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Abstract: Filtering for GRACE temporal gravity fields is a necessary step before calculating surface
mass anomalies. In this study, we propose a new denoising and decorrelation kernel (DDK) filtering
scheme called adaptive DDK filter. The involved error covariance matrix (ECM) adopts nothing
but the monthly time-variable released by several data centers. The signal covariance matrix (SCM)
involved is monthly time-variable also. Specifically, it is parameterized into two parameters, namely
the regularization coefficient and the power index of signal covariances, which are adaptively
determined from the data themselves according to the generalized cross validation (GCV) criterion.
The regularization coefficient controls the global constraint on the signal variances of all degrees,
while the power index adjusts the attenuation of the signal variances from low to high degrees,
namely local constraint. By tuning these two parameters for the monthly SCM, the adaptability to the
data and the optimality of filtering strength can be expected. In addition, we also devise a half-weight
polygon area (HWPA) of the filter kernel to measure the filtering strength of the anisotropic filter
more reasonably. The proposed adaptive DDK filter and filtering strength metric are tested based
on CSR GRACE temporal gravity solutions with their ECMs from January 2004 to December 2010.
Results show that the selected optimal power indices range from 3.5 to 6.9, with the corresponding
regularization parameters range from 1 × 1014 to 5 × 1019. The adaptive DDK filter can retain
comparable/more signal amplitude and suppress more high-degree noise than the conventional
DDK filters. Compared with the equivalent smoothing radius (ESR) of filtering strength, the HWPA
has stronger a distinguishing ability, especially when the filtering strength is similar.

Keywords: GRACE; DDK filter; regularization; decorrelation; filtering strength metric

1. Introduction

The GRACE mission can recover monthly time-variable gravity fields. The recovery
performance is not uniform either in the space domain or in the (spherical harmonic)
spectral domain [1–3]. In the spectral domain, the noise increases with degree in general,
resulting in the so-called high-frequency errors. In the space domain, the north–south stripe
error pattern is often apparent in unconstrained level-2 products. The error covariance
matrix (ECM), made available by more and more processing centers, can consistently
reflect the level of both kinds of errors. Specifically, the increasing-with-degree variances,
namely the diagonal elements of the ECM, reflect the high-frequency errors; while the
weak correlations between different orders and the strong correlations within the same
order/parity reflect the stripe errors. The empirical decorrelation filter can be regarded as a
method exploiting the latter fact [4–6].
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Prior knowledge can aid in reducing the noise in GRACE level-2 products. One such
knowledge is the fact that the signal magnitudes of the spherical harmonic (SH) coefficients
decrease with the degree. As the signals decrease while the noise increases with degree,
it is natural to shrink higher-degree GRACE level-2 SH coefficients to a larger extent. The
Gaussian filtering exactly follows this rationale [7,8]. This prior knowledge can be coded in a
variable called the signal covariance matrix (SCM). By combining both the ECM and the SCM
through a regularization/inversion framework, we can reduce both kinds of errors [9,10].
This methodology, often called DDK filtering, has clear statistical meanings [11]. There are
several different variates of DDK-type filters in the literature [11–13]. The differences are
mainly due to the different selections of the SCM. The SCM can be diagonal either in the
spectral domain [9,11,12] or in the spatial domain [13]. The SCM can be obtained either from
prior geophysical models [11] or from the data to be filtered [9,12,13]. The dependence of the
SCM and hence the DDK filter on the data means that it is a data-adaptive method.

The data-adaptive DDK filtering design can be viewed as a modeling problem with
both the SH coefficients (functional model parameters) and the SCM (stochastic model
parameters) as unknowns to be estimated using the same data set. The SCM should be
parameterized appropriately in order to avoid overfitting/underfitting (with too many/few
unknowns) in the modeling. However, it is unaffordable to determine each element
of SCM, even when a diagonal structure is assumed. In our understanding, the rather
fast convergence of the method proposed in [13] should be due to the inclusion of too
many variance components to be determined in the SCM. On the other hand, the SCM is
often assumed to be a known matrix but scaled with an unknown scalar (regularization
parameter). The inverse of this known matrix is exactly the so-called regularization matrix
and it is often assumed to be a diagonal structure. The known matrix can be simply
assumed as identity, if no further prior information is available. The diagonal elements,
namely the (scaled) variance can also be assumed to follow a degree-wise power law
following Kaula’s rule, from an external geophysical model [9], or the data themselves [12].
Kaula’s rule [14] is regarded as having many physical backgrounds, however, it is still an
empirical model, and a predefined power index may not necessarily be consistent with
a specific data set. It is possible that when inappropriately used, the Kaula’s rule can be
inferior even to the naïve Tikhonov regularization, namely with an identity regularization
matrix [15]. The discussions in the above refer to two limit cases, namely one with too many
unknowns in the SCM and the other with too few. An intermediate should be beneficial.

