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Pattern Coupled Sparse Bayesian Learning with

Fixed Point Iterations for DOA and Amplitude

Estimation

Didem Dogan1 and Geert Leus1

1Signal Processing Systems (SPS), Delft University of Technology, The Netherlands

Abstract—We consider the problem of recovering block-sparse
signals with unknown boundaries. Such signals arise naturally
in various applications. Recent literature introduced a pattern-
coupled or clustered Gaussian prior, in which each coefficient
involves its own hyperparameter as well as its immediate
neighbors’ hyperparameters. Some methods use a hierarchical
distribution making the solution vulnerable to the parameter
choice. Besides, these methods mainly rely on the expectation-
maximization (EM) algorithm and either require a suboptimal
solution or an approximation of the hyperparameters. To address
these difficulties, we propose to solve the pattern coupling prob-
lem via fixed point iterations instead of the EM algorithm. The
proposed algorithm does not require any further assumptions on
the hyperparameters and provides a simple update rule for the
hyperparameters. Although the fixed point iterations method is
an empirical strategy, it provides a fast convergence rate. The
proposed algorithm is tested on a simple direction of arrival
(DOA) and amplitude estimation problem. From our simulations,
we see that the proposed method achieves similar reconstruction
results with the state-of-the-art; however, the proposed method
is faster than the existing counterparts.

Index Terms—sparse Bayesian learning, block sparse signals,
fixed point iterations, pattern coupling

I. INTRODUCTION

Block sparsity has been observed for signals in numerous

applications, such as the cluster structure of scatterers on

radar images [1], fetal ECG [2], DOA estimation, and so

on [3]. The block sparse model can be naturally exploited

by further including the relation between sparse coefficients,

such as the dependence of the sparsity patterns. Under noisy

environments, correlated settings, or with very compressive

measurements, algorithms properly leveraging such an under-

lying structure could achieve a robust recovery compared to

their counterparts which merely exploit the sparsity.

The pattern-coupled sparse Bayesian learning (PCSBL) al-

gorithm incorporates a pattern-coupled hierarchical Gaussian

prior where each coefficient depends on its own hyperparam-

eter and its immediate neighbors’ hyperparameters to exploit

interactions between neighboring coefficients [4], [5]. For this

problem, a suboptimal solution is attained for the hyperparam-

eters; however, the performance of the PCSBL depends on

a proper selection of the hyperparameters. Clustered sparse

Bayesian learning (CSBL) takes on a similar idea as the

pattern-coupled prior used in PCSBL yet without relying

This publication is part of the project TOUCAN (with project number
17208) of the research programme TTW-OTP which is financed by the Dutch
Research Council (NWO).

on the hierarchical distribution over the hyperparameters [6].

Both algorithms use an EM-based update rule.

We propose to solve the pattern coupling problem via

fixed point iterations instead of the EM algorithm [7]. The

fixed point iterations method is an empirical strategy, but it

provides a fast convergence rate in most applications [8],

[9]. In [4], PCSBL uses a lower bound to approximate the

optimal hyperparameter, whose performance always depends

on a careful setting of the auxiliary parameter. Instead, our

algorithm does not need such a bound since it does not

require any selection of auxiliary parameters. Our algorithm

can be seen as a fixed point update rule-based version of the

EM update rule-based CSBL algorithm [6]. However, CSBL

assumes neighboring sparse coefficients to share the same

variance or precision. We do not make such an assumption.

Finally, although a theoretical analysis of the convergence

behavior is unavailable, the proposed algorithm demonstrates

a fast convergence rate.

The remainder of this paper is organized as follows. In the

next section, we define the signal model for the DOA and

amplitude estimation problem. In Section III, we present the

proposed Bayesian formulation with a short discussion on the

existing literature. Then, we compare the performance of our

proposed method with the state-of-the-art. In the final section,

we discuss the results and conclude this work.

II. DOA AND AMPLITUDE ESTIMATION

In DOA and amplitude estimation, we employ a multiple

measurement vector (MMV) model, which exploits different

pulse periods in synergy [10]. Such an MMV model can be

expressed as
Z = AS+N, (1)

where the system matrix A = [a1...aL] ∈ C
N×L contains the

array steering vectors for all hypothetical DOAs as columns,

with the (n, l)-th element given by exp(−j(n−1)ωd
c sinθl)(d

is the element spacing, c the sound speed, ω the frequency, and

θl the lth DOA, e.g., θl = −90◦+ l−1
L 180◦); S ∈ C

L×M rep-

resents the complex source amplitudes sl,m; Z = [z1...zM ] ∈
C

N×M represents the concatenation of the measurements

zm at the mth snapshot; and the additive white noise N

is assumed independent across sensors and snapshots, where

each element has a complex Gaussian distribution with zero

mean and variance σ2.
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III. BAYESIAN FORMULATION

