=
∂G

∂p′
= M2(2p′ − p′0) (2.35a)

∂F

∂q
=
∂G

∂q′
= 2q (2.35b)

∂F

∂p′c
= −M2p′ (2.35c)

Regarding the evolution of the preconsolidation pressure with respect to plastic strains, only the
volumetric plastic strains contribute to the expansion of the yield locus. Therefore, the MCc
is known as a volumetric hardening model. For determining the evolution of preconsolidation
pressure dp′0 with the increment of plastic volumetric stain dεpp, the compression and swelling
equations should be recalled. Considering that the swelling line expresses the elastic volume
change and the compression line the total volume change, the plastic volume change comes from
their difference. Hence, the increment of plastic volumetric strain dεpp is derived by subtracting
the differential form of Eq. (2.13) with the differential form of Eq. (2.14) and then by relating
the increment of plastic strain with the volume change through Eq. (2.17).The above are
presented below:

dvp = −(λ− κ)
dp′0
p′0

(2.36)

dεpp = (λ− κ)
dp′c
vp′0

(2.37)

Therefore, the dependence of plastic strains dεp with the preconsolidation pressure dp′0 may be
written as:

dεpp
dp′0

=
λ− κ
vp′0

(2.38a)

dεpq
dp′0

= 0 (2.38b)

The yield function can be reformulated in terms of the stress ratio η (η=
q

p′
) as:

p′

p′0
=

M2

M2 + η2
(2.39)

Combining Eq. (2.35), (2.38) and (2.39) and substituting them into the general plastic consti-
tutive relationship (2.29b) the compliance matrix for the MCc becomes:

[
dεpp

dεpq

]
=

(λ− κ)

vp′(M2 + η2)

(M2 − η2) 2η

2η
4η2

(M2 − η2)

[dp′
dq

]
(2.40)
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Shortcomings of Modified Cam clay

Herein, the shortcomings of MCc model, which can be relevant to the observed peat behavior
reported in Chapter 1, are outlined:

1. The MCc model does not include any anisotropic characteristic in its formulation as it is
based on the assumption that soils are isotropic. However, peat exhibits a predominant
anisotropic behavior due to its deposition mode and its high fiber content.

2. Creep, an important feature of peat deposits, cannot be modelled by MCc model.

3. The predicted behavior of heavily overconsolidated clay (i.e states to the left side of the
critical state line, ’dry’ side) is quite poor as the yield surface adopted in this model is
problematic in this side.

4. The behavior of granular materials is not successfully modelled as the sand does not obey
in the principle of normality. Therefore, a non-associated flow rule should be adopted for
capturing the mechanical response of granular materials so as the critical state point not
to lie at the top of the yield locus (Chandler, 1990). This drawback becomes relevant with
the goal of modelling the peat behavior as the plastic potential suitable for peats may not
coincide with the yield function.

5. The contribution of plastic shear strains in the evolution of yield function cannot always
be neglected and the shear hardening should be included in the volumetric hardening law
of MCc model (Nova, 1977).

To overcome these shortcomings, a large number of modifications have been proposed by various
researchers. More specifically, the integration of anisotropic yield surfaces in the MCc model
has been proposed by Ohta and Wroth (1976) and Whittle (1993). For dealing with the rate de-
pendency of geomaterials Borja and Kavazanjian (1985) and Yin and Graham (1999) researched
on the creep behavior of clays. For overcoming the problems on the ’dry’ side, the Hvorslev
surface is used as the yield function in this region (Atkinson and Bransby, 1977), rendering
this treatment problematic as two separate yield surfaces are used and a discontinuity which
may cause considerable numerical difficulties is created. Finally, the critical state modelling of
sand (Nova and Wood, 1979) incorporating the deviatoric hardening and the non-associated
flow rule is partially successful as the yield surfaces for sands seems to be different than those
for clays (Nova and Wood, 1978) and insufficient data for the determination of the critical state
and normal consolidation lines of sands was available (Atkinson and Bransby, 1977).

Despite the aforementioned modifications introduced in the MCc model , there are still limi-
tations as Gens and Potts (1988) state, where they note that the large amount of introduced
constants in the models without a clear physical meaning and the numerical problems associated
with the adaptation of two separate yield surfaces for dealing with the poor performance of crit-
ical state models in the ’dry’ side render these modifications inadequate in the wide engineering
practice.

2.2.6 Background of the proposed modifications

As it has been already mentioned in the scope of the Thesis , the proposed model will not deal
with strain rate modelling of peat and anisotropic yield surfaces. The proposed model follows
the philosophy adopted by Yu (1998) in the CASM model, where there is a limited amount of
material constants which are easily determined and a single yield function and plastic potential
are used. The suggested alterations following the same concept as above which will be added
in and modify the MCc model are discussed below.
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Generalized Shapes of Yield Locus and Plastic Potential

The implementation of versatile yield surfaces and plastic potentials in the constitutive models,
which will represent accurately the ones observed experimentally, is critical for modelling suc-
cessfully real soil behavior. Towards this adoption of concept, various equations for describing
the shapes of yield locus and plastic potentials have been proposed by various researchers (La-
gioia et al., 1996; Yu, 1998; McDowell and Hau, 2004). In this Thesis, the equations proposed
by McDowell and Hau (2004) constitute the basis for extending the MCc model. The reasoning
behind this choice lies to the concept of using a minimum number of additional parameters with
an easy way of determining them and of having less theoretical shortcomings. In essence, the
expressions from McDowell and Hau (2004) have less new additional parameters than the ex-
pressions of Lagioia et al. (1996). Correspondingly, the handicap observed in the CASM model
of Yu (1998) where Rowe’s stress-dilatancy relationship (Rowe, 1962) is implemented, which
predicts non associated flow under isotropic conditions, behavior contradicting the findings of
literature as stated in McDowell and Hau (2004), is not present in the selected expression.

The flow rule in this model is given by:

dεpp
dεpq

=
M2 − η2

kgη
(2.41)

which is the same as Ohmaki (1982) has proposed. By integrating the flow rule, the expression
for yield surface and plastic potential for kf,g 6= 1 becomes:

q2 = −
M2
f

1− kf

(
p′

p′0

) 2
kf
p′20 +

M2
f p
′2

1− kf
(2.42)

q2 = −
M2
g

1− kg

(
p′

p′p

) 2
kg

p′2p +
M2
g p
′2

1− kg
(2.43)

where Mf and Mg intersect the yield locus and plastic potential at their apex, kf and kg
control the shape of the yield surface and plastic potential, p0 is the preconsolidation pressure
controlling the size of yield surface and pp is the corresponding hidden variable for the plastic
potential. Figure 2.2a presents the influence of kf,g on the shape of locus, where a locus with
low values of kf,g is skewed to the right while a locus with high values of kf,g is skewed to the
left. Note that for kf,g = 2 one can retrieve surfaces of MCc model. The effect of M is well
known as it controls the steepness of a surface (Figure 2.2b).

(a) Effect of k in the shape of yield locus/plastic
potentials

(b) Effect of M in the steepness of yield
locus/plastic potentials

Figure 2.2: Yield locus/plastic potentials of the model
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Deviatoric Hardening

Looking into the stress paths from TxCU tests in peat presented in Chapter 1, one can observe
a ′′hook′′ as it is observed in sands under similar test conditions. With a volumetric hardening
law, this behavior cannot be predicted. Based on the pioneer work of Nova (1977) the hardening
law can be extended so as the plastic deviatoric strains dεpq to contribute to the change of size
of preconsolidation pressure. Thus, this combined hardening law can be written as:

dp′0 =
vp′0
λ− κ

(dεpp +Ddεpq) (2.44)

The D is a parameter which controls the amount of contribution of plastic deviatoric strains dεpq
in the evolution of the preconsolidation pressure p′0. However, the inclusion of plastic deviatoric
strains in the hardening law (D 6= 0) has an effect in the stress obliquity at failure (Lagioia and
Panteghini, 2014). In particular, critical state implies:

dεpp +Ddεpq = 0 (2.45)

and in contradiction with the Critical State theory failure occurs for a non-null dilatancy:

df =
dεpp
dεpq

= −D (2.46)

Using the flow rule of Eq. 2.41 the stress ratio at failure is related with the dilatancy at failure
after some derivations as:

ηf =
Dkg

2
+

√
D2k2g + 4M2

g

2
(2.47)

The latter equation indicates that the stress ratio at failure is larger than the one defined by the
Mg parameter when a combined hardening law is used. Moreover, the value of stress obliquity
depends on the chosen plastic potential through the parameter kg.

In order to eliminate the influence of D on the value of stress obliquity at failure, the D can
be a function of cumulative plastic deviatoric strains (Wilde, 1977). More particularly, it may
decrease exponentially with the increase of plastic deviatoric strains.

D = D0e
−D1ε

p
q (2.48)

so as at failure where the plastic shear strains are maximized (D → 0) the stress ratio to be
equal with Mg.

The D0 and D1 parameters indicate the initial value of D and the decrease rate related with
the cumulative plastic deviatoric strains respectively. Their values can be calibrated by the
parameter α which links the change of deviator stress with the change of mean effective stress:

α = −dp
′

dq
(2.49)

Then, the principle of effective stresses in incremental form yields:

du = dp+ αdq (2.50)
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Figure 2.3: Generation of pore pressure from changes in total and effective mean stresses
(adopted from Muir Wood (1990))

Extension to the Three-Dimensional Stress Space

In the previous sections, the yield surfaces and plastic potentials have been presented in the
triaxial stress space. For a generalized 3D state the p′ and q should be redefined. In addition,
the Mf,g now depends on the Lode angle θ. In the 3D stress space the following equations
apply:

p′ =
σ′x + σ′y + σ′z

3
=
I1
3

(2.51)

q =
√

3J2 (2.52)

θ = −1

3
sin−1

(3
√

3

2

det s

J3
2

)
(2.53)

where:

J2 =

√
1

2
sijsij (2.54)

J3 =
1

3
sijsjkski (2.55)

sij = σij −
I1
3
δij (2.56)

δij =

{
0 i 6= j
1 i = j

(2.57)

Hence, the expressions for the yield surface and plastic potential are modified as:

3J2
2 = −

M2
(f,g)θ

1− kf,g

(
I1

3p′0

) 2
kf,g

+
M2

(f,g)θ
I21

9(1− kf,g)
(2.58)

As far as the M(f,g)θ is concerned, its dependency with Lode angle θ determines the shape of
yield surface and plastic potential in the deviatoric plane. Amongst the various formulations
proposed by various researchers (Drucker and Prager, 1952; Matsuoka and Nakai, 1974; van
Eekelen, 1980; Sheng et al., 2000), the van Eekelen model is adopted in this Thesis.