In this work, we follow the adaptive and monthly variable strategy as in [15,16].
Rather than determining an unknown for each degree, we only determine two unknown
hyperparameters for one month, namely a regularization parameter and a power index. We
consider the power law of the signal variances to be satisfactory in general, but the power
indices are permitted to vary from month to month. This should be viewed as a better
balance between simplicity and flexibility. To alleviate the computational load (recalling the
non-convexity of the whole estimation problem), we select appropriate hyperparameters
by trial and error, according to the generalized cross validation (GCV) criterion.

2. Materials and Methods

We present the methodology for a single month. It is the same for other months.
Denote the SH coefficients to be filtered as a vector x. Note that it is referred to as the
residual variables, since a time-mean for time-variable gravity field solutions has been
removed. The corresponding monthly error covariance matrix, denoted as Q, is also
available. The task is to design a DDK-type filter, denoted as F, and then compute the
filtered solution as x̂ = Fx, which is the estimate of x. The SCM, needed to design the filter,
is simultaneously determined in the filtering process.
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2.1. Regularization Strategies

Let the unscaled SCM be denoted as RA. The subscript A, standing for Adaptive, is
introduced to distinguish our proposed method from others. We have rl = lp, where r
denotes a diagonal element of RA, l denotes degree, and p denotes the power index that
is to be determined. Let λA represent the regularization parameter which corresponds
to scaling the SCM. For each given pair of λA and p, the filtered variable is defined as
the following:

x̂A = argmin
x̂

(x− x̂)TQ−1(x− x̂) + λAx̂TR−1
A x̂ = FAx, (1)

where the DDK filtering matrix (in the spectral domain) is defined accordingly as:

FA =
(

Q−1 + λAR−1
A

)−1
Q−1 =

[
Q− λAQ(λAQ + RA)

−1Q
]
Q−1 = I − λAQ(λAQ + RA)

−1, (2)

and the best pair of λA and p is selected to minimize the following GCV index [17,18]:

GCV(p, λA) =
(x− x̂)TQ−1(x− x̂)[

1− Tr
((

Q−1 + λAR−1
A

)−1
Q−1

)
/nt

]2 =
(x− x̂)TQ−1(x− x̂)[

1− Tr
(

I − λAQ(λAQ + RA)
−1
)

/nt

]2 . (3)

The proposed method is to be compared with the conventional DDK filters, including
stationary DDK in [9] and the VADER filter in [12]. For stationary DDK, the time-invariable
power index p is usually taken as 4, while for the VADER filter, the time-variable signal
variances are cyclo-stationary, modeled as (a · lb)2, with a, b being different from each
calendar month. In the following Section 3.1, we provide the values of a and b for VADER
filter. The unknowns of the filtered SH coefficients and the regularization parameters will
be determined in the same way as the proposed adaptive method (namely using the GCV
criterion). The corresponding DDK filtering matrix is determined in the same way as in (2).

2.2. Variance and Covariance Analysis

The error covariance Q is often inconsistent, more often overestimating the accuracy
than underestimating it. For example, leakage error and truncation error cannot be cap-
tured in Q. We can simply scale the covariance with a scalar to account for this problem.
This scalar is often called the variance component, denoted as σ2. This variance component
does not affect the filtered solution as shown in Equation (1), because it has already been
absorbed into the regularization parameter [19]. However, in some accuracy assessments,
e.g., global noise standard deviation estimation [20,21], this variance component is needed.
The variance component and the regularization parameters can be estimated simultane-
ously with variance component estimation approaches [22,23]. However, we estimate the
regularization parameter and the variance component separately. This is rational because
the variance component does not affect the estimation of the SH parameters. After an
appropriate regularization parameter and an appropriate power index are selected, we treat
them as knowns. Then the posterior estimate of the variance component is expressed as:

σ̂2
j =

RSSj + λjx̂T
j R−1

j x̂j

n
, (4)

where RSS is the residual squared sum term (x− x̂)TQ−1(x− x̂); the subscript j denotes A
(adaptive DDK), D (conventional DDK), and V (VADER filter); n is the length of the param-
eter x. This estimate is obtained by viewing the constraints implied by the regularization
term as pseudo measurements. Then the SCM is scaled accordingly, expressed as:

Sj = λ−1
j σ̂2

j Rj. (5)

Besides the above variance analysis, the covariance of the filtered variable may also
be needed in some situations, e.g., the uncertainty evaluation of filtered mass anomalies.
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Two approaches can be followed to provide such a covariance matrix. The first is obtained
from a Bayesian viewpoint, namely viewing the solution as a maximum a posteriori (MAP)
estimate [24]. The covariance matrix is expressed as:

Qj = σ̂2
j

(
Q−1 + λjR−1

j

)−1
= σ̂2

j Q− λjσ̂
2
j Q
(

λjQ + Rj

)−1
Q. (6)

The second covariance matrix is obtained simply according to the error propagation
law. The covariance matrix is then written as:

Qj = σ̂2
j FjQFT

j . (7)

This kind of covariance tends to overestimate the accuracy [25,26]. One of the reasons
is that only the commission error is propagated while the omission error is neglected in this
propagation. In assessing the accuracy of a functional calculated by the filtered SH model,
we should use the covariance in (6). If the filtered SH model is treated as a prior in another
SH modeling problem, we should use the covariance (7) to better represent the information
of previous measurements.

