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Sensor Fusion for Localization of Autonomous
Ground Drone in Indoor Environments

Abstract

Technology is transforming almost all aspects of our lives, one of them is automa-
tion. The main motivation of automation is to help humans avoid performing
tedious, high risk jobs. Automated driving, also known as autonomous driving,
has been at the center of industrial and academic attention since a few decades
now, thanks to its potential of making driving risk-free by enabling a highly ef-
ficient machine control the vehicle on roads. Apart from the common outdoor
use-cases, several applications in indoor environments have also been extensively
investigated. The primary ones include process automation and management in
large factories and warehouses.

Localization of the autonomous vehicle is crucial to determine the path to be fol-
lowed to reach the desired destination. Sensor fusion techniques are extensively
investigated for this. However, the major challenge arising in indoor environment
localization is obtaining accuracy in the scale of a few centimeters in real-time. In
this thesis, we intend to address this challenge. The contributions of this thesis
are two-fold. Firstly, we develop a low-cost testbed – Autonomous Ground Drone
(AGD) – that enables us to develop sensor fusion and localization scheme for au-
tonomous driving. Secondly, we employ Extended Kalman Filter (EKF) on the
sensor combination of UWB, IMU, and Radar, and achieve a localization accuracy
of 8 cm. Our localization scheme outperforms state of the art in this field in terms
of accuracy, latency, and power consumption.
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Chapter 1

Introduction

1.1 Autonomous Driving
Autonomous driving is the capability of a vehicle to perform maneuvers without
any human intervention [33]. These maneuvers can be from cruise control to a
complete drive. Besides user comfort, an autonomous vehicle has many advantages.
The price of transportation and the CO2 emission will reduce significantly [14] ,
road safety will increase [26], and industrial processes will be more efficient [16].

Figure. 1.1: Autonomous Driving Vehicle Example [26]

Autonomous driving has been studied since the 1980s, with the first incorporation
being the Advanced Driver-Assistance Systems (ADAS) with the cruise control
[14]. The automation has evolved, and the vehicles are capable of detecting ob-
jects on the road, like a vehicle, cyclist, pedestrians, walls, and react accordingly.
A common scale used to measure the automation of a vehicle is the SAE levels
o f automation [42]. This scale goes from level 0 (no automation) to level 5 (full
automation on all roads). Nowadays, few vehicles can drive in specific conditions
(SAE level 3 [42]), making the task of driving easier and safer. However, there
are several scenarios where these vehicles cannot function properly, e.g., tunnels,
indoor environment, or GPS denied environments. Autonomous driving is not
limited to cars, but also include other vehicles such as AGDs[16], Autonomous
Unmanned Vehicles (UAV) [6] or trains [9], as shown in Figures 1.1 and 1.2 . Each
vehicle will drive in different scenarios and with different actions to perform.
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1.1. Autonomous Driving

Figure. 1.2: Autonomous Driving Vehicle Example [44, 41]

Having a completely autonomous vehicle (SAE 4 or 5 [42]) will be beneficial to
get the driving completed under any circumstances. Even experienced users are
subjects to distractions while driving, resulting in fatal accidents accidents. Ma-
chines, on the other hand, will not get distracted, and crashes can be avoided. In
industry, automating the driving process will benefit productivity. To achieve a
fully autonomous driving, the vehicle should have these four main capabilities:

• Detection: The capability to sense the environment and know features, such
as position, size, heading, and speed, of other objects on the road. These
objects can be other vehicles, walls, signs, or pedestrians. Without detection,
a vehicle will not be able to react to changes in the environment, increasing
the probability of crashing.

• Localization: It is the ability of the vehicle to know its position and orienta-
tion on the road. Vehicles should not only be aware of the environment but
also their localization to achieve a safe driving.

• Path Planning: The vehicles should be able to determine a path to follow
in real-time in order, to reach the desired position. Just driving without a
prior track will not only reduce the efficiency of the system as the power
consumption but also makes autonomous driving an unsafe mode of trans-
portation . This path is prone to change depending on the dynamic nature
of the environment, such as sudden occurence of obstacles.

• Tracking: Predict and follow the trajectory of other vehicles or objects de-
tected in the road. Even though the vehicle can sense the position of other
objects, predicting their next action is desirable. The time the vehicle has to
react is essential in autonomous driving. Tracking other objects in the road
will increase this time and, in consequence, prevent accidents.

Most of the autonomous driving development is focused on vehicles in the out-
door environment. However, autonomous driving is not limited to these envi-
ronments. Industries require automation of processes, and Autonomous Ground
Drones (AGD) are used to drive in small places. In warehouses and factories, due
to all the products stored, the space to drive is limited. Therefore AGD will need
to drive through narrow paths. To be able to drive safely in those environments,
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1.2. Localization in Autonomous Driving

localization is essential. Performing faulty actions due to localization errors can
produce critical failures. Even small errors in localization may result in crashes.
Therefore, this thesis will focus on autonomous driving in indoor environments.

1.2 Localization in Autonomous Driving
Autonomous driving is a hot topic in industry and research; having a system that
can efficiently detect the vehicle’s self-position has been explored. In some scenar-
ios, having small errors, even at a centimeter scale, will lead to system failures.
If the Autonomous Ground Drone (AGD) has to drive through a narrow tunnel,
few centimeters might be the difference between crashing or crossing the tunnel.
Sensor fusion techniques have been explored to get the accuracy of the vehicles
increased. The most common sensor used for localization is GPS; however, it has
significant errors in indoor environment [43]. Therefore, Ultrawide Band (UWB)
sensors are used for the same purpose [2]. Another widely used sensor is the Iner-
tial Measurement Unit (IMU)[53], which delivers the heading and the acceleration
of the system. Recently the integration of Light Detection and Ranging (LiDAR)
sensors for localization has been explored. The vehicle can have a 360 field of view
(FOV) and detect its position in the environment. Nevertheless, this sensor is
expensive and delivers a considerable amount of data to process [38, 14, 43].

The task of localization in Autonomous Driving is crucial for achieving a safe driv-
ing. Localization is defined with three parameters position (P), orientation (θ),
and speed (V). These parameters are sufficient to predict the trajectory of an au-
tonomous vehicle. The vehicle needs information from its behavior, sensors supply
this information. Several sensors are used to get the localization of the vehicles
such as GPS, IMU, wheel encoder and LiDAR.

There are no perfect sensors; therefore, the localization may have errors in it.
Errors in the localization will lead to faults on the system, from a small scratch to
a fatal crash with objects. Besides these errors, some environments add a level of
complexity to the task of localization, such as indoor environments. In an indoor
environment, if an AGD is driving around, to get the exact position is crucial.
Currently, the single sensors’ accuracy is not enough. Therefore combining the data
from different sensors has been studied [34, 16, 43]. Getting accurate localization
will heavily benefit the autonomous driving task. Using several sensors instead
of one increases the position’s accuracy, makes the system more robust, gives the
system the possibility of detecting objects, and reduces the chances of failure due
to redundancy.

