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Summary

Quantum computers can solve specific problems with practical applications effi-
ciently faster than classical computers. Spin qubits in semiconductor quantum dots
are one of the most promising physical realizations of the quantum computers. This
thesis aims to investigate the dynamics of semiconductor spin qubits in their ac-
tual environment. Specifically, we aim to understand how the actual environment
of the spin qubits give rise to nonlinear response of the qubits to external driving,
crosstalk, dephasing (T2 processes), and the temperature-dependence of the qubit
frequency.

Chapter 3 reports on experimental observation of the nonlinear response of the
spin qubits to external driving as well as the crosstalk effect, where the Rabi fre-
quency of an adjacent qubit changes as the target qubit is driven. We propose a
phenomenological model that relates the external drivings to the observed dynamics
of the spin qubits. The physical mechanism that give rise to these phenomena could
not be reproduced in our analysis.

Given the progress in reducing noise sources in the spin qubits environment, it
is pertinent to investigate the dephasing of spin qubits in a sparse bath of defects.
In Chapter 4, we theoretically investigate the qubit dephasing, as measured in the
Ramsey and Hahn echo experiments, in a sparse bath of two-level fluctuators (TLFs)
with 1/f spectral density. We find that although the spectral density remains
approximately unchanged, the coherence times become more variable as the bath
becomes more sparse. We also find that in a sparse bath the qubit decoherence is
dominated by only a fraction of TLF defects. Removing these defects results in a
significant improvement of the coherence times.

Chapter 5 explores the potential of a bath of TLFs in elucidating the frequency
shifts of spin qubits with temperature and the temperature insensitivity of Ramsey
and echo decay times. These effects have been observed in experiments. By tuning
the bath parameters, we are able to replicate the observed qubit frequency shift.
However, our simulations reveal a decrease in qubit decoherence with temperature,
which is inconsistent with the experimental findings.

On the whole, Chapters 3 and 5 aim to refine the models that we use to describe
the dynamics of spin qubit in their environment. On the other hand, the theoretical
work in Chapter 4 is inspired by the experimental observation of the variability
of qubit decoherence and offers suggestions to improve coherence times in certain
parameter regimes.
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Samenvatting

Kwantumcomputers kunnen specifieke problemen met praktische toepassingen ef-
ficiënter en sneller oplossen dan klassieke computers. Spin qubits in halfgeleider
kwantum dots zijn een van de meest veelbelovende fysieke realisaties van de kwan-
tumcomputers. Dit proefschrift heeft tot doel de dynamiek van halfgeleider spin
qubits in hun werkelijke omgeving te onderzoeken. Specifiek willen we begrijpen
hoe de werkelijke omgeving van de spin qubits leidt tot een niet-lineaire respons van
de qubits op externe aansturing, crosstalk, dephasing (T2-processen) en de tempe-
ratuurafhankelijkheid van de qubit frequentie.

Hoofdstuk 3 rapporteert over experimentele observatie van de niet-lineaire res-
pons van de spin qubits op externe aansturing, evenals het crosstalk-effect, waarbij
de Rabi-frequentie van een aangrenzende qubit verandert wanneer de doel-qubit
wordt aangestuurd. We stellen een fenomenologisch model voor dat de externe aan-
sturingen relateert aan de waargenomen dynamiek van de spin qubits. Het fysieke
mechanisme dat aanleiding geeft tot deze verschijnselen kon in onze analyse niet
worden gereproduceerd.

Gezien de vooruitgang in het verminderen van ruisbronnen in de omgeving van
spin qubits, is het relevant om de dephasing van spin qubits in een spaarzaam bad
van defecten te onderzoeken. In Hoofdstuk 4 onderzoeken we theoretisch de dep-
hasing van qubits, zoals gemeten in de Ramsey en Hahn-echo experimenten, in een
spaarzaam bad van Two-Level Fluctuatoren (TLF’s) met 1/f spectrale dichtheid.
We vinden dat hoewel de spectrale dichtheid ongeveer onveranderd blijft, de cohe-
rentietijden variabeler worden naarmate het bad schaarser wordt. We vinden ook
dat in een spaarzaam bad de qubit-decoherentie wordt gedomineerd door slechts
een fractie van TLF-defecten. Het verwijderen van deze defecten resulteert in een
significante verbetering van de coherentietijden.

Hoofdstuk 5 verkent het potentieel van een bad van TLF’s om de frequentiever-
schuivingen van spin qubits met temperatuur en de temperatuuronafhankelijkheid
van Ramsey- en echo-vervaltijden te verduidelijken. Deze effecten zijn waargeno-
men in experimenten. Door de badparameters af te stemmen, kunnen we de waar-
genomen qubit-frequentieverschuiving repliceren. Onze simulaties laten echter een
afname zien in de decoherentie van qubits met de temperatuur, wat inconsistent is
met de experimentele bevindingen.

Over het algemeen genomen hebben de hoofdstukken 3 en 5 tot doel de modellen
te verfijnen die we gebruiken om de dynamiek van spin qubit in hun omgeving te
beschrijven. Aan de andere kant is het theoretische werk in Hoofdstuk 4 geïnspireerd
door de experimentele observatie van de variabiliteit van qubit-decoherentie en biedt
het suggesties om de coherentietijden in bepaalde parameterregimes te verbeteren.
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Introduction

The development of a scalable quantum computer based on semiconductor spin
qubits requires a thorough understanding of the dynamics of these qubits in their
actual environment. In this chapter, we provide a brief overview of the physical
system that we are concerned with, and point at the mechanisms that hinder our
progress towards building a scalable quantum computer based on semiconductor
quantum dots.
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2 1. Introduction

1.1. Motivation

S cientific research can be likened to exploring uncharted territories, where the
landscape is shaped by the work of those who have come before. Our objective

may be to build upon existing discoveries, find connections between well-established
principles, or investigate unusual phenomena that arise in unfamiliar domains. This
thesis reports on such a journey within the realm of quantum science and technology.
In this section, we outline the key areas of exploration and the specific challenges
we aim to address.

At the heart of quantum science and technology lies the promise of harnessing
physical laws governing quantum mechanical systems to revolutionize various fields,
including secure communication, ultra-precise sensing, and computation [1]. One
of the most transformative applications is quantum computing, which leverages
the unique quantum phenomena, such as superposition and entanglement, to solve
certain problems more efficiently than classical computers [2–4].

The basic unit of representing data in a quantum computer, the qubit, can be
physically realized using any two-state quantum mechanical system. Semiconductor
quantum dot spin qubits, in particular, hold great promise for the realization of large
qubit registers due to their compatibility with established semiconductor fabrication
techniques, making them strong candidates for scalable quantum computing [5–7].
There are several types of semiconductor spin qubits, which differ in their definitions
and device structures (for a review, see Refs. [7–9]). This thesis explores a specific
type of semiconductor spin qubits, defined as the spin states of single electrons
confined to semiconductor quantum dots [10].

Semiconductor quantum dots are small disks formed in a two-dimensional elec-
tron gas, shaped by the electrostatic potentials of metallic gates on a semiconductor
heterostructure. In this thesis, we focus primarily on spin qubits in Si/SiGe het-
erostructures, although the models presented may also be applicable to other device
structures, such as SiMOS [9], and even to other types of qubits like superconducting
qubits. In Si/SiGe devices, single-qubit gates are implemented via electric-dipole
spin resonance, while two-qubit gates are based on the exchange interaction be-
tween neighboring electron spins, controlled by electrical gating of the potential
barrier between adjacent dots. Several key factors make qubit registers composed of
arrays of quantum dots promising for quantum computing: high-fidelity single- and
two-qubit gates, robust electrical initialization and readout, long coherence times,
and the small physical size of the qubits, which facilitates scalability [11–13]. For a
comprehensive review of various aspects of semiconductor spin qubits, see Ref. [7].

Semiconductor spin qubits are susceptible to a range of undesired effects origi-
nating from their environment within the intricate quantum dot device structure [7].
By studying the dynamics of spin qubits, this thesis aims to gain insights into phe-
nomena such as decoherence, crosstalk, unusual responses to pulsed electromagnetic
fields, and unexpected dependencies on physical conditions like temperature. Inves-
tigating these effects offers valuable insights into the qubits’ environment, which can
contribute to the fabrication of higher-quality qubit devices and optimizing quantum
control techniques.



1.2. Thesis structure
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3

Despite decades of research, the environment of semiconductor spin qubits is
still not fully understood. This is partly due to the continuous evolution of device
materials and structures, as well as the increasing number of qubits in prototype
quantum computers, which introduces new challenges. In the early stages of investi-
gating noise-induced qubit decoherence, much of the focus was on noise originating
from the atomic nuclei of the host material [14, 15]. However, this magnetic noise
was largely mitigated by using isotopically purified 28Si, reducing the concentration
of residual 29Si nuclear spins to around 800 ppm, and shifting the primary source of
decoherence to electric noise [16]. Moreover, recent efforts to scale spin qubits into
larger arrays have underscored the need to better understand crosstalk mechanisms,
possibly arising from qubit-environment coupling [17]. Additionally, the desire to
operate spin qubits at higher temperatures and the pulse-induced qubit frequency
shifts have drawn increased attention to the thermodynamics of spin qubits and
their environment [18, 19].

Background electric field fluctuation, commonly referred to as charge noise, is a
significant source of both decoherence and gate errors in spin qubit devices [20, 21].
The origins of charge noise can vary, with one potential source being an ensemble
of two-level fluctuators (TLFs). Roughly speaking, TLFs are charged two-state
quantum mechanical systems that randomly switch states due to interactions with
their surrounding environment. Originally, TLF defects were proposed to explain
the unusual low-temperature behavior of glasses [22–24] and were later used to
describe the lossy environments in superconducting circuits, where their existence
has been experimentally confirmed [25, 26]. More recently, TLF-based models have
been employed to explain charge noise in semiconductor quantum dots [27–29], and
single TLFs have even been individually manipulated in very recent studies [30].

A substantial part of this thesis, presented in Chapters 2, 4, and 5, focuses on
qubit decoherence induced by TLFs in the environment, while Chapter 3 explores
crosstalk mechanism and unusual response of the spin qubits to extreme external
drivings. Chapter 2 introduces the key concepts and tools that are frequently ref-
erenced in later chapters. Chapter 3 reports on experiments investigating crosstalk
and the nonlinear response of semiconductor spin qubits to microwave drives used
for single-qubit rotations. Chapter 4 examines qubit decoherence in a sparse bath of
TLFs producing 1/f noise, demonstrating that large variability of coherence prop-
erties is a hallmark of sparse TLF baths. Finally, Chapter 5 studies the temperature
dependence of the spin qubits’ Larmor frequency and coherence times, motivated
by recent experimental findings. The overall structure of this thesis is outlined in
the next section.

1.2. Thesis structure
The structure of this thesis is as follows:

• Chapter 2 introduces the theoretical tools and concepts that are frequently
used in later chapters. We review the Gaussian random processes and describe
the qubit decoherence by such a noise in terms of the noise spectral density.
This description is only valid within the Gaussian limit of the environmental
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noise. We provide the formulas for the general case of qubit decoherence by
an ensemble of TLFs generating noise with non-Gaussian statistics.

• Chapter 3, presents the experiments on the unusual response of the spin qubits
to microwave driving, as well as a novel crosstalk mechanism where the Rabi
frequency of an adjacent qubit changes as a target qubit is driven. This
chapter also presents a simple phenomenological model describing both effects
simultaneously.

• Chapter 4 investigates the qubit decoherence caused by a sparse bath of TLFs,
producing 1/f noise, showing that in such a bath, Ramsey and echo decay are
subject to large variations among samples. The chapter also demonstrates
that in certain parameter regimes, qubit decoherence in sparse baths is pri-
marily dominated by a few TLFs. Removing these TLFs leads to remarkable
improvements in coherence times.

• Chapter 5 presents a theoretical model that explains the qubit frequency shift
as well as the insensitivity of Ramsey and echo decay times to temperature.
The model attributes the frequency shift to charge noise originating from
TLFs. Numerical simulations of the model demonstrate that adjusting model
parameters can reproduce each effect individually, but not simultaneously.
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2
Theoretical toolbox

This chapter presents the theoretical tools necessary to navigate the thesis. These
tools include certain characteristics of random processes, as well as descriptions of
qubit decoherence induced by environmental fluctuations considered in this thesis.
This chapter is neither exhaustive nor pedagogical. It aims to introduce the language
spoken in the following chapters.
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2.1. The qubit
The qubit is defined by the basis states |0〉 and |1〉 in a two-dimensional Hilbert
space. An arbitrary qubit state may be written as

|ψ〉 = α|0〉+ β|1〉, (2.1)

where α and β are complex numbers satisfying the normalization condition

|α|2 + |β|2 = 1. (2.2)

A global phase multiplying the qubit state does not change the expectation value of
any observable. By ignoring the global phase and taking the normalization condition
into account, the qubit state can be represented by two independent real numbers.
This motivates representing the qubit state on the Bloch sphere as

|ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉, (2.3)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and azimuthal angles. The qubit
state on the Bloch sphere is illustrated in Fig. 2.1.

The qubit is by definition in a pure state if the state vector |ψ〉 is precisely
known. In this thesis, we will work with statistical ensembles of qubit states. The
qubit density matrix defined as

ρ̂ =
∑
k

pk|ψk〉〈ψk|, (2.4)

enables us to represent the statistical ensemble of qubit states. The coefficient pk
gives the probability of finding the qubit in the pure state |ψk〉. The sum of these
probabilities equals one.

It is useful to represent the qubit density matrix as

ρ̂ = 1
2(1 +mxσ̂x +myσ̂y +mzσ̂z), (2.5)

Figure 2.1: Bloch sphere representation of the qubit
state. The basis states |0〉 and |1〉 are located at the
north and south poles. The normalization condition
is satisfied by the unit length of the sphere radius.
An arbitrary qubit state is denoted by a point on the
sphere. The location of this point is given by the polar
and azimuthal angles θ and φ.

x

y

z

|0〉

|1〉

|ψ〉

φ

θ
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where
σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
, (2.6)

are the Pauli matrices and the coefficients

mη =
∑
k

pk〈ψk|σ̂η|ψk〉 (2.7)

with η ∈ {x, y, z} are the Bloch vector components. If the density matrix ρ̂ is known,
the Bloch vector components can be calculated via mη = Tr{σ̂ηρ̂}.

2.2. Gaussian random processes
In this section, we provide a concise overview of Gaussian random processes. We
present the characteristic functional expression in terms of the Gaussian process’s
mean and autocorrelation function. This expression will serve as a key component
in the next section, where we calculate the qubit decoherence within the Gaussian
approximation of the environmental noise.

A continuous-time real-valued random process X(τ) is a collection of random
variables indexed by time τ . Consider recording X(τ) for times τ ∈ [0, t]. A single
record of observing X(τ) gives the sample trace x(τ). The sample trace x(τ) is also
a collection of samples, each taken from a single random variable. We assume each
of these samples can take values from the set of real numbers R.

To study the statistical properties of the random process X(τ), it is useful to
introduce the collection of time points τ1, . . . , τj , . . . , τn, ordered according to

0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τn−1 ≤ τn ≤ t. (2.8)

The random process at a given time point τj , that is X(τj), is a single random
variable denoted by Xj . A sample of Xj is denoted by xj , and its probability
density is denoted by PXj (xj). We arrange the collection of random variables Xj ’s
by their indices in an ascending order, and represent them by the list

X = {X1, . . . , Xj , . . . , Xn}. (2.9)

The collection of samples xj ’s are similarly arranged and represented by the list

x = {x1, . . . , xj , . . . , xn}. (2.10)

The joint probability density of X is denoted by PX(x).
Defining a random process is analogous to defining a random variable. Consider

the random variable X, with sample x ∈ R, and the probability density PX(x). The
probability of X taking a value in the interval [x, x+ dx] is given by

Pr(x ≤ X ≤ x+ dx) = PX(x)dx. (2.11)

Now, consider the random process X(τ) which can be observed at time points
τ1, . . . , τn. Also, consider the fixed infinitesimal intervals

[x1, x1 + dx1], . . . , [xn, xn + dxn], (2.12)
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at time points τ1, . . . , τn. The random process X(τ) is defined if the probability of
its trace passing through these infinitesimal intervals is known for any set of time
points τ1, . . . , τn with n = 1, . . . ,∞ [1]. This probability may be written as

Pr(x1 < X1 ≤ x1 + dx1, · · · , xn < Xn ≤ xn + dxn) = PX(x)dx, (2.13)

where dx =
∏n
j=1 dxj . The probability of X(τ) taking values within the intervals

[xk, xk + dxk], · · · , [xn, xn + dxn], given that X(τ) has already taken certain
values of x1, · · · , xk−1, is given by

P (x1, · · · , xk−1|xk, · · · , xn)
n∏
j=k

dxj , (2.14)

where P (x1, · · · , xk−1|xk, · · · , xn) denotes the conditional probability density. The
random process X(τ) is a Markov process if for any set of time points τ1, · · · , τn
one has

P (x1, · · · , xn−1|xn) = P (xn−1|xn). (2.15)

The statistical parameters of the random process X(τ) that will be used in this
thesis are defined below:

• The average (mean) of a random process X(τ) is defined as

µ(τ) = 〈X(τ)〉 =
∫
x(τ)PX(x)dx. (2.16)

Here, PX(x) is the probability density of a single random variable, i.e., the
random process X(τ) at a specific time τ .

• The n’th moment of the random process X(τ) can be expressed as

〈X(τ1)X(τ2) · · ·X(τn)〉 =
∫
x(τ1)x(τ2) · · ·x(τn)PX(x)dx, (2.17)

where PX(x) is the joint probability density of the collection of random vari-
ables X(τ1), · · · , X(τn).

• The second moment of a random process, known as the autocorrelation func-
tion, is represented as

c(τ1, τ2) = 〈X(τ1)X(τ2)〉. (2.18)

• The variance of the random process X(τ) is defined as

σ2(τ) = 〈[X(τ)− 〈X(τ)〉]2〉. (2.19)

A random process is stationary if all of its moments remain unchanged by a shift
in time, i.e.,

〈X(τ1)X(τ2) · · ·X(τn)〉 = 〈X(τ1 + s)X(τ2 + s) · · ·X(τn + s)〉, (2.20)
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for all n, s, and timepoints τ1, · · · , τn. If X(τ) is stationary, its mean µ(τ) and
variance σ2(τ) are time-independent. We simply denote the mean and variance of
a stationary process by µ and σ2. The autocorrelation function of a stationary
random process satisfies

c(τ1, τ2) = c(τ1 + s, τ2 + s). (2.21)

In other words, for a stationary process, only the difference between the two time
points τ1 and τ2 matters. We therefore denote the autocorrelation function of a
stationary process by

c(τ) = 〈X(0)X(τ)〉. (2.22)
The spectral density of a stationary process is the Fourier transform of its autocor-
relation function [1], i.e.,

S(ω) = 1
2π

∫ +∞

−∞
c(τ)e−iωτdτ. (2.23)

For a definition of spectral density that does not rely on the autocorrelation function,
see for instance Refs. [1, 2].

The characteristic functional of the random process X(τ) is defined as

f [k(τ)] = 〈exp[i
∫ t

0
dτx(τ)k(τ)]〉, (2.24)

where k(τ) is an arbitrary (as long as the integral exists) test function [2]. By
expanding f [k(τ)] in powers of k(τ) the characteristic functional may be written as

f [k(τ)] =
∞∑
m=1

im

m!

∫
k(τ1) · · · k(τn)〈X(τ1) · · ·X(τn)〉dτ1 · · · dτn. (2.25)

The cumulant generating functional of the random process is defined as

Ψ[k(τ)] = ln{f [k(τ)]}. (2.26)

Expanding the cumulant generating functional in powers of k(τ) gives

Ψ[k(τ)] =
∞∑
m=1

im

m!

∫
k(τ1) · · · k(τn)〈X(τ1) · · ·X(τn)〉cdτ1 · · · dτn, (2.27)

where 〈X(τ1) · · ·X(τn)〉c is the n’th order cumulant of the random process.
The random process X(τ) is called a Gaussian random process if for all X, the

joint probability density PX(x) is a multivariate Gaussian distribution [2]. If X(τ)
is a Gaussian random process, its characteristic functional takes the form [1]

f [k(τ)] = exp[iµ
∫ t

0
dτk(τ)− 1

2

∫ t

0

∫ t

0
dτ1dτ2〈X(τ1)X(τ2)〉k(τ1)k(τ2)]. (2.28)

Therefore, a Gaussian random process is fully characterized by its mean and auto-
correlation function.
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2.3. Decoherence within the Gaussian limit
In this section, we study qubit decoherence in an environment modeled by a Gaussian
random process. Decoherence, in this context, pertains to the decay of the off-
diagonal elements of the density matrix, mx ± imy, due to interaction between the
qubit and its environment. The qubit is subject to echo pulses that are both ideal
(perfect π rotations) and instantaneous (δ-peaked in time). We show that encoding
the echo pulses into the arbitrary auxiliary test function k(τ), here called the time-
domain filter function, allows for obtaining a computationally tractable decoherence
formula. This formula is expressed in terms of the noise spectral density S(ω) and
the Fourier transformed filter function K(ωt).

