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REVIEW

Comparison of Rainfall Products over Sub-Saharan Africa

CAMILLE LE COZ AND NICK VAN DE GIESEN

Department of Water Resources Management, Delft University of Technology, Delft, Netherlands

(Manuscript received 17 January 2019, in final form 1 November 2019)

ABSTRACT

An ever-increasing number of rainfall estimates is available. They are used in many important applications

such as flood/drought monitoring, water management, or climate monitoring. Such data are especially

valuable in sub-Saharan Africa, where rainfall has considerable socioeconomic impacts and the gauge and

radar networks are sparse. The choice of a rainfall product can significantly influence the performance of

such applications. This study reviews previous works, evaluating or comparing rainfall products over different

parts of sub-SaharanAfrica. Three types of rainfall products are considered: the gauge-only, the satellite-based,

and the reanalysis ones. In addition to the global rainfall products, we included three regional ones specifically

developed for Africa: the African Rainfall Climatology version 2 (ARC2), the Rainfall Estimate version 2

(RFE2), and the Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations

(TAMSAT)AfricanRainfall Climatology andTimeSeries (TARCAT). The gauge density, the orography, and

the rainfall regime, which vary with the climate and the season, influence the performance of the rainfall

products. This review does not focus on comparing results, as many other publications doing so are already

available. Instead, we propose this review as a guide through the different rainfall products available over

Africa, and the factors influencing their performances. With this review, the reader can make informed

decisions about which products serve their specific purpose best.

1. Introduction

Knowledge about precipitation is very important in

sub-Saharan Africa, since 95% of the agriculture there

is rain-fed (FAO 2016), making farmers vulnerable to

climate change and extreme weather. Rainfall is a diffi-

cult variable to estimate accurately due to its large spatial

variability, and even more so in Africa, since rainfall

there is mainly generated by convective rainstorms,

which can be very localized in time and space.

There are different types of precipitation data avail-

able in Africa. In situ measurements from gauges can be

accurate, but reporting weather stations are especially

sparse over Africa. Their number is often under the

minimum recommended by World Meteorological

Organization (WMO) and has been decreasing. The na-

tional meteorological agencies are often underfunded,

and so cannot maintain or upgrade their station network;

for example, some manual stations might still work but

are not reporting to the global systems such as the

Global Telecommunication System (GTS). Another

possible source of data is satellite estimates, which

cover a large area, but are more indirect. They derive

precipitation rates from other measurements such as

cloud properties (e.g., cloud-top temperature and ra-

diation scattering by ice particles). There also have

been efforts to use lightning observations (Xu et al.

2013, 2014) or satellite soil moisture data (Brocca

et al. 2013, 2014). A third possibility is precipitation

fields from numerical weather models. They can be

used to estimate both past (reanalysis) and future

(forecast) precipitation, or to better understand the

mechanism of the monsoon. They can cover the entire

globe for long periods or focus on a region with high

temporal and spatial resolution. These three different
Denotes content that is immediately available upon publica-
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sources of data have different advantages and limitations.

Rainfall products can be based on one or several sources

to combine the advantages and cancel out limitations.

Different global rainfall products are available at

different spatial and temporal scales. Some regional

rainfall products have been developed and calibrated

especially for Africa or a specific region. These vari-

ous products use very different approaches to derive

rainfall estimates. They can be divided into three cat-

egories: 1) reanalyses, based on a numerical weather

predictionmodels and on data assimilation; 2) gauge-only

products, derived only from gauge data; and 3) satellite-

based products, based only or partially on satellite data.

Most of the latter ones use gauges for calibration or bias

adjustment and a few (e.g., CMAP and CHIRPS; see

appendix A for a list of acronyms) also use data from

models. Tables 1–3 give a comprehensive list of rainfall

products available over Africa for these three categories,

respectively. The algorithms of the most used satellite-

based products are described in appendix B, along with a

review of their performances over Africa from various

evaluation studies.

All these products differ in various ways. They have

different advantages and weaknesses. Moreover, pre-

cipitation data are used for different purposes, such as

hydrological applications, climatology studies, flood or

drought early warning systems, or water management

and planning. Depending on the application, the rele-

vant characteristics are not the same. For instance, for

drought monitoring one is interested in the good rep-

resentation of small rainfall amounts (Maidment et al.

2014), while for climatology, consistency of the prod-

uct’s performance in time is more important, for exam-

ple, no changes in the bias due to a new input data. In a

recent review, Sun et al. (2018) described 30 datasets

(including gauge-based, satellite-related, and reanalysis

data), and examined the discrepancies between them at

different time scales. They found large differences in

northern Africa (among other regions). This means that

the choice of a precipitation product can have a large

impact on one’s application. It is difficult to know which

rainfall product, among the many existing ones, is the

best to use according to the region of interest and the

application considered, but also to know why and to

which extent it is reliable. It is important to compare

them with each other and be aware of their advantages,

limits, and relative performances.

The International PrecipitationWorkingGroup (IPWG)

supports the intercomparison of rainfall products (http://

www.isac.cnr.it/;ipwg/). They maintain a list of publicly

available, quasi-operational, and quasi-global products,

and are conducting some verification/validation over se-

lected regions (Australia, Europe, Japan, South Africa,
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South America, and the United States) against ground-

based radar and gauge networks. So far, they have not

yet conducted any validation/comparison project over

sub-Saharan Africa. The IPWG only takes into account

the satellite and gauge products; they do not compare

them with precipitation estimates derived from numer-

ical weather prediction models or reanalysis. Several

model intercomparison projects with focus on Africa

(or West Africa) as well as a (global) reanalysis inter-

comparison project exist (see section 2). They take into

account not only precipitation but also other atmo-

spheric variables.

Many intercomparisons and validation studies of rain-

fall estimates have been done at a global and regional

scale, as implied by the number of articles cited in the

remainder of the article. One of the most comprehensive

evaluations has been done by Beck et al. (2017b), who

compared 22 rainfall products at a global scale. However,

regional studies, evenwhen using fewer products, are also

very relevant. Global studies have access to fewer in situ

measurements in sub-Saharan Africa than in other re-

gions such as Europe or America, while regional ones

often used additional gauge data from national meteo-

rological agencies or other organizations [see, e.g., the

reference data used in the global study of Beck et al.

(2017b) and the reference data used in the regional

comparison of Dinku et al. (2007)]. Moreover, regional

rainfall products (such as TARCAT or RFE2) are not

included in global intercomparisons. A literature review

of intercomparison and validation works has already

been done by Maggioni et al. (2016). They focused on

seven global satellite-based products. In this paper,

we focus on performance of rainfall products in sub-

Saharan Africa and include more products, especially

regional ones. In addition, we include rainfall estimates

obtained from numerical models and from gauge-only

products. The main target audiences are scientists and

decision-makers who need rainfall products for a spe-

cific application and do not necessarily want to acquire

in-depth knowledge of all products available.

In this paper, we review rainfall products and their

performance over sub-Saharan Africa in existing liter-

ature. We first look at three types of precipitation es-

timates: those from models and reanalysis (section 2),

satellite-based ones (section 3), and those based on

gauge data only (section 4). The factors influencing the

performance of these products are then discussed in

section 5a. Finally, section 5b focuses on seven use cases

and their requirements in terms of rainfall data. Some

recommendations are given with respect to these ap-

plications. The algorithm of a rainfall product is also

important in order to understand what to expect from

the product; its performance is linked to its algorithm.

The main addition of the present review to the extensive

literature is that we guide the reader to the best prod-

uct for a specific application and that we do this by ex-

plaining the underlying algorithm with their specific

strengths and weaknesses. In appendix B, the algorithms

of the most used products are shown using a uniform

structure, making them easy to compare.

2. Reanalysis and models

The uncertainties of a reanalysis depend on the un-

certainties of the numerical model and the uncertainties

of the observations it uses. However, rainfall is diffi-

cult to simulate accurately with numerical models, since

it results from a complex interaction of the different

model physics. Thus, we will first look at precipitation

estimates in global models before moving to reanalyses

and then to dynamical downscaling. Another possible

way of downscaling global reanalysis to smaller scales is

to use a statistical model instead of a numerical one. This

method is called statistical downscaling, and it has been

applied to African rainfall as well (Nikulin et al. 2018;

Gebrechorkos et al. 2019). However, in contrast to dy-

namic downscaling, it has not been the object of an ex-

tensive validation or intercomparison project. The reason

why statistically downscaled datasets are less evaluated is

that they are downscaled using the very observations

needed for such evaluation. One would expect that, in

general, statistically downscaled datasets already out-

perform dynamically downscaled datasets regarding sta-

tistics, although Nikulin et al. (2018) did not see this in

their comparison between four dynamically and two

statistically downscaled datasets. Statistical downscaling

falls outside the scope of this review, and thus will not be

addressed in the remainder of the article.

a. Global circulation models (GCMs)

Xue et al. (2010) and Hourdin et al. (2010) evaluated

the ability of several GCMs (along regional models and

other datasets) to represent the West African monsoon.

They showed that GCMs, when they used specified sea

surface temperature (SST), reproduce reasonably the

main features of the West African monsoon, such as the

migration of the intertropical convergence zone (ITCZ).

However, large discrepancies remained between the

GCMs and the other datasets. A possible reason of the

GCMs’ limitations could be their coarse resolution.

However, Crétat et al. (2014) showed that a model with

higher resolution is not necessarily better at represent-

ing daily intense events. Both Hourdin et al. (2010) and

Crétat et al. (2014) pointed out the model’s physics, and

more specifically the convection parameterization, as an

important factor influencing the GCM’s performance.
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Intercomparison studies (Haiden et al. 2012; Ebert

et al. 2007) at a global scale have shown that GCMs have

poorer forecast skill in the tropics than in the extra-

tropics. They explained that lower performance in the

tropics by the difficulty of GCMs to predict convective

precipitation. In general, the skill of models decreases

when rainfall tends toward a convective regime.

b. Reanalyses

There is no regional reanalysis for Africa, however

several global reanalyses are produced. A list of such

reanalyses is given in Table 1 (see articles in reference

column for detailed descriptions). An overview of the

different reanalyses, including the observations used in

the analysis, can be found in Fujiwara et al. (2017).

Global reanalyses are based on global models and

thus suffer the same shortcomings as GCMs, despite

improvements due to assimilation of observations.

Like GCMs, reanalyses have lower performance in the

tropics. Bosilovich et al. (2008) showed that the per-

formance in reproducing precipitation of four well-

known reanalyses (viz., R1, R2, ERA-40, and JRA-25)

was lower over South America and Africa compared to

other regions, especially during the boreal summer,

corresponding to the monsoon season. They gave two

reasons for the poorer performance over the tropics:

the difficulty to parameterize the land–atmosphere in-

teraction and the difficult retrieval of satellite observation

due to the cloudy conditions. Since conventional obser-

vations (ground stations, radiosonde, aircraft, etc.) were

sparse over South America and Africa, the effects were

more visible over these regions.

As for theGCMs, reanalyses are generally outperformed

by satellite-based rainfall estimates (Maidment et al. 2013;

Funk and Verdin 2003; Koutsouris et al. 2016), with

some exceptions in sparsely gauged areas (Thiemig et al.

2012; Worqlul et al. 2014). The main results of these

studies, with respect to reanalyses, are summarized in

Table 4. Funk and Verdin (2003) explained the lower

skill of reanalyses by the limitation of GCMs, such as the

coarse grid and the physics, and by the few moisture-

related observations used in the data assimilation. It has

to be noted that, since this study, new reanalyses have

been created and they incorporate more moisture-

related observations. For example, ERA-Interim as-

similates rain-affected satellite radiance, which was

not used in ERA-40 (Dee et al. 2011). Most reanalyses

do not assimilate precipitation observations directly.