More specifically, (see Dieudonné, 2016) the critical state line M(f,g)θ is written as:

M(f,g)θ = a(1 + b sin 3θ)n (2.59)
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where a, b and n are parameters. The parameter n is a constant related with the convexity
of the surface in the deviatoric plane and is equal to -0.229. a and b depend on the triaxial
compression and extension friction angles, φC and φE respectively and are equal to:

a =
rC

(1 + b)n
and b =

(
rC
rE

) 1
n − 1(

rC
rE

) 1
n + 1

(2.60)

where rC and rE are the reduced radii for axisymmetric triaxial stress paths of compression
and extension:

rC =
2 sinφC√

3(3− sinφC)
and rE =

2 sinφE√
3(3 + sinφE)

(2.61)

Figure 2.4: Limit surfaces for Mohr-Coulomb, Drucker-Prager and Van Eekelen criteria in the
deviatoric plane
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Chapter 3

Preliminary study with MCc model

3.1 General

The purpose of this chapter is to investigate at which extent a basic constitutive model, as
Modified Cam clay with associative or non-associative plasticity, is adequate to capture the
pre-failure behavior of peat as observed in standard laboratory procedures. The comparison is
done in terms of boundary value problem by simulating the real conditions during a triaxial tests
with FEM analysis. The validation of the FEM model follows and, finally numerical simulations
are presented in comparison with experimental results which demonstrate the limitations of
the used constitutive model and the urgency of adding the necessary ingredients, discussed in
Chapter 2, in the new constitutive model.

3.2 Finite Element Model

3.2.1 Constitutive Model of Soil

The preliminary analyses aim at investigating to which extent the use of Modified Cam clay with
an associated or non-associated flow rule can capture the peat behavior from triaxial tests. The
non-associated flow rule proposed by Ohmaki (1982) and later by Alonso et al. (1990) is used in
these preliminary analyses to allow sufficient flexibility of the model. The determination of the
parameters of this flow rule and its correlation with the parameters of the flow rule described
in Chapter 2 is provided later on this Thesis.

3.2.2 Soil Platen Interaction

Two types of boundary conditions were chosen to simulate the end platens used in triaxial tests.
Either there is a perfectly smooth contact where no friction is developed between the specimen
and end platens or a completely rough contact is employed where no sliding is allowed. The
first type of contact is modeled by fixing only the vertical degree of freedom and setting free
the horizontal degree of freedom of top and bottom boundaries of the sample. This type of
boundary condition is known as Roller Boundary Condition. The second type of contact is
modeled by introducing a stiffer element at bottom and top of the sample which will forbid due
to the developing friction the horizontal displacement of the bottom and of the top nodes of
the sample material and will not contribute to the vertical displacement of the sample due to
its comparatively high stiffness with the sample stiffness.
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3.2.3 Mesh Properties

2D axisymmetric analyses were run. The x-y plane of the triaxial specimen is discretized into
8-node biquadratic elements every 1 mm of soil sample with pore pressure as the third degree
of freedom. This element can be used also for modeling the large deformations of the soil
as it employs non-linear geometrical features. The y-axis in the one of symmetry for the soil
specimen. Depending on the simulated test (stress or strain control, compression or extension
tests), the top and the right boundary can be subjected to cell pressure or displacements. The
drainage from the bottom and top boundaries is allowed in the case of drained test. Figure
3.1 depicts the modelled sample geometry with the two types of contact and applied boundary
conditions. The rigid platens are 5 mm and are represented in the blue box in Figure 3.1.

Figure 3.1: Illustrated mesh for the rough and smooth contact type along with applied
boundary conditions and 8-node elements

The selected mesh discretization is determined after a series of preliminary analyses for de-
termining the mesh sensitivity. For this scope, rough end platens were simulated due to the
occurrence of non-uniform distribution of stresses and strains. The same mesh discretization is
chosen also for the smooth contact analyses for consistency reason as a uniform displacement
field does not present any space non-linearity so the results in the smooth contact are mesh in-
dependent. In the Figure 3.2 it can be seen that after 200 elements the results in terms of stress
path and deviatoric stress versus strain converge. Hence, the 1 mm discretization is adequate
enough to catch the space non linear phenomena undergoing in triaxial tests with rough end
platens. With the selected discretization, the analyses with rough ends and smooth ends take
8 min and 5 min long respectively.
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Figure 3.2: Stress path (left) and deviatoric vs strain (right) plots for different mesh
discretizations

3.2.4 Global Measures of Stress and Strain

To duplicate the procedure used to elaborate experimental data from triaxial tests, global
stresses and strains quantities are used. The global axial stress is computed by dividing the
reaction force obtained from the FEM at the top of the sample with 4 alternatives of cross area
corrections:

• Nominal diameter of the cap

• Equivalent right cylinder diameter

• Diameter at the 9/10 of height after the suggestion of Sheng et al. (1997)

• Average diameter of the nominal and equivalent right cylinder diameter

As far as the global radial stress is concerned, it is assumed to be equal to the applied cell
pressure as it is done in the laboratory (Sheng et al., 1997). Therefore, the global deviatoric
stress q and global mean effective stress p′ can be calculated as it is described in Chapter 2. The
global pore pressure is measured at the bottom boundary of the soil sample as it is traditionally
done in the laboratory where a pore pressure probe at mid height of the sample is not installed.
Another measurement is also taken at the mid height of the specimen and it is used later on
the Thesis. The reason for this is to be explained later. In drained tests, it is assured that the
load rate is significant low with respect to the permeability of the soil and, hence, the excess
pore water pressures is assumed to be negligible.

With respect to strains, the axial strain is traditionally calculated as the ratio between the
measured axial displacement and the initial height of the specimen, known as engineering or
infinitesimal strain. In this manner, significant errors are introduced when small strains hypoth-
esis is used in elaborating data from triaxial tests on peat due to large displacement attained
by peat samples. Hence, engineering strain is regarded as inadequate and unsuitable for these
problems. Another measure is introduced here which can account for the products of displace-
ment derivatives and be suitable for large deformation problems (Onaka, 2012), the natural
strain measurement or Hencky strain. In Figure 3.3 the difference between the engineering and
natural strain is illustrated. It is observed that for applied strains until 10% the two measure-
ments coincide and for larger strains the deviation increases and the engineering strain can no
longer give reliable results.
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Figure 3.3: Natural versus engineering strain for one-dimensional problem (adopted from
Praastrup et al. (1999))

To sum up, the global axial strain εE,Na is equal to the vertical movement of the top platen (u1)
divided by the initial height (E) or equal to the ratio of the current height and initial height
of the specimen and associated with the natural logarithm (N). The global radial strain εE,Nr

is equal to the average radial displacement (u3) divided by the initial radius (E) or equal to
the ratio of the current radius and the initial radius of the specimen and associated with the
natural logarithm (N). The average radial displacement is the difference in radii of the initial
cross-sectional area and the current cross-sectional area of the volumetrically equivalent right
cylinder. It is denoted that the symbol E refers to the engineering strains and N to natural
strains. In detail, the above mentioned are depicted below in a mathematical form:

εEa =
u1
ho

and εNa = − ln
ho − u1
ho

(3.1)

εEr =
u3
ro

and εNr = − ln
ro − u3
ro

(3.2)

3.3 Validation

In this Section, the validation of the numerical model is done. The model is tested in comparison
with the results from Sheng et al. (1997), where the end restraints effects on triaxial specimens
are studied. Strain controlled TxCU test is selected as a reference test. The soil refers to a
normal consolidated clay and its properties are given in the Table 3.1. The employed constitutive
model is the well known MCc with associated plasticity.

Table 3.1: Parameters of clay from Sheng et al. (1997)

λ κ ν′ Mg p′0(kPa) e0 OCR k(m/s)

0.2 0.02 0.36 1.2 120 2.5 1 2× 10−9
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In Figure 3.4, the response from the FEM analyses and the results reported in Sheng et al. (1997)
are displayed. The deviatoric stress of a rough test is calculated for both the 4 area corrections
from Section 3.2.4. In addition, the stress strain behavior of a smooth test is presented as
a comparison measurement for the 4 area corrections. The terms AGSM, EGSM and RGSM
from Sheng et al. (1997) correspond to the nominal diameter, equivalent cylinder diameter and
diameter at 9/10 of height respectively. It can be seen that stress strain responses with the
various area corrections and of the smooth test are in agreement with the reference paper. More
specifically, the correction with the nominal diameter overestimates the deviatoric stress, while
the correction with equivalent cylinder generates an artificial softening response which is not
related to the material behaviour but is implied due to the cross area correction. The average
diameter and the diameter at the 9/10 height of the specimen converges with the response from
the smooth test where the true material behavior is observed. Hence, one of the conclusion of
Sheng et al. (1997), namely the approximation of smooth tests with the diameter at the 9/10
height, is validated herein together with the observations for the other area corrections.

(a) Numerical predictions by
LAGAMINE

(b) Numerical predictions by
Sheng et al. (1997)

Figure 3.4: Deviatoric stress versus axial strain with different area corrections
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3.4 Analyses

At this point, the influence of end restraints on the stress-dilatancy rule is investigated. To this
end, drained radial stress paths with constant stress ratio q/p’ were simulated. The dilatancy
d is equal to the ratio of plastic volumetric increment dεpp and plastic deviatoric increment dεpq :

d =
dεpp
dεpq

According to the Critical State theory, dilatancy is infinite at zero stress ratio and becomes null
at critical stress ratio. With radial stress tests at different stress ratios, the dilatancy at this
stress ratio is obtained. Two series of radial tests are carried out, one using a simple MCc and
one using a non associated MCc, based on the flow rule by Ohmaki (1982) and Alonso et al.
(1990).

The simulated soil is a reconstituted peat with properties as follows: the initial void ratio
e = 10.4, the slope of the critical state line Mg = 1.75 in a p′ − q diagram (corresponding to
an internal friction angle φ = 42.6◦), the slope of the isotropic normal compression line λ = 2,
the slope of the isotropic unloading and reloading line κ = 0.2 and Poisson’s ratio ν ′ = 0.20.
With respect to hydraulic properties, pure mechanical analyses were run to replicate drained
conditions in the lab as non zero excess pore pressures due to a finite rate of strain were not
considered. The sample has a radius equal to 19 mm and a height of 76 mm.

