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Abstract

Variable Stiffness Laminates are created by spatially varying the fiber orientation resulting in
designs that makes use of curved fibers rather than Uni-directional fibers to tailor the properties
to design requirement. The advent of automated manufacturing methods such as Automated
Fiber Placement and Tailored Fiber Placement has made variable stiffness laminate more realis-
tic and attractive for use in aerospace and automotive sector. Importance of light weight designs
in automotive sector has received new interest due to the stringent emissions rules and entry of
designs based on alternative energy. Within this context, this thesis intends to create variable
stiffness design for an automotive part to investigate the possible improvements in structural
responses compared to a design based on conventional laminates.

The design is done based on 2D Finite element analysis coupled with a convex optimization that
helps to generate steered fiber designs optimized for strength, stiffness and buckling. One of the
important loadcase studied here is the inertia relief. Inertia Relief analysis is generally applied
to unconstrained bodies that undergo rigid body motion (such as a plane in flight or chassis on
a suspension) and is of interest for the part studied here. Inertia relief method is implemented
in the finite element framework and results are verified for test cases such as beams, rectangular
plate and cylinder. The method is then used to analyse the automotive part and the responses
from the analysis are taken for optimization.

After completion of finite element analysis for all the loadcases, a gradient based optimization
problem is setup for optimizing fiber angle distribution. Together with constraints for structural
responses a set of manufacturing constraints are also used during optimization so that realistic
fiber angle distributions are achieved at every design points or nodes. To obtain steered fiber
paths, the fiber angle distribution after optimization is curve-fitted using a streamline analogy.

Final optimization of the structure showed that significant improvement in the objective re-
sponses can be achieved by using variable stiffness laminates over a conventional laminate
design(UD). The results also implies that reduction in weight can be achieved if a variable
thickness optimization is to be done for the model.
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Chapter 1

Introduction

1.1 Introduction

The Anisotropic properties of composite materials offer a lot of design freedom, especially its
tailorablilty. The possibility to orient fibers in any direction in the matrix system have shown
promising improvements in strength and weight savings. This is possible because varying the
fiber directions spatially helps to vary the local stiffness in a ply which can be utilized to improve
the stress distribution. The improvement in buckling,strength and maximum frequency response
compared to conventional unsteered laminates (most cases a Quasi-Isotropic laminate)have been
quite evident from the previous studies [3] [4] [5] [6]. These studies have reported improvement
in stiffness upto 40% without considering any manufacturing constraints and upto 20% with
considering the effect of manufacturing constraints(mainly steering limits). Such laminates with
spatially varying fibers are called Variable Stiffness Laminates (V SL) or steered fiber laminates
in literature.

Variable Stiffness laminates have been in niche of research and development for the past decade,
although they are theoretically proven to be much more efficient than Uni-directional (UD) ply
laminates it has not been completely realized due to the complexities in manufacturing these
designs. Also the amount of design variables that would be present in the optimization makes it
really a difficult and computationally expensive process. It can be said that these complexities
constrained the early introduction of this technology into industry, considering the fact that
automated fibre placement was already conceived in early 1970’s [7].

Developments in field of industrial automation made variable stiffness laminates all the more
feasible. The late 1970’s marked the development of Advanced Tape Layup (ATL) and later fol-
lowed the Automated Fiber Placement (AFP ) technique [7]. AFP was in way a fusion between
ATL and filament winding technique that allowed deposition of tows on almost any arbitrary
surface. Tailored Fiber Placement (TFP ) was introduced in 1990s, which was developed from
the existing knowledge of textile stitching [8]. TFP offers lot more freedom to lay fibers as
compared to AFP but has its own short-comings. An analysis of these production methods can
therefore lead to identification of right manufacturing method for producing the structures.

Manufacturing challenges aside,at the core of variable stiffness design it is an optimization
problem. The optimization of material distribution is highly researched and developed field of
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engineering. Over the years a lot of design and optimization methods have been developed for
composite materials. Efficient ways to reach optimal and manufacturable designs have been
found in recent years [3] [9] [10]. This thesis will focus on using the above method(discussed
in the coming section) to enhance the performance of automotive structures. In the coming
section an overview of the research aim and questions are given, followed by discussion about
methodology adopted to fulfill these research questions.

1.2 Research Aim and Objective

Aim The main aim of the research is to develop variable stiffness laminate design for the given
automotive part that can potentially be lighter than conventional laminate designs. The end
result of this thesis will contribute towards overall reduction in the vehicle weight. Also fea-
sible method of production has to be identified to make design into reality. A representative
structure will be optimized to develop a framework that can later be applied to other parts
of the automotive structure. Compared to structures analyzed in the literature the structure
in context is doubly curved part, therefore the results from this thesis will also be interesting
to see how the fiber steering works on complex shaped structures. In short, the main research
question can be stated as:

"Investigate the possible gains of using variable stiffness laminate design as com-
pared to conventional laminate design in an double curved automotive structure"

For achieving the aim a set of sub-questions are framed to breakdown the work into smaller
parts. Main sub questions are followed by supporting questions that raises enough arguments
for .

1.2.1 Research Questions for Literature Review

1. What is the feasible manufacturing method?

(a) What are features of AFP and TFP manufacturing method?
i. What is the production speed?
ii. What is the percentage of occurrence of embedded defects?
iii. What material types can be used?
iv. What is the cost of the process?
v. What are the possibilities of scaling up of production?

1.2.2 Research Questions for Thesis

1. What are the design requirements of the structure ?

(a) What is the critical load case?
(b) What are strength & stiffness requirements?
(c) What are the manufacturing requirements?

2. How can inertia relief be modelled to existing Static analysis method?
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(a) How can the inertia relief method be verified?

3. How much improvement can be made in mechanical responses of the structure?

1.3 Methodology

The optimization of variable stiffness composites being the main objective it is decided to start
off with the existing optimizer that has been developed in TU Delft. The existing optimizer
has been tested for various cased such as flat plates and cylindrical surfaces, therefore is a good
starting point for this thesis. The optimizer includes a finite element part and an optimization
part. The finite element part calculates the responses and the sensitivities, which is then given
as an input into the optimization part. The finite element part will be extended in such a
way that it can handle the inertia relief loadcase. After modelling all the required loadcases
optimization will be done to assess the improvements in mechanical responses with respect to
a conventional UD laminate design. The results of optimization will be visualized in the form
of steered fiber paths on the surface of the structure.

1.3.1 Finite Element modelling

The finite element part is formulated based on a higher order triangular element which has been
verified by previous researches and will be unchanged for this thesis. Although the trias are
inferior to quad elements, it is well suited for meshing complex curved geometries without using
large number of elements. The model(from D’Amato Engineering Solutions (DES) Composites)
comes with a combination of quads, solids and trias, which will be simplified to only tria
elements. This will reduce the need to model multiple elements in the current finite element
code.

Also considering the limited time span of the thesis the complexity of the layup and number of
layers will be reduced sufficiently to meet the time constraint. Angle optimization happens at
each layer on every node, therefore computational time will scale up depending on both theses
quantities (especially for sensitivity calculation). Therefore coarser models will be preferred to
reduce the computational time. The actual structure will be meshed in Hypermesh Optistruct
and the mesh will be transferred to the optimization code for the analysis. The model setup is
discussed in detail in the chapter 3.

1.3.2 Implementation of Inertia Relief Analysis

The inertia relief loadcase is widely used in automotive sector for analyzing chassis structures
to account for the inertial loads on the structure. Inertia Relief analysis will be developed to
derive the inertia loads which will then be used in the existing finite element part to calculate
the responses. The inertia relief loadcase will be verified with simpler structures such as beams
and plates before going to the actual automotive structure. The responses from the inertia
relief case will be checked against the commercial codes such as NASTRAN/PATRAN which
can handle the inertia relief method . For the actual structure the results of inertia relief from
Hypermesh Optistruct will be used for verification.
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1.3.3 Optimization

Once the finite element part is setup, the results will be passed on for optimization. The opti-
mization method is adapted from the existing optimizer. The existing optimizer does take into
account the constraints of manufacturing method used making the optimized designs manufac-
turable and realistic. The optimization results will be compared to the inital design and the
improvements will be assessed. Finally a critical appreciation of the results will be done in the
Results and Discussions section to investigate the scope of the results.
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Chapter 2

State of the Art

2.1 Classical Laminate Plate Theory

Classical laminate plate theory (CLPT ) is a method to analyse composite materials. Classical
laminate plate theory is based on the assumption that the laminates are sufficiently thin to
assume a plain stress condition which essentially neglects any out-of-plane stresses and therefore
the effects of delamination or interlaminar stresses are not considered. The equilibrium equation
for CLPT can be written as follows:

(
[N ]
[M ]

)
=
(

[A] [B]
[B] [D]

)
·
(

[ε0]
[κ]

)
(2.1)

Here N is in-plane forces, M is Out-of-plane moments, A represents the In-plane Stiffness, and
D represents Out-of-plane Stiffness of the laminate. The B represents the coupling between
in-plane and out-of-plane stiffness. Terms ε and κ represents mid-plane strains and mid-plane
curvatures respectively. Expanding the above equation with full formed matrices,



Nx

Ny

Nxy
Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16
A21 A22 A26 B21 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B21 B22 B26 D21 D22 D26
B16 B26 B66 D16 D26 D66


·



εx
0

εy
0

εxy
0

κx
κy
κxy


(2.2)

These terms can be derived from the orthotropic stiffness matrix (Q) of the given material
(assuming the ply is orthotropic in nature which is true for standard composite tapes and UD
plies).
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A =
∫ −h/2

−h/2
Qdz

B =
∫ −h/2

−h/2
z ·Qdz

D =
∫ −h/2

−h/2
z2 ·Qdz

(2.3)

here the stiffness matrix can be derived from material stress-strain equilibrium equation σ = Q·ε
considering a plane stress condition. The stress strain equation for plane strain condition is given
as follows:

 σx
σy
σxy

 =

Q11 Q12 0
Q21 Q22 0

0 0 Q66

 ·
 εx
εy
εxy

 (2.4)

The stiffness matrix Q can be found out from the material properties (E1, E2 and µ12). The
above equations are basis of composite stress analysis in finite element methods, where the
important difference with respect to isotropic material is the use of ABD matrices instead of
Q to formulate the stiffness matrix K (K, from KU = F ). The difference in the . The details
of stiffness matrix Q can be found in any composite handbook or textbook such as [11], where
each term in Q matrix and the transformation matrices needed to transform the stiffness matrix
to material coordinate system are given.

2.2 Lamination Parameters

A more compact notation of the composite laminate layup is proposed by Tsai and Hahn [12].
A layup with any number of layer can be represented using the set of lamination parameters
proposed by the authors. This is beneficial since it can reduce the computational cost by
reducing the number of design variables. The representation of in-plane lamination parameters
V and out-of plane lamination parameters W is as follows:

(V1, V2, V3, V4)

=
∫ −1/2

−1/2
(cos 2θ(̄z), sin 2θ(̄z), cos 4θ(̄z), sin 4θ(̄z))d(̄z)

(2.5)

(W1,W2,W3,W4)

=
∫ −1/2

−1/2
z̄2(cos 2θ(̄z), sin 2θ(̄z), cos 4θ(̄z), sin 4θ(̄z))d(̄z)

(2.6)

here z̄ = z
h is the normalized z coordinates of the ply with respect to thickness h. The in-plane

and out-of-plane stiffness matrices can be written using lamination parameters as follows,

A = = h · (Γ0 + Γ1 · V1 + Γ2 · V2 + Γ3 · V3 + Γ4 · V4 (2.7)
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D = = h3

12 · (Γ0 + Γ1 ·W1 + Γ2 ·W2 + Γ3 ·W3 + Γ4 ·W4 (2.8)

here Γ matrices are defined in terms of material invariants (U) as

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

Γ1 =

U2 0 0
0 −U2 0
0 0 0

 (2.9)

Γ2 =

 0 0 U2
2

0 0 −U2
2

U2
2

U2
2 0

Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

 (2.10)

Γ4 =

 0 0 U3
0 0 −U3
U3 −U3 0

 (2.11)

The laminate invariants U can be given as:

U1 = 3 ·Q11 + 3 ·Q22 + 2 ·Q12 + 4 ·Q66
8 (2.12)

U2 = Q11 −Q12
2 (2.13)

U3 = Q11 +Q22 − 2 ·Q12 − 4 ·Q66
8 (2.14)

U4 = Q11 +Q22 − 6 ·Q12 − 4 ·Q66
8 (2.15)

U5 = Q11 +Q22 − 2 ·Q12 + 4 ·Q66
8 (2.16)

If variable stiffness laminate optimization is formulate with lamination parameters as its design
variable, the optimized fiber angles have to be traced back. A feasible region of the lamination
parameters are set inside which the stacking sequence can be retrieved. The feasibility condition
can be found from the works of Bloomfield et.al [13]. Interested readers are referred to the
authors work for more details. For this thesis the design variables are fiber angles, lamination
parameters is only used for formulating stiffness matrices.