Consider the qubit Hamiltonian

Ĥ(τ) = 1
2x(τ)σ̂z + h(τ)σ̂x, (2.29)

where x(τ) is a sample trace of X(τ) observed for times τ ∈ [0, t]. Here, time t gives
the duration of an experiment between initialization and read-out. The sequence of
echo pulses are contained in

h(τ) = 1
2

n∑
j=1

πδ(τ − tj). (2.30)

The specific number of echo pulses n, and their timings tj , depend on the type
of experiment. We assume the qubit is initially polarized along the x-axis, with
mx = 1. We further assume the qubit density matrix to be reconstructable at
read-out.

The time-evolution operator for a sample trace x(τ) may be written as (~ = 1)

Û(t; 0) = T̂ {exp[−i
∫ t

0
dτĤ(τ)]}, (2.31)

where T̂ is the time-ordering operator. Given that each π-pulse implements the
gate iσ̂x, the time-evolution operator may be expanded as

Û(t; 0) = inÛ(t; tn)σ̂xÛ(tn; tn−1)σ̂x . . . σ̂xÛ(t2; t1)σ̂xÛ(t1; 0), (2.32)

where

Û(tk; tk−1) = exp[− i2 σ̂z
∫ tk

tk−1

dτx(τ)]. (2.33)

Using the relation
σ̂xe

iασ̂z σ̂x = e−iασ̂z , (2.34)

the time evolution operator may be written as

Û(t; 0) = inÛ(t; tn)Û†(tn; tn−1) . . . Û†(t2; t1)Û(t1; 0). (2.35)
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We now introduce the time-domain filter function [3]

k(τ) =
n∑
k=0

(−1)kθ(tk+1 − τ)θ(τ − tk), (2.36)

where θ is the Heaviside step function, t0 = 0, and tn+1 = t. The parameters
t1, · · · , tn are the same as in Eq. (2.30). We can now write the time-evolution
operator for a sample trace of noise as

Û(t; 0) = in exp[− i2 σ̂z
∫ t

0
dτ x(τ) k(τ)]. (2.37)

Since the qubit Bloch vector is confined to the xy-plane, it is convenient to work
with the qubit phase coherence denoted by

f = 〈1|ρ̂|0〉 = mx + imy. (2.38)

The qubit phase averaged over samples of the random processX(τ) can be expressed
as

f̄ [k(t)] = 〈1|〈Û(t; 0) ρ̂(0) Û†(t; 0)〉X |0〉

= 〈exp[−i
∫ t

0
dτ x(τ) k(τ)]〉X .

(2.39)

The angular brackets 〈· · · 〉X in Eq. (2.39) denote averaging over traces of random
processesX(τ); in the following, we drop the subscriptX for simplicity. The average
phase in Eq. (2.39) has the same form as the characteristic functional of the random
processes X(τ). For the average phase f̄ [k(τ)] the arbitrary auxiliary test function
k(τ) is chosen to be the filter function characterizing the sequence of echo pulses.

Assuming X(τ) to be a Gaussian random process, the average phase may be
written as

f̄ [k(τ)] = exp[iµ
∫ t

0
dτ k(τ)− 1

2

∫ t

0

∫ t

0
dτ1 dτ2 〈X(τ1)X(τ2)〉 k(τ1) k(τ2)]. (2.40)

Equation above takes the same form of Eq. (2.28). Here, we designated the average
phase to the characteristic functional and the time-domain filter function to the
arbitrary auxiliary test function. The autocorrelation function can be written as
the inverse Fourier transform of the noise spectral density, i.e.,

〈X(τ1)X(τ2)〉 =
∫ +∞

−∞
dω eiω(τ1−τ2)S(ω). (2.41)

Plugging equation above into Eq. (2.40), and integrating over τ1 and τ2 gives

f̄(t) = exp[iµ
∫ t

0
dτk(τ)− 1

2

∫ +∞

−∞
dωS(ω)|K(ωt)|2], (2.42)
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Figure 2.2: (a) CP sequence with two echo pulses (blue). The qubit is initialized in the state |0〉,
and the first π/2 pulse (red) rotates it, for example, to align along the x axis. After the final π/2
pulse (red), the qubit state is measured in the computational basis, along the z axis. (b) Since
the pulses are considered instantaneous and ideal, each π pulse effectively flips the sign of the
noise, which is reflected in the time-domain filter function k(τ). For a general CP sequence with
n echo pulses, the delay between the π pulses is t/n, while the initial and final delays after and
before the π/2 pulses are t/2n. (c) The frequency-domain function G(ωt) for different values of
n = 6, 8, 10, 12. As n increases, the peak shifts to higher frequencies.

where
K(ωt) =

∫ t

0
dτ eiωτ k(τ). (2.43)

Let us introduce the function

G(ωt) = ω2|K(ωt)|2. (2.44)

Also, let us for simplicity assume that the noise is zero mean, i.e., µ = 0. The
average phase coherence then takes the form [3]

f̄(t) = exp[−1
2

∫ +∞

−∞
dω S(ω) G(ωt)

ω2 ]. (2.45)

Figure 2.2 illustrates the frequency-selective nature of the function G(ωt) in the
case of Carr-Purcell (CP) sequence. A CP sequence with n = 2 pulses and the
corresponding time-domain filter function k(τ) are shown in Figs. 2.2 (a) and (b),
respectively. For an even number of echo pulses n, the function G(ωt) takes the
form

G(ωt) = 8 sin4 ωt

4n sin2 ωt

2 / cos2 ωt

2n. (2.46)

Figure 2.2(c) shows G(ωt) for multiple values of n. For a fixed n, G(ωt) is periodic
in ωt. However, since G(ωt) multiplies by a 1/ω2 in Eq. (2.45), the peaks shown in
Fig. 2.2 play a dominant role in selecting specific parts of the spectral density S(ω),
and thus in contributing to qubit decoherence. The term G(ωt)/ω2 acts as a filter
that passes noise within certain frequency bands. As the number of echo pulses
increases, while keeping the measurement time t fixed, the peak of this bell-shaped
function shifts to higher frequencies.
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2.4. Decoherence induced by an ensemble of two-
level fluctuators

A considerable share of this thesis is devoted to qubit decoherence induced by an
ensemble of tunneling Two-Level Systems (TLSs). A tunneling TLS in contact with
a bath of harmonic oscillators is an eminent example in the field of open quantum
systems [4]. This system, often called the spin-boson model, has different regimes of
behavior. We are in particular interested in the incoherent tunneling regime. In this
regime, the TLS phase coherence is immediately lost after tunneling. Dynamics of
the TLS thus reduces to a series of jumps between the excited and ground states. A
TLS in this regime is often called the Two-Level Fluctuator (TLF). This motivates
modeling the TLF by a two-state Markov process. In what follows, we present the
formulas for qubit decoherence by an ensemble of TLFs in the Ramsey, Hahn echo,
and Carr-Purcell experiments.

The two-state Markov process has only two states, denoted by +1 and −1,
representing the TLF excited and ground states. This process is characterized by
excitation and relaxation rates, γ↑ and γ↓. Let Pe and Pg be the probabilities of the
TLF being in the excited and ground states, and define the vector P = [Pe, Pg]T .
The TLF rate equations can be expressed as

Ṗ (τ) = M P (τ), (2.47)

where
M =

[
−γ↓ γ↑
γ↓ −γ↑

]
. (2.48)

For a sample trace x(τ) of the two-state Markov process, the coherent dynamics of
the qubit is governed by (~ = 1)

i ˙̂ρ(τ) = [Ĥ(τ), ρ̂(τ)], (2.49)

where
Ĥ(τ) = 1

2v k(τ) x(τ) σ̂z. (2.50)

Here, v denotes the qubit-TLF coupling strength, and k(τ) is the time-domain filter
function specified in Eq. (2.36).

Since the qubit state is confined to the xy-plane, it is more convenient to work
with the qubit phase f = mx + i my instead of the density matrix ρ̂(τ). Using
Eq. (2.49), we can express the equation of motion of the qubit phase for the sample
trace x(τ) as

ḟ(τ) = i v k(τ) x(τ) f(τ). (2.51)

The solution to the differential equation above gives the qubit phase f(τ) for one
realization of the random process X(τ), i.e., the sample trace x(τ). In other words,
the solution f(τ) is a single realization of the random process F (τ), which depends
on the two-state Markov process X(τ). We are interested in the average over all
possible realizations of f(τ), which is denoted by f̄(τ). The average phase f̄(τ)
can be obtained by utilizing the stochastic Liouville equations. Below, we briefly
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describe how to calculate the average phase using the stochastic Liouville equations.
A detailed description of this formalism can be found in Refs. [2, 5, 6].

As said, the random process X(τ) is Markovian. Therefore, the joint process
{F (τ), X(τ)} is also Markovian [2]. We use the abbreviated notation P (f, x; τ),
instead of P (f, x; τ |f0, x0; τ0), for the transition probability of the joint process
{F (τ), X(τ)}. We further define the transition probabilities

Pe(f, x; τ) = P (f, +1; τ |f0, +1; τ0) + P (f, +1; τ |f0, −1; τ0), (2.52)

and

Pg(f, x; τ) = P (f, −1; τ |f0, +1; τ0) + P (f, −1; τ |f0, −1; τ0). (2.53)

The transition probabilities Pe(f, x; τ) and Pg(f, x; τ) obey the equations [2]

∂

∂τ
Pe(f, x; τ) = i v k(τ) Pe(f, x; τ)− γ↓Pe(f, x; τ) + γ↑Pg(f, x; τ), (2.54)

and

∂

∂τ
Pg(f, x; τ) = −i v k(τ) Pg(f, x; τ) + γ↓Pe(f, x; τ)− γ↑Pg(f, x; τ). (2.55)

We define the marginal averages

f̄e(τ) =
∫
df f(τ) Pe(f, x; τ), (2.56)

and
f̄g(τ) =

∫
df f(τ) Pg(f, x; τ). (2.57)

Multiplying both sides of Eqs. (2.54) and (2.55) by f , and using the definition of
marginal averages given in Eqs. (2.56) and (2.57), we arrive at the coupled equations

˙̄fe = i v k(τ) f̄e − γ↓ f̄e + γ↑ f̄g, (2.58)

and
˙̄fg = −i v k(τ) f̄g + γ↓ f̄e − γ↑ f̄g. (2.59)

The solution to the equations above gives the average phase f̄(τ) = f̄g(τ) + f̄e(τ).
The average phase for the cases that will be considered in this thesis are given

below. These formulas have been previously reported, e.g., in Refs. [7–11]. For
simplicity, we drop the bar over the average phase f̄ . For a symmetric TLF γ↓ = γ↑.

• Ramsey decay by an asymmetric TLF:

fR(t) = exp(−Γt)
[
cosh(At) + Γ

A
sinh(At)

]
, (2.60)

with Γ = γ−ivδγ/2γ, A = (γ2−ivδγ−v2) 1
2 , γ = (γ↓+γ↑)/2 and δγ = γ↓−γ↑.
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• Ramsey decay by a symmetric TLF:

fR(t) = e−γt(coshαt+ γ

α
sinhαt), (2.61)

where α =
√
γ2 − v2.

• Echo decay by an asymmetric TLF:

fH(t) =e−γt[cosh(At/2) cosh(A∗t/2)

+ v2 + γ2

A∗A
sinh(At/2) sinh(A∗t/2)

+ Γ
A

sinh(At/2) cosh(A∗t/2)

+ Γ∗

A∗
sinh(A∗t/2) cosh(At/2)].

(2.62)

• Echo decay by a symmetric TLF:

fH(t) = e−γt(γ
2

α2 coshαt+ γ

α
sinhαt− v2

α2 ). (2.63)

• Qubit dephasing by a symmetric TLF in the Carr-Purcell experiment:

fCP(t) = e−γt

2

 γ2 cosh(αt/m)− v2

α
√
γ2 cosh2(αt/m)− v2

(µm+ − µm− ) + µm+ + µm−

 , (2.64)

with
µ± = γ

α

[
sinh(αt/m)±

√
cosh2(αt/m)− v2/γ2

]
, (2.65)

and m denoting the number of echo pulses.

We now consider the Hamiltonian (~ = 1)

Ĥ(τ) = 1
2

N∑
k

xk(τ)σ̂z + h(τ)σ̂x, (2.66)

for a qubit coupled to an ensemble of N independent TLFs. The function h(τ) is
given in Eq. (2.30). It can be inferred from Eq. (2.39) that the decoherence induced
by a TLF ensemble is the product

F (τ) =
N∏
k=1

fk(τ). (2.67)

Here, we omitted the subscripts denoting the type of experiment (Ramsey, Hahn
echo, Carr-Purcell) for simplicity.
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3
Nonlinear response and crosstalk of

electrically driven silicon spin
qubits

Micromagnet-based electric dipole spin resonance offers an attractive path for the
near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum
dots while maintaining long coherence times and high control fidelities. However,
accurately controlling dense arrays of qubits using a multiplexed drive will require
an understanding of the crosstalk mechanisms that may reduce operational fidelity.
We identify a novel crosstalk mechanism whereby the Rabi frequency of a driven
qubit is drastically changed when the drive of an adjacent qubit is turned on. These
observations raise important considerations for scaling single-qubit control.

Author contributions: Participated in analyzing the results, developing the phenomenological
model that relates the electrical drivings to the qubits’ dynamics, and performing numerical sim-
ulations. All results of this chapter have been published in Ref. [1].
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3.1. Introduction
Electric dipole spin resonance (EDSR) is a key ingredient for the all-electrical control
of single-electron spin qubits in silicon quantum dots [2]. While some approaches
are able to utilize the weak intrinsic spin-orbit coupling (SOC) of silicon [3, 4], the
placement of an on-chip micromagnet has proven especially effective for gate-based
quantum dots in both Si/SiGe [5, 6] and Si-MOS [7] platforms, with single-qubit
gate fidelities exceeding 99.9% having been demonstrated [8]. Furthermore, electron
spins in dense arrays can be made addressable by engineering an appropriate local
magnetic field gradient within a stronger external field [9]. This makes micromagnet-
based EDSR attractive for the near-term scaling of spin qubit processors.

In the original description of micromagnet-based EDSR, an ac electric field
pushes a harmonically confined electron back and forth in a constant magnetic
field gradient, such that the spin is effectively acted upon by an ac magnetic field
as in conventional electron spin resonance (ESR) [10, 11]. An array of spectrally-
separated spins can ideally be controlled via a single, multiplexed driving field con-
taining a linear combination of frequencies addressing individual qubits. Rabi’s
formula implies that the qubit dynamics are only slightly affected by off-resonance
tones such that crosstalk can be accounted for systematically to maintain high fi-
delity [12].

Substantial effort has been placed on detecting and modelling crosstalk in super-
conducting and trapped-ion systems [13], but the identification of crosstalk mecha-
nisms in semiconductor quantum dot devices is only beginning to receive attention
as these platforms mature into the multi-qubit era [14–16]. Given that high qubit
density is one of the known advantages of semiconductor quantum processors, main-
taining high-fidelity operation with small qubit pitch in the presence of crosstalk is
an essential hurdle to overcome.

In this article, we measure the nonlinear Rabi frequency scaling of two single-
electron spin qubits controlled via EDSR in a 28Si/SiGe double-dot device. The
nonlinearity gives rise to a sizeable crosstalk effect when attempting to drive simul-
taneous single-qubit rotations, and we develop a simple phenomenological extension
of silicon-based EDSR theory to relate our observations. Although the physical ori-
gin of the nonlinearity is not precisely known, we find that anharmonicity in the
quantum dot confining potential cannot quantitatively explain our measurements.
We therefore comment on other device physics, such as microwave-induced arte-
facts, that may contribute to the crosstalk mechanism. The insights made here will
help inform continued development of EDSR-enabled spin qubit devices, as well as
raise important considerations for programming spin-based quantum processors in
silicon.

3.2. Methods
To probe the behavior of two spin qubits controlled via a frequency multiplexed
drive, two quantum dots with single-electron occupancy are electrostatically accu-
mulated in an isotopically purified 28Si/SiGe quantum well [Fig. 3.1(a)]. A cobalt
micromagnet placed on top of the dot region becomes magnetized in the external
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field applied along the z′-axis, creating local transverse (x′-axis) and longitudinal
(z′-axis) magnetic field gradients. The transverse gradient gives rise to a synthetic
SOC, and the longitudinal gradient spectrally separates the Larmor frequencies of
the two spins. The IQ-modulated electric drive necessary to control the spin states
by EDSR is delivered via the gate “MW” or the gate “B”. Further details of the
fabrication, initialization, control, and readout of the qubits can be found in [17]
(we here used room temperature electronics only).

(a) (b)
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Figure 3.1: (a) False-coloured image of a device nominally equivalent to the one used in the
experiment. Single-electron spin qubits Q1 and Q2 are confined under plunger gates “LP” and
“RP” respectively, while a barrier gate “B” is used to control the tunnel coupling between the
dots. Qubit states are read-out using energy-selective tunneling to the electron reservoir, with a
single-electron transistor (SET) used to measure the corresponding change in charge-occupation.
Microwave controls for both qubits are simultaneously applied to either the “MW” or “B” gate.
(b) Illustration of wave function envelopes in a silicon quantum well. EDSR can be mediated
by both the first excited orbit-like state |VO2〉 as well as the first excited valley-like state |VO1〉
as a consequence of interface-induced hybridization. Interface disorder here is represented as a
rectangular “atomic step” for simplicity, but hybridization may also be a consequence of more
detailed alloy disorder. In any case, a finite dipole transition element along with the micromagnet
spin-orbit coupling enables electrically driven spin rotations.

In a gate-defined quantum dot in silicon, an electric field is able to couple spin-
like qubit states via EDSR due to the spin-orbit coupling perturbing the pure spin
eigenstates such that they become slightly hybridized with the electron charge states.
For single-electron spin qubits in Si/SiGe, the charge states are themselves hy-
bridized valley-orbit states owing to the nearly-degenerate conduction band valleys
of strained silicon quantum wells [18]. EDSR may therefore be mediated by orbit-like
or valley-like hybridized states which support a nonzero dipole transition element
with the electron ground state, as illustrated in Fig. 3.1(b) [10, 19]. In either case,
a robust linear relationship between the amplitude of the driving field and the Rabi
frequency of the spin qubit is expected (see Appendices 3.B and 3.C).

To drive on-resonance Rabi oscillations, we first use a Ramsey pulse sequence to
accurately identify the relevant resonance frequencies of the two qubits, which range
from 11.89 GHz in a 320 mT external field to 15.91 GHz in 475 mT. This calibration
strategy was also employed to achieve >99% fidelity universal control in this device
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[20]. The corresponding drives are applied either to the “MW” or “B” gate, and the
same driving frequency is used for all drive durations and amplitudes. A rectangular
pulse with duration up to 3 µs is used, and the measured time-domain spin response
is fit to a sinusoidal function A cos(2πfRabit+φ) +C to extract the Rabi frequency.
While it is well documented that qubit frequencies may shift nontrivially as a result
of on- or off-resonant microwave driving [21], the relatively short pulses used here do
not induce a shift large enough to compromise the fidelity of the Rabi oscillations.