1.3 Sensor Fusion for Localization
Sensor fusion is the combination of data received from different sensors. Most
sensors have the guaranteed performance only in certain situations, e.g., GPS
will have good results on highways. However, if the vehicle enters a tunnel, then
the measurements became unreliable. Therefore, fusing different types of sensors
makes the system robust to different conditions [43]. The main objective of fuse

3



1.4. Challenges

sensors in localization for autonomous driving is to increase the system’s accuracy.
Increasing this accuracy will benefit the whole task of driving. The vehicle will be
able to drive through narrow spaces with a lower probability of collision towards
the desired destination.

1.4 Challenges
This thesis will target indoor environments where the vehicle has limited space to
drive, such as an office or a warehouse. Besides the narrow paths, density and
NLOS are major challenges in indoor environments. Commons sensors like LiDAR
and GPS will have poor accuracy. GPS has an unreliable performance in indoor
environments. LiDAR needs a clear Line-of-Sight (LOS) to be able to calculate
the localization. LiDAR is susceptible to hazardous weather and low lighting. In
this thesis, we aim to perform accurate localization in an office-like environment.
There will be several objects in the environment and narrow spaces where AGD
has to drive through. As expected, this type of AGD will not have the processing
capabilities as a top gamma vehicle, like Tesla 3. In this scenario, the project will
have four main challenges:

1. High accuracy: Having an accurate localization of the vehicle is important for
the system. Errors on the scale of a few centimeters might be the difference
between crashing or driving safely in the office. In an office, there will be
different objects. From the vehicle’s perspective, this will mean that there
will be objects behind other objects. A system with the capabilities of getting
its self-position at GPS denied environments and with NLOS scenarios will
be helpful. Increasing the accuracy of the whole system is one of the most
important goals of this thesis.

2. Low-cost: Keeping the low-budget scalability in mind, it is crucial to select
low-cost sensors with high localization accuracy. Additionally, since the en-
vironment is an office, sensors capable of detecting other objects will benefit
the system.

3. Real-time localization: Autonomous driving is a task that depends exten-
sively on the real-timeliness of the different steps involved (explained earlier).
Hence, a system capable of performing the localization with a latency of a
few milliseconds is desired. The AGD performs the complete localization on
the move, so real-time localization is essential.

4. Energy-efficiency: In autonomous driving, the processor’s operation frequency
and memory space are relevant aspects to consider. This will limit the
amount of data that can be processed efficiently in a period, as the method to
process the data. Also, selecting the right sensors is also crucial for energy-
efficiency.

1.5 Research Statement and Contributions
The problems focused on this thesis will be to achieve a better performance than
the state of the art for localization and reducing the cost of the system. Most of
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1.5. Research Statement and Contributions

the research is implemented in a controlled environment making it unfeasible to
deploy it in real scenarios. Therefore one of the goals is to test this system in a
real environment.

The challenges for localization in indoor environments focused in this thesis will
be addressed in a novel sensor fusion implementation. The design will be made
by choosing low-cost sensors and performing an energy-efficient algorithm maxi-
mizing fusion accuracy. The design process involves a fusion of IMU, UWB, and
3D Radar. To the best of our knowledge, this is the first attempt in exploring the
fusion of these three sensors on an AGD for localization. State of the art in local-
ization at indoor environments fuse IMU, LiDAR, and UWB, and it has a Root
Mean Square Error (RMSE) of 10 cm. This work aims to get higher accuracy with
the sensors’ fusion and reduce the cost, computation, and power consumption of
the whole system. Also, evaluate the performance of the Extended Kalman Filter
(EKF). To consider the project successful; i), the system must perform a safe drive.
ii) Fusion of the three sensors give relevant results. iii) Fusion can work in different
environments

The research questions of this thesis are the following:

1. Which fusion of sensors will deliver the best result in localization?

2. What will be the trade-off between cost and performance for the system?

3. Is it possible to obtain better energy performance of the vehicle?

In localization sensors as IMU, UWB, GPS and Lidar are the most commonly
used. Applying a fusion of these sensors improves the accuracy of the system [17].
In this thesis, a fusion between UWB, IMU, and Radar for an AGD is explored as
shown in Figure 1.3. The main contributions of this thesis are as follows:

• We develop a low-cost AGD with on-board UWB, IMU, and Radar for lo-
calization in indoor environments.

• We develop sensor fusion of the above sensors using EKF. The weights for
each of these sensors are chosen carefully via extensive experimentation.

• We propose an adaptive localization strategy depending on the sensor sig-
nals. The primary parameters of interest in this thesis are location accuracy,
energy consumption, and localization latency. It is carried out extensive
performance evaluation of localization using our strategy using our testbed.
Our results show an accuracy of 8.54 cm, energy performance of 3.95 W, and
latency of 2.66 ms.

5



1.6. Thesis Outline

Figure. 1.3: AGD final.

This thesis was developed in collaboration with the company TOPIC embedded
systems. TOPIC provides the hardware and physical space to develop the project.
Particular interest has been increased in the automotive sector due to the advances
made in autonomous vehicles. The organization wants to contribute to the evolu-
tion of this technology by designing automated unmanned vehicles.

1.6 Thesis Outline
This work is structured as follows. Chapter 2 will discuss the state of the art of
sensor fusion, autonomous driving, and localization in indoor environments and
give insight into this thesis’s motivation. The testbed design and its requirements
will be explained in Chapter 3. Chapter 4 presents the steps made during the
implementation of the fusion algorithm. The description of the test environments,
testing, and results will be given in Chapter 5. Finally, conclusions and future
work are exposed in Chapter 6.
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Chapter 2

Related Work

An ever-increasing number of vehicles has been the root cause of several problems
such as traffic congestion and road accidents. In the past decade, there has been
a growing interest in autonomous driving; therefore, a lot of research had been
carried out. Autonomous driving is a challenging domain as it involves several
complex problems such as a phase of detection, a phase of planning, and a phase
of execution. Accurate sensor data acquisition followed by their fusion is crucial
for achieving safe and efficient maneuvering; errors in centimeters’ scale could lead
to crashes.

2.1 State of the art
Different sensors can be used to get a more reliable system; these sensors can be
Radar, LiDAR, Global Navigation Satellite System (GNSS), Real-Time Kinematic
(RTK), Global Positioning System (GPS), IMU (accelerometer and gyroscope), or
stereo camera. Due to limitations on a single sensor’s accuracy [43], topics like
Simultaneous Localization And Mapping (SLAM) and sensor fusion have been the
focus of extensive research. Therefore sensor fusion schemes have been investigated
for indoor environments to enable small robots and vehicles to drive autonomously
in any scenario.