A. Priors on the Sources

Here, Bayesian interference is used. This involves determin-

ing the posterior distribution of the complex source amplitudes

from the likelihood and a prior model. In (1), the probability

density function is given by

p(Z|S;σ2) =
exp (− 1

σ2 ||Z−AS||22)
(πσ2)ML

. (2)

as the noise is assumed to be Gaussian. In classical SBL,

the complex source amplitudes sl,m are assumed independent

across different snapshots and each other as

pm(sl,m, γl) = CN (0, γl). (3)

On the other hand, the pattern-coupled model is proposed in

this work to cope with block-sparse signals with unknown

block-sparse structures. This model utilizes the fact that the

sparsity patterns of neighboring coefficients are statistically

dependent. Specifically, in this model, the Gaussian prior

for each coefficient involves its own hyperparameter and

its immediate neighbors’ hyperparameters [4]. For a one-

dimensional set-up, such as the presented DOA and amplitude

estimation problem, the pattern-coupled prior is given as

follows:

pm(sl,m, γl, γl−1, γl+1) = CN (0, γl + βγl−1 + βγl+1). (4)

Then we can express their joint distribution as

p(S;Γ) =

M
∏

m=1

L
∏

l=1

pm(sl,m), γl + βγl−1 + βγl+1) (5)

=

M
∏

m=1

CN (0,Γ) (6)

where Γ = diag(γ1 + βγ0 + βγ2, ..., γL + βγL−1 + βγL+1).
Note that γ0 = γl+1 = 0. In this approach, the sparsity is

controlled by the hyperparameters. If the γl is non-zero, then

sl,m is also non-zero. Therefore, if any of the neighboring

elements (i.e., sl−1 and sl+1) is non-zero, then the center

element sl is likely to be non-zero. It might not give an exact

sparse reconstruction; however, it provides the continuity of

the sparsity patterns and hence the block sparsity.

Note that in PCSBL [4], the pattern-coupling prior has the

following form:

pm(sl,m, γl, γl−1, γl+1) = CN (0, (γl + βγl−1 + βγl+1)
−1)

(7)

Here, the motivation is the ’zero-coupling’ effect. In this

approach, if any of the neighboring elements (i.e. sl−1 and

sl+1) are zero, then the center element sl is likely to be zero.

In other words, if the γl → ∞ for an element is zero, the

neighboring elements are also zero. On the other hand, in

CSBL [6], the prior has the following form:

pm(sl,m, γl, γl−1, γl+1) = CN (0, γl + γl−1 + γl+1). (8)

which has a similar formulation as the proposed one in (4),

without the β term. They also provided an extension of that

model, which takes the same formulation as given in (4). It

is also possible to provide an update rule for β; however, it

is out of the scope of this work. We select β = 0.5, resulting

in a better reconstruction quality in most scenarios.

Note that apart from the DOA estimation problem, this

method can be extended to reconstruct two-dimensional data

in other problems, such as ultrasound imaging. However,

our algorithm is not applied to two-dimensional problems in

this work and is limited to the one-dimensional DOA and

amplitude estimation problem.

B. Stochastic Likelihood

The posterior distribution of the sources can be attained

using the Bayes rule conditioned on γ and σ2:

p(S|Z; γ, σ2) =
p(Z|S;σ2)p(S;Γ)

p(Z;Γ, σ2)
∝ p(Z|S;σ2)p(S;Γ)

∝ e−tr((S−µS)
H
Σ

−1

s
(S−µS))

(πN detΣs)M
= CN (µS,Σs).

(9)

Since both p(Z|S;σ2) and p(S;Γ) are Gaussian p(S|Z;Γ, σ2)
is also Gaussian with mean µS and covariance Σs :

µS = E{S|Z;Γ, σ2} = ΓA
H
Σ

−1
z Z (10)

Σs = Γ− ΓA
H
Σ

−1
z AΓ. (11)

Here, the data covariance matrix is given by

Σz = σ2
IN +AΓA

H , (12)

and its inverse can be computed using the matrix inversion

lemma

Σ
−1
z = σ−2

IN − σ−2
AΣsA

Hσ−2. (13)

The denominator p(Z;Γ, σ2) is neglected here as it is only a

normalization term and does not depend on S. So in conclu-

sion, we have S ∼ CN (µS,Σs). Using MAP estimation, we

obtain

Ŝ
MAP = µS = E[S|Z;Γ, σ2] = ΓA

H
Σ

−1
z Z. (14)