2.3. A Novel Filtering Strength Metric: Half-Weight Polygon Area of the Smoothing Kernel

Anisotropic filters show diverse filtering properties in different directions, making
it difficult to quantify their filtering strength reasonably as the smoothing radius defined
in isotropic filters. Reference [9] defined a smoothing radius based on kernel variances.
However, the negative sidelobes map into the positive ones, which makes the estimated
kernel variance larger than the actual one. Another filtering strength metric developed
by [11] is to compare the “isotropic part” of the anisotropic filter with the Gaussian smoother,
however, this method completely ignores the anisotropic part of the filter kernel. Later,
Reference [12] treated the average of half-weight radii of the four cardinal directions as
the filtering strength indicator, however, the filtering characteristics in the other directions
besides the cardinal ones are completely ignored.

The half-weight radii in different directions constitute an approximate elliptical or
rectangular polygon. Instead of taking the Gaussian radii (a distance quantity) into account,
in this study, we proposed to calculate the kernel half-weight polygon area (HWPA) (an
area quantity) to measure the filter strength. This means that filtering properties in all
directions are considered, not just in the four cardinal directions. It is easy to understand
that the larger the HWPA of the filter kernel, the stronger the filtering strength, and vice
versa. For the filter kernel whose center is located at (λ, θ), cf. Figure 1, its HWPA can be
calculated with the following steps:
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Figure 1. The calculation theory of half-weight polygon area (HWPA) with kernel center (KC) located
at (λ, θ). The curvature between integral point (IP) i and j is neglected, thus approximating the
fan-shaped integral polygon as a triangle. The symbols a, b and c represent the lengths of the three
sides of the triangle KC-IPi-IPj.
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Step 1: Determine the integral point of the half-weight polygon. In this work, we do
not troublesomely interpolate the smoothing kernel values to determine the exact half-
weight position (namely equal to 0.5). Instead, we regard the grid points with filtering
kernel values distributing between 0.48 and 0.52 as the boundary points of the half-weight
polygon. These points are also the vertices of the integral triangle. With these points, the
half-weight polygon is divided into the sum of n integral triangles.

Step 2: Calculate the side length a, b, and c of an integral triangle. The length d between
two points (λ1, θ1) and (λ2, θ2) on the sphere can be calculated according to the Great-Circle
distance formula, shown as follows:

d = Rarccos[cos(θ1)cos(θ2)cos(λ1 − λ2) + sin(θ1)sin(θ2)], (8)

where R represents the radius of the earth.
Step 3: Calculate the half-weight polygon area (HWPA). The area Si of the i-th integral

triangle KC-IPi-IPj can be calculated with Heron’s formula:

Si =
√

p(p− a)(p− b)(p− c), (9)

with p being the half-perimeter of the triangle, namely p = (a + b + c)/2. Then the HWPA

is the sum of the areas of each integral triangle, namely S =
n
∑

i=1
Si.

It is emphasized that the ellipse-like polygon in Figure 1 is only adopted as an example.
The half-weight polygon of the filtering kernel may also be rectangle-like, or irregular-
shaped. This is the exact reason why we develop the above “segmentation, approximation,
and summation” steps to calculate HWPA.

Table 1 shows the HWPAs and their averages of eight DDK filters at different locations
(θ = 0◦, 30◦, and 60◦ north along the 0◦ meridian), with the corresponding equivalent
smoothing radii (ESR) metric proposed in [11] for comparison. It is observed with the
increasing filtering strength (increasing regularization coefficients) from DDK8 to DDK1
that both HWPA and ESR tend to increase also, indicating their general fine measuring
performance. The ESR metric cannot discriminate the filtering strength between DDK7 and
DDK8, and so does HWPA at (0◦, 0◦). The HWPA at (0◦, 0◦) of DDK8 is slightly greater
than DDK7, which is attributed to the calculating error from the grid points. Nevertheless,
the average HWPA shows better discrimination capacity, especially for weak-strength
filters (DDK7, DDK8). Therefore, we suggest adopting the average HWPA as a filtering
strength metric.

Table 1. The HWPAs and their averages, the ESRs in [11] of 8 DDK filters. The unit of HWPA is
thousands of square kilometers, whereas that of ESR is kilometers.