2.1.1 Sensor Fusion
Sensor fusion is a technique that combines the information acquired from different
sensors for obtaining higher accuracy. These sensors can be homogeneous or het-
erogeneous. In a homogeneous case, few sensors belonging to the same type are
deployed in different locations, whereas in heterogeneous cases, different types of
sensors are deployed in the same location to improve the diversity in signal acqui-
sition. Sensor fusion can be divided into three main categories; Low-level fusion
(raw data), middle-level fusion (specific features of the data), and high-level fusion
(track data) [26]. There is also a possibility to apply fusion at different levels
simultaneously; this is called hybrid fusion [22]. Sensor fusion has a wide scope for
autonomous driving; most research is focused on the following topics:
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2.1. State of the art

• Localization: The most common sensors are LiDAR, camera, GPS, and
Radar [43].

• Path planning: The use of Radar, cameras are common in path planning;
nevertheless, sensors like IMUs, wheel encoders, GPS, LiDAR are also used
[32, 41].

• Tracking: The sensors used for motion tracking are IMUs, wheel encoders,
GPS, Radar; however, if the tracking is from a different object, then LiDAR
and cameras are useful [40].

• Object detection: It is extremely desired to get have vision sensors for ob-
ject detection; therefore, sensors like LiDAR, camera, and Radar are often
used. The high-level fusion is commonly applied for object detection; neural
networks (NN) can be an example [14].

Sensor fusion can be broadly divided into two categories: (i) Heuristic - is easy
to implement; it uses experimental data and fuses the ones with more similarities
[27], e.g., in object detection, heuristic fusion will combine the objects with the
smaller distance between them. In localization, the heuristic fusion will compute
the average of the positions delivered by all the sensors., (ii) track-to-track it is a
fusion based on the estimates of position; Mahalanobis distance and the covariance
help get the probability of estimation and take that into account in the fusion.
Experiments like [27] indicates that track to track fusion achieves better results.
In literature there are different methods that use track-to-track fusion, these can
be separated in filter-based and optimization-based [28, 17]. Track to track will
take features of the sensors and fuse them to achieve a more accurate estimation.
In the rest of this thesis, the focus will be only on track-to-track fusion.

Filter-Based

As the name suggests, filter-based methods perform filtering on the data to calcu-
late the position of the vehicle, mostly in an iterative fashion [17]. This filtering
majorly serves to reduce the impact of noisy measurements and therefore increases
the accuracy. Different filter-based algorithms are described below:

• Kalman Filter (KF): It is a recursive data processing algorithm used for the
estimation of states of a system from noisy measurements [32]. KF consists
of a recursive algorithm with two main steps: prediction and update. The
prediction step uses past estimation to calculate the next position of the
vehicle. The update step compares the prediction with the measurements
and updates the position. This technique has been used extensively for au-
tonomous driving. There are some variants like Extended Kalman Filter
(EKF) [54], Unscented Kalman Filter (UKF) [17], Federated Kalman Filter
(FKF) [54], Adaptive Kalman Filter (AKF) [29] that are used in practise.

• Particle Filter (PF): This is a type of Bayesian Filter (BF) state estimation
approach that calculates the probability of multiple predictions so the user
can infer its actual position [24]. This is a sampling-based technique used
for nonlinear measurements or multi-rate processing scenarios [40, 25]. PF is

8



2.1. State of the art

analogous to spreading particles through the environment with equal prob-
ability, and after a movement of the vehicle, eliminate the ones with less
probability [40].

• Histogram Filter: This is a nonparametric method that approximates the
posteriors by decomposing the state space into finitely many regions and
representing the cumulative posterior for each region by a single probability
value [18].

• Gaussian Mixture Probability Hypothesis Density (GM-PHD): A GM-PHD
filter uses multi-object tracking implementations. This is handled with a
measurement-to-track association that is based on Random Finite Sets mod-
els [31].

Optimization-Based

These techniques rely on two steps, training and prediction [17]. During training,
the algorithm uses data previously recorded from the sensors and identifies con-
straints. During prediction, the position is calculated based on the constraints.
Different optimization-based algorithms are described below:

• Permutation Matrix Track Association (PMTA): This is a novel track asso-
ciation algorithm for multi-sensor fusion scenarios, considering spatial and
temporal information. The advantage of PMTA is that it reduces the am-
biguity of track association between multiple sensors by constraining the
different tracks to one by one [26].

• Information Matrix Fusion (IMF): This is based on using the information
form of the error covariance. IMF is obtained by taking the inverse of the
error covariance matrix [29]. This technique is used to track temporal corre-
lation [26].

• Graph optimization: This is a technique often used for SLAM applications
due to its ability to allow for delayed incorporation of asynchronous mea-
surements [37].

• Deep learning: Since machine learning has become popular in the recent
years, convolutional NN (CNN) has also been explored in the area of sensor
fusion and has been found to be extremely reliable [14]. Deep learning is
used to compute algorithms that have to be trained by a huge amount of
data. Programs that can work with NN are suited for these applications,
like Tensorflow [52].

• Covariance Intersection (CI): A fusion technique that involves weights to fuse
two Gaussian estimates [26].

• Bundle Adjustment: This is a technique that optimizes the fusion of 3D
with 2D measurements. Most of the applications are focused on SLAM [17].
The most common algorithm for bundle adjustment is using the Levenberg
Marquardt [17].
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2.1. State of the art

2.1.2 Indoor Environments
Autonomous driving faces many challenges; one of them is to work in indoor en-
vironments effectively. GPS is a widely used sensor; unfortunately, when there is
no direct Line Of Sight (LOS), it gets extremely noisy. Wireless IPS has become
popular in recent years to replace GPS. IPS uses mostly short-range radio, such
as WiFi, RFID, ZigBee, or ultrasound [2]. Most of the research made in IPS uses
the Received Signal Strength (RSS) and the Angle of Arrival (AOA) parameters
to determine a position [57]. Even though WiFi infrastructure is already installed
in most buildings, the accuracy is not enough to consider for autonomous driving
[3]. The applications for IPS may vary between localization, object detection, and
tracking. Different sensors can be useful; these sensors can be divided into two
main categories [1]:

Passive Sensors

A passive sensor is the one that does not require an interaction (response) from the
environment. This type of sensors will define a position based on the observability.
Different types of passive sensors are listed below:

• Optical: The detection of these sensors relies on visibility. Because computer
vision has been a hot topic for research in the past decades, implementations
with optical sensors already exist. A downside is that they require a LOS of
the object to detect it [1], hidden objects at some time step may cause a fatal
accident. The most common optical sensors are cameras. These sensors also
have a decrease in their performance in bad weather with poor illumination.

