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Graph Filters for Signal Processing
and Machine Learning on Graphs

Elvin Isufi , Member, IEEE, Fernando Gama , Member, IEEE, David I Shuman , Senior Member, IEEE,
and Santiago Segarra , Senior Member, IEEE

Overview Article

Abstract—Filters are fundamental in extracting information
from data. For time series and image data that reside on
Euclidean domains, filters are the crux of many signal processing
and machine learning techniques, including convolutional neural
networks. Increasingly, modern data also reside on networks and
other irregular domains whose structure is better captured by a
graph. To process and learn from such data, graph filters account
for the structure of the underlying data domain. In this article,
we provide a comprehensive overview of graph filters, including
the different filtering categories, design strategies for each type,
and trade-offs between different types of graph filters. We
discuss how to extend graph filters into filter banks and graph
neural networks to enhance the representational power; that is,
to model a broader variety of signal classes, data patterns, and
relationships. We also showcase the fundamental role of graph
filters in signal processing and machine learning applications.
Our aim is that this article provides a unifying framework for
both beginner and experienced researchers, as well as a common
understanding that promotes collaborations at the intersections
of signal processing, machine learning, and application domains.

Index Terms—Graph signal processing, graph machine learn-
ing, graph convolution, filter identification, graph filter banks and
wavelets, graph neural networks, distributed processing, collabo-
rative filtering, graph-based image processing, mesh processing,
point clouds, topology identification, spectral clustering, matrix
completion, graph Gaussian processes.

I. INTRODUCTION

F ILTERS are information processing architectures that pre-
serve only the relevant content of the input for the task

at hand. In signal processing (SP), filtering preserves specific
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spectral content of input signals and is a common building block
in domains including audio, speech, radar, communication, and
multimedia [1]. In machine learning (ML), filtering is used to
extract relevant patterns from the data or as an inductive bias for
building neural networks [2]. For instance, principal component
analysis (PCA) can be seen as a low-pass filter in the correlation
matrix, where only the parts of the data contributing to the
directions of the largest variance are preserved [3]. Likewise,
the success of convolutional neural networks (CNNs) can be at-
tributed to the convolutional filters used in each layer, allowing
for easier training and scalability, as well as exploiting structural
invariances in the data [2], [4].

Conventional filtering applies to signals defined on Euclidean
domains, but cannot be directly applied to irregular data struc-
tures arising in biological, financial, social, economic, power,
water, sensor, and multi-agent networks, among others [5],
[6]. Graph filters are information processing architectures tai-
lored to graph-structured data, generalizing the conventional
Euclidean counterparts.

Graph filters have many similarities with conventional ones;
they are linear, shift invariant, parametric functions of the input,
they enjoy a spectral interpretation via the spectral graph theory
[7], and their spectral design boils down to function fitting [8],
[9]. However, striking differences also arise from the new graph
medium; e.g., graph filters are equivariant to permutations in the
support, can be implemented distributively, and can have more
generalized forms such as node varying [8] or edge varying
[10]. Due to the wide variety of network-based data and the
flexibility of graphs to represent irregular structures, graph fil-
ters are used in myriad SP tasks (signal reconstruction, anomaly
detection, image processing, distributed processing) and ML
tasks (semi-supervised and unsupervised learning, matrix com-
pletion, Gaussian process regression), as well as robotics, point
clouds, Internet of Things, biology, and vision applications.

Early formalisms of graph filters find their roots in the
1990’s in mesh processing [11], [12]. In the 2000’s, graph
filters were used in ML applications, mostly as graph ker-
nels [13], [14], and later on in graph-based image processing
[15], [16]. From a SP viewpoint, graph wavelets [17], [18]
can be considered as the first instances. The tutorial article
[19] helped provide a unifying mathematical framework for
many of the problem-specific efforts that were being carried
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out in different research communities, encouraging more signal
processing researchers to readily dive into problems involving
network-based data and develop new filter methods derived
from first principles, inspired from the more familiar Euclidean
setting. Simultaneously, a specialization of the algebraic sig-
nal processing framework [20] to the graph domain paved the
way for a structured mathematical framework of graph filter-
ing [21], [22]. More recently, with the advent of graph neural
networks (GNNs), graph filters play a fundamental role as
the key component to learn representations from graph-based
data [23], [24], [25], [26], [27].

Despite the early roots of graph filtering, and its span across
different applications – often developed in an interdisciplinary
fashion – there is no comprehensive, point-of-entry reference
for new researchers interested in either conducting fundamental
research or exploring applications related to SP and ML, or
both. This article has been designed to target this need, thus
providing an extensive, principled overview of the fundamen-
tal aspects of graph filtering research, as well as highlighting
the main application areas in both SP and ML. A number of
valuable tutorials and overviews on graph signal processing
(GSP) and GNNs that are worth discussing have been written
since [19]. The survey in [5] and book [28] provide excellent
starting points on graph convolutional filtering and its links to
the broader field of GSP. Since the focus of these works is
on the fundamentals of GSP, they only cover a single type of
graph filter and only scratch the surface on design methods and
applications. The book chapter [29] provides more detail on
filter design strategies and their role in filter banks but leaves out
a large portion of other filtering methods and their applications.
Ref. [30] focuses specifically on how a single-level graph con-
volutional filter bank can be used to build dictionaries of atoms
for linear wavelet and vertex-frequency transforms. The recent
tutorial [23] discusses the role of graph filters in building GNNs,
whereas [27] shows that different filtering solutions lead to
fundamentally different GNN architectures, evidencing trade-
offs in terms of inductive and transductive learning, locality, and
representation capacity. Nevertheless, these two works focus
explicitly on the role of graph filters in understanding GNNs.
A recent survey on the application of GSP tools and GNNs
in machine learning can be found in [6], and another one dis-
cussing the applicability of a particular class of graph filters
in [31]. Both works review the applications where such tools
can be used, but do not detail the particular contribution of the
filters, nor the implications of the choice of graph filter type.
Here, we aim to introduce and compare in detail the different
filter types, and subsequently show their role in staple SP and
ML applications.

In short, the above works discuss particular forms or prop-
erties of graph filters linked to specific case studies or appli-
cations. None of them, however, offers a comprehensive and
unifying treatment of the role of graph filtering that showcases
the design choices, trade-offs, and applications of graph-based
data in both SP and ML. Our goal in this paper is to give the
reader a detailed tour on the different graph filtering forms
and their properties, and to show how they can be used to

develop more expressive solutions via filter banks and neural
networks. We also aim to provide details on filter design and
learning strategies. Another key contribution of this unifying
framework is to show that graph filters are crucial in myriad
applications in both SP and ML. While these two fields remain
somewhat different in their approach to solving problems, a
comprehensive understanding of filtering as the fundamental
tool in both fields promotes collaboration and facilitates new
research developments.

A. Organization

Sec. II sets up the basic concepts about graphs, signals and
embeddings, including also a list of landmark applications en-
countered in SP and ML. Sec. III introduces the central piece of
this paper, the graph convolutional filter (GCF), which is viewed
as a shift-and-sum operation of graph signals with respect to any
graph representation matrix (see Figs. 2 and 3), thus generaliz-
ing the principle of convolution for discrete-time signals. Here,
we also discuss several properties of this filter from a vertex
perspective, such as its invariances and distributed implemen-
tation. In Sec. IV, we characterize the spectral response of the
GCF using a notion of graph Fourier transform. We then discuss
the spectral properties of GCFs, including the generalization
of the convolution theorem to the graph setting. Sec. V is
dedicated to filter design and identification strategies, either
when a user-specific operator (e.g., a low-pass filter) is given or
when the design is based on input-output data pairs. In Sec. VI,
we discuss other forms of graph filters and their link with the
GCF. Table I provides an overview of the different architectures,
their properties, and a discussion about the advantages and
limitations of each form. Sec. VII is dedicated to building graph
filter banks and graph wavelet transforms. We review different
structures for graph filter banks (see, e.g., Figs. 5 and 6) and
examine important design considerations. Then, in Sec. VIII,
we show how the popular graph convolutional neural networks
(GCNNs) can be seen as no more than a nonlinear graph filter
built by nesting a GCF into an activation function (see Fig. 7).
We also discuss here how to build a non-convolutional GNN
by changing the GCF with another filter type from Table I. The
next two sections are dedicated to staple applications of graph
filters in SP (Sec. IX) – signal interpolation, anomaly detection,
image processing, and distributed signal processing – and in
ML (Sec. X) – semi-supervised and unsupervised learning on
graphs, matrix completion, Gaussian processes, point clouds,
and computer vision. Fig. 1 illustrates how the filtering concepts
in Sections III–VI relate to the filterbanks and GNNs, and how
each of them has been used in select applications. In Sec. XI, we
provide some suggestions for researchers and developers new
to the area, including a suggested order in which to explore the
graph filtering tools. Finally, in Sec. XII, we highlight some
future directions.

II. GRAPHS AND SIGNALS

This section first reviews ways to construct graphs and the
basic terminology for representing them (Sec. II-A). This will
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Fig. 1. A roadmap of this article. Solid arrows prerequisite relationships between sections. For example, Sec. VII can be mostly understood without reading
Sec. VI, but not without reading Sec. IV. The boxes for applications in signal processing and machine learning correspond to specific application examples
we discuss in this article, and are not meant to be a comprehensive representation of all work that has been done in the field.

bridge the high-level discussion of the previous section with the
more detailed mathematical formulations of graph filters in the
succeeding sections. Next, it highlights some landmark tasks
where graph filters are used (Sec. II-B).

A. Graph Terminology

We denote a weighted graph by G = (V, E ,W), where V =
{1, . . . , N} is the set of nodes, E ⊆ V × V is the set of edges
such that (i, j) ∈ E if and only if there is an edge from node
i to node j, and W : E → R+ is a weight function. If all edge
weights equal one, the graph is said to be unweighted. A graph
is undirected if there is no orientation in the edges in E . For
an undirected graph, we denote the neighboring set for a node
i by Ni = {j ∈ V : (i, j) ∈ E}. Instead, in a directed graph (or
digraph), an edge (i, j) ∈ E has an orientation starting from
node i and ending at node j. We say that node j is an out-
neighbor of i (and i an in-neighbor of j). The out-neighboring
set of node i is denoted by N out

i = {j ∈ V : (i, j) ∈ E} and,
likewise, the in-neighboring set by N in

i = {j ∈ V : (j, i) ∈ E}.
We represent graph G via the weighted adjacency matrix

A, which is an N ×N sparse matrix with nonzero elements
[A]ji = aji > 0 representing the strength of edge (i, j) ∈ E .
Matrix A is symmetric (aij = aji for all i, j) for an undirected
graph, but may be asymmetric for a directed one. For undirected
graphs, another widely used matrix is the graph Laplacian L=
D−A, where the diagonal matrix D= diag(A1) has as ith
diagonal element the sum of all edge weights incident to node i.

Graph shift operator (GSO). We represent the structure
of a graph G with a generic matrix S ∈ R

N×N called the
graph shift operator matrix. The only requirement for S to
be a valid GSO is that

[S]ji = sji = 0 whenever (i, j) /∈ E for i �= j.

Both matrices A and L are special cases for S [5], [21].
Other examples include the normalized adjacency matrix
An =D−1/2AD−1/2, the normalized Laplacian matrix Ln =
D−1/2LD−1/2, and the random walk Laplacian Lrw =D−1L.

Graphs and associated GSOs can represent:
1) Physical networks: Here, nodes and edges physically

exist. For example, in a sensor network, nodes are sen-
sors and edges are communication links [32]. A directed
edge indicates the communication direction and the edge
weight captures the communication channel properties.
Other examples include: (i) multi-agent robot systems
where nodes are robots and edges are communication
channels [33]; (ii) power networks where nodes are buses
and edges are power lines [34]; (iii) telecommunication
networks where nodes are transceivers and edges are
channels [35], [36]; (iv) water networks where nodes are
junctions and edges are pipes [37], and; (v) road networks
where nodes are intersections and edges are roads [38].

2) Abstract networks: These graphs typically represent de-
pendencies between the data points. Consider N data
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points, each described by a feature vector fi ∈ R
F , and

let dist(fi, fj) be a distance measure (e.g., Euclidean)
between data points i and j. Each data point is consid-
ered as a node and two data points could be connected
based on [39]: (i) ε−neighborhood, where the edge
weight is

aij=

{
f(dist(fi, fj); θ) if dist(fi, fj)≤ ε,
0 otherwise,

(1)

where f(·; θ) is a parametric function (e.g., a Gaussian
kernel f(dist(fi, fj); θ) = exp

(
−dist(fi, fj)/2θ2

)
) and

ε > 0 is a constant controlling the edge sparsity; (ii)
k−nearest neighbor, where each node is connected
only to the k closest data points with respect to
f(dist(fi, fj); θ), which can again be a Gaussian kernel
or a Pearson correlation. The covariance matrix or
modifications thereof have also been used to build
abstract networks as we elaborate on in Sec. IX-C; see
also [40], [41].

The above approaches build undirected abstract
networks but alternatives for directed or causal dependen-
cies are also possible; see [40], [41], [42]. These abstract
networks are useful, for example, in: (i) recommender
systems, where two items are connected, e.g., if their
Pearson correlation is greater than some value [43];
(ii) brain networks, where the nodes are brain regions
and the edges are given, e.g., by the cross-correlation
or mutual information of electroencephalography (EEG)
time series in the different regions [44]; (iii) social
networks, where nodes are users and edge weights may
represent the number of interactions between them; (iv)
economic networks, where nodes are different economic
sectors and the edges may represent the input and output
production going from one sector to another [45].

Since abstract networks represent dependencies between dat-
apoints, they can be manipulated by recomputing edge weights,
clustering, or pruning to facilitate representation. However, this
is not typically the case for physical networks, as they often
represent the medium with respect to which processing is per-
formed. We shall see in Sec. IX-E that graph filters can leverage
such structure for distributed processing.

B. Signals Defined on Graphs and Common Processing Tasks

We often encounter data that can be represented as a signal
or set of features, with one value associated to each node.

Graph signal. A graph signal x is a function from the
node set to the field of real numbers; i.e., x : V → R. We
can represent a graph signal as a vector x ∈ R

N , where
the ith entry [x]i = xi is the signal value at node i [19].

We denote the space of all graph signals defined on graph G
with node set V as XV = {x : V → R}. An example of a graph
signal is a recording in a brain network, i.e., each brain area
corresponds to a node, two nodes share a link based on struc-
tural connectivity, and the brain EEG measurement is the signal
of a particular node. We may want to process such a signal

to understand, e.g., how different individuals have mastered a
specific task [46].

Processing and learning tasks with graph signals include:
1) Signal reconstruction, including interpolation and de-

noising: We often observe a corrupted version of the
graph signal, possibly at only a subset of nodes. Ex-
amples include noisy or subsampled measurements in
sensor [32], power [34], and water networks [47]. The
goal is to denoise the signal or interpolate the missing val-
ues by leveraging the neighboring signal values and the
graph structure.

2) Signal compression: When graph signals have similar
values at neighboring vertices, it is possible to com-
press the signal by developing representations that require
fewer coefficients, and storing those coefficients rather
than the original signal [30].

3) Signal classification: This task consists of classifying dif-
ferent graph signals observed over a common underlying
graph. One such example is classifying patients based on
their brain recordings, as discussed above [46].

4) Node classification: This task consists of classifying a
subset of nodes in the graph given the class labels on
another subset. When node features are available, we can
treat them as a collection of graph signals and leverage
their coupling with the underlying connectivity to infer
the missing labels. The state-of-the-art for this task is
achieved by GNNs, which, as we shall see in Section VIII,
rely heavily on graph filters [23]. When node features are
unavailable, we treat the available labels as graph signals
and transform node classification into a label interpola-
tion task that can be solved with graph filters [22].

5) Graph classification / regression: These tasks start with
a collection of different graphs and (optionally) graph
signals. The classification task assigns a label to the
whole graph (e.g., classifying molecules into different
categories such as soluble vs. non-soluble), whereas the
regression task assigns a continuous number to each
graph (e.g., the degree of solubility) [48].

6) Link prediction: Here, the goal is to infer if two nodes are
connected given the current structure and the respective
graph signals [49]. This is the case of friend recom-
mendation in social networks, whereby leveraging the
friendship connectivity between users based on their fea-
ture signals (e.g., geo-position, workplace) we can infer
missing links.

7) Graph identification: This task extends the link predic-
tion to that of inferring the whole graph structure given
only the graph signals [41]. Graph filters play a role
in modeling the relationships between candidate graph
structures and the observed signals. We detail this prob-
lem in Sec. IX-C.

8) Distributed processing: Here the graph topology repre-
sents the structure of a sensor network and we want to dis-
tributively solve a task related to graph signals [9]. Graph
filters lend themselves naturally to this setup because they
rely only on local information. In Sec. IX-E, we discuss
their use for different distributed tasks.
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Fig. 2. The graph convolutional filter as a shift register. Highlighted are the nodes that reach node 1 on each consecutive shift; that is, the nodes j whose
signal value xj contributes to [Skx]i. The resulting summary of each communication Skx is correspondingly weighted by a filter parameter hk . For each
k, the parameter hk is the same for all nodes. In this example, S= Ln and H(S) = 1L0

n − 1.5L1
n + 1L2

n − 0.25L3
n is a lowpass filter that smooths the

input signal.

III. GRAPH CONVOLUTIONAL FILTERS

The convolution is a key operation in SP as it helps to de-
fine filtering operations and to understand linear, time-invariant
systems. In ML, convolutional filters are the building block
of CNNs, and their computational efficiency and parameter-
sharing property tackle the curse of dimensionality. Convo-
lutions also leverage the symmetries in the domain (such as
translations in space) and allow for a degree of mathematical
tractability with respect to domain perturbation [50]. We present
here a now standard generalization of the convolutional filter
to the graph domain, with the goal of inheriting the above
properties. Then, in Sec. IV we analyze the filter behavior in
the graph spectral domain, akin to the Fourier analysis for
temporal filters, and in Sec. V we discuss strategies to design the
filter parameters.