2.3 Variable Stiffness laminates

The design and optimization of Variable stiffness laminates stems back from the 1980’s [3].
Optimization of laminates from the conventional layup designs has been already shown beneficial
by early researches by Setoodeh et.al [14]. Their method of iterative reorientation of fiber angles
until it reach an optimum has already shown improvement compared to Uni-directional layup
patterns. One of the drawback of the method was however the formulation of optimization
in terms of fiber angles resulted in no-convex functions which often resulted in local optimal
solutions. Although they have shown that considerable improvement can be achieved even with
a local optimum solution as compared to the initial point. A good step of improvement was
found later by Setoodeh et.al [3] in later works where an convex formulation of the function
was obtained by using lamination parameters(LP) as design variable. This resulted in a more
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robust method where the number of design variables where limited regardless of the layup
and solutions closer to global optimum were found in later researches. The maximization of
buckling load and maximization of strength using the lamination parameters have been done
in [4] and [5] respectively which showed the convex nature of the optimization problem as in the
feasible domain of lamination parameter space. To convert the design obtained from optimum
distribution of LP’s to a set of angles or a layup would therefore be required in this method.
This work has been later on extended by other researchers [9] [10] [15] who tried to better the
robustness and effectiveness of the solution by taking into account the manufacturability of the
layups. The necessity of the manufacturing constraints arise from the fact that fiber angles
retrieved from the optimization of LP’s often results in infeasible designs without additional
constraints. Therefore an additional constraint similar to strength and buckling have been added
in the above works to reach a feasible solution. The manufacturing constraint is formulated
based on the fiber placement technology used for production. The machine dynamics will
restrict the curvature of the plies to a certain limit. This limit is taken into account by giving
a average curvature constraint per layer.
The next step is to generate fiber paths from the results of optimization. A linearly varying
fiber angle path design was proposed by Gürdal et.al [16] which showed simple way to build
curved fibers. A variable stiffness laminate can be designed by setting a reference path using the
two angles and then shifting the subsequent fibre paths in y-direction as shown in Figure 2.1.

Figure 2.1: Variable stiffness laminate definition (a)reference path (b)shifted fiber paths
[17]

One of the problem with above method was the thickness build up in the inflow and outflow
(start and stop regions of fiber path). The Fiber path retrieval has been studied in past by
various other authors, among them a curve fitting method was proposed by Blom et.al [18]
using a streamline analogy that results in fiber paths that looks like streamlines. Here the
manufacturing constraints are implemented in the optimization similar to [10] and the resulting
distribution of angles are curve fitted to match the streamline function which also smoothen the
thickness build up. This method is currently implemented in the TU Delft Optimizer and will
be used for thesis, for reading more about stream functions readers are refereed to the work by
Blom et.al [18].
In short, the design process can be summarized into three steps :

1. Finding Optimal stiffness distribution
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2. Generating the true fiber angle distribution

3. Generating fiber paths from fiber angle distribution

The three step approach shown by the authors above have shown considerable improvement
in the mechanical performance of the laminate and is more robust and can be applied to the
problem in hand. Although the retrieval of true fiber angles for the given set of lamination
parameters will not be done for the thesis, since the improvement with this step has been
shown to be minimal [1]. A fiber angle distribution satisfying the feasible domain constraints
and manufacturing constraints will be used instead of the true angle.

In the next section a closer look at the manufacturing methods and their features are given and
the feasibility of these methods are studied.

2.4 Structural Optimization

Material optimization is a research field active for several decades. Optimization of composite
materials has gained importance due to the anisotropic nature of the material. Optimization
methods have a common skeleton, it involves a function that is to be optimized (either min-
imized or maximized depending on the objective), and certain constraints that are to be not
violated. The function is formulated in terms of design variables of interest (such as struc-
tural dimensions, weight or fiber angle) and the objectives and constraints can be for example
structural responses such as strength and buckling or structural dimensions. Depending on
the premises of optimization the above setup can vary to suit the problem in hand. A classic
example of optimization problem is shown below:

min f(x)
s.t h(x) > h0

g(x) 6 g0

(2.17)

here f(x) is the optimization function , h(x) is the objective that must be greater than the
initial state of h denoted by h0 .Similarly constraints g(x) must be less than g0.

2.4.1 Optimization setup for VSL

The VSL optimizer used in this thesis is based on a gradient based optimization method.
Gradient based methods are computationally inexpensive than evolutionary algorithms(such
as Genetic Algorithm’s) and therefore are good choice for problems involving large number of
design variables(such as variable stiffness laminate design problems). The gradient based opti-
mization method chooses the direction of descent or direction of search using the gradient of the
optimization function. The optimization function is updated iteratively until the improvement
in the objectives are negligible. The setup of optimization is formulated based on the min-max
type optimization as shown in the Section 2.4.

There are several approaches possible for implementing a gradient based method. In the cur-
rent optimizer a method of multi-level optimization using structural approximations is used.
The optimization function representing structural responses such as strength and buckling is
expressed using structural approximations in this method. The multi-level method has shown
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to be computationally less expensive in the comparison study performed by van Keulen and de
Wit [19]. This method has been used in Phd thesis of Samuel IJsselmuiden [20] performed in
TU Delft and has been later on adopted by other researchers showing its validity.
To use the structural approximations to represent optimization functions, it has to comply with
certain properties. Four properties that are required to make the optimization more robust are
mentioned below:

1. Convexity : an approximation can be called convex, if there is always a unique optimum
point for the function. This means for any two points x1 and x2 in the feasible domain,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (2.18)

where t ranges from 0 to 1

2. Separable : an approximation is separable if it can be expressed as summation of functions
of design variables. This is means that the different design variables independent of each
other making it efficient. The separable nature of an approximation can be expressed as
follows:

f(x) =
∑
i

fi(xi) (2.19)

3. Conservative : an approximation is conservative if the value of approximation is less than
or equal to the function at the same point. This makes sure that the approximation
values stays within the bounds of function value and doesn’t exceed the feasible domain.
Mathematically it can be represented as follows:

f(x) ≤ f̂i(xi) (2.20)

4. Homogeneous : an approximation is homogeneous if its values can be scaled when the
design variables values are scaled. This guarantees that feasible point can be reached
when the design variables are scaled in appropriate direction.

f (λx) = λnf(x) (2.21)

Out of these four, convexity is the only required property for the method of successive approx-
imation used in the current optimizer. The rest of the properties are however highly desirable
for efficient approximation.
In the early version of the optimizer a primal-dual problem was solved using the above setup
to find new optimum point [20]. In the recent improvements brought by Peeters et.al [10] an
interior point method has been implemented owing to increase in number of constraint due to
implementation of manufacturing constraint (that are enforced per node). The updated version
of the optimizer will be used for this thesis. Interior point method is commonly used in linear
programming(LP) problems that helps to identify the minimum by constructing a log barrier
function along the constraints. Efficiency of the optimization results depends on how good the
barrier functions are. The optimization problem starts with the min-max formulation, the main
aim is to minimize the worst response in the given set of responses:

min max(f1, f2, ...., fn)
s.t fn+1, ....fm 6 0

ς2 − ς2
U 6 0

(2.22)
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As seen above, the general setup of an optimization problem involves three main ingredients
optimization function, objectives and constraints. The functions f1 upto fn represents the
structural responses that are to be optimized. And responses fn+1 upto fm represents the
constraint responses that are to be maintained throughout the optimization. ς represents the
steering value per node and ςU is the upper bound for the steering set by the manufacturing
method (namely AFP and TFP, see Section 2.5 to check steering constraints). It is to be noted
here f is the inverse of the responses and therefore the worst response will be max(f1...fn).

Responses

Function that represents the structural responses will be calculated from FEA of the DES
model. For the problem in hand three responses are of interest namely: strength,stiffness and
buckling . Since the optimization is minimization problem, inverse of the responses needs to be
used. Therefore stiffness becomes compliance C and can be calculated as follows:

Compliance

C = 1
Stiffness

= 1
2U

T ·K · U (2.23)

where U represents displacement and K represents the global stiffness matrix.

Buckling Buckling load (Pcr) can be calculated using the eigenvalue analysis involving global
bending stiffness Kb and global geometric stiffnessKg.

(Kb − λKg) · a = 0 (2.24)

here λ is the buckling factor and a buckling mode. For the minimization problem the Pcr can
be written as inverse of the buckling factor.

Pcr = 1
λ

(2.25)

strength : strength is calculated based on Tsai-Wu failure criteria. The strains in the laminate
is used to formulate a failure index (r) which is used instead of stress values. The calculation of
failure index has been done by Khani et.al [4], interested readers are refereed to authors work
for derivations of the failure index. The linearized form of r used in this thesis is shown below:

r ≈ εT · g(k) (2.26)

where,

g(k) = ∂r
∂ε

(2.27)

ε = A−1 ·N (2.28)

In the multi-level approximation approach two approximations are made namely level one and
level two. The level one approximation is in terms of laminate stiffness A and D. And the level
two approximation is derived from level one approximation which is explained below in detail.
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Level one approximation

The level one approximation is formulated using convex linearization approach. The convex
linearization (ConLin) method proposed by Fleury [21] employs both direct and reciprocal
terms to get a convex separable approximation. The stiffness matrices A and D and their
reciprocals are multiplied with their sensitivities (factor that shows importance of its coefficient
with respect to other design points) and summed over the domain. Sensitivities shows the
change in the responses for a small change in design variable (∂f/∂x). The formulation of
sensitivities is presented in the PhD thesis of Daniël Peeters [1] interested readers are referred
to authors work for more details.

f (1) =
∑
n

φm : A−1 + φb : D−1 + ψm : A + ψb : D + c (2.29)

Here the ’:’ operator represents a Frobenius inner product (A : B = trace(AT · B)). The
coefficients of the reciprocal and linear approximation terms φ and ψ are computed from the
sensitivity analysis [22]. The subscripts m and b represents membrane and bending parts. The
optimization runs over all the nodes n. The above approximation is always convex and free
term ‘c’ is the constant part which is zero if there is no inhomogeneous part for the function.

Level two approximation in terms of fiber angles

The level two approximation is derived from the level one approximation as mentioned before
in terms of fiber angles. Peeters [1] proposes a similar level two approximation in terms of fiber
angle densities which is necessary to implement the topology optimization of variable thickness
optimization. In this thesis however focus is only on the fiber angle optimization or variable
stiffness optimization. The level two approximation for the optimization is as follows:

f (2) = f
(1)
0 + g ·∆θ + 1

2 ·∆θ
T ·H ·∆θ (2.30)

Here (g) and (H) is the gradient and Hessian of the level one approximation at the approximation
point. For calculation of the derivatives the stiffness matrices are expressed in terms of fiber
angle (θ). The level one function is rewritten in terms of fiber angles to compute the level two
approximation.

f (2)(θ) = f
(1)
0 (s(θ)) (2.31)

Here the ’s(θ)’ represents stiffness matrix in terms of fiber angle. Making use of the above
substitution, the gradient of the function can be expressed as follows:

gi = ∂f (1)

∂θi
= ∂f (2)

∂θi
= ∂f (1)

∂sα
· ∂sα
∂θi

(2.32)

Similarly, Hessian can be found by differentiating twice the level one function,

Hij = ∂2f (1)

∂θi · ∂θj
= ∂2f (1)

∂sα · ∂sβ
· ∂sα
∂θi
· ∂sβ
∂θj

+ ∂f (1)

∂sα
· ∂2sα
∂θi · ∂θj

(2.33)
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Here the underlined term in equation 2.33 is neglected to make the function convex since it is
not positive definite. The remaining gauss-newton part is positive semi-definite and therefore
satisfies the convexity property.

Manufacturing Constraints

Manufacturing constraints are imposed during the optimization to guarantee the manufactura-
bility of the layups. This is done by taking into account the variation in fiber angle distribution
in adjacent nodes [10]. The gradient of the angle is subjected to a inequality condition, that
checks if the fiber angle variation is exceeding the steering limit of the machine. In the work
of Peeters et.al [10] a global steering and local steering constraint can be seen. The author
mentions the importance of local steering to achieve full guarantee on the manufacturability of
the constraint. However using local constraint (one per node instead of one per layer as in global
constraint) increases the computational time considerably for the problem in hand. Therefore
only a global constraint will be used in this thesis. The formulation of the global constraint is
shown below:

ς2 = ∇θ · ∇θ (2.34)

The global steering can be expressed as average steering of the domain.

ς̂2 = 1
Ω

∫
Ω
∇2dΩ (2.35)

In a discretized FE domain this can be changed to summation over all the nodes , and can be
written as follows:

ς̂2 = 2
Ω · θ

T · L · θ (2.36)

here L represents the laplacian of the FE domain. In the case of a local constraint L in the
above equation will have to be changed to Le which is laplacian of the element.