• Infrared: Like an optical sensor, it requires a LOS for detecting an object; an
advantage of an infrared sensor is that it is less dependent on visible light.
Infrared sensors can distinguish between human beings and objects because
it can distinguish objects based on their temperatures [1].

• Acoustic: A common acoustic sensor is a microphone. This will detect an
object by using the time distance of arrival algorithms [1]. A big problem
for these sensors is that they are extremely susceptible to noise.

• Inertial Measurement Unit (IMU): It is a combination of accelerometer, gy-
roscope, and magnetometer. It measures the linear acceleration and angular
velocity of a vehicle and, with these values, obtains the position, velocity,
and orientation. It is important to notice that IMU senses the behavior of
the AGD and not objects in the environment.

Active Sensors

In contrast with passive sensors, active sensors require a transmitter and a receiver
for sensing the environment. This means that the system is extremely prone to
interference when multiple transmitters are present in the neighborhood. Different
types of active sensors are listed below.

• LiDAR: LiDAR works by transmitting a light pulse and detecting the re-
flection to determine the distance to the object. By doing this detection at
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2.1. State of the art

different angles, LiDAR can obtain an accurate estimation of the environ-
ment. As with cameras, when an object is present with No Line Of Sight
(NLOS), it is impossible to detect it [1].

• RFID: These sensors use tags to identify their detection. The RFID is very
useful for tracking applications; the disadvantage is that it requires an in-
frastructure in place [1]. These sensors are commonly used in indoor envi-
ronments, UWB one of the most accurate [55]. A big advantage is that it
is not required to have a LOS to obtain accurate results [1]; nevertheless, it
results in a slight reduction in accuracy.

• Radar: It works by transmitting radio waves to the environment and measure
the reflections. A huge advantage of this sensor is the detection of the object,
even with NLOS. The Frequency Modulation Continuous Wave (FMCW)
based radars deliver relative distances and speed of objects [5].

2.1.3 Sensor Fusion for Localization
The fusion methods explained in this chapter can be applied to autonomous driv-
ing like object detection, localization, path planning, and tracking. However, for
localization, the most common methods are the filter-based [43]. IMU, LiDAR,
RFID and Radars sensors are the one that delivers relevant data for localization of
the vehicle [15, 23]. In literature, variants of the KF are widely used; EKF being
the most used as in [9, 5, 51, 4], these research use different sensors like Radar,
GPS, LiDAR, and IMU to reach centimeter accuracy in indoor and outdoor en-
vironments. In [18] an Error State KF is used to fuse a LiDAR, IMU, and GPS
aiming for an accuracy of several centimeters in outdoor environments.

Besides KF, PF has shown promising results in sensor fusion for localization, [40]
uses PF and compared performance with UKF fusing a magnetometer with an
accelerometer. PF is also used in [15], here the focus is a network of vehicles in-
corporating communication between vehicles, as a new measurement, to calculate
the localization. A GM-PHD filter is used to fuse LiDAR with a stereo camera,
capable of computing the depth, IMU and GPS capable of localizing at 20 km/hr
in outdoor environments [31].

Indoor environments are challenging due to their inability to use GPS. An effort
has been made to find a sensor similar to GPS that works in indoor environments.
The most promising sensor is the UWB [35]; nevertheless, there are some attempts
to fuse it with different sensors [55] where LiDAR and UWB are fused using EKF.
Other attempts to fuse UWB is explained in [2], where IMU is combined with
the UWB. The disadvantage of UWB is the requirement of infrastructure setup.
Attempts like [56] avoid the use of UWB and infrastructure set up by fusing Radar
and ultrasound.

LiDAR is a promising sensor to achieve accurate localization; extensive studies
have used this sensor [55, 38, 53]. However, LiDAR is an expensive sensor, drains
a considerable amount of energy, and generates a huge amount of data, e.g., Hokuyo
UTM-30LX-EW used in [55, 53]. Indoor localization research typically focuses just
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on the accuracy of the system, ignoring important data like latency to achieve a
real-time computation [2, 56].
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Chapter 3

Testbed Design

In this thesis, a localization method is explored to increase the accuracy of the
localization of an autonomous vehicle in indoor environments. This fusion aims to
perform efficiently in real live scenarios; therefore, it is needed an AGD with all
the sensors. The most effective way to develop a fusion technique and evaluate its
performance is by building an AGD testbed. In this chapter, we describe the design
details of the AGD testbed that we developed towards fulfiling the objectives of
this thesis. To evaluate the testbed, a real-life AGD is required.

3.1 Requirements
The thesis’s first challenge was to make an AGD capable of driving to pre-defined
locations in indoor environments. Furthermore, the vehicle should be able to lo-
calize itself in different environments, long corridor, and an office, as can be seen
in Figures 3.1a and 3.1b. The design will follow recent researches focused on lo-
calization at indoor environments [56, 55, 53, 2]. The general requirements for the
testbed are as follows:

1. High-accuracy: The AGD should drive around narrow paths; a localization
error of maximum 30 cm is necessary [43, 17].

2. Real-time performance: The task of autonomous driving requires real-time
processing; therefore, special consideration has to be in the sensor’s sampling
rate, typically bigger than 5 Hz [17, 18, 37].

3. Latency: Keeping in mind the real-time requirement, special attention was
invested in the computation time. Using sensors which do not deliver a huge
a mount of data will collaborate on minimizing the latency.

4. Energy-efficient: Since the AGD powered by batteries, a focus on the power
consumed by each sensor is required. Sensors with an average consumption
bigger than 5 W are not going to be considered. Data load is an important
parameter to reduce power consumption. Therefore, sensors that deliver a
huge amount of data are not desired.
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5. Dimension: The AGD is small, as described in Chapter 1; therefore, there
is a constraint on the sensors’ dimensions. The sensors will be placed near
to each other. The dimensions of the vehicle can not exceed 30 cm width
and long and 50 cm tall. Besides the dimension of the AGD, by placing the
sensor near each other, it avoids the conversion of the data to the gravity
center of the vehicle.

(a) Long corridor environment. (b) Office environment.

Figure. 3.1: Showing the two different test environments used in this thesis for testing
our localization method.

3.2 Architecture
3.2.1 Hardware
Selecting which sensor will be more suitable for the system is an important task.
As mentioned in the previous chapter, the AGD should localize itself, have real-
time processing, low-power, designed with a low budget, and detect objects. Due
to localization being the main objective of this thesis, all sensors should deliver
relevant data for this objective. Due to the vast amount of data to process and no
energy-efficient, sensors such as; cameras and LiDAR are out of the scope.
Finally, besides Radar and UWB will be able to localize the vehicle, but they do
not give any information about the orientation. For determining the orientation
of the AGD, we will use an IMU onboard the vehicle.