Here the diagonal elements of Γ control the row sparsity of

Ŝ
MAP . The hyperparameters Γ, σ2 are estimated by a type-

II maximum likelihood, i.e., by maximizing the evidence that

was treated as constant in (9). The evidence is the product of

the likelihood p(Z|S;σ2) and the prior p(S;Γ) integrated over

the complex source amplitudes S. The resulting p(Z;Γ, σ2)
is given by

p(Z;Γ, σ2) =

∫

R2ML

p(Z|S;σ2)p(S;Γ)dS =
e−tr(ZH

Σ
−1

z
Z)

(πN detΣz)M
(15)

where dZ =
∏M

m=1

∏N
l=1 Re(dZmn)Im(dZmn) and Σz is the

data covariance matrix. We can derive

log p(Z;Γ, σ2) ∝ −tr(ZH
Σ

−1
z Z)−M log detΣz. (16)

Finally, the hyperparameters Γ and σ2 are estimated from the

log-likelihood function as

(Γ̂, σ̂2) = argmax
Γ≥0,σ2≥0 log p(Z;Γ, σ2). (17)
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The parameters Γ̂, σ̂2 and Σ−1
z are iteratively estimated and

then finally S is attained by (14).

C. Update of Γ

Since Γ represents the source powers and controls the

sparsity of S, the most significant step is the estimation of

Γ. We need to find Γ for the estimation of S in (14). To

iteratively compute Γ, we form the derivatives of (16) with

respect to the elements γl as follows:

∂tr(ZH
Σ

−1
z Z)

∂γl
= tr{(∂tr(ZH

Σ
−1
z Z)

∂Σz

)T
∂Σz

∂γl
} =

a
H
l Σz

−1
ZZ

H
Σz

−1
al + βaHl−1Σz

−1
ZZ

H
Σz

−1
al−1+

βaHl+1Σz
−1

ZZ
H
Σz

−1
al+1

(18)

∂ log det(Σz)

∂γl
= tr(Σz

−1 ∂Σz

∂γl
) =

a
H
l Σz

−1
al + βaHl−1Σz

−1
al−1 + βaHl+1Σz

−1
al+1.

(19)

After inserting (18) and (19) into (16), the derivative is formed

as follows:

∂ log p(Z;Γ, σ2)

∂γl
= ||ZH

Σz
−1

al||22 + β||ZH
Σz

−1
al−1||22

+ β||ZH
Σz

−1
al+1||22 −MβaHl−1Σz

−1
al−1

−Ma
H
l Σz

−1
al −MβaHl+1Σz

−1
al+1.

(20)

Here (20) is forced to be zero and we obtain the following

equality:
||ZH

Σz
−1

al||22 = Ma
H
l Σz

−1
al+

MβaHl−1Σz
−1

al−1 − β||ZH
Σz

−1
al−1||22+

MβaHl+1Σz
−1

al+1 − β||ZH
Σz

−1
al+1||22.

(21)

Thereafter, we introduce (
γnew

l

γold

l

)b and multiply the right side

of (21) to obtain an iterative equation for γl [8], [9]. In this

paper, b = 2. This leads to the following fixed-point update

rule for γl:

γnew
l =

γold
l√
M

||ZH
Σz

−1
al||2

√

aHl Σz
−1

al + β(vl−1 + vl+1)
(22)

where

vl−1 = a
H
l−1Σz

−1
al−1 − (1/M)||ZH

Σz
−1

al−1||22,
vl+1 = a

H
l+1Σz

−1
al+1 − (1/M)||ZH

Σz
−1

al+1||22.
Note that γold

l and Σz are given from previous iterations. For

the convergence of the fixed point iterations, we need to attain

γnew
l = γold

l .

D. Noise Variance Estimation

For fast convergence of the FP PCSBL method, it is

important to develop a good noise variance estimate as it

controls the sharpness of the peaks. In (14) and (12), we

need to obtain σ2 for the estimation of S. This section

estimates the noise variance σ2, iteratively. We assume that

the number of non-zero elements in the sparse vector is

approximately known. Here stochastic maximum likelihood

provides an asymptotically efficient estimate of σ2 if the set

Output: S: unknown data

Initialize σ2 = 0.1, diag(Γ) = 1, ϵmin = 0.001,

Jmax = 500
while j < Jmax and ϵmin < ϵ do

j = j + 1, Γold = Γ
new

calculate Σz = σ2
IN +AΓA

H

update γnew
l with (22)

Γ = diag(γ1+βγ0+βγ2, ..., γL+βγL−1+βγL+1)
K = {l ∈ N|K largest peaks in Γ} = {l1, . . . lK}
AK = (al1 , . . . ,alK )

update (σ2)new=
tr((IN−AKA

†
K
)Sz)

N−K

ϵ = ||diag(Γnew − Γ
old)||1/||diag(Γold)||1

end

S̃ = ΓA
H
Σ

−1
z Z

Algorithm 1: FP PCSBL

of active sources is known. Note that we do not need to know

the exact number of sources. A rough guess for the number

of sources is also sufficient to obtain a good performance.