However, MERRA assimilates satellite rain rates over

the oceans, but with a low weight, so they have a weak

impact on the analysis (Rienecker et al. (2011)). The very

recent reanalysis ERA-5 uses precipitation data from

satellite and ground-based radar (Hennermann 2019).
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MERRA-2 and CFSR also use precipitation data for the

forcing of the land surface model (Bosilovich et al. 2015;

Saha et al. 2010).

The most recent reanalyses generally perform better

than the older ones, due to improvements in both the

model and the assimilation system (Kim and Alexander

2013; Bosilovich et al. 2008), but this not always the case

(Bosilovich et al. 2008; Nkiaka et al. 2017; Koutsouris

et al. 2016). Even more recent reanalyses are available,

such as MERRA-2, JRA-55, and CFSv2. However,

no comparison of their performance for precipitation

has been found in literature yet. The Stratosphere–

Troposphere Processes and Their Role in Climate

(SPARC) Reanalysis Intercomparison Project (S-RIP)

is comparing reanalyses, including the most recent ones,

and will publish a report (planned for November 2020).

This intercomparison project is described in Fujiwara

et al. (2017), and more information is available on the

S-RIP website (http://S-RIP.ees.hokudai.ac.jp).

c. Dynamic downscaling

Continuously running a GCM at a fine resolution

would be too computationally expensive; thus, a possi-

ble solution is to dynamically downscale with a regional

climate model (RCM). A lot of attention has been given

to regional downscaling in recent decades and several

projects have applied RCMs to obtain an ensemble of

multimodel climate projections. Over West Africa, such

projects include the Ensembles-Based Predictions of

Climate Changes and Their Impacts (ENSEMBLES),

African Monsoon Multidisciplinary Analyses (AMMA),

the West African Monsoon Modeling and Evaluation

project (WAMME) model intercomparison study (Xue

et al. 2010; Druyan et al. 2010), and, more recently, the

Coordinated Regional Climate Downscaling Experiment

(CORDEX) that has a study region over all of Africa.

The AMMA–Model Intercomparison Project (AMMA-

MIP; Hourdin et al. (2010)) has compared the ability of

different models (both GCMs and RCMs) to reproduce

the West African monsoon (WAM). Other studies com-

paring RCMs over Africa or West Africa include Sylla

et al. (2013) and Crétat et al. (2014). They all agree on the
added value of RCMs compared to GCMs.

The RCMs are able to reproduce more realistically

the features of the monsoon (such as the interannual

variability, the annual cycle, or the spatial patterns) than

the GCMs and reanalyses. This shows the importance

of regional forcing. The higher resolution of RCMs im-

proves the simulation in several ways. It allows a better

representation of the orography, an important regional

forcing, which improves the simulation of orographic

rainfall (Druyan et al. 2010). It also improves the repre-

sentation of land surface properties (such as land cover)
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that play an important role in the WAM (Paeth et al.

2011; Sylla et al. 2013). However, RCMs, with horizontal

resolution around 50 km, still have difficulties in re-

producing both the phase and the intensity of the diurnal

cycle (Nikulin et al. 2012). An explanation could be the

choice of the convection scheme to which the diurnal

cycle is sensitive.

The outputs of the RCMs are influenced by the data

(usually a reanalysis or a GCM) used for the initial

and boundary forcing (Druyan et al. 2010; Druyan and

Fulakeza 2013). However, RCMs driven by the same

reanalysis can have very different accuracies, with bias

varying considerably in space and time (Druyan et al.

2010; Paeth et al. 2011; Nikulin et al. 2012; Sylla et al.

2013). These differences highlight the importance of the

dynamics and physics of each model. An advantage of

RCMs compared to GCMs is that they give the possi-

bility to choose physics more adapted to the region, and

not to the entire globe. GCMs cover the entire globe

and so have to represent a large variety of climates.

On the contrary, RCMs focus on a smaller region, and so

can choose physics parameterizations better suited for

the particular climate of this region.

A review of RCM applications in West Africa can be

found in Sylla et al. (2013), and a review of regional

downscaling is given in Paeth et al. (2011).

3. Satellite-based products

a. Satellite-based rainfall estimates

The satellite-based products are based on data from

different sensors and satellites. They can also include

other data sources, such as ground radar, gauge net-

works, or forecasts from model or reanalysis. A list of

satellite-based rainfall products, including the type of

input they are using, is given in Table 2.

Satellites retrieve different types of observations

from various sensors such as visible, infrared (IR),

passive microwave (PMW), and radar measurements.

IR measurements are used in many rainfall products.

They have the advantage of being frequent and of

covering large areas. However, precipitation is esti-

mated through its relationship to cloud-top tempera-

ture (CTT) derived from thermal IR. This relationship

is indirect and varies within and between rain events

(Kidd and Levizzani 2011; Kidd and Huffman 2011).

On the other hand, PMWmeasurements are less frequent

[PMW sensors are only present on low-Earth-orbiting

(LEO) satellites], but the relation to precipitation

is more direct. PMW-based precipitation estimates

are generally more accurate than IR-based ones, but

have difficulties over snow-covered and desert areas

(Kidd and Levizzani 2011; Kidd and Huffman 2011).

Satellite-radar measurements for precipitation retrieval

are limited: only the Tropical Rainfall MeasuringMission

(TRMM), theGlobal PrecipitationMeasurement (GPM),

and the CloudSat missions have radars specifically de-

signed to retrieve precipitation (Kidd and Levizzani 2011;

Kidd and Huffman 2011). A rainfall product can combine

different types of measurement to take advantage of their

strengths and overcome their weaknesses. For example,

many products combine IR measurements with the more

accurate but less frequent PMWobservations. TMPAand

IMERGare the products using themost different types of

measurements as input data: IR, PMW, satellite radar,

and gauges. They are the only ones using satellite radar as

input (CMORPH uses ground radar over the United

States for adjustment), while CMAP andCHIRPS are the

only ones using data from numerical models.

Other products with a very different approach (and

not shown in the appendix figures) include SM2RAIN

and MSWEP. SM2RAIN is based on soil moisture ob-

servations from satellites and ground measurements.

It inverses the soil water balance equation to obtain

precipitation estimates. MSWEP does not use satellite

measurements directly; instead, it is based on other

rainfall datasets (e.g., CMORPH, ERA-Interim, GPCC-

FDR). A long-term mean precipitation (from CHPclim;

Funk et al. 2015a) is downscaled using precipitation

anomalies obtained by a weighted average of different

reanalyses and gauge and satellite products. Its goal is

to take advantage of the strengths of different types of

rainfall products.

Satellite-based products differ by the data (differ-

ent types of measurement coming from different

satellites/sensors) used as input and by their algorithms

deriving the final precipitation estimates. As a conse-

quence, the error of a satellite-based product is partially

due to the error in the retrieval algorithm (i.e., esti-

mating precipitation from the sensors measurements)

and partially due to the merging algorithm (i.e., com-

bining the different estimates in the final precipitation

estimate).

b. Regional versus global

There exist several regional rainfall products devel-

oped especially for and only covering Africa. They have

been compared to global products in various studies for

different regions ofAfrica. Their results are summarized

in Table 5.

The performance of the regional products and their

advantages with respect to the global products vary

from region to region. Over the Sahel, both RFE2 and

TARCAT perform well in rainfall detection and in es-

timating rainfall amounts, at least as well as the global
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products (Jobard et al. 2011; Pierre et al. 2011; Novella

and Thiaw 2010; Dinku et al. 2015). However, over

Burkina Faso, which is part of the Sahel, TARCAT has

been shown to have very poor performance by Dembélé
and Zwart (2016), while RFE2 and ARC2 outperformed

TMPA. Gosset et al. (2013) showed that regional prod-

ucts (RFE2, EPSAT) tend to underestimate rainfall

amounts while global and especially near-real-time ones

overestimate it over the south of West Africa. Over East

Africa, regional products do not perform as well, and

TMPA and CMORPH tend to show the best perfor-

mances. RFE2 has particularly poor performance over

Ethiopia despite some skill for rainfall detection. It

is outperformed by most of the global products over

this region (Dinku et al. 2007, 2008a, 2011a). Over

Ethiopia, TARCAT still shows some agreement with

gauge data despite underestimating (Dinku et al.

2007). Over Uganda, TARCAT has a similar perfor-

mance as CMORPH and TMPA, while ARC2 out-

performs RFE2 (Asadullah et al. 2008; Diem et al.

2014). In general, over a large part of East Africa,

TARCAT and RFE2 have relatively similar and rea-

sonable performances. They outperform some global

products (e.g., PERSIANN and GSMaP) while they are

outperformed by others such as TMPA 3B42 (Cattani

et al. 2016).

Regional products show very good results and per-

form as well as or better than the most-used global

products. However, it cannot be concluded that the re-

gional products outperform global ones as a general

rule. For example, the algorithm of RFE2 is not suit-

able for regions with complicated orography such as

Ethiopia. More information about the algorithms and

the performance of the regional products is given in

section h (for RFE2), section i (for ARC2), and section l

(for TARCAT) of appendix B.

c. Gauge data in satellite-based products

Satellite-based rainfall products can also use data

other than satellite data in their algorithms. For in-

stance CMORPH uses ground-radar data to adjust

the cloud motion vectors derived from IR data. Other

products, such as GPCP-1DD or PERSIANN-CDR,

use other rainfall products, namely, GPCP-SG. Many

satellite-based products, which are listed in Table 6, use

gauge data. Gauge data can be used in different ways.

The bias of a product varies depending on the region

of interest, and is different from one product to another.

For example, CMORPH tends to overestimate while

GSMaP tends to underestimate over the Sahel (Jobard

et al. 2011), and PERSIANN overestimates almost ev-

erywhere over Africa except over mountainous areas,

over which it underestimates. Bias correction using gauge

data can reduce the bias significantly. It has been shown

by Jobard et al. (2011) that near-real-time products that

do not include bias adjustment have worse performance

than the other global products over the Sahel; they es-

pecially have large bias. There are several methods to

remove the bias using gauge data, such as scaling by the

ratio of the gauge/satellite rainfall estimates (GPCP-SG

and TMPA) or matching the probability density func-

tion of the satellite estimates with the one from the gauge

data [CMORPH-Corrected (CRT)]. PERSIANN-CDR

is also bias adjusted, using a monthly ratio method, but

based on another satellite-based product.

Some products merged satellite estimates, after bias

adjustment or not, with gauge estimates. There are

several ways of doing so. Some use inverse error vari-

ance weighting (TMPA, IMERG, GPCP-SG) or other

weighted average (CHIRPS), while other products use

directly the gauge-only estimate when reliable, and

a blended satellite-gauge estimate elsewhere (ARC2,

RFE2, CMAP, CAMS-OPI).

Another way of using gauge data is for calibration, as

in TARCAT. Indeed, the TARCAT algorithm is cali-

brated locally to historical gauge data and is then ap-

plied to recent IR data. TARCAT does not use gauge

data for bias adjustment or merging, but has been shown

to perform well over different parts of Africa despite a

dry bias for the high-intensity rain rates. Over Ethiopia,

Dinku et al. (2007) found that TARCAT performed

better than some gauge-adjusted products such as

TMPA 3B42, RFE2, and GPCP-1DD (except with

respect to the bias). Jobard et al. (2011) showed that

the regional products, including TARCAT, performed

better than global bias-adjusted ones over the Sahel. A

benefit of using historical data, as TARCAT does, is

that it takes advantage of data from gauges that no

longer exist. Similarly, CMORPH-CRT uses a two-

step approach for the bias adjustment over land. It first

TABLE 6. List of satellite-derived rainfall products using gauge

data and how they are used in their algorithms.

Calibration Bias adjustment Merged

ARC2 x

CAMS-OPI x

CHIRPS x x

CMAP x

CMORPHv1.0 CRT x

CMORPHv1.0 BLD x x

GPCP-SG x x

GPM x x

GSMaP_gauge x

RFE2 x

TARCAT x

TMPA x x
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removes the climatic bias using historical data and then

adjusts to real-time data (Xie et al. 2017). This ap-

proach is particularly beneficial for areas with very

sparse gauge coverage.