Predictor-Corrector Interior point method

The optimization of the level two approximation problem stated in Section 2.4.1 is the main
sub-problem that optimizes the fiber angle with the above specified manufacturing constraint.
The min-max formulation of the optimization will be rewritten using bound formulation as
follows:

min z

s.t f − z · e ≤ 0
ς2 − ς2

U 6 0
(2.37)

here e is vector that contains 1’s and 0’s , where 1’s correspond to objectives functions and
0’s correspond to constraint functions. In predictor corrector method the inequality constraints
that comes from the min-max will be rewritten to equality constraints but with a slack variable
s that ensures that the
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min z

s.t f − z · e + s0 = 0
ς2 − ς2

U + sc = 0
(2.38)

The lagrangian of the problem can be written as follow:

L(λ0, λc, θ, z, s0, sc) = z + λ0 · (f − z · eT + s0)
+θT · (λc · L) · θ − ςU 2 · (λc · |Ω|)

+λc · sc|Ω|)
−µ · (ln(s0) + |Ω| · ln(sc))

(2.39)

where λ0 and λc are the lagrange multipliers of the functions(i.e responses) and constraints. And
homotopy factor is depicted by µ. To find the optimal point the gradient of the Lagrangian
has to be set to zero. The gradient is calculated with respect to λ0, λc, θ, z, s0, sc and can be
summarized as follows:

∇z : 1− λ0 · eT = rz (2.40)
∇θ :

∑
0
·g + 2 ·

∑
Ω
λ · L · θ = rθ (2.41)

∇λ0 : f − z · eT + s0 = rλ0 (2.42)

∇s0 : λ0 −
µ

s0
= rs0 (2.43)

∇λc : θT · L · θ − |Ω| · ςU 2 + se · |Ω| = rλc (2.44)

∇sc : λc · |Ω| −
Ω · µ
sc

= rsc (2.45)

For the initial step homotopy facor µ is set to 0. This is updated in the subsequent steps of
the predictor-corrector algorithm. For numerical stability the equations with respect to slack
variables will be rewritten as follows by multiplying it by slack variables:

∇s0 : λ0 · s0 − µ = 0
∇sc : λc · |Ω| · sc − Ω · µ = 0

(2.46)

To exploit the sparsity which helps to reduce the computational effort, representation of the op-
timality condition can be written in matrix form. After linearising and using Schür complement
the equation becomes the following (Eq. (2.47))which is solved towards updating the predictor
step.


λ0 ·H + 2 · λe · L g 2 · L · θ 0

g2 − s0
λ0

0 −eT

2 · LθT 0 − sc·Ω
λc

0
0 −e 0 0

 ·

∇θ
∇λ0
∇λc
∇z

 =


rθ
rλ0

rλc

rz

 (2.47)
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The results from the above step will be used to update the homotopy factor. Duality gap
denoted by dg is computed to update µ.

dg = (s0)P · (λ0)P + (sc)P
T · λcP (2.48)

µ = β · dg (2.49)

The solution from the predictor step is written with a superscript P as shown in equation 2.48.
Using the updated µ the right hand side of the Eq. (2.47) is updated and it is solved again
which is the corrected step. After this solution step a completer Predictor-Corrector iteration
is completed for the sub problem. All the variables are updated after this step and the process
will be continued until there is convergence.

2.4.2 Damping function

As mentioned before, one of the important criteria is to maintain the convexity of function, which
helps in converging towards a global optimum. To make the optimization globally convergent
every iteration has to be improvement. A method has been suggested by Svanberg et.al [23]
which predicts conservative approximations to guarantee improvement in every iteration.

f (1) = ˆf (1) + ζ(1) · d(1) (2.50)

Here ˆf (1) is original approximation, a conservative approximation is found by adding the damp-
ing function d(1) scaled by value called damping factor ζ(1). A similar conservative approxima-
tion has to be made for the level two case also. The formulation of damping function is taken
from the work of [20] which is stated below.
For the level one function the damping can be formulated as follows:

d(1) =
∑
n−nc

(An : An0
−1 + Dn : Dn0

−1 + An
−1 : An0 + Dn

−1 : Dn0 − 12 ·
∑n−nc
i=1 Ai∑n
i=1Ai

) (2.51)

here the subscript 0 represents the value of the stiffness matrices at the approximation point.
As done for function approximation in section 2.4.1, the damping function is calculated for the
optimized nodes only therefore the summation of the nodes ranges from 1 to n− nc. Similarly
for the level two the damping function will take the following form:

d(2) = 1
2∇θ

T ·Hd · ∇θ (2.52)

in the above expression Hd is a regularization matrix that will be added to the H the hessian
from level two approximation ( in equation 2.30 ). The regularisation matrix is given as follows:

1
s2 ·



1 −1
−1 2 −1

. . . . . . . . .
. . . . . . . . .

−1 2 −1
−1 1


+



1 . . . 1
...

...
. . .

. . .
...

1 . . . 1


(2.53)
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At the approximation point the Scaling factor ζ is given the following,

initial scaling factor level one:

ζ(1)2 =
n−nc∑
i

wn
2 · ((‖φm : A−1 + ψm : A‖)2 + (‖φb : D−1 + ψb : D‖)2) (2.54)

where w is a weighting factor given by

wi = Ai∑n−nc
i Ai

(2.55)

initial scaling factor level two:

ζ(2)2 = 1
2 · g

T ·Hd
−1 · g (2.56)

After setting the initial value, the damping function has to be updated to account for the change
after each iteration. The update of the damping is done by checking the conservativeness of
the new approximation using newly found point(x∗). Conservativeness is given by the following
ratio between exact function f and its approximation f̂

ζ∗ = e
f(x∗)− ˆf(x∗)

d (2.57)

ζnew = ζ · ζ∗ (2.58)

To make sure that the damped approximation values calculated using Eq. (2.50) are not oscil-
lating too much from the original approximations certain limits has to be applied to damping
factor ζ. The rule applied to limit ζ given in the work of IJsselmuiden [20] is explained here.
If the value of ζ∗ is within 2 and 0.5 , then ζ∗ is used for updating ζ using the equation 2.58.
However if ζ∗ exceeds the maximum limit of 2 or minimum limit of 0.5, the value is set to 2 or
0.5 respectively. Also a minimum of 1.05 is recommended by the author [20] if the value of ζ∗

is between 1 − 1.05. These limits helps to avoid large oscillation in optimization that can be
caused due to non-conservative functions.

2.4.3 Fiber Path creation

Fiber angle distribution found from the optimization needs to be converted to fiber paths inorder
to manufacture it using automated methods. Tows are parameterized such that it has distinct
starting and end point and follows the angle distribution. This often creates gaps and overlaps
in designs when two adjacent tows cross over each other. These are potential points that create
stress concentrations in the structure. A.W Blom [18] proposes parameterizing the paths using
streamline functions. These functions represent smooth streamlines optimized to reduce the
thickness build up and follow the given distribution. The stream functions proposed by the
author can be stated as follows:

Ψ(x, y) =
∫ x

0
t(x∗, y∗) sin θ(x∗, y∗)dx∗ +

∫ x

0
t(x∗, y∗) cos θ(x∗, y∗)dy∗ (2.59)
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Figure 2.2: Tow drop effects in a steered fiber laminate [1]

For derivations of stream functions interested readers are referred to authors PhD thesis [18].
The above function is constructed terms of thickness t and the fiber angles θ which helps to
create smooth thickness distribution. The tow drop effects in the steered laminates is presented
in [1], which is shown below in figure 2.2.

In figure 2.2 the start and end point used for the tows are bottom and left edges & top and
right edges respectively. These are also called inflow and outflow region. The selection of inflow
and outflow regions does effect the fiber path pattern and tow drop effects. Although this task
is not complicated for the rectangular plate shown in figure 2.2, depending on complexity of the
structure it will not be a trivial task. Additional posit-processing would be required to judge
the suitability of the fiber paths and inflow-outflow boundaries.

2.5 Manufacturing of Variable Stiffness laminates

2.5.1 Automated Fiber Placement

AFP technique was derived from Automatic tape laying(ATL). The earliest ATL machines made
use of the existing Computer Numeric Control(CNC) knowledge to lay down tapes on a flat
base plate [24]. The design from Goldsworthy in 1974 showed improved ability to lay tapes
following a geodesic path on a curved surface. The machine consisted of fiber feeding head and
compaction roller that held the material on the surface [25]. Most of the designs developed in
late 70’s were centered around aerospace application and therefore machines were custom built
for aerospace specific part. Commercial machines were only introduced in 1980s after achieving
considerable improvement in speed and ability to lay tapes on curved surface. Early efforts in
70’s recorded productivity of 10-20 m/min(3-10 lb/hr) [7] which was considered inadequate to
replace manual layup (2.5lb/hr).

Torres Martinez designed an automatic system for splicing(joining) tapes together which im-
proved productivity by reduced downtime required for material refill [26]. By automating the
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Figure 2.3: Modern multi-axial AFP machine
[7]

splicing of tapes they not only improved the productivity but reduced the chances of non-
uniformity in tape end and errors in tape cutting making process more reliable. Similarly
several improvements in capability of the AFP machines were achieved during the early 2000’s
which included infrared heating of tapes for better tack, off line programming and dual head sys-
tems for increasing productivity [27] [28]. The need of controlling the temperature and pressure
was more evident with thermoplastic tapes as change in inter-facial heating and consolidation
pressure had direct influence on the development of voids and layup quality [29].

Although considerable improvements were made in capability of the machines during the coming
years, layup on curved and complex geometry is still an area requiring improvement. The
improved modern machines can reach upto layup speed of 60 m/min which makes the fabrication
of large structures realistic. However the involvement of fiber placement machines in automotive
industry was fairly low, mainly due to small size and complexity of the automotive parts (which
might result in generation of scrap material) and expense of the machine and raw material cost
that are higher than resin transfer molded parts.

Influence of Manufacturing parameters

Although a fiber placement machine can be used to lay down curvilinear fibers, there are intrinsic
problems in the manufacturing method that limits the possibilities that were proven theoreti-
cally. Main geometric factor that constraints how a curve should be is its radius of curvature.
From a better design point of view, a machine that can lay down fibers with smallest radius
of curvature should be the best one. But this factor is controlled by material stiffness, desired
production speed and tow width. Variations in these manufacturing constraints and presence of
process induced defects can change the buckling and in-plane response of the laminates from as
low as 3% for flat parts to 40% for complex parts as shown in studies done by Pasini et.al [17]
and Blom [18]. Similarly processing conditions such as temperature, compaction pressure, hold
time also have influence on the fiber wetting or possibility of delamination which at the end
effects part quality. Some of the influencing factors are discussed in the following section.

Effect of Tow width The effect of tow width is an important factor that decides the final
strength of the design. Owing to the curvilinearity of the design, the fibers will have to be
terminated at the points where the courses converge. Tow drops made at these points will leave
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gaps in the design, which is an unavoidable aspect of AFP process. The effect of gaps and
overlaps has to be accounted in the design stage. Narrow tows(3.175 mm, 6.35 mm) are used
on small or complex shapes to reproduce the exact design. Wider tows (12.7 mm)are better
suited for flat parts with limited steering especially wind turbine blades and aircraft wing skin.

Pasini et. al [17] performed numerical calculations for the effects of embedded defects in flat
rectangular plate (10x16 in.) with constant fiber curvature design under uniaxial tension. For
the comparison of the effect of tape widths the total width was always kept constant to 101.5
mm. Tape of width 12.7 mm resulted in 10% gap area which led to 10-12% reduction in buckling
and in-plane strength. The performance was improved when a width of 3.175 mm was used
which reduced gap area to 3-4%. The reduction in buckling and in-plane strength also came
down to 3-4%. Results conforms the fact that dropping a wider tow will result in formation of
larger gap as compared to narrow tow.

It should be noted here that number of tow drops incidents will be higher in the latter case
which is discussed in the coming section. Percentage of gap area also depends on the part and
complexity of fiber path distribution. Therefore the 10% reduction may become admissible as
often cost of material and production speed have a say in deciding the tow width. For high
performance application such as aerospace, tow width is a detrimental factor and often smallest
tow width is preferred.

Effect of number of tows and steering radius AFP machine head can lay down 8 to 32 series
of tows forming a course simultaneously at different speed and steering rate which allows more
freedom and versatility. It has been shown that increasing the number of tows in a course can
reduce the gap area %. This is mostly because of the reduced number of course boundaries
which helps to reduce the need of tow drops and also the reduction in tow width(which helps in
better steering). But using wider tows restricts the fiber steering ability as the radius of steering
decreases with the width of the tow. This will influence the final strength of the laminate. The
steering control or minimum steering radius is therefore a detrimental factor that should be
considered during design stage.

