
 
 

Delft University of Technology

Radar Calibration by Corner Reflectors with Mass-production Errors

Petrov, Nikita ; Yiğit, Erkut; Krasnov, Oleg; Yarovoy, Alexander

DOI
10.23919/EuRAD50154.2022.9784534
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 18th European Radar Conference

Citation (APA)
Petrov, N., Yiğit, E., Krasnov, O., & Yarovoy, A. (2022). Radar Calibration by Corner Reflectors with Mass-
production Errors. In Proceedings of the 18th European Radar Conference (pp. 253-256). IEEE.
https://doi.org/10.23919/EuRAD50154.2022.9784534

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/EuRAD50154.2022.9784534
https://doi.org/10.23919/EuRAD50154.2022.9784534


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Radar Calibration by Corner Reflectors with
Mass-production Errors

Abstract — The paper presents the statistical analysis of
trihedral corner reflectors RCS in presence of mass production
and installation errors. It is shown that the degradation
of RCS from its nominal value can be modeled by Beta
distribution. The derived probability density functions (PDF) of
corner reflector RCS is further exploited to design an optimal
procedure for the radar power calibration technique, taking the
aforementioned effect into account. This procedure can be used
for real-time estimation of radar sensor healthiness parameter
that characterises the sensing quality for awareness of human
driver or automated driving system.

Keywords — Radar, calibration, trihedral corner reflector

I. INTRODUCTION

The modern Advanced Driver Assistant Systems (ADAS)
consider radar to be the main sensors for the surveillance
awareness, together with the lidar and camera. To ensure
safety and prevent collisions on road, automotive radars
must be fault-proof and have to be tested on reliability
and performance, which requires proper diagnostic of
well-functioning of the radar so that the car may participate in
traffic. One way of the diagnostic of well-functioning of the
automotive radar is employing calibration in service stations,
e.g. [1]. This, however, does not account for continuous
changes in environmental and sensing conditions that can
affect the quality of radar measurements and make radar
data non-reliable. In contrast to offline calibration in service
stations, another way of testing the automotive radar on
well-functioning would be through monitoring the state, or in
other words the healthiness, of the radar in real-time [2].

One possible solution to monitor the radar state is to
use a massive set of calibration targets in road infrastructure.
These targets should be cheap in production and maintenance,
and thus the passive retro-reflectors, such as trihedral corner
reflectors seem the most attractive option. Using a massive
set of corner reflectors for calibration leads to the presence of
RCS uncertainties due to possible production, installation, and
maintenance errors [3], [4].

In this paper, we propose a statistical approach to
radar power calibration using non-ideal corner reflectors. In
particular, in Section II we demonstrate that in presence of
the aforementioned errors, the RCS of the corner reflector
can be modeled by four parameters Beta-distribution. The
shape parameters of Beta distribution are directly related

to the variances of the installation and production errors.
This statistical analysis is further exploited to design an
efficient self-diagnostics/power calibration technique, which
estimates the possible losses of the radar compared to its
ideal conditions using corner reflector(s) with mass production
errors as calibration target(s). The estimation technique and its
performance analysis are presented in Section III. Finally, the
conclusions are drawn in Section IV.

II. TRIHEDRAL CORNER REFLECTOR RCS DISTRIBUTION
IN PRESENCE OF MASS-PRODUCTION AND INSTALLATION

ERRORS

A. RCS distribution of a trihedral corner reflector in presence
of non-orthogonal sides

The inter-plate orthogonality is the most important
tolerance of the corner reflector because the reflector RCS
decreases rapidly as the angle deviates from 90o [4] (Fig. 1).
The effect of surfaces’ non-orthogonality on the RCS of the
corner reflector has been noticed by Craeye et. al [3]. They
claimed that trihedral corner reflector with the angular error ε
has the loss of RCS compared to the ideal configuration:

rε =
RCS

RCS0
= sinc4

(
2.54lε

λ

)
(1)

where l� λ is the leg of the reflector which is large compared
to the wavelength λ, RCS0 is the RCS of an ideal corner
reflector of the same size and ε is the same (for three angles)
angular deviation from 90o, given in radians [3]. The model
is applicable for the cases when |ε| < 1 degree. Different
approximations of RCS due to non-orthogonality of surfaces
are considered in [4], which for the small angles lead to a
similar parabolic approximation of RCS as the function of the
angular error, considered below.

If corner reflectors can be produced with some acceptable
tolerance in the alignment of the surfaces, then with no extra
knowledge about the angular error, it can be assumed Gaussian
random variable with zero mean and the variance σε:

p1(ε) =
1√
2πσε

exp

(
− ε2

2σ2
ε

)
(2)

The objective is to characterize statistically the RCS of the
produced reflectors.
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For a small angular error, the function (1) can be
approximated with sinc(x) ≈ 1− x2

3! :

rε ≈
(
1− kεε2

)4
, (3)

where kε = (2.54l)
2
/
(
6λ2
)
.