Two types of boundaries are used, smooth contact boundaries and rough contacts. In the
smooth cases, the obtained stress dilatancy points should lie at the theoretical curves of the
implemented flow rules. In rough tests, the various area corrections diverge these points from the
theoretical curves. Each analysis have an isotropic loading from 1 kPa to 35 kPa, an unloading
path back 15 kPa, then a constant p′ stress path until the intended stress ratio, and finally a
constant stress ratio path until 100 kPa mean effective stress p′ as shown in Figure 3.5. There
are in total 5 stress ratios.

Figure 3.5: Stress histories in numerical simulations
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Herein, two aspects of the philosophy behind the analyses should be explained. First, the stress
ratios, which the specimen are subjected to, have been selected so as to be below and above
of the stress ratio at K0 conditions because different deformation mechanisms are observed in
each condition. For radial paths with η < ηK0 , the specimen is under lateral contraction and a
uniform deformation at the central portion of the sample is observed (Figure 3.6b). For radial
paths above K0, a bulging of the sample is observed, which results to lateral expansion, and
the central part does not show any uniform deformation (Figure 3.6c).

Figure 3.6: Contour plots of the axial strain: a) undeformed configuration; deformed
configuration for b) stress ratio η = 0.35 and c) η = 1.40

The second aspect to be examined, is related with the selected flow rule and its result to the
values of K0. It is well known that the MCc overestimates the K0 (Gens and Potts, 1988). The
stress ratio at K0 conditions, according to Equation 10.12 of Muir Wood (1990) and neglecting
the elastic strains, is equal to:

η2K0
+ 3η

λ− κ
λ
−M2

g = 0

ηK0 = 0.86

This value of ηK0 results to a K0 equal to:

K0 =
3− ηK0

3 + 2ηK0

K0 = 0.45

However, the tested material has a friction angle of φ′ equal to 42.5◦. According to Jaky’s
formula, K0 = 1 − sinφ′, the corresponding K0 value is 0.32, much lower than the prediction
from MCc. It should be noted that the applicability of Jaky’s equation for normally consolidated
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reconstituted peat has been experimentally verified by Muraro and Jommi (2018). Using Eq.
(2.41) one can chose a value of kg in such a way that zero lateral strains along a K0 path are
predicted and consequently giving the realistic value of K0. By neglecting the elastic strains,
and following the procedure outlined in equations 39-42 of Alonso et al. (1990), the kg is equal
to 0.98. Consequently, the stress ratio at K0 conditions is 1.2.

To sum up, firstly, the stress ratios selected here are below and above the realistic stress ratio
at K0 conditions, and secondly, the non associated flow rule predicts the realistic value of K0,
enhancing the capabilities of the model for predicting the pre-failure behavior of peat.

3.5 Results

Representative area correction

One way to select the representative area correction is to compare the stress-strain response
of rough numerical simulations computed with the 4 area corrections with the representative
material behavior from smooth tests. In Figure 3.7 this comparison is presented for two radial
paths at η = 0.35 and η = 1.40, respectively below and above the K0 stress ratio (ηK0 = 0.86
for the MCc). Figure 3.7 shows that a correction with a volumetrically equivalent right cylinder
overestimates the stresses for η < ηK0 , while good agreement with the material response is
achieved with the correction with average diameter for below K0 stress paths. Moreover, for
stress paths aboveK0, both the equivalent cylinder diameter and the average diameter match the
smooth stress-strain response in contrast with the findings from Sheng et al. (1997). However,
for consistency reasons the average diameter correction is considered as suitable for these stress
paths too. Hence, the results will be presenting by correcting the area with the average diameter
between the nominal area and the volumetrically equivalent cylinder.

Figure 3.7: Comparison between the deviatoric stress-axial strain response after the four
different cross sections corrections and the material response from smooth FE analysis for

η = 0.35 (left) and η = 1.40 (right)
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Associated flow rule

The stress dilatancy points for various stress ratios of rough tests are shown in Figure 3.8 along
with the theoretical curve which the associated model obeys. In addition, the Figure depicts the
obtained stress dilatancy points of numerical smooth tests which acts as a validating tool for
the numerical model. Finally, the graph reports experimental data from drained radial paths
performed on reconstituted peat samples from Muraro and Jommi (2018). There is significant
deviation between the numerical predictions and experimental results since the associated flow
rule predicts higher K0 value. Thus, peat does not obey to the stress-dilatancy rule predicted
by the MCc.

Non associated flow rule

By the same logic, Figure 3.9 presents the obtained stress dilatancy points for the non associated
flow rule. Since the generated shear stresses at the end platens reduce the radial contraction and
expansion of rough tests compared to smooth conditions, deviations from the theoretical curve
are expected. For radial paths below K0, higher deviatoric strain are expected at a specific
stress, while the opposite is noted in radial paths above K0. As a result, the dilatancy of
rough tests below the K0 is slightly underestimated, while for paths above the K0 is marginally
overestimated. Allowing the K0 to be predicted correctly, the sample behaviour from the
experimental tests is recovered for η < ηK0 . For radial paths above the K0 line, the numerical
results are below the experimental ones. For capturing the higher dilatancy at high stress ratios
close to critical state, the inclusion of deviatoric hardening in the constitutive model could
achieve this as it is shown in Eq. (2.46).

Figure 3.8: Stress-dilatancy relationship d - η for numerical and experimental results
compared to the input associated MCc law
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Figure 3.9: Stress-dilatancy relationship d - η for numerical and experimental results
compared to the input non associated MCc law

3.6 Conclusions

In this Chapter the methodology, with which the numerical triaxial tests are performed and
elaborated, is presented. The methodology includes the mesh of the finite element model, the
parameters of the tested material as well as the global measurement of strains and stresses.
After this, the validation of the finite element model is carried out against a benchmark TxCU
test. Finally, the effects of end restraints on the pre-failure behavior of peat are investigated
through means of stress dilatancy relationships. The stress dilatancy of rough tests obtained by
the elaboration with global measurements differs from the material flow rule. More specifically,
the numerical results for radial paths below K0 underpredicts the dilatancy, while the opposite
is observed for radial paths above K0. It was shown that by using a classical MCc model
the pre-failure response of peats cannot be captured. However, with using the friction angle
obtained from a smooth TxCU test and using the Jacky’s formula, a material flow rule fitted to
”true” K0 value can capture more than satisfactory the dilatancy of rough radial tests below K0.
For radial paths above K0, higher dilatancy is observed experimentally than in the numerical
simulation, and the necessity, from a modelling point of view, of adding the deviatoric hardening
in the constitutive model is, afterwards, highlighted.
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Chapter 4

Introduction of a volumetric and
distortional hardening law in critical
state model

4.1 Introduction

The aim of this chapter is to investigate at element level the influence of a volumetric and
distortional hardening law on the mechanical response of MCc on undrained and drained triaxial
tests for a high compressible soil as the peat investigated in Chapter 3. In Chapter 3, the
experimental results show the possibility for the tested peat to sustain stress ratio at failure
higher than the CSL. From a modelling point of view, this can be obtained by introducing a
mixed volumetric and distortional hardening law.

4.2 Deviatoric Hardening

Instead of the traditional hardening law implemented in MCc model, the following combined
hardening law is used.

dp′0 =
vp′0
λ− κ

(dεpp +Ddεpq) (4.1)

The D is a parameter which controls the amount of contribution of plastic deviatoric strain
increment dεpq in the evolution of the preconsolidation pressure p′0 (i.e. hardening variable). It
has been shown in Chapter 2 (see Eq. (2.46)) that the inclusion of deviatoric plastic strains
in the formulation of hardening law results in non-null dilatancy at failure. However, if the
coefficient D is assumed to be constant, the model response predicts a steady increase in the
shear strength for the material with a stress path diverging from the CSL. One way of avoiding
this problem is to assume that D can be a function of cumulative plastic deviatoric strains
(Wilde, 1977). More particularly, it may decrease exponentially with the increase of plastic
deviatoric strains.

D = D0e
−D1ε

p
q (4.2)

so as at failure where the plastic shear strains are maximized (D → 0) the stress ratio to be
equal with Mg.

The D0 and D1 parameters indicate the initial value of D and the decrease rate related with
the cumulative plastic deviatoric strains respectively. Considering undrained conditions, their
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values can be calibrated by the parameter α which links the change of deviator stress with the
change of mean effective stress (see Figure 2.3):

α = −dp
′

dq
(4.3)

The influence of D1 on the decrease of D is visualised in Figure 4.1, where the higher the D1

the faster the deviatoric plastic strains stop to contribute to the evolution of the yield surface
and the conditions of Critical State are met.

Figure 4.1: Influence of D1 on the reduction of D with respect to deviatoric strain εq

4.3 Investigation of the model

In this Section, the effect of the mixed hardening on the mechanical response of a Normally
Consolidated highly compressible peat during undrained and drained tests is examined in a
single element test. First, the effect of having constant D and afterwards, the effect of a
decaying D through an exponential law is investigated.

4.3.1 Undrained Tests

Constant D

Figure 4.2 shows the stress path in p′ − q space, along with the evolution of the two com-
ponents of the mechanical behavior, the deviatoric stress q and pore water pressure uw. For
better understanding and further insight on the model, the α parameter which is related to the
inclination of the stress path is also plotted.

Eq. (2.47) indicates that as D increases the stress obliquity at failure increases too. This can
be verified by the plots of deviatoric stress q and of stress paths. In Figure 4.2a the stress
paths are curved to the right for non null values of D. It is well known that the effective
stress path in undrained conditions is linked with the evolution of pore pressure. Including
the deviatoric plastic strains in the hardening law implies a transition between a contractive
response to a dilatant response as it can be observed on the pore pressure response which firstly
increases and then decreases. This behavior also is displayed to the plot of parameter α, where
at η = Mg = 1.75, α is nullified implying that the curvature of the stress path also changes.
Note that for D = 0 the model gives the same response as the MCc model with a traditional
volumetric hardening.
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(a) Stress path in p′ − q space (b) Deviatoric stress q versus
axial strain εa

(c) Pore water pressures uw
versus deviatoric strain εq

(d) Pore pressure parameter α
versus stress ratio η

Figure 4.2: Undrained tests for various values of D

(a) Plastic volumetric strain εpp versus deviatoric
strain εq

(b) Plastic deviatoric strain εpq versus deviatoric
strain εq

Figure 4.3: Evolution of plastic strains in undrained tests for various values of D
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For better understanding of the model, Figure 4.3 depicts the development of plastic volumetric
and deviatoric strains versus total deviatoric strains for various values of D. Under undrained
conditions the following equations apply and they are useful to be mentioned:

dεpp = −dεep = −dp
′

K
(4.4)

dεpq = dεq − dεeq = dεq −
dq

G
(4.5)

For D = 0 the behavior is contractive and reaches at critical state where no plastic volumetric
deformation occurs as the MCc predicts. However, as the D increases, the dp′ is not anymore
monotonic which results to an initial contraction while there is reduction of mean effective stress
p′ and to dilation as the increment of mean effective stress increases. The dilation is more intense
as the contribution of plastic deviatoric strains in the hardening law becomes more significant
because the increase of p′ is more profound for larger values of D.