A. Definition

A convolutional filter is a shift-and-sum operation of the
input signal [51]. While a shift in time implies a delay,
a graph signal shift requires taking into account the topo-
logical structure.

Graph signal shift. A graph signal shift is a linear trans-
formation S : XV → X

V obtained from applying a GSO S
to a signal x, i.e. S(x) = Sx. The shifted signal at node i
is computed as

[Sx]i =

N∑
j=1

[S]ijx=
∑

j∈N in
i ∪{i}

sijxj , (2)

which is a local linear combination of the signal values at
neighboring nodes.

If the GSO is the adjacency matrix A, the shifted signal
represents a one-step propagation. Instead, if the GSO is the
graph Laplacian L, the shifted signal is a weighted difference of
the signals at neighboring nodes [Lx]i =

∑
j∈Ni

aij(xi − xj).

Graph convolutional filter. Given a set of parameters
h= [h0, . . . , hK ]�, a graph convolutional filter of order
K is a linear mapping H : XV → X

V comprising a linear
combination of K shifted signals

H(x) =
K∑
k=0

hkS
kx=H(S)x (3)

where H(S) =
∑K

k=0 hkS
k is the N ×N polynomial fil-

tering matrix.

The output at node i is yi = h0xi + h1[Sx]i + . . .+
hK [SKx]i, which is a linear combination of signal values
located at most up to K−hops away. This is because [Sk]ji �= 0
implies that there exists at least one path of length k between
nodes i and j through which the signals can diffuse. These
signals are shifted repeatedly over the graph as per (2);
see also Fig. 2. The term convolution for (3) is rooted in the
algebraic extension of the convolution operation [20] and the
discrete-time counterpart can be seen as a particular case over
a cyclic graph; see Box 1.

B. Properties

Graph convolutional filters satisfy the following properties.
Property 1 (Linearity): For two inputs x1, x2, scalars α, β,

and filter H(S), it holds that

αH(S)x1 + βH(S)x2 =H(S)(αx1 + βx2).

Property 2 (Shift invariance): The graph convolution is in-
variant to shifts, i.e., SH(S) =H(S)S. This implies that given
two filters H1(S) and H2(S) and an input signal x, it holds that
we can switch the order of the filters:

H1(S)H2(S)x=H2(S)H1(S)x.

Property 3 (Permutation equivariance): Denote the set of
permutation matrices by

P =
{
P ∈ {0, 1}N×N :P1= 1 PT1= 1}.
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(Box 1) Discrete-time circular convolution. The graph signal shift (2), the graph convolutional filter (3), and their
spectral equivalents in Sec. IV generalize the respective concepts developed for discrete-time periodic signals.

Fig. 3. Discrete-time periodic signals as graph signals over a directed cycle graph. Each node Vc = {1, . . . , 6} is a time instant with adjacencies
captured in the matrix Ac. The temporal signal forms the graph signal x= [x1, . . . , x6]

T and the shift Acx acts as a delay operation that moves
the signal to the next time instant node.

We can represent an arbitrary discrete-time periodic signal as a graph signal x= [x1, . . . , xN ]T residing over the vertices
of a directed cyclic graph Gc = (Vc, Ec) in which each node is a time instant and directed edges connect adjacent time
instances of the form (n, 1 + n mod N), n= 1, . . . , N , as shown in Fig. 3. The adjacency matrix of this graph is a cyclic
matrix Ac such that [Ac]1+n mod N,n = 1 and zeros everywhere else.
Signal shift: Setting the GSO S=Ac, operation (2) shifts the signal cyclically and acts as a delay operation, i.e.,
[Acx]1+n mod N = xn.
Convolutional filter: The graph convolutional filter (3) for graph Gc reduces to the circular convolution, i.e., the output at
the temporal node i is yn = [H(Ac)x]n =

∑K
k=0 hk[x]1+(n−k+1) mod N .

Signal variation: Using the total variation in (7), we measure how much the signal changes from its delayed version. This
is a key building block for developing filters in standard signal processing [52].
Fourier transform: The cyclic adjacency matrix can be eigendecomposed as Ac = DFTNdiag(λ)DFT−1

N with eigen-
vectors [DFTN ]kn = (1/

√
N) expj2π(k−1)(n−1)/N forming the discrete Fourier transform (DFT) matrix and eigenvalues

λ= [exp(−j2π0/N, . . . ,−j2π(N − 1)/N)] containing the frequencies. The DFT for signal x is x̃= DFTNx, which
coincides with the graph Fourier transform (GFT) for this particular graph.

Then for a graph with GSO S and P ∈ P , the permuted graph
(the graph obtained by permuting the node indices by PT) has
the GSO Ŝ=PTSP, which describes the same topology but
with a reordering of the nodes. Likewise, the permuted signal
corresponding to the ordering in Ŝ is x̂=PTx. Permutation
equivariance for filter (3) implies

H(Ŝ)x̂=PTH(S)x;

i.e., the filter output operating on the permuted graph Ŝ with
the permuted signal x̂ is the permuted output of the same
filter operating on the original graph S with the original
signal x.

Thus, graph convolutions are independent of the arbitrary
ordering of the nodes. Moreover, the permutation equivariance
shows that the graph convolutional filter exploits the signal
patterns with respect to the underlying graph structure. This
is a direct analogue of translation equivariance in temporal or
spatial signals, where the respective convolutional filters are
translation equivariant functions. This is key to their success
in learning from a few training samples [4].

Property 4 (Parameter sharing): All the nodes share the
parameters among them. For two nodes i, j, the respec-
tive outputs are yi = h0xi + h1[Sx]i + . . .+ hK [SKx]i and
yj = h0xj + h1[Sx]j + . . .+ hK [SKx]j , which shows that the
k-shifted signal Skx is weighted by the same parameter hk.

Props. 3-4 imply that graph convolutions are inductive pro-
cessing architectures. They can be designed or trained over a
graph G and transferred to another graph Ĝ (with possibly a

different number of nodes) without redesigning or retraining.
This is particularly useful, e.g., when using graph filters for
distributed SP tasks, as the physical channel graph may change.
In Sec. IV (Prop. 8), we discuss the degree of transference.

Property 5 (Locality): Graph convolutions are local architec-
tures. To see this, set z(0) = S0x. The one shifted signal z(1) =
Sx= Sz(0) is local by definition. The k > 1 shift z(k) = Skx
can be computed recursively as z(k) = S(S(k−1)x) = Sz(k−1),
which implies that the (k − 1)st shift z(k−1) needs to be
shifted locally to the neighbors. Hence, to compute the out-
put, each node exchanges locally with neighbors all K shifts
z(0), . . . , z(K−1).

Locality of computation makes the graph convolutional filters
readily distributable, as we discuss in Sec. IX-E.

Property 6 (Linear computation cost): Graph convolutions
have a computational complexity of order O(K|E|+KN); i.e.,
linear in the number of edges and filter order.

Props. 4-6 imply that graph convolutions tackle the curse of
dimensionality in large graphs. The parameter sharing makes
them suitable architectures to learn input-output mappings
from a few training samples, irrespective of the graph dimen-
sions (i.e., O(K) number of parameters); their locality al-
lows them to extract patterns in the data in the surrounding
of a node, and; their linear computational complexity facili-
tates scalability. In Sec. VIII, we discuss how to learn more
expressive representations via neural networks while preserv-
ing these benefits in a form akin to CNNs for time series
and images.
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IV. SPECTRAL ANALYSIS

While in the previous section we discussed the graph convo-
lutional filter in the vertex domain, we now shift attention to the
graph spectral domain to characterize the frequency response of
these filters. This frequency response is key to interpreting the
filter behavior, and it facilitates design when we want to achieve
a desired spectral response, as we detail in Sec. V.

A. Graph Fourier Transform

The DFT can be seen as the projection of a temporal signal
onto the eigenvectors of the cyclic graph adjacency matrix (see
Fig. 3). We define similarly the graph Fourier transform (GFT).

Graph Fourier transform (GFT). Consider the eigende-
composition of the diagonlizable GSO S=VΛV−1 with
eigenvectors V = [v1, . . . ,vN ], and where Λ= diag(λ)
is a diagonal matrix with the corresponding eigenvalues
λ= [λ1, . . . , λN ]. The GFT of a signal x is defined as the
signal projection onto the GSO eigenspace

x̃=V−1x. (4)

The inverse GFT is defined as x=Vx̃.

In the definition of the GFT, we are assuming the GSO S is
diagonalizable. While definitions of GFT for nondiagonalizable
GSOs exist [22], [52], [53], we hold to the diagonalizability
assumption for a consistent and simple exposition. Furthermore,
in some specified examples – particularly those with a spectral
interpretation – we additionally assume that S is Hermitian; i.e.,
S is equal to SH, its conjugate transpose. Common choices of
shift operators such as the combinatorial and normalized graph
Laplacians on undirected graphs satisfy this condition. Such
operators have the nice property that S=VΛVH, where the
entries of the diagonal matrix Λ are real, and V is a unitary ma-
trix satisfying VHV = I. Refer, for example, to [54] for more
details on the choice of the GSO and its spectral consequences.

The eigenvectors V serve as the basis expansion for the
GFT. In the discrete-time case, the complex exponentials fulfill
this role. The GFT coefficients x̃ are the weights each of these
eigenvectors contribute to represent the signal. Following
again this analogy, the vector λ contains the so-called graph
frequencies. Interpreting these graph frequencies λ and the
respective GFT coefficients x̃ requires understanding how the
signal varies over the graph. In turn, measuring the signal
variability requires accounting for the graph structure. We
review two basic criteria used for undirected [19] and directed
graphs [21], [22].

Undirected graphs. The variability of a signal over an undi-
rected graph is measured via the quadratic variation (QV)

QV(x) := xHLx=
1
2

∑
i∈V,j∈Ni

aij(xi − xj)
2, (5)

which quantifies how much a signal at a node is different from
that of the strong connected ones [19]. The lower QV(x), the
smoother signal x is with respect to the underlying graph. In
fact, the constant graph signal x= c1 has a zero variability.

Using (5), we can interpret the variability of the Laplacian
eigenvectors L=Vdiag(λ)VH so as to provide a Fourier basis.
Treating each eigenvector vi as a graph signal, we have

QV(vi) = vH
i Lvi = λi. (6)

Thus, we can sort eigenvectors based on their variability
0 = QV(v1)≤ QV(v2)≤ . . .≤ QV(vN ), which implies that
the respective eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . .≤ λN carry the
notion of frequency in the graph setting. We refer to the
eigenvalues λi close to 0 as low frequencies and to those
λi � 0 as high frequencies. The lowest graph frequency
is λ1 = 0 which corresponds to a constant eigenvector for
a connected graph. Accordingly, when S= L, the GFT
coefficient x̃i indicates how much eigenvector vi contributes
to the variability of signal x over G.

Directed graphs. To measure the signal variability for directed
graphs, we use again the analogy with the cyclic graph repre-
senting time signals, shown in Fig. 3. We measure how much
the diffused signal Sx changes from the signal x via the total
variation (TV)

TV(x) = ‖x− Sx‖1, (7)

Expression (7) attains a high value if the shifted signal differs
more from the original one. However, unlike the quadratic
measure for undirected graphs (5), the total variation in (7) may
be non-zero for constant signals.

If the shift operator is S= |λmax|−1A and λmax is the
eigenvalue of maximum amplitude, then TV(x) = ‖x−
|λmax|−1Ax‖1. In this case, we can measure the variability
of the adjacency matrix eigenvectors A=Vdiag(λ)V−1; we
have that TV(vi)≤ TV(vj) iff |λmax − λi|< |λmax − λj |.
That is, the eigenvector associated with the largest eigenvalue
has the lowest variability, while the eigenvector associated
with the eigenvalue farthest from λmax has the highest
variability. Since the eigenvalues may be complex, the
distances have to be computed in the complex plane. The
order of the eigenvalues according to increasing variability is
Re{λ1} ≥Re{λ2} ≥ · · · ≥Re{λN}, see [22, Figs. 2, 3]. In
this case, the eigenvalues located (in a complex-plane sense)
closest to the largest real eigenvalue are the ones corresponding
to lower frequencies, while the eigenvalues located farthest
from it correspond to the highest frequency.

Either on a directed or an undirected graph, the variability of
a graph signal x can often be expressed by only a few N ′ �
N GFT basis vectors. In this case, we say the graph signal is
N ′−bandlimited and expand it as

x=VN ′ x̃N ′ , (8)

with VN ′ = [v1, . . . ,vN ′ ] and x̃N ′ ∈ R
N ′

.

B. Frequency Response

By substituting the eigendecomposition S=VΛV−1 into
(3), we can write the filter output as

y =

K∑
k=0

hkS
kx=

K∑
k=0

hkVΛkV−1x. (9)
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Fig. 4. The frequency response of the filter (11), given in the black solid
line, is completely characterized by the values of the filter parameters h. Given
a graph, this frequency response gets instantiated on the specific eigenvalues
of that graph, determining the effect the filter will have on an input (10).

Using (4) and defining the GFT of the output ỹ :=V−1y, we
can write the filter input-output spectral relation as

ỹ =
K∑
k=0

hkΛ
kx̃. (10)

Convolution theorem for graph filters. It follows from
(10) that a shift-and-sum graph convolutional filter of the
form (3) operates in the spectral domain as a pointwise
multiplication ỹi = h̃(λi)x̃i between the input signal GFT
x̃=V−1x and the filter frequency response

h̃(λ) =
K∑
k=0

hkλ
k. (11)

Such a result is reminiscent of the convolution theorem [1],
whereby the convolution in the graph domain corresponds to
multiplication in the frequency domain. The filter frequency
response is an analytic polynomial in λ and it is independent
of the graph. The specific filter effect on a given graph is
on the positions where the frequency response is instantiated;
see Fig. 4.

In this context, graph convolutional filters satisfy the follow-
ing spectral properties.

Property 7 (GFT of the filter): Eq. (10) can be rewritten as

ỹ = diag(h̃)x̃ with h̃=Ψh, (12)

where Ψ ∈ C
N×(K+1) is a Vandermonde matrix such that

[Ψ]ik = λk−1
i . The vector h̃ ∈ C

N is known as the GFT of
the filter parameters, which depends on the eigenvalues of the
GSO (cf. (12)), unlike that of the signal, which depends on the
eigenvectors (cf. (4)). Refer to [8] for more detail.

From (12), it follows that a graph convolutional filter defined
as in (3) has the same frequency response for two frequencies
with the same eigenvalues, as this results in Ψ having repeated
rows. Alternatively, one can define graph convolutional filters
through their action in the frequency domain, potentially ac-
commodating different responses for repeated eigenvalues.

Property 8 (Lipschitz continuity to changes in S): Let
S, Ŝ ∈ R

N×N be two GSOs, potentially corresponding to dif-
ferent graphs with the same number of nodes N . Define the

relative difference of Ŝ with respect to S as

d(Ŝ;S) = min
E∈R(Ŝ;S)

‖E‖ (13)

for R(Ŝ;S) = {E :PTŜP= S+ (ES+ SE) P ∈ P}, the set
containing all the relative difference matrices E. Let the fre-
quency response of the filter (cf. (11)) satisfy |λh̃′(λ)| ≤ C for
some C <∞ and where h̃′(λ) is the derivative of (11). Then,
it holds that∥∥H(Ŝ)x−H(S)x

∥∥
2
≤ d(Ŝ;S)(1 + 8

√
N)C‖x‖2

+ O(d2(Ŝ;S)). (14)

Thus, if the relative difference between two GSOs is small,
the outputs of the filters with the same input signal will also
be small. This is a scenario that arises often when learning on
graph-structured data. The graph observed at training time is
often different than the graph observed at testing time. Thus, we
would like to obtain certain guarantees that the learned filters
will still be useful at inference time. Property 8 provides one
type of guarantee. Refer to [55] for an extensive discussion on
the choice of (13) as the function to capture differences between
S and Ŝ.

Filters whose frequency response satisfies |λh̃′(λ)| ≤ C are
known as integral Lipschitz filters. These filters may exhibit
high variability for low values of λ (because its derivative can
be high), but they have to be approximately constant for high
values of λ (because its derivative has to be small). An example
is shown in Fig. 4. For finite graphs with finite edge weights,
all convolutional filters (cf. (3)) are integral Lipschitz within the
spectrum interval of interest, but the constant C may be large.
This constant depends only on the filter parameters and, thus,
filters can be designed or learned to have a small value of C,
guaranteeing a tighter bound; see [55] for details.

V. FILTER DESIGN AND IDENTIFICATION

In this section, we discuss strategies to find the graph filter
parameters to solve a specific task. We split our discussion into
two common scenarios, each of which arises in the applica-
tions in Sec. IX and Sec. X. First, we consider designing the
filter (3) to match (or approximately match) a given operator
B ∈ R

N×N ; i.e., find H such that H(S) =B (or H(S)≈B)
(Sec. V-A). Second, we seek a filter (3) that represents a data-
driven mapping between input-output signal pairs (Sec. V-B).

A. Operator Matching

Many SP applications on graphs can be formulated as a linear
operator B on the signal x. Such an operator may arise from
the solution to a denoising problem [56], be the consensus
operator [57], or implement a specific spectral response that can
be useful for graph wavelets (Sec. VII) or spectral clustering
(Sec. X-B). We want to represent the operator as a graph filter
to reduce the computational cost (Property 6) if the matrix B is
dense, or to implement B distributively over a sensor network
(Property 5). In the following, we distinguish between exactly
and approximately matching the operator B with a graph filter.
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Exact match. Denote by H(h,S) the convolutional filtering
matrix in (3), where we make explicit the dependency on pa-
rameters h. The following holds.

Proposition 1 ([8]): Given the three following conditions:
1) Matrices B and S are simultaneously diagonalizable; i.e.,

S=VΛV−1 and B=Vdiag(β)V−1 with eigenvalues
β = [β1, β2, . . . , βN ]�.