4. Gauge-only products

There exist various gridded gauge-only products (see

Table 3). Some are updated regularly, from a few days to a

few months latency, such as Climate Prediction Center

(CPC) Unified, Precipitation Reconstruction over Land

(PREC/L), Global Precipitation Climatology Centre

(GPCC)-first guess, and GPCC-monitoring. Others are

updated irregularly, such as GPCC-Full Data Reanalysis

(GPCC-FDR), GPCC-Full Data Daily (GPCC-FDD),

University of Delaware dataset (UDEL), and Climatic

Research Unit Time series (CRU-TS), for which a new

version is available every few years with reprocessed data

for the entire period. They are produced at relatively

coarse spatial and temporal resolutions compared to

satellite-based rainfall products. Their spatial resolution

ranges from 0.58 3 0.58 to 2.58 3 2.58, and they are

available as monthly estimates except for CPC Unified,

GPCC-first guess, and GPCC-FDD, which are available

for daily totals.

a. Factors influencing the performance of gauge-only
products

The gauge coverage in Africa, with the exception of

a few regions such as South Africa, is sparse. Moreover,

the number of recording stations (available for these

products) varies over space and time, and has signifi-

cantly decreased during the last decades. This decrease

of available gauge records is shown in Lorenz and

Kunstmann (2012, Figs. 3 and 4) for GPCC and CPC

Unified datasets for the period 1989–2006, in Cattani

et al. (2016, Fig. 8) for GPCC-FDR over East Africa

between 2001 and 2009, in Maidment et al. (2014,

Fig. 3d) for GPCC-FDR over Africa for the period

1983–2010 (a clear drop in gauges coverage is visible

around 2009), and in Dinku et al. (2008b, Fig. 3) for

three GPCC products, PREC/L, and CRU-TS over

Ethiopia for the period 1981–2000, over which the

number of gauges decreases sharply around 1985. The

decreasing number of recording stations in Africa is a

known issue (van de Giesen et al. 2014) and is mainly

due to a lack of funding for the maintenance and up-

grading of the gauge network. With GPCC-FDR prod-

uct being a reanalysis, the decrease of records used for

the last years is also due to the time delay in obtaining

data from national agencies.

The relation between the gauge coverage and the

accuracy of gridded products has been observed by

Maidment et al. (2014). They compared TARCATwith

various rainfall products over Africa for the period

1983–2010 and found less agreement between the three

gauge-only products (CRU, GPCC-FDR, and PREC/L)

during 2000–10, this period corresponding to a sharp

decrease of recording gauges. Similar results were found

by Dinku et al. (2008b) when comparing PREC/L,

CRU-TS, GPCC-FDR, and GPCC-clim over Ethiopia

for two different periods: 1981–85 and 1996–2000. Far

fewer gauge records were available for the products

during the second period, and this decrease had an

impact on the products’ accuracy. Indeed, more dis-

crepancies in time series were observed during the

second period than during the first one. Moreover, the

correlation and Nash–Sutcliffe (NS) efficiency coeffi-

cients decreased between the first and the second pe-

riod, while the mean average error increased for the

four products.

Dinku et al. (2008b) studied the impact of the number

as well as the quality of gauge records on product per-

formance by comparing three GPCC monthly products

(GPCC-monitoring, GPCC-FDR, and GPCC-clim) over

the complex topography of Ethiopia at 2.58 3 2.58 and
1.08 3 1.08 resolution. These three products use the same

interpolation method but a different number of gauges

and different quality requirements. GPCC-monitoring

uses reports received through GTS within a month after

the observation month, while GPCC-FDR is produced

irregularly and thus can also use non-real-time data and

apply a higher quality check, so it includes more stations

and those stations are of better quality than those in

GPCC-monitoring. GPCC-clim uses fewer stations but of

higher quality since it requires the stations to have a

time series that is at least 90% complete. They all

had similar performances, with GPCC-monitoring

having a larger bias, GPCC-clim having higher ran-

dom error, and GPCC-FDR having a relative better

performance. The performances of gridded products

vary in time and space depending on the gauge’s

coverage. It is recommended to interpret the gauge

estimate with respect to the gauge’s density informa-

tion supplied with it.

The gauge coverage has an impact on the accuracy

of the products; however the number of gauge records

alone does not determine the performance of the

products. When comparing four gauge-only products

to the reference at three different spatial resolutions,

Dinku et al. (2008b) showed that they all have good

performance, with high correlation and NS efficiency

and very low bias. However, despite using the largest

number of stations and high quality check among the

products, CRU-TS had overall the worst statistics,

behind GPCC-clim using the least number of stations.
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So, its limitation comes from its interpolation method.

A better gauge coverage does not always mean better

accuracy; the interpolation method also has an impact

on a product’s performance.

To summarize, the accuracy of the estimates do not

depend on the gauge coverage alone, but also on the

quality check and the interpolation method used by the

gauge-only product.

b. Gauge-only versus satellite-based products

The gauge-only products have been evaluated over

Ethiopia by Dinku et al. (2008b), but not over other

parts of Africa. However, gauge-only products have

been compared to satellite-based product over different

African regions. These studies are summarized in

Table 7, and their main results with respect to the gauge-

only products are described below.

Ali et al. (2005) compared the gauge-only GPCC

product and three satellite-based ones (CMAP, GPCP,

and GPI) at monthly scale and 2.58 over the Sahel.

They concluded that CMAP had the best performance

with, among others, the smallest root-mean-square

error (RMSE) and bias and the highest coefficient of

determination, followed closely by GPCC and GPCP,

with GPI far behind.

Over Ethiopia, Dinku et al. (2011b) evaluated the

performance of two gauge-only products (CRU-TS

and GPCC-FDR) and two satellite-based products

(GPCPv2 and CMAP), also monthly, at 2.58 resolu-
tion. All products gave good results, with low bias

and mean average error and high correlation and

NS efficiency. The gauge-only products had no or

lower bias but CRU-TS had a slightly larger random

error. GPCC-FDR seemed to perform slightly better

than the other ones. However, when GPCPv2 and

GPCC-FDR are compared to GPCPv2.1, which in-

cludes GPCC-FDR in the algorithm, the latter out-

performed them, except for the bias that remains

lower for GPCC.

CPC Unified was evaluated over the Sahel at higher

resolution, which is for dekadal estimates on a 0.58 grid,
along six satellite-based estimates by Novella and

Thiaw (2010). In terms of rainfall detection, RFE and

CMORPH outperformed the other products, including

CPC Unified. In term of statistics, CPC Unified, RFE,

ARC, and TARCAT had a low bias and RMSE, but

RFE and ARC also had a higher correlation. They

concluded that RFE and ARC had the overall best

performances.

Gauge-only products have in general good perfor-

mance with no or very low bias, but they do not sig-

nificantly outperform satellite-based products over

Africa.

5. Discussion

a. Factors influencing the performance

1) TEMPORAL AND SPATIAL SCALE

Performance of rainfall products is influenced by the

temporal and spatial resolution at which they are eval-

uated. Performance improves for decreasing resolution,

that is, for coarser grids. One should pay attention to the

temporal and spatial resolution when looking at vali-

dation or intercomparison study of rainfall products.

Dembélé and Zwart (2016) compared seven satellite-

based rainfall products over Burkina Faso at different

temporal resolutions, namely, daily, dekadal, monthly,

and annual scale (see Table 5 for more details on the

comparison method). They showed that both the con-

tinuous and categorical statistics improved when the

temporal resolution decreased. At monthly and an-

nual scale, all the products, except TARCAT, have very

good performance in terms of continuous and categor-

ical statistics. At dekadal scale the products are in good

agreement with the gauges (e.g., correlation coefficients

equal or larger than 0.80), while at daily scale the per-

formance of the products was very low (with, e.g., cor-

relation coefficients smaller than 0.50). Similarly, Dinku

et al. (2011b) compared several satellite-based and

gauge-only products over Ethiopia at different temporal

and spatial scales (see Table 7 for more details on the

comparison method). On a 1.08 3 1.08 grid, RFE2,

TMPA 3B42, and CMORPH had reasonable perfor-

mances in estimating rainfall amount at dekadal scale,

but poor ones at daily scale despite still good detec-

tion skill. They also compared these three products at

daily scale on three grids with different resolution and

showed that both continuous and categorical statistics

were getting better when the spatial resolution de-

creased. In Dinku et al. (2007), six satellite-based rain-

fall products were compared at dekadal scale over

Ethiopia using three different grid sizes (see Table 5). A

decrease in the product’s performance was observed

when the spatial resolution was increased. Similar re-

sults were found for the gauge-only products by Dinku

et al. (2008b) (see Table 7). They evaluated five products

over Ethiopia at three different spatial resolutions for

monthly amount. Their performance decreased with

increasing resolution, but still remained good.

2) GAUGES

The gauge density varies in space and time, and

so influences the performance of the gauge-only and

satellite-based products. The reanalyses use ground-

stationmeasurements but no rain gauge data in their data

assimilation process, so they are not directly impacted by
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the gauge density. The exceptions areMERRA2, CFSR,

and CFSv2. They use precipitation data (such as CMAP

and CPC Unified) as part of their land surface forcing.

However, MERRA2 uses CMAP and GPCPv2.1 over

Africa (Bosilovich et al. 2015, Table 7.1), and CFSR

favored CMAP over CPC Unified in the tropics (Saha

et al. 2010). Thus, gauge data have a very limited influ-

ence on the reanalyses’ precipitation.

The accuracy of gauge-only products depends strongly

on the number of gauges available, which is why the

gauge density is given along the rainfall estimates for

these products. However, as seen in section 4a, the ac-

curacy does not depend solely on gauge density. The

quality of the data and the interpolationmethod also play

an important role.

Many satellite-based products use gauge data (see

section 3c). Thus, their performances are impacted by the

availability of gauge data. For instance, the poor perfor-

mance of TMPA 3B42 over Lake Tana has been attrib-

uted to the orography and the lackof available gauge data

by Worqlul et al. (2014). Moreover, the gauge data used

in satellite-based products are in general a small fraction

of the gauge records available (e.g., gauge-only products

use a much larger number of gauge records than satellite-

based products). An exception is GPCP-SGv2.1 which

uses GPCC, a gauge-only product, for bias adjustment

and merging. Dinku et al. (2011b) showed the benefit

of adding more gauge data by comparing GPCP-

SGv2.1 with its previous version GPCP-SGv2, which

incorporated a smaller amount of gauge data, over the

Ethiopian highlands. They found that the correlation

improved from 0.96 to 0.99, the NS efficiency from

0.92 to 0.99, and that the random error became lower

than the ones of both GPCP-SGv2 and GPCC.

3) OROGRAPHY

The orography has an impact on the atmospheric

circulation, and so on the precipitation field. It is thus an

important regional forcing in numerical weather model.

The coarse resolution of reanalysis and GCMs does not

allow them to represent accurately complex orography,

limiting their performance in simulating orographic

rainfall. A possibility to improve the representation

of orography and orographic rainfall is to dynami-

cally downscale the reanalysis using an RCM (Druyan

et al. 2010).

Complex orography, and more generally warm-cloud

processes, is a well-known challenge for satellite-based

rainfall products (Serrat-Capdevila et al. 2014). IR-based

estimates have difficulties in capturing warm-cloud pre-

cipitation over coastal and orographic regions. This is

mainly due to the threshold they use to discriminate

between raining and nonraining clouds, which is too cold
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for such processes (Dinku et al. 2007, 2008a, 2011a).

Products including PMW data seem to perform better

than the ones mainly based on IR (Dinku et al. 2007,

2011a). However, PMW-based precipitation estimates

also have some limitations with respect to orographic

rain. Indeed, PMW algorithms are mainly based on

scattering by ice aloft, but orographic rainfall is a

warm-cloud process that does not necessarily pro-

duce much ice, which can lead to underestimation.