DDK HWPA
(0◦, 0◦)

HWPA
(0◦, 30◦)

HWPA
(0◦, 60◦)

Average
HWPA ESR

DDK1 1613 7990 22,853 10,819 536
DDK2 808 2657 6244 3236 347
DDK3 414 916 2281 1204 242
DDK4 362 855 1811 1009 219
DDK5 255 513 1035 601 183
DDK6 245 414 854 504 172
DDK7 190 286 739 405 149
DDK8 194 246 700 380 149

3. Results

In this section, the GRACE CSR RL05 gravity monthly solutions and their ECMs from
January 2004 to December 2010 are used to analyze the properties and filtering performance
of the proposed adaptive DDK filter. The 2004.0–2009.999 time mean baseline is subtracted
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from the monthly solutions. The following filters are also tested for comparisons, including
Gaussian 300 km smoother, Gaussian 500 km smoother, DGSW filter [5], two-step-300
(Gaussian 300 km smoother + DGSW), two-step-500 (Gaussian 500 km smoother + DGSW),
stationary DDK [9] and VADER filter [12]. The GRACE CSR RL06 v2.0 mascon solution
is also included for comparison. Without loss of generality, we first select the filtered
solutions of September 2006 and July 2010 for exemplification, and then provide an overall
evaluation for the entire time series.

3.1. Analysis of Properties of Adaptive DDK Filter

In adaptive DDK, we perform hyperparameter tuning with 41 power indices rang-
ing from 3.0 to 7.0, and also with 15 regularization coefficients ranging from 1.0 × 1013 to
1.0× 1020. The predefined regularization coefficient candidates involved in stationary DDK
are the same as that of adaptive DDK, and those in the VADER filter are seven candidates rang-
ing from 0.01 to 10 [12]. Figure 2 presents the selected hyperparameters for stationary DDK,
VADER filter, and adaptive DDK. The regularization coefficients of the stationary DDK and
VADER filter in Figure 2a,b are time-varying, because the relative values of time-variable ECM
and stationary/cyclo-stationary SCM are different from month to month, and this difference is
automatically balanced through adjusting the regularization term. Regarding adaptive DDK
in Figure 2c, both power index and regularization coefficient are time-variable, which not only
enhances the adaptability to changes in relative difference of ECM and SCM, but also helps
adjust the signal components of different degrees flexibly. We also notice the change of power
indices is negatively correlated to that of regularization coefficients. This result is reasonable,
because a greater power index can suppress higher-order noises (including high-frequency
and correlated noises) more severely, with a weaker regularization term needed. On the
contrary, a smaller power index is insufficient to suppress higher-order noise terms, and these
terms can only be suppressed by a stronger regularization term. To sum up, the key is to
use the GCV criterion to objectively balance the influence of power index and regularization
coefficient, to achieve the optimal filtering strength.
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Figure 2. The optimized hyperparameters for each month from January 2004 to December 2010
through GCV criterion: (a) stationary DDK, (b) VADER filter, (c) adaptive DDK. Note that the power
indices for VADER filter are taken from Figure 2 in [12].

Figure 3.2 presents the normalized smoothing kernel at different locations of adaptive
DDK filters in September 2006 and July 2010, and their cross-sections in cardinal directions
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are shown in Figure 4. The row-wise comparison indicates the adaptive DDK filter is
time-variable, which is also due to the time-variability of ECM and SCM. The column-wise
comparison shows the adaptive DDK has different filtering effects at different locations,
manifesting its location-inhomogeneity. Furthermore, the azimuth-anisotropy of the pro-
posed adaptive DDK is also noticeable. To be specific, the kernel in the north–south direc-
tion is narrower than that in east–west direction, enabling the filter to effectively destripe.
To summarize, the proposed adaptive DDK is time-variable, location-inhomogeneous, and
azimuth-anisotropic.
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0◦ (a,d), 30◦ (b,e), and 60◦ (c,f) along the 0◦ meridian. The adaptive DDK filters for September
2006 (a,b) and July 2010 (d–f) with power indices selected as 6.5 and 3.4, and with regularization
coefficients selected as 1 × 1015 and 5 × 1018, respectively.

3.2. Evaluation of Filtered Mass Anomaly
The global mass anomalies in terms of equivalent water height (EWH) are calculated for all
the filtered solutions. Figures 5 and 6 present the results for January 2006 and July 2010, with
their statistics summarized in Table 2. With the mascon solution in Figures 5j and 6j taken as
reference, the following conclusions can be drawn visually. The filtered solution of Gaussian
300 km smoother shows some residual stripes, whereas that of Gaussian 500 km smoother
has signal attenuation to some extent, especially in Antarctica and Greenland. For the DGSW
filter, there are some residual stripes in middle and low latitudes. When combining the DGSW
filter with Gaussian smoother, the stripes are eliminated effectively, and the mass anomalies
are visible, and the same is true for stationary DDK, VADER filter, and adaptive DDK. We also
notice in Figure 6 that the adaptive DDK presents significantly fewer stripes than VADER filter,
while the mass anomaly signals recovered by adaptive DDK and stationary DDK do not show
visible differences, though the former is slightly weaker than the latter as presented in Table 2.
This is because their relatively close hyperparameters (3.4 and 5 × 1018 for the former, 4.0 and
5 × 1017 for the latter) indicate their similar filtering strengths. By tuning two hyperparame-
ters rather than one, the adaptive DDK can adjust filtering strength more flexibly than the
stationary DDK and VADER filters.
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Figure 6. The unfiltered and filtered solutions expressed in EWH in July 2010. Note that the ECMs
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GCV criterion.