Pasini et. al [17] studied the effect of number of tows on the gaps and overlaps and calculated
the change in in-plane stiffness and buckling strength. A constant tow thickness of 3.175 mm
was used and the number of tows was varied to check the behaviour of laminate with total gap,
total overlap and no gaps and overlaps. The course with 8 tows resulted in gap area of 10.1% as
compared to the course with 32 tows which only created gap area of 3.6%. Therefore increasing
number of tows and using a smaller tow width can result in better design. Here a constant
steering radius of 0.635m was assumed and it was shown that certain angle combination do not
satisfy the steering radius constraint and are not manufacturable.

An optimization technique based on steering radius constraint have been proposed by Peeters
et.al [9]. The result showed increasing steering radius does increase the buckling load of the
laminate. The manufacturing constraint is then imposed on the design calculations to optimize
the layups to obtain manufacturable designs. The fiber angles are then found out that satisfies
the minimum steering radius constrain and curved paths are recovered. This means that not
all layup designs can be manufactured and only the one’s satisfying the constraints can be
manufactured which was also shown by Pasini et.al [17]. This technique helps to include the
effect of steering constraint in the design phase and therefore is very useful in this particular
thesis.
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Productivity

The productivity of the AFP machines have advanced with time. The most modern machines
offer higher placement speeds upto 60 m/min [30]. There are lot of commercial machines
available that can achieve this value, but the speed estimated is purely theoretical and difficult
to realize in a real production scenario. The production speed is influenced by lot of parameters
such as selected tow width, number of tows in a course and contour complexity therefore the
real estimate of the speed cannot be predicted as it varies with each case.

Estimations of productivity was made for flat rectangular panel by Lukaszewicz et. al [31]
which gives a general idea of speed of process that can be used for comparison with other fiber
placement methods. The study involved benchmarking of AFP and ATL machine to compare
the whole production routine. A 16m x 8 m flat plate made of 8 layers was considered for
the study, the results are shown in the figure 2.4. Although the part size is more suitable
for aerospace standards the benchmarking results are scalable and can be used as basis of
comparison for smaller automotive part sizes too.

Figure 2.4: Productivity with respect to Part
size

[31]

Figure 2.5: Productivity with respect to
speed of process

[31]

Process Part size (1m x
1m)

Part size (2m x
2m)

AFP 30.2 kg/h 41.4 kg/h
ATL 11.7 kg/h 29.2 kg/h

Table 2.1: Production speed comparison of AFP and ATL

As shown in figure 2.4, AFP and ATL shows linear increase in productivity with respect to part
size and gradually reaches a plateau where the growths flattens out. The estimated theoretical
prediction for both ATL and AFP method for a 1m x 1m flat plate and a 2m x 2m flat plate
shown in table 2.1 proves that AFP gave a better production rate of 41.3 kg/h compared to
ATL’s 29.2 kg/h. But these rates will decrease very much when a real estimation is made. The
main reason is intermittent acceleration and deceleration of the machine due to complexity of
the part which result in creating secondary production time. This has been shown by Boeing
whose theoretical estimate reached 45.4 kg/h but the real rate came down to 8.6 kg/h which
shows that it is difficult to achieve high deposition rates as mentioned by Lukaszewicz [31].
The designs with higher percentage of short fiber course will result in creation of secondary
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operation time in the form of time for cutting a new course, repositioning it and acceleration
and deceleration accompanied with it. This is particularly important to take into consideration
for this thesis as the structure to be produced is small as compared to aerospace structures.
Scaling the values of part size to comparable dimensions in automotive sector helps to assess
the achievable production rates. Common automotive part size are below 2m x 2m which
makes the production speed lower than large aerospace grade structures. Therefore the table
of comparison 2.1 drawn from the results of Lukaszewicz [31] should show the representative
production speeds for the automotive parts. The intermittent acceleration and deceleration will
be an important factor for small and complex parts. Therefore it will be necessary to redesign
parts to smoother shapes that can be economically produced using AFP method.

Material

Thermoset and Thermoplastic are the commonly used material system for automated layup
process. The material is fed in the form of slit tapes into the machine head which then deposits
it on the tool or mandrel with individual steering control. For AFP method slitting of the tape
is an extra step in raw material processing, it is necessary since the fiber steering capabilities
increase as the width of tape decreases. This extra step, together with the cost of manufacturing
prepreg tapes results in high raw material cost.
Thermoset are more widely used with lot of previous knowledge about the mechanical prop-
erties. Most of the high-performance application prefer the material attributes such as aerial
weight, ply thickness, modulus etc. to be tailored for the application. The recent trends in
composite manufacturing shows demand for application specific materials being preferred in
the industry [32]. Thermoplastics have been gaining importance due to the better impact prop-
erties, toughness and higher working temperature [33]. Thermoplastics have found application
in aerospace and automobile sector for their superior properties, and ability to in-situ process
and out of autoclave production makes it more attractive. This makes the bulking up of sec-
tions or joining of skin and stiffeners easier and certifiable. Although the thermoplastic fiber
placement is energy intensive from the fact that it requires higher pressure and temperature as
compared to regular thermoset fibers. This ofcourse has implications on the cost and complexity
of the machine. Heating of the tapes needs to controlled to avoid developing residual stresses
and these are often done by state of the art laser or infra-red heating methods.
Dry fiber placement methods have also gained interest due to its possibility to make use of
uncured material (therefore longer process time) which makes it possible to make large and
complex integrated structures. The drawback is that low stiffness nature of the dry fibers
requires careful deposition to achieve required fiber angle and the fiber architecture needs to
optimized for the resin infusion step [11]. This method is lot similar to the TFP although TFP
machines can produced highly steered designs compared to that of fiber placement machines.

Cost

The cost of AFP machines is a decisive factor in adopting this method. AFP machines are
expensive compared to other fiber placement methods especially TFP. The initial investment
required for these machines often restricts its usage to high production rate process or high
performance applications. Modern AFP machines can range from $1-6 million [7]. The gantry
type machines that are typically used for manufacturing large parts costs around $4-6million.
The smaller modular robotic systems can be cheaper $1-2 million [31]. For automotive applica-
tion usually smaller robotic systems are an affordable option which can effectively handle small
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parts with replaceable modular heads. Offsetting the initial investment can take time depending
on the industry which creates additional risks. Although cost is a contradicting factor, other
benefits such as reproducibility, reduced material wastage and ability to produce complex fiber
architecture outweigh those disadvantages especially when it comes to high tech application.

2.5.2 Tailored Fiber Placement

Textile production techniques were well known even before the introduction of TFP machines.
The stitching technique that was already existing to manufacture clothes were translated to
structural designing by replacing thin threads with reinforcing fibers. Lots of researches were
carried out in IPF Dresden in 90’s, and is often accredited as first to introduce this techniques
in composite structural designing [34] [35] [36]. The method is still a growing field and lot of
research and development is going on to better understand and model the effect of different
stitching techniques.

Influence of Manufacturing parameters

TFP head can lay down dry fiber yarns in practically any angle or curvature on the base
material. The ability to achieve near net shaped preforms with minimal wastage as compared
to AFP makes it different from other fiber placement techniques. This gives the possibility to
reproduce the bionic stress paths to near perfection, which is impossible to achieve with AFP
machines.

Also a salient feature of the method is the use of stitching threads that runs through the thick-
ness to tie the fibers in place. This offers the possibility to reinforce in z-direction which gives
better out of plane performance. This feature gives laminate produced using TFP method
better fracture toughness, interlaminar strength, impact, Compression after impact (CAI) per-
formance which has been proven by Spickenheuer et.al [37]. Mattheij et.al [34] showed that
using reinforcing fibers as stitching threads (3D stitching)brought significant improvement in
Mode I fracture toughness and CAI strength. Use of reinforcing fibers for preform manufac-
turing improves the strength in out of plane direction which is particularly attractive for thick
laminates and also one of the differentiating factor compared to AFP. But these advantages
often come at the cost of in-plane properties as the needle paths are sources of resin rich areas.
The challenge of current generation TFP methods are to improve the out-of plane performance
while providing required in-plane properties and producing it in reasonable speed. The above
specified requirements of the method depends on certain manufacturing parameters that are to
be considered at design stage.

Effect of Stitching length & Stitching width In TFP the dry fibers are placed in position
by stitching it to the base material. The stitching length or frequency is an important factor
that determines the strength of the laminate. The stitching length influences the stiffness and
strength of the laminate. A smaller stitching length or a higher frequency of stitching increases
the stiffness of the laminate but often result in lower tensile strength. Stitching will create
fiber waviness which alters the fiber angles within a course and this result in lower tensile
strength. Spickenheuer et.al [37] showed this effect by experimental testing of UD tension
specimen manufactured by TFP. The reduction in tensile strength is also because of the breakage
of fibers during stitching which is visible in the test results of Spickenheuer. The results shows
increase in tensile strength with increase in stitching length and inverse for stiffness.
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Stitching width is the determining parameter that decides the amplitude of the waviness formed
during preform manufacturing. Smaller widths are often preferred since it will restrict the move-
ment and amplitude of the wave which improves the stiffness of the laminates. But as mentioned
earlier the fiber breakage due to tighter stitching should be also taken into consideration while
choosing stitching width. Varying the stitching density throughout the laminate to suit the
strength and stiffness requirements can lead to better performance than using a uniform stitch-
ing density.

Apart from the stitching, using thicker dry fiber bundles for preforms can reduce the fiber
waviness to an extent due to its increased sectional area. Thick layers are not preferred in
conventional unstitched laminates due to interlaminar stress development between the layers.
This issue can be answered by stitching layer together which generally offer better interlaminar
strength than an unstitched laminate.

Productivity

The productivity of the TFP process is comparatively much lower than that of the AFP method.
The production speed of a TFP machines are depended on the governing parameter such as
stitching density, fiber yarn size and fiber steering. A single head TFP machine can produce
1kg/hr at a linear speed of 10m/min [38], these rates are benchmark for structure with less
complexity and using a 50K(50, 000 filaments in fiber tow) tow fiber, but the realistic rate
comes down to 3m-5m/min.

Process Part size (1m x
1m)

Part size (2m x
2m)

AFP 30.2 kg/h 41.4 kg/h
TFP 1 kg/h 1 kg/h

Table 2.2: Production Speed Comparison

Since the TFP ,machine can deposit 12K tow and a 50K tow at almost same speed it is rewarding
to use thicker tows to increase the production rate. The production rate of 12K tow comes down
to 0.3kg/hr which is considerably lower than that of 50K tow. Since the methodology of TFP
is to stitch dry fiber tows on preforms one after other, it will be only realistic to produce small
parts considering the production time. But multiple head TFP machine can accommodate upto
30 heads that makes it suitable for large scale production purposes.

Practices such as selective stitching, deep drawing and smarter optimization of fiber paths
and stitching density can save production time and result in parts better than conventional
laminate design. Famous example of TFP produced aerospace part is carbon fiber window
frame for Airbus A350 which resulted in design that is almost stress concentration free [38].
This was achieved through selective stitching and structural stitching and further stretching the
preforms to shape. TFP has also found potential application in automotive sector, where crash
cones, chassis and suspension parts are being manufactured using the method.

Material

The most common material form used for TFP preform is dry fiber tows. All type of reinforcing
fibers such as carbon, glass and aramid can be used for preform manufacturing. Resin system
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is usually transferred into the stitched preform through liquid molding processes such as Resin
Transfer molding or Vacuum infusion. There is a variety of sewing threads available for stitching,
depending on the purpose it can be thin polyester yarns of 5 tex to aramid fibers of 40 tex. In
both the cases the compatibility of sewing threads with resin system is increased with application
of sizing.

Lot of new material processing methods are being explored all over the world. One of the
example is customized hybrid fiber development technique ‘SPINCom’ from Leibniz Institute
Dresden [39], uses simultaneous melt spinning polymer (thermoplastic) and fiber and in-situ
commingling offered highly homogeneous material. Such materials can play important role
in providing uniform fiber volume content which is difficult to achieve with Liquid molding
process. TFP made parts are prone to resin rich areas therefore there is high importance for
hybrid materials.

Cost

Cost of the TFP machine is one of the high points in comparison to its other counterparts.
A multiple head (usually 8 − 10 heads, can go upto 30 heads) TFP machine can be installed
at $300, 000 which is only fraction of what a AFP machine costs [38]. The low initial capital
together with cheaper raw material expenses makes it very good option for manufacturing
steered fiber reinforced structures. Although the productivity of the machine is quite low, using
multiple machine can result in productivity close to that of AFP machines.Using four TFP
machines 10 heads each will help to scale the production process and cost of the machines will
be equal to that of a AFP machine as shown in the Table 2.3.

Process 1xTFP 4xTFP AFP
Speed 1-10 kg/h 1-40 kg/h 41.4 kg/hr
Cost $300,000 $1,200,000 >$1,200,000

Table 2.3: Cost Comparison

However stitching is an additional step in laminate fabrication which will be followed by resin
transfer that additionally requires part specific molds and autoclaves. These can be considered
as non-recurring expense similar to machine cost. Overall cost TFP method would be still much
more attractive than AFP method owing to cheaper machines and raw material.