Moreover, ice on the mountains can be mistakenly

considered as rainfall by such algorithms (Dinku et al.

2007, 2008a, 2011a).

Mountainous areas raise several difficulties for the

gauge-only products too. There are few gauges at high

elevations; most of the gauges are located at lower alti-

tudes. The difficult access and remoteness of such loca-

tions make the installation and maintenance of weather

stations complicated. At the same time, the variability of

rainfall over mountainous regions is high. For example,

Hirpa et al. (2010) showed the existence of an elevation

dependence trend, that is the rainfall amounts increase

with elevation. Hence, the gauge measurements at the

bottom of a mountain are not representative of the

rainfall at higher altitudes. Moreover, the high spatial

variability is making the interpolation more difficult.

4) RAINFALL REGIME

The characteristics of the seasonal distribution of

rainfall at a particular place are termed the rainfall re-

gime (American Meteorological Society 2019). Rainfall

regimes are influenced by large-scale climatic features,

such as the ITCZ, and also by regional ones such as

mountains and lakes. They vary in space and time de-

pending on the climatic region and on the season. The

rainfall regimes influence the performance of the rainfall

products. Hence, their performance can differ over two

regions adjacent to each other but with different rainfall

regimes.

Some comparison studies took the different rainfall

regimes into account. For instance, to compare six

satellite-based products over East Africa, Cattani et al.

(2016) divided this large area in eight smaller areas, each

characterized by a specific precipitation seasonality.

Areas with higher precipitation intensity showed a big-

ger standard deviation and mean average errors. The

standard deviation also depends on the season since

precipitation patterns change over the year. Some areas

had an overall better correlation and NS efficiency for

the different products than others. These differences

between the areas show the influence of rainfall re-

gimes on the performance of the products; a product

can perform differently over two geographically close

areas but having different rainfall regimes. Similarly,

Romilly and Gebremichael (2011) compared the bias of

three satellite-based products over six river basins in

Ethiopia that were divided in four regions based on

similar rainfall annual cycles and topography. They

showed that the bias of these three products depended

on the rainfall regime, that is, the bias was different

from one region to another but could also vary ac-

cording to the season.

The variation in time of the rainfall products’ per-

formance was also shown by Ali et al. (2005), who

compared three satellite-based products and one gauge-

only product over the Sahel. The monthly mean statis-

tics were better in the core of the rainy season for CMAP

while GPCP and GPCC had better statistics in its mar-

gins. Dinku et al. (2008b) evaluated five gauge-only

products over Ethiopia and found that they performed

better (i.e., higher correlation and NS efficiency) during

the wettest season (June–August) and worse during the

dry season (December–February). They showed that

these seasonal differences were more important when

the comparison was done at higher spatial resolution.

The poor performance during the dry season was at-

tributed to the fact that rainfall during this season is local

in both time and space, and thus a denser network of

gauges would be needed to reproduce the rainfall pat-

terns. On the contrary, reanalyses perform more poorly

during the monsoon season due to the convective na-

ture of the rainfall. In general, the satellite-based es-

timates are expected to perform better in summers and

in the tropics while models are expected to be better

in winters and high latitudes because the satellite es-

timates tend to reproduce convective rainfall more

accurately (Ebert et al. 2007). The reanalyses and

global models, in general, have been shown to perform

more poorly over the tropics and to fail to reproduce

some regional-scale features. Thus, it is not surprising

that the reanalyses are outperformed by satellite-

based products over Africa and especially during the

monsoon season.

Some climates are more difficult than others to rep-

resent, which is the case for arid areas by satellite-based

products, for example. Jobard et al. (2011) compared 10

satellite-based products over the Sahel and showed that

they all had higher RMSE ratios in the northern part

where rainfalls had low intensities. On the contrary,

in Cattani et al. (2016), the six rainfall products had

low RMSE and mean average error over arid areas.

However, it has to be taken relatively since the monthly

rainfall amount was also very low over these areas.

Dinku et al. (2010) and Dinku et al. (2011a) had spe-

cifically studied the limitations of satellite-based pre-

cipitation estimates over arid areas. Dinku et al. (2011a)

evaluated the skills of four rainfall products over an arid
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region in Ethiopia while Dinku et al. (2010) compared

seven products over different arid and semiarid regions.

They both concurred on the poor performance of the

different satellite products over such regions, espe-

cially the drier ones. The products overestimated the

frequency of rainfall despite a low probability of detec-

tion (POD). The low detection skill and the high over-

estimation were attributed to several possible reasons.

First, the subcloud evaporation can play an important

role in this overestimation. These regions have a dry at-

mosphere so the rainfall detected aloft by the satellite

might evaporate before reaching the ground. Second, a

limitation specific to PMW algorithms is that they can

mistakenly identify desert surfaces as raining, because

desert and snow cover have spectral characteristic close

to rainfall (Wang et al. 2009). Finally, the coarse resolu-

tion of the rainfall products can also be an explanation

factor for the low POD, especially since they are com-

pared to point data. Indeed, a pixel might cover both

rain and nonrainy (warm) surface, but the pixel rep-

resents the averaged values that may not be identified

as rain. As mentioned above, gauge-only products can

also have difficulties over dry areas, when the rainfall is

localized.

b. Use cases

The ‘‘best’’ rainfall products depend on the in-

tended use cases. Sometimes, requirements on the spa-

tial and/or temporal resolution can limit the possible

choices (see Tables 1–3 for the resolution of the dif-

ferent products). Depending on the application, some

characteristics are more important than others. The

important characteristics of seven use cases are dis-

cussed below. Recommendations about the rainfall

products for these cases are given in Table 8.

1) DROUGHT MONITORING

Droughts have a high economic cost, because of

their possible large spatial and temporal scale. With

the agriculture in sub-Saharan Africa being mainly

rain-fed, the population is vulnerable to such a natural

disaster. It can also impact the food and water secu-

rity; for example, the drought of the Horn of Africa in

2011 caused famine in several regions, and large

population movement (Sheffield et al. 2014). Hence,

drought monitoring and early warning systems are

important in this region. These applications need

precipitation data, in general 1–10-day accumulations.

One should avoid rainfall products that overesti-

mate the occurrence or the amount of rainfall events.

The good representation of the low-intensity rainfall

events is more important than the high ones. In terms

of criteria, this translates to

d low false alarm rate (FAR; no overestimation of

occurrence),
d low or dry frequency bias (no overestimation of

occurrence),
d dry bias preferred (no overestimation of amount),
d low or negativeME (no overestimation of amount), and
d distribution representing well the low precipitation

values (representation of low rainfall events).

2) AGRICULTURE/CROP MODELING

In sub-Saharan Africa, agriculture is mainly rain-fed,

making the population highly vulnerable to rainfall

variability. Rainfall information is therefore valuable

for farmers, and an important input for crop model-

ing. Rainfall data are also used to derive rainfall in-

dices for crop insurance. Such insurance helps the

smallholder farmer to be more climate resilient. For

these types of application, the chosen rainfall product

should correctly represent the precipitation distribu-

tion over time and estimate accurately the amount per

events. The good representation of dry spells is also

important since they are influencing the vegetation

growth. The most important criteria for these types of

application are

d low RMSE and MAE (accurate amount at pentadal

and dekadal scales),
d high coefficient of determination R2 or correlation

coefficient, and
d good representation of dry spell occurrence.

This application is probably the most demanding in

terms of accuracy and rainfall distribution.

3) FLOOD MONITORING/EXTREME EVENTS

Sub-Saharan Africa is also vulnerable to floods. The

number of deaths and the economic loss due to floods

have increased in the last decades (Thiemig et al.

2011). The fast urbanization has increased the pop-

ulation vulnerability to such natural disasters. In this

context, flood monitoring and early warning system

are needed to reduce the human and economic losses

(Thiemig et al. 2011). Good estimation of flood events

relies on precipitation data representing well the

high-intensity rainfalls. For such applications, rain-

fall products underestimating the occurrence and

amount should be avoided. In terms of criteria, this

translates to

d high POD (no underestimation of occurrence),
d low or wet frequency bias (no underestimation of

occurrence),
d wet bias preferred (no underestimation of amount),
d low or positiveME (no underestimation of amount), and
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d distribution representing well the high precipitation

values (representation of intense rainfall events).

4) HYDROLOGICAL MODELING/RESERVOIR

MANAGEMENT

Hydrological modeling is used for many applications

linked to water management, such as reservoir man-

agement. Decisions made based on the results of such

models can have an impact on the population, the

economy, or the environment (Thiemig et al. 2013).

Precipitation data are one of the main inputs, and so

influence the accuracy of the output. The temporal res-

olution needed depends on the exact application; it can

range from subdaily to monthly. In general, a good es-

timation of both the occurrence and the amount of

rainfall is needed. Bias correction as a preprocessing

step can improve the model results. This is especially

true when using real-time products that have in general

large bias. The results are also influenced by the model

parameters. These parameters can be specifically cali-

brated for the chosen rainfall product, in order to im-

prove the result’s accuracy.

5) GENERAL/CLIMATOLOGY

Climatological applications need long data records in

order to study trends and variations. Most of the studies

are focused on a small number of years. Studies over

longer time periods would be interesting. For these

types of applications, rainfall products need consistent

performance in time. This can be an issue. Gauge-only

products have long time coverage, but their perfor-

mance varies with the gauge density. Similarly, more

observations are available for reanalysis in more recent

years, improving their performance. The sensors and

TABLE 8. Recommendations depending on the use cases (based on literature, see Table 5).

Use cases Recommendations

Drought monitoring TARCAT, RFE2, ARC2 recommended

Avoid RFE2 and ARC2 over mountainous areas

Avoid RT products which have a large wet bias

CHIRPS developed for drought monitoring, but advised for flood monitoring by Dembélé and

Zwart (2016) and Toté et al. (2015)

Agriculture/crop modeling Not many comparison studies [only Pierre et al. (2011) looks at vegetation modeling]

Depends on the region

RFE2 over the Sahel (both good for occurrence and amount)

CMORPH has good rain–no-rain discrimination, but need bias correction (large wet bias)

Flood monitoring Avoid TARCAT, RFE2, and ARC2

CHIRPS: developed for drought, but recommended for flood over Burkina Faso andMozambique

by Dembélé and Zwart (2016) and Toté et al. (2015)

CMORPH: good detection skill, and (large) wet bias (except over Zimbabwe)

PERSIANN: high POD and positive bias, but very large bias and do not represent well distribution

of high precipitation values (over the Sahel). To be used with caution.

Other possibilities: GPCC-1DD, TMPA 3B42, GSMaP (but can have dry bias for some

years/locations)

Hydrological modeling/reservoir

management

Need to account for the bias of rainfall products (especially RT, which have large bias)

Possible improvement by calibrating the model

(Gosset et al. 2013; Thiemig et al. 2013)

Climatology/general Depends on the regions

General good agreement at monthly scalea

PERSIANN-CDR, ARC2 (and CHIRPS) developed for climatology

Gauge-only products: long time period, but accuracy varies in time

Over the Sahel: regional products (except TARCAT over Burkina Faso), and CMAP at monthly

scale (Ali et al. 2005)

CHIRPS: good results, but only two studies (Dembélé and Zwart 2016; Toté et al. 2015)

CMORPH: the algorithm has been modified during production of version v0.x, prefer v1.0 for

climatologyb (for more consistency in time). Be aware of its relatively large wet bias.

TMPA: in general reasonable performance

Mountainous areas CMORPH and TARCAT recommended

Avoid RFE2, ARC2, and PERSIANN

Diurnal cycle Only few studies at subdaily scale

Only studied over Niamey, Ouémé, and Dakar

(Pfeifroth et al. 2016; Roca et al. 2010)

a Performance of rainfall product increases for coarser resolution.
b Version 1.0 has been reprocessed with consistent input/algorithm.
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sometimes the algorithms used for satellite-based prod-

ucts change in time, making them less consistent. The

rainfall products should cover a long time period and be

able to represent the yearly and seasonal variability.

