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Abstract

Magnons are quanta of spin waves, modes of collectively precessing spins.
Thermally excited magnons in thin magnetic films generate stray fields at the
tilm surface which can be detected using nitrogen-vacancy (NV) centers. NVs
are lattice defects in diamond and are able to couple with magnon stray fields.
Assuming a thermal occupancy of magnon modes, we study the magnetization
dynamics of the magnons propagating through thin magnetic insulators using
the Landau-Lifshitz-Gilbert equation. We implement a numerical model to pre-
dict and understand the response of the NV center to proximal magnons in thin
tilms. We investigate how the NV relaxation rate changes for different NV ori-
entations by extending and generalizing the existing theory on chiral magnetic
noise, and simulate an experimental setup for an NV placed just above the sur-
face of a thin magnetic insulator. The simulation includes a static bias field in an
arbitrary orientation with respect to the quantization axis of the NV center using
the diamond’s tetrahedral symmetry. This extended model is in demand due to
limitations in present-day measurement techniques to align the bias field with
an NV center. We use it to detect magnons that contribute to the relaxation rate
of the NV, and determine an NV-to-film distance of 0.28(3) ym from measured
relaxation rates of an NV center placed above an yttrium-iron-garnet film with
a thickness of 235(10) nm. Our model is available as an open-source Python
module.
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Chapter 1

Introduction

Computers have become indispensible devices in our daily lives. They come in
diverse shapes and sizes with different functionalities in the form of e.g. lap-
tops, smartphones or a Raspberry Pi. These computing devices all make use
of microchips to process data. The most common microchips are made of tran-
sistors that heavily rely on charges carrying information. Such microchips have
drawbacks: moving charges dissipate heat due to resistance. To solve this issue,
an alternative for information processing is a technology based on spintron-
ics. This technique relies on information transfer via spins rather than moving
charges, preventing computing devices from overheating and damage.

For future spintronic devices to work efficiently, information transfer over
large distances is desirable. Magnetic insulators such as yttrium iron garnet
(Y3Fe5012, “YIG’) have low damping [1] allowing spin waves to travel dis-
tances in the order of centimeters [2]. Spin waves (or their quanta: magnons)
are modes of collectively precessing spins. Experiments have shown that thin
magnetic films are a good candidate for the development of spin-wave based
signal processing devices [3, 4]. Until recently, theoretical analysis [5-7] of ex-
periments neglected the effect of chirality of the magnetic fields generated by
spin waves in magnetic insulators. For this reason, a recently formulated the-
ory on quantum-impurity (QI) relaxometry includes the role of chiral coupling
between QIs and thermal magnons in thin films on QI relaxation [8], showing
excellent agreement with experimental results [6].

Atomic defects in a diamond’s crystal lattice such as nitrogen-vacancy (NV)
centers can be used as magnetic field sensors. They have convenient optical
properties and therefore enable imaging of spin waves propagating through
magnetic insulators [5-7, 9]. However, detecting magnetic noise very close to a
magnetic sample is experimentally challenging since difficulties lie within plac-
ing a diamond tip containing a single NV center in close proximity (nanometer
range) to a thin-film sample, requiring localization of NVs inside the diamond

11
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lattice.

This work is an extension to the chiral theory proposed by Rustagi et al. [8].
The central goal of this thesis is to understand the role of chirality of spin-wave
noise in predicting NV relaxation rates under different arbitrary experimental
conditions. We find that it is in particular important to understand the relation
between NV relaxation and arbitrary directions of an external magnetic field
with respect to NV orientations. Assuming thermal occupancy of the spin-wave
modes, we calculate stray fields produced by the spin waves in thin magnetic
films. We first calculate the magnetic field fluctuations generated by thermal
spin waves in a magnetic thin film and corresponding NV relaxation rates to
reproduce the results from Ref. [8]. Next, we extend and generalise the existing
chiral theory to include arbitrary angles of the NV relevant to explain the en-
semble NV measurements. We build a numerical model for a simulated setup
in which the static bias field is not well-aligned with the NV axis. Achieving
this is relevant to present-day measurement setups [10] in which misalignment
occurs due to limitations of experimental methods. Herewith, we investigate
how the relaxation rate changes when choosing any arbitrary orientation for
the NV axis. Finally, we use our predictive model to determine the NV-to-film
distance from thermal magnon noise.
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