Applying the transformation of variable (3) to the PDF (2),
the distribution p(rε) is:

p2(rε) = 2p1 (g(rε))

∣∣∣∣∂g(rε)∂ro

∣∣∣∣ , (4)

where the factor 2 comes from the even symmetry of the
function (3), and

g(rε) =

(
1− r1/4ε

kε

)1/2

(5)

is the function inverse to (3) with the derivative:

∂g(rε)

∂rε
= − r

−3/4
ε

8kε

(
1−r1/4ε

kε

)1/2 . (6)

Simplifying the above results, we obtain:

p2(rε) =
1

4
√
2πkεσε

r−3/4ε (1− r1/4ε )−1/2 exp

(
−1− r1/4ε

2kεσ2
ε

)
,

(7)

with rε ∈ [0, 1].
Next, we show that (7) can be approximated by

Beta-distribution for small error. If ε ≈ 0, then rε ≈ 1, which
gives Taylor expansions:

exp

(
−1− r1/4ε

2kεσ2
ε

)
=
(
e1−r

1/4
ε

)− 1
2kεσ2ε

∣∣∣∣
rε≈1

≈ r
1

8kεσ2ε
ε (8)

1− r1/4ε

∣∣∣∣
rε≈1

≈ 1

4
(1− rε). (9)

Using these approximations in (7) gives:

p3(rε) ∝
1

2
√
2πkεσε

r
1

8kεσ2ε
− 3

4

ε (1− rε)−1/2, (10)

which has the shape of Beta-distribution PDF with parameters:

rε ∼ Beta

(
1

8kεσ2
ε

+
1

4
,
1

2

)
= Beta (αε, βε) . (11)

We use the sign proportional to ∝ to emphasize that the PDF
(10) should be normalized such that

∫ 1

0
p3(rε) = 1. Note that

the accuracy of angular alignment affects only the α parameter
of the distribution, while β = 0.5 being fixed.

Note that considering (1), we can notice that the PDF
of non-ideal corner reflector RCS follows four parameter [5]
Beta-distribution:

RCS ∼ Beta

(
1

8kεσ2
ε

+
1

4
,
1

2
, 0, RCS0

)
. (12)

Moreover, the limiting factor of the proposed transformation
lies in posing the error in the main beam of the sinc function,
for which (3) can be applied. For larger non-orthogonality of

Fig. 1. Geometry of the problem

the side surfaces of the corner, the effect of sidelobes occurs,
which has to be considered. In particular, we observed the rise
of values close to zero in the probability density function p(r).

Interestingly, the application of Beta-distribution for the
RCS modeling of simple and complex targets has been
previously investigated by Maffett [6]. He demonstrated that
it provides better fidelity to model targets RCS compared to
widely used Swerling models.

B. Orientation error

For triangular trihedral corner reflectors, the
high-frequency RCS at carrier wavelength λ is defined
in [7] as:

RCS(θ, φ) ≈ 4π

λ2
l4
(
cos θ + sin θ (sinφ+ cosφ)

−2 (cos θ + sin θ (sinφ+ cosφ))
−1 )2 (13)

where l is the leg length of the reflector, θ, and φ are spherical
incidence angles in elevation and azimuth planes respectively
(Fig. 1). The maximum reflection is obtained at θ0 = 45◦,
φ0 = 54.74◦.

If to normalize (13) by the maximum RCS value and
expand it in Taylor series around the center of the main beam
(θ0 = 45◦, φ0 = 54.74◦), then we can write:

rθ =
RCS(θ, φ0)

RCS(θ0, φ0)
≈ 1− kθ (θ − θ0)2 ; (14)

rφ =
RCS(θ0, φ)

RCS(θ0, φ0)
≈ 1− kφ (φ− φ0)2 , (15)

with kθ ≈ 5 and kφ ≈ 3.33 independently on the size of the
corner reflector and the wavelength. These expressions have a
similar form to (3). Therefore, we can apply the transformation
of random variables similar to (4)-(7), and obtain the PDF of
loss factor due to the elevation and azimuth orientation errors
η ∈ {θ, ρ}, rη ∈ [0, 1]:

p(rη) =

√
kη(1− rη)−1/2√

2πση
exp

(
−1− rη
2kησ2

η

)
. (16)
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For small angular errors, we can process similarly to (8)
and discover that the PDF follows Beta-distribution with
parameters:

rη ∼ Beta

(
1

2kησ2
η

+ 1,
1

2

)
= Beta (αη, βη) . (17)

An example of RCS loss distribution is presented in Fig.
2, (a) for the case of azimuths error for a corner reflector
with l = 0.1 m and azimuth error φ ∼ N (0, σ2

φ), σφ = 5o.
The histogram is evaluated with 106 Monte-Carlo simulation
of the angular error and the PDF line is plotted according
to (17). The cases of the non-orthogonality of side surfaces
and the angular elevation errors have the similar shapes of
PDF. The applicability of the approximation (8) (applied to
the azimuth angle) is validated in Fig. 2, (b) by comparing the
predicted values of parameters α of Beta-distribution to that
estimated from 106 Monte-Carlo realizations of loss factor by
means of maximum likelihood estimator (MLE) [8]. Fig. 2,
(c) shows Kullback–Leibler divergence between (16) and its
approximation by Beta-distribution (17). The results in Fig. 2,
(b) and Fig. 2, (c) show the high accuracy of the derived model.
The presented results characterize azimuth error; the elevation
and non-orthogonality errors show the similar behavior.