Thus, the important criteria to look at are

d high correlation or coefficient of determination (good

representation of the trend, little dispersion),
d high NS efficiency (good fit, low relative residual

variance), and
d low RMSE (good fit, general low misfit).

6) MOUNTAINOUS AREAS

Complex orography is a well-known difficulty for

rainfall products (see section 5a). Their accuracy is

lower than over flatter areas, and they tend to un-

derestimate rainfall. However, some products have

been shown to perform relatively better, while some

others are more inadequate for mountainous areas.

7) DIURNAL CYCLE

Most of the well-known rainfall products are avail-

able at subdaily scale. However, very few comparison

and validation studies considered this scale. The diurnal

cycle represents a large precipitation variation within a

day, and has been specifically studied by Pfeifroth et al.

(2016) over the two sites of Niamey (Niger) and Ouémé
(Benin). The diurnal cycle varies within the rainy season,

but also from year to year. It can be characterized by the

number of rainy peaks, their timing, and their size.

The recommendations given in Table 8 focused on the

satellite-based products because more literature was

available for them. The most used of them are described

in more detail in appendix B. The reanalyses and gauge-

only products also have some strengths.

The main advantage of the gauge-only products is

their long record period that goes back to 1901 (while

the satellite-based products do not start before 1979).

However, the quality of the products varies in time with

the gauge network density, which is particularly sparse

in some African regions. The product using the highest

number of records is GPCC-FDR, and it has to be noted,

however, that this number varies a lot in time (Becker

et al. 2013). A drawback of some gauge-only products

(GPCC-FDR, CRU-TS, and UDEL) is their irregular

updates, making them unavailable for recent years’

studies. CRU-TS and UDEL also include other vari-

ables, such as the temperature, in a consistent format.

Having a consistent dataset for both precipitation and

temperature can be an advantage for some applications

that need these two measurements.

The reanalysis have a higher temporal resolution than

the gauge-only products, but also cover a shorter time

period. They include many atmospheric variables. This

can be useful for climatological applications that do not

focus exclusively on precipitation, for example. They

can also be used to understand better the mechanisms

producing rainfall.

6. Conclusions

In this paper, we have reviewed the most-used rain-

fall products and their relative performances. The

choice of products will depend on the intended appli-

cation. However, different use cases have different

requirements that can guide us toward the best choice.

Users also have to consider some factors influencing the

accuracy of the products and thus the results of their

applications. These factors include the gauge density, the

orography, and the rainfall regime.

Various methods have been developed to derive rain-

fall from different types of data. Some of the most re-

cent products build upon older ones. The algorithm of

NASA’s newest rainfall product, IMERG, is based on the

methods of previously existing products: (i) TMPA for

the intercalibration and merging of the PMW estimates

and for the bias adjustment, (ii) PERSIANN-CCS for

the PMW-calibrated IR estimates, and (iii) CMORPH–

Kalman filter for the merging of PMW and IR esti-

mates. Similarly, the recent MSWEP product (first

release in 2016 and version 2 in 2017) is not using a

new algorithm to derive rainfall estimates from mea-

surements. Instead, it uses already existing gauge-only

(non-gauge-adjusted), satellite-based rainfall products

and reanalyses to derive anomalies while a corrected

version of CHPclim is used for the long-term mean

precipitation.

It is important to understand the method behind a

rainfall product in order to understand its strengths and

its limitations, or, in other words, to know how robust it

is and to which extent one can trust it. The diagrams in

appendix B are meant to facilitate such understand-

ing across products. When choosing one rainfall prod-

uct among all the existing ones, one should not only

look at validation studies but at the description of the

algorithm (C. Kummerow 2017, meeting presentation).

Comparing fairly different products is difficult, and the

results depend on the reference dataset, on the method,

and on resolution. Moreover, the conclusion of a study

might not hold for another region or rainfall regime. The

algorithm’s description will give an idea of the robust-

ness of a product and of its limits. Finally, we agree with

Kummerow’s plea to only build new rainfall products

with a clear use case in mind, one that has not yet been

catered to by existing products (C. Kummerow 2017,

meeting presentation).
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APPENDIX A

List of Acronyms

AMMA African Monsoon Multidisciplinary

Analyses

AMMA-MIP AMMA–Model IntercomparisonProject

ARC2 Africa Rainfall Climatology version 2

BLD Blended

CAMS-OPI Climate Anomaly Monitoring System–

Outgoing Longwave Radiation Pre-

cipitation Index

CDF Cumulative density function

CFSR Climate Forecast System Reanalysis

CFSv2 Climate Forecast System version 2

CHIRPS ClimateHazardsGroup Infrared Precip-

itation with Station Data

CHPclim ClimateHazards Group’s Precipitation

Climatology

CMAP CPCMergedAnalysis of Precipitation

CMORPH CPC morphing technique

CORDEX Coordinated Regional Climate Down-

scaling Experiment

CPC Climate Prediction Center

CRT Corrected

CRU-TS Climatic Research Unit–Time Series

CSI Critical success index

ENSEMBLES Ensembles-BasedPredictions ofClimate

Changes and Their Impacts

EPSAT Estimation of Precipitation by Satellites

ERA European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-

analysis

ETS Equitable threat score

FAR False alarm ratio

FB Frequency bias

GCM Global circulation model

GPCC Global Precipitation Climatology Centre

GPCC-clim GPCC Climatology

GPCC-FDD GPCC–Full Data Daily

GPCC-FDR GPCC–Full Data Reanalysis

GPCP GlobalPrecipitationClimatologyProject

GPCP-SG GPCP–Satellite and Gauge

GPI GOES precipitation index

GPM Global Precipitation Measurement

GSMaP Global SatelliteMappingofPrecipitation

GTS Global Telecommunication System

HK Hanssen and Kuiper discriminant

HSS Heidke skill score

IMERG Integrated Multisatellite Retrievals

for GPM

IPWG InternationalPrecipitationWorkingGroup

IR Infrared

ITCZ Intertropical convergence zone

JRA Japanese Meteorological Agency

(JMA) Reanalysis

MAE Mean average error

ME Mean error

MERRA Modern-Era Retrospective Analysis

for Research and Applications

MSWEP Multi-Source Weighted-Ensemble

Precipitation

NS Nash–Sutcliffe

OR Odds ratio

PERSIANN PrecipitationEstimation fromRemotely

Sensed Information using Artificial

Neural Networks

PERSIANN-

CCS

PERSIANN–Cloud

Classification System

PERSIANN-

CDR

PERSIANN–Climate Data Record

PMW Passive microwave

POD Probability of detection

POFD Probability of false detection

PR Precipitation radar

PREC/L PrecipitationReconstruction over Land

R1 NCEP–NCAR Reanalysis

R2 NCEP–DOE Reanalysis

RCM Regional circulation model

RFE2 Rainfall Estimate version 2

RMSE Root-mean-square error

SD Standard deviation

SM2RAIN Soil Moisture to Rainfall

S-RIP SARC Reanalysis Intercomparison

Project

SPARC Stratosphere–Troposphere Processes

and Their Role in Climate

TAMSAT Tropical Applications of Meteorology

Using Satellite Data and Ground-

Based Observations

TARCAT TAMSATAfrican Rainfall Climatology

and Time Series

TMPA TRMM Multisatellite Precipitation

Analysis

TRMM Tropical Rainfall Measuring Mission
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UDEL University of Delaware dataset

WAM West African monsoon

WAMME West African Monsoon Modeling and

Evaluation project

APPENDIX B

Satellite-Based Products: Description and
Performance

a. Climate Anomaly Monitoring System–outgoing
longwave radiation precipitation index
(CAMS-OPI)

The CAMS-OPI product provides monthly mean and

anomaly precipitation on a 2.58 3 2.58 grid resolution

from 1979 up to present. This product has two types of

inputs: 1) monthly rain gauge totals from the Climate

Anomaly Data Base (CADB) (initially rain gauges from

CAMS were used), and 2) satellite-based estimates de-

rived from outgoing longwave radiation (OLR) obser-

vations fromNOAA polar-orbiting satellites. These two

inputs are merged, such that over the oceans the final

estimates are the same as the satellite-based estimates

and that over the land the final estimates take the

values of the gauge-based estimates where available;

everywhere else the gauge and the satellite estimates are

blended. Figure B1 represents a flowchart of CAMS-

OPI’s algorithm. A more detailed description of the

CAMS-OPI product and a comparison with GPCP and

CMAP is given in Janowiak and Xie (1999).

CAMS-OPI has the advantage of being a near-real-

time product, so it is useful for real-time precipitation

monitoring. However, for other purposes, it is advised to

use other monthly global precipitation products such as

GPCP or CMAP. They are not real-time products, but

they include more observations and use better quality

controls for the rain gauge data.

b. Global Precipitation Climatology Project
(GPCP)–Satellite and Gauge (SG)

GPCP-SG gives global monthly precipitation es-

timates, and associated error estimates, on a 2.58 3
2.58 lat/lon grid from 1979 to a delayed present.

Precipitation estimates from different sources of ob-

servations are merged to create the GPCP-SG final es-

timates. GPCP-SG is based on 1) PMW information

from SSMI and SSMIS, 2) IR data from geostationary

and polar-orbiting satellites, 3) rain gauges data from

GPCC, 4) sounding data from the Television and Infrared

Observation Satellite Program (TIROS) Operational

Vertical Sounder (TOVS) and the Atmospheric Infrared

Sounder (AIRS), and 5) OLR precipitation index (OPI)

from NOAA. Some of these input data are not available

for the entire period: there are no geo-IR estimates before

December 1987 and noPMWestimates fromSSMIbefore

December 1985. The algorithm is different before and

after these dates, in order to adapt to the data availability.

This product is thus not consistent in time. The algorithm

is shown in Fig. B2 for the period from 1987 to present,

in Fig. B3 for 1986–87, and in Fig. B4 for 1979–85.

The merging method as well as more details about

the dataset is given in Adler et al. (2003) for version 2,

Huffman et al. (2009) for version 2.1, and Huffman and

Bolvin (2013) for version 2.2. A newer version (2.3) re-

cently became available, and its differences with the pre-

vious version 2.2 are described in Adler et al. (2018). The

intermediate estimates and their associate errors are also

available; there is a total of 27 datasets associated to this

product (e.g., long termmonthlymeans from 1981 to 2010).

c. CPC Merged Analysis of Precipitation (CMAP)

1) DESCRIPTION

The CMAP product gives pentadal (5 days) and

monthly global precipitation estimates from 1979 to

near present on a 2.58 3 2.58 lat/lon grid. The estimates

are obtained by merging observations from rain gauges

with five different satellite-derived precipitation esti-

mates. The ‘‘enhanced’’ version of CMAP uses the pre-

cipitation estimate fromNCEP–NCARreanalysis (R1) as

an additional input data. Its resolution and coverage (both

spatial and temporal) are otherwise the same as for the

original CMAP dataset. The satellite and reanalysis esti-

mates are compared to the gauge analysis and weighted

accordingly. In this way, the reanalysis is filling the gaps in

the satellite coverage. The amount and the type of data

used for the estimation vary in space and time which can

be an inconvenient since the quality of the estimates de-

pends on them. A flowchart describing CMAP’s algo-

rithm is given in Fig. B5. The CMAP product is described

in Xie and Arkin (1997) and Xie and Arkin (1996).

2) PERFORMANCE

CMAP’s performance seems consistent across differ-

ent regions. It showed similar good results (i.e., low bias

and RMSE and high NS efficiency and correlation co-

efficient) in estimating rainfall amount at monthly time

scale over Ethiopia (Dinku et al. 2007, 2011b) and over

the Sahel (Ali et al. 2005). Its bias remained low despite

its tendency to underestimate high rainfall values (the

same was observed for the other monthly products

compared in these studies). Over the Sahel, Ali et al.