2) For all (k1, k2) such that λk1 = λk2 , it holds βk1 = βk2 .
3) The order of H(h,S) is such that K ≥D, where D

denotes the number of distinct eigenvalues of S.
Then, B=H(h∗,S) where h∗ =Ψ†β, Ψ is the Van-

dermonde matrix defined after (12), and (·)† denotes the
pseudo-inverse.

Condition 1 implies that transformation B is diagonalized
by the GFT matrix. This implies that we can specify the
spectral response of the operation and implement it via the
filter in (3). Since obtaining the eigendecomposition of S
has a cost O(N 3), such an operation is not important for a
centralized solution, as we could perfectly filter the signal in
the spectral domain. However, it is important for distributed
processing, because of the filter locality (Property 5). We shall
detail this in Sec. IX-E.

Approximate match. When the conditions of Proposition 1 are
too stringent (especially the first one), we resort to optimally
approximating the desired operator. If Condition 1 holds, it
might be that we want to approximate B with a low-degree
polynomial (violating Condition 3) or that we do not have
access to the specific eigenvalues of B due to the computational
cost of obtaining them. In either case, we can perform the
spectral approximation described below. If Condition 1 does not
hold (i.e., B does not have the same eigenvectors as the shift
operator), we can approximate B directly in the vertex domain
via the non-spectral approximation described below.

Spectral approximation: Consider the common situation
where S is a real, symmetric GSO, the desired operator B is
jointly diagonalizable with S, and the spectral response β̃(λ)
of B is a real-valued function. The goal is to find a low-order
filter h̃(λ) that approximates this spectral response. If we have
access to the specific eigenvalues of S, we can easily obtain the
spectral response [β̃(λ1), β̃(λ2), . . . , β̃(λN )] on those eigenval-
ues. Then, Proposition 1 offers the least squares approximate
solution [22]. If, on the other hand, we only know the analytic
expression of β̃(λ) on a graph frequency interval [λmin, λmax],
the problem reduces to a one-dimensional polynomial approx-
imation problem, such as the least squares problem

h̃ = argmin
h

∫ λmax

λmin

∣∣∣∣β̃(λ)−
K∑
k=0

hkλ
k

∣∣∣∣
2

dλ, (15)

or the minimax problem

h̃ = argmin
h

sup
λ∈[λmin,λmax]

{∣∣∣∣β̃(λ)−
K∑
k=0

hkλ
k

∣∣∣∣
}
. (16)

The approaches in (15) and (16) are referred to as universal
design, because the approximating filters are designed over the
interval [λmin, λmax], as opposed to specific eigenvalues. Thus,

if the same filter is used on a different graph with the same
spectral bounds, the approximating filter will also be the same.
The solution to (15) can be found by orthogonally projecting
β̃(λ) onto the span of the first K + 1 Legendre polynomials.
A near-optimal solution to (16) can be found by truncating the
expansion of β̃(λ) into shifted Chebyshev polynomials [58]
(see Box 2). Alternative minimax approximations are investi-
gated in [59], [60]. For more details on the trade-offs involved
in polynomial approximations, see, e.g, [9, Sec. V.C] and [61].

While these approximations are constructed for the entire
interval [λmin, λmax], it is only the approximation error at the
(unknown) eigenvalues of S that affects the spectral approxima-
tion error. Thus, additional partial knowledge of the spectrum
can be leveraged to improve the polynomial approximation.
In this regard, [62] proposes a fast spectrum approximation
method for specific families of graphs, whereas [63] leverages
a fast estimation of the eigenvalue density for any graph shift
operator to achieve a lower error in the high density regions
of the spectrum. Alternatively, [57], [64] estimate the spectral
distribution of frequencies via random matrix theory for random
graphs (e.g., Erdős-Rényi). All these approaches are developed
for symmetric GSOs with real eigenvalues, while extensions
for directed graphs with complex eigenvalues are discussed
in [65], [66].

Non-spectral approximation: When the desired operation B
is not jointly diagonalized with S, we can instead approximate
it directly in the vertex domain, as stated by the following result.

Proposition 2 ([8]): Define the N 2 × (K + 1) matrix Θ=
[vec(I), vec(S), . . . , vec(SK)]. The optimal filter parameters
h∗ = arg minh‖B−H(h,S)‖F are h∗ =Θ†vec(B).

B. Data-Driven

In many cases, we do not know the exact operator but rather
have input-output realizations of a graph-based system. This is
for instance the case of opinion formation and source identifica-
tion in social networks, biological signals supported on graphs,
and modeling and estimation of diffusion processes in multi-
agent networks. The assumption here is that the data input-
output relation can be modeled as a graph filter map and our
goal is to identify the filter parameters. Formally, consider the
input x and output y satisfy

y =H(h,S)x+ n, (21)

where n is a zero-mean measurement noise. Different variants
of the problem have been studied depending on whether x and
y are fully observed or not, and whether we have additional
side information (statistical or structural) about the input
[67], [68]. Particularly, we distinguish between (i) system
identification, where we estimate the parameters h from S,
x, and a partial or complete observation of y; and (ii) blind
deconvolution, where we jointly estimate h and x from y and S.

System identification. The goal is to use the (partial) observa-
tion of y to recover the unobserved elements of y and the filter
parameters h. Consider only M ≤N nodes are observed and
define the sampling matrix M ∈ {0, 1}M×N , which has one 1
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(Box 2) Chebyshev polynomial approximation. 2 Stretched and shifted Chebyshev polynomials offer an orthogonal
basis for approximating a desired frequency response β(λ) via a low-order polynomial graph convolutional filter [9], [61].
Moreover, they offer a closed-form solution for the approximating polynomial filter coefficients. Formally, our goal is to
approximate Bx=Vdiag(β̃(λ))VHx by Vdiag(h̃(λ))VHx, where h̃ is a degree K polynomial. Let {Tk(x)}k=0,1,... be

Chebyshev polynomials of the first kind, which form an orthogonal basis for the function space L2
(
[−1, 1], dx√

1−x2

)
.

Since, our frequency response β̃(λ) is defined on the interval [0, λmax] (for positive semidefinite GSOs), we consider the
change of variable λ= 1

2λmax(x+ 1). This leads to the stretched and shifted Chebyshev polynomials

Tk(λ) := Tk

(
λ− γ

γ

)
and γ :=

λmax

2
, (17)

which can be used to expand the desired frequency response as

β̃(λ) =
1
2
c0 +

∞∑
k=1

ckTk(λ), ∀λ ∈ [0, λmax], (18)

where each parameter ck can be found in closed-form by solving the integral

ck :=
2
π

∫ π

0
cos(kθ)β̃

(
γ(cos(θ) + 1)

)
dθ. (19)

For computational efficiency, we truncate the summation in (18) to a finite K, resulting in an approximation [58]

β̃(λ)≈ h̃(λ) :=
1
2
c0 +

K∑
k=1

ckTk(λ), ∀λ ∈ [0, λmax].

This Chebyshev polynomial approximation yields a Kth order graph convolutional filter (3); i.e., for any graph signal x,
we have

Bx≈H(S)x=
K∑
k=0

ckTk(S)x, (20)

where we can compute the kth term recursively as Tk(S)x= 2
γ (S− γI)Tk−1(S)x− Tk−2(S)x, with initial values

T0(S)x= x and T1(S)x= 1
γSx− x [58]. The closed-form parameters can therefore be computed offline ahead of time

and because of the recursive implementation, these filters can also be implemented distributively (cf. Property 5).

in each row m corresponding to the mth observed node and zero
elsewhere. The filter identification problem comprises solving

h∗ = argmin
h

‖M
(
y −H(h,S)x

)
‖2

2 + γ‖diag(ω)h‖1, (22)

where ω ∈ R
K+1
+ is a weighting vector [68]. The first term

quantifies the fitting loss between the observed My and its
prediction generated by h. The second term is a sparsity-
promoting regularizer on h. Since we often do now know
the filter degree, we can overestimate it and then penalize
higher degrees to promote simpler filters. Consequently, we
can select the weights in ω to increase with the entry index.
So, the parameters associated with higher powers of S are
more heavily penalized, thus promoting a low-complexity and
numerically stable model. The scalar γ > 0 is the regularizer
weight relative to the fitting loss. Extended versions of problem
(22) consider also estimating the topology in addition to the
filter parameters; see e.g., [69], [70], [71].

Blind deconvolution. This problem arises when both the input
x and the filter parameters h are unknown. To formalize this
problem, for a given S, y is a bilinear function of h and x,
which we can denote as y = A(xh�). The linear operator A(·)

depends on the eigenvalues and eigenvectors of S and acts
on the outer product of the sought vectors. More precisely,
A(xh�) = (Λ� ⊗ (V�)−1)�vec(xh�), where ⊗ denotes the
Khatri-Rao (i.e., columnwise Kronecker) product. While in
principle we can jointly estimate x and h, this leads to a non-
convex problem with few theoretical guarantees. Instead, us-
ing the classical idea of lifting [72], we can derive a convex
relaxation of the blind deconvolution problem by noting that
y is a linear function of the entries of the rank one matrix
Z= xh�. Assuming further that x is a sparse vector (only a few
nodes inject a signal into the filter), [67] proposes solving the
convex problem

Z∗ = arg min
Z

‖y − A(Z)‖2
2 + γ1‖Z‖∗ + γ2‖Z‖2,1. (23)

The nuclear norm regularizer ‖ · ‖∗ promotes a low-rank solu-
tion since the true Z has rank one. The mixed norm ‖Z‖2,1 =∑N

i=1 ‖zi‖2 is the sum of the 	2-norms of the rows of Z, thus
promoting a row-sparse structure in Z. This is aligned with the
sparse assumption on x, since each zero entry in x generates
a whole row of zeros in the outer product Z= xh�. Upon
solving for Z∗, we can recover x and h from, e.g., a rank one
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decomposition of Z∗. Alternative relaxations to the row-
sparsity and rank minimization have been proposed. For in-
stance, [68] proposes a majorization-minimization procedure
that yields lower-rank solutions compared to the convex relax-
ation in (23), whereas [73] provides a handle to control the row-
sparsity of the recovered matrix.

Extensions to multiple input-output pairs (with a common
filter) along with theoretical guarantees when the GSO S is
normal (i.e., SSH = SHS) are investigated in [67]. The related
case of a single graph signal as input to multiple filters (gen-
erating multiple outputs) is studied in [74], thus generalizing
the classical blind multi-channel identification problem in DSP.
This setting is relevant when studying a common stimulus to
several systems (e.g., the same image shown to several pa-
tients while their brain activity is recorded) or the effect of
a single stimulus measured at different points in time (e.g.,
several snapshots of the spread of a rumor). The work in [75]
addresses blind demixing when a single observation formed by
the sum of multiple outputs is available, and it is assumed that
these outputs are generated by different sparse inputs diffused
through different graph filters. This setting is relevant when the
observations are given by the superposition of several concur-
rent processes. For example, we can model a brain state as the
result of the simultaneous reaction to several stimuli that we
want to separate.

VI. OTHER GRAPH FILTERS

Graph convolutional filters implement a polynomial fre-
quency response. Their descriptive power increases as we grow
the filter order K. However, using higher orders implies han-
dling higher matrix powers Sk, which introduces numerical
instabilities and in turn leads to poor interpolatory and ex-
trapolatory performance [61]. While orthogonal polynomials
(e.g., Chebyshev polynomials) can alleviate this issue, they
still require a high number of parameters to implement the
desired filtering function. Another limiting aspect of convolu-
tional filtering is that its functions lie in the graph spectrum,
meaning that there may not exist a GCF that is a sufficiently
good approximation to a general operator.

In this section, we look at alternative graph filters to over-
come these issues. We start with the family of filters that im-
plement a rational response in Sec. VI-A. Then, in Sec. VI-B
we discuss linear filters that go beyond the spectral analogy,
a.k.a. node domain filtering, and in Sec. VI-C we discuss
nonlinear graph filtering forms. Sec. VI-D shows how graph-
based regularization techniques behave as graph filters, and
Sec. VI-E discusses filtering with multiple graph shift operators.
Table I provides a more extensive discussion of the properties in
Sec. III-B and Sec. IV-B, as well as recommendations as to
where to use them.

A. Rational Graph Filters

A rational graph filter implements the frequency response

h̃(λ) =

(
Q∑

q=0

bqλ
q

)/(
1 +

P∑
p=1

apλ
p

)
, (24)

which is the ratio of two polynomials of orders Q and P that
control the number of zeros and poles, respectively. This form
achieves similar frequency responses as the convolutional filters
but with fewer parameters; because rational functions have bet-
ter interpolatory and extrapolatory properties than polynomials
and require a lower order to achieve a similar approximation
[61]. However, rational filters have stability issues. A rational
graph filter is stable if the roots of its denominator are different
from the GSO eigenvalues, i.e.,

p̃(λ) := 1 +

P∑
p=1

apλ
p �= 0, ∀λ ∈ {λ1, . . . , λN}. (25)

If we do not have access to the specific eigenvalues, we can
also impose universal stability by requiring condition (25) to
hold for all potential eigenvalues in the interval [λmin, λmax]
[56], [76].

Given a stable filter and defining q̃(λ) =
∑Q

q=0 bqλ
q, we can

write (24) as h̃(λ) = q̃(λ)/p̃(λ). Then the filter input-output
relation in the spectral domain has the form ỹi = q̃(λi)/p̃(λi)x̃i

at each graph frequency λi. In the node domain, the rational
filtering matrix has the form

H(S) =

(
I+

P∑
p=1

apS
p

)−1( Q∑
q=0

bpS
q

)
:=P−1(S)Q(S),

(26)

where we define P(S) := I+
∑P

p=1 apS
p and Q(S) :=∑Q

q=0 bpS
q with respective frequency responses p̃(λ) and

q̃(λ). When applied to a graph signal x, we get the input-
output relationship in the vertex domain

y =P−1(S)Q(S)x⇐⇒P(S)y =Q(S)x. (27)

Expressions (24) and (27) show the two main challenges
of rational graph filters. First, obtaining the output y from
(27) requires solving a system of equations, which has a
cubic order computational complexity O(N 3), making the
filter impractical.1 Second, designing a rational filter is more
challenging than fitting a polynomial filter because of the
nonlinear nature of the problem and the stability issues. In the
remainder of this section, we discuss strategies to approach
the latter.

Implementation. To reduce the computational cost of
solving (27), we resort to iterative solvers that are fast and
computationally efficient. If a centralized implementation is
targeted, conjugate gradient approaches that exploit the graph
structure are of interest [65]. They have a computational cost
of O((PT +Q)|E|), where T is the number of iterations.
Because of the fast convergence of the conjugate gradient, we
can stop it in a few tens of iterations. And since a rational
function achieves good approximation with low orders P and
Q, we expect the cost of obtaining the rational filter output to
be low and comparable with that of graph convolutional filters

1The inversion order cost matches that of the eigendecomposition of the
shift operator. Consequently, there is no need to design a rational filter and
apply it in the vertex domain as once we get the GFT of a signal we can
implement exactly any desired spectral response.
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(cf. (3)). Other works have considered the Jacobi method [27],
[77], quasi-Newton methods [78], or pre-conditioned gradient
descent [79] to speed-up the computation in particular cases
or have lighter per-iteration computation cost.

Instead, if a distributed implementation is needed, the
algorithm for solving (27) need also enjoy a local computation.
Most strategies rely on first-order methods based either on
ARMA-like recursions [56], [80], [81] or gradient-descent
[76]. When the graph has a small diameter, the quasi-Newton
method in [78] or the pre-conditioned gradient descent [79]
could be a choice since they can be implemented locally with
little effect on the performance.

Design. There are two streams of rational filter design,
both reminiscent of rational fitting and filter design in DSP:
optimization-based approaches and change of variable ap-
proaches.

Optimization-based: These methods can be cast as solving
the constrained optimization problem

minimize
{ap,bq}

∫ λmax

λmin

∣∣∣∣β̃(λ)− q̃(λ)

p̃(λ)

∣∣∣∣
2

dλ (28)

subject to p̃(λ) �= 0, ∀λ ∈ [λmin, λmax] ,

where β̃(λ) is the desired response. Driven by their success
in DSP [82], simple design approaches such as Prony’s and
Shanks’ methods have been extended to the graph setting in
[56], [65], [80], [82]. Such methods focus on the modified error
ẽ(λ) = β̃(λ)p̃(λ)− q̃(λ) and ignore the stability constraint. It
has been consistently observed that these simple approaches
offer good fitting and stable filters. Instead, stability-enforcing
solutions are devised in [83], [84], [85], which use, respec-
tively, a sum-of-squares, partial factorization, and constrained
weighted least squares.

Change of variable: The above strategies require solving an
optimization problem that may be computationally demanding.
To overcome this, some works extend the techniques that utilize
Chebyshev polynomials to design convolutional filters to the
rational filter design setting, ultimately yielding closed-form
solutions and stable filters. Essentially, these methods: i) map
graph frequencies λ ∈ [0, λmax] into angular frequencies ω ∈
[0, π] via the transformation variable ω = πλ/λmax; ii) design
the filter for ω via standard DSP techniques, and; iii) generate
the graph counterpart as h̃(λ) = |h̃(ω)|2

∣∣
ω=πλ/λmax

. References
[86] and [76] use the Butterworth method for the design, while
[87] considers rational Chebyshev design of the first kind. A
link with the rational filtering design in DSP is also discussed
in [88], while [89] proposes an iterative design via Chebyshev
polynomials (cf. (17)) to approximate the inverse response.
While having closed-form design, these approaches are often
limited to ideal step responses in contrast to the optimization-
based methods, which can be used for any response.