Let ΓK be the covariance matrix of the K estimated sources

with corresponding steering matrix AK. The corresponding

data covariance matrix is

Σz = σ2
IN +AKΓKA

H
K . (23)

Note that the data covariance matrix (12) and (23) are identi-

cal. We first force (20) to zero as follows:

a
H
l Σz

−1(Sz −Σz)Σz
−1

al+

βaHl−1Σz
−1(Sz −Σz)Σz

−1
al−1+

βaHl+1Σz
−1(Sz −Σz)Σz

−1
al+1 = 0

(24)

for all sources l. Here, the data sample covariance matrix is

Sz = ZZ
H/M . Note that (24) holds for the values of l =

1, . . . , L and results in the following:










1 β . . . 0
β 1 . . . 0
...

...
. . .

...

0 0 β 1





















u1

u2

...

uL











= 0 (25)

where ul = a
H
l Σz

−1(Sz −Σz)Σz
−1

al. By solving (25), we

obtain the following equality

a
H
l Σz

−1(Sz −Σz)Σz
−1

al = 0. (26)

Jaffer [11] shows that for a full Γ matrix, the derivative in

(20) is given by

∂ log p(Z;Γ, σ2)

∂Γ
= A

H
KΣz

−1(Sz −Σz)Σz
−1

AK = 0.

(27)

and using the matrix inversion lemma, it is equivalent to the

following condition:

A
H
K (Sz −Σz)AK = 0. (28)

In [8], Jaffer’s condition is assumed to be correct, even though

Γ is a diagonal matrix. On the other hand, when Γ is diagonal,

1305
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2
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N/L = 0.27701, K = 20, SNR = 20, Snapshot = 1

Fig. 1: The reconstructions and NMSE performance of the sparse Bayesian algorithms for a single snapshot with correlated data under 20 dB SNR

we cannot guarantee that the following is always true

a
H
l Σz

−1(Sz −Σz)Σz
−1

al′ = 0 for l ̸= l′, (29)

as this comes from the derivative
∂ log p(Z;Γ,σ2)

∂Γ
ll′

for the off-

diagonal elements of Γ. However, we do not have any off-

diagonal terms in Γ. Therefore, Jaffer’s condition might not

hold for diagonal matrices. Unlike [8], instead of using

Jaffer’s condition, we estimate σ2 by using the approximation

tr(Sz) ≈ tr(Σz). Then, by using (23) we attain

ϵ = tr(Sz −Σz) = tr(Sz − σ2
IN −AKΓKA

H
K ) ⇒

tr(Sz)− tr(σ2
IN )− ϵ = tr(AKΓKA

H
K ) =

tr(PAKΓKA
H
KP) = tr(P(Σz − σ2

IN )P)

(30)

where P is the projection matrix onto the subspace spanned

by the active components and is written by

P = AKA
†
K = AK(A

H
KAK)

−1
A

H
K = P

H = PP. (31)

Thereafter we obtain

tr(Sz)− σ2tr(IN )− ϵ = tr(PΣzP)− σ2tr(PP). (32)

Then, the trace in (32) is evaluated and it leads to tr(PP) =
tr(PH

P) = K, tr(IN ) = N and tr(PΣzP) = tr(P2
Σz) =

tr(PΣz). That gives

tr(Sz)−Nσ2 − ϵ = tr(PΣz)−Kσ2. (33)

Inserting θ = tr(P(Sz −Σz)) and solving (33) for σ2 results

in

σ2 =
tr(Sz −PSz) + θ − ϵ

N −K
≈ tr(Sz −PSz)

N −K
= σ̂2, (34)

which is the same variance estimator as in [8], although it

is derived differently. This approximation makes the noise

power estimation error-free if tr(Σz) = tr(Sz) and tr(PΣz) =
tr(PSz) or tr(P(Sz − Σz)) = tr(Sz − Σz), unbiased as

E[ϵ] = 0 and E[θ] = 0 , consistent since its variance tends to

zero for M → ∞ and asymptotically efficient as it approaches

the Cramér-Rao lower bound (CRLB) as M → ∞.