(2005) noticed an overestimation of low rainfall which

led to an underestimation of the low rainfall frequency
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and an overestimation of the medium events frequency.

According to Okoro et al. (2014), CMAP represented

well the interannual and spatial variability over the

Niger Delta. This result was confirmed over the Sahelian

region by Ali et al. (2005), who also showed that CMAP

had better performance in the core of the rainy season

than at its edges.

d. Global Precipitation Climatology Project
(GPCP)-1DD

1) DESCRIPTION

GPCP produces a global daily product on a 1.08 3 1.08
lat/lon grid (GPCP-1DD) that covers the period from

October 1996 to a delayed present. The GPCP-1DD

product is consistent with GPCP-SG in the way that it

approximately sums to the monthly estimates of GPCP-

SG. GPCP-1DD is mainly based on IR data, but it also

used PMW data, sounding data from TOVS and AIRS,

and GPCP-SG. The 3-hourly infrared brightness tem-

peratures from geosynchronous Earth-orbiting (GEO)

satellites are compared to a threshold defined fromSSMI-

based precipitation frequency, and then the ‘‘cold’’ pixels

are given a precipitation rate (the conditional rain

rates are set locally by month from the GPCP-SG

monthly product). LEO satellite GPI estimates are

adjusted to GPCP-SG and used to fill the gap when

and where the abovementioned geo-IR estimates are

missing. The resulting estimates [threshold-match pre-

cipitation index (TMPI)] are usedbetween 408Nand 408S.
Outside these latitudes, daily TOVS and AIRS precipi-

tation estimates are used. The rainfall occurrence and

amount of the TOVS/AIRS-based estimates are rescaled

such that the occurrencematches the occurrence of TMPI

at the boundaries and that the amounts sum locally to the

monthly value of GPCP-SG. The flowchart in Fig. B6

represents the algorithm of GPCP-1DD. The method

and the data used to derive GPCP-1DD product are de-

scribed in Huffman et al. (2001) and Adler et al. (2017).

2) PERFORMANCE

Over the Sahel, GPCP-1DD performed relatively

well, despite a small overestimation almost everywhere.

It performed better than TMPA 3B42 over Burkina

Faso and the West coast, but worse than regional

products like EPSAT-SG, RFE2, or TARCAT. It ten-

ded to underestimate weaker rainfall events and over-

estimate large one (Jobard et al. 2011). Gosset et al.

(2013) evaluated GPCP-1DD along seven other rainfall

products over the two sites of Niamey (Niger) and

Ouémé (Benin). They showed that GPCP-1DD had a

very low bias over both sites (especially in Benin), but

different behaviors. Its performance was better over

Benin where it represented well the intensity distribu-

tion despite a relatively high FAR. Over Niger, its be-

havior was closer to its behavior over the Sahel, with an

underestimation of low rainfall values and an overes-

timation of high rainfall values. Its tendency to under-

estimate rainfall frequency and overestimate rainfall

amounts (similar to TMPA 3B43v6) could be due to the

adjustment of daily estimates to the monthly GPCP-SG

product. This adjustment method only modifies the pre-

cipitation amounts: rainfall amounts are increased during

the rainy days to compensate the underestimation of

rainy days occurrence (Gosset et al. 2013). Over West

Africa, the performance of GPCP-1DD seemed to be

different over the coastal regions (like Benin) and the

ones more north (the Sahel, Niger).

FIG. B1. CAMS-OPI algorithm.
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FIG. B2. GPCP-SG algorithm for the period 1987–present.
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FIG. B3. GPCP-SG algorithm for the period 1986–87.
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In East Africa, GPCP-1DD has been evaluated over

Ethiopia by Dinku et al. (2007) and over Uganda by

Maidment et al. (2013). Over Ethiopia, GPCP-1DD

had a limited performance and was outperformed by

TMPA3B42 andCMORPH. It overestimated rainfall at

all range. However, it performed better over Uganda

with a low bias and good correlation to the gauge data.

GPCP-1DD has been known to miss warm orographic

rain [for instance, over India in Joshi et al. (2012)],

this could explain the difference of performance since

Ethiopia has a complex topography compared to

Uganda. The underestimation of orographic precipi-

tation could be due to the fact that GPCP-1DD is

mainly based on IR data (PMW and gauge data are

not used directly).

e. CPC morphing technique (CMORPH)

1) DESCRIPTION

CMORPH is a high-resolution global precipitation

product. It takes advantages of the higher temporal

resolution of the IR data and the higher accuracy

of the PMW precipitation estimates. LEO satellite

PMW observations are used to estimate the precipi-

tation fields, which are then propagated by motion

vectors derived from geostationary satellite IR data.

Half-hourly global precipitation estimates are computed

on a 0.072778(’8km) lat/lon grid and are also available as

3-hourly or as daily estimates on a 0.258 lat/lon grid about

18h after real time. The (half-hourly) 8-km estimates are

obtained by interpolation since the satellite-derived es-

timates have a coarser resolution (around 12 or 15km).

CMORPH exists in two versions. The original one,

CMORPHv0.x, covers the period from December 2002

to present. However, the algorithm and the version

of the inputs have evolved in time. That is why the

CMORPH product has been reprocessed and extended

to January 1998, using a fixed algorithm and the same

versions for the input data. The reprocessed CMORPH

is called CMORPHv1.0. CMORPHv1.0 includes a

satellite-only product (CMORPH-RAW, similar to

CMORPHv0.x), a bias-corrected product (CMORPH-

CRT), and a gauge-satellite blended product (CMORPH-

BLD). Flowcharts representing the algorithms of

CMORPH-RAW and CMORPH-CRT are shown in

Figs. B7 andB8 . Formore information about theCMORPH

products, see Joyce et al. (2004) for version v0.x and Xie

et al. (2017) for version 1.0. Among the articles cited

below only Cattani et al. (2016) and Pfeifroth et al.

(2016) used CMORPHv1.0 (CRT and RAW, respectively).

2) PERFORMANCE

CMORPH had poor performance over the Sahel

despite a good discrimination of the rain and no-rain

events (Novella and Thiaw 2010; Pierre et al. 2011). It

strongly overestimated rainfall amounts, especially the

high rainfall values (Pierre et al. 2011; Jobard et al. 2011;

Dinku et al. 2015). Over the two sites of Niamey (Niger)

and Ouémé (Benin), CMORPH also overestimated, but

showed a good correlation with the gauges data (Gosset

et al. 2013) and representedwell the diurnal cycle (Pfeifroth

et al. 2016). Thus, CMORPH seemed to have different

performances over different parts of West Africa, but

overestimated rainfall amount on the whole region.

FIG. B4. GPCP-SG algorithm for the period 1979–85.
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On the other hand, CMORPH performed very

well over Ethiopia (Dinku et al. 2007; Romilly and

Gebremichael 2011). It tended to underestimate rain-

fall amount but had a good detection of rainfall oc-

currence (Dinku et al. 2008a, 2011b, 2015; Bitew and

Gebremichael 2010). The performance of CMORPH

over East Africa varied depending of the regions

(Cattani et al. 2016). It has been shown to have good

performance over Ethiopia and Zimbabwe by Dinku

et al. (2008a) and over Uganda by Asadullah et al.

(2008). CMORPH tended to underestimate orographic

rain (Cattani et al. 2016; Haile et al. 2013; Thiemig et al.

2012; Dinku et al. 2011a); however, its performance

remained good over mountainous areas, especially

compared to other products.

f. Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis (TMPA)

1) DESCRIPTION

TRMM is a joint mission between the National

Aeronautics and Space Administration (NASA) and

the Japan Aerospace Exploration Agency (JAXA) to

study rainfall for weather and climate research. The

TRMM satellite, launched in November 1997, is equip-

ped with different types of instruments: Precipitation

Radar (PR), TRMM Microwave Imager (TMI), Visible

and Infrared Scanner (VIRS), Clouds and Earth Radiant

Energy System (CERES), and Lightning Imaging Sensor

(LSI). Several products are derived from the TRMM

data including quasi-global (508N–508S) precipitation es-

timates: the TRMM Multisatellite Precipitation Analysis

(TMPA) products. They cover the period from 1998 to

near present on a 0.258 3 0.258 lat/lon grid at 3-hourly

(TMPA 3B42), daily (TMPA 3B42 derived), and monthly

(TMPA3B43) temporal resolution.

The inputs use to derive these products are 1) PMW

data from different LEO satellites (including TMI on

TRMM), 2) IR data from the international constellation

of GEO satellites, 3) TRMM Combined Instrument

(TCI, TRMM2B31) based on TMI and TRMM PR

(for calibration), and 4) GPCC monthly rainfall esti-

mates. The algorithm for TMPA 3B42 (and TMPA3B43)

is shown in Fig. B9. More details about the input datasets

and the algorithm can be found in Huffman et al. (2007)

for version 6 and in Huffman and Bolvin (2018) for ver-

sion 7. A real-time version of TMPA3B42 (TMPA 3B42-

RT) is also available; it is based on calibration by the TMI

FIG. B5. CMAP algorithm.
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precipitation product instead of TCI and does not incor-

porate gauge data.

2) PERFORMANCE

Overall, the TMPA 3B42 product performed well

over different parts of Africa (Sahel, Benin, Niger,

Ethiopia, Uganda, Zimbabwe). Over the Sahel, version

6 underestimated the number of rainy days and the high

rainfall values (Pierre et al. 2011; Jobard et al. 2011). Its

performance was lower over the west coast and Burkina

Faso (Jobard et al. 2011). This lower performance over

Burkina Faso has also been noticed for version 7 by

Dembélé and Zwart (2016). These two studies showed

that both version of TMPA underestimated high rainfall

value, while Dinku et al. (2015) found that version 7

overestimated high rainfall rates over the Sahel. Over

Benin and Niger, the version 6 underestimated the

number of rainy days as over the Sahel but overestimated

the high rain rates (Roca et al. 2010; Gosset et al. 2013).

Pfeifroth et al. (2016) showed that TMPA version 7 was

able to reproduce the diurnal cycle and its variability, for

two sites in Benin and Niger. However, if the size of the

peaks were very close to the gauge data, they were de-

layed up to two hours. The two versions were quickly

compared in Gosset et al. (2013), and version 7 showed a

general improvement (depending on the statistics).

Over Ethiopia, TMPA had more difficulties and was

often outperformed by CMORPH (Dinku et al. 2007,

2008a, 2011b, 2015), particularly over Lake Tana. This

can be due to the fact that no gauges were available near

FIG. B6. GPCP-1DD algorithm.
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this lake for the bias adjustment (Worqlul et al. 2014;

Haile et al. 2013). However, both versions showed satis-

factory results over other regions of East Africa such as

Uganda (Asadullah et al. 2008; Diem et al. 2014), Lake

Victoria (Haile et al. 2013), or Zimbabwe (Dinku et al.

2008a). Cattani et al. (2016) compared TMPAwith other

rainfall products over the entire East Africa. TMPA had

overall the best performance over the entire region (but

it was not independent from the reference data in this

study). The performance of TMPA was lower over

complex orography where it tended to underestimate

rainfall amount (Thiemig et al. 2012; Dinku et al. 2011a;

Diem et al. 2014). This could explain why it performed

less well over Ethiopia, which has a complex orography.

3) INTEGRATED MULTISATELLITE RETRIEVALS

FOR GPM (IMERG)

The TRMM satellite stopped collecting data in 2015.

The TMPA products will continue until 2018, with some

modification in the algorithm due to the data no longer

being available. The Global Precipitation Measurement

(GPM)mission is built upon andwill replace the TRMM

FIG. B7. CMORPH-RAW algorithm.
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mission. The GPM Core Observatory satellite was launched

in February 2017 and a new product, the Integrated

Multisatellite Retrievals for GPM (IMERG), will su-

persede TMPA (the transition is planned through 2019).