C. Total distribution

The total loss factor is obtained by multiplying the loss
factors for orientation errors and non-orthogonality:

r = ro · rθ · rφ. (18)

In [9], it is proved that the product of independent Beta
distributed variables can be well approximated by another
Beta-distribution with parameters:

r ∼ Beta

(
(S − T ) · S
(T − S2)

,
(S − T )(1− S)

(T − S2)

)
, (19)

in which

S = E(r) =
∏
ν∈ξ

E(rν) =
∏
ν∈ξ

αν
αν + βν

,

T = E(r2) =
∏
ν∈ξ

E(r2ν)

=
∏
ν∈ξ

αν(αν + 1)

(αν + βν)(αν + βν + 1)

(20)

and ξ = {ε, θ, φ}. The considered here shape parameters (α, β)
were derived in (11), (17).

III. POWER CALIBRATION WITH A NON-IDEAL CORNER
REFLECTOR

Assume that we have a corner reflector, produced with a
certain tolerance of angles and installed with a certain precision
in orientation angles. The objective is to incorporate the
possible uncertainty of observed RCS in the power calibration
procedure. The measurements of such corner reflector can be
described with:

y = Qr +w, (21)

a

b

c

Fig. 2. (a) An example of loss factor distribution in presence of azimuth
error; (b) predicted vs maximum likelihood estimation of the shape parameter
α; (c) the Kullback–Leibler divergence between (16) and its approximation
by Beta distribution (17)

where vector y = [y1, . . . , yN ] denotes the sequence of N
independent measurements of the same corner reflector, w
stands for the corresponding vector of noise, r ∼ Beta(α, β)
is the (normalized) random RCS of current calibration target
with known distribution of RCS losses, and Q is the unknown
power calibration term. The factor Q can be considered as the
measure of radar quality (current unexpected extra losses due
to the internal radar state degradation or to the radar signals
external propagation factors) when measured in the operational
mode – it describes how the received power agrees with the
predicted value for an ideally functioning sensor. Herein we
assume that the data was normalized by RCS0.

The likelihood function of the measurements is:

p(y|Q, r) = 1

(2πσ2
n)

N
2

exp

(
− 1

2σ2
n

N∑
n=1

(yn −Qr)2
)

(22)
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a

b

c
Fig. 3. Performance of the proposed power calibration technique:
a - as a function of number of measurements for SNR=30 dB, σφ = 3o ;
b - as a function of SNR, N=100, σφ = 3o;
c - as a function of azumuth orientation error σφ, N=100, SNR = 30 dB.

where

p(r) =
rα−1(1− r)β−1

B(α, β)
, r ∈ [0, 1]. (23)

Considering p(y|Q) =
∫
p(y|Q, r)p(r)dr, the maximum

likelihood estimation of Q is found via:

Q̂ = argmaxQ

∫ 1

0

e
− 1

2σ2n

∑N
n=1(yn−Qr)

2

rα−1(1− r)β−1dr,
(24)

which is solved numerically by approximating the integral by
a finite sum and applying Newton’s method to it.

This approach can be similarly generalized for the case of
sequential observing a few M > 1 different corner reflectors,
each characterized by its loss factor rm. However, the solution,
in this case, requires multi-dimensional numerical integration
over r1, . . . , rM , which can be computationally heavy.

Simulation results of the proposed techniques are
demonstrated in Fig. 3 and compared to the results of power

calibration assuming no degradation of corner reflector RCS.
The variance of the estimated quality metric Q̂ decreases with
the increase of independent measurements of the target N
(Fig. 3, a) and for higher SNR of the measurements (Fig.
3, b). For moderate number of observations and high SNR,
the assumption on no RCS variation leads to large errors.
For a single target observation, the shape parameter of the
distribution (controlled here via the azimuth error σφ) does not
affect the estimation performance (Fig. 3, c) of the proposed
technique, while larger RSC uncertainty leads to larger MSE
of standard calibration (no proir on RCS). For the proposed
method, the uncertainty of the radar installation and production
errors are known a priori and they are used to define PDF p(r).

IV. CONCLUSION

In this paper, we derived the probability distribution of
the trihedral corner reflector RCS if it was produced with a
certain tolerance of the orthogonality of its sides, or installed
with certain orientation errors. We demonstrated that the RCS
of a corner reflector with mass production errors can be
modeled via four parameters Beta distribution, with the shape
parameters determined by the variances of the aforementioned
errors. Furthermore, an optimal procedure for radar power
calibration technique, accounting for the corner reflector RCS
uncertainty due to mass production, has been proposed. Such
procedure can be used for real-time estimation of radar sensor
healthiness parameter that characterises the sensing quality for
awareness of human driver or automated driving system.
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