3.3. Results
3.3.1. Nonlinear Rabi Scaling
We observe unexpected nonlinear Rabi frequency scaling when each spin is driven in-
dividually as shown in Fig. 3.2. We observe that the linear Rabi frequency-drive am-
plitude scaling predicted from theory only holds for Rabi frequencies up to 1-2 MHz.
This is at odds with previous experimental demonstrations of micromagnet-based
EDSR in silicon and GaAs, where Rabi frequencies of several tens of MHz have
been measured to smoothly saturate [8, 22–24]. These results have been loosely
interpreted as resulting from anharmonicity in the confinement potential, and we
also find this a plausible explanation through numeric simulations in Appendix 3.C.
However, confinement anharmonicity alone does not fully account for the nonlinear-
ity and lower driving limit observed in the devices considered here. We emphasize
that the crosstalk effect discussed in Sec. 3.3.2 will occur regardless of the cause
of the nonlinearity, and the limited Rabi frequencies achieved in this device make
crosstalk more prominent than could otherwise be expected.
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Figure 3.2: Rabi frequency scalings as a function of the applied resonant ac electric field amplitude.
The external field is set to Bext = 475 mT in (a),(b) and (f), Bext = 370 mT in (c) and (d), and
Bext = 320 mT in (e). In (a), (c), (e), and (f) the qubits are driven using the “MW” gate
as illustrated. In (b) and (d) the qubits are instead driven using the “B” gate. In (a-e) only a
single qubit is driven at once in the (1,1) electron occupation regime, while the undriven qubit
is left to idle. In (f) the Q1 Rabi scaling is compared in different charge states of the device. In
(a-b) the visibility of the readout is indicated by the shaded regions. Q1 systematically has a
higher visibility than Q2 as the latter is read out via a CROT interaction which has finite fidelity.
Lowered visibility for longer drives is expected due to electron reservoir heating. The horizontal
axis is scaled such that 1 arbitrary unit (arb. unit) represents the same nominal drive amplitude
delivered to the device by taking into account the room-temperature vector source power and all
nominal attenuation in the signal paths.

The exact electric field driving amplitude is not known precisely, so a linear
scale is used such that 1 unit of amplitude is approximately equivalent to a 2 MHz
Rabi frequency for Q1 in the configuration of Fig. 3.2(a). We estimate that this
amplitude corresponds to a microwave power of about −35 dBm delivered to the
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bonding wire to the sample 1. This nominal amplitude is used as a reference for other
experiments, when the attenuation in each line can be used to estimate the power
delivered to the device 2. Magnetostatic simulations of the on-chip micromagnet
design estimate a stray field of 0.3− 0.7 mT/nm, depending on the effective driving
axis, which is somewhat less than the 1 mT/nm estimated in other similar devices [8].
This smaller driving gradient necessitates a proportionally larger driving amplitude
to achieve the same frequency, which may play a role in the observation of nonlinear
effects at smaller Rabi frequencies.

For each quantum dot, external magnetic field, and driving gate, the associated
curve contains unique, but robustly reproducible, nonlinear characteristics qualita-
tively similar to [7]. These often appear as “plateaus” where the Rabi frequency
apparently saturates, or only changes modestly, when the amplitude of the electric
drive is adjusted. Increasing the driving amplitude does not always yield larger Rabi
frequencies, nor is the visibility or quality of Rabi oscillations immediately degraded
in these regions. Longer driving does lead to some reduced visibility in part due
to self-heating of the electron reservoirs used for energy-selective readout. In some
experimental configurations, driving even more strongly in the nonlinear regime will
lead to a sudden loss in qubit visibility. Decreased visibility and a diminished TRabi

2
have been previously reported for fast EDSR in silicon [8, 23], and may also be a
result of population leakage to spin-orbit states outside of the qubit subspace.

In addition to the general Rabi saturation effect observed, each measured Rabi
scaling exhibits distinct kinks. Note that the difference in scaling trends between
adjacent spins has previously been observed [26] and may be attributed to differences
in the local magnetic field gradient at each dot location. However, this does not
explain the nonlinearity in the qubit response as the micromagnet gradient is nearly
constant over the 100 nm pitch of the dots. From the distinct shapes of the Q1
and Q2 curves, it is apparent that the origin of the nonlinearity is particular to
each qubit frequency and not a global phenomena as could be expected from a
uniform distortion in the driving field. We also note that a drive-induced shift
in the qubit’s resonance frequency, which has previously been observed in EDSR
experiments [9, 21, 27], is not a plausible cause of the nonlinear scaling since an
off-resonant drive will result in faster oscillations, not slower [28].

Next, we consider the possibility that the nonlinearity is due to the influence of
the second qubit. However, upon removing the Q2 electron, there is no change in
the Q1 Rabi scaling as shown in Fig. 3.2(f). Furthermore, the residual exchange
interaction between the two qubits is measured to be below 50 kHz, indicating
a very weak spin-spin interaction taking place. Repeating the experiment in the

1This is inferred based on a vector source generator output power of −14 dBm, a nominal attenu-
ation of 6 dB at 4 K, and an estimated cable/connector attenuation of 15 dB.

2Unknown impedance mismatches at, for example, bonding wires connections, make the on-chip
ac electric field vary with frequency. Therefore the comparison between Rabi scaling trends
at different magnetic fields is qualitative. Previous photon-assisted tunneling measurements on
similar devices estimate the electric field amplitude to be on the order of 1000 V/m, or equivalently
a voltage amplitude of 0.1 mV on the gate [25]. This estimate, along with a transverse magnetic
gradient of about 0.3 − 0.7 mT/nm from simulations and a harmonic potential energy scale of
1 meV, agrees with the frequency of Rabi oscillations we observe.
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Figure 3.3: Crosstalk in single-qubit operation. The Rabi frequencies of both qubits are measured
when a constant driving tone on-resonance with one qubit is present (shown in the bottom left of
each panel) while a second tone resonant with the other qubit is swept in amplitude. In panels
(a) and (b) the constant driving amplitude is half (0.7 arb. units) that in panels (c) and (d) (1.4
arb. units). Note that doubling the constant tone amplitude does not double the Rabi frequency,
because the EDSR response is already nonlinear as shown in Fig. 3.2(a). In panels (b) and (d), the
experiment repeated in the (1,0) regime gives nearly identical results as in the (1,1) regime. All
experiments are carried out at Bext = 475 mT, and the “MW” gate is used in all cases as indicated
in the top right illustration.

(3,0) regime produces the same initial linear trend, suggesting that in both the 1-
electron and 3-electron modes the same dipole transition element, whether orbit-like
or valley-like, is responsible for mediating EDSR. The nonlinear scaling regime is
similarly shaped, but measurably different, suggesting that the root cause of the
nonlinearity may be somewhat influenced by the quantum dot structure.

3.3.2. Crosstalk
When both qubit driving tones are simultaneously applied to the “MW” gate, a large
crosstalk effect occurs (Fig. 3.3). When a resonantly driven spin is also placed under
the influence of an additional off-resonant drive, the additional ac field amplitude
modifies the qubit response as to diminish the resonant spin-flip Rabi frequency.
This effect has substantial consequences for high-fidelity logic gates which must be
calibrated to a nanosecond-precision duration, because even a small unaccounted
change in Rabi frequency would result in severe over- or under-rotations of qubit
states. High-fidelity control can be maintained in a small device by operating gates
serially [20, 29, 30], but this is an undesirable constraint for efficiently implementing
quantum algorithms.
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By comparing Fig. 3.3(a-b) with (c-d), it is clear that the Rabi frequency is
more strongly modified when the resonant tone amplitude is smaller with respect
to the off-resonant pulse amplitude. This implies that crosstalk would become more
severe as single-qubit operations are more densely multiplexed. Directly adjusting
microwave pulses for the unique response of each qubit may greatly increase the
calibration overhead for larger qubit arrays, depending on the locality of the nonlin-
ear response. We emphasize again that the crosstalk effect is not a consequence of
the existence of a nearby qubit, but rather is caused by the act of driving a second
nearby qubit. This is illustrated in Fig. 3.3(b) and (d), where the Q1 behavior is
nearly identical in the case that the Q2 electron is removed from the double-dot
region.

3.4. Discussion
We now introduce a model Hamiltonian to survey in more depth the possible origin
of the observed nonlinearity and crosstalk. Consider the following micromagnet-
enabled EDSR Hamiltonian:

H(t) = H0 −
EZ
2 σ̂z + b′SLx̂~n · ~σ + E′ac(t)x̂. (3.1)

H0 describes the orbital and valley degrees of freedom of the charge state. EZ =
gµBBtot is the Zeeman splitting of the spin state, where g ≈ 2 is the g-factor in sili-
con, µB is the Bohr magneton, and Btot is the total magnetic field along the σ̂z spin
quantization axis. x̂ is the 1D position operator along the driving axis, which is de-
termined by the orientation of the electric driving field E′ac(t) = e

∑
k Eac,k sin(ωkt)

at the quantum dot location. b′SL = 1
2gµB |~bSL| gives the strength of the SOC as

a function of the magnitude of the magnetic field gradient |~bSL| along this axis.
~n =

(
0, cos θ, sin θ

)T characterizes the nature of the SOC, where θ gives the angle
of the gradient with respect to the σ̂y spin quantization axis.

EDSR is simplest to investigate in the case of harmonic confinement of the
electron with effective mass m∗, such that H0 = ~ω0(â†â + 1

2 ) with â†, â being the
quantum raising and lowering operators, ~ω0 giving the energy difference between
orbital eigenstates, and ~ = h/2π as the reduced Planck’s constant. The resulting
Hamiltonian H(t) can be analyzed perturbatively (see Appendix3.B) to find an
on-resonance Rabi frequency of:

fRabi = gµB |~bSL| cos θeEac
2hm∗ω2

0
(3.2)

and a drive-dependent resonance frequency shift of ~ω ∝ −E2
ac [28]. According

to Equation 3.2, dot-to-dot variations in EDSR sensitivity are expected as different
qubit locations will experience different confinement strengths, magnetic field gradi-
ents, and electric driving angles. However, proportionality to the oscillating electric
field amplitude is always expected from Eq. 3.2.

Different linear scaling for small drives has been reported in both GaAs [22, 24,
26] and Si [5, 7, 8, 23]. The linear regime may extend from Rabi frequencies of
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only a few MHz to tens of MHz depending on the quantum dot environment, but a
nonlinear regime can be identified when fRabi 6= BEac where B is a scaling constant.
Although smooth deviation from the linear trend can be seen in direct simulation
of Equation 3.1 owing to higher-order terms, the origin of the numerous nonlinear
features we observe is unclear. Furthermore, previous works in similar Si/SiGe
devices have found Larmor frequency shifts of both signs that are not quadratic in
driving amplitude [21, 27], contrary to the theoretical expectation. This leads us to
conclude that the model of Eq. 3.1 does not adequately capture all relevant features
of the qubit physics.

Anharmonic models of the confinement potential H0 have been used to explain
nonlinear phenomena such as second-harmonic driving [31, 32] and even nonlinear
Rabi scaling [33, 34]. However, with both valley splittings of the evaluated device
measured to be in excess of 150 µeV, it is unclear why such an anharmonic confine-
ment potential applies to this device. Furthermore, our numerical simulations of
Eq. 3.1 with anharmonic orbital- and valley-like models fail to capture the breadth
of nonlinear features we observe in experiment (see Appendix 3.C).

It is noteworthy that the EDSR Hamiltonian of Eq. 3.1 with harmonic orbital
confinement will exhibit nonlinearity for driving amplitudes which are no longer of
a perturbative magnitude with respect to the orbital spacing (see Fig. 3.7). The
crosstalk effect will also occur in this regime when multiple driving tones are applied,
albeit at larger Rabi frequencies than what we observe in this experiment. Therefore,
neither an anharmonic confinement potential nor the phenomenological additions we
make to the Hamiltonian in the forthcoming discussion are necessary preconditions
for either Rabi frequency nonlinearity or crosstalk. Such modifications to Eq. 3.1
do seem necessary, however, to explain their occurrence at modest Rabi frequencies.

Based on the variety of nonlinearities observed from single-qubit measurements
in Fig. 3.2, it is clear that at least the microwave power (Pk) and frequency (ωk)
components are important contributing factors. We therefore focus on the time-
dependent driving term of the EDSR Hamiltonian as the simplest source of the
nonlinearity and identify two possible physical origins: electric drive distortion and
microwave-induced artefacts.

If the signal amplitude at room temperature is not linearly related to the am-
plitude delivered to the device, then the origin of the nonlinearity may be trivially
related to classical electronics or transmission lines. It is not possible for us to mea-
sure the electric field at the dot location without considering the electron spin as
a sensor itself. Still, we have verified that the output of the IQ-modulated signal
is linear with respect to the input. Beyond this element, there are known interfer-
ence effects in the transmission lines but no active electronic components that are
suspected to show nonlinear effects. Furthermore, the signal paths to the “B” and
“MW” gates are separate from room temperature, and nonlinearity is present when
either gate is used for driving. Conversely, applying a drive through the same gate
gives a different nonlinear response depending on which qubit it addresses. This
points to a microscopic origin of the nonlinearity, although the driving frequencies
and orientations for the two qubits differ as well, making it difficult to completely
rule out any origin of nonlinearity from a classical distortion of the driving signal.
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(a)
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Q2 Drive Sweep Q1 Drive

Q1 Q2

Figure 3.4: (a) Plot showing one possible instance of the phenomenological prefactor describing
the nonlinearity in the EDSR mechanism. To illustrate the emergence of crosstalk, we set the
Q2 electric drive to a constant amplitude, and manipulate the amplitude of the Q1 drive. The
effective driving term in the Hamiltonian will be unique depending on the sum of both microwave
drives. (b) The effect of two microwave drives on the two-spin system is numerically simulated
with the nonlinear prefactor in (a). The solid green line gives the modified analytic Rabi frequency
in the case that only Q1 is driven, while the discrete points are derived by fitting the numerically
solved spin dynamics to a sinusoid. (c-d) The spin dynamics of Q1 and Q2 corresponding to
the fits in (b). Light and dark regions indicate the probability of measuring a ground or excited
state spin respectively. For simulation, we take EZ,Q1 = 12.066 GHz, EZ,Q2 = 11.966 GHz,
|~bSL| = 0.3 mT/nm, a0 =

√
~/m∗ω0 = 20 nm, and Eac,Q2 = 600 V/m.

In Appendix 3.A, we describe how nonlinearity and crosstalk were observed in a dif-
ferent experimental setup using a nominally identical device design. This reinforces
the likelihood that the nonlinearity originates at the device and highlights that the
nonlinear behaviour is not a peculiarity of a single experimental setup.

Second, we consider the possibility that a microwave drive could influence a
quantum dot’s confinement potential, and therefore its orbital structure, through
heat-induced device strain or the activation of charge traps, for example. Although
a true harmonic confinement potential is robust against small perturbations, the
anharmonicity introduced by asymmetric confinement or valley-orbit hybridization
may be sensitive to such changes [35–37]. We therefore acknowledge the possibility
that a nonlinear drive-dependent dipole element r(Etot) = 〈V O0(Etot)|x̂|V O1(Etot)〉
may manifest in a way that is consistent with our observations. The plausibility of
these hypotheses would need to be verified through more rigorous modelling.

Although the origin of the nonlinearity remains uncertain, we can nevertheless
gain insight in the crosstalk effect by extending the model of Eq. 3.1 phenomeno-
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logically by including a prefactor f(Pk, ωk) in the electric driving term such that
E′ac(t)x̂→ f(Pk, ωk)E′ac(t)x̂. Following from the Rabi scalings measured in Fig. 3.2,
we consider the prefactor to be dependent on the power Pk ∝ |Eac,k|2 and frequency
ωk of all applied drives. To illustrate the consequences of the phenomenological
model, consider the prefactor plotted in Fig. 3.4(a). The prefactor reflects changes
in the quantum dot structure, such as a contracted electric dipole, or effective driv-
ing field that may manifest as a function of microwave irradiation. Intuitively, the
prefactor introduces a “clipping” effect akin to an overdriven amplifier, where an
increase in input amplitude no longer leads to a proportional increase in the output
EDSR response, i.e. in the Rabi frequency.

To see the importance of this dependence, we numerically integrated the time-
dependent Schrödinger equation i~ψ̇ = H(t)ψ using Eq. 3.1 and the prefactor de-
picted in Fig. 3.4(a). A constant driving tone resonant with Q2 drives Rabi os-
cillations. As a Q1 driving tone is turned on, two notable crosstalk effects occur
[Fig. 3.4(b-d)]. First, the Q1 Rabi frequency is substantially smaller than in the case
where no Q2 drive is present. Second, the Q2 Rabi frequency decreases markedly as
the Q1 Rabi frequency increases. The fitted Rabi frequencies in Fig. 3.4(b) behave
analogously to the measured crosstalk effect presented in Fig. 3.3, and the same
effect is obtained in the absence of a second electron.

For the near-term scaling of silicon spin qubit devices using micromagnet-based
EDSR, the practical issues introduced here can be limited by ensuring the electric
drive is oriented parallel to a sufficiently large transverse magnetic gradient. This
ensures that a reasonably large fRabi is achieved at a sufficiently small magnitude
of Eac that is within the perturbative limit. Our observations suggest multiplexing
qubit control using a linear combination of driving signals is possible within this
regime. Emphasis on these design principles may be why nonlinear Rabi scaling
was not found to be a control-limiting artefact at few-MHz Rabi frequencies in a
more advanced multilayer gate device with possibly tighter confinement potentials
[9]. We anticipate that nonlinear effects, including crosstalk, would still appear for
faster EDSR driving. Although we cannot provide a conclusive origin for this effect,
we believe a more careful consideration of microwave propagation at the device will
be fruitful.

3.5. Conclusion
In summary, we have presented experimental evidence of a strong nonlinearity in
the fundamental resonance of a single-electron spin qubit controlled by EDSR with
a synthetic spin-orbit coupling. To understand both the nonlinear Rabi frequency
scaling and crosstalk effects that are observed, we have developed a simple phe-
nomenological model whose accuracy and consequences may be probed through fur-
ther experiments. The novel crosstalk mechanism introduced here poses important
questions for the scalability of spin qubit devices relying on multiplexed single-qubit
control.
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(b)Q1

Q2

Figure 3.5: Rabi oscillations in Device B. Panels (a) and (c) plot the qubit dynamics as a function
of microwave driving amplitude. Panels (b) and (d) show the fitted Rabi frequencies respectively.

3.A. Evidence of nonlinear Rabi scaling in a sec-
ond device

To provide further evidence that the nonlinear Rabi frequency scaling and crosstalk
as discussed in the main text can be seen more generally, we include data collected
from a second device - Device B - which is nominally identical with respect to the
design in Fig. 3.1(a) - Device A - and is fabricated on the same purified 28Si/SiGe
heterostructure. As such, we expect Device B to host quantum dots with a similar
orbital confinement and micromagnet gradient as Device A. The Larmor frequencies
of Q1 and Q2 of Device B were 15.582 GHz and 15.798 GHz respectively. Device
B was cooled in an independent dilution refrigerator and controlled using different
electronics than Device A. Rabi oscillations and fitted Rabi frequencies are included
in Fig. 3.5. The amplitude scale is independent of that used in the main text.

While both qubits reach the nonlinear regime at modest Rabi frequencies similar
to Device A, Q1 of Device B illustrates a striking example of a very flat plateau.
As with Device A, there is no immediate evidence of visibility loss or lower Rabi
oscillation quality in the plateau region. However, the logical gate fidelities and
TRabi2 were not quantified. Crosstalk, of the kind described in the main text, was
also observed in Device B, but not studied systematically like in the case of Device
A. The observation of nonlinearity in a second device from an independent setup
suggests that the origin of the phenomena can be attributed to the devices, and is
less likely the result of a faulty component, for example.
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3.B. EDSR in a harmonic confinement potential
Here we summarize micromagnet-based EDSR with a harmonic confinement poten-
tial. We consider the following EDSR Hamiltonian:

H(t) = ~ω0(â†â+ 1
2) + Ẽac sin(ωt)(â† + â)− EZ

2 σz + b̃SL(â† + â)~n · ~σ, (3.3)

where the position operator x̂ =
√

~
2m∗ω0

(â†+ â) in terms of the quantum harmonic
ladder operators, m∗ = 0.19me is the in-plane effective mass of the electron in the
silicon quantum well, and the spin-dependent terms are as defined in the main text.
For the subsequent analysis, the length scale is absorbed in the relevant energy scales
such that b̃SL = 1

2gµB |~bSL|
√
~/2m∗ω0 and Ẽac = eEac

√
~/2m∗ω0. By considering

a typical orbital spacing of ~ω0 ≈ 1 meV corresponding to a Fock-Darwin radius of
a0 =

√
~

m∗ω0
≈ 20 nm, an ac electric field amplitude of order less than 104 V/m,

an external magnetic field of 475 mT, and a transverse magnetic field gradient of
0.5 mT/nm, the relevant terms correspond to the energy scales:

~ω ≈ EZ ,
b̃SL ≈ 1 µeV,
Ẽac ≈ 100 µeV,
EZ ≈ 50 µeV.