The IMERG product gives half-hourly quasi-global

(608N–608S) precipitation estimates on a 0.18 3 0.18 lat/lon

grid. It covers the period from March 204 to present

with a latency of respectively 4, 12 h and 2.5months after

the end of the month for the Early, Late and Final runs.

The inputs are similar to the ones use for TMPA:

1) PMW data from different LEO satellites (including

TMI andGMI on TRMMandGPM), 2) IRdata from the

FIG. B8. CMORPH-CRT algorithm.
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FIG. B9. TMPA algorithm.
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international constellation of GEO satellites, 3) GPM

Combined Instrument (GCI, 2B-CMB) based on GMI

and GPM Dual Precipitation Radar (DPR) (for cali-

bration), and 4) GPCC monthly product. In addition,

IMERG uses the monthly GPCP-SG product to cali-

brate the PMW-based rainfall estimates. IMERG’s al-

gorithm (shown in Fig. B10) differs from TMPA’s

algorithm. It uses a similar intercalibration and merging

method for the PMW estimates, and the same bias ad-

justment and satellite–gauge combination as TMPA.

But, the MW-calibrated IR estimates are derived by the

PERSIANN-CCS algorithm, and they are combined to

the merge-MW estimates using the CMORPH–Kalman

Filter (CMORPH-KF) method. More details about the

input datasets and a description of the algorithm can be

found in Huffman et al. (2018).

With IMERGbeing a recent product, only few studies

have evaluated its performance over Africa. It has been

compared to its predecessor TMPA by Dezfuli et al.

(2017a) over two regions having different rainy season

characteristics, one in West Africa and one in East

Africa. They showed that IMERGwas closer to the gauge

data than TMPA, especially for the extreme events.

In a follow-up article, Dezfuli et al. (2017b) compared

IMERG and TMPA with three rain gauges at three lo-

cations having different rainfall’s characteristics. They

showed that the performance of both products depended

of the season, the region and the evaluation statistics.

Both TMPA and IMERG performed better in East

Africa and southern West African than in the southern

Sahel. This can be expected since the latter has a more

arid climate and arid areas are known to be challenging

for satellite-based rainfall products. The diurnal cycle was

better represented by IMERG, probably because of its

higher resolution. However, TMPA represented better

the annual cycle for two out of the three rain gauges.

g. Precipitation Estimation from Remote Sensing
Information Using Artificial Neural Network
(PERSIANN)

1) DESCRIPTION

The PERSIANN product was developed in 1997 at

the University of Arizona. Quasi-global (608N–608S)
up to hourly precipitation estimates at 0.258 lat/lon

resolution are available from 2000 to present with

2 days latency.

PERSIANN is based on an artificial neural network

that is applied to IR data from geostationary satellites

(CPC/NCEP Merged 4-km IR dataset; Janowiak et al.

2001) to obtain an intermediate precipitation product at

4-km resolution every 30min. The intermediate product

is then aggregated to form the final precipitation product.

The neural network can be trained with different types of

data, such as satellite measurements, gauges, ground-

based radar data, and ground-surface topographic infor-

mation. For the operational product, the neural network

is trained and updated with PMW data only. The algo-

rithm for the operational product is shown in Fig. B11.

PERSIANN–CloudClassification System (PERSIANN-

CCS), another PERSIANN product with higher spatial

and temporal resolution, was developed at the Center for

Hydrometeorology and Remote Sensing (CHRS) at the

University of California, Irvine. The method is similar to

the one of PERSIANN, the main difference being the in-

troduction of a Cloud Classification System (CCS). In

PERSIANN, the fitting of infrared cloud images to rain

rate is done pixel-to-pixel while PERSIANN-CCS uses

cloud-patch regions. The cloud-patch features are catego-

rized and the fitting of infrared images to rain rate is unique

for each cloud-patch group. The parameters defining the

fitting are calibrated through a neural network (Hong

et al. 2004). Contrary to PERSIANN, the neural net-

work is not updated but was initially trained with PMW

data. The resulting quasi-global (608N–608S) rain esti-

mates are given on a 0.048 lat/lon grid every hour and

cover the period from January 2003 to present.

The PERSIANN-Climate Data Record (PERSIANN-

CDR) product has been developed for climate and vari-

ability studies. It covers a longer period, from 1983 to a

delayed present (2015), and is available as daily estimates

at 0.258 resolution. PERSIANN-CDR is based on the

same algorithm as PERSIANN. The two main differ-

ences are that 1) the neural network inPERSIANN-CDR

is not updated, and 2) PERSIANN-CDR uses a different

IR dataset, namely, GridSat-B1.Moreover, PERSIANN-

CDR is bias adjusted with the monthly GPCP.v2.2

product. More detailed descriptions of this product can

be found in Ashouri et al. (2015) and Hsu et al. (2014).

The evolution of PERSIANN products from 2000 to

2009 is described in Hsu and Sorooshian (2008).

2) PERFORMANCE

PERSIANN tended to overestimate rainfall, espe-

cially high rainfall values, except over mountainous areas

where it tended to underestimate.

Over the Sahel, PERSIANN performed well in

detecting rainfall occurrence (i.e., high POD), but

also tended to estimate rain when there was no rain

event (i.e., high FAR) (Jobard et al. (2011), and

Dembélé and Zwart (2016) over Burkina Faso). It had

a strong wet bias and showed overall poor performance

over the region (Jobard et al. 2011; Novella and Thiaw

2010; Dembélé and Zwart 2016). This high bias was also

observed in Niger and to a lesser extent in Benin; how-

ever, PERSIANN had a better correlation over Niger
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than Benin (Gosset et al. 2013). PERSIANNwas able to

reproduce the diurnal cycle with reasonable timing (e.g.,

the peak in Ouémé, Benin, was delayed by around 2h)

according to Pfeifroth et al. (2016).

Dinku et al. (2008a) found that PERSIANN had a

large overestimation and generally poor performance

over Ethiopia. However, Hirpa et al. (2010) andRomilly

and Gebremichael (2011) studied the performance of

PERSIANN at the scale of river basins (located in

Ethiopia) and found that PERSIANN substantially

underestimated rainfall at high elevation while it per-

formed reasonably well at low elevation. PERSIANN,

unlike TMPA 3B42RT and CMORPH, did not show an

elevation-dependent trend, which led to this severe un-

derestimation at high elevation (Hirpa et al. 2010).

These results were consistent with other studies over

other mountainous area such as the Tibetan Plateau

(Gao and Liu 2013) or Chile (Zambrano-Bigiarini et al.

2017). This trend was also present over Uganda where

PERSIANN overestimated at low elevation and

FIG. B10. IMERG algorithm.
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underestimated at high one according toAsadullah et al.

(2008). The poor performance of PERSIANN and its

underestimation at high elevation were also confirmed

over East Africa by Cattani et al. (2016) and over four

African river basins by Thiemig et al. (2012). This under-

estimation at high elevation could be explained by the fact

that PERSIANN is based on IR data and that orographic

precipitation is a warm-cloud process. It has been sug-

gested byHirpa et al. (2010) and Thiemig et al. (2012) that

the underestimation could come from the poor detection

of light rain or underestimation of total precipitation at

high elevation linked to the thermal IR threshold used to

discriminate between raining and nonraining clouds.

PERSIANN-CCS showed a similar trend in under-

estimating light and moderate rainfall at high elevation

and overestimating rainfall, especially heavy events, at

low latitude (Hong et al. 2007; Bitew and Gebremichael

2010).

h. Rainfall Estimate version 2 (RFE2)

1) DESCRIPTION

RFE2 is the second version of the Rainfall Estimate

(RFE) product. It was implemented in 2001 based on the

method of Xie and Arkin (1996), and replaced the pre-

vious version (RFE 1.0, Herman et al. 1997) operational

from 1995 to 2000. RFE2 produces daily rainfall esti-

mates on a 0.18 3 0.18 lat/lon grid for Africa (208W–558E

and 408S–408N) from January 2001 to present. RFE2

computes rainfall estimates based on four operational

sources of data: 1) daily GTS rain gauge data, 2) the

Geostationary Operational Environmental Satellite

FIG. B11. PERSIANN algorithm.
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(GOES) precipitation index (GPI) calculated from cloud-

top IR temperatures on a half-hourly basis, 3) Special

Sensor Microwave Imager (SSM/I)-based rainfall esti-

mates, and 4) Advanced Microwave Sounding Unit

(AMSU)-based rainfall estimates. The last two inputs

are new in RFE2. The thermal IR (input 2) and the

passive microwaves (inputs 3 and 4) are compared to the

gauge data (input 1), then linearly combined through

the maximum likelihood method and finally merged

with gauge data (input 1). This process is illustrated in

Fig. B12, representing the RFE2 algorithm. More in-

formation is given in NOAA/CPC (2001).

2) PERFORMANCE

The performance of RFE2 varied from region to

region, but it overall tended to underestimate (i.e.,

dry bias).

Over the Sahel, RFE2 had good skill at separating rain

and no-rain events and showed good performance at

estimating dekadal rainfall amount, despite its tendency

to underestimate (Novella and Thiaw 2010; Pierre et al.

2011; Jobard et al. 2011; Dembélé and Zwart 2016).

Gosset et al. (2013) showed that RFE2 also under-

estimated rainfall amount over Benin and Niger by

overestimating occurrence of low rainfall events and

underestimating the high ones. Thiemig et al. (2012)

found that, despite a small underestimation, RFE2

performed well over the Volta basin in Ghana. Thus,

RFE2 appeared to perform well over West Africa but

presented a dry bias.

Over Ethiopia, RFE2 has been reported as having

poor performance, at both daily and dekadal time scale,

with severe underestimation (Dinku et al. 2007, 2008a,

2011b, 2015). However, RFE2 still performed reason-

ably well at detecting rainfall occurrence (Dinku et al.

2008a, 2011b). Its performance over Uganda seemed

also limited (including a dry bias), especially during

boreal summer rainfall, even if it showed some skill in

reproducing spatial patterns (Asadullah et al. 2008;

Diem et al. 2014; Maidment et al. 2013). Over East

Africa, RFE2 was outperformed by CMORPH and

TMPA 3B42, but outperformedGSMaP and PERSIANN

FIG. B12. RFE2 algorithm.
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(Cattani et al. 2016). RFE2 showed good performance

with a good detection of rainfall occurrence over

Zimbabwe (Dinku et al. 2008a), and very poor one

over the desert locust recession region, especially over

the Sahara (as the other products studied over this

region by Dinku et al. (2010)).

A problem of RFE2 product is its underestimation of

orographic precipitation (which explains its poor perfor-

mance over Ethiopian highland) noticed by Cattani et al.

(2016), Thiemig et al. (2012), Dinku et al. (2011a), Dinku

et al. (2011b), andDiem et al. (2014). This version ofRFE

(2.0), unlike the first version (RFE 1.0), does not include

orographic effects. The algorithm uses a fixed tempera-

ture threshold, and thus has difficulty to capture warm-

cloud precipitation, due to orographic effect for instance.

i. Africa Rainfall Climatology version 2 (ARC2)

1) DESCRIPTION

RFE2 temporal coverage is too short for climate studies.

Thus, another rainfall product based on the same algo-

rithm was developed for climatology in 2004: the Africa

Rainfall Climatology (ARC) product. ARC uses only two

of the four inputs of RFE2: the gauges and the IR data

because of their availability and consistency over time.

However, large biases are present in ARC (due to incon-

sistencies in the original reprocessing) and a longer tem-

poral coverage was needed for climatology. In 2012, the

version 2 of ARC (ARC2) has been developed, and the

production of ARC stopped. Themain differences with

ARC are the time period extended back to 1983, and

the recalibration of the IR data between 1983 and 2005.