B. Node Domain Filtering

Convolutional and rational filters implement locally an op-
erator that has a spectral response. However, in many cases,
the desired operator or the data input-output mapping is more
complex than a spectral response, which makes these solutions

suboptimal (see also Sec. V). Thus, it is of interest to develop
filters from a node domain perspective and potentially go be-
yond the spectral duality. Generally speaking, a graph filter of
order K computes the output [y]i at node i as a linear com-
bination of the input signal localized in the K−hop neighbors
N (i,K), i.e.,

[y]i = hii[x]i +
∑

j∈N (i,K)

hij [x]j , (29)

where {hij} are the parameters. These parameters account
also for the graph structure (edge weights) underlying the
signal [x]j , seen locally from node i. Here, we first relate the
convolutional filtering (3) with operation (29) and then discuss
extensions to node varying [8] and edge varying versions [10].

Convolutional filtering. Leveraging locality (Property 5), the
convolutional filter obtains the information from k-hop neigh-
bors as z(k) = Skx. This can be written as

[y]i = [H(S)x]i = h0[x]i +

K∑
k=1

hk[z
(k)]i

= h0[x]i +

K∑
k=1

hk[S
kx]i. (30)

That is, the same parameter h0 is applied to [x]i by each
node i ∈ V , and the same parameters {hk} weight the k−hop
neighboring signal locally percolated via the GSO, [Skx]i.

Node varying filtering. A node varying graph filter applies
node-specific parameters hki to [x(k)]i and each [Skx]i; i.e.,

[y]i = h0i[x]i +
K∑
k=1

hki[S
kx]i. (31)

Collecting the different parameters applied at shift k into the
vector hk = [hk1, . . . , hkN ]�, we can write such a filter as

H(x) =
K∑
k=0

diag(hk)S
kx. (32)

This increased flexibility allows implementing more general
operators than the convolutional filter, while still maintaining
the local implementation. Results akin to those in Section V-A
for exact and approximate operator matching have also been
derived in [8] for node varying filters. To illustrate the result for
exactly matching an operator B, let us define δi as the N × 1
canonical vector with a 1 in position i and 0 elsewhere, and
ui =V�δi, bi =B�δi, and b̄i =V�bi. With this notation
in place, the following holds.

Proposition 3 ([8]): If the following conditions hold for all i
1) [b̄i]j = 0 for those j such that [ui]j = 0
2) For all (j1, j2) such that λj1 = λj2 , it holds that

[b̄i]j1/[ui]j1 = [b̄i]j2/[ui]j2

3) The degree ofH(S) is such thatK ≥D, whereD denotes
the number of distinct eigenvalues in S

then B can be perfectly implemented using a node varying
graph filter as defined in (32).

A direct comparison of Propositions 1 and 3 reveals the added
expressivity of node varying graph filters since the stringent

Authorized licensed use limited to: TU Delft Library. Downloaded on November 19,2024 at 08:11:04 UTC from IEEE Xplore.  Restrictions apply. 



ISUFI et al.: GRAPH FILTERS FOR SP AND ML ON GRAPHS 4757

requirement of simultaneous diagonalization in Proposition 1 is
replaced by the milder Condition 1 in Proposition 3. Similarly,
data-driven design, modifications to the adaptive methodologies
presented in Section V-B have also been extended to node
varying filters in [90], [91].

Due to the node-specific nature of node varying filters, we
can find frequency representations for every row of H(S) as

δ�i H(S) =
K∑
k=0

[hk]iu
�
i Λ

kV−1 = u�
i diag(h̃

(i))V−1, (33)

where h̃(i) =Λh(i) and h(i) = [[h0]i, [h1]i, . . . , [hK ]i] collects
the filter parameters associated to node i. The output at node
i is the elementwise product of the input Fourier transform
V−1x and the filter being implemented at i, diag(h̃(i)), and
then combined with node-specific weights u�

i that encode
how strong each frequency is represented by node i.

Edge varying filtering. We can further improve the filter
flexibility by allowing each node to weight differently the infor-
mation of its different neighbors. Then the diagonal parameter
matrix in (32) becomes a matrix Hk with the same support as
the GSO S, leading to the edge varying graph filter:

H(x) =
K∑
k=0

HkS
kx=H(S)x, (34)

where [Hk]ij = hkij is the parameter node i applies to the
signal of neighbor j at iteration k. For k = 0, we have H0 :=
diag(h0) since each node only weights its own signal [10]. By
weighting differently the shifted information of the neighbors,
the edge varying graph filter has an even higher flexibility and
still preserves the local implementation. The latter is because
the original signal values from the neighbors up to k hops away
are still propagated through the graph via the GSOSkx and only
then weighted locally by Hk. It is shown in [10] that filter (34)
can better approximate a defined operator compared with the
convolutional and rational filters. In addition, it also enjoys a
spectral representation, but that requires long derivations and
we refer the reader to [10]. Other forms of edge varying filters
are developed in [10], [92], which use a parametric GSO and a
cascaded form, respectively.

One of the main advantages of node domain filters is their
increased degrees of freedom (DoFs) while preserving linearity
and locality of implementation (Properties 1 and 5). As a result,
both filters have a computational complexity of order O(K|E|),
even though the node varying filter (32) has N(K + 1)
parameters and the edge varying filter (34) has N + (N +
|E|)K parameters. The node varying graph filter is also proven
Lipschitz stable (Property 8) in [93].

Since these filters are neither shift invariant nor permutation
equivariant (i.e., Properties 2-3 do not hold), we need to account
for the order in which we cascade them, as well as the node
labeling. The lack of permutation equivariance also implies that
we cannot transfer the learned filters across different graphs.
Another challenge is that there may be too many DoFs (param-
eters) to estimate from limited data. In these instances, we can
regularize the problem to penalize some norm of the parameters
or develop a hybrid filter where edge varying parameters are

applied only for a few representative nodes [27]. But when op-
erating on a fixed graph and with a reasonable amount of data or
a fixed operator, node domain filters can substantially improve
the performance, especially in a distributed implementation.

C. Nonlinear Graph Filtering

Nonlinear filters have been proposed to overcome the lim-
itations of node domain filters (large DoFs and lack of trans-
ferability across graphs), but still be more flexible than GCFs.
To introduce nonlinear filters, we first focus on the graph
convolutional filter (3) output yi at node i. Specifically, we
collect the K−shifted signals at node i in the vector x

(K)
i =[

[x]i, [Sx]i, . . . , [S
Kx]i

]�
and the filter parameters in the set

H= {h= [h0, . . . , hK ]�}. Then, we can write the filter output
at node i as

yi = f(x
(K)
i ;H) := h�x

(K)
i , ∀ i= 1, . . . , N ; (35)

i.e., it is a multivariate linear regression in x
(K)
i with parameters

h that are shared among the nodes. We also see from (31) and
(34) that node varying filtering is a linear variation of (35)
but with different parameters hi for each node. In contrast,
nonlinear graph filters can be built by considering a nonlinear
function f(x

(K)
i ;H) in (35) with the same parameters H for

all nodes. While the function f(·) can be arbitrary, it has
been studied for two models inspired by traditional signal
processing: the Volterra graph filter [94] and the median graph
filter [95], [96].

Volterra filter. The natural generalization of (35) is to consider
a multivariate polynomial regressor in variables x

(K)
i :

yi = f(x
(K)
i ;H) := polyL0,...,LK

(x
(K)
i ;H), (36)

where polyL0,...,LK
(·) denotes a multivariate polynomial of

orders L0, . . . , LK in [x]i, [Sx]i, . . . , [S
Kx]i, respectively, and

the set H collects the respective parameters. For instance, for
a shift order K = 1 and polynomial orders L0 = 2, L1 = 3, we
have x

(1)
i =

[
[x]i, [Sx]i

]�
and (36) becomes

yi =

L0=2∑
l0=0

L1=3∑
l1=0

hl0l1 [x]
l0
i [Sx]

l1
i and H= {hl0l1}. (37)

Expressed compactly, this filter has the input-output relation

y =

L0=2∑
l0=0

L1=3∑
l1=0

hl0,l1

[
x	l0 � (Sx)	l1

]
and H= {hl0l1}, (38)

where x	a = x� . . .� x is the element-wise a−th power of
x. Then, a nonlinear graph filter of order K has the form

y =

L0∑
l0=0

. . .

LK∑
lK=0

hl0...lK

[
x	l0 � (Sx)	l1 � . . .� (SKx)	lK

]
,

(39)

where set H= {hl0...lK} collects all the parameters of order
O(KLmax) with Lmax =max{L0, . . . , LK}. Because data are
gathered locally, these filters generate the output with the
same order of computational complexity. Such an increased
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flexibility allows us to represent more complex nonlinear
relationships in graph input-output data. But, at the same time,
multivariate polynomial regression can overfit the data and
may suffer from ill-conditioning. Differently from the node
or edge varying filter, the nonlinear filter in (39) shares the
parameters across nodes, which allows transferring it across
graphs. The Volterra graph filter is the particular case of (39)
with reduced DoFs (L0 ≤ L1 ≤ . . .≤ LK) and it has been
shown that even if the input is a bandlimited signal (cf. (8)),
the output can have frequency content in the entire graph
spectrum [94].

Median filter. All the above filters rely on signal propagation
over the graph. When a particular node is anomalous and has,
e.g., a large signal value, it will affect all the neighbors and the
filter output. Median graph filters have been proposed as robust
alternatives that can tackle such an issue.

Consider an integer h≥ 0 and a real scalar x. We define
the replication operation h � x= [x, . . . , x]� ∈ R

h. Then, the
median graph filter output at node i can be obtained as

yi = f(x
(K)
i ;H) := Med(h0 � [x]i; . . . ;hK � [SKx]i), (40)

where the median operation Med(·) sorts its arguments in as-
cending order and outputs the middle one [96]. In obtaining
[Sx]i, we compute a weighted linear combination of the entries
in x, where the weights are given by the values in the ith row of
S. If a node has a particularly high value, it can be amplified via
the shift operator S and be present in x

(K)
i for almost all nodes.

The median operator attenuates such influence. The data-driven
design of the parameters h is discussed in [96]. Cases where
the weights in S can be designed are also studied in [96]. As
with the Volterra filter, the median filter is nonlinear and local;
however, it does not enjoy a spectral equivalence. Alternative
expressions to (40) are also proposed in [95], [96]. They differ
in how the data are gathered at the nodes (either linearly via
shifting or nonlinearly via the median operator) and how these
gathered data are processed (again linearly or via a median
operator). Lastly, we remark that the local median operator in
(40) is only one choice and other nonlinear functions such as
max or min can be used [97], [98].

D. Filtering by Regularization

The graph filters discussed above can be seen as graph-based
parametric functions to model input-output mappings. When
the spectral specifications of this mapping are unclear or when
the amount of data is limited, these parametric filters can be
difficult to design or can easily overfit the data. In these cases,
we may want to implement graph filtering via regularization,
leveraging prior information about particular properties that
graph signals exhibit. For simplicity, we consider graph reg-
ularization to denoise graph signals, which is crucial in data
processing; however, similar observations extend also to inter-
polating missing values, as we shall see in Sec. IX-A.

Consider the task of recovering a graph signal z from a single
noisy observation x= z+ n, with n being additive Gaussian

noise. This can be addressed by solving

argmin
y∈RN

f(x,y) + γr(y,G), (41)

where f(x,y) is the fitting-term, typically f(x,y) = ‖x− y‖2
2,

and r(y,G) imposes a graph-based prior about the true
signal. Depending on the signal behavior with respect to the
underlying graph, we discuss three regularization techniques:
(i) smooth filtering; (ii) sparsity filtering; and (iii) Wiener
filtering.

Smooth filtering. These approaches consider a regularizer that
imposes a low signal variation between adjacent nodes. For
undirected graphs, two popular approaches are the Tikhonov
regularizer and the Sobolev regularizer, while for directed
graphs, the total variation regularizer is commonly applied.

Tikhonov [14], [19]: A smooth signal y over an undirected
graph has a low quadratic form LQ(y) = yTLy (cf. (5)). Con-
sidering LQ as a regularizer, we obtain

argmin
y∈RN

‖x− y‖2
2 + γy�Ly. (42)

The more we increase γ � 0, the more we prioritise smoothness
on the solution. Problem (42) is a quadratic convex problem and
has the closed-form solution

y∗ = (I+ γL)−1x. (43)

Comparing (43) with (27), we see that the Tikhonov filter is an
order one rational filter with frequency response h̃(λ) = (1 +
γλ)−1. This frequency response also helps understanding the
role of parameter γ; the optimal solution in (43) is a low-pass
graph filter and the higher γ, the more low-pass the filter.

Sobolev [99]: The Sobolev regularizer increases the flex-
ibility by allowing for a more expressive rational frequency
response. Specifically, it focuses on solving

argmin
y∈RN

‖x− y‖2
2 + γy�(L+ εI)βy, (44)

with ε≥ 0 and β ∈ R+. The closed-form solution is

y∗ =
(
I+ γ(L+ εI)β

)−1
x, (45)

which corresponds to a rational filter with the frequency re-
sponse h̃(λ) = (1 + γ(λ+ ε)β)−1. Here, the scalar β controls
the expressivity order of this function (cf. P in (24)) and γ, ε
are the parameters of such a rational response.

Quadratic shift variation [22]: When the graph is directed,
we measure the variability as the change between the signal y
and its shifted version Sy. Thus, we can recover a smooth signal
over a directed graph by solving

argmin
y∈RN

‖x− y‖2
2 + γ‖y − Sy‖2

2, (46)

which has a closed-form solution

y∗ =
(
I+ γ(I− S− S� + S�S)

)−1
x. (47)

This is again an inverse graph filtering, but it does not admit
a straightforward spectral analogy as (43) and (45). The
role of the regularization parameter γ is discussed from a
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bias-variance perspective in [100] and from a graph-kernel
perspective in [101]. Differently, [102] generalizes (43) to the
case where each node has its own regularization parameters
(i.e. a vector of parameters γ), yielding a rational node varying
filter (cf. (32)).

Sparsity filtering. These approaches leverage the prior that
the signal has discontinuities across neighbors or shifts; e.g., a
piecewise smooth signal that has homogeneous values within a
group of nodes but can have arbitrarily large variations between
groups. For undirected graphs, sparsity filtering is implemented
via graph trend filtering (GTF), while for directed graphs it is
implemented via the total variation in (7).

Trend filtering [103]: Let Δ ∈ R
N×|E| be the oriented in-

cidence matrix of an undirected graph G, whose rows are in-
dexed by the nodes and columns by the edges. The operation
Δ�x computes the pairwise difference between signal values
on each edge; hence, Δ� can be interpreted as a graph differ-
ence operator. In fact, since L=ΔΔ�, the regularizer in (42)
can be written as LQ(y) = yTLy = ‖Δ�y‖2

2, i.e., the squared
	2−norm of the difference vector. Instead, the GTF works with
regularized problems of the form

argmin
y∈RN

‖x− y‖2
2 + γ‖Δ�y‖1, (48)

which penalizes the absolute difference of the signal variation
in connected nodes. Problem (48) is an order K = 1 GTF and
estimates a signal y whose differences are nonzero only at a
few edges. Higher-order GTFs substitute the incidence matrix
Δ(1) :=Δ in (48) with the higher-order versions K ≥ 1

Δ(K+1),� =

{
ΔΔ(K),� = L

K+1
2 , for odd K

Δ�Δ(K),� =Δ�L
K
2 , for even K

.

For an odd K, the GTF recovers a signal that has sparse diffused
versions Ly,L2y, while for an even K, it recovers a signal that
has sparse differences of the shifted versions Δ�Ly,Δ�L2y
etc. These sparsity constraints capture discontinuities in the
graph signal and recover piecewise constant signals better than
smooth filtering methods. One of the challenges of the GTF
is that solving problem (48) requires running iterative algo-
rithms. In addition, the 	1−norm in (48) may often penalize
towards zero when the signal components are large. To over-
come the latter, the work in [104] proposes a GTF with a
non-convex regularizer.

Total variation [22]: This is the straightforward extension of
(46) that uses the regularizer TV1(y); i.e., it solves

argmin
y∈RN

‖x− y‖2
2 + γ‖y − Sy‖1. (49)

This means that we are penalizing shifted variations that are
substantial only at a few nodes. Similar to the GTF, this is also
a convex problem that can be solved with iterative algorithms.

Wiener filtering. The above regularizers do not consider any
statistical behavior of the true signal. When this signal exhibits
a graph wide sense stationary behavior [3], [105], [106] or when
it is generated by a Gaussian-Markov random field [107], we

can incorporate such a prior to recover the optimal signal in a
Wiener filtering sense.

First, consider a signal from a distribution y ∼D(0,Σy)
with covariance matrix Σy and let the noise be additive with
zero mean and covariance matrix Σn. Given y and n are mu-
tually independent, the Wiener filter comprises solving

H∗= argmin
H∈RN×N

E‖H(y + n)− y‖2
2=Σy(Σy +Σn)

−1, (50)

and setting the solution to y =H∗x. When the process y is
defined over a graph and the covariance matrices have the same
eigenvectors as the GSO – i.e., Σy =Vdiag(σ2

y(λ))V
H, Σn =

Vdiag(σ2
n(λ))V

H (independent noise) – the Wiener filter in
(50) reduces to a graph Wiener filter H(S) [108]. This graph
Wiener filter has the frequency response

h̃(λ) =
σ2
d(λ)

σ2
d(λ) + σ2

n(λ)
=

1

1 +
σ2
n(λ)

σ2
d(λ)

, (51)

which is a rational filter, and the response at frequency λ is con-
trolled by the inverse signal-to-noise (SNR) ratio SNR−1(λ) :=
σ2
n(λ)/σ

2
d(λ). Contrasting (51) with the other regularized

filters, we see that the Wiener filter does not imply a con-
stant regularization weight γ for each frequency λ, but rather
a frequency-adaptive regularizer given by the inverse SNR.
Similar to the rational graph filters discussed above, the output
of the Wiener filter can be obtained with conjugate gradient
methods; however, the matrices Σy,Σn are typically dense.
One way to tackle this is to approximate h̃(λ) with polynomial
or rational filters and then implement it via iterative recursions
[109], [110].

The main challenge of these filters is to identify a good
regularizer or a combination thereof that represents the data.
Often this may be a challenging task requiring domain exper-
tise, hence advocating for the easier solution to use more general
graph filters as input-output mappings.