IV. NUMERICAL RESULTS

The proposed algorithm is tested on a DOA and amplitude

estimation problem with block sparse sources. It should be

noted that most analysis in the literature has been done with

randomly designed sensing matrices [4], [12]. However, such

a random design is not realistic to evaluate the performance

of our algorithm. Hence, we tested and compared different

algorithms for a simple DOA and amplitude estimation prob-

lem. The performance of the proposed algorithm is close

to both PCSBL and CBSL; however, it is faster than both

algorithms. Here, we consider an array with various numbers

of elements and various numbers of snapshots and SNR

values. The DOAs are on an angular grid [−90 : 0.5 : 90]◦,

and L = 361. The noise is modeled as i.i.d. complex Gaus-

sian. The single snapshot array signal-to-noise ratio (SNR) is

SNR = 10log10[E[||Asm||22]/E[||nm||22]]. For M snapshots

the noise power becomes

E[||N||2F ]/(MN) = 10−SNR/10[E[||AS||22]/(MN). (35)

Here, we examine a scenario with K = 20 random sources at

random three DOA groups with sl,m having random complex

amplitudes. The sources are chosen to be correlated to see

the robustness of the algorithms with such a setting. The

correlated sources are created as S = R
1/2

W where W is

complex random noise with unit variance. We choose

R =











1 a . . . 0
a 1 . . . 0
...

...
. . .

...

0 . . . . . . 1











(36)

where a = 0.5. R is chosen to be a tridiagonal correlation

matrix; hence, only the neighboring correlations are consid-

ered.

The reconstructed amplitudes and their NMSE performance

with correlated data for a single snapshot problem with
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Fig. 2: Performance comparison of the sparse Bayesian algorithms for different (a) N/L ratios; (b) SNR values for a single snapshot problem and (c)
different number of snapshots

N/L = 0.27 and SNR = 20 dB are given in Fig. 1. FP SBL

represents a sparse Bayesian learning algorithm with a Type II

likelihood maximization with a fixed point update rule [8], [9].

FP PCSBL is the pattern-coupled version of that algorithm,

which is proposed in this work. We compare our algorithm

with EM update-based SBL algorithms which are classical

SBL (EM SBL), PCSBL (EM PCSBL), and CSBL (EM

CSBL). Even though we consider correlated data, FP PCSBL

provides a considerable improvement compared to regular FP

SBL. Note that FP PCSBL exploits the statistical dependence

of the sparsity patterns of the neighboring coefficients when

the data is uncorrelated. However, it still provides a huge

improvement for correlated data. Similarly, EM PCSBL and

EM CSBL significantly improve EM SBL. On the other hand,

EM PCSBL, EM CSBL, and FP PCSBL have similar perfor-

mances. However, while overall EM PCSBL and EM CSBL

algorithms take around 0.5 − 1.5 seconds with a Macbook

Pro 2019 (16 GB of RAM and 6-core Intel Core i7 2.6 GHz

processor), FP PCSBL converges in 0.03 − 0.05 seconds for

a single snapshot problem thanks to the fast convergence of

the fixed point update rule.

The NMSE performance of the reconstructions with cor-

related data for a single snapshot problem with different

N/L, SNR, and snapshot values are given in Fig. 2a,2b,

and 2c, respectively. All results are averaged 100 Monte

Carlo simulations. While FP SBL performs better than EM

SBL for different N/L and SNR values, we observe similar

performances for FP PCSBL, EM PCSBL, and EM CSBL. For

small SNR values, FP PCSBL has slightly better performance

than its counterparts, but we observe the opposite for small

N/L values. Lastly, the performance of all the algorithms

is increased by increasing the number of snapshots to some

extent. However, in the multi-snapshot problem, with an

increasing number of snapshots, we do not see a considerable

benefit of using pattern coupling.

The algorithm is also tested with different values of a, (i.e.

0 ≤ a ≤ 0.5) and we observe similar results as in Figs. 1,

2a, 2b and 2c, including for the case of uncorrelated data (i.e.

a = 0). Hence, the correlations in the data for given values

of a do not have a significant impact on the reconstruction

performance.

V. CONCLUSIONS AND DISCUSSION

In this work, we proposed a pattern coupling algorithm

with fixed point iterations based on the update rule for the

hyperparameters instead of using the EM algorithm. It does

not require further assumptions on the hyperparameters and

provides a simple update rule. The proposed algorithm is

tested on a simple DOA and amplitude estimation problem,

and its performance is close to both PCSBL and CBSL;

however, it is faster than both counterparts thanks to the fixed

point iterations.
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