Table 2. The statistics of filtered global mass anomalies in terms of EWH (cm) in September 2006 and
July 2010.

Filtered Solutions
September 2006 July 2010

Max Min RMS Max Min RMS

Gaussian 300 36.8 −50.0 5.8 32.2 −69.5 6.4
Gaussian 500 24.5 −33.9 4.1 21.9 −39.7 5.0
DGSW filter 66.9 −66.0 6.8 64.7 −89.6 8.1
two-step-300 28.3 −40.9 4.7 30.8 −60.2 5.9
two-step-500 23.1 −31.0 4.0 21.3 −38.8 4.9

stationary DDK 25.2 −33.7 4.2 32.9 −100.2 6.9
VADER filter 30.8 −40.2 4.4 26.0 −105.2 6.6

adaptive DDK 31.0 −40.0 4.8 30.6 −98.4 6.7
Mascon 143.6 −137.0 6.3 165.8 −345.3 11.8

One of the main scientific outcomes of GRACE is its ability to monitor climate variabil-
ity. To this end, we evaluate the time series of local total mass anomaly in the Congo basin,
Ganges basin, Hai River, and Rhein basin. Without loss of generality, the mascon solution
is taken as reference truth. Figure 7 presents the time series of different filters, and their
RMS difference (RMSD) with respect to mascon solutions are summarized in Table 3. In
general, all eight filters can restore significant seasonal variability, albeit with some minor
differences. In most cases, the filtered solutions of adaptive DDK always show the lowest
RMSD compared with mascon solutions, which again demonstrates its validity.
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Figure 7. Local total mass anomaly time series of different filtered solutions. The unit is gigatons (Gt).
The CSR RL06 v2.0 mascon solutions are included for comparison.

Table 3. RMSD of local total mass anomalies of different filtered solutions (Gt). The CSR RL06 v2.0
mascon solutions are treated as referenced truth.

Filtered Solutions Congo Ganges Rhein Hai

Gaussian 300 km 46.4 28.1 7.4 11.0
Gaussian 500 km 51.4 39.3 6.9 12.1

DGSW filter 46.4 26.7 5.9 9.0
two-step-300 46.5 31.5 5.9 9.6
two-step-500 52.4 42.7 6.9 12.2

Stationary DDK 49.1 26.8 5.5 9.5
VADER filter 63.1 28.6 5.5 9.7

adaptive DDK 46.0 26.7 5.3 9.4

3.3. Analysis of Signal and Noise Level

In the following, we first check the signal and noise level of the filtered solutions in the
spectral domain, then evaluate that in the spatial domain. Figure 8 shows the distribution
of unfiltered and filtered solutions in the SH domain in September 2006 and July 2010. It is
observed that there are still some high-frequency noises in solutions of Gaussian 300 km and
the DGSW filter, while those using other filters are well removed. As shown in Figure 8g–i,
the adaptive DDK retains much lower degree signals than the others, while in Figure 9g–i,
the three DDK filters retain comparable low-degree signals. Taking degree 28 as an example,
Figure 10 shows the SH coefficients from order 28 to order 60. Before filtering (Figure 10a,c),
there is a significant correlation between the spherical harmonic coefficients of odd degrees
and even degrees, which is explicitly weakened after filtering (Figure 10b,d).

Another way to evaluate the signal and noise level in the spectral domain is the
posterior signal degree variances. Figure 11 shows the geoid degree variances of the filtered
solutions in September 2006 and July 2010, as well as the 7-year means from January 2004 to
December 2010. The geoid degree variances of the first 30 degrees mainly reflect the signal
amplitude, while that after the first 30 degrees mainly indicates the noise level [27,28]. The
following observations can be drawn from Figure 11. First, the Gaussian 300 km smoother
and DGSW filter can retain more gravity signal; however, they cannot suppress high-
frequency noise sufficiently. Second, the Gaussian 500 km smoother and the two-step-500
filter reduce the high-degree noise effectively, but the low-degree signal is oversmoothed.
Third, the two-step-300 filter retains the low-degree signal well, as stationary DDK and
adaptive DDK do; however, it cannot always suppress noise significantly. Finally, the
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VADER filter shows very similar signal degree variances before degree 30 compared with
stationary DDK and adaptive DDK; however, its noise level is significantly higher than
that of adaptive DDK. Specifically, the filtered solutions of adaptive DDK always show
comparable or stronger signal amplitude, and weaker noise level. This again demonstrates
the superiority of the proposed adaptive DDK filter.
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Figure 11. The geoid degree variances of filtered solutions for (a) September 2006, (b) July 2010, and
(c) the 7-year means from January 2004 to December 2010. The cluster of brown curves represents
the monthly geoid degree variances of the adaptive DDK filtered solution. The vertical dashed line,
corresponding to degree 30, is shown to help compare the signal level (the first 30 degree) and noise
level (the last 30 degrees) in the filtering solution intuitively.