With respect to plastic deviatoric strains, one should mention that the elastic deviatoric strains
εeq increase for larger increments of deviatoric stress q assuming a stable response with positive
increment of q (dq > 0). Based on Eq. (4.5), this results to lower plastic deviatoric strains.
Hence, the increase of D reduces the plastic deviatoric strains compared to the traditional MCc
model for the same amount of strain.

(a) Stress path in p′ − q space
(b) Deviatoric stress q versus

axial strain εa

(c) Pore water pressures uw
versus deviatoric strain εq

(d) Pore pressure parameter α
versus stress ratio η

Figure 4.4: Undrained tests for various values of D1

34



Chapter 4. Introduction of a volumetric and distortional hardening law in critical state model

Decaying D

The adoption of a constant D introduces in the model response a fictitious infinite shear strength
with a stress path overpassing the critical state line and steadily diverging from it. As a result
a steady strain hardening behavior is obtained. However, it is desirable to have a material
response which for large strain converge towards critical state again, thus, not showing a steady
increase in the shear strength. By introducing an exponential decay to D, critical states can be
achieved. This is observed in Figure 4.4, where for larger values of D1 the stress path returns
back to the critical state line more rapidly. This is indicated also in Figure 4.4d, where the
α finally bends towards lower stress ratios. With respect to deviatoric stress and pore water
pressures, the increase of D1 clearly leads to the residual values of q and uw, indicating that
critical state conditions have been met. Especially for the pore water pressures, after the peak,
observed already with constant D, the softening of pore pressures (e.g dilation) is not infinite
and the asymptotic value is reached showing that no volumetric deformation occurs (Critical
State).

4.3.2 Drained Tests

Up to here, the model was tested under undrained triaxial conditions, and the results can be
justified. Herein, the influence of deviatoric hardening in the drained tests is examined.

Due to the high compressibility of the tested material, it is difficult to bring it to failure under
drained conditions. More specifically, Figure 4.5 presents a drained compression test for a high
compressible material simulated with MCc. It is observed that failure has not been achieved
even for strains approximately equal to 60%. The above consideration has been reported also
by Zhang and O’Kelly (2014), where the authors mention that deviatoric stress continued to
increase approximately linearly with axial strain even for a peat specimen without fibers. Given
the above considerations, it was selected to reduce the compressibility of the soil in order to
test the deviatoric hardening under drained conditions in a MCc model.

(a) Stress path in p′ − q space (b) Volumetric strain ε versus deviatoric strain εq

Figure 4.5: Drained test with MCc model for a highly compressible material

Figure 4.6 presents the response in drained conditions for D = 0, D = 0.35, D0 = 0.35, D1 = 3
and D0 = 0.35, D1 = 9. With using a constant non-null value of D the stress path overpasses
the Critical State Line (CSL), having a continuous increase of deviatoric stress q, resulting to
a ficticious predicted strength. In terms of volumetric response, typical dilative behavior is
observed. While decaying of D is considered, the stress path overpassing of CSL is reduced for
higher values of D1. Looking at deviatoric stress q response, with increasing values of D1, a
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diminishing peak is observed followed by a softening behavior until the critical state is reached.
In terms of volumetric strain, the increase of D1 results into a reduction in the predicted dilation,
and critical state conditions are met for lower values of strain.

It has been noted that the inclusion of deviatoric plastic strains in the hardening law has the
same qualitative effect on drained and undrained tests, leading to higher stress obliquity thanMg

and to dilative behavior. When the contribution of the deviatoric plastic strains is dependent
on the strain level critical state conditions can be achieved, eliminating the disadvantage of
continuous dilation observed with a constant value of D. However, a difference between the
drained and undrained tests arises and it is related to the amount of plastic deviatoric strains
exhibited in each test conditions. Looking at Figures 4.6d and 4.3b, it is seen that in undrained
condition the generated deviatoric strains are lower for the same amount of strain.

(a) Stress path in p′ − q space
(b) Deviatoric stress q versus

axial strain εa

(c) Volumetric strain εv versus
deviatoric strain εq

(d) Plastic deviatoric strain εpq
versus deviatoric strain εq

Figure 4.6: Drained tests for constant and decaying D
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4.3.3 Conclusions

In summary, an extension of MCc has been presented by assuming that deviatoric plastic strains
also contribute to the hardening process. Two parameters are introduced D0 and D1. By setting
D0 = 0, the MCc model is retrieved.

It has been found that the deviatoric contribution to the soil hardening change profoundly the
performance of the new model. In particular, higher stress obliquity and continuous dilation
is observed for higher values of D0. By keeping the D1 null, the critical state is not reached,
because the size of yield surface is dependent on both the plastic volumetric and deviatoric
strain increments, and the latter is not zero at critical state. By increasing the D1, critical state
is asymptotically reached.
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Chapter 5

Main FEM Analyses

5.1 Introduction

The new model has been implemented into the finite element programme LAGAMINE in order
to simulate boundary value problems. The model formulation along with the implementation
is first described in this Chapter and, afterwards, the model performance is discussed.

5.2 Model description in LAGAMINE

5.2.1 Formulation

Analytical description of the model has been given in Chapter 2. Herein, a brief summary of
the 4 ingredients of the model, based on MCc framework, is given.

Elasticity

In the elastic domain non-linear elasticity is used:

dσ′ = Ddε (5.1)

where D is given by Eq. (2.2), and K and G by Eq. (2.19) and (2.20) respectively.

Yield surface

Generalized shapes of yield surface adopted by McDowell and Hau (2004) are used in this model:

q2 = −
M2
f

1− kf

(
p′

p′0

) 2
kf
p′20 +

M2
f p
′2

1− kf
(5.2)

where Mf intersect the yield locus at the apex, kf controls the shape of the yield surface, p0
is the preconsolidation pressure controlling the size of yield surface. In addition, there is the
option of extending the model to 3D stress state by introducing the Mf to be dependent on the
Lode angle through Van Eekelen equation, as it is described in Chapter 2.

Flow rule

The flow rule in this model is given by:

dεpp
dεpq

=
M2
g − η2

kgη
(5.3)
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where kg controls the shape of the plastic potential (see Chapter 2). For kg = 2 the MCc plastic
potential is retrieved.

Hardening law

The hardening law is a mixed hardening law, already described in previous Chapter.

5.2.2 Implementation

The integration of constitutive equations is based on the cutting plane algorithm, proposed by
Ortiz and Simo (1986) and modified by Dieudonné (2016). Two consecutive steps are involved
in this procedure:

• The stress path is assumed to be elastic and an elastic predictor σe is computed. The
yield criterion is evaluated at this state. If the stress lies inside the elastic domain, the
final state is elastic and equal to the trial stress.

• If the elastic trial stress is violating the yield criterion, a plastic return mapping, called
plastic corrector is computed to return the stress state onto the yield surface. In the
cutting plane algorithm, an iterative procedure is used to restore the consistency of the
mechanical state. At each iteration, the incremental constitutive equations are integrated
using an explicit forward Euler scheme.

Figure 5.1: Geometric interpretation of the cutting plane algorithm for the case of associative
plasticity (retrieved by Dieudonné (2016))

More specifically, the LAGAMINE gives as input the total strain field in the integration routine.
Based on this strain increment dε the elastic predictor σe is found:

σ(k+1)
e = σ

(k)
A + Ddε (5.4)

If the yield criterion is violated, the cutting plane algorithm with forward substepping deter-
mines the up-dated stress state σB as:

σ
(k+1)
B = σkB + dσp(k+1) (5.5)

where dσp(k+1) is the plastic stress increment. The first elastic predictor is used as starting
point of the iterative process. The plastic stress increment is computed according to:

dσp(k+1) = −D(σkB)dεp(k+1) (5.6)

where dεp(k+1) is the plastic strain increment at iteration k + 1, whose value is given by:

dεp(k+1) = dλ
∂g

∂σ
(k+1)
e

(5.7)
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with dλ, the plastic multiplier increment and g the flow surface related to the yield surface f .
At every iteration, the yield criterion f is linearised around the current values of trial stresses
and state variables, in order to compute the plastic multiplier increment:

f
(k+1)
B = f(σ(k+1)

e + dσp(k+1), κ(k+1)
e + dκ(k+1)) (5.8)

= f(σ(k+1)
e , κ(k+1)

e ) +
∂f

∂σ
(k+1)
e

dσp(k+1) +
∂f

∂κ
(k+1)
e

dκ(k+1) (5.9)

with

dκ(k+1) =
dκ

dεp(k+1)
dεp(k+1) = dλ

dκ

dεp(k+1)

dg

dσ
(k+1)
e

(5.10)

Finally, by dictating the consistency equation f
(k+1)
B and using Eq. (5.6), the increment of

plastic multiplier is calculated:

dλ =
f(σ(k+1)

e , κ(k+1)
e )

∂f

∂σ
(k+1)
e

·D · ∂g

∂σ
(k)
e

− ∂f

∂κ
(k+1)
e

dκ

dεp(k+1)

∂g

∂σ
(k+1)
e

(5.11)

5.3 Verification

The verification of the implemented model in Lagamine is done in this Section with respect to
the Single Element Code. The capabilities of the new implemented model are firstly verified for
undrained and drained triaxial compression tests with respect to the single element code used
in Chapter 4. The Single Element Code uses the explicit Runge-Kutta-Dormand-Prince scheme
proposed by Sloan et al. (2001), while the code inside LAGAMINE is an implicit algorithm with
explicit sub-stepping at the level of the constitutive model.

In Figure 5.2, the comparison between the two codes for different values of deviatoric hardening
parameters is presented. It is observed that the responses of the two codes perfectly match.

Figure 5.2: Undrained stress path and deviatoric stress vs strain with deviatoric hardening
between LAGAMINE and Single Element Code
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Figure 5.3: Undrained stress path and deviatoric stress vs strain for different flow rules
between LAGAMINE and Single Element Code

Figure 5.3 depicts the response of the two codes for a MCc model (only volumetric hardening)
with different implemented flow rules. The results from the two codes are in good agreement.
Explaining the deviatoric strain response, it is useful to refer to Figure 2.2a, where different
shapes of plastic potential surfaces are plotted. When the plastic potential surface is skewed
to the right (small kg), the direction of the plastic strains in an undrained stress path of a
normally consolidated material is orientated towards the plastic volumetric strains, so the plastic
volumetric strains evolve more quickly. As a result the hardening of the yield surface is more
intense and higher stress ratios are achieved. Hence, the response is stiffer for lower values of
kg.