E. Multi-GSO Filters

Unlike classical signal processing where the shift operation
is a time delay, in the graph setting, different choices of the
graph shift operator for the data are often possible, especially
in abstract networks (Sec. II-A). Designing or learning both
the filter coefficients and the GSO is challenging because of
the powers of S appearing in the filter expression (e.g., (3)),
and because of the high DoFs that can cause overfitting. A
way to circumvent these challenges is to build a graph filter
operating on multiple pre-specified GSOs [111], [112], [113],
[114]. Given Q GSOs {Sq}Qq=1, we define a multi-GSO graph
filter as

H(x) =

Q∑
q=1

K∑
k=0

hqkS
k
qx=H

(
{Sq}Qq=1

)
x, (52)

where {hqk} is the parameter applied to the kth signal shift
with respect to the qth GSO. The multiple GSOs now act as
inductive biases about the graph and / or data to aid modeling.
In contrast to e.g., learning the GSOs, this approach reduces
the filter parameters to Q(K + 1) and the computational cost
to O(QK|E|). In addition, because these filters are linear in the
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Fig. 5. An undecimated single-level four-channel graph filter bank. The signal is piecewise smooth with respect to the Stanford bunny graph [115]. As a
result, the non-zero coefficients of the bandpass and highpass channels (m= 2, 3, 4) cluster around the two discontinuities at the midsection and tail of the
bunny. The synthesis filters {g̃m} used here are the same as the analysis filters {h̃m}, although they do not need to be in general. The filters {h̃m} chosen
for this example with the design method of [116] satisfy the tight Parseval frame condition (54), leading to perfect reconstruction.

parameters, their data-driven design reduces to solving a least
squares problem, similar to convolutional filtering.

VII. GRAPH FILTER BANKS AND WAVELETS

In many instances, a single graph filter suffices to smooth
data, identify discontinuities, or classify a signal. However, the
outputs of multiple filters (a filter bank) can also be combined
to generate more nuanced representations of the data. The com-
bined filter coefficients can serve as feature vectors in machine
learning tasks or be leveraged in regularization problems when
one has a priori modeling information that the graph signal of
interest belongs to a class of signals whose filter bank coeffi-
cients exhibit specific structural patterns (e.g., they are sparse).

Throughout this section, unless stated otherwise, we assume
the underlying graph is undirected and the graph shift operator
is Hermitian (including real symmetric).

A. Undecimated Single-Level M -Channel Graph Filter Banks

A single-level graph filter bank without any downsampling
(undecimated) applies M different filters to a signal x and
concatenates the outputs into a single vector of length MN :

α := [H1(S)x; H2(S)x; . . . ; HM (S)x] .

An example shown in Fig. 5. When the filters, often called
the analysis filters, are linear, the graph filter bank constitutes
a linear transform from X

V (the graph signal) to XMN (the
filtered signals). Equivalently, we can interpret each of the MN

output coefficients as the inner product between the graph signal
x and a dictionary atom of the form ϕim :=Hm(S)δi, where
[δi]j = 1 if j = i and 0 otherwise. Each atom ϕim can be
viewed as a pattern defined through the filter h̃m in the spectral
domain and then centered at vertex i (cf. [30, Fig. 1]).

The most common method to reconstruct the signal from the
output coefficients is through a synthesis filter bank. For an
undecimated single-level M -channel graph filter bank, shown
in Fig. 5, the reconstructed signal is given by

xrec =

M∑
m=1

Gm(S)Hm(S)x, (53)

where {Gm(S)} are the synthesis filters.

Parseval frames. The dictionary atoms
{ϕim}i=1,2,...,N ;m=1,2,...,M form a tight Parseval frame

if
∑M

m=1

∑N
i=1 |〈x,ϕim〉|2 = ||x||22. A sufficient condition for

these atoms to form a tight Parseval frame is that

M∑
m=1

[h̃m(λi)]
2 = 1, for each i= 1, 2, . . . , N ; (54)

that is, the chosen filters cover the entire spectrum evenly in the
sense that the sums of their squared values are the same at every
eigenvalue. Benefits of designing the filters to meet this con-
dition include (i) ||x||2 = ||α||2; i.e., the filter bank preserves
the energy of the signal, which also helps avoid numerical
instabilities; and (ii) using the same filters for the synthesis filter
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bank as the analysis filter bank (i.e., Gm(S) =Hm(S) for all
m) results in perfect reconstruction of the signal, because

M∑
m=1

Hm(S)Hm(S)x=V

[
M∑

m=1

[diag(h̃m)]2

]
VHx= x.

Examples of such tight spectral graph filter frames include those
constructed and investigated in [116], [117], [118], [119].

As discussed in Sec. V, using polynomial filters circumvents
the need to exactly compute the eigenvectors of S and
also enables local processing. However, [120] shows that
it is not possible to design a filter bank comprised of
polynomial filters that satisfies

∑
m=1[h̃m(λ)]2 = 1 for all

λ ∈ [λmin, λmax] (the desired condition for a graph-independent
tight frame guarantee since the idea is to not compute all
of the eigenvalues). References [120], [121], [122] explore
different methods to design polynomial filter banks that
approximately satisfy the tight frame condition, while [123]
allows the polynomial synthesis filters {g̃m} to be different
from the polynomial analysis filters {h̃m}, and outlines a
method to design the filters to satisfy

∑M
m=1 h̃m(λ)g̃m(λ) = 1,

guaranteeing perfect reconstruction.

Spectral graph wavelets. A seminal example of undecimated
graph filter banks are spectral graph wavelets, introduced in
[124] and later extended to tight frames [116], [117], [118],
[119]. Analogous to wavelet filter banks for discrete-time sig-
nals (see, e.g., [125]), choosing the filters to be dilated versions
of each other with wider support in the highpass filters at the
upper end of the spectrum yields atoms that are increasingly (as
the filters become more dilated) localized in the vertex domain.
As a result, the spectral graph wavelet filter bank coefficients
are sparse for signals that are smooth or piecewise smooth with
respect to the underlying graph [124], [126]. This phenomenon
is illustrated in Fig. 5, where the coefficients in the bandpass and
highpass filters (channels m= 2, 3, 4) are (i) close to 0 except
around the discontinuities in the piecewise smooth signal, and
(ii) increasingly sparse at higher scales (larger m). Spectral
graph wavelets have been applied in community mining [127],
mobility pattern analysis [128], semi-supervised learning [129],
3D action recognition from depth cameras [130], fMRI data
analysis [130], and network topology analysis [132].

B. Downsampling and Critically-Sampled Graph Filter
Banks

Without any downsampling, the M -channel graph filter bank
is a redundant transform. In many applications, this is just fine
and the fact that the output coefficients are sparse for specific
classes of signals can be leveraged in regularization and ma-
chine learning problems. In some applications, it is desirable
to subsample the output coefficients, keeping only those associ-
ated with the vertices in the set Vm at the mth channel, reducing
the overall storage cost. When

∑M
m=1 |Vm|=N , the filter bank

is said to be critically sampled [133]. With a typical synthesis
filter bank comprised of upsampling the output coefficients
from each channel, filtering, and summing, the reconstructed

signal is given by (cf. (53) for the effect of the downsampling
and upsampling):

xrec =

M∑
m=1

Gm(S)M�
Vm

MVm
Hm(S)x, (55)

where MVm
is a |Vm| ×N selection matrix with [MVm

]k,i = 1
if vertex i is the kth element of Vm and 0 otherwise, and M�

Vm

is the corresponding upsampling operator.

Perfect reconstruction. While [134] investigates how to se-
lect the sampling sets {Vm}m to minimize the reconstruc-
tion error ||xrec − x||2 for a fixed choice of filters, a broader
question is whether it is possible to jointly select the filters
{Hm(S)}m and {Gm(S)}m and the sampling sets {Vm}m
to recover the original signal x exactly from the subsampled
outputs {MVm

Hm(S)x}m.
Indeed, when the underlying graph has special structural

properties, it is possible to guarantee perfect reconstruction. For
example, when the graph is bipartite and S= Ln, the spectrum
of normalized Laplacian eigenvalues (contained in [0, 2]) is
symmetric around λ= 1 and the eigenvectors associated with
eigenvalues λ and 2 − λ are closely related, leading to a spectral
folding effect analogous to aliasing in one-dimensional signal
processing. Specifically, with M = 2 and the downsampling
sets selected according to the bipartition {V1,V2}, for each
eigenvalue and m= 1, 2, we have

Γλ

(
M�

Vm
MVm

x
)
=

1
2
[Γλ(x) + JVm

Γ2−λ(x)] , (56)

where Γλ performs an orthogonal projection of a vector
onto the eigenspace associated with eigenvalue λ, and JVm

=
2M�

Vm
MVm

− IN . A key takeaway from (56) is that the portion
of the downsampled and upsampled signal in the eigenspace
associated with λ only depends on the portions of the original
signal in the eigenspaces associated with λ and 2 − λ. Ref.
[137] shows that for this case, the following two conditions are
necessary and sufficient for perfect reconstruction

g̃1(λ)h̃1(λ) + g̃2(λ)h̃2(λ) = 2,

g̃1(λ)h̃1(2 − λ)− g̃2(λ)h̃2(2 − λ) = 0.

Leveraging these conditions, [135], [137], [138], [39], [140],
[141] design two-channel critically-sampled perfect reconstruc-
tion graph filter banks.

Other special types of graph with structural properties that
can be leveraged to generate critically-sampled perfect re-
construction graph filter banks include shift-invariant graphs
that have a circulant graph Laplacian [142], [143], [144] and
M -block cyclic graphs [145], [146], [147].

The generalized critically-sampled filter banks of [136] ex-
tend the spectral folding idea from bipartite graphs to ar-
bitrary graphs. They do this by taking the filtering basis
vectors {v̄i}i=1,2,...,N to be the solutions to the generalized
eigenvalue problem

S̄v̄i = λ̄iQv̄i, (57)

so that v̄H
i Qv̄j = 0 for i �= j; i.e., the filtering basis

is orthonormal with respect to the inner product
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Fig. 6. A single-level critically-sampled two-channel generalized graph filter bank for the same signal shown in Fig. 5. This filter bank combines the perfect
reconstruction biorthogonal filters of [135, Ex. 3] with the generalized filter bank approach of [136] for arbitrary graphs. The graph is partitioned into two

approximately equal-sized complementary sets of vertices, V1 and V2. Here, S̄= L, Q=

[
[L]V1,V1 0

0 [L]V2,V2

]
, S=Q−1L (not Hermitian in general),

and Hi(S) =Vhi(Λ)V−1 =Vhi(Λ)VHQ. Although they look similar in shape, the synthesis filters are not the same as the analysis filters.

〈v̄i, v̄j〉Q := v̄H
j Qv̄i instead of the standard dot product.

In (57), S̄ is a Hermitian (including real symmetric) positive
semi-definite matrix with off-diagonal sparsity pattern
matching the adjacency matrix (e.g., a Laplacian). If, for any
partition {V1,V2} of the vertices, Q is selected to be equal

to

[
[S̄]V1,V1 0

0 [S̄]V2,V2

]
, then a spectral folding property

analogous to the one for bipartite graphs holds (but this time
for arbitrary graphs), leading to perfect reconstruction. Fig. 6
shows an example of such a critically-sampled two-channel
generalized graph filter bank.

Orthogonality and biorthogonality. A critically-sampled
filter bank is said orthogonal if

∑M
m=1 Hm(S)M�

Vm
MVm

Hm(S) = IN , in which case selecting the synthesis
filters to be the same as the analysis filters leads to perfect
reconstruction (cf. (55)), and is said to be biorthogonal if∑M

m=1 Gm(S)M�
Vm

MVm
Hm(S) = IN , again guaranteeing

perfect reconstruction. Refs. [135], [137], [138], [140],
[148], [149], [150] examine orthogonal, near orthogonal,
and biorthogonal filter designs for critically-sampled filter
banks on bipartite graphs. The primary motivation for using
biorthogonal filters with bipartite graphs is that it is impossible
to choose polynomial filters that yield an orthogonal filter
bank [138].

C. Alternative Structures for Arbitrary Graphs

A number of alternative structures for perfect signal recon-
struction on arbitrary graphs have also been proposed:

1) graph extensions of lifting transforms [151], [152], [153],
[154], pyramid transforms [155], and oversampled filter
banks [156], [157];

2) subgraph-based filter banks for graph signals [158] where
the downsampling is performed by partitioning the graph
into connected subsets of vertices and representing each
subset by a single supernode;

3) filter banks where the synthesis portion (upsampling and
filtering) is replaced with a different interpolation opera-
tor [159], [160];

4) filter banks where the downsampling is performed in the
graph spectral domain instead of in the vertex domain
[161], [162], [163];

5) filter banks that first replace the arbitrary underlying
graph by a maximum spanning tree [164], [165];

6) multi-dimensional separable filter banks that first decom-
pose an arbitrary graph into sums of bipartite graphs
[137], [138], [139];

7) filter banks that first decompose an arbitrary graph into
sums of circulant graphs [140], [143], [144];

8) filter banks that work with a similarity-transformed adja-
cency matrix [146].

D. Multi-Level Graph Filter Banks

In classical multi-level filter banks for time series data or im-
ages, multiple levels of filtering and downsampling are applied.
For example, in the classical logarithmic wavelet filter bank, at
each level, another filter bank is applied to the downsampled
output of the lowpass channel from the previous level [125].
Numerous works have investigated extensions to multi-level
filter banks, lifting transforms, and pyramids for graph signals
(e.g., [136], [137], [142], [143], [155], [158], [161]). In classical
time series analysis or image processing, the structure of the
underlying domain enables regular sampling (e.g., every other
time sample) that preserves the notion of frequency entailed by
filtering at each level of the multi-level filter bank. One main
difference and significant challenge in the graph setting is that –
unless the graph is highly symmetric – it is not obvious how to
define a coarser graph at each subsequent level of the filter bank
in a way that maintains a clear correspondence between the
eigenvectors of the shift operator that are used for graph filtering
at one level, and the eigenvectors of the shift operator on the
coarsened graph that are used for filtering the downsampled
signal on that coarsened graph (c.f., [166], [167], [168]).

E. Data-Adapted Transforms / Dictionary Learning

All of the design elements discussed so far – the graph(s),
filters, and downsampling sets – can be adapted either to the
specific graph signal being analyzed or to an additional set of
representative training signals. For example, [169] presents a
method to learn polynomial filters that yield sparse representa-
tions of the training signals and [170] presents a method to learn
filters that yield a tight frame with each resulting filter subband
capturing the same amount of energy on average across the
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training signals. This approach is particularly beneficial when
the energy of a typical signal from the class of interest is con-
centrated on a small region of the spectrum, which the authors
show is the case for brain fMRI data [170]. Meanwhile, [171] is
just one of many examples of constructing the underlying graph
from the signal, in this case for the purpose of image coding.

VIII. GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are nonlinear layered ar-
chitectures, in which each layer comprises a bank of graph
filters (Sec. VII) and an activation function that is (typically)
pointwise and nonlinear [4], [23], [172]. This nonlinear nature
allow us to capture more complex relationships than the linear
graph filters, and their compositional form allows for a sequen-
tial extraction of features, typically enhancing representational
capabilities over simpler nonlinear graph filters.

The basic building block of GNNs is the graph perceptron,
which is a straightforward extension of graph filters [23].

Graph perceptron. A graph perceptron is a nonlinear
mapping comprising a linear graph filter H(x) nested into
an activation function (a pointwise nonlinear function) σ :
R→ R, i.e.,

y = σ(H(x)) (58)

where σ(x) signifies [σ(x)]i = σ([x]i).

Graph perceptrons can be built using any of the filters re-
ported in Table I and the activation function can take different
forms e.g., σ(x) = ReLU(x) = max{0, x} or hyperbolic tan-
gent σ(x) = tanh(x). If we let H(x) be a convolutional filter of
the form H(x) = h1Sx, the graph perceptron becomes the usual
expression of GCNs given by x1 = σ(h1Sx0), where h1 is the
learnable coefficient. Extension to multi-featured graph signals
comes in (62). Cascading graph perceptrons gives rise to a graph
neural network (GNN) [23]. Formally, a GNN Φ : XV → X

V

comprising L layers is given by

Φ(x) = xL where x� = σ
(
H�(x�−1)

)
, 	= 1, . . . , L (59)

with x0 = x. That is, the input to the GNN is a graph signal that
is processed by a graph perceptron to form the output of layer
	= 1, i.e., x1 = σ(H1(x0)). Signal x1 is the input of the next
layer and it is processed by another graph perceptron to output
x2 = σ(H2(x1)). This procedure is repeated for all layers, and
the GNN output is that of the last layer, xL; see Fig. 7.

The graph filters incorporate the topology of the data struc-
ture, and these filters are dependent on the parameters at each
layer. Grouping all filter parameters in the set H, we estimate
H in a data-driven fashion from a training set T = {xi}|T |

i=1 by
minimizing a task-dependent cost function J : RN → R:

min
H

∑
xi∈T

J
(
Φ(xi)

)
. (60)

In general, it is assumed the samples in T are independent,
identically distributed, and thus (60) becomes an empirical
risk minimization problem [173]. For a supervised learning

Fig. 7. Schematic for a GNN with 3 layers. The input x is processed by a
graph filter H1 and then an activation function σ. The output of this block –
a graph perceptron – is fed into another graph perceptron corresponding to
layer 2. The output of the GNN is the output of the third, cascaded graph
perceptron. Each layer has a different filter whose coefficients are learned from
data. If required for the problem, the output of the last layer of the GNN, in
this case Φ(x) = x3 can be fed into a readout layer to finally compute the
target value ŷ. Depending on the nature of this readout layer, the distributed
nature of the GNN may be violated. See paragraph on ‘Readout Layer’ for
more details.

setting, we have output samples yi for the training data T =

{(xi,yi)}|T |
i=1 and thus the objective function in (60) becomes

J(Φ(xi),yi). For semi-supervised learning – e.g., node clas-
sification, where we have T = {x, ȳ} with inputs x typically
available for all nodes and output ȳ available only at a subset
of nodes – the i.i.d. assumption on the samples does not hold.
The objective is not necessarily to find the filter parameters
H that minimize J(·), but rather to take gradient descent steps
that would improve the generalization performance on unseen
data; see [2, Ch. 8] for more details on training neural networks.
GNNs have taken over as a very powerful and promising tool
in machine learning, with notable applications in recommender
systems [174], drug discovery [175], biology [176], [177], and
time of arrival prediction [178].