Finally, we analyze the signal and noise level in the spatial domain. We adopt the
signal-to-noise separation approach presented in [29]. The constant, trend, annual, and
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semiannual terms are estimated from the time series of the filtered SH solutions. These
signal terms are usually considered the actual time-varying signals, and the amplitude
derived from the annual signal term, can be used as the indicator of the signal level.
Then, by removing the aforementioned signal terms from the time series of the filtered SH
solutions, the standard derivation (STD) of residuals can be used to quantify the noise level
of the filtered solutions [28].

Figure 12 shows the annual amplitude of the filtered mass anomalies from January 2004
to December 2010, and Figure 13 shows the global noise STD. Considering the atmospheric,
oceanic tidal, and most of the oceanic non-tidal variations have been deducted from the
unconstrained monthly solutions, the annual signal amplitudes over the ocean mainly
reflect the noise level of the filtered solutions. It can be observed that the annual amplitudes
of adaptive DDK filtered solutions in ocean regions are as low as those of stationary
DDK, VADER filter, and mascon solutions. In the areas with strong geophysical signals,
such as the Amazon Basin, Congo Basin, Ganges Basin, and Alaskan glaciers, the annual
amplitudes of adaptive DDK filtered solutions, are also comparable to those of the other
filtered solutions, and do not show any stripes (compared to the Gaussian smoothed
solution) or dotted pattern signals (compared to the SW filtered solution). Then, we check
the noise levels indicated by the global noise STD as presented in Figure 13. The filtered
solutions of adaptive DDK show a similar noise level to that of the VADER filter. We record
the average annual amplitude and the average noise STD for the four basins in Table 4. We
find that, in most cases, the adaptive DDK provides closer annual amplitudes to mascon
solutions, and their residual STD is also relatively low. We also notice the Gaussian 300 km
smoother and DGSW presents higher amplitudes than the others; however, their noise STD
is also very high, and residual stripes and patches still exist in their filtered solutions. To
sum up, the adaptive DDK shows a comparable signal amplitude to mascon solutions, and
its noise level is relatively low.
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Figure 13. Residuals STD of filtered global mass anomaly from January 2004 to December 2010. To
obtain the residuals, the constant, trend, annual, and semiannual signal terms are deducted from the
filtered solutions. The noise STDs averaged over the entire ocean are: unfiltered (23.4 cm), Gaussian
300 km (3.7 cm), Gaussian 500 km (1.5 cm), DGSW (5.2 cm), two-step-300 filter (1.9 cm), two-step-
500 filter (1.4 cm), stationary DDK (2.0 cm), VADER (2.1 cm), adaptive DDK (2.1 cm) and mascon
(2.1 cm), respectively.

Table 4. The regional average annual amplitude (AAMP) and residual STD (RSTD) of filtered mass
anomaly solutions at Congo Basin, Ganges Basin, Rhein Basin, and Hai River Basin. The results are
based on data from January 2004 to December 2010, and presented in EWH (cm).

Filter Indicator Congo Ganges Rhein Hai

Gaussian 300 km
AAMP 12.1 12.8 5.1 1.9
RSTD 5.2 5.3 3.7 4.0

Gaussian 500 km
AAMP 10.2 11.4 4.1 1.0
RSTD 3.1 3.1 1.8 1.9

DGSW filter
AAMP 13.7 13.8 5.2 3.7
RSTD 9.1 6.3 3.2 3.8

two-step-300 AAMP 12.0 12.5 4.8 2.1
RSTD 4.0 3.7 2.2 2.7

two-step-500 AAMP 10.1 11.1 4.1 1.2
RSTD 3.1 2.9 2.0 1.6

Stationary DDK AAMP 12.5 13.0 4.2 1.5
RSTD 3.7 4.1 2.4 2.2

VADER filter
AAMP 12.3 12.7 4.1 1.5
RSTD 3.8 4.0 2.4 2.2
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Table 4. Cont.