The hardware architecture of the testbed is shown in Figure 3.2. Besides the
sensors and the processor, motors and power supply are considered in the design.
A description of the modules is described below:

• DC motor: 5 V motors with an H-bridge to control the speed and direction.

• Power supply: Lipo 2S battery of 3000 mAh so the system can run for several
hours straight. Since the board and the sensors have to be powered by 5 V,
a DC-DC converter is used.

• Radar: Radar is a perfect match for serving the project objectives since; they
can detect objects and localize the self-position with no huge amount of data
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and errors smaller than 30 cm. The power consumption of this sensor can be
smaller than 5 W. Radar is not an expensive sensor, so it fulfills the testbed
requirements. The communication with the board is via UART.

• UWB: At this moment, the best sensor to get self-localization in indoor
environments is the UWB; therefore, integrating it into the AGD will benefit
the system. The energy, volume of data, and cost of this sensor are low. The
data will be transmitted via UART to the board

• IMU: For determining the orientation of the AGD, we will use an IMU on-
board the vehicle. It is a common sensor used in localization, giving accurate
results. The price of this sensor is usually a few euros. The data load and
power consumption of IMU are minimum. The communication protocol with
the board will be I2C.

• Ultrasound (US): An ultrasound will be used as a sa f ety sensor to avoid
collisions; this sensor immediately brake the vehicle if it detects an object in
front within a distance of 15 cms.

Figure. 3.2: Hardware Architecture of our testbed.

3.2.2 Software
Combining the data acquired from a multitude of sensors is not a trivial task.
Fusion methods are often used; filter-based and optimization-based methods [17]
have been proved to have good results [37, 51]. Nevertheless, optimization-based
requires a large amount of memory. The system has a limitation in this area, so for
this work, the filter-based methods are going to be implemented. Kalman filters
are widely used to achieve fusion for localization [2]. As described in Chapter 2,
KF is used for the estimation of states. Due to the non-linearity of the sensors, a
simple KF will not deliver accurate results. Nevertheless, some variations like EKF
make compensation for the non-linearities of the system. The EKF will predict
the position of the vehicle based on the measurements of the sensors. The software
architecture is shown in Figure 3.3; all the computation will be performed in the
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microcontroller. Three main modules are described as follows:

• Data processing: The data from the sensors have to be computed to ob-
tain the values of position, speed, and orientation. Each sensor will require
different computations, as it will be explained in Section 3.3.

• EKF fusion: The EKF will receive values of position, speed, and orientation
from the Radar, UWB, and IMU. These values will be used to estimate the
localization of the AGD.

• Motor Control: To control the vehicle’s speed and orientation, data from the
IMU is used. A PID controller will process this data.

Figure. 3.3: Software Architecture of our testbed.

3.3 Implementation
For this thesis, the testbed will be implemented using a microprocessor STM32L4R5ZI
incorporated in a NUCLEO-L4R5ZI microcontroller board [45]. As was mention
in Chapter 2 the vehicle will have a Radar, IMU, and UWB for localization and an
ultrasound for emergency braking . The board and sensors used are listed below:

1. Microcontroller: NUCLEO-L4R5ZI [45]

2. Radar: AWR1843 [50]

3. IMU: MPU6050 [21]

4. UWB: DWM1001dev [11]

5. Ultrasound: HC-SR04 [13]

In the following section, we will describe the sensors’ specifications and configura-
tions for the localization in detail.
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3.3.1 Processor
The NUCLEO-L4R5ZI is a developer board with an ARM Cortex M4 32 bit mi-
crocontroller with an operating frequency of 120 MHz. It also contains high-speed
memories (flash memory up to 2 MB, up to 640 kB of SRAM). A key feature for
choosing this board was the available options for communication; the NUCLEO
has 6 USARTs, 4 I2C, and 3 SPI [47]. The communication used in this thesis is
via USART 2 for connecting the UWB, USART 3 for the Radar, and I2C 1 for the
IMU. The UWB communication requires Tx and Rx channels. In the case of the
Radar, only an Rx channel is used. The I2C requires two different I/O, a synchro-
nization clock (SCL), and a data line (SDA). All of these registers are on the set of
headers CN11 and CN12 [45]. To be able to use it, some soldering has to be done;
in Figure 3.4 can be seen the connections to the board. The board was selected,
taking into account the number of communication pins, the operating frequency,
and memory. In comparison to Arduino Mega [30] or with Nucle L476RG [46],
this board has a higher operating frequency, enough communication pins for all
the sensors, and larger memory.

Figure. 3.4: Diagram of connection fron NUCLEO-L4R5ZI board to Radar, UWB and
IMU [45]

3.3.2 Radar
Keeping the project objective mentioned earlier in mind, the following are the
desired capabilities of a Radar: Being able to transmit via UART or I2C, range
detection of about than 40 meters, and resolution of 10 centimeters or less, and be
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able to the detect at which height is the object detected. The mmwave AWR1XXX
[48] radars from TI fulfill most of the requirements; however, the only capable of
3D detection is the AWR1843BOOST. The AWR1843BOOST has 4 Rx and 3 Tx
antennas, as shown in Figure 3.5, so that it can have 3D detection of the environ-
ment [50]. FMCWs radar can be configured for medium or short range. Typically
medium range is from 40 m to 150 m with a resolution of 70 cm, able to detect
an object moving at 150 kmph with a field of view (FOV) of ±15◦ [7, 50, 48].
Medium range detection is often used for path planning, collision avoidance, and
tracking other object highways. On the other hand, short-range is used to have
accurate detection of objects. This configuration has a maximum range of 40 m
with a minimum resolution of 4 cm, a maximum speed range of 36 kmph, and a
FOV up to ±100◦ [7, 50, 48].

Typically in a warehouse setting, there could be several objects in the vicinity of
the vehicle. Hence we chose the short-range configuration. The Radar’s factory
settings are a range of 150 m with a resolution of 35 cm; setting all the parameters
to obtain the desired values was a challenging task. The AWR1843BOOST is a
relatively new sensor, so there is not much documentation on how to change the
parameters as in other mmwave radars. To modify the resolution, the values of
start frequency ( fc), bandwidth (B), and duration (Tc) have to be changed. With
these values, it can be calculated the slope (S) of the signal [49]. Using the Equa-
tion (3.1) where c is the speed of light, and ∆d is the resolution can be set to 4.3 cm
using the following values:

• Tc= 87 µS

• fc = 77.1 GHz

• B = 3.66 GHz

∆d =
c

2STc
(3.1)

Using this configuration, the maximum range is 20 m. To transmit data from the
AWR1843BOOST to the NUCLEO-L4R5ZI, two more changes have to be made.
The first is that the UART pin on the Radar is disconnected; therefore, a 0 Ω
resistor has to be soldered in position R26. The second change is to decrease the
Radar’s baud rate from 921,600 to 204,800 Hz so it can use the maximum baud-
rate of the microcontroller. The configuration of all the Radar parameters has to
be performed in three steps to be uploaded to the AWR1843BOOST.