Choosing the form of filters H� determines the overall
GNN characteristics [27]. In the following, we discuss the
convolutional filters (Sec. VIII-A) and the non-convolutional
filters (Sec. VIII-B). We close with a brief overview of other
uses of graph filters in GNN-style architectures (Sec. VIII-C).

Multiple features. The representation power of the GNN in
(59) can be increased by utilizing a bank of filters (see Sec. VII)
instead of a single filter [27]. To see this, consider that the
input graph signal x= x0 gets processed by F1 different graph
filters {Hf

1 }
F1
f=1, creating a set of F1 output graph signals XF1

1 =

{x1
1, . . . ,x

F1
1 } after applying the activation function to each of

them, i.e. xf
1 = σ(Hf

1 (x)). At the next layer, we have a set of F1

input graph signals, instead of just a single one. If we want to
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use a bank of filters again, the most general linear operation
would be to use a distinct bank for each of the input graph
signals. That is, if we want F2 output graph signals, we need
F2 filters {H1f

2 , . . . ,HF2f
2 }= {Hgf

2 }F2
g=1 for each input graph

signal f ∈ {1, . . . , F1}. Doing so creates a set of F2F1 graph
signals, each one obtained as xgf

2 = σ(Hgf
2 (xf

1 )). To prevent
the number of signals from growing exponentially, a summary
is created by adding up the signals resulting from each of the
gth filters, i.e. xg

2 =
∑F1

f=1 x
f
1 . In this way, we can think of the

layer as taking F1 input signals, and giving F2 output signals.
Repeating this for every layer, we can think of taking F�−1 input
signals, and giving F� output signals, which leads to a generic
description of GNNs as follows

Φ(XF ) = XFL

L where xg
� = σ

(
F�−1∑
f=1

Hgf
� (xf

�−1)

)
, (61)

for g = 1, . . . , F� at every layer 	= 1, . . . , L, and where
XF�

� = {x1
�, . . . ,x

F�

� } is the set of F� features at layer 	. The
resulting filter bank can be interpreted as an undecimated,
analysis filter bank (Sec. VII), where the filter coefficients are
learned from data instead of being designed. Understanding
each layer as a learnable filter bank may allow us to impose
certain characteristics, such as Parseval tight frames (cf.
(54)), during design or training. The values of {F�} and
L are hyperparameters, and are often used as a proxy for
representational capability (see [2, Ch. 5] for the relationship
between capacity, width, and generalization).

Readout layer. The GNN output Φ(XF ) = XFL

L (cf. (61)) at
each vertex is a vector of dimension FL. Thus, the dimensions
of the GNN output may not match the dimensions of the
target output y. A readout layer is therefore used to match
the dimensions and decode the GNN encoded embeddings
into the final output, see [2, Ch. 9]. Depending on whether
we use the GNN for centralized or distributed processing, the
readout layer has different forms. In a centralized processing,
all node features are usually concatenated into a vector of
size NFLxGNN = [(x1

L)
T, . . . , (xFL

L )T]T and then mapped
to the output dimension as per e.g., the linear transform
u=ΘxGNN, where the matrix of parameters Θ matches the
output dimensions. Instead, in distributed processing,2 the
readout layer must also be local. One conventional case is to
consider a readout layer operating on a single node. That is,
let vector χi = [[x1

L]i, . . . , [x
FL

L ]i]
T ∈ R

FL be the vector of
GNN output features at node i and suppose the target output
is a real scalar. Then, the readout layer at node i is of the
form ui = θ�χi, where vector θ ∈ R

FL is common for all
nodes. The readout layers can also be nonlinear multi-layer
perceptron layers. In either case, they are trainable parameters
and are used to minimize cost (60) or alternative objective
functions.

Pooling. Pooling is included in regular CNNs to construct
regional summaries of information. This mainly serves two
objectives: (i) control the computational cost by trading spa-
tial information with feature information (i.e., reducing the

2GNNs are distributed architectures if the graph filters are distributable.

size of the images while increasing the number of features);
(ii) aggregate global information in the deeper CNN layers.
Pooling approaches have also been developed for GNNs and
can be interleaved with the graph perceptron layers [179]. These
also follow two different lines: (i) use some sort of multiscale
hierarchical clustering algorithm [180], creating ever smaller
graph supports at each layer; or (ii) use graph sampling methods
[181] that leave the graph topology unaltered. The former is
typically of more interest in abstract networks where the graph
supports can be manipulated. The latter is typically of more
interest for physical networks and distributed processing where
we want to use the original topology to process signals in deeper
layers. However, in many applications such as those involving
physical graphs (robotic, sensor, or power grid networks), nodes
have computational power and thus the cost of computing the
GNN output is naturally distributed among these nodes. In these
cases, pooling is less crucial and may not be needed.

A. Graph Convolutional Neural Networks

The most popular GNN architectures are those that use a GCF
at each layer; i.e., substitute H� in (59) with (3). This leads
to graph convolutional neural networks (GCNN) [180], [181],
[182]. The GCNN can be compactly written as [26]

Φ(X) =XL where X� = σ

(
K∑
k=1

SkX�−1H�k

)
, (62)

where X� ∈ R
N×F� collects the F� graph signal features xg

�

obtained at the output of layer 	, and H�k ∈ R
F�×F�−1 contains

the kth filter parameters of the F�F�−1 filters involved in (61);
i.e. [H�k]gf = hgf

�k for f = 1, . . . , F�−1 and g = 1, . . . , F�. The
multiplications Sk on the left of X�−1 shift the different signals
locally over the graph up to k hops away, whereas the multi-
plications on the right carry out a linear combination of values
contained in the same node via the filter bank coefficients, and
as such, can be arbitrary (which is the case when H�k is learned
from data).

This structure, coupled with the pointwise nature of the
activation function, makes the GCNN a local architecture
that respects Properties 3-6 and Property 8 of the graph
convolutional filter [55]. GCNNs are also Lipschitz continuous
to changes in the underlying graph support (cf. (14)), albeit
with a slightly modified constant. They can, however, process
information located in large GSO eigenvalues in a stable
manner, a feat that cannot be achieved by linear graph
convolutions (see [55]). This makes GCNNs better suited
for problems in which information located at large GSO
eigenvalues is important.

Implementations. While it is perfectly feasible to implement
GCNNs via (62), different (sub-)implementations, often de-
rived from a different stating point, have become popular.
These include:

1) GCNNs with orthogonal polynomials such as Chebyshev
[180], [183], Bernstein [184], and Jacobi [185].

2) The GCN of [186] uses in (62) S=D−1/2(I+
A)D−1/2, K = 1 and, more crucially, H�0 = 0 for all 	.
This forces all the learned filters to be low-pass filters
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leading to the oversmoothing problem so thoroughly
discussed in the GCNN literature [187], [188].

3) A Simplifying Graph Convolutional (SGC) Network
[189] further exacerbates this problem by settingH�k = 0
for all k <K for some order K.

4) A Graph Isomorphism Network (GIN) [190] can be ob-
tained from (62) by setting S to be the binary adjacency
matrix, K = 1, and H�0 = (1 + ε�)H�1 for some pre-
defined ε�. GINs further propose to use K = 0 for some
intermediate layers to mimic a node-based multi-layer
perceptron (MLP).

5) GraphSAGE [191] with a linear ‘aggregate’ function
is obtained from (62) by setting K = 1 and then nor-
malizing feature-wise the resulting graph signal. While
GraphSAGE does not suffer from oversmoothing, forcing
K = 1 precludes sharp transitions.

6) A Jumping Knowledge Network (JKNet) [192] with a
summation aggregation can be seen as computing the
GCNN operation (62) where residual connections are
used to account for multi-hop neighbors.

The design of GNN architectures is evolving at a fast pace
and thus many newer architectures become readily available
each month. While we have only mentioned the most popular
ones, we would like to encourage readers to identify whether
these new architectures are convolutional in nature, and thus fit
the description in (62), as the ones above, or they are essentially
non-convolutional and may be equivalently described by lever-
aging other filter structures as we discuss in the next section.

B. Non-Convolutional GNNs

In principle, we can build a different GNN architecture by
exchanging the filters in (61) with any of the types discussed in
Sec. VI. These GNNs will exploit different aspects of the data
structure, closely following the properties that the chosen graph
filters themselves exhibit.

Rational graph filters (Sec. VI-A) lead to GNNs that are con-
volutional in practice, but capable of achieving much sharper
frequency transitions with fewer learnable parameters. Cay-
leynets [77] and ARMANets [27] are two such examples.

Node-varying graph filters (32) lead to non-convolutional
GNNs [93] as a means of learning frequency content cre-
ation (refer to [55] for a thorough discussion on the effects
of having new frequencies at the output). Edge-varying graph
filters (34) also lead to non-convolutional GNNs [27], with
graph attention transformers (GATs, [193]) and natural graph
convolutions [194] being two of the most popular exponents.
The edge varying filter has been used here to propose a broad
family of GNN solutions as a way to show benefits and lim-
itations of the different architectures and how they trade pa-
rameter sharing with permutation equivariance. In fact, nei-
ther the node varying nor the edge varying GNNs are per-
mutation equivariant architectures. This is particularly useful
in applications where nodes are distinguishable. For example,
in power grids, some nodes represent generators while others
represent consumers, and thus it may be useful that they learn
different behaviors.

C. Other Uses of Filtering in GNNs

Graph filters also play other key roles in GNNs. For instance,
graph wavelets (Sec. VII) can be used in lieu of filters in (61) to
avoid training procedures (cf. (60)) and to gain interpretability.
The resulting architectures are known as graph scattering trans-
forms [195], [196] and have been used successfully in biolog-
ical applications [197] and 3D point clouds [198], where data
is scarce or the training process is computationally intensive.

Nonlinear graph filters, such as max or median filters
(40), can be used as local activation functions (instead of
pointwise ones). They preserve permutation equivariance
(Property 3), while achieving a higher expressive power. Us-
ing these filters also implies that the activation functions are
learnable [97], [98].

IX. APPLICATIONS IN SIGNAL PROCESSING

Graph filters have found widespread use in several signal
processing application areas. These include the standard prob-
lems of graph signal reconstruction from partial and noisy
observations (Sec. IX-A), anomaly detection over networks
(Sec. IX-B), and network topology inference (Sec. IX-C).
Graph filters are also key components of many recently de-
veloped graph-based image processing methods (Sec. IX-D).
Lastly, due to their local implementation, graph filters have been
used for distributed signal processing tasks (Sec. IX-E).

A. Signal Reconstruction

This task consists of reconstructing graph signals from one
or more noisy (and possibly partial) observations. Filtering by
regularization [Sec. VI-D] has been extensively used for this
task, and different regularizers have been developed to match
signal priors in different settings. A second strategy is to fit
the observed signals with a graph filter and use this filter to
reconstruct the missing values. This strategy is first discussed
in [21] and subsequently extended to the various graph filters
discussed in Sec. VI. These techniques are applied in sensor
networks [32] and speech enhancement [199], among others. A
third strategy to reconstruct graph signals is to represent them as
sparse linear combinations of atoms of an overcomplete graph-
based dictionary [169]; that is, write a signal as x=DGs, where
DG ∈ R

N×NS is the graph-based dictionary and s ∈ R
NS is a

sparse vector. Graph filters are used to define the atoms of the
dictionary, as DG = [H1(S), . . . ,HS(S)], where each Hs(S) is
a graph convolutional filter [169]. The advantage over graph-
agnostic dictionaries is that the filter order dictates both the
atoms’ vertex locality and the number of trainable parameters.
Differently, [200], [201], [202] learn dictionaries where the
columns in DG behave as smooth graph signals. Using the
Tikhonov regularizer, this boils down to solving versions of

min
DG ,X

‖Y−DGX‖2
F +γ1trace(D

�
GLDG) + γ2trace(X

�LcX)

s.t. ‖xi‖0 ≤ T ∀ i, (63)

where L and Lc are Laplacians of two graphs capturing the
manifold structure of the dictionary atoms DG and of the data
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X, respectively. The constraint (63) imposes a maximum spar-
sity T on each column xi of X and γ1, γ2 > 0 control the
respective trade-offs. Further, [203] augments problem (63)
with graph wavelets to learn multi-scale atoms that facilitate
scalability to large graphs. Finally, [204] considers quantization
effects on the learned atoms when such dictionaries are used for
distributed signal processing tasks.

B. Anomaly Detection

Many graph signals – including, e.g., voltage measurements
in power grids [34] or brain imaging recordings in healthy
patients [205] – exhibit bandlimited (cf. (8)) and/or low-pass be-
havior [5], [31]. When an anomaly occurs, these signals contain
unexpected components in their high-pass spectrum. We can
leverage graph filters to localize such components associated,
e.g., with corrupted signals [34] or non-healthy patients [205].
The idea is to design a graph filter H(S) and form a hypothesis
test on the filtered signal y =H(S)x of the form

H0 : f(y)≤ γ

H1 : f(y)> γ, (64)

where f(y) is a transformation of the filtered output (e.g.,
f(y) = ‖y‖2) and γ is a threshold; that is, the filtered signal
shows different characteristics under the null hypothesis H0 and
the alternative hypothesis H1.

The work in [22] considers such a setting to detect anomalous
sensors. The input signal is filtered with a high-pass convolu-
tional filter and the signal is classified as anomalous if one or
more GFT coefficients exceed a threshold. References [206],
[207], [208] consider nonlinear filters (Sec. VI-C) to recon-
struct the data under normal behavior, and the low-pass signal
components are used to detect and localize anomalous sensors.
This idea is extended in [209] to identify a cluster of abnormal
nodes. The work in [210] proposes an unsupervised setting for
the scenario when we do not have knowledge of how normal
and/or anomalous graph signals behave. Under the assumption
that normal data are more frequent than abnormal ones, the
authors use two complementary ideal step graph filters – one
low-pass and one high-pass – with the same cut-off frequency,
and optimize the cut-off frequency to minimize the cluster size.

In the context of brain imaging, [205] uses similar principles
to detect early stage Alzheimer’s disease. Two band-pass filters
are built (one per type of patient) to localize signal compo-
nents not belonging to that class. Subsequently, an energy-
based Neyman-Pearson detector is derived from the filtered
outputs. Reference [211] generalizes this to the setting where
information about the alternative hypothesis H1 is unavailable,
leading to a Neyman-Pearson detector only with respect to
hypothesis H0.

C. Network Topology Inference

Often the graph G is unavailable and, accordingly, network
topology inference from a set of (graph signal) measurements
is a prominent yet challenging problem. Early foundational
contributions can be traced back to the statistical literature of
graphical model selection [212], [213]. Recently, the fresh sig-
nal representation perspectives offered by GSP through graph

filters have sparked renewed interest [41]. At its core, network
topology inference assumes some relation between the set of
observed graph signals X= [x1,x2, . . . ,xm] and the GSO S to
be recovered. This relation can be modeled as each xi being the
output of a graph (convolutional) filter defined on the unknown
S. Intuitively, this means that the observations xi were gener-
ated through (linear) local interactions in the unknown graph,
so that the topological information of S is contained in X.

Different assumptions on the filter type generating X lead to
different formulations of the topology inference problem. We
can state a generic version of this inverse problem as

min
S∈S

f(X,H(S)) + r(S), (65)

where the fitting loss f(·) quantifies how well X can be
modeled as the output of a filter H(S), the regularizer r(·)
promotes desirable properties on S such as sparsity, and the
feasibility set S encodes the type of GSO that we are looking
for (e.g., Laplacian or adjacency matrix).

Smoothness. A first type of (convolutional) graph filter
considered in the literature is the low-pass graph filter. This is
a reasonable modeling assumption in averaging dynamics such
as opinion formation. This model leads to signals xi being
slow varying, which when S is the graph Laplacian implies
smoothness of xi on the unknown graph (cf. (5)). Two early
proponents of this model are [214] and [215]. Although their
regularizers r(S) are different, in both cases the fitting term is
f(X,S) = Tr(X�LX) so that it penalizes graphs not leading
to a smooth representation of the observed signals.

Stationarity. Another approach is to not assume any specific
form (low-pass, band-pass, high-pass) for the graph filter gen-
erating X [216]. Under certain statistical assumptions on the
inputs to the filter, this setting leads to the signals xi being graph
stationary on the unknown S [3], [105], [107]; (cf. Sec. VI-D,
Wiener filter). In short, this implies that the covariance matrix
Σx of the observed signals shares the eigenvectors with S, or,
equivalently and more practically, that Σx and S commute. Ref.
[216] uses a two-step procedure to first estimate the eigenvec-
tors of S and then restate (65), where only the eigenvalues of
S are unknown. In contrast, the commutativity property can be
imposed through a fitting term of the form f(X,S) = ‖Σ̂xS−
SΣ̂x‖F, where Σ̂x is an estimate of the covariance matrix [217].
Other assumptions on the filter include modeling the signal as
the superposition of several heat-diffusion filters [218], [219],
or as a consensus-like process [220], [221].

D. Image Processing

Graph-based image processing complements conventional
image processing approaches with new insights and techniques
for tasks such as image reconstruction and filtering [222], [223].
Images have a natural grid structure that can be represented as a
graph, where each node is a pixel, an edge connects two pixels,
and the graph signal is the pixel intensity. The edge weights can
be set via the Gaussian kernels as

wij = exp

(
− ‖fi − fj‖2

2

σ2
l

)
exp

(
− (xi − xj)

2

σ2
x

)
, (66)
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where fi is the location (feature) of pixel i, xi its intensity, and
σl, σx are two parameters. Such edge weighs are a combination
of the geometric distance (pixels’ locations) and photometric
distance (signal intensities xi), where a larger distance implies
a smaller weight. Graph-based image processing works mainly
with undirected graphs and low-pass filtering since connected
pixel nodes have a stronger edge weight if they are close
(either geometrically or photometrically). Graph filters are
used for image reconstruction (e.g., denoising, deblurring) and
edge-preserving filtering (i.e., preserve edges appearing in an
image, not graph edges).