2.6 Conclusion

An overview of the design and manufacturing aspects of variable stiffness laminates was given in
this chapter. The design optimization method presented here is based on the previous research
and development done in TU Delft. An interior point method is used for optimizing the fiber
angle distribution at nodal points by formulating a convex function at each node [1]. The func-
tions represent outcome of the FEA that are essentially structural responses. These responses
are obtained by performing a 2D finite element analysis. Along with the responses, the sensi-
tivities are calculated as well, these are further used for creating approximations. Structural
approximations are used in the multi-level optimization approach where more than one opti-
mization function is used for efficiency. For the optimization method presented here two level of
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approximations are created namely level one and level two. The method of multiple approxima-
tions has shown computational efficiency [1] [23] as it helps to reduce number of FEA’s during
the optimization. The end result of the optimization is optimized fiber angle distribution that
are manufacturable. Fiber paths are created from this distribution by curve fitting these angles
to a streamline function [18].

For manufacturing variable stiffness laminates, Fiber placement techniques are instrumental in
exploring benefits offered by high anisotropy of composite materials. Both the manufacturing
methods assessed in the study are different in their own way. Automated Fiber placement
technique is very well suited for manufacturing large structures such as wing or fuselage section
due to its high production rate. The fiber steering capability of the machine is limited in
comparison to the TFP method but still shows significant improvement in terms of weight and
strength as compared to the conventional UD laminates [10]. The main area of concern will
be the reduction of gaps or overlaps caused due to tow drops. These are essentially areas that
causes stress concentrations which are undesirable in a structure. Also the high initial expense
for the machines and energy requirements for curing or consolidation (depending on whether
the material is thermoset or thermoplastic) limits its usage to high performance application.

TFP made parts generally show better out of plane properties, this is one of distinguishing facts
compared to AFP made parts. Especially use of 3D stitching shows significant improvement
in impact performance and delamination resistance which makes it suitable for manufacturing
crashworthy structures. But low productivity rates are the main drawback of the method which
restricts it usage in fabrication of large structures. A trade-off table comparing their features
are presented in Table 2.4.

Parameter AFP TFP
Preform Production time (Part
size: 1m x 1m)

1.6 min @ 20.02
kg/hr

24 min @ 1 kg/hr

Preform Production time (Part
size: 2m x 2m)

2.3 min @41.34
kg/hr

48 min @ 1 kg/hr

Real production rate 8.6-10 kg/h 0.5 kg/h
Cost $1,200,000 $300,000
Mass production rate 41.34 kg/hr 40 kg/hr @ using

40-stitching head
Effect of defects on stiffness and
strength

3-10% 5-16%

Scrap generation 5-7 % 0-1%
Suitable parts roofs, body floor,

drive shafts
crash cone, chas-
sis parts, suspen-
sion parts, drive
shafts

Table 2.4: Trade-off Table

Both methods allow production of variable stiffness composites with significant improvement
from UD laminates. The deciding factor can therefore be cost and complexity of structure.
It can be concluded with some assertion that TFP method would be preferred when the part
is small to medium sized (1 − 10m2) and if loading condition is dominated by out of plane
loads. TFP is particularly suitable for automotive production due to its scalability to meet
high production rates. Although the process induced defects tends to be high for TFP, desired
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fibre volume content of automobile parts are around 50%-60% which is quite achievable with
TFP-RTM combination. The ability of the method to make near net shaped preforms helps to
reduce need of further machining. TFP also allows to design tailored preforms for the placement
of inserts without additional machining. Curing of resin with inserts in place helps to further
strengthen structural joint between insert and preform. The automotive parts requiring high
impact resistance such as bumpers, crash structures would be ideal targets for TFP.

AFP method will be more suitable when the structure is medium to large sized (10 − 100m2)
(see Figure 2.5) and when higher production rate is to be attained. The production rates for
structures smaller than 1m2 (typical automotive parts size) will be lower than 30 kg/hr. Also
the steering constraints in AFP machines will make steering of fibers on highly complex parts
such as chassis and suspension difficult. Material-wise, use of tape material offer better control
and finish quality but at higher cost. Since raw material costs are recurring it is not a desirable
method for low-end commercial applications.

In comparison it can be concluded that TFP can be cost-effective method for automobile com-
posite structure manufacturing. With the use of advanced material and processing methods the
quality can be raised to comparable standards of AFP method. Upcoming technologies such as
High-Pressure Resin Transfer Molding together with short cure cycle resins, makes the use of
TFP method much more attractive and affordable for automotive application.
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Chapter 3

Model Setup

The model used for the thesis is part of an automotive structure. The part studied in this thesis
is shown in Figure 3.1. It consists of an outer shell reinforced inside with cores and rib-like
structures. The outer shell is made out of composite material. The composite shell that is
optimized will be called "Main Shell" from here on and the inner parts are divided into: baffle
core (which is made of isotropic material) , baffle shells (which is made of composite material).
The baffle shell and the baffle core parts are not optimized however their influence is taken into
consideration (i.e, the entire model is subjected to finite element analysis for calculating the
responses). For the visibility of the inner parts an exploded view is shown in Figure 3.2 for
further details.

Figure 3.1: Model with positions of subparts visible

The material properties used to model these parts are summarized in the Table 5.4. Here
E1 and E2 represents properties in 1 and 2 orthogonal directions respectively , µ represents
poisson’s ratio and G12 the shear modulus. Density of the material is given by ρ and the strength
allowable in X direction in tension is given by Xt and in compression Xc. Similarly strength
allowable in Y direction is given by Y t in tension and Y c in compression.
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Property Composite Isotropic
E1,[MPa] 120000 85
E2,[MPa] 6500 85
µ12 0.018 0.38
G12,[MPa] 3000 30.8
ρ,[ kg

mm3 ] 1.78e−9 9e−11

Xt,[MPa] 1800 -
Xc,[MPa] 900 -
Y t,[MPa] 10000 -
Y c,[MPa] 10000 -
S,[MPa] 10000 -

Table 3.2: Material Properties

Figure 3.2: Exploded view of the model
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3.1 Laminate Stacking Sequence

The layup and thickness distribution is obtained from the model(provided by DES Composites)
created in Altair Hyperworks. It should be noted here that the model provided for this thesis has
already undergone an optimization using Altair Hyperworks Optistruct. The resulting laminate
and thickness distribution is used as initial design or starting point for the optimization problem.
This will help to understand if the variable stiffness laminate designs can be beneficial compared
to an optimized conventional laminate design (or Uni-directional ply based design). The sub
laminates present in the model and their layups are shown in the table 3.3.
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Figure 3.3: Laminate codes and thickness distribution in [mm]

The thickness build up of the model in figure 3.3 has laminate codes (such as ‘M1’ or ‘M2’)
which corresponds to a specific stacking sequence which is shown in the table 3.3.
It can be seen that the number of layer are quite high which does have a influence in computation
since the number of design variables increases. The sizes of the matrices used in optimization
are in terms of number of nodes X number of layers. This was seen to effect the memory usage
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Laminates Layups
H1 [452/902/02/45/902/02/45/902/02/45/02/45/04]s
H2 [452/02/45/902/02/45/02/45/02]s
H3 [452/02/45/902/02/45/45]s
M1 [452/902/02/45/902/45/45]s
M2 [452/02/45/902/45/02]s
L1 [452/902/02/45]s
HL1 [452/02/45/08]s
ML1 [452/902/02/45/04]s

Table 3.3: Stacking Sequence of the model

during optimization. Therefore initial layup has been changed by doubling the thickness and
decreasing the number of layers. To maintain the validity of the design optimization problem
the comparison of the improvement will be done with respect to the modified layup instead of
the parent layup shown in Table 3.3. The modified layup used for the optimization is shown in
Table 3.4.

Laminates Layups
H1 [452/0/45/90/0/45/0/45/0]
H2 [452/0/45/90/0/45/0/45/0]
H3 [452/0/45/90/0/45/45]
M1 [452/0/45/90/45/45]
M2 [452/0/45/90/45]
L1 [452/90/45]
HL1 [452/0/45/03]
ML1 [452/90/0/45/02]

Table 3.4: Modified Design layup

Interpretation of the design layup : For the optimization , balanced and symmetric condition
are used. The layup given above is the design layers that are optimized. The balanced and
symmetric layers will be taken into account during FEM analysis. Therefore a design layup of
[θ1/θ2 . . . ] should be interpreted as [θ1/ − θ1/θ2/ − θ2 . . . ]sym. This is applied to the modified
design layup shown in the Table 3.4 for the DES model.
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3.2 Meshing of the Model

The model is created in Altair HyperWorks Optistruct software which is capable of FEM analysis
and optimization. Meshing will be done with triangular elements since the optimizer is based
on triangular elements. These triangular elements are later turned into higher order triangular
elements by formulation(see chapter 4). The model is meshed keeping in mind the computational
effort that is to come later on in the optimization. The optimization problem is setup with
objectives or constraints set per node (refer to chapter 5), therefore computational time scales
up as number of nodes increases. A coarser mesh has been created using the automesh feature
in Altair Hyperworks. Finer meshing was done only on the curved section, for accurately
representing geometry and also to capture the stress variations. The curved region is strength
critical region (see Section 4.3) therefore finer elements are biased to those region. Flat sides
away from the curved regions are less critical and therefore coarser mesh is used there. There
are partitions made on the structure to suit the laminate regions which can be seen from the
Figure 3.3.

3.3 Boundary Conditions

There are two loadcases analyzed in this thesis, namely :

1. Bending Loadcase

2. Inertia Relief Loadcase

The bending loadcase is created with a load of 1e5[N ] acting along the z-axis of the model
that causes the structure to bend around z axis. Fixed (or clamped, all 6 degrees of freedom)
constraints are applied on the two ends of the model as shown below Figure ??. The load is
point load transferred to a set of points through MPC constraint. The formulation of MPC
Constraints are given in the coming section 3.3.1.

The second loadcase, is the inertia relief loadcase. Here a force of 3e5[N ] is applied along the
X-direction of the model on the edge of the model as shown Figure 3.5. The load is distributed
to the nodes through a Rigid body element (RBE2). These elements take into account the
kinematics of the master node (which is a fictitious node that doesn’t add stiffness to structure).
The formulation of a RBE2 element is given in section 3.3.2. For the inertia relief case the
body is not constraint as it is considered as a rigid body. The inertial force acting on the body
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Figure 3.4: Boundary Condition for bending loadcase

Figure 3.5: Boundary Condition for bending loadcase

Loadcase Load [N] Constraint
Bending 1e5 clamped-clamped
Inertia Relief 3e5 Free-Free

Table 3.5: Boundary Condition

is used to balance the applied load, and a static analysis is done. The formulation of inertia
relief analysis is described in the chapter 4.

The responses of the two load cases will be used for optimization separately. The responses and
its sensitivities will be calculated by performing 2 separate FEA’s, which will then be used for
formulating function (or the structural approximations explained in chapter).

3.3.1 Multi point constraints

Boundary Conditions can be framed in several ways to approximate the behaviour of the struc-
ture. When it comes to force boundary conditions, tie joints or kinematic joints are common
in structures. Here a dependent node or nodes is influenced by a master node or set of mas-
ter nodes. This influence can be expressed by using a predefined formula that would involve
contributions of master nodes. The Multi-point constraint (MPC) relation can therefore be
generalized as follows:

u = T · û (3.1)

Here T which relates the slave degrees of freedom to master degree of freedom. When it comes
to linear relations (usually in linear static analysis, where non-linearities are neglected) T would
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be filled with integer numbers and zeros. This transformation matrix has to be applied to the
stiffness matrix and force vector to get the modified system of equations.

K̂ = T T ·K · T (3.2)
f̂ = T T · f (3.3)

The modified system can be solved for getting the displacements of master and independent
degrees of freedom.

K̂ · û = f̂ (3.4)

After finding û, the full displacement vector can be found out from the relation given in equation
3.1. This is the general method for solving MPC’s , depending on the joint or constraint in
context the T matrix has to be modified. In the given model a kinematic constraint in the form
of RBE2 element is used. This is essentially a MPC constraint with additional consideration
for kinematics of the joint. Formulation of RBE2 element is explained in the next section.