The inputs used in ARC2 are the quality-controlled

GTS gauge observations and the 3-hourly geostationary

IR data (instead of half-hourly for RFE2). The algo-

rithm is the same as for RFE2. ARC2 estimates rainfall

daily (from 0600 to 0600 UTC) on the same grid as RFE2,

that is, 0.18 3 0.18 lat/lon grid from 208Wto 558E and from

408S to 408N. It covers the timeperiod from1983 to present

and is updated on a daily basis. ARC2 shows an im-

provement compare to ARC and is consistent with RFE2,

GPCP, and CMAP (Novella and Thiaw 2013). TheARC2

product is described in Novella and Thiaw (2013), and a

flowchart representing its algorithm is given in Fig. B13.

2) PERFORMANCE

ARC2 has been created to fix some of the problems in

the first version of ARC, such as the large dry bias from

1998 to 2000 (that does not appear anymore in ARC2).

ARC2 was an improvement compared to ARC but still

has some systematic errors such as a dry bias during

Northern Hemisphere summer as noticed in Novella

and Thiaw (2013) and Maidment et al. (2014).

According to Novella and Thiaw (2013), ARC2 had

an overall good performance over Africa, but with some

variations depending on the regions. They found that

ARC2 outperformed TMPA 3B42 and CMORPH at

daily scale over the Sahel, but performed poorly over

Ethiopia and the Gulf of Guinea. Over Burkina Faso

(which is part of the Sahel), ARC2 was found to have

only weak correlation with gauge data at daily scale, but to

perform well at dekadal time scale, by Dembélé and Zwart

(2016).Diemet al. (2014) showed thatARC2overestimated

the number of rainy day for six stations in west Uganda. It

could estimate well seasonal totals in the northern part, but

had difficulties over the more mountainous South.

ARC presented the same region dependency: good

performance over the Sahel (Novella and Thiaw 2010),

and poor one over Ethiopia (Dinku et al. 2007). It was

also noticed that ARC2 was performing worse over

mountainous terrain such as the Ethiopian highlands

(Novella and Thiaw 2013) or southwest Uganda (Diem

et al. 2014). This poor result can be explained by the low

amount of available gauge records (GTS data) in the

Ethiopian highlands and the Gulf of Guinea and the

inability of IR-based estimates to capture warm-cloud

precipitation over coastal and orographic regions

(Dinku et al. 2011a; Novella and Thiaw 2013; Maidment

et al. 2014; Dinku et al. 2007).

ARC2 and RFE2 use similar algorithms; the main

difference is that ARC2 uses less input data. Thus, some

similarities in their performances are visible, such as the

regions over which they perform well or poorly, or their

difficulties over mountainous areas, for example.

j. Global Satellite Mapping of Precipitation (GSMaP)

1) DESCRIPTION

The GSMaP project produces several hourly quasi-

global (608S–608N) precipitation products with different

FIG. B13. ARC2 algorithm.
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latencies going from 0h for the real-time product to

3 days for the standard version. All these precipitation

estimates are given hourly on a 0.18 3 0.18 lat/lon grid.

The near-real-time version has a latency of 4 h and goes

from 2008 to present while the standard version (with or

without gauge calibration) goes from 2000 to present.

These products are based on PMW data from TMI,

AMSR(-E), and SSM/I, and on IR data from several geo-

stationary satellites provided by CPC [GOES-8/GOES-10,

Meteosat-7/Meteosat-5, and Geostationary Meteorological

Satellite (GMS)].

The method developed by the GSMaP project has

threemain steps: 1) retrieval of the rainfall measurements

(from microwave imagers and microwave sounders);

2) combination of microwave and infrared data (GSMaP-

MKV); and, if wanted, 3) the gauge calibration (GSMaP-

Gauge). The merging method is similar to the one of

CMORPH described in Joyce et al. (2004): the PMW

estimates are propagated using IR-based advection vec-

tors. Then, the estimates are refined to obtain the final es-

timate (GSMaP-MKV) using the correlation between

geo-IRmeasurements (cloud-top height) and surface rainfall

rate via aKalman filter.Adetailed description of themethod

can be found inUshio et al. (2009) andAonashi et al. (2009).

A gauge-calibrated version (GSMaP-Gauge) ofGSMaP

exists. It is based on GSMaP-MKV, and has the same

temporal and spatial resolution. The GSMaP-MKV

estimates are adjusted, over land, with the global gauge

analysis from CPC Unified. The gauge-adjustment

method is described in Mega et al. (2014). The algo-

rithm used for both GSMaP-Gauge and GSMaP-MKV

is shown in Fig. B14.

2) PERFORMANCE

Over the Sahel, GSMaP has a dry bias, and it espe-

cially underestimates high precipitation values (Jobard

et al. 2011; Roca et al. 2010). Both Roca et al. (2010) and

Gosset et al. (2013) evaluated this product over Niamey

(Niger) and Ouémé (Benin). According to Roca et al.

(2010), GSMaP underestimated high rainfall values,

while Gosset et al. (2013) noticed an overestimation of

the high rates and an underestimation of the lower ones.

This could be due to the fact that they considered dif-

ferent time scales, and that the second study took a

longer period into account while the first only consid-

ered the rainy season 2006. Moreover, Thiemig et al.

(2012) also noticed the same behavior over the Volta

basin, that is, underestimation of low rain rates and ex-

treme overestimation of high ones. Over the south of

West Africa, TMPA seemed to perform better than

GSMaP according to these three studies. Gosset et al.

(2013) found that, in general, regional products perform

better than global ones for this region.

Cattani et al. (2016) evaluated six rainfall products,

including GSMaP, over East Africa. They showed that

GSMaP was able to reproduce the annual rainfall pat-

terns of the different climates. They found thatCMORPHv1

performs slightly better than GSMaP, while they both use a

similar morphing approach. This result can be partially

explained by the bias correction used in CMORPH and

not in GSMaP. GSMaP also underestimates orographic

precipitation, more than CMORPH and RFE2.

As the other rainfall products tested over the desert

locust recession regions by Dinku et al. (2010), GSMaP

had poor performance over these regions.

k. Climate Hazards Group Infrared Precipitation
(CHIRP) with Station Data (CHIRPS)

CHIRPS (version 2, since 2015) gives daily, pentadal,

and monthly quasi-global (508S–508N) precipitation es-

timates from 1981 to near present. The estimates are

available on a high resolution 0.058 3 0.058 lat/lon grid,

or on a coarser 0.258 3 0.258 lat/lon grid. It was created

by the U.S. Geological Survey (USGS) Earth Resources

Observation and Science (EROS) Center and collabo-

rators at the University of California, Santa Barbara,

Climate Hazards Group. It was developed for drought

earlywarning and environmentalmonitoring to support the

Famine Early Warning Systems Network (FEWS-NET).

Different types of inputs are used in CHIRPS:

1) global 0.058 3 0.058 precipitation climatologies from

the Climate Hazards group Precipitation climatology,

referred to as CHPclim; 2) satellite-based precipitation

estimates from the TMPA 3B42 product; 3) thermal

infrared observations from geostationary satellites; 4) gauge

observations from public dataset [GHCNmonthly, GHCN

daily, Global Summary of the Day (GSOD), GTS, and

Southern African Science Service Centre for Climate

Change and Adaptive Land Management (SASSCAL)]

and several private archives (from national meteorolog-

ical agencies, for example); and 5) the atmosphericmodel

rainfall fields from the NOAA Climate Forecast System,

version 2 (CFSv2), which is used to fill the gap in satellite

coverage. Cold cloud duration (CCD) derived from the

IR data (input 3) is calibrated against the TMPA 3B42

product (input 2) to obtain precipitation estimates. These

estimates are converted to fraction of normal precip-

itation, and multiplied to the precipitation climatol-

ogy from CHPclim (input 1). The model CFSv2 (input

5) is used when and where IR data are missing. The

new estimates are then bias adjusted to gauges data

(input 4).

The description of the method can be found in Funk

et al. (2014, 2015b). The latter also validated and com-

pared CHIRPS with other gridded products, namely,

GPCC, TMPA 3B42 v7 real-time, CFSv2, ECMWF
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reanalysis, and CPC Unified). The method is also de-

scribed by a flowchart in Fig. B15.

l. Tropical Applications of Meteorology Using
Satellite Data and Ground Based Observations
(TAMSAT) African Rainfall Climatology and
Time Series (TARCAT)

1) DESCRIPTION

The TAMSAT Research Group, based at the Meteorol-

ogyDepartment of the University of Reading (United

Kingdom), started in the mid-1980s. They produce

different rainfall products updated in near–real time as

part of the TARCAT dataset. TARCAT was developed

for droughtmonitoring. Rainfall estimates, climatologies,

and anomalies are available at pentadal, dekadal, monthly,

and seasonal time resolution on a 0.03758 3 0.03758 lat/lon
grid (’4km) for Africa. In January 2014, a daily rainfall

estimate product was released for the same time period.

The particularity of TARCAT is that it is only based on IR

data. It does not use any bias adjustment from gauge data,

but this is compensated by regional and monthly cali-

bration parameters (derived from historical IR and

gauges data).

The TARCAT product is based on Meteosat ther-

mal infrared imagery provided by EUMETSAT, and on

historical gauges observations (from African National

Meteorological andHydrological Centers, for themajority

FIG. B14. GSMaP algorithm.
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FIG. B15. CHIRPS algorithm.
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of them). CCD is derived from the IR data and is then

used to estimate dekadal precipitation through linear

regression. The temperature threshold used to compute

the CCD and the regression parameters are calibrated

locally (Africa is divided in several smaller regions) us-

ing historical IR and gauge data. The gauge data covers

the period from 1983 to 2010 and are only used for cal-

ibration. Thus, TARCAT product is not influenced by

current changes in gauge coverage. The daily rainfall

is derived from the dekadal estimates and daily CCD.

The TARCAT algorithm is described in Tarnavsky et al.

(2014) and Maidment et al. (2014). A flowchart repre-

senting this algorithm is shown in Fig. B16.

A version 3 of TARCAT was released in January

2017 and is described in Maidment et al. (2017) and

TAMSAT Group (2016). The algorithm is similar but

the calibration differs from version 2. Indeed, the cal-

ibration is not done on rectangular areas anymore but

on 1.08 grid boxes where the gauge density is sufficient,

and then interpolated. The temperature threshold is

derived at daily scale and the calibration parameters at

pentadal scale, instead of dekadal scale in version 2. In

version 3, a bias adjustment based on CHPclim is ap-

plied on the calibration parameters. With version 3 being

recent, no studies evaluating it against other rainfall

products have been found. Thus, below, we are only

looking at the performance of the previous version.

2) PERFORMANCE

TARCAT showed good performance over Sahel

(Novella and Thiaw 2010; Jobard et al. 2011; Dinku et al.

2015), Ethiopia (Dinku et al. 2007, 2015), Uganda

FIG. B16. TARCAT algorithm.
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(Asadullah et al. 2008; Maidment et al. 2013), and East

Africa (Cattani et al. 2016). TARCAT tended to un-

derestimate precipitation amount. This dry bias was

large over Ethiopia, and relatively low over Sahel.

Dembélé and Zwart (2016) found contradictory results

over Burkina Faso (part of the Sahel). In their study,

TARCAT showed low performance. The main problem

of TARCAT, mentioned in most of the studies above,

was that it missed high rainfall values.

Dinku et al. (2007) showed that RFE2 also under-

estimated rainfall over Ethiopia. They attributed the un-

derestimation of these two products to the information

content of IR data in general, and to the warm orographic

process in their case. However, this dry bias was recog-

nized later byMaidment et al. (2014) when evaluating the

performance of TARCAToverAfrica, andwas attributed

to the calibration approach optimized for drought moni-

toring. Low-intensity rainfall events are more important

than the high-intensity ones for drought monitoring.
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