Therefore:
ε ≈ ω

ω0
≈ b̃SL

~ω0
≈ Ẽac

~ω0
≈ EZ

~ω0
� 1, (3.4)

and it is appropriate to treat all terms of order ε perturbatively with respect to
the orbital energy scale. Following the approach of time-dependent Schrieffer-Wolff
perturbation theory employed in [28], we derive the effective spin Hamiltonian (ig-
noring elements proportional to the identity) up to fifth-order as H̃ =

∑5
n=1 H̃

(n)

where:

H̃(1) =−EZ2 σz

H̃(2) =− 2b̃SLẼac cos θ sin(ωt)
~ω0

σy −
2b̃SLẼac sin θ sin(ωt)

~ω0
σz

H̃(3) =− EZ b̃
2
SL cos θ sin θ
~2ω2

0
σy + EZ b̃

2
SL cos2 θ

~2ω2
0

σz

H̃(4) =− b̃SLẼac cos θ(E2
Z + ~2ω2) sin(ωt)
~3ω3

0
σy −

b̃SLẼac sin θω2 sin(ωt)
~ω3

0
σz

H̃(5) =− EZ b̃
2
SL cos θ sin θ(E2

Z + 2Ẽ2
ac − b̃2SL − 2Ẽ2

ac cos(2ωt))
~4ω4

0
σy

+ EZ b̃
2
SL cos2 θ(E2

Z − b̃2SL + 4Ẽ2
ac sin2(ωt))

~4ω4
0

σz.
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Expanding the Floquet Hamiltonian and carrying out another second-order Schrieffer-
Wolff transformation [28] yields an on-resonance Rabi frequency of:

~ΩRabi = 2b̃SLẼac cos θ
~ω0

(
1 + E2

Z

~2ω2
0

)
(3.5)

= gµBa
2
0|~bSL| cos θeEac

2~ω0

(
1 + E2

Z

~2ω2
0

)
(3.6)

accurate to EZε4. The drive-dependent frequency shift, analogous to the Bloch-
Siegert shift in electron spin resonance, is given as:

~ωBSS = −4EZ b̃2SLẼ2
ac cos2 θ

~4ω4
0

(3.7)

= −g
2µ2
Ba

4
0EZ |~bSL|2 cos2 θe2E2

ac

4~4ω4
0

. (3.8)

The sign of the shift is opposite what is expected from standard ESR. The reason for
this is discussed in [28]. The resonance frequency shifts due to a nonlinear Zeeman
term and g-factor renormalization are calculated to be, respectively:

~ωnlz = −2E3
Z b̃

2
SL cos2 θ

~4ω4
0

(3.9)

~ωg = −2EZ b̃2SL cos2 θ

~2ω2
0

(
1− b̃2SL

~2ω2
0

)
. (3.10)

Therefore, a harmonic confinement potential should yield the relations fRabi ∝ Eac
and ~ωBSS ∝ −E2

ac for micromagnet-based EDSR. The perturbative regime used
to derive these relations should be valid, for realistic parameters, at least to the
order of fRabi = 10 MHz. It should be noted that nonlinear phenomena, such as
second-harmonic driving, are permissible even with perfect harmonic confinement,
as evidenced from the presence of longitudinal driving in H̃(3) and H̃(5). However,
it is believed that nonlinearity originating from anharmonic confinement will be
dominant in silicon quantum dots [31].

3.C. EDSR with anharmonic confinement
Here we show how EDSR in the presence of anharmonic confinement, either as
a result of a nontrivial potential landscape or the presence of valley-orbit states,
permits nonlinear phenomena. However, the nonlinear Rabi scaling found here does
not seem to adequately account for the experimental results.

We consider a general two-level orbital subspace acted on by the set of Pauli
operators {τi}, which may describe two hybridized valley-orbit states in silicon, or
the lowest two states of an anharmonic confinement potential. Since the micromag-
net spin-orbit coupling energy scale is the smallest, we consider the dynamics of the
driven orbital sector first. The driven orbital Hamiltonian is:

H0(t) = −∆0

2 τz + E′ac sin(ωt)x̂, (3.11)
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where ∆0 denotes the energy splitting between the ground and excited states and
E′ac = eEac is the scaled electric field as in the main text. The eigenstates of H0(t)
when no drive is present, which we denote as |VO0〉 and |VO1〉, may in general
contain both transverse and longitudinal elements, such that:

x̂ = rτx − pτz, (3.12)

where r = 〈VO0|x̂|VO1〉 > 0 and 2p = 〈VO1|x̂|VO1〉 − 〈VO0|x̂|VO0〉 are real pa-
rameters. The parameter p quantifies the extent to which the orbital states have a
different centre of mass, as would be the case in an asymmetric confinement poten-
tial (see the sketch in Fig. 3.7). We transform the Hamiltonian by an angle π/2− θ
about the τy axis, where sin θ = p√

r2+p2
:

H ′0(t) = exp(i(π/2− θ)τy)H0(t) exp(−i(π/2− θ)τy) (3.13)

= −∆
2 τ̃x −

(
ε+ E′′ac sin(ωt)

2

)
τ̃z (3.14)

where ∆ = ∆0 cos θ, ε = ∆0 sin θ, and E′′ac = 2E′ac
√
r2 + p2. Eq. 3.14 is the standard

Landau-Zener-Stückelberg Hamiltonian [38]. By moving into the rotating frame us-
ing the unitary transformation exp(−iE′′ac cos(ωt)τ̃z/2ω) and applying the Jacobi-
Anger expansion, one can distinguish between single-photon transition matrix ele-
ments ∆J1(E′′ac/~ω) and two-photon transition matrix elements ∆J2(E′′ac/~ω) where
Jn(x) is the n-th order Bessel function of the first kind. The latter mechanism
corresponds to subharmonic driving, when the spin degree of freedom is included
perturbatively. An analysis of Eq. 3.14 using the dressed-state formalism in the
context of silicon-based EDSR is found in [32].

To illustrate how the Rabi frequency scales in different parameter regimes, we
consider the full Hamiltonian numerically for various ∆0, r, p, EZ :

H(t) = −∆0

2 τz + E′ac sin(ωt)x̂− EZ
2 σz + b′SLx̂σx, (3.15)

with all definitions the same as in the main text. In all cases, we choose an ini-
tial state in the ground valley-orbit and spin states, and we set ~ω = EZ for all
simulations, neglecting the small g-factor renormalization due to the micromagnet
coupling for simplicity. The nominal transverse micromagnet gradient is simulated
to be between 0, along the qubit axis, and 0.7 mT/nm along the orthogonal axis.
Due to fabrication imperfections and qubit driving likely not taking place along the
maximal gradient, we use a value of |bSL| = 0.3 mT/nm in simulations. This con-
servative estimate should underestimate the Rabi frequency at which nonlinearity
arises. The small longitudinal gradient can be predicted from the approximately
100 MHz Zeeman difference between the qubit, with an estimated pitch of 100 nm,
as 0.04 mT/nm along the qubit axis. Therefore, we neglect any σz coupling in the
simulation.

In Fig. 3.7, we simulate EDSR mediated by an orbital state with an estimated
energy splitting of ∆0 = 1 meV and a corresponding dipole transition element of
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(a) (b)

(c) (d)

Figure 3.6: (a) Rabi frequency and (b) visibility of valley-mediated EDSR where ∆0 = 150 µeV,
r = 2 nm, and EZ = 60 µeV. Different values of p consider different spatial orientations of the
excited valley state. (c) Rabi frequency and (d) visibility of valley-mediated EDSR considering
different Zeeman splittings where ∆0 = 150 µeV, r = 2 nm, and p = 0 nm.

r = 20/
√

2 nm. By changing the parameter p, we effectively model the influence of
an asymmetric confinement potential, where the excited state has a shifted centre
of mass. Such a skew has negligible influence for a weakly driven spin. Notably,
for larger drives (fRabi � 10 MHz) the Rabi frequency deviates below the linear
trend predicted by Eq. 3.5 and the visibility decreases due to residual couplings to
spin-orbit states outside of the qubit subspace. Such effects have been observed in
[8, 23], and may be exacerbated by microwave heating which is not included in our
simulations. For considering the phenomenology discussed in the main text, we use
this model when p = 0 nm and add the prefactor f(Pk, ωk) to Eq. 3.3.

In Fig. 3.6(a-b), we probe EDSR when mediated via a valley state. Magne-
tospectroscopic measurements of the device in our experiment show valley splittings
of 180 µeV and 160 µeV for Q1 and Q2 respectively. We note that valley splittings
of this magnitude would suggest that there is a relatively small degree of hybridiza-
tion between orbital and valley degrees of freedom due to interface defects. For our
simulations, we select a valley splitting of ∆0 = 150 µeV and a modest dipole tran-
sition element of r = 2 nm. An interesting feature appears at the particular Zeeman
splitting of EZ = 60 µeV, where both a dip in the Rabi frequency and visibility
are found at larger driving amplitudes. The precise driving amplitude where this
dip occurs depends on the spatial nature of the valley-like states. We have verified
that such a dip can also result in a crosstalk effect, though it qualitatively does not
match that observed in experiment.
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(a) (b)

��

Figure 3.7: (a) Rabi frequency and (b) visibility of orbital-mediated EDSR where ∆0 = 1 meV,
r = 20/

√
2 nm, and EZ = 60 µeV. As no rotating wave approximation is made in the simulation,

the spin dynamics are not perfectly sinusoidal and small aberrations in the visibility trend appear.
The Rabi frequency is well defined in all cases. As illustrated in the sketch, a larger length p
corresponds to a more skewed confinement potential. This results in a different electric dipole which
affects the onset of the nonlinear features for strong drives. Nonlinearity in the Rabi frequency
scaling becomes apparent when the energy scale of the drive E′ac is no longer of a perturbative
magnitude with respect to the orbital spacing ∆0.

In Fig. 3.6(c-d), we repeat EDSR simulations with a valley-like state with r =
2 nm and p = 0 nm for different Zeeman splittings similar to those used in exper-
iment. In contrast to orbit-mediated EDSR, there is a notable dependence of the
Rabi frequency on EZ . However, no nonlinearity like that seen in experiment is
observed.
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4
Qubit decoherence in a sparse bath

of two-level fluctuators

Decades of extensive research have successfully reduced the number of decohering
defects in the environment of semiconducting and superconducting qubits, leading
to significant improvements in their coherence times. However, the resulting sparse
defect environments leads to increased variability of coherence times among qubits
in quantum processors. In this chapter, we study qubit decoherence as measured
in the Ramsey and Hahn echo experiments, which are caused by a sparse bath of
defects producing noise with spectral density S(f) ∼ 1/f . The defects are modeled
as two-level fluctuators, each randomly changing state with a rate γ, that is log-
uniformly distributed in [γm, γM ]. We find that the bath density, defined as the
ratio of the number of TLFs to the logarithmic width of the distribution of rates,
is a key parameter in determining the behavior of the system. We confirm that
although the noise spectral density remains approximately unchanged, the coher-
ence times become more variable as the bath density decreases. Furthermore, we
numerically confirm that in sparse baths, the Ramsey and echo decay times, T ∗2 and
T2, are dominated by a few exceptional defects characterized by their rate γ. If the
exceptional defects are removed, the coherence times greatly improve. Additionally,
we observed that for a narrow distribution of the couplings of two-level fluctuators
to the qubit, the Ramsey decay in a sparse bath may exhibit revivals. This study
provides new insights into qubit decoherence by realistic 1/f noise which could lead
to the development of strategies to further improve coherence times.

Author contributions: Contributed to conceiving and implemented the work. This work was
conceived and planned by V. V. Dobrovitski, who also participated in the discussion and analysis
of the results. Most results of this chapter are published in Ref. [1].
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4.1. Introduction

S caling quantum computers requires large arrays of well-characterized physical
qubits with long coherence times, enabling the application of quantum error

correction protocols [2, 3]. Noise with spectral density S(f) ∼ 1/f poses a significant
challenge in scaling up solid-state qubits by reducing their coherence times [4]. For
instance, coherence times of semiconductor spin qubits are shortened by charge noise
[5–11], while coherence times of various superconducting qubits are limited by both
charge and magnetic flux noise [12–17]. All of these noise sources exhibit a 1/f
dependence in certain frequency ranges of the spectrum [4].

Collective dynamics of a bath of two-level fluctuators (TLFs) is a widely accepted
model of 1/f noise [18–20]. Any quantum two-level system that undergoes repeated
incoherent tunneling between its states can be a TLF [21]. A well-known example
is the displacement of an atom or a group of atoms between energetically similar
states in a glass [22, 23]. This type of TLFs are present in the glass oxides used
as insulators in solid-state qubit devices [8, 24]. A similar mechanism, particular
to quantum dot devices, is the trapping and detrapping of charged particles [25].
As another example, the surface spins giving rise to flux noise in superconducting
circuits are hypothesized to form clusters that act as TLFs [26, 27].

Although the microscopic origins of 1/f noise in solid-state qubit devices are not
fully understood, substantial progress has been made in mitigating noise sources in
the fabrication stage [8, 28, 29]. For instance, reducing the thickness of the dielectric
layer has been shown to decrease charge noise in Si/SiGe quantum dot spin qubits
[8], while minimizing the junction area and appropriate surface treatment can reduce
charge and flux noise in superconducting qubits [30–32]. Consequently, it is plausible
that the 1/f noise in current devices arises from a sparse bath of TLFs [10, 33]. In
this work, we study qubit decoherence induced by a sparse TLF bath producing
noise with 1/f spectral density. In general, coupling of a qubit to a bath of TLFs
can result in both energy relaxation (T1) and dephasing (T ∗2 and T2) processes.
Here, we focus solely on the qubit dephasing as measured in Ramsey and Hahn echo
experiments.

The conventional approach describes the qubit decoherence in terms of the noise
(first) spectral density [12, 34–37]. However, the qubit decoherence is uniquely
related to the noise spectral density if the noise is a Gaussian random process. Using
numerical simulation, we found that the Gaussianity of the 1/f noise produced by
a TLF bath is determined by the bath density d = n/w, where n is the number
of TLFs and w = ln(γM/γm) is the logarithmic width of the distribution of TLF
rates γ. The 1/f noise of a TLF bath becomes a Gaussian random process when
d → ∞. We assume the rates, γ, are log-uniformly distributed while the coupling
strengths of the TLFs to the qubit, v, are narrowly distributed. These assumptions
guarantee the spectral density of both sparse and dense baths to be of the form
S(f) ∼ 1/f . Our study indicates that even though the spectral density of sparse
and dense baths are quite similar, the qubit decoherence exhibits large fluctuations
across different bath samples when the bath density d is small. Furthermore, we
found that the qubit decoherence in a sparse bath is dominated by a small fraction
of TLFs characterized by their rates. Below, these TLFs are called exceptional. If
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the exceptional TLFs are removed, the coherence times improve substantially.
In addition to the bath density d, the mean coupling strength v̄ relative to the

minimum and maximum rates, γm and γM , is of equal importance. The weak and
strong coupling regimes are defined by v̄ . γm and v̄ � γm, respectively. As γM
is large, we have excluded the case of v̄ & γM from this study. Moreover, we have
omitted the echo decay in the weak coupling regime since it produces results similar
to the Ramsey decay in the same regime. Therefore, our focus is on studying the
Ramsey and echo decay in the strong coupling regime and the Ramsey decay in the
weak coupling regime.

This chapter is organized as follows. In Sec. 4.2, we introduce the model used
to investigate qubit decoherence by 1/f noise of a TLF bath. Section 4.3 presents
the Monte Carlo simulations of the model. In Sec. 4.3.1, we demonstrate that qubit
decoherence in sparse baths varies significantly among bath samples, despite both
sparse and dense baths having a 1/f power spectrum. Section 4.3.2 primarily focuses
on the impact of exceptional TLFs on qubit decoherence in sparse baths and the
substantial improvement achieved by their removal. In Sec. 4.3.3, we show that
in the strong coupling regime (v̄ � γm), the Ramsey decay may exhibit revivals.
In Sec. 4.4, we analyze the results by (i) discussing why conventional approach
of Refs. [12, 34–37] cannot explain the variability in qubit decoherence, and (ii)
comparing exceptional TLFs with few strongly coupled TLFs that have a similar
effect [34]. Finally, in Sec. 4.5, we conclude with remarks on the implications of our
findings and suggest directions for future work.

4.2. Model description
We consider a qubit coupled to a bath of non-interacting TLFs. The qubit density
matrix may be written as

ρ̂ = 1
2(1 +mxσ̂x +myσ̂y +mzσ̂z), (4.1)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices, 1 is the identity matrix, and mη with
η ∈ {x, y, z} are the qubit’s Bloch vector components. The qubit is defined using
the basis states |0〉 and |1〉, which are the eigenstates of the Pauli matrix σ̂z.

The qubit dynamics in the presence of the TLF bath is governed by the Hamil-
tonian

Ĥ(t) = 1
2 [ν0 + ν(t)]σ̂z + Ω(t)

2 cos(ν0t+ φ)σ̂x, (4.2)

where we have set ~ = 1 for simplicity. Here, ν0 is the qubit Larmor frequency
and ν(t) represents random modulations of the qubit frequency induced by TLFs.
The second term describes the control pulses that implement the qubit rotations
required in Ramsey and echo experiments, with the rotation axis specified by φ and
the rotation angle determined by the area under the envelope Ω(t). In the frame
rotating with angular frequency ν0 with respect to the lab frame, and within the
rotating wave approximation, the qubit Hamiltonian reads

H̃(t) = ν(t)
2 σ̂z + Ω(t)

2 [cosφσ̂x + sinφσ̂y]. (4.3)
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In the following, we first discuss the details of the TLF bath and then provide explicit
expressions for the Ramsey and echo decay using the Hamiltonian in Eq. (4.3).

In general, a TLF is a quantum two-level system coupled to its own environment.
A well-known example of a TLF is the spin-boson model, which is used to study
the dissipative dynamics of a two-level system in a heat bath [21]. This model
has different regimes of behavior. In the incoherent tunneling regime, the two-level
system undergoes a series of sudden jumps. A TLF in this work could be thought
of as a two-level system in the spin-boson model operating within the incoherent
tunneling regime. A TLF can be approximated by a classical random process if the
coupling strength to the qubit is smaller than the decoherence rate of the TLF on
its own bath [38]. We assume that the TLFs are symmetric, spending equal time in
both states on average. Physically, a TLF could be a particle incoherently tunneling
or thermally hopping between the minima of a double-well potential [22, 23, 39–41].
For a symmetric TLF, the energy difference ε between the minima is zero. At
high temperatures, when kBT � ε, TLFs with non-zero ε become symmetric [42].
We note that other physical systems, such as charge traps near gate electrodes or
magnetic impurities, can also behave like TLFs [26, 27, 43–46].

We model each TLF by the classical random process

νk(t) = vkξk(t), (4.4)

where ξk(t) is a stationary two-state Markov process with the states ±1 [47], vk is
the coupling strength of the TLF to the qubit, and the index k = 1, . . . , n labels
the TLF. The two-state Markov process is also called random telegraph noise [18].
The autocorrelation function of the two-state Markov process reads

〈ξk(0)ξk(t)〉 = e−2γk|t|, (4.5)

where the brackets 〈...〉 denote averaging over different realizations of the process,
and γk is the transition rate from one state of the process to the other.

The TLF rates are samples of the log-uniform distribution

PΓ(γ) = 1
wγ

, (4.6)

with lower and higher cutoffs γm and γM , respectively. The normalization constant
w = ln(γM/γm) is the logarithmic width of the distribution of rates. For clarity,
we drop indices whenever possible. Throughout this work, we assume a narrow
distribution of coupling strengths PV (v), either Dirac delta distribution or normal
distribution with mean v̄ and standard deviation σV , satisfying σV /v̄ � γM/γm.
We define the bath density d as the ratio of the number of TLFs n to the log-width
of the distribution of rates w, i.e.,

d = n

w
. (4.7)

This parameter plays a crucial role in our work, as we observe novel effects in the
regime where d is small, and the TLF bath is sparse.
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A sample TLF bath is characterized by the set

B = {(γ1, v1), . . . , (γk, vk), . . . , (γn, vn)}, (4.8)

where each pair (γk, vk) for k = 1, · · · , n represents the jumping rate and the cou-
pling strength of the k-th TLF. As said, these values are samples of the probability
densities PΓ(γ) and PV (v). Consequently, the properties of the noise generated
by each sample bath and the corresponding qubit decoherence can vary between
different bath samples. The total noise produced by a sample TLF bath reads

ν(t) =
n∑
k

νk(t), (4.9)

where νk(t), as defined in Eq. (4.4), represents the noise produced by the k-th TLF.
The power spectral density of noise ν(t) is a useful tool for understanding how

the noise power is distributed across different frequencies. It is defined using the
statistical properties of the noise, with stationarity playing a crucial role. The
spectral density of ν(t) is expressed as

S(ω) = lim
T→∞

1
T

〈∣∣∣∣∣
∫ T

0
dt eiωt ν(t)

∣∣∣∣∣
2〉

, (4.10)

where ν(t) represents a single realization of the noise, and 〈· · · 〉 denotes the averaging
over different realization of the noise. This expression can be rewritten as

S(ω) = lim
T→∞

1
T

∫ T

0

∫ T

0
dt′dt′′ eiω(t′′−t′) 〈ν(t′)ν(t′′)〉. (4.11)

Since νk(t) is stationary, the sum ν(t) =
∑
k νk(t) is also stationary. The statistical

properties of a stationary process, such as the autocorrelation function, remain
invariant under time shifts. Therefore, for the stationary noise ν(t), we have

〈v(t′)v(t′′)〉 = 〈v(0)v(t′′ − t′)〉. (4.12)

This implies that the correlation between two values of the process depends only
on the time difference t′′ − t′, rather than the specific time points t′ and t′′. Conse-
quently, the spectral density can be expressed as

S(ω) =
∫ +∞

−∞
dt eiωt 〈ν(0)ν(t)〉. (4.13)

This expression is often used as the primary definition of power spectral density,
in place of Eq. (4.10). The Wiener-Khinchin theorem formally restates this result,
though invoking the theorem is not strictly necessary to establish the relationship.
The Wiener-Khinchin theorem states that the power spectral density of a wide-sense
stationary random process is the Fourier transform of the autocorrelation function,
and vice versa [48].
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The power spectral density of the noise generated by a single TLF, νk(t), can be
calculated as

Sk(ω) =
∫ +∞

−∞
dt eiωt 〈νk(0)νk(t)〉

= v2
k

∫ +∞

−∞
dt eiωt e−2γk|t|

= 4γkv2
k

4γ2
k + ω2 .