In addition, the stress paths of Figure 5.3 are identical, despite the different used flow rules.
This is justified by the fact that plastic and elastic volumetric strains in an undrained path are
canceled out which forces a link between changes in mean effective stress p′ and preconsolidation
pressure p′0 controlling the size of the yield surface (Muir Wood, 1990). Thus, the geometry of
the yield surface in an undrained path determines the stress path, and not the shape of the flow
rule.

5.4 Calibration of the Model

The proposed model has in total 10 parameters. These are the initial void ratio e, the slope of
the isotropic normal compression line λ, the slope of the isotropic unloading and reloading line
κ, the Poisson’s ratio ν ′, the Mf , Mg, kf , kg and the hardening parameters D0 and D1. The
first 4 are easily obtained and they are the same for every critical state model. If the maximum
flexibility provided by the equations of yield surface and plastic potential is desired, one can
choose different values for Mf and Mg. If associated plasticity is demanded, then Mf = Mg

and kf = kg. However, an explanation for the general determination of the parameters is given
below.

The parameters Mf , Mg, kf and kg can be determined by conventional drained tests (McDowell
and Hau, 2004). By performing multiple radial stress paths, the yield points along these stress
paths can be found. Then, the stress ratio Mf corresponding to the peak value of p/p′0 can be
found, and a suitable value of kf can be determined. This is depicted in Figure 5.4.
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Figure 5.4: Determination of yield surface parameters Mf and kf

The way of determination of the parameters of plastic potential has been discussed in Chapter
3. By performing smooth TxCU tests the friction angle can be obtained which is related to Mg,
and by using the Jacky’s formula, a value for kg can be selected in order a ”true” K0 value to be
predicted. However, the selection of kg is not only based on the correct estimation of K0, but
also on the fitting of the diagram of plastic strain increment vector versus stress ratio (Figure
5.5).

Figure 5.5: Determination of plastic potential parameter kg

As far as the deviatoric hardening parameters are concerned, their determination is not so
straightforward. In order to propose a way of calibrating these parameters, a reflection on basic
equations should be done. In an undrained test, the elastic and plastic volumetric strain are
canceled out and by using Eq. (2.18) and (2.38a), it is retrieved that:

κ
dp′

vp′
= −λ− κ

vp′0
(5.12)

Rewriting the mixed hardening law in terms of dεpp and using Eq. (5.12) it yields:

dεpp =
λ− κ
v

dp′0
p′0
−Ddεpq (5.13)

κ
dp′

p′
= −(λ− κ)

dp′0
p′0

+ vDdεpq (5.14)
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Recalling that the slope of undrained path is given by α = −dp′

dq the Eq. (5.14) becomes:

α
dq

p′
=
λ− κ
κ

dp′0
p′0
− vD

κ
dεpq (5.15)

Regarding the latter equation, the first and second part of the right-hand side of equation are
always positive as expansion of yield function occurs and positive deviatoric strains develop
during contraction. A stable deviatoric response is also considered, so dq > 0. Consequently, in
the contraction domain, α firstly increases due to the initially minimal deviatoric strains and
then decreases due to the deviatoric hardening component. The ratio D

κ controls the decrease
of α. By fitting single element analyses to the experimental values of α a combination of
parameters D0 and D1 can be found.

Figure 5.6: Visualization of determining of hardening parameters D0 and D1

5.5 TxCU tests

As demonstrated in Chapter 3, end restraints affect the observed behaviour from standard
triaxial tests with rough end platens, so the single element analyses from Chapter 4 are not able
to fully capture the observed soil response. Herein, TxCU tests are simulated as a boundary
value problem in order to take into account the effects induced by the presence of rough platens.

The Table 5.1 presents the TxCU tests done experimentally, the corresponding numerical tests,
as well as the height to diameter ratio, initial and boundary conditions of each test. There
are in total 5 tests, 4 with rough end platens and 1 with smooth end platens. The height to
diameter ratio ranges from 1.5 to 3 for P1-P4 and for P5 it is equal to 1.5, test in which end
restraint is minimized and the true material behavior can be revealed without any boundary
effect. It should be noted that the tests with the lower height to diameter ratio and rough
boundaries are predominantly influenced by the end restraints. In addition, the strain rate was
kept constant in order to replicate the experimental data by varying the displacement rate of
each Test. Finally, the isotropic consolidation on which they specimens were subjected was not
modelled in this Thesis.
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Table 5.1: TxCU Tests

Test Numerical H0/D0 Boundary p′0(kPa) e0 OCR Strain rate

15 P1 1.5 Rough 34 7.5 1 0.02%

16 P2 2.0 Rough 34 7.5 1 0.02%

17 P3 2.5 Rough 34 7.5 1 0.02%

18 P4 3.0 Rough 34 7.5 1 0.02%

20 P5 1.5 Smooth 34 7.5 1 0.02%

Before proceeding, a sensitivity analysis on the time step size has been performed. Figure 5.7
presents the obtained stress path and deviatoric stress strain response for 3 different time steps.
It is shown that for dt = 270s there is no significant deviation with the previous time step size.
Thus, dt = 270s is used as time step in the analyses of this Chapter. Concerning the mesh
discretization, the same discretization as in Chapter 3 is considered.

Figure 5.7: Sensitivity analysis on the time step size

5.5.1 Calibrated parameters from the smooth test

This series of analyses aims to examine whether with the calibrated parameters from the smooth
test it is possible to capture the response of rough tests by simulating them as boundary value
problems. The Table 5.3 presents the set of parameters for each analysis. The critical stress
ratio Mg = 1.75 corresponds to a friction angle of φ′ = 42.6◦, the obtained friction angle at
failure for the smooth case. In addition, the yield locus parameters, the other plastic potential
parameter and the hardening parameters remain the same for all the test conditions. The
compressibility index, the unloading reloading compression index and the poisson ratio remain
constant throughout the Thesis.

Table 5.2: Parameters of tested material based on Test 20

λ κ ν′ Mf kf Mg kg D0 D1 k(m/s)

2 0.3 0.2 1.5 3 1.75 15 1.2 12 10−9

In Figure 5.19, the normalised stress paths by p′0 which is the mean effective stress at the
beginning of shear, the excess pore pressure development with the deviatoric strain and stress-
strain development of numerical simulations are presented in comparison with the corresponding
experimental curves. It should be noted that the presented numerical results are obtained with
correcting stresses with the average diameter between the diameter of the nominal area and of
the equivalent cylinder as demonstrated in Chapter 3.

It is clearly observed that the P5 test is in a good agreement with its corresponding experimental
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test for all the diagrams, as it was expected. For the rough tests, concerning the stress path,
there is an obvious distinction between the P1-P4 tests and the P5 test, but there is, clearly,
a divergence with the experimental results. Only for the P4 test one can say that it is in well
agreement with Test 18, as due to its large height to diameter ratio the end restraints effects
are minimized and this test can resemble to a smooth test.

In order to have a further insight to the stress paths, the diagrams of excess pore pressures
and of deviatoric stress are presented. It is seen that the numerical code can capture the initial
experimental response of the pore pressure and of the deviatoric stress. However, the final
portion of both the excess pore pressure and deviatoric stress deviates from the experimental
observations. Though, the constrained lateral displacement of top and bottom end platens leads
to higher excess pore pressures and deviatoric stress. Only the former is captured numerically,
as the excess pore pressures of the rough tests are overpredicted in comparison with those of
the smooth test without someone can observe a distinct trend between the rough tests. The
predicted deviatoric stress of the P1-P4 tests is not in good agreement with the experiments,
as it is roughly the same with the one from the P5 test.

(a) Normalised effective stress path

(b) Normalised excess pore pressure vs
deviatoric strain

(c) Normalised deviatoric stress-strain

Figure 5.8: Results with parameters from smooth test calibration
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To sum up, with this set of parameters, the numerical code can capture the difference between
the rough tests and smooth test only in terms of excess pore pressure. However, the model is
not capable to capture the influence of height to diameter ratio on both the deviatoric stress
and excess pore pressure as these are observed experimentally.

5.5.2 Different parameters for each rough tests

Since using the same parameters from the smooth test P5 for all the tests was ineffective of
capturing the experimental curves of tests affected by the end restraints, a possible solution
would be to change the input parameters of Tests P1-P4. Since reaching to higher stress ratio
with decreasing height to diameter ratio is demanded, the only changing parameters between
the various tests could be the hardening parameter D1 which controls the decrease of the
contribution of the plastic deviatoric strains on the evolution of preconsolidation pressure or even
D0. However, herein, the intention is to replicate the material behaviour of samples with rough
ends with the minimum changing of the parameters from the smooth test as much as possible.
Hence, changing the friction angle for the rough tests is out of the scope of these analyses,
because the friction angle of the material is an inherent material parameter and the higher
observed friction angles in the laboratory conditions is due to the presence of end restraints.
By changing D1, it is implicitly considered that the boundary affects a model parameter, which
constitutes a limitation of the model in its current stage. However, it seems that there could be
a connection between end restraint effects and the dimensions of the fibers with the distortional
hardening.

To give a better understanding on changing D1, higher values of D1 lead to a more rapid
decrease of D and hence, to lower stress obliquity in critical state. Shorter tests are influenced
more by end restraints, and the attempt to model the peat behavior with the distortional
hardening should take into account the interaction between fibers and geometry of the sample.
Consequently, this can be incorporated by using smaller values of D1 in an intuitive, at this
stage, manner. In addition, the D1 is aimed to keep as much more closely to the reference value
of smooth test. The Table 5.3 summarizes the input parameters of these analyses and Figure
5.9 shows the trend of D1 with respect to the height to diameter ratio.