Filter Indicator Congo Ganges Rhein Hai

adaptive DDK AAMP 12.9 13.4 4.3 1.6
RSTD 3.8 4.1 2.4 2.2

mascon AAMP 13.1 13.4 6.8 1.8
RSTD 3.5 6.1 2.2 3.3

4. Discussion

The time-variable gravity field solution in September 2004 and its ECM are taken
as an example, to study the influence of the power index of SCM and regularization
coefficient in an adaptive DDK filter. We tested four regularization coefficients, including
1 × 1015, 1 × 1016, 1 × 1017 and 1 × 1018, and five power indices of SCM, including 4.0,
4.5, 5.0, 5.5, and 6.0, totaling 20 hyperparametric combination schemes. Figure 14 shows
the normalized smoothing kernel corresponding to each combination scheme, in which
the kernel center is located at (0◦E, 0◦N). It is observed that the normalized smoothing
kernel tends to expand with the increase of regularization coefficients and/or power
indices. This is because the increase of the regularization coefficient strengthens the
all-degree constraint, while the increase of the power index accelerates the attenuation of
the signal variance from low degrees to high degrees, thus enhancing the suppression of
the high-degree noise terms. Together, these two factors facilitate the flexible adjustment
of the filtering strength. The larger the kernel is, the stronger the smoothing strength
will be.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

 

Figure 14. The normalized smoothing kernel (located at 0°E, 0°N) of different regularization coeffi-

cients and different power indices with ECM in September 2006. (a–t) The regularization coefficients 

from top to bottom are 1 × 1015, 1 × 1016, 1 × 1017 and 1 × 1018, respectively. The power indices of SCMs 

from left to right are 4.0, 4.5, 5.0, 5.5, and 6.0, respectively. 

Table 5. Filtering strength metrics of the kernel with different regularization coefficients and differ-

ent power indices of SCM: equivalent smoothing radius (ESR) and half-weight polygon area 

(HWPA). The unit of HWPA is thousands of square kilometers, whereas that of ESR is kilometers. 

Indicator reg.\pow. 4.0 4.5 5.0 5.5 6.0 

ESR 

1 × 1015 149 149 175 219 281 

1 × 1016 149 183 236 300 393 

1 × 1017 190 249 334 453 570 

1 × 1018 272 393 570 570 570 

HWPA 

1 × 1015 364 369 603 920 1998 

1 × 1016 442 573 1122 2467 5332 

1 × 1017 656 1367 3199 7163 16,824 

1 × 1018 1500 3714 9555 24,232 56,903 

Figure 15 shows the filtered solutions in the spatial domain with the 20 hyperparam-

eter combination schemes for September 2004. From left to right and from top to bottom, 

the time-varying gravity field solution is from being under-smoothed (see Figure 15a) to 

being over-smoothed (see Figure 15t). Considering an extreme case, when the filter kernel 

is expanded to the global scale, the mass anomaly signal will be completely erased. The 

optimal filtered solution should be with a regularization coefficient 1 × 1017 and a power 

index 5.5, as presented in Figure 15n. There are visible geophysical features in the Amazon 

Basin, Congo River Basin, Ganges Basin, and Greenland, etc., with the stripes-pattern er-

ror completely removed. 

Figure 14. The normalized smoothing kernel (located at 0◦E, 0◦N) of different regularization coeffi-
cients and different power indices with ECM in September 2006. (a–t) The regularization coefficients
from top to bottom are 1 × 1015, 1 × 1016, 1 × 1017 and 1 × 1018, respectively. The power indices of
SCMs from left to right are 4.0, 4.5, 5.0, 5.5, and 6.0, respectively.
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Table 5 presents the ESRs and HWPAs of the 20 filter kernels. ESR has been proved
ineffective in distinguishing DDK filters with similar weak smoothing strength to that
presented in Table 1. When the smoothing strength is strong, ESR is also found to be not
capable of measuring filter strength, as shown in Table 5 (see the last row and column).
On the contrary, the proposed HWPA always has a strong distinguishing ability, which
makes it a reliable smoothing strength metric. By combining Figure 14 and Table 5, it is
again proved that the increasing smoothing strength is closely related to both increasing
regularization coefficient and power index.

Table 5. Filtering strength metrics of the kernel with different regularization coefficients and different
power indices of SCM: equivalent smoothing radius (ESR) and half-weight polygon area (HWPA).
The unit of HWPA is thousands of square kilometers, whereas that of ESR is kilometers.

Indicator Reg.\Pow. 4.0 4.5 5.0 5.5 6.0

ESR

1 × 1015 149 149 175 219 281
1 × 1016 149 183 236 300 393
1 × 1017 190 249 334 453 570
1 × 1018 272 393 570 570 570

HWPA

1 × 1015 364 369 603 920 1998
1 × 1016 442 573 1122 2467 5332
1 × 1017 656 1367 3199 7163 16,824
1 × 1018 1500 3714 9555 24,232 56,903