(4.14)

The power spectral density of the total noise ν(t) is then

S(ω) =
n∑
k

Sk(ω). (4.15)

Since S(ω) is a sample of the sum of independent and identically distributed random
variables, dividing S(ω) by n gives the sample mean of the spectral density Sk(ω).
According to the law of large numbers [49], as n increases, this sample mean, if it
exists, converges to the true mean of Sk(ω). In other words,

lim
n→∞

1
n

n∑
k

Sk(ω) =
∫ vM

vm

∫ γM

γm

dv dγ PV (v) PΓ(γ) 4γv2

ω2 + 4γ2

= 2 v̄2

w ω
[arctan(2γM/ω)− arctan(2γm/ω)],

(4.16)

where
v̄2 =

∫ vM

vm

dv PV (v) v2, (4.17)

is the variance of noise generated by a single TLF, and vm and vM represent the
minimum and maximum values of the coupling strength, respectively. It should be
noted that the limit n → ∞ is useful for obtaining the analytical estimates of the
noise spectral density. However, in practice, the number of TLFs n can be large but
not infinite in the strict mathematical sense.

The power spectral density provides a tool for analyzing the spectral components
of noise, allowing us to identify regions where the noise behaves as white noise
(constant power across frequencies) or colored noise (power concentrated in specific
frequency bands). Asymptotic expansions of the spectral density

S(ω) = 2 n v̄2

w ω
[arctan(2γM/ω)− arctan(2γm/ω)] , (4.18)

in the low (ω � γm), intermediate (γm � ω � γM ), and high (ω � γM ) frequency
regimes provide simple representations of the distribution of noise power across
different frequencies. Using the trigonometric identity

arctan(z) + arctan
(

1
z

)
= π

2 , (4.19)
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and the Taylor series expansion of the arctangent function,

arctan(z) = z − z3

3 +O(z5), (4.20)

which is convergent for |z| ≤ 1, except for z = ±i, one obtains

arctan(y) = π

2 −
1
y

+ 1
3y3 +O(y−5), (4.21)

where y = 1/z. Equations (4.20) and (4.21) allow us to analyze the asymptotic
behavior of the arctangent function for small and large arguments, respectively. In
the low-frequency limit (ω � γm), both arguments of the arctangent functions in
Eq. (4.18) are large (2γM/ω � 1 and 2γm/ω � 1). Using Eq. (4.21), the spectral
density simplifies to a constant value, corresponding to the white noise spectrum of
ν(t) at low frequencies. For intermediate frequencies (γm � ω � γM ), 2γM/ω � 1
while 2γm/ω � 1. Using the Taylor expansion of arctan(2γm/ω) for small argument
and expanding arctan(2γM/ω) using Eq. (4.21), the spectral density simplifies to

S(ω) ∝ 1
ω
, (4.22)

characteristic of 1/f noise [19]. In the high-frequency limit (ω � γM ), 2γM/ω � 1
and 2γm/ω � 1. Using the Taylor series expansion for both arctangent terms, the
spectral density simplifies to S(ω) ∝ 1/ω2.

Returning to system Hamiltonian in Eq. (4.3), we now provide explicit expres-
sions for the qubit dephasing in a TLF bath as measured in the Ramsey and Hahn
echo experiments. We assume the control pulses are extremely short, such that the
application of a pulse instantly rotates the qubit [50]. In the Ramsey experiment,
the qubit is initialized in the state mx = 1, and after freely evolving for the delay
time t is measured in the x basis. The echo experiment is similar, except for a π
rotation interjecting the free evolution time at t/2 [51]. Since the TLFs are symmet-
ric, the total noise has zero mean, and the noise-averaged Bloch vector component
〈my(t)〉 remains zero while the qubit undergoes dephasing. The phase coherence as
measured in the Ramsey/Hahn echo experiments is therefore FR/H(B; t) = 〈mx(t)〉.
The qubit phase in the Ramsey experiment may be written as

FR(B; t) = 〈exp[i
∫ t

0
dsν(s)]〉. (4.23)

Since the pulses are assumed to rotate the qubit instantaneously, the π pulse in the
echo experiment effectively changes the sign of the noise. Therefore, the echo decay
may be obtained via

FH(B; t) = 〈exp[i
∫ t/2

0
dsν(s)− i

∫ t

t/2
dsν(s)]〉. (4.24)

Since the TLFs are independent and ν(t) =
∑n
k νk(t), the Ramsey/Hahn echo signal

for a qubit coupled to a sample bath B is the product

FR/H(B; t) =
n∏
k

f
(k)
R/H(γk, vk; t), (4.25)
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where f (k)
R/H(t) is the Ramsey/Hahn echo decay induced by the k-th fluctuator.

Explicit expressions for the Ramsey and echo decay induced by a single fluctuator
are [42, 44, 52, 53]

fR(γ, v; t) = e−γt(coshαt+ γ

α
sinhαt), (4.26)

and
fH(γ, v; t) = e−γt(γ

2

α2 coshαt+ γ

α
sinhαt− v2

α2 ), (4.27)

where, α =
√
γ2 − v2. In this work, the Ramsey and echo coherence times, denoted

by T ∗2 and T2, respectively, are defined via

FH(R)(B;T (∗)
2 ) = 1/e. (4.28)

It is useful to recall that if the zero-mean stationary noise ν(t) is a Gaussian
random process, it is fully characterized by the power spectral density S(ω) (see
Ch. 2). This follows from the cumulant expansion for Gaussian processes, where all
cumulants of order higher than two are zero. The first and second-order cumulants
of a random process correspond to its mean and autocorrelation function, respec-
tively. In this work, we consider the general situation where ν(t) is not necessarily
Gaussian. Therefore, the qubit decoherence induced by such a noise is not always
fully described by the noise power spectral density S(ω). This motivates the use of
exact expressions given by Eq. (4.25), instead of the spectral density, for describing
the qubit decoherence. Furthermore, the average of S(ω) for any number of TLFs
n, even if n is not large, matches the expression in Eq. (4.18). This indicates that
S(ω) is a self-averaging quantity.

4.3. Numerical simulation results
To numerically compute the Ramsey/echo decay in a given bath sample B, we
generate a list of TLF rates and coupling strengths as given in Eq. (4.8). We
obtain the modified bath sample, denoted by B̃, by eliminating the pairs of (γ, v)
corresponding to exceptional defects, specified in Sec. 4.3.2. The Ramsey/echo
decay in a given bath sample, either original B or modified B̃, is then calculated
using Eqs. (4.25), (4.26), and (4.27). This procedure constitutes the main part of
the algorithms used for our numerical simulations.

4.3.1. Variability of qubit decoherence
Figure 4.1 presents the numerically computed spectral densities of noise generated by
different TLF bath samples. In both panels, the coupling strengths are distributed
according to PV (v) = δ(v − v̄), excluding the possibility of pronounced Lorentzian
peaks from individual TLFs in the spectrum. The values of γm and γM , which define
the lower and upper cutoffs, are held constant across all spectra. In Fig. 4.1(a), the
number of TLFs n is varied, resulting in bath densities of d < 1, d ∼ 1, and d > 1
for small, intermediate, and large values of n, relative to the logarithmic width of
the rate distribution w = ln(γM/γm). Notably, the spectral densities of both sparse
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Figure 4.1: Simulated spectral densities of the noise generated by bath samples of varying density
d. Both panels (a) and (b) have the same ratio of γM/γm = 109, motivated by experimental
observations of 1/f noise in semiconductor spin qubit devices, which can span several decades
in frequency (see, for instance, Refs. [7, 11]). The noise variance nv̄2 = γ2

m is the same for all
plotted spectra, but the spectra are shifted vertically for clarity. The horizontal and vertical axes
in both plots are scaled logarithmically (log-log plots). (a) Spectral densities of sample baths with
different values of d. The number of TLFs for the blue, red, and black curves are respectively
n = 5, 30, 1000, while the ratio γM/γm = 109 remains constant, resulting in bath densities of
d ≈ 0.18, 1.08, 36.19. (b) Spectral densities of sparse sample baths with fixed values of n = 10
and d ≈ 0.36. Each colored curve represents a specific sample of the spectral density of the TLF
bath, characterized by the set B given in Eq. (4.8).

(d < 1) and dense (d > 1) bath samples are quite similar, with minimal wiggles
introduced by individual TLFs. In particular, a 1/f dependence is observed between
the lower and upper cutoffs, even for d < 1. Here, the noise variance nv̄2 is kept
constant, but the sample spectra are shifted vertically for clarity. Figure 4.1(b)
shows multiple samples of the spectral density for sparse baths, with all system
parameters held fixed. While the precise location of the wiggles varies between
samples, the general 1/f scaling of the spectra remains consistent across samples.

As shown in Fig. 4.2, the behavior of the Ramsey decay FR(B; t) in sparse and
dense baths is distinct from the noise spectra. Figure 4.2(a) shows the Ramsey
decay in a few sparse bath samples with a fixed small density d, revealing that the
qubit decoherence varies significantly among different bath samples. In contrast,
Fig. 4.2(b) shows the Ramsey decay for a few dense bath samples with a fixed large
density d. Here, the Ramsey decay only exhibits subtle variations between the dif-
ferent bath samples. The probability density functions (p.d.f.’s) of the Ramsey decay
FR(B; t) for sparse and dense baths are estimated in Figs. 4.2(c) and 4.2(d), respec-
tively. These panels are pixelated, and a vertical column of pixels is a histogram
showing the estimated p.d.f. of FR(B; t) at a specific value of γmt. The color inten-
sity represents the relative number (fraction) of the qubits having a specific value
of FR(B; t) [or FH(B; t) in remainder of the text] at a specific value of γmt. The
estimated p.d.f.’s demonstrate that for small d, the qubit decoherence is subject to
large variations, while for large d, the decoherence only varies slightly.
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Figure 4.2: Ramsey decay in the weak coupling regime for sparse versus dense baths. The ratio
γM/γm = 105 is fixed in all panels. (a) Ramsey decay in 30 sparse bath samples with n = 10 and
d ≈ 0.87, where the coupling strengths are distributed according to PV (v) = δ(v− v̄) with v̄ = γm.
(b) Ramsey decay in 10 dense bath samples with n = 160 and d ≈ 13.9, where the coupling
strengths are distributed according to PV (v) = δ(v − v̄) with v̄ = γm/4, ensuring that the noise
variance nv̄2 remains the same as in (a). (c)-(d) Histograms estimating p.d.f.’s of Ramsey decay
FR(B; t) corresponding to parameter values in (a)-(b). Each panel has a resolution of 103 × 103

pixels, and a vertical column of 103 pixels at a given time t represents a histogram of 105 samples
of FR(B; t). The number of counts in each pixel is divided by 100 to estimate the probability
density of FR(B; t). The estimated p.d.f. values smaller than 10 are linearly mapped to the color
bar, while those greater than or equal to 10 are mapped to the darkest shade in the color bar.

The same behavior can be seen for the echo decay FH(B; t). Figures 4.3(a)
and 4.3(b) compare the echo decay in sparse and dense baths. The echo decay in
sparse bath samples with a fixed small density d varies again largely among the
different bath samples. In contrast, the echo decay in dense bath samples with a
fixed large density d only slightly varies between the different bath samples. The
estimated p.d.f.’s of the echo decay FH(B; t) for sparse and dense baths are shown
in Figs. 4.3(c) and 4.3(d), respectively.

These simulations indicate that the qubit decoherence is strongly influenced by
the density of the TLF bath d, with significant differences observed between sparse
and dense baths. Although the spectral densities of both types of baths exhibit a



4.3. Numerical simulation results

4

49

Figure 4.3: Echo decay in sparse versus dense baths. For all panels, the ratio γM/γm = 1012 is
fixed. (a) Echo decay in 30 sparse bath samples with n = 16 and d ≈ 0.58. The coupling strengths
are distributed according to PV (v) = δ(v − v̄), with v̄ = γm × 107. (b) Echo decay in 10 dense
bath samples with n = 100 and d ≈ 3.62. We plotted fewer samples than in (a) for clarity. The
coupling strengths are distributed according to PV (v) = δ(v− v̄), with v̄ = 4γm × 106, so that the
noise variance nv̄2 remains the same as in (a). (c)-(d) Histograms estimating p.d.f.’s of echo decay
FH(B; t) corresponding to parameter values in (a)-(b). Details of the histograms are the same as
in Fig. 4.2(c).

1/f dependence with minimal wiggles from individual TLFs, the variability of qubit
decoherence is much greater in sparse baths than in dense ones. It is important to
note that this feature is dependent not only on the bath density d but also on the
coupling regime. The large variability occurs for Ramsey decay in the weak coupling
regime and echo decay in the strong coupling regime, but not for Ramsey decay in
the strong coupling regime. Simulation results for the Ramsey decay in the strong
coupling regime are presented separately in Sec. 4.3.3.

4.3.2. Improvements by removing exceptional defects
A special feature of sparse baths is the occurrence of exceptional defect, a single
TLF that dominates the qubit decoherence. An exceptional defect is identified as
the TLF whose jumping rate γ is closest to the mean coupling strength v̄. The
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question is whether removing exceptional defects can improve the coherence times.
By removing only a fraction of these defects one can greatly improve coherence
times. We demonstrate this improvement for both an infinitely narrow distribution
of coupling strengths and a normal distribution with a small standard deviation. In
both cases, removing exceptional defects leads to similar improvements in coherence
times.

Figure 4.4 shows the qualitative improvement in Ramsey decay by removing
exceptional defects. Specifically, Fig. 4.4(a) shows the Ramsey decay over multiple
bath samples with a fixed small density d. The original bath samples consist of
12 TLFs. These baths are modified by removing only two exceptional TLFs. The
original and modified baths are denoted by B and B̃, respectively. The Ramsey decay
over the original and modified baths, is shown in blue and red curves, respectively.
Figure 4.4(b) illustrates that the improvement in Ramsey decay due to removal of the
exceptional defects is accompanied by a shuffling effect; the order of Ramsey decays
in terms of their coherence times is not preserved when the baths are modified.
Figures 4.4(c) and (d) are histograms estimating the probability densities of Ramsey
decay in the original and modified baths, respectively.

In Fig. 4.5, we quantify the improvement of Ramsey decay by eliminating the
exceptional defects, using the same parameters as in Fig. 4.4. We benchmark the
improvement using the coherence fidelity, which is the amplitude of Ramsey decay
FR(B; t) at a specific time t, and the coherence time T ∗2 . Figure 4.5(a) displays the
estimated probability densities of the coherence fidelity for the original and modified
baths. To determine the fraction of qubits with coherence fidelities above a certain
value, we use the complementary cumulative distribution function (c.c.d.f.) defined
as F̄X(x) =

∫∞
x
PX(u)du for a random variable X with sample x and probability

density PX(x). By removing 2 exceptional defects, the fraction of qubits with coher-
ence fidelity above 90% at time t = 1/γm improves by ≈ 7.7, as shown in Fig. 4.5(b).
Figures 4.5(c) and (d) show the estimated p.d.f. and c.c.d.f. of T ∗2 for the original
and modified baths. We see that the fraction of qubits with T ∗2 ≥ 20/γm improves
by ≈ 14.

Figure 4.6 shows the qualitative improvement in echo decay by removing excep-
tional defects. Figure 4.6(a) shows the echo decay over multiple bath samples with
a fixed small density d. The original bath samples, consisting of 20 TLFs, were
modified by removing only two exceptional TLFs. The original and modified baths
are again denoted by B and B̃, while the blue and red curves represent the echo
decay over the original and modified baths. We observe in Figs. 4.6(a) and (b) that
the removal of exceptional defects leads to a significant improvement in echo decay.
Figures. 4.6(c) and (d) are histograms estimating the probability densities of echo
decay in the original and modified baths.

In Fig. 4.7, we quantitatively investigate the impact of eliminating exceptional
defects on the echo decay, using the same parameters as in Fig. 4.6. Figure 4.7(a) and
(b) show the estimated p.d.f. and c.c.d.f. of the coherence fidelity for the original and
modified baths. Removing two exceptional defects enhances the fraction of qubits
with coherence fidelity above 90% at time t = 10−6/γm by ≈ 3.9 [see Fig. 4.7(b)].
The estimated p.d.f. and c.c.d.f. of T2 for the original and modified baths show that
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Figure 4.4: Improvement of Ramsey decay by removal of exceptional defects. (a) Ramsey decay
over 40 bath samples (blue curves) with γM/γm = 105 and n = 12, giving d ≈ 1.04. The coupling
strengths are distributed according to PV (v) = δ(v−v̄) with v̄ = γm. Each bath sample is modified
by removing two TLFs with the smallest rates. Ramsey decay over modified baths is shown in red
curves. (b) Ramsey decay over 5 bath samples with the same parameters as in (a). Solid/dashed
curves show Ramsey decay over original/modified bath samples. Ramsey decay in the original and
the corresponding modified bath have the same color. (c) and (d) Histograms estimating p.d.f.’s
of FR(B; t) and FR(B̃; t) corresponding to parameter values in (a). Details of the histograms are
the same as in Fig. 4.2(c).

the fraction of qubits with T2 ≥ 4 × 10−6/γm improves by ≈ 7.5 [see Figs. 4.7(c)
and (d)].

Since an infinitely narrow distribution of coupling strengths is unrealistic, we
now check whether exceptional defects have similar impacts for a more realistic
distribution of couplings. For this purpose, we consider a normal distribution of
coupling strengths characterized by the mean value v̄ and the standard deviation
σV . To ensure a narrow distribution of coupling strengths, we impose the condition
that the ratio of σV to v̄ is much smaller than the ratio of the maximum to minimum
rates, i.e.,

σV
v̄
� γM

γm
. (4.29)

This prevents the introduction of pronounced Lorentzian peaks into the spectrum
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Figure 4.5: Quantified improvement of Ramsey decay by removal of exceptional defects. The
system parameters are the same as in Fig. 4.4. (a) P.d.f.’s of fidelity at time t = 1/γm for the
original and modified baths. (b) C.c.d.f.’s of fidelity at time t = 1/γm for the original and modified
baths. The fraction of qubits with fidelity above 90% has approximately a 7.7-fold improvement.
(c) P.d.f.’s of T ∗2 for original and modified baths. (d) C.c.d.f.’s of T ∗2 for original and modified baths.
The fraction of qubits with coherence times T ∗2 ≥ 20/γm improves approximately by a factor of
14.2.

that may occur if few TLFs with large coupling strengths are present on the tail
of a wide distribution. Otherwise, the spectral density is substantially altered and
deviates from the 1/f scaling with frequency between the lower and higher cutoffs.
Figures 4.8 and 4.9 show the improvements of Ramsey and echo decay by removing
exceptional defects, considering a normal distribution of coupling strengths. These
results are qualitatively and quantitatively comparable to our previous findings for
an infinitely narrow distribution of coupling strengths.