3.3.2 Rigid body elements (RBE2)

RBE2 elements takes into account both the translational degrees of freedom (DOFS) as well as
rotational degrees of freedom. Therefore a slave node will be related to the master node by all
the 6 DOFS. This means that translation of slave node is not just related to translation of the
master node but also its rotation. The rotation or slave node is only depended on the rotation
of master node. This relation can be summarized into the so called rigid-body transformation
matrix as follows:



ũxi

ũyi

ũzi

˜uθxi
˜uθyi
˜uθzi


=



1 0 0 0 4(z) −4(y)
0 1 0 −4(z) 0 4(x)
0 0 1 4(y) −4(x) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


·



uxj

uyj

uzj

uθxj

uθyj

uθzj


(3.5)

Here ui represents degrees of freedom of slave node and uj degrees of freedom of master node.
Similar relation can be created for all the required slave nodes as assembled together to form
the transformation matrix T . After formulating T , the method shown in Section 3.3.1 can be
followed.
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Chapter 4

Finite Element Formulation & Inertia
Relief

Inertia Relief is a method of structural analysis used for unconstrained bodies that experiences
body forces and inertial forces that are generated by virtue of its motion [40]. A few examples of
such structures are aircraft in flight, automotive body on a suspension and a spacecraft. If the
example of aircraft is taken, wing of an aircraft deforms under the aerodynamic forces when in
flight. But the acceleration of the aircraft also imposes the rigid body motion of the wing. These
two modes when superimposed will result in the final state of the structure in real life. The more
traditional cantilever type static analysis of a wing will therefore be inaccurate in predicting
the state of the structure. For this thesis the structure in context is part of automotive body,
which also undergoes similar unconstrained or partially unconstrained motion on a suspension.
Therefore it is interesting to see the Inertia Relief load case applied on this structure. Although
these type of structures can be analyzed with transient dynamic analysis methods [41] , they
are often computationally expensive compared to Inertia Relief. It has been shown by Nelson
and Wolf [42] that the structures with higher frequency loads can be effectively analyzed with
inertia relief loads with good accuracy. Their study also showed that inertia relief analysis tends
to be inaccurate in low frequency and resonance conditions.

4.1 Finite Element Formulation

The finite element formulation of structure is done by discretizing the domain into finite el-
ements. A higher order triangular element [2] formulated by Carlos A. Felippa will be used
throughout this thesis. As explained by the author Higher order elements are basically high
performing simple elements(elements with corner nodes only) that can predict results with en-
gineering accuracy with coarser mesh or reduced computational time. In the case of selected
triangular element, an added drilling degrees of freedom 4.1to the nodes makes it much superior
than constant strain elements.

The displacements of the structure is obtained by solving the equilibrium equation. The equi-
librium equation solved in finite element analysis is derived from the assumption that change
in potential energy is zero at state of equilibrium. This results in the familiar equation:
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Figure 4.1: Higher Order Triangular Element [2]

[K][U] = [F] (4.1)

Here K is the stiffness matrix U is the displacement vector and F is applied force vector. The
formulation of stiffness of higher order triangular element is given in the coming section which
will be used throughout this thesis except for the inertia relief of beam presented in 4.2.1 where
beam is modeled using 1D element.

4.1.1 Higher order Triangular Membrane Element

The displacement of nodes are assembled together in vector U together with the added drilling
degrees of freedom which can be expressed as follows:

u =
[
ux1 uy1 θz1 ux2 uy2 θz2 ux3 uy3 θz3

]
(4.2)

where, θz = 1
2(∂uy

∂x
− ∂ux

∂y
) (4.3)

The formulation of element is done in the neutral axis directions as shown in figure 4.2. Author
uses a transformation matrix to convert the Cartesian system to newly defined direction. The
strains are decomposed into natural strains and deviatoric strains for the formulation of stiffness
matrix. The natural strains are measured along the 3 side directions that match the neutral
axis of triangle. Natural strains ε can be expressed in terms of Cartesian strains e with help
following transformation matrix

ε12
ε23
ε31

 =

x21
2/l21

2 y21
2/l21

2 x21y21/l21
2

x32
2/l32

2 y32
2/l32

2 y32x32/l32
2

x13
2/l13

2 y13
2/l13

2 y13x13/l13
2


exx

eyy
exy

 = Te
−1e (4.4)

Here the value (xij) is coordinate difference of nodes and lij can be written in terms of xij and
yij as follows
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Figure 4.2: Natural Strain directions [2]

xij = xi − xj (4.5)
yij = yi − yj (4.6)

lij =
√
xij2 + yij2 (4.7)

The material stiffness matrix which is in the cartesian coordinate system can also be transformed
using the above transformation matrix to natural coordinate system in the following way as
shown below:

Amnat = Te
T ·Am ·Te (4.8)

The drilling rotation can be obtained by subtracting the constant strain triangle rotation θ0
from the total corner rotation θi:

θ̃ = θi − θ0 (4.9)

here θ0 for the three corner nodes is given by

θ0 = 1
4A(x23ux1 + x31ux2 + x12ux3 + y23uy1 + y31uy2 + y12uy3) (4.10)

Using the above relation displacements can be assembled as follows,

θ̃1
θ̃2
θ̃3

 =


x32
4A

y32
4A 1 x13

4A
y13
4A 0 x21

4A
y21
4A 0

x32
4A

y32
4A 0 x13

4A
y13
4A 1 x21

4A
y21
4A 0

x32
4A

y32
4A 0 x13

4A
y13
4A 0 x21

4A
y21
4A 1





ux1
uy1
θ1
ux2
uy2
θ2
ux3
uy3
θ3


= T̃θuuR (4.11)
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The stiffness matrix is written as a combination of basic Kb and hierarchical stiffness Kh. The
basic stiffness takes the form,

Kb = L ·Am · LT

A (4.12)

in the above equation, Am is the membrane stiffness of the element(which is made of composite
material). The membrane stiffness is integrated over the thickness as mentioned in chapter 2.
And A represents area of the element. L is called force-lumping matrix, which is similar to
strain displacement matrix B.

L = 1
2



y23 0 x23
0 x23 y23

1
6αby23(y13 − y21) 1

6αbx32(x31 − x12) 1
3αb(x31y13 − x12y21)

y31 0 x13
0 x13 y31

1
6αby31(y21 − y32) 1

6αbx13(x12 − x23) 1
3αb(x12y21 − x23y32)

y12 0 x21
0 x21 y12

1
6αby12(y32 − y13) 1

6αbx21(x23 − x31) 1
3αb(x23y32 − x31y13)



(4.13)

For an optimal element the value of αb is 3
2 [2]. The hierarchical part of the stiffness is written

in terms of drilling rotations θ̃ and the transformation matrix explained in the 4.11.

Kh = T̃θu
TKθT̃θu (4.14)

where T̃θu is obtained from the equation 4.11 andKθ can be written as function of dimensionless
parameters β assembled in Q [2] as follows

Q1 = 2A
3


β1
l221

β2
l221

β3
l221

β4
l232

β5
l232

β6
l232

β7
l213

β8
l213

β9
l213

 Q2 = 2A
3


β9
l221

β7
l221

β8
l221

β3
l232

β1
l232

β2
l232

β6
l213

β4
l213

β5
l213

 Q3 = 2A
3


β5
l221

β6
l221

β4
l221

β8
l232

β9
l232

β7
l232

β3
l213

β1
l213

β2
l213

 (4.15)

Q4 = 1/2(Q1 +Q2), Q5 = 1/2(Q3 +Q2), Q6 = 1/2(Q1 +Q3) (4.16)

Using the above relations the hierarchical stiffness can be written as:

Kθ = A(Q4
TAmnatQ4 +Q5

TAmnatQ5 +Q6
TAmnatQ6) (4.17)

Combining the basic stiffness Kb and hierarchical stiffness Kθ the complete stiffness of the
element becomes

K = 3
4β0T̃θu

TKθT̃θu +Kb (4.18)

where 3
4β0 is a scaling factor that depends on material invariants. For the exact derivation of

the free parameter coefficients β’s refer to the authors work [2]. The stiffness matrix represented
in equation 4.18 takes into account the drilling degrees of freedom and will be used further in
this thesis.
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4.2 Inertia Relief Analysis

For an unconstrained body the stiffness matrix will be singular, therefore the traditional static
analysis cannot be performed. In inertia relief case the applied load is balanced by the inertial
force based on the rigid body accelerations with respect to reference point. Now that the body
is in equilibrium conventional static analysis can be performed to extract the elastic responses
such as displacements. Rigid body contribution is then added to it to get the final response.

Therefore the displacement of the structure can be stated as follows:

u = ue + ur (4.19)

where u represents the total displacement, ur represents the rigid body part and ue represents
the elastic part. The displacement u will be vector of the size, number of degrees of freedom
when implemented using finite element method. The displacement can be calculated from the
equilibrium equations. The steady state equation for an unconstrained body can be given as
follows:

[F ] = [K][u] + [M ][R][a] (4.20)
(4.21)

Since the body is unconstrained it undergoes rigid body accelerationRa when a force is applied.
Here R is a transformation matrix which should be accounted for to accurately present the
rigid body dynamics of the body. The rotation of the body around z-axis with respect origin is
shown in figure 4.3, here the it can be seen that together with rotation there is also translation
motion that can be expressed in terms of 4z and 4x. Similarly rotation around x and y also
causes similar translational motion.

Y

XZ

θz

P

P'

∆Y

∆X

Figure 4.3: Rigid body rotation

The translation of all the points or nodes in the structure will be uniform(in the direction of
force applied) but the rotation will vary with respect to reference point or point of rotation of
body. With this in mind, the Rigid body matrix of a node can be stated as follows:
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Rnodei
=



1 0 0 0 4(z) −4(y)
0 1 0 −4(z) 0 4(x)
0 0 1 4(y) −4(x) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


R =



Rnode1

Rnode2
...
...

Rnoden


(4.22)

Assembling Rnodei
for all the nodes, will give the final rigid body matrix which takes the form

shown in the matrix on right side. To calculate the acceleration the steady state equation can be
multiplied by R for each quantity(K,u,MandF ) to account for the rigid body transformation.

RtF = RtKRu+RtMRa (4.23)

Since the body unconstrained, RtKRu = 0 as stiffness matrix is singular. The above equation
can be reduced to the following form to find the acceleration of the body.

RtF = RtMRa (4.24)

a = RtF

RtMR
(4.25)

With the acceleration known, the force due to acceleration MRa can be found out which is
the inertial force acting on the body. At steady state the applied force and inertial force will
be opposite to each other restraining the motion of the body. The applied force F and MRa
can be rearranged from the equation 4.21 to find the reduced force vector Fr which is given as
follows:

F = Ku+MRa (4.26)
F −MRa = Ku (4.27)

Fr = Ku (4.28)

With the static condition achieved a conventional linear static analysis can be performed on
the structure to find out the displacement due to elastic forces or internal forces . The rigid
body displacements ur = 0 at static condition as the body constraint. The displacement of the
elastic part (ue) will therefore be :

ue = K−1Fr (4.29)

The rigid body part of the displacement ur can be calculated by the following method. The
displacements and rotations of body can represented using rigid body matrix R as follows:

ur = Rα (4.30)
u = ue +Rα (4.31)

where α is the unknown quantity. To find α, it is assumed that at steady state the average
rotation and translation of the body will be zero. This can be represented by multiplying the
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right hand side and left hand side of the equation 4.31 by quantity RtM . Setting this equation
to zero , the unknown α can be found:

RtMue +RtMRα = 0 (4.32)

α = −R
tMue

RtMR
(4.33)

Therefore the total displacement of the body accounting for the inertia relief forces can be
represented as ue +Rα.

4.2.1 Inertia Relief of beams

Inertia Relief of beams are modelled with beam elements. Length of the beam is 1m and
is divided into 10 elements. A point force applied on the mid point of beam in the vertical
direction. The free body diagram for the inertia relief analysis of the beam is shown below.
The support point used for the static analysis step is shown by SP in the figure 4.4. A force of
1000[N ] is applied on the middle of the beam :

SP

P = 1000N

L = 1m

Figure 4.4: Free body diagram for inertia relief of beam

Here for the SP node all the 2 degrees of freedom will be constraint. For brevity the derivation
of the stiffness matrix of beam element will not be shown. The stiffness of beam elements is
well explained by authors such as Megson [43], whose representation of beam element will be
adopted for this study. Beam element used here, has 2 degrees of freedom at its nodes. The
vertical displacement and the in-plane rotation. The applied loads can therefore be a vertical
shear load or an in-plane moment. The stiffness matrix of a beam element can be extracted
from the equilibrium condition, the equilibrium condition can be stated as follows:


Fyi

Mi

Fyj

Mj

 = EI


12/L3 −6/L2 −12/L3 −6/L2

−6/L2 4/L 6/L2 2/L
−12/L3 6/L2 12/L3 6/L2

−6/L2 2/L 6/L2 4/L



vi
θi
vj
θj

 (4.34)

The above equation is of the form [F ] = [K][U ] and the stiffness matrix of a beam element can
therefore be written as:

K = EI ·


12/L3 −6/L2 −12/L3 −6/L2

−6/L2 4/L 6/L2 2/L
−12/L3 6/L2 12/L3 6/L2

−6/L2 2/L 6/L2 4/L

 (4.35)
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Figure 4.5: Translation of beam, [m]
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Figure 4.6: Rotation of beam, [θ]
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Figure 4.7: Shear Force distribution, [N]
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Figure 4.8: Bending Moment distribution,
[Nm]

A beam of the above mentioned characteristics was modelled into MSC PATRAN/NASTRAN
for the comparison. The results showed exact match, and therefore validates the approach taken
to solve inertia relief analysis. Since the actual structure studied in the thesis is modelled with
triangular elements, a comparison study with triangular elements is also done in the following
section where the emphasis is to validate the Finite element itself.