1. Modify and build a program with new configuration parameters.

2. Turn switch 0 and 2 ON and switch 1 OFF, of jumper S1, to flash the
AWR1843BOOST with the pre-built binaries from step 1.

3. Turn switch 2 OFF, of jumper S1, to enter into the running mode to start
detecting the environment.

The Radar will deliver the message that will contain the number of objects de-
tected, their position in X, Y, and Z coordinates and the relative speed of the
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object. By giving an initial position, the Radar can track its movement by averag-
ing the movement of the objects detected. Obtaining the position of the vehicle was
quite challenging. The algorithm designed involves a previous knowledge of the
vehicle’s position, and the Radar will measure the displacement of it. The displace-
ment was calculated by averaging each object’s displacement detected comparing a
previous measurement with the actual. Following a similar approach described in
[17, 43, 37], it can be calculated the distance that the vehicle moves with Equation
(3.2), where P is the position of the object k, Nobj is the total number of objects
detected by the Radar. In this case, all the objects with a relative speed different
from the vehicle will be discarded.

d =
∑

Nobj
n=1 Pk − Pk−1

Nobj
(3.2)

Figure. 3.5: AWR1843BOOST EVM front view

3.3.3 IMU
The IMUs are widespread sensors used in many industrial applications. Therefore,
there are different chips, in the market, with capabilities similar to each other.
Rather than the general requirements, the IMU has to should have the following
desired capabilities: have a scale bigger than 4g and 500 dps for the accelerome-
ter and the gyroscope, respectively, have UART or I2C communication protocol.
The MPU6050 is formed by an accelerometer and a gyroscope giving a detection
of 6 axes of motion to the chip. The sensor will be placed in the middle of the
vehicle having the x-axis positive to the front, y-axis positive to the right, and the
z-axis positive to the bottom. The gyroscope and the accelerometer have different
ranges of operation, as described in [21]. Due to the high accuracy needed, we
chose the highest possible resolution of 2000 ◦/s (dps) for the gyroscope and ± 16
g for the accelerometer. The MPU6050 has a maximum output rate of 1 kHz. To
send the data to the Nucleo board, it uses the I2C communication protocol. The
raw data from the MPU6050 cannot be used directly, so some calculations have to
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be performed. Following the sensitivity table on [21], the accelerometer raw data
has to be divided by 2048 to scale it to 1 G, where G denotes the gravity of the
earth. For the gyroscope raw data, it has to be divided by 939.650784 to scale it
to radians per second.

Once the data is converted to the desired units, it was taken ten samples of the
IMU and calculate the mean to get a better accuracy of the measurements. The
accelerometer measurements are susceptible to noise; therefore, a combination of
accelerometer and gyroscope was applied to make the measurement more robust
to noise. The first step of this combination is to convert the gyro data into the
same units as the accelerometer with Equations (3.3) and (3.4) [20]. Let Rx and
Ry the values converted, rx and ry are the roll and pitch angles at each time step
of the vehicle.

Rx =
sin(ry)√

1 + cos(ry)2 ∗ tan(rx)2
(3.3)

Ry =
sin(rx)√

1 + cos(rx)2 ∗ tan(ry)2
(3.4)

To combine the converted data with the data from the accelerometer it was used
Equation (3.5) [20], where wG is how much it is trusted the values of the gyroscope,
RA is the data from the accelerometer and RG are the and the converted values
from the gyroscope. RA, RG and R are vectors with x,y,z coordinates.

R =
RA + RG ∗ wG

1 + wG
(3.5)

These values are used to control the movement of the vehicle with a PID controller.
A diagram of the PID controller is shown in Figure 3.6 where Kp, Ki and Kd are 4,
4 ∗ 10−4 and 0.115 respectively. The input of the PID controller will be the angle
and the acceleration of the vehicle. Besides controlling the vehicle, the IMU data
will estimate the vehicle’s position in the fusion algorithm.

Figure. 3.6: Block diagram of PID controller used in our testbed [19].

3.3.4 UWB
This UWB was selected because it has an accuracy of 18 cm and a sampling rate
of 10 Hz, which is favorable for meeting the project objectives. The Decawave
DWM1001dev can be configured into three modes: anchor, tag, and listener [10].
The anchor is at a fixed position and transmits a message noting the transmission
time and wait for the broadcast from the tag to determine the distance between
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both. The tag will wait for the message from the anchor, and with the reception
time, calculate the distance to the anchor at the same time transmit a broadcast
message to all the anchor nearby. The listener works only to transmit data to
other boards; this will contain the position of all the tags in the network. The
DWM1001dev works with a Two Way Ranging (TWR) algorithm to determine
the position of the tags [12]. As can be seen in the Equation (3.6) [35], the dis-
tance between the anchor and the tag can be easily calculated, where t1, t2 the
time of reception of the tag and anchor respectively. Nevertheless, this distance is
only in 1D. By knowing the anchors’ position and its distance to the tag, we can
calculate the 3D position of it with a trilateration [35] as it can be seen in Figure
3.7. The circles made with the trilateration will have a distance between the tag
and the anchor, being the center’s anchor. The position of the tag will be where
the four circles converge.

d = c ∗
t2 − t1 − treply

2
(3.6)

To make this UWB work efficiently, it is necessary to place at least four anchors
throughout the environment. By setting the four anchors at different positions, the
system can get a 3D position of the tag in X, Y, and Z coordinates. The different
working rates of the DWM1001dev are from 1 to 10 Hz; in this thesis, it is chosen
the maximum frequency. A tag will be placed on top of the vehicle to track its
position over time. The tag and the anchor can only communicate with the UWBs
on the network; therefore, to get the vehicle’s position transmitted to the board, it
is needed a listener. The listener is connected via UART to the board with a baud
rate of 115200. The vehicle’s speed was computed using Equation (3.7), where
U the position measured by the UWB; this was multiplied by a factor of 10 to
convert it into m/s units.

V = (Uk − Uk−1) ∗ 10 (3.7)

Figure. 3.7: TWR trilateration [35]
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3.4 AGD dimensions and cost
The AGD dimensions are 20 cm length, 14 cm width and 27 cm tall. The sensors’
position was selected to be as near as possible to the center of the vehicle, as men-
tioned previously in this chapter. In Figure 3.8 is shown the shell of the AGD with
out the sensor incorporated. The shell has a weight , also considering the wheels
and motors, of 1.3 kg.