(a) D1 correlation with the H/D of the
specimens

(b) Corresponding decay of the distortional
hardening coefficient D with the cumulative

deviatoric plastic strain εpq

Figure 5.9: D1 parameter for this set of analyses
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Table 5.3: Parameters of tested material

Numerical Test λ κ ν′ Mf kf Mg kg D0 D1 k(m/s)

P1 2 0.3 0.2 1.5 3 1.75 15 1.2 8 10−9

P2 2 0.3 0.2 1.5 3 1.75 15 1.2 9 10−9

P3 2 0.3 0.2 1.5 3 1.75 15 1.2 10 10−9

P4 2 0.3 0.2 1.5 3 1.75 15 1.2 11 10−9

P5 2 0.3 0.2 1.5 3 1.75 15 1.2 12 10−9

By observing the stress paths of Figure 5.10a, there is now a clear distinction between the
stress paths of the rough tests and the influence of height to diameter ratio on the numerical
results is noticeable. As far as the convergence with the experimental data is concerned, the
final part is not caught. This also can be seen by analysing the stress path into the volumetric
part and the deviatoric part by Figure 5.10b and 5.10c respectively. The deviatoric part is
well captured, while the volumetric part is captured initially, but there is a deviation on high
strain levels. More specifically, the initial build up of pore pressures is in good agreement with
the experimental data. Though, the peak values of pore pressures are caught only for the
Tests P3 and P4. After this observed peak value, a softening behavior follows leading to lower
values compared with the experimental results at the final state of the analyses. This softening
behavior is not observed experimentally. Thus, based on these observations, the stress path
deviation at high stress ratios is related with softening of pore water pressures at high strain
levels.

(a) Normalised effective stress path

(b) Normalised excess pore pressure vs
deviatoric strain

(c) Normalised deviatoric stress-strain

Figure 5.10: Results with D1 varying
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5.5.3 Investigation on the effect of Lode angle

It is well known that experiments with rough end platens do not deform uniformly and the
3D stress state deviates from the axisymmetric points in the deviatoric plane (compression or
extension points) due to the development of shear stress along the specimen. In Figure 5.12,
the distribution of lode angle at the final state of the analysis is presented. It is seen that the
central part of the soil is under compression and it carries the axial load, as the Lode angle is
equal to 30◦. The outer part dilates and then, the Lode angle decreases and deviates from the
axisymmetric stress state.

The deviation from the axisymmetric stress state for some elements implies that the strength of
the material is not the maximum. In addition, this reduction of stresses means that the material
becomes less stiffer and more displacements are allowed. The above are verified in Figure 5.14,
where smaller deviatoric stresses are predicted and lower pore pressures are observed as the
larger lateral allowable expansion leads to larger potential dilation which results to a maximum
potential pore pressure reduction.

(a) Normalised effective stress path

(b) Normalised excess pore pressure vs
deviatoric strain

(c) Normalised deviatoric stress-strain

Figure 5.11: Results with Van Eekelen in deviatoric plane
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Figure 5.12: Lode angle distribution for P1 test (positive compression, negative extension)

5.5.4 Discussion

Herein, a discussion about the capabilities and limitations of the proposed model concerning
the capturing of undrained behavior of peat under triaxial conditions with end restraint effects
is done. The mechanical response of peat can be divided into the volumetric behavior and
deviatoric behavior. The former has been proved that it can be captured in a satisfactory
manner, while the latter can be only in some qualitative agreement with the experimental
results. More specifically, with the suitable selection of parameters for the various rough tests,
the deviatoric stress is reproduced well, while the pore pressure generation is underestimated
for the shorter tests. In addition, a softening in the pore water measurements is observed which
is not found in the experimental results.

In order to have a further insight on the developing mechanisms undergoing a TxCU test, the
isolines of excess pore pressures for the Test P1 at 4 strain levels, which are shown in Figure
5.13, are depicted in Figure 5.14. By looking the distribution of excess pore pressures at 5%
axial strain, the water is drained from bottom and top towards the mid where the pressures are
lower. At higher strains, the pore pressures distribution stops to be horizontally stratified, and
the isolines start to shift their direction, from horizontally to vertically. During this alternation,
the outer elements start to dilate while the elements at the center start to compress. At the
final state, the final deformation mode of a typical rough test can be depicted where bulging
has been occurred. Then, the elements at the perimeter of the specimen dilate and the center
elements carry the axial load.

Figure 5.13: Development of excess pore pressure at bottom for P1 Test
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The alternation of isolines direction is crucial for explaining the pore pressure softening. In
more detail, the pore pressures in the mid, which are lower in general than in the edges, start
to influence gradually the pore pressures at the boundaries as the axial strain increases. Hence,
the pore pressures at bottom for higher strains decrease due to the radial expansion of middle
part and the consequent pressure relief on this part of the specimen, which is transmitted to
the boundaries.

(a) Axial strain=5% (b) Axial strain=15%

(c) Axial strain=25% (d) Axial strain=40%

Figure 5.14: Isolines of excess pore pressures for different strain levels depicted at deformed
mesh for Test P1 (absolute pressure in Pa)

This softening of pore pressures at high strains is immediately related with the deformation
mode. Figure 5.15 shows schematically the formation of dead zones and the free failure zone
between them for a tall and short test. In the short tests, the free failure zone is smaller in
volume as the dead zones imposed by the end restraints play a more significant role. The above
is also depicted in Figure 5.16 where the excess pore pressures for Test P1-P4 are presented.
The dead zones of Tests P1 and P2 are more profound than of Tests P3 and P4 and the gradient
of pore pressures at the central part of the specimen is intense in the radial direction in contrast
with the Tests P3 and P4 where a more uniform distribution at the central part along the
radial direction is observed. Thus, the softening of pore pressures is more intense in these tests,
because the pore pressures at mid are transferred more rapidly at the boundaries due to the
influence of the boundaries at the central part of the specimens.
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Figure 5.15: Schematic formation of dead zones inside a tall and a short specimen

(a) Test P1
(b) Test P2

(c) Test P3 (d) Test P4

Figure 5.16: Isolines of excess pore pressures at final state depicted at deformed mesh for
different rough tests (absolute pressure in Pa)
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Investigation on the effect of permeability

The permeability and void ratio have been determined in the lab with an oedometer apparatus,
equipped with a pore pressure transducer. The void ratio attained by the samples during shear
ranged between 6.5 and 7.5, and the corresponding permeability ranges from 10−9 to 10−10m/s.
In the following paragraph, the numerical analyses were repeated by fixing a hydraulic perme-
ability of 10−10m/s. As previously mentioned this value can be considered a lower bound for
the measured hydraulic conductivity in the laboratory. It is worth mentioning that the previous
isotropic consolidation up to 35 kPa of mean effective stress was not modelled in the numerical
analyses which may have contributed in generating non-uniform void ratio distribution within
the sample before shearing.

The parameters used in the series from Section 5.5.2 remain the same, except for the permeabil-
ity which is decreased to k = 10−10m/s. The aim of this series of analyses was to adequately
capture the final part of the stress path, as it was assumed that the observed deviation comes
from the underprediction of pore water pressures at high strain levels.

(a) Normalised effective stress path

(b) Normalised excess pore pressure vs
deviatoric strain

(c) Normalised deviatoric stress-strain

Figure 5.17: Results with lower permeability
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Herein, for the P1 and P2 tests there is better agreement in these strain levels, while for the taller
tests the pore pressures are overpredicted, as the confining pressure induced by the dead zone
formation is less significant. Hence, by taking into account the softening behavior too, the final
part of stress path is better captured in overall. However, due to the lower permeability from
the beginning of the analysis, the initial pore water pressure build up is slightly overpredicted
and the stress path, as a result, is shifted to the left and the initial convergence with the
experimental results is lost.

Furthermore, the pore pressure at free failure zone for the rough tests is found to be equal to the
pore pressures of Test 20, which is a smooth test. In the smooth test, it is considered that the
true material behavior is observed. Thus, in the middle part, where the effect of the boundaries
is minimized, the behavior is expected to be closer to the true material behavior. This can be
observed, for instance, in Figure 5.18, where for the P1 Test the pore pressure measurement at
mid is in a good agreement with the pore pressures from Test 20. The difference between top
and mid are small like 3 kPa, but the effects at such a low effective confining stress used in peat
tests in the lab are reflected in large overestimation in the mobilized friction angle if the pore
pressure at the bottom is used.

Figure 5.18: Measurements of pore pressures at bottom and mid for Test P1

Necked deformation mode

For short specimens tested with rough end platens, the deformed shape suggest a big constraint
at the extremities of the sample and the lateral expansion was mainly localized in the central
portion. By comparing the deformed geometries in Figure 5.19a it is observed that the results
of end restraints are not captured from the adopted FEM. Contributing factor to this can also
be the restraint offered by the assemblage of membrane and O-ring which is not modelled in
the Thesis. This can be roughly modelled by constraining the lateral movement of some nodes
at the right boundary of the mesh (Figure 5.19a) while the input parameters of the analyses
are kept constant as in Section 5.5.2.

In order to better approximate the deformed shape from the experimental tests, constraining the
lateral displacement of nodes relating with 3 mm at the bottom and top of the right boundary
of the specimen is done. Through this way, lateral expansion of the sample at the top and
bottom is prevented replicating what observed in the laboratory test (see 5.19). Consequently,
the specimen is under higher confining pressure having as a result an increase in the pore
pressures and the softening of pore pressures to be reduced. The results of these analyses can
be depicted in Figure 5.20 where the same comments with the analyses of lower permeability
can be attributed to the development of pore pressures and its consequences to the stress path.
Similarly, the deviatoric stress is not influenced by this alternation.
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(a) Deformed mesh of Test P1 with lateral
constrained nodes

(b) Deformed sample at the laboratory

Figure 5.19: Test 15

(a) Normalised effective stress path

(b) Normalised excess pore pressure vs
deviatoric strain

(c) Normalised deviatoric stress-strain

Figure 5.20: Results with horizontal constraints
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Until now, the developed constitutive model gives reasonable results with respect to the exper-
imental observations of the tested peat. However, it is well known that the peat formations
have a large amount of fibers. The proposed constitutive model can only be used for predicting
the behavior of the matrix of the peat. Hence, some deviations between the experimental and
numerical results can be attributed to this. More specifically, the fibers constraint the lateral
expansion of the soil and thus affect both the excess pore pressure and the deviatoric stress.
This reduction of lateral expansion may lead to decreasing the softening of the pore pressures
in the numerical predictions if the fibers were included in the constitutive model.

The experimental results suggest the presence of a scale effect when the sample height is in-
creased. However, the numerical results were not able to capture this scale effect. Possible
numerical approach as second gradient may be suitable to introduce a characteristic length
in the problem. Again the small fibers network present in the tested peat may define the
characteristic length.

5.6 TxCD tests

Herein, the proposed model is tested against TxCD tests. The available experimental tests are 3,
all with rough boundaries and height to diameter ratio H/D equal to 2. The 3 tests examine the
response of the fibrous peat in various stress paths, p′ and η constant and unloading/reloading.
In these stress control drained tests, the soil material has a preconsolidation pressure around
p′c = 35 kPa. A difference between the TxCU and TxCD tests lies in the flow rule used in this
series, as the kg is equal to 0.98, the value obtained by the analyses in Chapter 3. Another
difference between the drained and undrained tests is the different valued of D1, which after
some preliminary calibrating analyses on Test T4, it is decided to be equal to 30. All the other
parameters have been kept the same. Table 5.4 summarizes the input parameters of these FEM
analyses. Finally, the numerical analyses did not account for the development of excess pore
pressure assuming the tests being perfectly drained (purely mechanical analyses).