4.2.2 Inertia Relief on panels

For inertia relief of rectangular panels a 0.6mx0.4m panel will be used. The plate is modelled
with the higher order elements shown in the 4.1. The plate is loaded with force of F = 800[N ]
in the x direction in the form of edge load as shown in figure 4.9. The support points shown
in figure are used in static analysis step. The degrees of freedom (DOF) constraint are shown
in the table 4.2.2 where the translational DOF of the support point is shown by T and the
rotational DOF by R.

The results of inertia relief analysis of plates are presented here. The shell resultant force
or force per width distribution are shown below where subscript x indicates normal X com-
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ponent, y indicates normal Y component and xy indicates the shear component. Additional
error plots are provided to indicate the real error occurring in the problem. Absolute error
(the magnitude of the difference) graphs are also presented to show the intensity of the error.

F = 800[N ]

SP1

SP2

SP3

SP4L = 0:6[m]

W = 0:4[m]

Figure 4.9: Free body diagram for inertia
relief of plate

Support Points DOFS constraint
T-Translation, R-Rotation

SP1 Tx
SP2 Tx, Ty, Tz
SP3 Tz
SP4 Tz

Table 4.1: Support Conditions

In MSC PATRAN/NASTRAN the Inertia Relief Analysis can be invoked by setting PARAM
INREL− 2. This is will perform an automatic inertia relief, here ’automatic’ means that the
selection of support points are done by the solver itself and no user input is required. Matching
the real support point to that of MSC PATRAN/NASTRAN is not a trivial task as it is unknown
to the user. Since the support point creates zero reaction force (as explained in section 4.2), a
different combination of support points will provide the same result as along as the structure is
not over constraint.

 

 
Fx

200

400

600

800

1000

1200

1400

1600

1800

Figure 4.10: Fx from
MATLAB [ N

mm ]

 

 
Fx

200

400

600

800

1000

1200

1400

1600

1800

Figure 4.11: Fx from
NASTRAN [ N

mm ]

 

 
Fy

−15

−10

−5

0

5

10

15

Figure 4.12: Fy from
MATLAB [ N

mm ]

 

 
Fy

−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 4.13: Fy from
NASTRAN [ N

mm ]

In comparison with results from NASTRAN ,the higher order element shows sub-optimal per-
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formance (in terms of values predicted) when modelled with anisotropic material which is also
cited in [2]. One of the reason is because the values of optimality parameter β can become
sub optimal resulting in sub optimal elements, therefore the stress is not recovered accurately.
The other reason is in inertia relief, loads are distributed along the structure to counterbalance
the applied force, and depending on the distribution of force (whether its too concentrated in
certain nodes or more distributed over the domain) the stress correlation error can vary. When
concentrated forces are used the higher order elements tends to predict higher stresses in areas
where the boundary conditions are applied. Therefore a variation in the stress values compared
to commercial codes are excepted for the current finite element model. The error in the finite
element results are shown below, the error distribution is more concentrated on the side were
force is applied (which is visible in the absolute error distribution graph).
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4.2.3 Inertia Relief on cylinders

A cylinder of height and width 0.5mx0.25m will be used for the inertia relief. An out of plane
’point’ load is applied on the cylinder exactly in the middle at length = 0.5m . This load will
be balanced by the inertia relief forces on the cylinder. The free body diagram of the cylinder is
shown in the figure below 4.22.The support points shown in figure and the table 4.2.3 are used
in static analysis step of the inertia relief. The SP1 is constraint in x,y,z translations, SP2 is
constraint in x,y translation and SP3andSP4 is constraint in y translation only.

P = 5[N ]

x

z

y

0.5 L

L = 0.5 [m]

SP1

SP2

SP3

SP4

Figure 4.22: Free body diagram for inertia
relief of cylinder

Support Points DOFS constraint
T-Translation, R-Rotation

SP1 Tx, Ty, Tz
SP2 Tx, Ty
SP3 Ty
SP4 Ty

Table 4.2: Support Conditions

The finite element model is constructed using higher order triangular element described in 4.1.
The computed shell force resultant(force per width) Fx,Fy,Fxy are shown and in comparison
with Nastran results.
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Figure 4.23: Fx Distribu-
tion on cylinder,[ N

mm ]
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Figure 4.25: Fy distribu-
tion on cylinder, [ N

mm ]
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Figure 4.27: Fxy distri-
bution on cylinder, [ N

mm ]
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A mesh of 90 elements across the radius and height of the cylinder is used in both Matlab
and NASTRAN. The matlab results showed better agreement with the NASTRAN results as
compared to the case of rectangular panel. The absolute error distribution of the problem shows
maximum error near point where force is applied which is exactly in the middle of the cylinder.
This behaviour is seen also with panels as discussed above due to the nature of the element
formulation.

Figure 4.29: Absolute Er-
ror in Fx results,[ N

mm ]
Figure 4.30: Relative Er-
ror in Fx results, [%]

Figure 4.31: Absolute Er-
ror in Fy results, [ N

mm ]

Figure 4.32: Relative Er-
ror in Fy results, [%]
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Figure 4.33: Error in Fxy

results,[ N
mm ]

Figure 4.34: Error in Fxy

results, [%]

4.3 Inertia Relief of DES model

Using the method discussed above for 2D finite element models, inertia relief analysis can be
done for the automotive part . Model dimensions and boundary conditions were explained in
the chapter 3. The load is applied through rigid body elements connected throughout the nodes
on the edge 2 of the model shown in the Figure 4.35. The load is applied in X direction of
the model perpendicular to the edge 2 as seen in Figure 4.35. The double curved nature of
the model observed in these figures points to the fact that even though the force is applied
perpendicular to structure, lateral bending can be accepted from the analysis results.

Figure 4.35: Inertia Relief Boundary condition

According to inertia relief the applied load should be balanced by the inertial load. This would
mean acceleration of the body would be opposite to the direction of applied force. This equal and
opposite forces should balance the structure and at the same time create a bending stress. This
effect can be seen in the shell force resultant (or force per length) result shown in Figure 4.36
and Figure 4.37. Here the top side of the structure is in compression and the bottom side is in
tension. The results from both hypermesh and matlab shows similar stress distribution. It can
also be noted that the regions with higher stress corresponds to the regions with high thickness
seen in Figure 3.3 in the previous chapter. This is essentially due to the use of optimized
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laminates obtained from Hypermesh. The optimization has added thickness to the region with
higher stress and reduced the thickness in lower stress regions. It can also be noted that the
higher stresses are very local, concentrated near the curved section of the structure.
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Figure 4.36: Fx from Matlab, [ N
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Figure 4.37: Fx from Hypermesh, [ N
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The error in the results from matlab as compared to Hypermesh are shown in Figure 4.42 to
Figure 4.47. The error plots follows the pattern seen in the case of cylinder and panel. The
absolute error graphs helps to show that the error is local. As have been seen before the error
seems to concentrate near the boundary conditions. In the case of inertia relief the applied
loads are on the edge and higher errors are seen near the edge2. Here a coarse mesh is used
for the analysis to reduce the number of design points in optimization. This ofcourse has an
effect in the quality of the results. But the general distribution of the results shows a global
agreement which can be seen from Fx results Figure 4.36.
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Chapter 5

Optimization Setup

The optimization setup for DES model will be explained in this chapter. The interior-point
method as explained Section 2.4.1 is the basis for the optimization. The min-max optimization
problem for DES model is shown below:

min max(f1, f2, ...., fn)
s.t fn+1, ....fm 6 0

ς2 − ς2
U 6 0

(5.1)

here f represents the normalized inverse structural responses. The calculation of structural
responses were discussed in the chapter 2. The normalization procedure for these responses are
shown in the coming section.

As mentioned before there are 2 loadcases studied in this thesis, inertia relief and bending
loadcase. An FEA is performed for each case and the needed responses are calculated. For
the inertia relief case, strength (σ) and compliance (C) responses are of interest. The design is
critical in strength when inertia relief loads are applied therefore strength will be taken as the
objective for the optimization. The Compliance for this loadcase will be given as an constraint.
And for the Bending case, compliance and buckling responses are calculated. This loadcase is
the least critical of the two and therefore the responses are set as constraints. The objectives
and constraints for the optimization as per the requirements are summarized below:

Loadcase Objectives Constraints
Inertia Relief Strength Compliance
Bending - Compliance,

Buckling
Table 5.2: Optimization objectives and constraints

The critical responses from the conventional laminate based DES model will be selected for
normalization. Objective of the optimization (which is strength responses) is evaluated at every
node. Therefore the critical response will be node with critical stress(σcritical) or high failure
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index (r). But since during the optimization the critical node may change, a conservative
approach will be to select a range of nodes with higher failure index values. The number of
critical nodes does influence the computational time therefore only nodes with relatively higher
stress levels are taken. For the current DES model a set of 54 nodes needs to be selected which
shows higher stress values. Critical regions can be identified from the shell force resultant result
shown in section Section 4.3.

In the Table 5.4 maximum stress out of these critical nodes are given. For buckling the critical
buckling load out of the two modes will be selected for normalization. Compliance value is global,
therefore for each load case there will be only one value. Responses from the conventional design
is summarized in table Table 5.4,

Loadcase Max(Strength) Compliance Max(Buckling
mode)

Inertia Relief 0.5060 2.87e5 -
Bending - 2.85e4 0.0408

Table 5.4: Critical Responses for the conventional laminate design for DES model

Normalized Responses

The responses used in the thesis are normalized with respect to a initial design value denoted
by subscript 0. The responses stated in the above section will therefore be transformed into the
following normalized form:

Cnorm = Cdesign
C0

(5.2)

rnorm = rdesign
r0

(5.3)

Pcr = Pcr
Pcr0

(5.4)

Parameters for the setup of optimization is once again summarized below:

1. Objectives : strength (Inertia relief loadcase)

2. Constraints : stiffness & buckling

3. Global Steering : 3m−1

4. No. iterations limit : 40

5. Convergence criteria level two approximation(interior point method) : 1e−3

6. Convergence criteria level one approximation(FEM) : 5e−3

The global steering constraint limits for AFP is 3m−1 [1] and for TFP there are no limits.
Global steering is the sum of steering radius of all the elements averaged over the area of the
domain. Therefore its applied per layer rather than per element.

Once the responses are calculated the sensitivities can be obtained for each node in the domain.
The sensitivities are calculated using the adjoint method. The formulation of the sensitivities are
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outside the scope of this thesis , readers are referred to the work of Daniël Peeters [1]. Once the
sensitivities and responses are calculated the multi-level approximation method can be initiated.
As mentioned in Section 2.4.1 a two level approximation is made for implementing the interior
point method. The approximations for DES model follows the same method, with the level one
approximation formulated using convex linearization approach. Level one approximation can
be expressed in terms laminate stiffness matrices A and D as follows:

f (1) =
∑
n

φm : A−1 + φb : D−1 + ψm : A + ψb : D + c (5.5)

As explained before ’:’ operator represents a Frobenius inner product (A : B = trace(AT ·B)),
coefficients of the reciprocal and linear approximation terms φ and ψ are computed from the
sensitivity analysis [22]. The above approximation is always convex and free term c is the
constant part which is zero if there is no inhomogeneous part for the function. However for the
problem in hand there are constant parts which are not optimized so the homogeneity condition
is violated. Therefore the constant parts needs to be excluded from the optimization. Since
f represents responses, taking the constant part out would create a different structure and
therefore different response will be obtained. A method to bypass this problem is explained in
the coming section.

Constants in Level one approximation

The constant parts in the finite element model are the inner baffle parts. The function value of
nodes (denoted by nc) connecting these parts are taken out of the level one approximation and
reassigned to the constant c∗. Although these nodes are nodes are not optimized they cannot be
entirely taken out of the optimization as it will effect function value at the approximation point.
It is to be noted that at approximation point the responses and structural approximations have
to be the same according the conditions specified in the section 2.4 . To make the condition
valid the new constant c∗ can be formulated as follows:

c∗ =
∑
nc

φm : A−1 + φm : D−1 + ψb : A + ψb : D (5.6)

The above change in value of c will be added to the level one approximation which retains the
function value validity at approximation point. This can be checked by comparing the FEM
response and level one function. The level one approximation can be rewritten as the summation
of the nodes n− nc:

f (1) =
∑
n−nc

φm : A−1 + φm : D−1 + ψb : A + ψb : D + c∗ (5.7)

The level two approximation is derived from the level one approximation in terms of fiber angles.
The level one was expressed in terms of stiffness matrices, for the level two approximation the
level on is written in terms of fiber angles as design variables.

f (2) = f
(1)
0 + g ·∆θ + 1

2∆θT ·H ·∆θ (5.8)

Here (g) and (H) is the gradient and Hessian of the level one approximation at the approximation
point.
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Damping functions are added to make conservative approximations. The damping functions
stated in section 2.4.1 has been adapted for the DES model. The damping function is created
by taking into account only for the optimized nodes.