4.3.3. Revivals of Ramsey decay
Ramsey decay exhibits revivals in the strong coupling regime when the bath is sparse
and the coupling strengths are narrowly distributed. However, these revivals dis-
appear when the distribution of coupling strengths is wide, as shown in Fig. 4.10
through numerical simulations. We consider normally distributed coupling strengths
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Figure 4.6: Improvement of echo decay by removal of exceptional defects. (a) Echo decay over
30 bath samples (blue curves) with γM/γm = 1012 and n = 20, giving d ≈ 0.72. The coupling
strengths are distributed according to PV (v) = δ(v − v̄) with v̄ = γm. Each bath sample is
modified by removing two TLFs with the rates γ closest to v̄. Ramsey decay over modified baths
is shown in red curves. (b) Ramsey decay over 5 bath samples with the same parameters as in
(a). Solid/dashed curves show Ramsey decay over original/modified bath samples. Ramsey decay
in the original and the corresponding modified bath have the same color. (c) and (d) Histograms
estimating p.d.f.’s of FH(B; t) and FH(B̃; t) corresponding to parameter values in (a). Details of
the histograms are the same as in Fig. 4.2(c).

with mean v̄ and deviation σV . Figure 4.10(a) shows the Ramsey decay for a fixed
small density d and a wide distribution of coupling strengths, while the inset shows
the Ramsey decay for a narrow distribution of coupling strengths. The correspond-
ing histograms in Fig. 4.10(b) and its inset estimate the p.d.f.’s of the Ramsey decay
FR(B; t) for wide and narrow distributions of coupling strengths. We see a revival
with a peak at π/v̄ for the narrow distribution, while in the case of wide distribution,
the revivals are averaged out.

4.4. Discussion
We showed in Sec. 4.3.1 that decreasing the bath density d increases the variability
of qubit decoherence while maintaining a 1/f spectral density. This greatly lim-
its the applicability of the filter function formalism [12, 34–37] in describing qubit
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Figure 4.7: Quantified improvement of Ramsey decay by removal of exceptional defects. The
system parameters are the same as in Fig. 4.6. (a) P.d.f.’s of fidelity at time t = 10−6/γm for
the original and modified baths. (b) C.c.d.f.’s of fidelity at time t = 10−6/γm for the original
and modified baths. The fraction of qubits with fidelity above 90% has approximately a 3.9-fold
improvement. (c) P.d.f.’s of T2 for original and modified baths. (d) C.c.d.f.’s of T2 for original
and modified baths. The fraction of qubits with coherence times T2 ≥ 4 × 10−6/γm improves
approximately by a factor of 7.5.

decoherence in sparse baths. The filter function formalism describes the qubit de-
coherence within the Gaussian approximation of the environmental noise. It relates
the Ramsey and echo decay to the noise first spectral density S(ω) via

FR/H [S(ω); t] = exp[−1
2

∫
dωS(ω)

GR/H(ωt)
ω2 ], (4.30)

where GR(ωt) = 2 sin2 ωt
2 and GH(ωt) = 8 sin4 ωt

4 are the Ramsey and echo filter
functions, respectively [35]. This equation allows for describing the qubit dynamics
without requiring knowledge of the environment’s microscopic details. One can also
use Eq. (4.30) to characterize the environmental noise from the qubit’s dynamics.
However, it is important to note that Eq. (4.30) only provides partial information
about the environmental noise since it is not known a priori whether the noise is a
Gaussian random process. The first spectral density S(ω) can only fully characterize
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Figure 4.8: Improvement of Ramsey decay by removal of exceptional defects for a normal distribu-
tion of coupling strengths. (a) Ramsey decay over 30 bath samples (blue curves) with γM/γm = 105

and n = 12, giving d ≈ 1.04. The coupling strengths are normally distributed with mean v̄ = γm

and deviation σV = γm/10. Each bath sample is modified by removing two TLFs with the smallest
rates. Ramsey decay over modified baths is shown in red curves. (b) C.c.d.f.’s of fidelity at time
t = 1/γm for the original and modified baths. The fraction of qubits with fidelity above 90% has
approximately a 7.5-fold improvement. (c) C.c.d.f.’s of T ∗2 for original and modified baths. The
fraction of qubits with coherence times T ∗2 ≥ 20/γm improves approximately by a factor of 14.2.

the noise if it is a Gaussian random process [48], and the noise produced by a sparse
bath can be non-Gaussian.

Increasing the bath density d, while keeping the interval [γm, γM ] and the
noise variance nv̄2 constant, reduces the variability of Ramsey and echo decay [see
Figs. 4.1, 4.2, and 4.3]. As the bath density d approaches infinity, the variability of
Ramsey and echo decay disappears, and the signals FR/H(B; t) and FR/H [S(ω); t],
given by Eqs. (4.25) and (4.30), merge. In this limit, the noise produced by the
TLF bath becomes a Gaussian random process. We stress that it is the bath den-
sity d and not the number of TLFs n that determine the Gaussianity of the noise.
We believe that the present devices with high-quality qubits are plausibly coupled
to sparse baths with small bath density d. In this regime, the qubit decoherence
variability is high, despite the similarity of noise spectra shown in Fig. 4.1(b).
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Figure 4.9: Improvement of echo decay by removal of exceptional defects for a normal distribution
of coupling strengths. (a) echo decay over 30 bath samples (blue curves) with γM/γm = 1012 and
n = 20, giving d ≈ 0.72. The coupling strengths are normally distributed with mean v̄ = 106γm

and deviation σV = v̄. Each sample bath is modified by removing two TLFs with rates closest
to v̄. Ramsey decay over modified baths is shown in red curves. (b) C.c.d.f.’s of fidelity at time
t = 10−6/γm for the original and modified baths. The fraction of qubits with fidelity above 90%
improves approximately by a factor of 2.9. (c) C.c.d.f.’s of T2 for original and modified baths.
The fraction of qubits with coherence times T2 ≥ 4 × 10−6/γm has approximately a 3.9-fold
improvement.

We now analyze the significant impact of exceptional defects on coherence times,
despite them being a small fraction of defects. Exceptional defects are best under-
stood in the Ramsey decay. We consider the special case of strictly weak coupling
strengths, ∀k : v̄ � γk, that are infinitely narrow distributed, PV (v) = δ(v − v̄).
The total Ramsey decay in the sample bath B and the decay induced by a single
TLF are given by Eqs. (4.25) and (4.26), respectively. Asymptotically, the Ramsey
decay induced by a single fluctuator for times t� γk converges to

fR(γk, v̄; t) ≈ exp(− v̄
2t

2γk
). (4.31)
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What could be done:
(i) CP and PDD sparse baths and non-applicability of the widely used theory,
(ii) Statistics of CP and PDD (e.g., which sequence works better),
(iii) Pulse errors

I. INTRODUCTION

Appendix A: Formulas for the sake of
self-consistency

Spectral density–How to derive the noise spectral den-
sity in the Gaussian limit. Each TLF contributed a
Lorentzian to the power spectrum
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The rates are distributed on � 2 [�m, �M ]. For n TLFs,
the power spectrum reads
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4�2
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For n ! 1 (central limit theorem: sum of random func-
tions, converges to [function’s mean]⇥n. In practice the
1 is a large number. We need to keep track of n for our
numerical calculations.)

S(!) / arctan(2�M/!) � arctan(2�m/!)

!
, (A3)

where the proportionality factor is 2nhV 2i/w. The brack-
ets in hV 2i indicate averaging over PV (v).

Single TLF CP–Qubit dephasing due to a single TLF,
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Figure 4.10: Revivals of Ramsey decay over sparse bath samples in the strong coupling regime
(v̄ � γm), with a fixed ratio of γM/γm = 1010, mean coupling strength of v̄ = γm × 105, and
n = 16 TLFs giving a bath density of d ≈ 0.69. The axes of insets have the same labels as the
main panels. (a) Ramsey decay over 15 sparse bath samples with a wide distribution of coupling
strengths with standard deviation σV = 5γm × 105. The inset shows the Ramsey decay in bath
samples with a narrow distribution of coupling strengths with standard deviation σV = γm × 102.
(b) Histograms estimating the p.d.f.’s of the Ramsey decay with the same parameters as in (a) and
its inset. In our numerical simulations, we considered the whole range of Ramsey decay FR(B; t),
i.e., [−1, 1], and the resolution of both the outer panel and the inset were originally 1000× 1250
pixels. A vertical column of 1000 pixels at a given time t represents a histogram of 105 samples
of FR(B; t). In the outer panel and its inset, the number of counts in each pixel is divided by 200
to estimate the p.d.f. values of FR(B; t). The estimated p.d.f. values smaller than 5 are linearly
mapped to the color bar, while those greater than or equal to 5 are mapped to the darkest shade
in the color bar. Here, we have cropped the plots for aesthetic reasons. The outer panel covers
the range of Ramsey decay [−0.3, 1] with a resolution of 650 × 1250 pixels. The inset covers the
range of Ramsey decay [−0.5, 1] and has a resolution of 750× 1250 pixels.

For times t� 1/γm, the total Ramsey decay becomes

FR(B; t) ≈ exp(− v̄
2t

2 ζ), ζ =
n∑
k=1

τk, (4.32)

where τk = 1/γk with k = 1, . . . , n. The probability density of γk is invariant under
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this change of variable, i.e.,

PT (τ) = 1
wτ

, τ ∈ [τm, τM ], (4.33)

which is the same as PΓ(γ) given in Eq. (4.6), excluding the cutoffs τm = 1/γM
and τM = 1/γm. The probability density PZ(ζ) of the sum ζ strongly affects the
behavior of Ramsey decay. We sort the summands τ1, . . . , τn by their magnitudes,
with the typical ratio of subsequent summands r ∼ e1/d. When d � 1, the ratio
r is large and the largest τ dominates the sum ζ. This means that the Ramsey
decay in a sparse bath is dominated by the fluctuator with the smallest γ, known
as the exceptional defect. Since the sum ζ is dominated by a single summand τ , it
is tempting to presume its probability density resembles that of τ .

On the other hand, when d � 1, the ratio r approaches unity and neighboring
summands become similar. As a result, the probability density of a group of neigh-
boring τ ’s approximates a normal distribution, leading to a convolution of normal
distributions for the entire sum. Therefore, a central limit theorem-like analysis is
applicable in this regime.

Similar to Ramsey decay, the echo decay in sparse baths are also dominated by
exceptional defects. We consider again an infinitely narrow distribution of coupling
strengths. We divide the sample bath B into two baths of slow and fast TLFs,
denoted by Bslow and Bfast. The TLFs in the slow (fast) bath have rates γ smaller
(larger) than the mean coupling v̄. For times t � 1/v̄, the echo decay induced
by a single fast TLF is approximately exp(−v̄2t/2γ), which has the same form as
Eq. (4.31). The echo decay for times t� 1/v̄ induced by all the fast TLFs reads

FH(Bfast; t) ≈ exp(− v̄
2t

2 ζ), ζ =
m∑
k=1

τk, (4.34)

where m is the number of fast TLFs. Equation above takes the same form as
Eq. (4.32). Therefore, the echo decay induced by the fast bath Bfast is dominated
by the TLFs whose rates are closest to the mean coupling v̄. On the other hand,
the echo decay induced by a single slow TLF asymptotically converges to exp(−γt)
at times t � 1/v̄. The echo decay induced by all the slow TLFs for times t � 1/v̄
reads

FH(Bslow; t) ≈ exp(−Γt), Γ =
l∑

k=1
γk, (4.35)

where l = n−m. Decoherence induced by the slow bath Bslow is determined by Γ,
which is a sum of log-uniformly distributed random variables γ. In sparse baths,
the sum Γ is dominated by the largest γ, in the same way that ζ is dominated by
the smallest γ. Therefore, the exceptional defects among the slow TLFs are also
those with rates closest to v̄.

Similar to exceptional defects, strongly coupled defects are a small fraction of de-
fects that dominate the qubit decoherence [34, 37]. However, these defects introduce
pronounced Lorentzian peaks into the noise spectral density [17]. Mathematically,
these defects appear on the tail of a broad distribution, such as PV (v) ∝ 1/v2 [34].
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In our work, we consider a narrow distribution of coupling strengths maintaining
the experimentally observed 1/f spectral density. Additionally, when strongly cou-
pled defects are in resonance with the qubit, they significantly reduce the qubit’s
energy relaxation time T1 through flip-flop processes [54]. The latter can be cir-
cumvented by tuning the qubit frequency away from the strongly coupled TLF. Our
results on exceptional defects suggest that further improvement of coherence times
is achievable even in the absence of strongly coupled defects.

Revivals of Ramsey decay, as predicted by our results, have not been previously
observed in experiments. We showed that these revivals may only occur for a narrow
distribution of coupling strengths, making them rare events. Additionally, confirma-
tion bias may have prevented its detection as it is unlikely to continue recording the
Ramsey signal once it decays to zero. To analyze this effect, we consider an infinitely
narrow distribution of coupling strengths and divide the sample bath B into slow
and fast baths, Bslow and Bfast. Revivals are induced by the slow bath Bslow, where
each slow TLF causes an underdamped decay of approximately exp(−γkt) cos(v̄t).
The Ramsey decay induced by all the slow TLFs reads

FR(Bslow; t) ≈ exp(−Γt) cosl(v̄t), Γ =
l∑

k=1
γk, (4.36)

where l is the number of slow TLFs. Revivals occur when the oscillations have
similar frequencies due to a narrow distribution of coupling strengths, whereas a
broad distribution or a large number of defects leads to the disappearance of revivals.
This effect is similar to constructive and destructive interference.

4.5. Concluding remarks
We studied qubit decoherence by 1/f noise of a sparse bath of TLFs as measured
in the Ramsey and Hahn echo experiments. We showed that decreasing the density
of defects d leads to increased variability of coherence times among qubits. We also
found that in sparse baths, the coherence times are dominated by a few exceptional
defects characterized by their rates. Removing these exceptional defects can sig-
nificantly improve coherence times. Additionally, we observed that for a narrow
distribution of coupling strengths v, the Ramsey decay may exhibit revivals. Our
findings provide new insights into the decoherence of high-quality qubits induced by
1/f noise and offer potential strategies for improving coherence times in many-qubit
processors.

This study can be pursued in different directions. For example, our model can
be extended to include qubit decoherence under dynamical decoupling pulse se-
quences (see App. 4.A). Our preliminary numerical simulations show that even in
a dense bath, where the Ramsey decay vary slightly, the application of (perfect)
refocusing pulses increases the variability of qubit decoherence (see Ch. 6). These
results will be presented in a separate manuscript. Additionally, it would be useful
to compare the variability of qubit decoherence in sparse baths for different dy-
namical decoupling protocols and investigate whether the qubit decoherence under
dynamical decoupling pulse sequences is also dominated by exceptional defects.
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4.A. Decoherence of a qubit subject to Carr-
Purcell pulse sequence

The Ramsey and echo decay of a qubit in sparse TLF baths with 1/f spectral
density were investigated in the main text. An important next step is to study
dephasing of a qubit subject to dynamical decoupling pulse sequences. Here, we
present preliminary simulation results for the Carr-Purcell sequence.

We use the same model described in Sec. 4.2 of the main text. The formulas for
the Ramsey and echo decay are given in Sec. 4.2. The formula for the Carr-Purcell
decay is given by [37]

FCP(B; t) =
n∏
k

f
(k)
CP(t), (4.37)

where

f
(k)
CP(t) = e−γkt

2

 γ2
k cosh(αkt/m)− v2

k

αk

√
γ2
k cosh2(αkt/m)− v2

k

(µmk,+ − µmk,−) + µmk,+ + µmk,−

 , (4.38)

with αk =
√
γ2
k − v2

k and

µk,± = γk
αk

[
sinh(αkt/m)±

√
cosh2(αkt/m)− v2

k/γ
2
k

]
. (4.39)

Here, m denotes the number of echo pulses, γk is the TLF switching rate, and vk
denotes the qubit-TLF coupling strength.

We first consider the strong coupling regime (γm � v̄), where echo pulses en-
hance the dephasing times significantly. Figure 4.11 compares qubit dephasing as
measured in the Ramsey, Hahn echo, and Carr-Purcell experiments. In Fig. 4.11,
each bath sample consists of 10 TLFs and the switching rates of TLFs are log-
uniformly distributed between γm and γM = 105γm. The coupling strengths vk are
normally distributed with mean v̄ = 5×104γm and standard deviation σV = 103γm.
With this choice of parameters we are in the strong coupling regime (γm � v̄). The
simulations results presented in Fig. 4.11 demonstrate that while the Ramsey decay
remains relatively constant across sparse bath samples, applying echo pulses leads
to increased variations in qubit decoherence.
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Figure 4.11: Comparison of qubit dephasing as measured in the Ramsey, Hahn echo, and Carr-
Purcell experiment. (a)-(d) Each panel shows qubit decoherence in 50 bath samples with n = 10,
γM = 105γm. The coupling strengths of TLFs are normally distributed with mean v̄ = 5× 104γm

and deviation σV = 103γm. (e)-(h) Histograms estimating p.d.f.’s of qubit decoherence. Each
panel has a resolution of 103 × 103 pixels, and a vertical column of 103 pixels at a given time t
represents a histogram of 105 samples of FR/H/CP(B; t). The number of counts in each pixel is
divided by 100 to estimate the probability density of FR/H/CP(B; t). The estimated p.d.f. values
smaller than 10 are linearly mapped to the color bar, while those greater than or equal to 10 are
mapped to the darkest shade in the color bar.
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Comparing the simulation results of Ramsey and echo decay [Figs. 4.11(a), (b),
(e) and (f)] offers insight into the increased variability in qubit decoherence resulting
from the application of echo pulses. In the Ramsey decay [see Figs. 4.11(a) and (e)],
qubit decoherence is dominated by slow TLFs, with switching rates γk < vk. In
a given bath sample, the contribution of each slow TLF to qubit decoherence is
an underdamped decay of approximately ≈ exp(−γkt) cos(vkt) [55]. Due to narrow
distribution of coupling strengths, the underdamped decays induced by slow TLFs
exhibit oscillations with frequencies close to v̄, leading to negligible variations of
qubit decoherence among different bath samples. The echo decay induced by a
slow TLF is approximately ≈ exp(−γkt) [55]. The overall contribution of all slow
TLFs to the echo decay is then approximately ≈ exp(−

∑l
k γkt), where l denotes

the number of slow TLFs. The qubit decoherence is therefore influenced by a sum of
log-uniformly distributed random variables

∑l
k γk, resulting in significant variations

across sparse bath samples [see Figs. 4.11(b) and (f)].
The effectiveness of echo pulses in mitigating qubit dephasing induced by 1/f

noise depends on the value of mean coupling strength v̄ relative to minimum switch-
ing rate γm. As discussed in the main text, for a narrow distribution of coupling
strengths, the noise spectral density across different bath samples maintains its 1/f
scaling with frequency. In our noise model, varying the mean coupling strength v̄
does not affect the 1/f scaling of the spectral density with frequency. In Fig. 4.11, we
considered the strong coupling regime (v̄ � γm), where the echo pulses significantly
increase the dephasing times. In this regime, the Ramsey decay varies negligibly
across bath samples, and applying a single echo pulse results in large variations of
coherence times. In contrast, in the weak coupling regime (v̄ . γm), the echo pulses
are less effective in enhancing the dephasing times. In the latter case, the Ramsey
decay is already subject to large variations across bath samples. The contrast in
variability of Ramsey decay in the weak and strong coupling regimes, and effec-
tiveness of a single echo pulse in increasing the coherence times, is illustrated in
Fig. 4.12.

Simulations of qubit decoherence in the weak coupling regime (v̄ < γm) and for
the Carr-Purcell sequence are presented in Figs. 4.13(c)-(d). Figures 4.13(a)-(b)
show the Ramsey and echo decay and have been repeatedly presented before. Here,
we include them for understanding the performance of the Carr-Purcell sequence
in the weak coupling regime. In Figs. 4.13(a)-(d), each curve represents the qubit
decoherence in a specific bath sample. Each bath sample consists of 10 TLFs with
switching rates γ log-uniformly distributed between the minimum rate γm and the
maximum rate γM = 105γm. The coupling strengths v are normally distributed
with the mean value v̄ = 0.5× γm and standard deviation σV = 0.01× γm.