Table 5.4: Parameters of tested material for drained analyses

Numerical Test λ κ ν′ Mf kf Mg kg D0 D1 p′0 e0
N4 2 0.3 0.2 1.5 3 1.75 0.98 1.2 30 32 7

N6 2 0.3 0.2 1.5 3 1.75 0.98 1.2 30 32 7.8

N34 2 0.3 0.2 1.5 3 1.75 0.98 1.2 30 38 8

Regarding the stress controlled tests, an initial constant p′ stress path until the intersection of
the yield surface is performed in Test T4, followed up by a constant η, and finally a constant p′

stress path which goes above the critical state line due to the end restraint formation enhancing
the strength of the sample. In the Test T6, there is an intermediate unloading and reloading
stress path before the final constant p′ stress path. Finally, for the Test T34, a constant p′ path
is followed up by a radial stress path along K0-line.

In Figure 5.21a, the stress paths of the numerical and experimental tests are depicted along
with their initial yield surface. It is seen that the numerical predictions of the stress paths are
in a good agreement until they reach the Critical State Line. After this point, the code fails
to predict the post-failure stresses. The use of a mixed volumetric and distortional hardening
allows the numerical stress path to reach to higher stress ratios than the one in critical state
but still well below the experimental ones.

The numerical results for the case of Test 34 are in a good qualitative and quantitative agreement
with the experimental results for both the volumetric and deviatoric response (Figures 5.21b,
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5.21c and 5.21d). On the other hand, the qualitative response remains good for Tests 4 and 6,
but this cannot be said for the quantitative response especially for the deviatoric part of the
mechanical behavior. The numerical results are not able to capture the observed response with
deviatoric stress overpassing the critical state line and a softer behavior is predicted.

(a) Stress path

(b) Volumetric strain εv versus
mean effective stress p′

(c) Volumetric strain εv versus
axial strain εa

(d) Deviatoric stress q versus
axial strain εa

Figure 5.21: Plots for Tests T4 (left), T6 (center) and T34 (right)
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Discussion

To better understand the capabilities and limitations of the proposed model outlined during
a TxCD test, it is useful to look into the Test T4. In Figure 5.22, the contour plots of axial
strain at different strain levels for the specimen T4 are presented. With respect to end restraint
phenomenon, it is clearly seen that wedges start to be formed from axial strain εa = 1%. The
wedges are fully developed at failure (Figure 5.22d), where bulging at the outer part of the
specimen is observed, whereas the central part is of the specimen is compressed and carries the
load.

(a) εa = 1% (b) εa = 5%

(c) εa = 15% (d) εa = 30%

Figure 5.22: Isolines of axial strain in deformed mesh at 4 different strain levels

It is worth mentioning that the behavior at the beginning is elastic, as the stress path lies inside
the initial yield surface (5.21a) and a radial expansion is predicted. After the elastic radial
expansion, the specimen until 15% of strain is under radial contraction and then again starts to
expand and finally, the typical bulged specimen is observed. For explaining this behavior, the
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dilatancy should be formulated in terms of incremental axial and radial strains:

d =
dεpp
dεpq

=
dεpa + 2dεpr
2
3(dεpa − dεpr)

(5.16)

Solving in terms of incremental axial and radial strains, and expressing the dilatancy by the
flow rule proposed by McDowell and Hau (2004), the ratio of incremental axial strains over
radial strains yields

dεpa
dεpr

= −2d+ 6

3− 2d
(5.17)

where d =
M2
g − η2

0.98η

The 4 snapshots of the deformed mesh of the specimen are shown with bullets in Figure 5.23.
In order to explain the deformation mode of the specimen, it should be taken into account that
the strain simply follows the stress dilatancy rule in the sense that the flow rule prescribes the
link between the stress ratio and the plastic strain. By Eq. (5.17),the amount of contraction
or expansion is given by the dilatancy. More specifically, the deviatoric stress increases in Test
T4 with the axial strain but the stress ratio does not follow a monotonic response due to the
different stress path followed. Thus, by linking the stress ratio with the ratio of plastic axial
strains to radial strains in Figure 5.23c, the theoretical curve and the predicted by the code
with global stress-strain elaboration is presented. The first point on Figure 5.23c is not relevant
because the behavior is elastic. For stress ratio η < ηK0 the axial and radial component of
strain have the same sign, meaning that axial and radial contraction takes place. For larger
stress ratios, the sign of the ratio is reversed and radial expansion occurs.

The above can be used in order to evaluate the deformational behavior of the specimen in Figure
5.23d. Initially, the behavior is elastic so the prescribed deformational behavior by the flow rule
does not apply and consequently, there is expansion. After the yielding of the material, the flow
rule prescribes a contractive behavior until 15% of axial strain. At this point, the stress ratio is
close to ηK0 and the flow rule dictates radial expansion to take place for larger η. At this point,
in Figure 5.23d a flex point is observed and the sample starts to expand radially until failure.

In addition, Figure 5.23d depicts the experimental development of axial strain versus radial
strain too. The code captures the following trends in the strain response. However, as it has
been already mentioned, one major limitation of the proposed model is its inadequacy to reach
to higher deviatoric stresses after reaching the Critical State Line. An explanation to this is
the prediction of excessive displacements by the numerical code (Figure 5.23d), which can be
attributed to the exclusion of fibers from the constitutive model. In the same way with the
undrained tests, where the volumetric part of the behavior (pore pressures) was not captured
well after a strain level, the possible explanation to this limitation in drained tests is that the
fibers in reality start to contribute to the deformation mode of the sample by stretching and
restraining the lateral expansion. This leads to the development of higher deviatoric stresses
and lower axial and radial strains in contrast to the model predictions. Finally, it can be seen
that the elastic contribution to the total deformation of the sample in the laboratory is bigger
than in the numerical code. This is related to the implemented elastic law, because in peat it
is difficult to define the elastic domain as plastic strains are generated from the start of stress
path.
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(a) Deviatoric stress q versus axial strain εa
(b) Stress ratio η versus axial

strain εa

(c) Incremental ratio of plastic axial to radial
strains versus stress ratio

(d) Axial strain versus radial
strain

Figure 5.23: Test T4

Another issue discussed here is that different flow rules for drained and undrained tests are
used. In order to investigate this limitation of the proposed constitutive model, it is worth
to focus on Figure 5.24, where the radial-axial strain paths are plotted for peat tests under
isochoric, K0 paths and isotropic compression paths. A distinction should be made between
strain paths corresponding to lateral expansion (fibres stretching) and lateral contraction (fibres
entanglement). The latter situation is depicted on the top right quadrant, where the fibres-
matrix interaction is limited. Namely, during isotropic compression path, the fibres are not
stretched due to compressive radial strains and the mechanical response is not enhanced by the
fibers tensioning. In K0 path (εr = 0), where the effect of fibres is substantially switched off,
the fibres flattening in the vertical direction but with no stretching is promoted (Muraro, 2018).

On the contrary, the stretching of the fibers due to radial expansion of specimens results to
increased fibres-matrix interaction. With the progressive radial expansion of the sample, the
frictional interaction between the soil matrix and the fibrous network is promoted with conse-
quent evolution of the peat fabric and alteration of the plastic deformational response. Isochoric
test, as the undrained compression tests, on sample 5 is expected to magnify the most this in-
teraction. More specifically, under isochoric conditions, it is required the axial compression to
be compensated by the radial expansion. Under drained conditions there is no such a kinematic
constraint. Hence, the radial strains under undrained conditions are larger than under drained
conditions given the same amount of axial strain.
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Figure 5.24: Radial-axial strains paths for peat samples (adopted by Muraro, 2018)

This alternation of the plastic deformational response is due to the induced anisotropy taking
place by the different amount of stretching of the fibers resulting by the radial strains of the
specimens. According to Diambra et al. (2013), for the case of general fibers-reinforced soils,
as well as for peats, radial strains rather than deviatoric strains seem to rule the matrix-fibres
interaction. The matrix-fibers interaction and the induced anisotropy due to different strain
paths is taken into account by changing the flow rule of the model. This limitation of the
model, thus, is associated with the non inclusion of the peat fabric, consisting of fibers, in the
formulation of the constitutive model. For the case of flow rule used in undrained simulations,
the flow rule dictates that the radial strains should be expansive from small stress ratio in
contrast to the flow rule of drained tests (Figure 5.25b). This is also observed in the shapes
of plastic potentials (Figure 5.25a), where the plastic potential for the (kg = 15) has a tear
type magnifying the relevance of the distortional strains on the plastic deformation mechanism
and for the (kg = 0.98) a bullet shape with plastic strains increment vectors mainly ruled by
volumetric strains. Note that expansive radial strains mean higher deviatoric strains, and the
plastic strain increment consequently must be inclined towards the q axis.

(a) Plastic strain vectors for different radial stress
paths

(b) Incremental ratio of plastic
axial to radial strains versus

stress ratio

Figure 5.25: The two different flow rules used in the model
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5.7 Conclusions

In summary, in this chapter the constitutive model was implemented into the FEM programme
LAGAMINE. The proposed model has in total 10 parameters. The determination of the vast
majority of the parameters is based on well known procedures, already used for calibrating
model parameters, as they are based on MCc model and only six additional parameters are
introduced. 4 out of 6 additional parameters provide a flexibility on the selection range of
yield surfaces and plastic potentials. It is possible to choose between tear type or bullet type
shapes. In addition, the two remaining parameters control the amount of contribution of plastic
deviatoric strains in the hardening law.