Image reconstruction. This task consists of reconstructing
an image signal x from a degraded version, which can be
noisy, blurred, or have missing pixels. These are all ill-posed
inverse problems and regularization is typically used. In the
GSP language, this is a graph signal reconstruction task and
regularized filtering [Sec. VI-D] is often used to impose
low-pass behavior. The Tikhonov regularized filter (42) is
leveraged for image denoising in [224]. Reference [225]
explores the connection with manifold regularization and
provides an explanation why low-pass filtering is particularly
useful for denoising depth images. Reference [226] uses
a form of the total variation regularizer (46) to denoise
the image. Reference [227] approaches the problem from
a Wiener filtering perspective (50)-(51). Since regularized
filters are particular forms of rational graph filtering, [228]
proposes a non-parametric rational filter to denoise the
image. Finally, [16] considers a smoothing graph filter of
the form H(S) = e−γL =

∑∞
k=0

γk

k! (−L)k (a.k.a. the heat
kernel) to perform low-pass graph filtering. This can be
seen as a convolutional filter of order K →∞ with frequency
response h̃(λ) = e−γλ, which for γ > 0 acts as a low-pass filter.

Edge-preserving filtering. Some conventional image filters
that preserve image edges can also be interpreted from a GSP
perspective. Ref. [54], [229] study the bilateral image filter and
show that it is an order K = 1 low-pass GCF (compare to (66))
that smooths the image. To boost smoothing, [230] develops the
trilateral filter, which has a rational graph frequency response,
explaining its improved performance. GCFs are also used for
guided image filtering in [231], [232].

Simple forms of GCFs are also used for smoothing and edge
enhancement with low computational cost. A convolutional fil-
ter of small order (e.g., two) is used to smooth the image, and a
successive filter of the form H(L) = I+ h1L is used to sharpen
the edges [233], [234]. Ref. [235] uses GCFs to efficiently
implement the sparse low-pass discrete cosine transform in the
vertex domain. Lastly, median graph filters (40) are used in
[236] to detect ships in image data.

E. Distributed Signal Processing

Because of their local implementation (Property 5), graph
filters are readily distributable, where the graph captures both
the signal structure and the distributed communication pattern.
For example, we may want to denoise sensor measurements
(the graph signal) over a network where each node can

exchange information only locally. The research on distributed
graph filtering has evolved in three main directions: (i) using
graph filters to approximate a desired operation and apply it in
a distributed fashion; (ii) analyzing the filtering performance
when facing distributed communication challenges such as
interference, asynchronous implementation, and quantization;
and, (iii) estimating the filter parameters distributively.

Distributed tasks. Using graph filters for distributed process-
ing implies first matching a desired operator [Sec. V-A] and then
deploying the filter. Here, we first discuss distributed average
consensus and then other general operators.

1) Consensus: Distributed average consensus is a corner-
stone method underpinning myriad distributed estimation and
detection tasks [237]. Given a graph G = (V, E) represent-
ing connectivities E between different agents V , we want the
agents to estimate the average value of their signals x by
only exchanging information with their local neighbors. Let
x̄ := 1/N

∑N
n=1 xn be the true average, y := x̄1 the vector

of averages, and B := 1
N 11� the consensus operator. Then

y =Bx. Graph convolutional filters can be used to reach exact
and finite-time consensus as long as we design appropriately
their coefficients, as stated by the following proposition.

Proposition 4 (Finite-time consensus [238]): Average con-
sensus can be computed exactly in finite-time by a graph con-
volutional filter of appropriate order if the Laplacian eigenvalue
λ1 = 0 is of multiplicity one, i.e., the graph is connected.

Since the constant vector v1 = 1/
√
N1 is an eigenvector of

the Laplacian (i.e., L1= 0), we can find the filter coefficients
to achieve the frequency response

h̃(λn) =

{
1 for λn = 0 (n= 1)

0 for λn > 0 (n= 2, . . . , N)
. (67)

References [238], [239] provide closed-form solutions for
{hk}, whereas [240] discusses theoretical limits on the mini-
mum filter order for which consensus can be achieved.

Exact finite-time consensus can be challenging due to nu-
merical issues related to computing close-by eigenvalues. Ap-
proximate consensus is analyzed in [238] for the convolutional
filter (cf. (3)), in [8] for the node varying filter (32), and in
[10] for the edge varying filter (34). The common observation is
that filters with higher orders approximate better the consensus
operator; however, instabilities during the design phase arise
and more advanced design strategies are needed [92]. When the
underlying graph comes from a random distribution, reaching
consensus via graph filtering can be improved by accounting
for the distribution of the eigenvalues [57].

Recent literature also discusses the links between consen-
sus via graph filtering and control theory. Specifically, [241]
discusses both finite-time and asymptotic consensus, and de-
rives conditions when they can be achieved even over uncer-
tain graphs. References [242], [243] focus on graph filters of
order two to accelerate consensus. By linking the eigenvalues
of the respective graph Laplacian with the graph properties,
[242] provides optimal filter design for finite-time consensus
and characterizes the convergence rate. On the other hand,
[243] shows that for some graphs it is impossible to accelerate
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consensus. Finite-time consensus over directed graphs is dis-
cussed in [244], [245], where, as for the undirected case, the
multiplicity of the eigenvalues influences the number of steps.
Reference [245] discusses asymptotic consensus for unknown
directed graphs, and [246] considers finite-time consensus over
random graphs. Lastly, [247] focuses on group consensus via
graph filtering, i.e., that nodes within a group achieve average
consensus, but different groups can have different values.

2) General operator: In Sec. V-A, we discussed filter
design strategies to match any general operator B via graph
convolutional filters. Exploiting the filter locality, it is then
possible to implement B (or an approximation) distributively
over the graph. Distributed operator matching via graph filters is
investigated for the convolutional filter in [9], [239], [248],
rational filter in [56], [249], node varying filter in [8], edge
varying in [10], [92], and for other modifications of these filters
in [249]. The common theme is to approximate B with a low
filter order, so as to limit the communication costs. Reference
[250] details this challenge and designs the minimum order
convolutional filter to either match or approximate the operator.

Distributed challenges. In distributed graph filtering, we must
also account for the communication challenges, including:

1) Interference: In distributed processing, the communica-
tion edge weights Ŝ may differ from the nominal ones S used
to design the filter. Property 8 characterizes the impact of small
differences in the GSO on the output of graph convolutional fil-
ters, which are Lipschitz. However, it focuses on small relative
perturbations, while we often encounter larger perturbations
such as link losses. The effect of link losses on graph filters
is discussed in [251], [252]. The following result generalizes
Property 8 to this stochastic setting.

Proposition 5 ([252]): If the edges in the graph realization
Ŝ⊆ S are preserved independently with a probability p and the
filter is Lipschitz (Property 8) with constant C, the expected
squared deviation of the filter output is bounded as

E
[
‖H(Ŝ)x−H(S)x‖2

2

]
≤ αNC2(1 − p)‖x‖2

2 + O((1 − p)2),
(68)

where α is either 2 or the maximal node degree, depending of
the choice of shift operator.

Similar results are developed in [253, Proposition 1] for
convolutional filters and in [251, Thm. 3] for distributed rational
filters. Ref. [254] considers the setting where the link preserva-
tion probabilities are different for each edge, and characterizes
the statistical output of both convolutional and node varying
filters [254, Proposition 1]. The authors then consider such a
statistical deviation to design robust filters and propose a cross-
layer protocol to run graph filters over an asymmetric wireless
sensor network. Robust data-driven learning of graph filters in
stochastic settings is also investigated for GNNs: [253] shows
that by learning the parameters on a perturbed graph, we can
achieve robust transference; and [255] proposes a constraint-
learning framework where the parameters are optimized in the
expectation while bounding the output variance.

2) Asynchronous implementation: Another challenge in dis-
tributed filtering is that nodes cannot always communicate in
a synchronous manner. Asynchronous communication enables

scalability [256], as it avoids the need for global synchroniza-
tion; however, in general, it compromises the guarantee that the
filter output converges. The work in [257] provides sufficient
conditions for an asynchronous implementation to converge
to the designed output in a mean-squared error sense. Similar
results are derived for filter banks in [258] and for the edge
varying filter in [259].

3) Signal quantization: In a distributed setting, we may also
need to account for the low communication capacity between
sensors. In these cases, the exchanged signal shifts x(k) = Skx
need to be quantized prior to transmission. The quantized signal
can be written as x̃(k) = x(k) + n

(k)
q , where n

(k)
q is the quan-

tization error. In turn, the quantized filter output becomes

yq =

K∑
k=0

hkS
kx+

K∑
k=1

hk

k−1∑
κ=0

Sk−κnq :=H(S)x+ εq, (69)

where is εq the accumulated quantization error. This quantiza-
tion error distorts the filter output and needs to be accounted for
during the filter design phase. If β̃(λ) is the desired frequency
response and MSEQ(h) is the mean squared quantization error,
the robust filter design problem looks like

minimize
h

∫
λ

∣∣∣∣
K∑
k=0

hkλ
k − β̃(λ)

∣∣∣∣
2

dλ

subject to MSEQ(h)≤ γ

, (70)

where γ controls the distortion and needs to be set in
accordance with the quantization step size [260], [261]. Ref.
[262] further discusses optimal quantization schemes and links
them with the graph topology, while [261] discusses robust
quantization in the presence of link losses. Ref. [204] further
discusses the impact of quantization errors when learning
localized dictionaries (cf. (63)) via graph filters, while [263]
discusses a joint design of signal sampling and recovery under
quantization.

Filter estimation. The above works consider filters that are
designed centrally and implemented distributively. A recent
stream of works consider the task of estimating the filter coeffi-
cients distributively when data is available. Formally, consider a
series of input-output pairs {x(t),y(t)}, where for each t, model
(21) holds. We can reformulate the latter as

y(t) = Z(t)h+ ν(t), (71)

where Z(t) = [x(t),Sx(t), . . . ,SKx(t)]. Under standard statis-
tical assumptions, we can find the filter parameters h that mini-
mize E‖y(t) − Z(t)h‖2

2 by using classical centralized linear re-
gression techniques [90]. More interestingly, we can decompose
this objective among the N nodes as

h∗ = argmin
h

N∑
i=1

E|y(t)i − z
(t)�
i h|2, (72)

where z
(t)�
i is the i-th row of Z(t). The reformulation in (72)

leads to a decentralized solution. In particular, diffusion strate-
gies are attractive since they are scalable, robust, and enable
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continuous learning and adaptation. A distributed adapt-then-
combine diffusion least mean squares (LMS) algorithm takes
the following form at every node i

ψ
(t+1)
i = h

(t)
i + μiz

(t)
i

(
y
(t)
i − z

(t)�
i h

(t)
i

)
, (73a)

h
(t+1)
i = ciiψ

(t+1)
i +

∑
j∈Ni

cjiψ
(t+1)
j , (73b)

where μi > 0 is a local step size and {cji} are non-negative
combination parameters satisfying cji = 0 if j �∈ Ni, and∑N

j=1 cji = 1 [90]. In the adaptation step (73a), each node i

updates its local parameter estimate h
(t)
i to an auxiliary inter-

mediate vector ψ
(t+1)
i . In the combination step (73b), node i

aggregates its own intermediate vector ψ(t+1)
i and those from

its neighbors to update its estimate h
(t+1)
i . We run T iterations

of this diffusion algorithm to estimate the filter parameters at
each node. Assuming that vectors z

(t)
i are drawn from a zero-

mean random process that is white over the temporal dimension
t, the following result holds.

Proposition 6 ([90]): For any initial condition, the iterative
algorithm in (73) converges asymptotically in the mean towards
the optimal vector h∗ (i.e., the expected value of the error goes
to zero) if the step sizes μi are small enough.

Several extensions of this basic formulation have been pro-
posed. First, a state space formulation is discussed in [264],
which allows also to find the minimum filter order. Second,
model (21) assumes instantaneous diffusion, where node i pro-
cesses y(t)

i at each time instant t by collecting samples of x(t)

that are up to K hops away. Since this limits the practical
implementation, [90] also considers a modified model where
the successive shifts in the filter are applied to different time
samples of the input. Third, the convergence rate of LMS is
notoriously slow. To alleviate this problem, (i) [90] presents
a modified adaptation step (73a) based on Newton’s method
where Hessian information is considered but at an increased
(per iteration) computational cost; and (ii) [91] considers re-
cursive least squares adaptive estimators. Lastly, [265] extends
these techniques to nonlinear filters, and [266] discusses the
distributed parameter estimation of GNNs.

X. APPLICATIONS IN MACHINE LEARNING

In machine learning, graph filters act as a parameterized map-
ping between input-output data pairs and use the graph structure
as an inductive bias. Particular properties of interest include the
limited number of parameters, permutation equivariance, and
the linear computation cost. Hence, graph filters have been use-
ful in the standard tasks of semi-supervised learning on graphs
[Sec. X-A] and unsupervised learning, especially in clustering-
like algorithms [Sec. X-B]. Graph filters have also been used
for graph-based matrix completion [Sec. X-C] and Gaussian
processes [Sec. X-D]. Lastly, we review some applications in
computer graphics and computer vision [Sec. X-E].

A. Semi-Supervised Learning

Semi-supervised learning on graphs classifies unlabelled
nodes given labels on some other nodes. Graph filters can be

used to weigh and propagate the label information of multi-hop
neighbors to the unknown nodes. Mathematically, consider the
label matrix X ∈ R

N×C such that row n represents the label
of node n among the C classes, i.e., entry [X]nc = 1 if node n
belongs to class c ∈ [C] and zero otherwise. We consider that
only M �N nodes are labeled, treat each column of X as a
graph signal, and infer the labels as

Y =H(S)X, (74)

where the unlabeled node m is assigned to class c for which
entry [Y]mc is highest. The filter parameters are estimated as

minimize
H

∥∥M(
H(S)X−X

)∥∥
F
+ γr(H,Y), (75)

where M= diag(m) and m ∈ {0, 1}N is a masking matrix to
compute the error only on the labeled nodes. Instead, r(H,Y)
is a regularizer on the filter parameters H (e.g., norm two)
or on the output Y (e.g., smooth label variation, cf. (5)).
Refs. [21], [267] consider the convolutional filter (3) for bi-
nary and multi-class classification of blog networks and in-
direct bridge monitoring, respectively. Ref. [108] considers
the Wiener graph filter (51) and shows improvement upon
conventional label propagation algorithms. To further improve
the expressivity of the mapping, [268] uses a bank of filters
with multiple GSOs (cf. (52)), where each GSO represents
a different similarity graph built from node features. Finally,
[269] considers a bank of convolutional filters, where each
filter is fitted to a particular class. Then, the unlabelled nodes
are assigned to the class with the highest filter output. These
works, however, solve the classification problem via regression-
like cost functions (e.g., Frobenius norm ‖ · ‖F in (77)) which
may lead to a suboptimal performance despite the efficient
and convex implementation properties. GNNs are also a valid
alternative, given their state-of-the-art performance in this task
[186], [270]

B. Unsupervised Learning

The canonical task in unsupervised learning on graphs
consists of grouping nodes in the absence of labels into
different clusters such that nodes are tightly connected within
clusters and loosely connected between them. In this context,
graph filters have been used to tackle the scalability issues
of different variants of spectral clustering, a conventional
unsupervised learning technique. Graph filters have also been
used as a signal model to detect clusters in networks when no
topology information is available.

Spectral clustering. This is a family of algorithms that
compute spectral embeddings of data points based on the
eigenvectors of a graph Laplacian matrix; Alg. 1 shows the
steps of a spectral clustering algorithm [39]. The spectral
embeddings (step 4) are built from the k eigenvectors
associated with the lower variation on the graph (cf. (6)); hence,
behaving as an ideal low-pass graph filter. This step and the
k-means clustering in step 7 are the computational bottlenecks
of spectral clustering and limit its scalability. Thus, approximate
solutions are often preferred to trade accuracy with scalability
[271]. The scalability of spectral clustering is enhanced via
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Algorithm 1 Spectral clustering blueprint.
1: Input: A set of N d−dimensional data points f1, . . . , fN

and the number of clusters k;
2: Build an undirected similarity sparse graph G (cf. (1)) with

each node a data point (e.g., a K nearest neighbor graph of
N nodes);

3: Set S= L ∈ R
N×N to be a graph Laplacian of G;

4: Take the k eigenvectors Uk ∈ R
N×k of L associated with

the k lowest eigenvalues (smoothest, cf. (6));
5: Normalize Uk row-wise (unit norm) to have Ũk ∈ R

N×k;
6: Treat each node n as a data point in R

k and define its feature
vector f̃n ∈ R

k as the nth row of Ũk

f̃n = Ũ�
k δn, (76)

where δn ∈ R
N is a Dirac vector with [δn]m = 1 if m= n

and zero otherwise;
7: Obtain the k clusters via k−means with the Euclidean

distance dnm = ‖f̃n − f̃m‖2.

graph filtering in [272]. The ideal graph filter is approximated
via convolutional (cf. (19)) or rational [87] Chebyshev fitting;
k-means is run only on a sampled number of nodes; and
the cluster labels on the remaining nodes are obtained by
solving a smooth regularized problem (cf. (42)). The filtering
operations adopted in compressive spectral clustering are
also implemented via the power method in [273] and via an
asynchronous implementation in [274].