Level two update rule for DES model
The update is done for level one and level two approximations using above specified method.
However it was noticed that the level two approximation for theDES model was non-conservative
and required large number of iterations. Here the damping function was recalculated in each
iteration using the equation 2.56 based on the newly found optimum. This damping factor
was found to be maintaining the conservativeness and there were no large oscillations in the
approximation values.

ζnew(2) = 1
2 · g

T ·Hd
−1 · g (5.9)

The lagrangian of the problem takes the same form as discussed in the Section 2.4.1. Lagrangian
is constructed in terms z normalized vector (z) and manufacturing constraints

L(λ0, λc, θ, z, s0, sc) = z + λ0 · (f − z · eT + s0)
+θT · (λc · L) · θ − ςU 2 · (λc · |Ω|)

+λc · sc|Ω|)
−µ · (ln(s0) + |Ω| · ln(sc))

(5.10)

where λ0 and λc are the lagrange multipliers of the functions(i.e responses) and constraints. And
homotopy factor is depicted by µ. To find the optimal point the gradient of the Lagrangian has
to be set to zero. The gradient is calculated with respect to λ0, λc, θ, z, s0, sc. After finding gra-
dients and setting it to zero, optimization follows the method discussed in 2.4, where linearized
set of equations are solved to find updated variables.

For this optimization problem the convergence criteria is defined as follows:

level two function convergence:

Correctornew − Correctorold ≤ 1e−3 (5.11)

level one function convergence:
f1
new − f1

old ≤ 5e−3 (5.12)

Convergence is obtained when the improvement from the old value is minimal. The convergence
criteria selected here is of the order 1−3, which is sufficiently low enough to make sure that there
is no further significant improvement. This doesn’t mean a global optimum point is found as
outcome, the optimal point will still be a local optimum.
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Chapter 6

Results & Discussion

To investigate the feasibility of the variable stiffness laminates design for DES model, it is
necessary to prove that the variable stiffness design will be an improvement compared to the
conventional design. Therefore an optimization problem is setup with the input parameter
coming from the conventional design provided in the Section 3.1. As explained before normalized
values are used for optimization, in this test case the basis for normalization will be the responses
from conventional laminate design (which is the initial response or response at approximation
point). This way a comparison can be drawn by looking at the improvement in normalized
objective function.

Results obtained after the optimization is given in the table below. The optimization was
continued until the 40th iteration instead of using a stopping criteria, this does mean that
there can be local minimum’s appearing in the objective function. The objective function
improved from 0.78 to 1.65 which is a significant improvement. The constraints are not violated
throughout the optimization which can be noticed from the Table 6.1 as the values are not
falling below the starting point. In fact some improvement can be observed in constraints as
well (although minimal).

Discussion of the optimization results: The optimization definitely showed the improve-
ment in mechanical properties by using variable stiffness laminates. The objective of the opti-
mization was to improve the strength of the structure as compared to a conventional laminate
design which has been achieved. The stiffness and buckling were the constraints whose values
improved by a small margin compared to initial value . Therefore it can be said that the prelim-
inary goals of the optimization and the thesis has been sufficiently met, with a 2x improvement
in the objective value.

A closer look at optimization results show that the objective values are getting trapped in
local minimums. However a stable value has been reached from 20th iteration onwards and
the change in objective values is insignificant. In this test case the optimization is allowed to
run until number of iteration limit that is 40. The fiber angle distributions have been changed
compared to initial uni-directional design, this can be seen in figures given the coming section.

57



Iteration Optimal
normalized
Strength

Optimal nor-
malized Stiff-
ness

Optimal nor-
malized Buck-
ling mode 1

Optimal nor-
malized Buck-
ling mode 2

Start 0.78 1.00 1.00 1.117
1 1.0050 1.1349 1.0084 1.1329
2 1.0431 1.111 1.0058 1.1245
3 1.2706 1.0891 1.0285 1.1519
5 1.4424 1.0350 1.0148 1.1346
10 1.6388 1.0077 1.0091 1.1348
15 1.6603 1.0036 1.0094 1.1378
20 1.6453 1.0036 1.0077 1.1357
30 1.6440 1.0098 1.0079 1.1360
40 1.6453 1.0098 1.0079 1.1360

Table 6.1: Optimization Results in terms of normalized responses

6.1 Fiber path representation

Figure 6.1: optimized fiber angles for layer
1

Figure 6.2: optimized fiber paths for layer
1
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Figure 6.3: optimized fiber angles for layer
2

Figure 6.4: optimized fiber paths for layer
2

Figure 6.5: optimized fiber angles for layer
3

Figure 6.6: optimized fiber paths for layer
3

Figure 6.7: optimized fiber angles for layer
4

Figure 6.8: optimized fiber paths for layer
4
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Figure 6.9: optimized fiber angles for layer
5

Figure 6.10: optimized fiber paths for layer
5

Figure 6.11: optimized fiber angles for layer
6

Figure 6.12: optimized fiber paths for layer
6

Figure 6.13: optimized fiber angles for layer
7

Figure 6.14: optimized fiber paths for layer
7
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Figure 6.15: optimized fiber angles for layer
8

Figure 6.16: optimized fiber paths for layer
8

Figure 6.17: optimized fiber angles for layer
9

Figure 6.18: optimized fiber paths for layer
9

Figure 6.19: optimized fiber angles for layer
10

Figure 6.20: optimized fiber paths for layer
10
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Discussion of the fiber path result: The fiber paths shown above are the results of stream-
line curve fitting of fiber angles based on the work of A.W Blom [18]. The streamlines represents
the direction of flow of fiber angles. It can be seen that there are certain regions in the model
where the fiber paths are not generated or fiber paths seems to diverge. These paths represent
change in direction of fiber angles along the direction of the fiber path. Looking at the fiber
paths of layer 1 which was initially 45◦ layer, it can be seen that the top side of model tends
to be aligned with 45◦ but as it moves to lower surface the fibers straightens towards 0◦. This
can be explained looking at the loadcases, for instance in the inertia relief case the model is
essentially in compression due to the compressive force. The curved nature of the structure
should bend the structure making top surface to be in compression and bottom surface to be
in tension. From this point of view it is beneficial to add more 0◦ layers to bottom to increase
strength in tension, which is what the optimization results are showing.

If the layer 4 which was initially 0◦ layer is observed, it can be seen that there are similar change
in top and bottom surface. On the top surface the angle changes from 0◦ to 45◦. Moving towards
the bottom surface the change direction is minimal, and it remains at 0◦ . It can be seen that
optimization is indeed trying to increase the strength in these critical areas according to its
loading state.

Had the objective of the optimization been stiffness , it would have been more beneficial to add
45◦ layers away from the neutral axis or the symmetry line which increases the bending stiffness
which however is not the case since stiffness is not the objective but constraint. This is a sign
that optimization is indeed trying to improve strength of the structure and the results are in
the right direction.

Figure 6.21: Inflow and Outflow boundary for fiber paths

The other interesting feature here is the presentation of streamlines itself. Streamlines needs
an inflow boundary and an outflow boundary to accurately find path connecting angles. A
closed surface cannot be used for generating streamlines as it doesn’t have distinct inflow and
outflow boundary. For generation of the streamlines the model is cut open so that it becomes
a open surface rather than closed surface. This artificially creates a inflow and outflow region,
shown in Figure 6.21 with blue line. In an ideal case the fiber path trajectory shouldn’t effect
the performance of the structure , but as discussed in Section 2.5 the real structures are prone
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to defects such as gaps and overlaps due to the way composite tapes are cut at boundaries
during manufacturing. These regions will cause stress concentrations effecting the mechanical
performance of the structure. Looking at the fiber paths it can be seen that divergence and
convergence of the fiber paths will potentially create gaps and overlaps in the design. Therefore
the inflow and outflow boundaries needs to taken in such a way that minimal defects will be
created.

One way to bypass the problem will be by increasing the number of inflow and outflow regions.
This will split the surface into multiple sub regions giving more freedom for generating smooth
fiber paths. Splitting the surface into multiple regions to generate fiber paths independently
and then stitching them together during manufacturing would be ideal for these structures.
This would also give greater freedom and flexibility in manufacturing. Therefore an additional
post processing step is required to further improve the fiber path representation. The effects
of multiple inflow and outflow boundaries are not investigated in this thesis, but recommended
for the future research.
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Chapter 7

Conclusion

The variable stiffness optimization of the automotive structure was done during this thesis. One
of the important task was to add Inertia Relief analysis capabilities to finite element part which
is required to implement the inertia relief loadcase. This goal was achieved and responses from
inertia relief were used for optimization of the structure. The developed method was tested on
simple structures such as beam, panel and a cylinder. The inertia relief result of beam model
showed exact correlation, however for 2D element models of plate and cylinder the quality of
the correlation is poor owing to the usage of triangular elements. This effects was also seen in
DES model since it is also modelled by 2D triangular elements. However it should be noted
that the correlation issues are local, a general agreement for FEM results are achieved if a global
distribution of the stresses are considered.
The optimization procedure was largely based on the multi-level gradient based optimization
method developed by researchers from TU Delft such as IJsselmuiden [20] and Peeters [1].
The optimization function was setup to meet DES model requirements by taking into account
influence of optimized and non-optimized parts. Once the setup was complete a fiber angle
optimization was successfully done and the fiber paths were generated.
Optimization showed the potential of variable stiffness laminates which was one of the research
questions for this thesis. The results showed that significant improvement can be achieved from
the conventional laminate design. For the DES model with initial layup shown in Section 3.1
almost twice the improvement was observed for the objective value which was the failure strength
of the model. The constrained responses which were stiffness and buckling load of the model
remained below the constraint values. The fiber paths boundaries were created by splitting
open the surface which created inflow and outflow boundaries. The fiber path is observed to be
following the expected optimization results. The top part of the model which is in compression
is dominated by 45◦ and the bottom part which is in tension is dominated by 0◦. Although it
can be seen that physical representation of the fiber path plots can be improved if the number
inflow and out-flow boundaries were to be increased.
It can be concluded that the research questions addressed in this thesis has been answered
quantitatively, the thesis showed that improvements can be achieved in mechanical properties
such as strength and stiffness of the structure by using a variable stiffness design. Inertia relief
analysis capabilities has also been added to the FE part. Considering the quality of the results
obtained in this thesis certain recommendation has to be made for further research and effective
usage of variable stiffness design method discussed here.
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7.1 Recommendations

In the chapter 4 where the finite element model was formulated it can be seen that the triangular
element results are met with correlation errors when compared with results from commercial
software(Hypermesh and MSC Nastran). This is caused due to the linearized formulation of
the triangular elements presented in that chapter. Considering the magnitude of errors in the
results, a better formulation of triangular element is required for gaining confidence in FEM
results. An alternative solution would be to use quad elements.

Construction of the approximations are done by manually separating optimized and non-
optimized parts during calculation. This can be labour intensive process for structures with
large number of parts. Therefore a method that can automatically separate these parts during
optimization would be effective in saving pre-processing time.

The responses calculated assumes a perfect laminate without any gaps and overlaps or resin
rich areas. In a real structure, these effects tends to influence the responses of the structure as
indicated in the study of Pasini et.al [17]. Therefore a better formulation of local mechanical
defects by using a micro-mechanical model or stochastic models can bring FEM results closer
to real structures. Also the non-linearity effects are not considered as only linear static analysis
is done for calculating responses. The non-linear effects should also be considered if better
understanding of the behaviour of the structure is desired.

The other assumption made in the analysis is the plain-stress effect. Considering the highest
thickness of the laminate found in the model is 12 mm it should be noted that laminates are no
longer thin. Therefore influence of out-plane stresses will also dictate the responses in real-world
structures. Influence of delamination and inter-laminar stresses should be taken into account
to avoid build up of residual stresses in laminates (that can be induced during manufacturing).
This can be implemented by changing the stiffness formulation and imposing additional strength
constraints (σz < σzallowable).

For the optimization part, which is only focused on fiber angle optimization can be extended
to thickness optimization which can bring further improvement. Although, this task would
involve considering the effects of change in inertia relief loads during optimization. It can be
seen that the inertial relief loads are function of mass and shape (rigid body modes), therefore
sensitivities of these factors needs to be calculated for a topology optimization or a variable
thickness optimization. Pagaldipti et.al [16] studied about the influence of inertia relief on
optimal designs and has found that the optimal designs with and without the sensitivities of
shape results in different optimal designs. Therefore the current optimization setup should be
extended to include these effects for topology. This can potentially bring weight savings to the
current design by optimizing the thickness.
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