The model was tested against experimental evidences in both drained and undrained compres-
sion conditions under the influence of the end restraints. For the latter case, the response until
the critical state is well captured by the model. In more detail, the non homogeneous field of
excess pore pressure due to end restraints was successfully captured. In addition, measures of
the pore pressure at the mid height of the sample are important, where the effect of the bound-
aries is minimised and the behavior is expected to be more representative to the true material
behavior. However, the increased deviatoric stresses due to end restraints were not successfully
captured by the model, as no difference in the deviatoric stresses at failure for different height
to diameter ratios is observed. To achieve this, the hardening parameter D1 should be adjusted
to the geometry of the sample. Thus, from a modelling point of view, the distortional hardening
seems to be linked with the geometry effects due to internal length effects by the presence of
peat fibers. Moreover, the lack of fibers from the constitutive model results also to an increased
lateral expansion of the specimens which is not observed experimentally. The fibers, in reality,
during the radial expansion are stretched offering a confinement to the specimen and reducing
its radial expansion. By constraining some nodes at the bottom and the top of the lateral
boundary of the mesh, the effect of platens is magnified in order to roughly replicate the ob-
served deformation mode in the laboratory. The results showed a better approximation of the
experimental results. However, this approximation can be used only for rough indications

The mechanical response from drained triaxial compression tests until the critical state is well
captured by the model. The model suffers at the post-critical state region as it cannot capture
the high experimental deviatoric stresses despite the possibility of attaining stress ratios above
critical state thanks to the introduction of the mixed volumetric and distortional hardening.
The stress-strain response until the critical state is in good agreement with the experimental
evidence up to strain level of 25%, but excessive deformations are predicted in the post-critical
state region due to the non inclusion of fibers in the constitutive relationships which provide a
reinforcement to the radial expansion.

Due to the non inclusion of fibers in the constitutive model and the resulting deficient description
of matrix-fiber interaction, the radial expansion cannot be restrained and the different kinematic
mechanisms developing in undrained and drained tests cannot be described by using the same
parameters in each case. For drained tests, there is a volumetric response, and the plastic
potential should have a tear type. For the undrained tests, there is no volumetric strain and
consequently, radial expansion should compensate for the axial compression. Due to this, the
deviatoric strains become more significant and a bullet type plastic potential is more suitable.
The limitation of using two different plastic potentials for simulating isochoric and non-isochoric
strain fields comes from the induced anisotropy of the peat fabric due to the matrix-fibers
interactions and its lack of contribution to the mechanical behavior. One way of dealing with
it is to introduce a hardening parameter of the plastic potential, which tracks the stretching of
the fibers and consequently changes the shape of the plastic potential.
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Summary and Discussion

The modelling of the deviatoric behavior of peat is of primary importance for many applications
of geotechnical engineering. Peat is well known for ensuing a plethora of construction challenges
on dykes and embankments. In contrast to the modelling of the volumetric behavior of peat
where there are many remarkable attempts, the proposed models for the deviatoric counterpart
are rather scarce.

The main objective of this Thesis is to investigate numerically the deviatoric behavior of peat,
and to propose a modelling framework which will be able to capture the behavior of peat. After
an extensive literature review on the well established MCc model and on the various research
concerning ways of dealing with the limitations of this model, a model for understanding and
modelling quite adequately the mechanical response of peat has been proposed.

6.1 Conclusions

The conclusions of this Thesis are presented with reference to the research questions posed in
Chapter 1.

Is associated plasticity suitable for describing the pre-failure behavior of peat spec-
imens affected by end restraints? Which method of measuring global stresses and
strains is more suitable for describing the pre-failure stress-strain response of peat?

Experimental results along K0 line allow to define the shape of the plastic potential for the
tested peat, using the flow rule proposed by McDowell and Hau (2004). This shape differs
from the plastic potential surface of MCc model due to the well known limitation of MCc on
predicting correctly the K0 value.

End restraints affect the derivation of the stress dilatancy rule. Traditionally, the d − η rule,
derived from tests with rough ends by elaborating the results with global measurements, is
different than the material flow rule. Below K0 the dilatancy is below the material flow rule,
while the opposite is observed for radial paths above K0.

FEM analyses were run to replicate the experimental results with rough end platens. More
suitable global measurement is the use of the average diameter between the nominal diameter
of the cap and the equivalent cylinder diameter. Using the flow rule predicting correctly the K0

value, the predictions are in good agreement for radial paths below K0. On contrary, for radial
paths above K0, higher dilatancy is observed experimentally than in the numerical simulation,
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and the necessity, from a modelling point of view, of adding the deviatoric hardening in the
constitutive model is, afterwards, highlighted.

Why the yield surface introduced by the Modified Cam clay model (Roscoe and Bur-
land, 1968) is inappropriate to describe the peat behavior and how the formulation
of the yield surface should be modified in order to have satisfying results?

By integrating the non-associated flow rule proposed by McDowell and Hau (2004) generalized
shapes of plastic potential surfaces can be retrieved. These plastic potential surfaces can be
adopted and be used as yield surfaces, offering flexibility on the shapes of the yield surfaces. By
calibrating the parameters, a yield surface representative to the material under investigation
can be generated, as for the tested peat the yield points form a different yield locus than the
employed yield surface of MCc, which is slightly above the experimentally observed one.

Is the hardening law used in the majority of constitutive models based on Cam clay
theory appropriate for capturing the stress strain behavior of peat? If not, how can
this be tackled?

Based on the literature, the addition of deviatoric hardening in the hardening law of Cam clay
theory results to higher dilatancy and higher stresses obliquity. In addition, the ”hook” in the
undrained stress paths of the peat specimens can be modelled through this way.

An extension of MCc has been incorporated by assuming that deviatoric plastic strains also
contribute to hardening. Two parameters are introduced D0 and D1. By setting D0 = 0, the
MCc model is retrieved. It has been found that the deviatoric contribution to the soil hardening
change profoundly the performance of the new model. In particular, higher stress obliquity and
continuous dilation is observed for higher values of D0. By keeping the D1 null, the critical state
is not reached, because the size of yield surface is dependent on both the plastic volumetric and
deviatoric strain increments, and the latter is not zero at critical state. By increasing the D1,
critical state is asymptotically reached.

How the model performs if the experiments are treated numerically as a Boundary
Value Problem?

All the above elastoplastic ingredients were combined in a simple elastic-plastic non associative
model with mixed volumetric and distortional hardening for the deviatoric behaviour of peat.
The model has in total 10 parameters with a relatively easy way of determining them. These
are the slope of the isotropic normal compression line λ, the slope of the isotropic unloading
and reloading line κ, the Poisson’s ratio ν ′, the initial void ratio e, the Mf , Mg, kf , kg and the
hardening parameters D0 and D1.

In an attempt to overcome end restraint effects on both the shear strength and deformation
mode of peat, the model has been formulated in the multi-axial stress space and implemented in
the Finite Element code LAGAMINE. The experimental tests were then simulated as boundary
values problems for both TxCU and TxCD tests.

For the former case, the response until the critical state is well captured by the model. In more
detail, the non homogeneous field of excess pore pressure due to end restraints was successfully
captured. In addition, measures of the pore pressure at the mid height of the sample are
important, where the effect of the boundaries is minimised and the behavior is expected to be
more representative to the true material behavior. However, the increased deviatoric stresses
due to end restraints were not successfully captured by the model, as no difference in the
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deviatoric stresses at failure for different height to diameter ratios is observed. To achieve this,
the hardening parameter D1 should be adjusted to the geometry of the sample. Thus, from
a modelling point of view, the distortional hardening seems to be linked with the geometry
effects due to internal length effects by the presence of peat fibers. Moreover, the lack of fibers
from the constitutive model results also to an increased dilation of the specimens which is not
observed experimentally. The fibers, in reality, during the radial expansion are stretched offering
a confinement to the specimen and reducing its radial expansion. By constraining some nodes
at the bottom and the top of the lateral boundary of the mesh, the effect of platens is magnified
in order to roughly replicate the observed deformation mode in the laboratory. The results
showed a better approximation of the experimental results. However, this approximation can
be used only for rough indications

The mechanical response from drained triaxial compression tests until the critical state is well
captured by the model. The model suffers at the post-critical state region as it cannot capture
the high experimental deviatoric stresses despite the possibility of attaining stress ratios above
critical state thanks to the introduction of the mixed volumetric and distortional hardening. The
strain response until the critical state is in good agreement with the experimental evidence up to
strain level of 25%, but excessive deformations are predicted in the post-critical state region due
to the non inclusion of fibers in the constitutive relationships which provide a reinforcement to
the radial expansion. More specifically, the high strain level above 25% attained in the drained
tests magnify the matrix-fiber interaction and the additional stretching of the fibers for strains
above 25% cannot be neglected anymore.

Due to the non inclusion of fibers in the constitutive model, the radial expansion cannot be
restrained and the different kinematic mechanisms developing in undrained and drained tests
cannot be described by using the same parameters in each case. For drained tests, there is a
volumetric response, and the plastic potential should have a bullet type. For the undrained
tests, there is no volumetric strain and consequently, radial expansion should compensate for
the axial compression. Due to this, the deviatoric strains become more significant and a tear
type plastic potential is more suitable. The limitation of using two different plastic potentials
for simulating isochoric and non-isochoric strain fields comes from the induced anisotropy of the
peat fabric due to the matrix-fibers interaction and its lack of contribution to the mechanical
behavior. One way of dealing with it is to introduce a hardening parameter of the plastic
potential, which tracks the stretching of the fibers and consequently changes the shape of the
plastic potential.

6.2 Recommendations

The recommendations of this Thesis for future research will be focused on the limitations out-
lined in the conclusions and the general limitations discussed in the Chapter 1.

For managing to capture the high deviatoric stresses developing in the experiments, but also
reducing the radial expansion in the numerical simulations, the fibers should be included in the
formulation of the constitutive model by means of fabric tensor. There are a lot of studies on
reinforced soils, where the underlying theory can be studied.

It is well known that the peat is an extremely anisotropic material. However, in this study
the peat behavior is modelled by isotropic yield surfaces and plastic potentials surfaces, imple-
mentation which poses some limitations at the deformation mechanism between isochoric and
non-isochoric deformational modes. It seems that the plastic strain vector under these two de-
formational modes is ruled by the amount of stretching of the fibers leading to a nonholonomic
response. The contribution of the fibers in the deformational mode under different stress paths
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is, thus, related to the induced anisotropy coming from the stretching of the fibers. A solution
to this limitations would be a hardening parameter, which would track the stretching of the
fibers, and accordingly to change the plastic potential shape.

Based on the limitations outlined in the Chapter 1, creep strains development is a major aspect
of the soft soils like peat and it would be useful this phenomenon to be modelled by means
of visco-plasticity. Moreover, in partially saturated peats, gas bubbles are developed during
triaxial tests. This feature could be modelled by a Thermo-Hydro-Gas-Mechanical coupled
analysis. In addition, in this study an axisymmetric 2D analyses have been employed, despite
the fact that the observed behavior in the laboratory indicates that a 3D analysis would be
more accurate.

Finally, despite the outlined limitations of the model, it would be useful to test its performance
on a field application. The model is capable of describing the peat behavior until 20% of strain
under triaxial testing, strain level which barely is exceeded on field. Hence, the performance of
the model could be evaluated on real field applications and necessary results for its development
to be retrieved.
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