Blind community detection. As discussed in Section IX-C,
graph filters can serve as generative models for nodal obser-
vations, inspiring a range of network inference methods. Infer-
ring the entire graph structure is often only the first step of a
longer pipeline where the ultimate goal is to obtain interpretable
information from graph signals. To this end, a feature that is
often sought in network science is the community structure that
offers a coarse description of graphs. For this task, applying
conventional methods necessitates a two-step procedure com-
prising graph learning and community detection. An alternative
line of work, called blind community detection, recovers the
communities directly from the observed signals bypassing the
intermediate network inference step [275]. More precisely, un-
der the assumption that the observed signals x are obtained by
passing white noise through a low-pass filter, it follows that the
leading eigenvectors of the covariance Σx coincide with the k
lowest eigenvalues of L (see step 4 in Algorithm 1); see [275]
for theoretical guarantees. Once this information is attained,
the same steps as spectral clustering can be followed to reveal
the community structure. The benefit of this direct approach
stems from the fact that fewer observations are needed to re-
cover the coarse community features compared to the detailed
graph structure. Blind recovery of network features has been
extended to community detection in dynamic graphs [276],
node centrality estimation [277], [278], and topology change-
point detection [279], [280], [281].

C. Matrix Completion and Collaborative Filtering

Matrix completion comprises filling the missing entries of
a partially observed matrix. While its staple application is in
recommender systems [282] it is also used in bioinformatics
[283], signal processing [284], and chemistry [285], to name
a few. Graphs have been used to capture the structural side
information among the rows and columns of this matrix and
the entries are treated as signals over these graphs. Then, graph
filters have been used to interpolate the missing values in a form
akin to the signal reconstruction task seen in Sec. IX-A.

Specifically, consider matrix R ∈ R
R×C capturing interac-

tions between RC entities, e.g., R users interacting with C
items in a recommender system. We observe only a portion
of R, which we represent with the masked version M�R
where M ∈ {0, 1}R×C is the masking matrix with [M]ij = 1
if [R]ij is observed and zero otherwise. Then, the canonical
matrix completion problem consists of solving

minimize
X

‖M� (X−R)‖2
F + γr(X) (77)

which looks for a matrix X ∈ R
R×C that is close to R on the

observed entries while at the same time having a particular
structure, e.g., low rank via the nuclear norm r(X) := ‖X‖∗.
Such solutions suffer when an entire row/column of R is
not observed or when the low-rank structure in R does
not hold. In these cases, one can exploit side information,
including, e.g., user features (age, gender, geolocation) for R
or social interaction within them; or item features (category,
co-purchase) for C. Such side information can be used to build
two graphs SR ∈ R

R×R and SC ∈ R
C×C and treat each row rr

and column rc of R as signals on these graphs, respectively. If
the side information is unavailable, the graph can be built based
on a similarity distance by using the available values in R [286].

Regularized filtering. Under the assumption that connected
entities have similar preferences (e.g., similar users tend to like
similar products, or co-purchased products tend to be liked
similarly), regularized filtering (Sec. VI-D) is used to smooth
the available values into the adjacent nodes by imposing
r(X) = Tr(X�SRX) + Tr(XSCX

�) as a regularizer in (76),
with SR and SC being some Laplacian form [287], [288],
[289], [290]. Such regularizers impose a low-pass filtering
behavior on the two graphs.

Collaborative filtering. The above graph-based regularizer
may be suboptimal because the low-pass filtering leads to in-
terpolated values that are similar in strongly connected nodes.
While this issue could be tackled by choosing a different graph
regularizer, going down this path often leads to a trial and error
process of choosing regularizer kernels. Another approach is
to learn the parameters of a graph convolutional filter, in order
to gather multi-hop neighbor information. The filter parameters
are designed as

minimize
H

∑
(r,c)∈T

∣∣∣∣[H(SR)x
r
]
c
− [R]rc

∣∣∣∣
2

+ γr(H), (78)
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which fits to the available interactions while regularizing them
(e.g., norm two). Reference [43] shows that a learned graph
convolutional filter in this setting behaves as bandstop, in which
the low-pass component smoothes the available values while
the high-pass component improves diversity. Furthermore, the
vanilla nearest neighbor collaborative filter is the particular case
of an order one graph convolutional filter. Ref. [291] uses a filter
bank of convolutional filters to balance recommendation accu-
racy with diversity, while [292] follows a graph convolutional
approach over an item-item graph with the shift operator being a
random walk Laplacian. Differently, [293], [294] treat matrix R
as the interactions of a bipartite graph and build a convolutional
filter on this graph. Reference [295] discusses further the details
of these techniques with regularizer filtering for recommender
systems. Extensions to GNNs could be found in [286].

D. Supervised Learning With Gaussian Processes

Consider the common scenario where we are given input-
output data pairs {xn,yn}, with each input xn ∈ R

K and each
output yn ∈ R

N . We wish to learn a model of the form

yn = f(xn) + εn, (79)

where {εn} are white Gaussian noise vectors and f : RK → R
N

is an unknown, multi-output function. In Gaussian process (GP)
regression [296], [297], f(xn) is modeled to be distributed
as a GP

f(xn)∼ GP(m(xn),K(xn,xm)), (80)

which is a distribution over functions characterized by a mean
function m(x) = E[f(x)] (i.e., the weighted average of the eval-
uations at x of all functions in the distribution) and a covariance
kernel function

K(xn,xm) = E
[(
f(xn)−m(xn)

)(
f(xm)−m(xm)

)]
that models the dependence between function values at two
inputs xn and xm.

When the outputs yn ∈ R
N are graph signals, an alternative

model to (81) is

yn =H(S)f(xn) + εn, (81)

where again f(xn) is assumed to be a Gaussian process
with covariance kernel K(xn,xm). Consequently, the covari-
ance matrix between the respective outputs is Cov(yn,ym) =
K(xn,xm)H(S)H(S)� [298], [299].

The advantage of incorporating the graph filters into the
regression model (81) is that we can now impose particular
signal behavior properties. We mention three examples. First,
[298] considers H(S) to be a low-pass rational filter of order
one (43), so that the model (81) outputs graph signals that are
smooth with respect to the underlying graph. Second, [300] gen-
eralizes the Matérn kernel to the graph setting, yielding a graph
filter of the form H(S) =

(
2α
β2 IN + S

)α
2 , where α, β > 0 and

S is some form of the Laplacian. Third, to further enhance the
kernel flexibility, [299] considers a graph convolutional filter,
where the parameters are estimated from the data to ensure a
valid kernel. Because of the multi-hop locality of graph filters,
such a parametric approach weighs accordingly the information

of multi-hop neighbors and has shown a better performance
compared with regularized-filtering kernels.

E. Computer Graphics and Computer Vision

In computer graphics and in computer vision – including
subdomains such as virtual reality, geographic information
systems, and autonomous driving – two types of sensing
data have become increasingly prevalent [301], [302], [303],
[304]. First, using light detection and ranging (LiDAR)
sensing, the external surfaces of objects are often represented
with 3D point clouds and their physical coordinates (and
possibly color information). Second, using depth cameras
such as Microsoft Kinect, depth maps can be associated
with the pixels of 2D images. For both types of data, graph
filters have proved useful in common tasks such as object
classification [305], object tracking [306], [307], [308], motion
estimation and forecasting [309], [310], facial recognition
[311], visual localization [312], segmentation [313], [314],
pose estimation [315], [316], pose transfer [317], compression
[309], [318], registration [318], surface smoothing [11],
[12], [318], [319], edge detection [320], inpainting [321],
deblurring [322], and color denoising [323]. We highlight a
few examples.

Surface smoothing. In one of the earliest examples of using the
eigenvectors of a discrete Laplacian to perform graph filtering
(1995), Taubin [11], [12] smooths polyhedral surfaces (also
called surface fairing) by (i) creating a graph by connecting
each pair of vertices that share a face in the polyhedral
surface, and (ii) updating the vertex locations by applying
a lowpass polynomial filter of the random walk Laplacian
Lrw to each vector of coordinates; e.g., xupdated =H(Lrw)x,
yupdated =H(Lrw)y, and zupdated =H(Lrw)z.

Point cloud compression. To compress a single 3D point cloud
in a manner that enhances application-dependent features such
as edges, key points, or flatness, [318] suggests to resample the
point cloud with a resampling distribution that is proportional
to the norms of filtered attributes. That is, the probability of
resampling vertex i is proportional to ||δ�i H(S)X||2, where
X is an N ×K matrix of attributes, with the ith row corre-
sponding to the selected attributes (e.g., 3D coordinates, RGB
colors, textures) of the ith vertex. For example, when X is just
the N × 3 matrix of the coordinates, S= Lrw, and H(S) is a
highpass graph filter, this resampling strategy leads to choosing
relatively more points along the contours (e.g., corner points,
edges, end points) of the 3D point cloud. The result can be
beneficial for contour-based registration to align point clouds.

Given a sequence of 3D point clouds, [309] (i) uses graph
wavelet coefficients as feature vectors to compute point-to-
point correspondences between a sparse set of points from
point clouds at each successive time; (ii) uses those sparse
point-to-point correspondences to estimate motion over time;
(iii) interpolates the motion to get a complete point-to-point
correspondence mapping over the sequence of point clouds;
and, (iv) leverages that motion map to compress and efficiently
code the entire sequence of point clouds.
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TABLE I
SUMMARY OF THE DIFFERENT GRAPH FILTERING FORMS AND THEIR PROPERTIES (P). ‘‘?’’ MEANS THAT PROPERTY HAS NOT BEEN PROVEN

TO HOLD OR NOT

Filter / Properties P1 P2 P3 P4 P5 P6 P7 P8 Discussion & Recommendation
Convolutional (3) � � � � � � � � Extends naturally from the conventional convolutional filters in DSP and respects also the

convolution theorem in (11). May require high-orders K and suffers numerical instabilities
for large powers Sk . Recommendation is to use them as the baseline solution but often with a
normalized GSO.

Rational (27) � � � � � � � � Requires lower orders to approximate a given frequency response. Design is more challenging
and requires solving a non-convex constrained problem (cf. (28)). Obtaining the output implies
approximating an inverse problem via iterative methods (cf. (26)). Recommendation is to use
them when the design could be centralized and the implementation distributed to reduce the
communication cost of higher-oder convolutional filters.

Node var. (32) � X X X � � � � Can approximate a broader family of operators than convolutional/rational while maintaining
local implementation. It is not permutation equivariant thus cannot be transferred across graphs.
Hence, recommendation is to consider them for approximating a desired operator over a
fixed graph.

Edge var. (34) � X X X � � ? ? Increases further the DoFs w.r.t. the node varying filter while maintaining the local implemen-
tation. The design problem to fit it into a defined operator is a least squares problem but with
higher dimensions compared with the node varying and convolutional filter. As the node varying
filter, it cannot be transferred across graphs and the high DoFs need to be reduced when used
in a data-driven fashion (regularize design problem or share parameters). Recommendation is
to consider for approximating complex tasks on a fixed graph or when a large amount of data
is available.

Volterra (39) X X ? � � � ? ? It is more flexible than the convolutional filter but shares parameters among nodes and enjoys a
local implementation. Spectral design is more challenging. It is more appropriate for data fitting
compared with the node and edge varying filters because of the low number of parameters and
permutation equivariance. It can be a good alternative to the convolutional filtering when the
spectral interpretation is not needed and to the node domain filters when parameters are estimated
from data. Can still run into overfitting and numerical instabilities, thus, orthogonal polynomials
are recommended.

Median (40) X X � � � � ? ? Allows tackling outliers in graph signals propagation via a median operation of locally shifted
inputs. Enjoys a local implementation and parameter sharing but the design is feasible only in
a data driven fashion. Its application domain is more restricted than the convolutional filter but
for denoising in anomalous signals it can be a viable tool.

Tikhonov (43) � � � � � � � � Particular form of rational filtering of order one for undirected graphs. Typically used to smooth
the observed signals.

Sobolev (45) � � � � � � � � Particular form of rational filtering which can achieve arbitrary order for undirected graphs. It
generalizes the Tikhonov filter to smooth observed signals.

Quadratic shift
variation (47)

� � � � X � ? ? Inverse smooth filtering on directed graphs. Differently from the undirected counterpart it
penalizes sharp shifted signal transitions and obtaining a local implementation with iterative
solvers is challenging.

Trend filtering (48) X X ? � ? ? ? ? Performs sparse filtering on undirected graphs by penalizing sharp transitions that happen only
at a few nodes. It is more appropriate to use where the signal has similar values in group of
nodes but arbitrary values in different groups. Proving what properties this type of filter satisfies
is more challenging because it lacks a closed-form solution.

Total variation (49) X X ? � ? ? ? ? Performs sparse filtering on directed graphs by penalizing sharp shifts at a few nodes. It
complements the smoothness total variation counterpart (47). As for the graph trend filter, it
lacks a closed-form solution and can be solved only with iterative methods.

Wiener filtring (51) � � � X X X X ? Performs optimal statistical filtering for stationary graph signals. In the vanilla form, it is a
rational filter that does not respect the graph sparsity, hence, many of the properties do not hold.
But if we approximate its frequency response either with polynomial or rational filters, we could
implement an approximation where all the properties hold.

Multi-GSO (52) � X � � � � ? ? Performs convolutional filtering over multiple GSOs to represent input-output relations. It inherits
several properties of the convolutional form but has a higher descriptive power. Yet, differently
from node domain and nonlinear filters, it has less chances to overfit the data. The challenge
remains to build multiple GSOs that can aid the problem at hand.

Object tracking. This problem consists of identifying an object
in a sequence of images, and following its movement through
time. This can typically be done by graph matching of the object
through the sequence of images. An alternative approach [306],
is to consider the object of interest as a grid graph and designing
a graph filter tailored to identifying the object (see Sec. V). In
particular, [306] learns a graph convolutional filter via least-
squares (see Sec. VII). Subsequently, [307] considers popular
solutions in the space of spatio-temporal Siamese networks,

and suggests to replace these networks by graph convolutional
networks (see Sec. VIII).

A more challenging problem is that of multi-object tracking,
where many different objects have to be tracked simultaneously.
The typical approach consists of first learning discriminative
features for each object, and then tracking the temporal evolu-
tion of those features. In [308], a feature extraction mechanism
based on GNNs is proposed. The main idea is to exploit the
relationship between the objects to learn features that are more
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discriminative, and thus, easier to distinguish during tracking.
This can be achieved by learning graph filters (either by them-
selves, or included within a GNN) to highlight high-frequency
features – that is, the ones that are more different across the
elements of the graph (see Sec. VII).

XI. WHERE TO START

Despite the extensive analysis of the different filtering forms,
we purposely did not address in detail questions about when
to use a particular filter type or when to choose filter banks
or GNNs. While Secs. VI, VII, VIII and Table I discuss the
advantages and limitations for each method, we believe there
is no single recipe about what solution to use when, and this
depends largely on the task at hand. That said, our general
recommendation is to start simple, checking if the task can
be accomplished with a single graph filter before moving to
a filter bank, and seeing if the filter bank provides sufficient
representations before proceeding to graph neural networks.
Within the class of single filters, we recommend to start with
the convolutional form (specifically a polynomial filter), and
consider the more involved node or edge varying filters when
a non-spectral operator is provided or a low (distributed) com-
putation cost is a priority. Within the class of filter banks, the
least complicated starting place is probably a single-level tight
frame filter bank like the one shown in Fig. 5, as it avoids
many extra choices about which vertices to downsample or how
to reconnect the downsampled vertices in a coarser graph. We
recommend moving to nonlinear filters, filter banks, or GNNs
when interested in learning a nonlinear mapping from data.
However, the expressive power of the latter (filter order, number
of features, and layers) does not have to be too large, as widely
suggested by the literature in computer science.

For hands-on practitioners, entry points from a GSP perspec-
tive are the toolboxes [324], [325], whereas from a machine
learning perspective (especially GNNs), we suggest PyTorch
Geometric [326] and the toolbox available at https://github.
com/alelab-upenn/graph-neural-networks, which contains sev-
eral of the filtering solutions discussed in this overview.

XII. A LOOK AHEAD

We have identified the following main promising directions
regarding fundamental research on graph filters.

1) The computation cost of graph filters is at best linear
in the number of edges in the graph. While this may
allow scalability to tens of thousands of nodes, it becomes
a challenge for web-scale graphs containing billions of
nodes and edges. In these cases, sparsifying techniques
on the filter implementation are needed but at the same
time the implications of these solutions into the output
become more challenging to address.

2) Some recent works have shown that for particular classes
of graphs we can exploit the graph frequency density
distribution to improve the filter design. However, it
is still unaddressed how to use properties of particular
graph families to aid learning and to understand better

how the statistical topological properties affect the filter
frequency response.

3) We focused on the role of graph filters over static and
idealistic graphs. However, real networks are dynamic,
noisy, and the respective signals are also time vary-
ing. Therefore, one of the biggest challenges is to ex-
tend graph filters to this dynamic setting in a principled
manner by accounting for the variability in the graph
signals and in the number of nodes and edges [327],
[328], [329].

4) In several nonlinear tasks (e.g., classification) graph fil-
ters are often designed via suboptimal losses to prioritize
convex and mathematically tractable solutions. Further
improvement can be achieved by using non-convex losses
and iterative algorithms to find the filter parameters.

5) Federated learning tackles the problem of training a
model when the data and/or the parameters are located
on several different machines [330]. The central tenet of
federated learning involves exchanging messages among
these machines in order to train models, while satisfying
security, privacy, and communication constraints. This
exchange of messages can be interpreted as the imple-
mentation of one or more graph filters, and thus, graph
filtering has the potential to be a useful framework for
analyzing and synthesizing federated learning methods.

6) Regarding applications, graph filters and respective ex-
tensions have potential in power and water networks [34],
[331], Internet of Things [32], and finance [332].

Finally, we remark that graphs represent only pairwise rela-
tionships between data points but complex networks and data
may often be better represented by higher-order network struc-
tures [333] such as multi-relational graphs [334], cell or sim-
plicial complexes [335], [336], [337], [338], and hypergraphs
[339], [340], [341]. Developing and analysing filters in these
settings is an interesting avenue with large potential in both
signal processing and machine learning.
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