Figure. 3.8: Hind and side views of the shell for the testbed.

The Radar will be at the center and the highest level of the vehicle to reduce the
impact of faulty detections on the floor. The UWBs onboard are two, a listener
and a tag, the tag to track the localization of the AGD and the listener to transmit
this data to the microcontroller. The tag was placed behind the radar on the top
level. The IMU will be placed on the base of the vehicle near the center. The
ultrasound, as a safety sensor, will be placed at the front of the vehicle. In Figure
3.9, the AGD built during this thesis is shown. The cost of the whole vehicle is
described in Table 3.1.

Figure. 3.9: Hind and side views of the designed testbed.
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Sensor Price ( € )
NUCLEO-L4R5ZI 17.78
DWM1001dev 21.06
MPU6050 4.57

AWR1843BOOST 255
Ultrasound 3.35

Battery 2S Lipo 45.45
Total 347.21

Table 3.1: AGD development cost.

As a note, it is worth mentioning that the Covid-19 situation introduced some ma-
jor hurdles in this project. Access to the TOPICs office was prohibited for a few
months. To continue with the thesis, the option of using a simulation of the vehicle
and the environments was discussed. During the lockdown, a substantial amount
of time was spent learning how to create virtual environments and 3D modeling
on Unity. In Figures 3.10a and 3.10b is shown the simulated environment and the
3D modeling of the vehicle. The lockdown lasted for a few months, so the virtual
environment’s option was not continued.

(a) Virtual environment. (b) 3D modeling of the AGD.

Figure. 3.10: Unity Virtual TestBed.

23



Chapter 4

Sensor Fusion: Theory

In previous chapters, it was mentioned that to improve the localization accuracy, a
combination of different sensors and fusing their measurements is a common tech-
nique. In this chapter we will explain the design and implementation of the fusion
of the Radar, IMU, and UWB. In Chapter 3, we described some computations to
the raw data of the sensor to get in on the desired units. The data delivered to
the fusion algorithm will be:

• Acceleration and orientation of AGD in 2D space computed with the IMU
data.

• Position in x and y and Vx and Vy of the AGD computed with UWB data.

• Position in x and y and Vx and Vy of the AGD computed with Radar data.

One of the most common fusion algorithms for localization is the Kalman Filter
or variants of it [2, 4, 18, 39, 51]. The sensors used in this thesis are nonlinear;
therefore, a simple KF will not be enough. Variations of the KF, such as EKF,
AKF, and UKF, will perform efficiently and overcome the nonlinearities. However,
AKF and UKF introduce additional computational complexity. If the system were
highly nonlinear, techniques such as PF, AKF, or UKF would perform well. In
our work, we will employ EKF because of low system nonlinearity as well as to
minimize computational complexities and maximize the accuracy associated with
the sensor fusion technique.

4.1 EKF Algorithm
Once all the sensors were connected to the MCU, implementing the EKF was
the next step. As mentioned before, an EKF is a variation of the Kalman filters
that can make accurate nonlinear systems predictions. Kalman filter works as a
recursive estimator of the states of a system [34]. This estimation is performed
by having some belief of the real state and then applying a correction based on
environment’s measurements. To overcome the nonlinearities, the EKF performs
a linearization of the system. This linearization is made on the system state model
and in the measurement model by applying the Jacobians F and H as shown in
Equations (4.1) and (4.2). Let S be a matrix of four rows and a single column
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containing the system’s states, where the states are the position and the speed
of the vehicle, f is the system equation to predict the next state, and h is the
measurement equations.

F =
δ f
δS

(4.1)

H =
δh
δS

(4.2)

In theory, this will be sufficient to estimate the system’s states; nevertheless, the
measurements are noisy in real scenarios. Therefore the noise has to be taken into
consideration in both the system states and measurement model.

4.1.1 System State and Measurements model
The main objective of this work is to get accurate localization of the AGD; there-
fore, the states to estimate x, y, Vx and Vy. To get the measurement and state-space
models are different for every vehicle system. These models have to be designed
according to the sensors used; in this case, it was defined that the IMU will be
the input sensor for the system state model, and the UWB and Radar will be the
measurement sensors for the measurement model. As described in Chapter 3, the
IMU will get the acceleration and orientation of the vehicle. By integrating with
respect to time the acceleration data, the estimate of the position and the velocity
of the AGD can be calculated. As can be seen in Equation (4.3), the states will be
predicted with simple physics equations [9]. Here u is the input of the system, Ax
and Ay are the acceleration in x and y-axis, respectively, ∆t is the time elapsed
since the last measurement of the IMU, θ is the orientation angle of the vehicle,
and w the noise of the IMU. By applying the Equation (4.1) to the states model
S it can be obtained the Jacobian F shown in Equation (4.4)

S = f (S, u) =


x
y

Vx
Vy

 =


x(k−1) + Vx∆t +

1
2

Ax∆t2

y(k−1) + Vy∆t +
1
2

Ax∆t2

Vx(k−1) + Ax∆tsinθ

Vy(k−1) + Ax∆tcosθ

+ w (4.3)

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (4.4)

The noise will be modeled as white Gaussian noise with a mean of 0 and covariance
matrix Q, w ∼ N(0, Q). Q will be a diagonal matrix of four rows and four columns
with the diagonal values being the variance of the input data, as shown in Equation
(4.5) where the σ2 are the variances of the input variables.
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Q =


σ2

Ax
0 0 0

0 σ2
Ay

0 0
0 0 σ2

sin(θ) 0
0 0 0 σ2

cos(θ)

 (4.5)

The variance of each input was determined by reading the IMU data and calculated
after 10000 samples. These samples were taken at static position, to determine
the noise of the sensors without vehicle movement. The values of the variance for
matrix Q were obtained from the IMU are:

σ2
Ax
= 0.00231

σ2
Ay
= 0.00060

σ2
sin(θ)= 0.0003262

σ2
cos(θ)= 0.0006524

As the state-space model, the measurement model has been designed with data
from the sensors, in this case, the UWB and the Radar. In most sensor fusion cases,
there are only two sensors to fuse with the EKF, and the measurement model is
the same value as the sensor data. In this case, there are three sensors involved;
therefore, the measurement model has to be modified. To take into the equation,
the two remaining sensors, we assigned some weight ω to each measurement. This
ω denotes how much the values of the measurements be trusted and can take
values in the range [0, 1]. Let us denote with the subindex u, and r the data from
UWB and Radar, respectively, and the noise of the measurements as v. Following
Equation (4.2) and applying it to the measurements model, the Jacobian H will
be shown in Equation (4.7).