As previously mentioned, the effectiveness of echo pulses in mitigating the qubit
decoherence depends on the value of the mean coupling strength v̄ compared to
the range of TLF rates [γm, γM ] [35, 56]. As shown in Figs. 4.13(a)-(c), in the
weak coupling where v̄ < γm, the Ramsey and echo decays exhibit similar coherence
times on average, and the Carr-Purcell sequence with 20 π-pulses does not lead
to significant improvements of coherence times. Since v̄ is smaller than γm, the
coherence fidelities, FR(B; t), start to decay exponentially at very short times.
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Figure 4.12: Comparison of Ramsey and echo decay in the strong (v̄ � γm) versus weak (v̄ < γm)
coupling regimes. Each curve represents the Ramsey/echo decay in a sample bath consisting of 10
TLFs. The TLF rates in (a)-(d) are log-uniformly distributed between γm and γM = 105γm. (a)-
(b) Ramsey and echo decay in the strong coupling regime. The coupling strengths v are normally
distributed with mean 5× 104γm and deviation 103γm. The Ramsey decays in (a) show minimal
variations across bath samples, while the echo decays in (b) exhibit large variations. (c)-(d) Ramsey
and echo decay in the weak coupling regime. The coupling strengths v are normally distributed
with mean 0.5 × γm and deviation 0.01 × γm. The Ramsey decays in (c) are already subject to
large variations across bath samples, and applying an echo pulse in (d) does not result in a notable
improvement in coherence times.

This can be likened to motional narrowing effect. Roughly speaking, in the weak
coupling regime, an echo pulse can mitigate the qubit decoherence if applied at the
time interval prior to exponential decay, where the curvature of coherence fidelity
FR(B; t) is still negative. Since this time interval in the weak coupling regime is
small, more and more echo pulses are needed to mitigate the qubit decoherence.
This effect is illustrated in Fig. 4.12(d), where the Carr-Purcell sequence with 200
π-pulses eventually leads to noticeable increase in the coherence times.



4

64 References

Figure 4.13: Qubit decoherence in the weak coupling regime for the Ramsey, echo, and Carr-
Purcell sequence. (a)-(d) Each curve represents the qubit decoherence in a specific bath sample
consisting of 10 TLFs with rates γ log-uniformly distributed between γm and γM = 105γm. The
coupling strengths are normally distributed with mean v̄ = 0.5 × γm and standard deviation
σV = 0.01× γm. (a)-(b) The coherence times in the Ramsey (a) and echo (b) decay appear to be
similar. (c) The Carr-Purcell sequence with 20 π-pulses does not lead to significant improvements of
coherence times. (d) The Carr-Purcell sequence with 200 π-pulses leads to noticeable improvement
of coherence times.
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5
Dephasing times and frequency

shifts of heated spin qubits

Semiconductor spin qubits offer the potential for scalable quantum computing by
integrating classical electronics on the same chip as the qubits. To achieve this,
operating spin qubits at temperatures above 1 K is necessary, yet their performance
at higher temperatures remains poorly understood due to most experiments being
conducted below 100 mK. Two observed phenomena in the pursuit of operating
spin qubits at higher temperatures are thermal stabilities of dephasing times and a
temperature-dependent shift in qubit frequency. We investigate whether these two
phenomena can be explained by a phenomenological model of charge noise origi-
nating from a bath of tunneling two-level fluctuators coupled to acoustic phonons.
The theoretical model justifies the qubit frequency shift as the equilibrium state
of the two-level fluctuators shifts the qubit frequency by a constant value. The
model also relates the Ramsey and echo decay times to phonon bath temperature.
However, our numerical simulations reveal that while each effect can be explained
by adjusting the model parameters, our model does not reproduce both phenomena
simultaneously. Our hope is that the present work motivates the development of
experiments to refute or validate this phenomenological model.

Author contributions: Contributed to conceiving and implemented the work. Analyzed the results
with inputs from L. M. K. Vandersypen, V. V. Dobrovitski, and M. Rimbach-Russ.
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5.1. Introduction

R eal-time communication between the classical and quantum realms is essential
for fault-tolerant quantum computing, which involves detecting and correcting

errors in millions of qubits using algorithms running on a classical computer [1].
However, current semiconductor spin qubits are typically operated at temperatures
below 100 mK [2, 3], and room-temperature control electronics interface them to a
classical computer. This creates an interconnect bottleneck in scaling spin qubits due
to limitations in cooling power [4–6]. Operating spin qubits at elevated temperatures
of 1−4 K potentially allows for the integration of a first layer of classical electronics
next to the qubits thus facilitating the scalability [4].

Recent efforts to raise the operating temperature of quantum dot spin qubits
have yielded promising results [5–10]. However, these experiments have uncovered
intriguing phenomena that require further investigation. Specifically, increasing
the temperature of silicon spin qubits (from a few millikelvin to 0.6 K) has been
shown to cause a shift in their Larmor frequency [11], that may be linked to pulse-
induced resonance shift [12, 13]. Additionally, coherence times of the spin qubits
measured in the Ramsey and Hahn echo experiments have shown little dependence
on temperatures below 1 K [5, 6, 8].

In this chapter, we study the temperature dependencies of the qubit frequency
as well as the Ramsey and echo decay times using a phenomenological model of
charge noise. The microscopic origins of charge noise in quantum dot devices is a
subject of ongoing research [13–19]. Here, we model the charge noise by a bath of
Two-Level Fluctuators (TLFs) which undergo tunneling by emission and absorption
of acoustic phonons. The electric dipole moments of the TLFs couple to the charge,
and therefore orbital state, of the quantum dot electron via the Coulomb interac-
tion. The artificial and/or intrinsic spin-orbit interactions convert the electric fields
to magnetic fields [20]. Therefore, the electric field fluctuations caused by TLFs
translate to random modulations of the qubit Larmor frequency.

Random modulations of the qubit Larmor frequency result in dephasing of the
spin qubits and their mean value shifts the qubit frequency. Since the dynamics
of TLFs depend on the phonon bath temperature, the random modulations of the
qubit frequency is also temperature dependent [21]. The qubit frequency shift can be
explained by the time-averaged states of the TLFs in thermal equilibrium with the
phonon bath. The coherence times of spin qubits are relatively insensitive to tem-
perature in various material stacks used for fabricating quantum dot devices [5, 6, 8].
However, the qubit frequency shift is unique to each device heterostructure and can
be positive, negative, or non-monotonic depending on the device heterostructure
[11, 12, 22]. In this work, we aim to replicate the positive non-monotonic frequency
shift reported in Ref. [11], where the qubit frequency increases with temperature,
reaching a maximum at approximately 200 mK before declining at higher tempera-
tures.

The rest of this chapter is organized as follows. In Sec. 5.2, we introduce the
phenomenological model of the low-frequency charge noise produced by a bath of
TLFs, and present the formulas for the qubit Ramsey and echo decay and the qubit
frequency shift. Section 5.3 presents the numerical simulations of the model. We
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analyze and discuss the simulation results in Sec. 5.4. We conclude the chapter in
Sec. 5.5 by pointing at the implications of our results and suggesting future research
directions.

5.2. Model description
We consider a qubit coupled to a bath of TLFs. The density matrix of the qubit
can be expressed as

ρ̂ = 1
2(1 +mxσ̂x +myσ̂y +mzσ̂z), (5.1)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices, 1 is the identity matrix, and mα with
α ∈ {x, y, z} are the components of the qubit’s Bloch vector. The qubit is defined
using the basis states |0〉 and |1〉, which are the eigenstates of the Pauli matrix σ̂z
with eigenvalues +1 and −1, respectively.

The Hamiltonian of the whole system can be written as

Ĥ = ĤQ + ĤB + ĤI, (5.2)

where ĤQ represents the qubit Hamiltonian, ĤB is the Hamiltonian of the TLF
bath coupled to acoustic phonons, and ĤI describes the interaction between the
qubit and the TLF bath. For simplicity, we set ~ = 1. The qubit states |0〉 and |1〉
are encoded in the eigenstates of a single electron spin, parallel and anti-parallel to
an external magnetic field Bzêz. The qubit Hamiltonian can be expressed as

ĤQ = −ω0

2 σ̂z + Ω(t)
2 cos[ω0t+ φ(t)]σ̂x, (5.3)

where the first term represents the spin precession with Larmor frequency ω0 around
the quantization axis êz. The second term describes the control pulse sequence in
Ramsey and Hahn echo experiments, where Ω(t) denotes the envelope and φ(t)
specifies the phase of the control pulses. These pulses are resonant with the qubit’s
Larmor frequency ω0, inducing single-qubit rotations, with the rotation angle and
axis determined by Ω(t) and φ(t) [23]. The Larmor frequency ω0 = gµBBz includes
the Bohr magneton µB, the electron Landé g-factor, and the strength of the external
magnetic field Bz.

The qubit bath is described using the standard TLF model, which was initially
developed to explain anomalies observed in glasses at low temperatures [24–33]. In
this model, a TLF refers to a charged particle that can tunnel between two localized
states due to interactions with acoustic phonons. The Hamiltonian that describes
the TLF bath can be expressed as the sum of three terms:

ĤB = ĤTLF + Ĥph + Ĥint. (5.4)

The first term, represents the bare Hamiltonian of the TLF ensemble in the localized
basis and is given by

ĤTLF = 1
2

n∑
k

(εk τ̂zk + ∆k τ̂
x
k ), (5.5)
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Figure 5.1: The double-well potential of a tunneling TLF. The localized states of the TLF with
detuning energy ε and distance d are depicted by the blue and red curves. The average energy of
the localized states is considered to be zero. The barrier height from the zero of energy is indicated
by V . The tunneling amplitude ∆ = ∆0 exp(−Λ), where Λ ≈ (2m∗V )1/2d/2 and ∆0 depend on
the specific details of the double-well potential [24]. Here, m∗ represents the mass of the tunneling
entity.

where k labels the TLFs and τ̂αk with α ∈ {x, y, z} are the Pauli matrices acting in
the subspace of the k-th TLF. The parameters εk and ∆k are the detuning energy
and tunneling amplitude, respectively. They depend on details of the TLF potential
shown in Fig. 5.1. The second term, given by

Ĥph =
∑
λ

ωλâ
†
λâλ, (5.6)

describes the phonon bath, which is a collection of harmonic oscillators with angular
frequencies ωλ. Here, âλ and â†λ are bosonic annihilation and creation operators.
The third term given by

Ĥint =
n∑
k

τ̂zk
∑
λ

gλ(âλ + â†λ), (5.7)

represents the interaction between the TLFs and the phonon bath. We assume for
simplicity that all TLFs have the same coupling strength to the phonon mode λ,
denoted as gλ. In reality, the strain fields perturb both the detuning energy εk
and tunneling amplitude ∆k, but we ignore the perturbations of ∆k since they are
negligible [28].

We further assume that the decoherence and relaxation rates of each TLF is much
larger than its coupling strength to the qubit. Under this condition, the dynamics
of a TLF is not affected by the state of the qubit, and the TLF can be approximated
as random telegraph noise (RTN) [34]. The corresponding dynamics of each TLF is
the energy relaxation, which is best understood in the energy eigenbasis using the
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transformation

τ̂xk = ∆k

Ek
τ̃zk −

εk
Ek

τ̃xk

τ̂zk = εk
Ek

τ̃zk + ∆k

Ek
τ̃xk

(5.8)

with Ek =
√
ε2k + ∆2

k. This allows us to rewrite the bare TLF Hamiltonian as

H̃TLF =
n∑
k

Ek τ̃
z
k . (5.9)

The transformed interaction Hamiltonian reads

H̃int =
n∑
k

∆k

Ek
τ̃xk
∑
λ

gλ(âλ + â†λ), (5.10)

where we have neglected the term proportional to τ̃zk due to vanishing coupling of
the TLFs to off-resonant phonons [34, 35].

This study focuses on the TLFs present in dielectrics. At temperatures below
1 K, energy relaxation of TLFs is mainly determined by one-phonon processes [27].
By using Fermi’s golden rule, we can compute the excitation and relaxation rates,
also known as switching rates, of a TLF through one-phonon processes. The exci-
tation rate is given by

γ↑k = J(Ek)
(

∆k

Ek

)2
nB(Ek), (5.11)

while the relaxation rate is given by

γ↓k = J(Ek)
(

∆k

Ek

)2
[nB(Ek) + 1]. (5.12)

Here, the Bose factor nB(ω) = [exp(βω) − 1]−1, where β = 1/kBT is the inverse
temperature, and J(ω) =

∑
λ g

2
λδ(ω − ωλ) is the spectral function of the phonon

bath. Considering the coupling of the TLFs to acoustic phonons, we assume a cubic
spectral function J(ω) = 2J0 ω

3 [30].
The average switching rate, given by

γk =
γ↓k + γ↑k

2
= J0 ∆2

k Ek coth(βEk/2),
(5.13)

determines how fast the TLF undergoes tunneling between the excited and ground
state. For simplicity, we set the Boltzman constant kB = 1. As shown in Fig. 5.2,
for temperatures T � Ek, the average switching rate remains a small constant and
the TLF almost freezes in the ground state. For temperatures T � Ek, the TLF
excitation and relaxation rates become equal, and the average switching rate grows
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linearly with temperature. It is worth noting that for large temperatures, higher
excited states of the double-well potential become populated, and the TLF picture
breaks down.

The TLFs couple to the spin qubit via the Coulomb interaction [36, 37]. More
specifically, the electric dipole moments of the TLFs couple to the charge, and thus
orbital states, of the quantum dot electron. The electron’s orbital state, in turn,
couples to the electron spin via the micromagnet’s gradient field. The gradient field
is needed to implement single-qubit gates in silicon via electric-dipole spin resonance
as well as the frequency selectivity of qubits. This mechanism can be thought of
as synthetic spin-orbit coupling [20, 38, 39]. In summary, changes in the TLF state
effectively alter the magnetic field sensed by the electron spin. Charge noise in
general contributes to both energy relaxation (T1) and dephasing (T ∗2 and T2) of
the spin qubits [20]. However, due to the energy mismatch between the TLFs and the
qubit, it is assumed that the TLFs only contribute to qubit dephasing. Therefore,
we describe the interaction between the qubit and the TLF bath using the simplified
Hamiltonian

ĤI = σ̂z

n∑
k

vk τ̃
z
k . (5.14)

Here, the coupling strengths between the TLFs and the qubit are represented by the
values vk. We assume that the coupling strengths vk are distributed independently
and identically according to a normal probability density function given by

PV (v) = 1
σV
√

2π
exp

[
−1

2(v − V̄
σV

)2
]
, (5.15)

where V̄ and σV represent the mean and standard deviation of the random variable
V . In a given bath, the coupling strengths vk are samples of V .

We now simplify the system Hamiltonian by approximating the TLFs as RTN
signals. In the frame rotating with Larmor frequency ω0, and within the rotating
wave approximation, the dynamics of a qubit in a bath of TLFs can be described
by the Hamiltonian

H̃RWA = ωQ(t)
2 σ̂z + Ω(t)

2 [cosφ(t)σ̂x + sinφ(t)σ̂y]. (5.16)

Here,
ωQ(t) =

∑
k

νk(t), (5.17)

describes random modulations of the qubit frequency induced by RTN signals. An
RTN signal is denoted by νk(t) = vkξk(t), where vk is the coupling constant and ξk(t)
is a two-state Markov process. Each two-state process randomly switches between
the state +1 and −1, which are mappings of the excited and ground state of a TLF.
The two-state process switches between these states with excitation and relaxation
rates, γ↑k and γ↓k , as given in Eqs. (5.11) and (5.12).
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We assume that the RTNs are stationary random processes. The autocorrelation
function of each RTN can be written as

〈νk(t)νk(0)〉 = v2
k e
−γk|t|

cosh2(βEk/2)
+ 〈νk〉2, (5.18)

where
〈νk〉 = −vk tanh(βEk/2), (5.19)

is the mean value of the RTN. The angular brackets 〈· · · 〉 indicate averaging over
different realizations of the RTN. A detailed derivation of this formula can be found
in App. 5.A. It is important to note that even for t → ∞, the autocorrelation
function has a non-vanishing component proportional to 〈νk〉2. This nonzero mean
value results in a shift of the qubit Larmor frequency given by

δω0 = 〈ωQ(t)〉

=
n∑
k

vk tanh(βEk/2).
(5.20)

The RTN variance can be readily obtained from Eq. (5.18) as

〈ν2
k〉 − 〈νk〉2 = v2

k

cosh2(βEk/2)
. (5.21)

As shown in Fig. 5.2, at low temperatures when βEk →∞ the RTN variance decays
exponentially as ∼ exp(−βEk), and the contribution of the RTN to the total noise
becomes negligible.

The spectral density of each RTN is defined as [40]

Sk(ω) = v2
k

2π

∫ ∞
−∞

dt
[
〈ξk(t)ξk(0)〉 − 〈ξk〉2

]
e−iωt

= v2
k

cosh2(βEk/2)
· γk
π
· 1
γ2
k + ω2 .

(5.22)

The value of Sk(ω) remains almost constant for ω � γk, while it scales with fre-
quency as Sk(ω) ∼ 1/ω2 for ω � γk. The total noise spectral density, given by

S(ω) =
n∑
k

Sk(ω), (5.23)

depends on the distribution of the detuning energy εk and tunneling amplitude ∆k of
the TLFs. The conventional TLF model assumes a uniform distribution of detuning
energy εk and a log-uniform distribution of tunneling amplitude ∆k [24, 25]. This
results in a log-uniform distribution of the average switching rate γk, and therefore,
the noise spectral density takes the form S(ω) ∼ 1/ω [41]. However, it is unclear
whether the distribution of TLF parameters in quantum dot devices is the same as
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Figure 5.2: Temperature dependence of the average switching rate γ (solid blue) and variance
〈ν2〉 − 〈ν〉2 (solid red) of a single TLF as described by Eqs. (5.13) and (5.21), respectively. The
TLF parameters are E = 1 K, ∆ = 0.1 s−1, J0 = 1 s2, and v = 1 s−1. As T/E → 0, the
TLF freezes in the ground state and the average rate converges to the constant value J0∆2E. In
this limit, the variance decays as ∼ exp(−E/T ) (dotted red). As T/E → ∞, the excitation and
relaxation rates of the TLF become equal. The average rate then scales linearly with temperature,
i.e., γ ∼ T (dotted blue). This average rate is half the TLF-phonon spontaneous emission rate.

that in bulk dielectrics. In this study, we consider different distributions of detuning
energy εk, while maintaining the log-uniform distribution of tunneling amplitudes
∆k, to replicate the experimentally observed 1/ω spectral density [42, 43].

Using the simplified system Hamiltonian given in Eq. (5.16), we now present the
formulas for the qubit Ramsey and echo decay. We assume the control pulses are
ideal and instantaneous [44]. In the Ramsey experiment, the qubit is initialized in
the state (|0〉+ |1〉)/

√
2, and is measured in the x-basis after a variable delay time

t. The implementation of the echo experiment is identical, except for a π rotation
around the x axis at time t/2. The qubit Ramsey decay can be written as

FR(t) = 〈exp[i
∫ t

0
ds ωQ(s)]〉. (5.24)

The π rotation in the echo experiment effectively changes the sign of the noise ωQ(t)
and can be written as

FH(t) = 〈exp[i
∫ t/2

0
ds ωQ(s)− i

∫ t

t/2
ds ωQ(s)]〉. (5.25)

Since the RTNs are independent, the Ramsey/echo decay can be written as

FR/H(t) =
n∏
k

f
(k)
R/H(t), (5.26)

where f (k)
R/H(t) is the Ramsey/echo decay induced by the k’th RTN.
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The Ramsey and echo decay induced by a single RTN can be calculated by
combining the rate equations of the RTN with the Bloch equations of the qubit for
constant RTN states (for details, see Ch. 2). The Ramsey decay induced by a single
RTN reads [45]

fR(t) = exp(−Γt)
[
cosh(At) + Γ

A
sinh(At)

]
, (5.27)

where Γ = γ − ivδγ/2γ, A = (γ2 − ivδγ − v2) 1
2 , and δγ = γ↓ − γ↑. The echo decay

by a single RTN can be written as

fH(t) =e−γt[cosh(At/2) cosh(A∗t/2)

+ v2 + γ2

A∗A
sinh(At/2) sinh(A∗t/2)

+ Γ
A

sinh(At/2) cosh(A∗t/2)

+ Γ∗

A∗
sinh(A∗t/2) cosh(At/2)].

(5.28)

Here, we dropped the index k labeling the RTN for clarity. The Ramsey and echo
decay times, T ∗2 and TH

2 , are defined via

FR(B;T ∗2 ) = 1/e, (5.29)

and
FH(B;TH

2 ) = 1/e. (5.30)

The model developed in this section generalizes the framework from Ch. 4, in-
corporating both the effects of the phonon bath temperature and the microscopic
properties of TLFs. In general, the detuning energy of the TLF, ε, is not necessary
zero, nor is it guaranteed that the temperature, T , is significantly larger than the
TLF energy, E. Therefore, the TLF cannot always be approximated by a symmetric
RTN signal. However, at high temperatures, where T/E � 1, the difference between
the relaxation and excitation rates δγ approaches 0. In this limit, Eqs. (5.27) and
(5.28) simplify to the Ramsey and echo decay induced by symmetric RTN, as de-
scribed in Ch. 4 and in Refs. [45–48].