Figure 15 shows the filtered solutions in the spatial domain with the 20 hyperparameter
combination schemes for September 2004. From left to right and from top to bottom, the
time-varying gravity field solution is from being under-smoothed (see Figure 15a) to being
over-smoothed (see Figure 15t). Considering an extreme case, when the filter kernel is
expanded to the global scale, the mass anomaly signal will be completely erased. The
optimal filtered solution should be with a regularization coefficient 1 × 1017 and a power
index 5.5, as presented in Figure 15n. There are visible geophysical features in the Amazon
Basin, Congo River Basin, Ganges Basin, and Greenland, etc., with the stripes-pattern error
completely removed.
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Figure 15. The filtered solution of different regularization coefficients and different power indices
with ECM in September 2004. (a–t) The regularization coefficients from top to bottom are 1 × 1015,
1 × 1016, 1 × 1017 and 1 × 1018, respectively. The power indices of SCMs from left to right are 4.0, 4.5,
5.0, 5.5, and 6.0, respectively.
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Finally, we also check the degree variances of 20 hyperparameter combination schemes,
including priori signal variances scaled with regularization coefficients, and posterior geoid
degree variances of filtered solution. The following observations can be made according to
Figure 16. First, the regularization coefficients can only adjust the all-degree signal variances
at the same time. For a fixed power index in SCM, a too large regularization coefficient
may restrain the low-degree signal, while too small regularization coefficient may not be
sufficient to suppress high-degree noise. Second, the power index in SCM can tune the
signal variances between different degrees. For a fixed regularization coefficient, the power
index can flexibly balance the retainment of low-degree signals and the suppression of high-
degree noise. Third, by tuning both regularization coefficient and power index according
to the data themselves, more filtering solutions with different smoothing strengths can
be expected, as in Figure 16b. For example, the filtered solution with a regularization
coefficient 1 × 1015 and a power index 6.0 has comparable low-degree signals and less
high-degree noises than all the filtered solutions with power index being 4, which has been
widely used in conventional DDK filters. To sum up, the proposed adaptive DDK filter,
adjusting both the power index and the regularization coefficient, promotes adaptability to
the data and the optimality of the filtering results.
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Figure 16. The degree variances of different regularization coefficients and different power indices:
(a) the signal variances scaled with regularization coefficients; (b) the geoid degree variances of
filtered solution.

5. Conclusions

This work is devoted to designing a data-adaptive DDK filter. In this filter, the
regularization coefficient and the power index of signal variances are adaptively determined
from the data themselves according to the GCV criterion. The publicly available monthly
error covariance matrices are adopted, so the filter is time-variable not only for error
covariance matrices, but also for signal covariance matrices. Furthermore, we also define a
metric for filtering strength called half-weight polygon area. We believe that the scope of
the filtering kernel can more reasonably define the filtering strength than the conventional
half-weight radius only in the cardinal directions. Through a 7-year real GRACE data test,
the following conclusions and discussions are drawn:

(1) Both the regularization coefficient and the power index can be used to adjust the
signal variances. Although the increase of the regularization coefficient and the power
index results in a stronger smoothing strength, the mechanisms of the two parameters
are different. The regularization coefficient controls the signal variances of all degrees,
while the power index regulates the signal variances between different degrees. In
other words, the former is global regulation, whereas the latter is local regulation. By
tuning the two parameters according to the GCV criterion, the adaptability to the data
and the optimality of the filtering results can be significantly enhanced;

(2) Compared with the equivalent smoothing radius in [11], the proposed half-weight
kernel polygon area is proved to have a more significant distinguishing ability, es-
pecially when the filtering strength is too weak and close, or the filtering strength is
too strong;
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(3) The need for filtering is mainly split up in an along- and cross-track direction, based
on orbit inclination, orbit height, and ground track spacing. The authors think that
filtering with only four cardinal directions taken into account is a simplification in
itself, as shown in Figures 5a and 6a. Are the stripes strictly distributed north–south?
The answer is, not necessarily. The causes include but are not limited to: (1) the de-
aliasing error caused by the incorrectness of the models of tidal and atmospheric ocean
non-tidal variation [30]; (2) the shortcomings of instrument accuracy and existing
GRACE data processing methods [9,13]. This raises the necessity that the filter can be
designed to take into account directions other than the cardinal ones. The anisotropic
DDK filter is exactly such a filter that takes into account all directions including
the cardinal directions. As shown in Figure 14, the filter kernel is not distributed
strictly according to north-south and west-east directions, and the filter kernel can
be approximately rectangular/elliptical, or wide/narrow. This indicates: (1) in the
conventional approach, the algebraic averages of half-weight smoothing radii in four
main directions (east, west, north, and south) are not accurate enough to measure
the filtering strength; (2) the proposed HWPA, taking all directions into account,
can reasonably measure the filtering strength, regardless of the shape and scope of
the kernel. In the future, the research will be focused on optimizing the azimuth-
anisotropic HWPA to make it more reasonable to measure the smoothing strength of
the location-inhomogeneous filter.

Our research provides an alternative filtering scheme for someone who wants mass
anomalies from GRACE/GRACE-FO time-variable gravity field solutions. The anisotropic
filtering strength metric, HWPA, can help people choose their ideal filtering strength. A
better estimation of global/local mass anomalies will be beneficial in the context of water
management, glacier monitoring, and climatological studies.
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