The simplified system Hamiltonian in this chapter [Eq. (5.16)] closely resembles
the system Hamiltonian from Ch. 4 [Eq. (4.3)], and the Ramsey and echo decay cal-
culations follow similar methods (see Ch. 2). However, by expressing the excitation
and relaxation rates of the asymmetric RTN, γ↑ and γ↓, in terms of the tunneling
amplitude ∆, detuning energy ε, and phonon bath temperature T , a more accurate
description of the TLF behavior in different regimes is achieved. This model, in
particular, enables the study of the regime where a TLF is frozen in its ground
state at temperatures T � E, and the transition to the regime where the TLF rates
saturate to a constant common value for temperatures T � E (see Fig. 5.2).

Analyzing qubit decoherence induced by an ensemble of TLFs is highly com-
plex, as the excitation and relaxation rates depend on distributions of tunneling
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amplitudes ∆ and detuning energies ε, neither of which are predetermined in the
experimental setup described in Ref. [11]. Due to the likely finite dispersion of TLF
energies, TLFs exhibit a range of dynamics at any given temperature, from inactive
to saturated, making it challenging to approximate the qubit decoherence caused
by the entire ensemble, given in Eq. (5.26). In the following section, we employ a
numerical approach to explore various distributions of these parameters, aiming to
reproduce both the qubit frequency shift with temperature reported in Ref. [11] and
the minimal temperature dependence of Ramsey and echo decay times, T ∗2 and TH

2 ,
observed in experiments.

5.3. Numerical simulations
This section presents the results from the numerical simulations. We aim to de-
termine whether the model outlined in the previous section can replicate both a
frequency shift similar to experimental observations and Ramsey and echo decay
times that are not affected by temperature. We explore two cases: (i) a TLF bath
tailored to replicate temperature-insensitive Ramsey and echo decay times, and (ii)
a TLF bath tailored to match the observed frequency shift in experiments.

Figure 5.3 shows the numerical simulation results for case (i). We consider a nor-
mal distribution of TLF detuning energies with a mean value (1 mK) that is much
smaller than the lowest temperature in our simulations (0.1 K). This choice of detun-
ing energies guarantees that the TLFs are already saturated at 0.1 K (see Fig. 5.2),
and their variance, 〈ν2〉−〈ν〉2, only negligibly increases at higher temperatures. We
consider log-uniformly distributed tunneling amplitudes giving rise to a 1/f noise
spectral density. We observe in Fig. 5.3(a) that increasing the temperature mainly
leads to increased lower and higher frequency cutoffs. The temperature dependence
of the Ramsey and echo decay times, shown in Figs. 5.3(b) and (c), is comparable
to the experimental observations [for Ramsey decay times, see Fig. 5.6(b)].

The temperature dependence of the qubit frequency shift, based on the bath
parameters from Fig. 5.3, is shown in Fig. 5.4. Figure 5.4 presents the qubit fre-
quency shift for coupling strengths that are either (a) all positive or (b) equally
likely to be positive or negative. The sign of the coupling strength v is determined
by the spatial configuration of the electric dipole moments of the TLFs and the
Larmor frequency shift they induce depending on deformations of the orbital state
of the dot electron within an inhomogeneous magnetic field. For example, for a TLF
with a coupling strength of magnitude |v|, if the TLF in its ground state induces a
positive (or negative) frequency shift, the coupling strength v is considered positive
(or negative). Some of the curves in Fig. 5.4(b) have a non-monotonic temperature
dependence, and the qubit frequency shift can be negative. In both cases, the fre-
quency shifts are approximately an order of magnitude smaller than experimental
observations (see Fig. 3.2). Choosing larger values for the coupling strengths results
in a more accurate quantitative agreement between the simulation and the exper-
imental results. However, this approach would also lead to lower T ∗2 values than
those observed experimentally.

The noise spectral density and the Ramsey and echo decay times corresponding
to case (ii) are shown in Fig. 5.5. The bath is now modeled by two types of TLFs,
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Figure 5.3: Spectral density, Ramsey decay time, T ∗2 , and echo decay time, TH
2 , for various

bath samples at ten different temperatures linearly spaced between 0.1 K and 1 K. Each bath
sample consists of 40 TLFs with log-uniformly distributed tunneling amplitudes ∆ between ∆m =
10−5 s−1 and ∆M = 10 s−1, normally distributed detuning energies ε with mean 10−3 K and
deviation 10−4 K, and normally distributed coupling strengths v with mean 8 × 104 s−1 and
deviation 104 s−1. The constant J0 = 2×106 s2. (a) Spectral densities of individual bath samples,
each at a specific temperature. The spectra scale with frequency as 1/ω between the lower and
higher cutoffs. (b) Ramsey decay time data points for 100 bath samples at each temperature. (c)
Echo decay time data points for each bath sample. Horizontal jitters in (b) and (c) emulate the
distribution of coherence times T ∗2 and TH

2 .

namely an A and B bath of TLFs. The TLFs from bath A are positively coupled to
the qubit, while the TLFs from bath B are negatively coupled. Positive or negative
signs of the coupling strengths do not affect the spectral density, the Ramsey, and
the echo decay [see Eqs. (5.22), (5.27), and (5.28)]. However, the different signs give
rise to a non-monotonic qubit frequency shift shown in Fig. 5.6 [see Eq. (5.20)].

We randomly sample TLFs from bath A or bath B, with probabilities PA = 60%
and PB = 1−PA = 40%. The detuning energies of A TLFs are normally distributed
with mean 0.1 K and deviation 0.05 K. The tunneling amplitudes of A TLFs are
log-uniformly distributed between 0.05 K and 0.15 K. The detuning energies of B
TLFs are normally distributed with mean 0.5 K and deviation 0.05 K. The tunneling
amplitudes ofB TLFs are log-uniformly distributed between 0.45 K and 0.55 K. This
choice of tunneling amplitudes and detuning energies results in energies E of TLFs
from the A and B baths approximately concentrated around 0.1 K and 0.5 K. This
results in a positive shift of the qubit frequency with temperature up to ≈ 0.5 K and
its decline beyond this point (see Fig. 5.6). The simulated frequency shifts shown in
Fig. 5.6 exhibit some agreement with the experimental data presented in Fig. 3.2.
However, the simulated Ramsey and echo decay times, T ∗2 and TH

2 , show a significant
decrease with increasing temperature, which is not observed in the experiments.

5.4. Discussion
According to experimental observations the Larmor frequency of semiconductor spin
qubits increases as the temperature rises [11], while the coherence times remain
approximately unaffected by temperature variations [5, 6, 8, 11]. Our goal was
to investigate whether a phenomenological model of tunneling two-level fluctuators
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Figure 5.4: Monotonic and non-monotonic qubit frequency shift corresponding to various bath
samples. The bath samples are the same as those in Fig. 5.3, consisting of 40 TLFs with log-
uniformly distributed tunneling amplitudes ∆ between ∆m = 10−5 s−1 and ∆M = 10 s−1,
normally distributed detuning energies ε with mean 10−3 K and deviation 10−4 K, and normally
distributed coupling strengths v with mean 8 × 104 s−1 and deviation 104 s−1. (a) Monotonic
qubit frequency shift for positive values of the coupling constants v. (b) Non-monotonic qubit
frequency shift for positive and negative values of v. The probability of sampling a positive v is
50 %. The qubit frequency shift in (a) and (b) is calculated using Eq. (5.20).

Figure 5.5: Spectral density, Ramsey and echo decay times, T ∗2 and TH
2 , for various bath samples

consisting of two sub-baths, referred to as A and B baths in the main text. The energies of the
TLFs in the A and B baths are peaked around 0.1 K and 0.5 K. (a) Spectral density of sample
TLF baths at different temperatures, showing a broadened Lorentzian peak at around ≈ 1 kHz for
the A TLFs and a second peak at around ≈ 100 kHz for the B TLFs. (b) and (c) Ramsey and echo
decay times for various bath samples at different temperatures, with each data point indicating the
coherence time, T ∗2 or TH

2 , corresponding to a specific bath sample. The jitters in the horizontal
direction in (b) and (c) are artificially introduced to emulate the distribution of coherence times.

coupled to acoustic phonons could explain these effects. The theoretical model can
potentially account for the shift in the qubit Larmor frequency with temperature
by considering the time-averaged states of the TLFs in thermal equilibrium with
the phonon bath. Additionally, the model links the temperature dependence of the
Ramsey and echo decay times to the dynamics of TLFs, which rely on the phonon
bath temperature.

We performed numerical simulations to evaluate how well the model could repli-
cate the experimental observations. We explored two different scenarios. In the
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Figure 5.6: (a) Qubit frequency shift due to a TLF bath consisting of two sub-baths A and B,
where the A TLFs are positively coupled and the B TLFs are negatively coupled to the qubit.
The coupling strengths v are normally distributed with mean 5× 105 s−1 and deviation 105 s−1,
with a 60% probability of sampling an A TLF. The detuning energies of A TLFs are normally
distributed with mean 0.1 s−1 and deviation 0.05 s−1, while the tunneling amplitudes of B TLFs
are log-uniformly distributed between 0.05 s−1 and 0.15 s−1. The detuning energies of B TLFs are
normally distributed with mean 0.5 s−1 and deviation 0.05 s−1, while the tunneling amplitudes of
B TLFs are log-uniformly distributed between 0.45 s−1 and 0.55 s−1. The energies of A and B
TLFs peak around 0.1 K and 0.5 K. The constant J0 = 2× 106 s2. (b) Experimentally measured
frequency shift of the spin qubits. This panel is taken from Ref. [11].

first case, we adjusted the model parameters to reproduce temperature-insensitive
coherence times, but the frequency shift predicted by the model was an order of
magnitude smaller than what was observed in experiments. In the second case,
we modified the bath parameters to obtain a qubit frequency shift similar to what
was observed in experiments, but this resulted in a decline in coherence times with
temperature, which was not observed in experiments.

A comparable phenomenological model was recently proposed in Ref. [13]. Refer-
ence [13] also attributes the frequency shift to the equilibrium electric field resulting
from the electric dipoles of TLFs, which linearly couples to the qubit, similar to our
model. However, this model takes into account the spatial distribution of the elec-
tric dipoles and their internal interactions. In our simplified model, we considered a
normal distribution of coupling strengths and the precise distribution of these cou-
plings is determined by the spatial distribution of the electric dipoles. Unlike our
work, Ref. [13] does not study the frequency shift and the coherence times simulta-
neously. It should be noted that neither model takes into account other potential
sources of noise or structural deformations of the device caused by heating. It is
possible that the observed frequency shift may be due to structural deformations,
and that the measured T ∗2 and TH

2 values are not primarily shortened by intrinsic
noise, but rather by extrinsic noise injected by the instrumentation.
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5.5. Conclusion and outlook
We studied the dephasing times and frequency shifts of heated semiconductor spin
qubits by utilizing a phenomenological model of charge noise. Our model consid-
ered the charge noise arising from switching electric dipoles of an aggregate of TLFs
coupled to acoustic phonons. Through numerical simulations, we aimed to repli-
cate the experimentally observed qubit frequency shift with temperature, as well as
temperature-insensitive Ramsey and echo decay times. Our results revealed that the
model parameters could be adjusted to replicate each of these effects individually,
but not simultaneously.

While an extensive exploration of the model’s parameter space may reproduce
observed effects, the intricate design of spin qubit devices requires consideration
of other temperature-dependent mechanisms. One promising research direction is
the study of multiple phonon baths at different temperatures to examine the ther-
modynamics of heat flow and transient pulse-induced resonance shifts. Finally,
understanding all temperature-dependent sources of noise, including noise of the
metallic gates, could narrow the research scope and aid in comprehending the qubit
frequency shift and the stability with temperature of the coherence times.

5.A. Autocorrelation function
In this Section, we calculate the autocorrelation function of the noise ν(t) = v ξ(t).
We begin with the rate equations for the single RTN ξ(t). The probabilities of the
RTN to be in the state +1 or −1 at time t, are denoted by Pe(t) and Pg(t). The
rate equations may be written as

Ṗ (t) = MP (t), (5.31)

where
M =

[
−γ↓ γ↑
γ↓ −γ↑

]
, (5.32)

and P (t) = [Pe(t), Pg(t)]T . The excitation and relaxation rates, γ↑ and γ↓, are
given in Eqs. (5.11) and (5.12). Equation 5.31 can be solved by exponentiation. It
follows

P (t) = etMP (0). (5.33)
We write

etM =
[
Pe|e Pe|g
Pg|e Pg|g

]
. (5.34)

The autocorrelation function can be written as

〈ν(0)ν(t)〉 = v2[Pe(∞)Pe|e(t)− Pe(∞)Pe|g(t)− Pg(∞)Pg|e(t) + Pg(∞)Pg|g(t)]

= v2 e−γ|t|

cosh2(βE/2)
+ 〈ν〉2,

(5.35)

where 〈ν〉 = −v tanh(βE/2). Here, Pe(∞) and Pg(∞) are the probabilities for the
random process ξ(t) to be in the excited or the ground state on average.
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6
Conclusion and Outlook

The primary goal of this thesis was to gain new insights into the dynamics of spin
qubits in their actual environment. To achieve this, we relied on theoretical models
as our main tools. The development of these models were primarily stimulated by
experimental findings. In this section, we will discuss the findings of our research
from a broad perspective and suggest potential areas for future investigation.

Excluding the introductory Chapters 1 and 2, the following are the conclusions
for each thesis chapter:

• Chapter 3 presents experimental findings on the nonlinear scaling of the spin
qubit’s Rabi frequency with the amplitude of the microwave drive that is
in resonance with the qubit Larmor frequency. The chapter also reports on a
novel crosstalk mechanism, where the Rabi frequency of a spin qubit changes as
the drive of an adjacent qubit is turned on. In this chapter, a phenomenological
model is proposed to describe both the nonlinear response and the crosstalk.
This model merely relates the electrical driving to the observed effects, and
the microscopic origins of the effects remain elusive.

• Chapter 4 explores the qubit dephasing, as measured in the Ramsey and Hahn
echo experiments, in a sparse bath of TLFs with 1/f spectral density. The
chapter demonstrates that the bath density, defined as the ratio of the num-
ber of TLFs over the logarithmic width of the distribution of TLF switching
rates, is a crucial parameter in determining the variability of the qubit de-
phasing. It is observed that in sparse baths, where the bath density is small,
the qubit dephasing experiences considerable variations from sample to sam-
ple. Furthermore, the chapter reveals that in certain parameter regimes, the
qubit decoherence is dominated by a few TLFs, referred to as exceptional
defects. Eliminating these TLFs results in a substantial improvement in co-
herence times. Moreover, when the distribution of TLF coupling strengths is
narrowly concentrated around a value significantly greater than the minimum
TLF switching rate, the Ramsey decay in sparse baths exhibits revivals.
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• Chapter 5 focuses on the theoretical exploration of the temperature-dependent
frequency shift of spin qubits. This work was motivated by the experimental
observation of the qubit frequency shift with temperature, reported in Ref. [1].
We employed a phenomenological model that considers charge noise originat-
ing from a bath of TLFs in equilibrium with acoustic phonons. The model
also establishes a relationship between the phonon bath temperature and the
Ramsey and echo decay times, which serves as a self-consistency test for ex-
plaining the frequency shift, as these coherence times are largely insensitive
to temperature. Through numerical simulations, we found that it is possible
to explain either the frequency shift or the temperature-insensitive coherence
times by adjusting the model parameters, but not both simultaneously.

The experimental results outlined in Chapter 3 underscore the need for additional
research into the spin qubit’s environment. The phenomenological model presented
in this chapter relates the microwave drivings with the observed qubit dynamics,
without offering a deeper understanding of the underlying physical mechanisms.
Essentially, this model serves as a transfer function that establishes a nonlinear re-
lationship between the input and output microwave driving(s). Exploring an “open
quantum system” perspective could provide further insight into the underlying phys-
ical mechanisms behind the observed phenomena. For example, one could examine
the interaction of spin qubits with a TLF bath and microwave fields that couple
to the electric dipole moments of the TLFs. By activating the microwave field, the
TLFs could be driven out of equilibrium, potentially leading to a renormalization of
the qubit’s Larmor frequency. However, this is a simplified scenario, and a compre-
hensive understanding of such a complex system would require detailed quantitative
investigations.

The scaling of the qubit Rabi frequency with the microwave drive amplitude
closely resembles the scaling of the qubit Larmor frequency with the energy de-
livered to the system via microwave (pre-)pulses [1, 2]. This similarity tentatively
suggests that there might be a common physical origin for both effects. Additionally,
assuming that TLF defects are present in the spin qubit devices but do not result
in the qubit frequency shift with temperature or the nonlinear response of the Rabi
frequency with microwave driving, these defects may still play a secondary role in
the documented phenomena by transforming electromagnetic radiation to heat. In
this case, the mechanical deformation of the heterostructure might be the immediate
cause of the frequency shift or nonlinear response. Therefore, it is crucial to explore
all possible causes of these effects to develop a comprehensive understanding of the
spin qubit’s environment.

In Chapter 4, the assumption is made that the properties of TLFs remain con-
stant over time. However, it has been observed that the energy relaxation times of
superconducting qubits, which are also affected by TLF-like defects, exhibit fluc-
tuations over time [3]. Therefore, it is reasonable to hypothesize that if the spin
qubits are coupled to similar types of defects, then their dephasing times may also
fluctuate over time. This presents an opportunity for future research to investigate
the dephasing of spin qubits caused by 1/f noise from a sparse bath of TLFs whose
properties change over time. The switching rates of individual TLFs in an annealed
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Figure 6.1: Numerical simulations of qubit decoherence in Ramsey and Carr-Purcell experiments
for dense TLF baths (d ≈ 8.68). (a)-(c) Each panel shows qubit decoherence in 50 bath samples.
(d)-(f) Estimated probability density of qubit decoherence. Each panel has a resolution of 103×103

pixels, and a vertical column of 103 pixels at a specific value of γmt represents a histogram of 104

samples of FR(B; t) or FCP(B; t). The number of counts in each pixel is divided by 10 to estimate
the probability density. The estimated p.d.f. values smaller than 10 are linearly mapped to the
color bar, while those greater than 10 are mapped to the darkest shade in the color bar.

bath will take multiple values. It is tempting to presume that in such a bath, the
dephasing times of spin qubits may exhibit less sample-to-sample variation. In fact,
randomization of TLF energies has been proposed as a technique to decrease the
variability of relaxation times in superconducting qubits [4]. This suggests that fu-
ture research could explore the impact of bath engineering on the dephasing times
of spin qubits.

Numerical simulations investigating qubit decoherence in a bath of TLFs have
yielded surprising results, some of which are discussed in Ch. 4. Here, we present
another unexpected effect that warrants further investigation (for a description of
the model system, refer to Ch. 4). We consider 100 symmetric TLFs with switching
rates distributed between γm and γM = 100γm. This parameter selection leads
to a relatively dense bath with d ≈ 8.68. The coupling strengths of TLFs are
normally distributed with a mean v̄ = 105γm and a deviation σV = 103γm. The
simulation results for the qubit decoherence in Ramsey and Carr-Purcell experiments
is shown in Fig. 6.1. Specifically, Figures 6.1(a) and (d) illustrate that the Ramsey
decay remains relatively constant across different bath samples. However, Figures
6.1(b), (c), (e), and (f) show that the application of echo pulses in the Carr-Purcell
experiments results in variability of qubit decoherence.

In Chapter 5, we made the assumption that the TLFs couple to a phonon bath
that is in thermal equilibrium. However, it is known that the heat introduced by
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microwave pulses dissipates to colder reservoirs [1]. To improve upon our model,
it would be useful to consider the heat flow between multiple phonon baths. The
model presented in Chapter 5 can already be criticized for having too many free
parameters, and considering multiple phonon baths adds another layer of complex-
ity and additional free parameters. Therefore, it is also crucial to experimentally
characterize the TLFs in the spin qubits’ environment [5].

To gain a better understanding of the impact of charge noise on spin qubit
decoherence, it is important to investigate the effect of echo pulse sequences. The
application of microwave pulses alters the frequencies of spin qubits. This effect
can lead to decreased fidelity of single-qubit gates utilized for dynamical decoupling
of the qubit from its environment. Consequently, it is imperative to develop new
models that consider the imperfections of pulses and non-equilibrium dynamics of
the bath induced by the echo pulses themselves, which are intended to enhance
coherence times. These models will aid in investigating the efficacy of echo pulse
sequences in increasing coherence times while accounting for the adverse effects of
pulse imperfections and non-equilibrium qubit environments.
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