Z = h(S) =


x
y

Vx
Vy

 =


xu ∗ ωux + xr ∗ ωrx

yu ∗ ωuy + yr ∗ ωry

Vxu ∗ ωuVx + Vxr ∗ ωrVx
Vyu ∗ ωuVy + Vyr ∗ ωrVy

+ v (4.6)

H =


ωux + ωrx 0 0 0

0 ωuy + ωry 0 0
0 0 ωuVx + ωrVx 0
0 0 0 ωuVy + ωrVy

 (4.7)

The noise v is a gaussian white noise with mean 0 and covariance matrix R,
v ∼ N(0, R) . R is a diagonal matrix of four rows and four columns with the
values of the diagonal being the variance of the measurements data as it can be
seen at Equation (4.8) where σ2

Zx is the sum of the product between the variance
and the weight of the x component of each the Radar and the UWB (ωux * σ2

ux

+ ωrx * σ2
rx). Also σ2

Zy is the sum of the product between the variance and the
weight of the y component of both sensors (ωuy * σ2

uy + ωry * σ2
ry). The value of

σ2
ZVx

is the variance of the speed in x of the UWB (σ2
uVx

) and σ2
ZVy

is the value of
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the variance of the speed in y of the UWB (σ2
uVy

).

R =


σ2

Zx 0 0 0
0 σ2

Zy 0 0
0 0 σ2

ZVx 0
0 0 0 σ2

ZVy

 (4.8)

All the variances were calculated with the values obtained of 1000 samples from the
UWB and the Radar. As in the matrix Q the variances were calculated at static
position. The difference is that every 100 samples the position and orientation of
the vehicle was changed to consider many scenarios. The weights were obtained
based on observation, during the first test it was observed that the results were
not as good as expected, even though the accuracy was better than each single
sensor. This was because the weights assigned to each sensor were same. Tuning
the weights of each sensor was a challenging task, some scenarios yield better
performance to a different sensor. By doing several experiments the tuning of the
weights was defined. The values obtained are as follows:

• σ2
Zx

= ωux * σ2
ux + ωrx * σ2

rx = 0.7 * 0.0846 + 0.3 * 0.2670

• σ2
Zy

= ωuy * σ2
uy + ωry * σ2

ry = 0.7 * 0.0454 + 0.3 * 0.1165

• σ2
ZVx

= ωuvx * σ2
uVx

+ ωrVx * σ2
rVx

= 0.4 * 0.2911 + 0.6 * 0.0291

• σ2
ZVy

= ωuvy * σ2
uVy

+ ωrVy * σ2
rVy

= 0.4 * 0.2325 + 0.6 * 0.0263

Once both models are defined, the next step is to define the initial values of the
states X and the uncertainty P. The EKF is a recursive algorithm that consists of
two main steps, a prediction, and an update.

4.1.2 Prediction
During the prediction phase, the EKF will ”predict” the states’ following values
and the uncertainty. The IMU will be the sensor used in this step of the fusion.
The prediction of X is performed using Equation (4.3), based on the previous
values and the input data, as can be seen in Equation (4.9). With X−

k , being the
prediction of the states at the time step k.

X−
k = f (Xk−1, uk) (4.9)

The prediction of the uncertainty will be calculated using the Jacobian in Equation
(4.1), the previous uncertainty, and the covariance matrix Q in Equation (4.5) to
take into account the errors of the IMU. P−

k is the prediction of the uncertainty at
the time step k.

P−
k = FPk−1FT + Q (4.10)

During the first prediction, the EKF will use the initial values as the Xk−1 to
calculate the next step. If the initial values are wrong, the EKF will correct the

27



4.1. EKF Algorithm

states in few time steps due to the system’s small nonlinearities; if the system were
highly nonlinear, there would be a risk of being stuck in a local minimum with
wrong initial values.

4.1.3 Update
The update of EKF is a correction to the prediction using the data from the
measurements. These measurements will be the x, y, Vx, and Vy coming from
the Radar and the UWB. As explained before, both sensors’ data will have a
weight according to the level of trust of each sensor. The update phase start with
calculating the innovation covariance matrix (L) [9]. This innovation covariance
will be calculated with the Jacobian H, the prediction of the uncertainty P−

k , and
the noise covariance R as it is shown in the following equation.

Lk = HP−
k HT + R (4.11)

The computation of S will be used to calculate the Kalman gain (K), L will be a
square matrix of 4X4 dimension. The Kalman gain will be calculated as shown in
Equation (4.12), where the transpose of H and the inverse of S are used. Before
updating the states, a previous calculation has to be done, that will be the differ-
ence between the measurements at time step k and the nominal calculation of the
measurements [34]. This difference will be denoted as Z+

k , as can be seen in the
Equation (4.13), the nominal value will be the prediction of the states previously
calculated. Therefore Z+

k will be the error between the measurements and the
prediction.

Kk = P−
k HT L−1 (4.12)

Z+
k = Zk − h(X−

k ) (4.13)

The final step of the EKF is to get the update of the states and the uncertainty.
The update of the states is performed following Equation (4.14). This update
considers the prediction previously calculated in Section 4.1.2, the error of the
measurements, and a Kalman gain. Finally, updating the uncertainty is computed
using Equation (4.15). Here I is an identity matrix of 4X4, these values will close
the loop of the EKF and then be used to calculate the prediction of the next time
step.

Xk = X−
k + KkZ+

k (4.14)

Pk = (I − Kk H)P−
k (4.15)
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Chapter 5

Performance Evaluation

This chapter will discuss the extensive performance evaluation of our testbed and
describe the first step towards designing an adaptive strategy for energy-efficient
localization without trading-off the accuracy. The performance of our localization
technique will be compared with state of the art for localization in indoor environ-
ments. The tests were aimed to obtain the localization accuracy, robustness, and
power consumption of the system and the end-to-end latency.

5.1 Test Setup
The experiments were performed in three different indoor environments to inves-
tigate the performance under diverse physical characteristics of the environments:

• E1: This is a section in an office with a space of 5 m wide and 6.8 m long.
As in any office, there was some object around and also people moving. The
objects are two desks, two chairs, four mid-sized plants on the left side, two
mid-sized plants on the top, and a big plant on the center. In Figure 5.1,
it can be seen the test environment where the numbers 1, 2, 3 and 4 in red
are where the UWB anchors are located, the arrows X and Y is the positive
values of the coordinates on the real map. The origin is the position of the
anchor 1. The anchors’ position was pre-defined and determined to obtain
the best accuracy of UWB. The exact position of the anchors is: 1:(0,0),
2:(3.52,0), 3:(3.65,6.78) and 4:(0.1,6.78).
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Figure. 5.1: Floor plan and photograph of the test environment E1

• E2: The second environment will be in the same location as E1, with the
difference in the density of objects. The purpose of this environment is to
observe the performance of the AGD in environments similar to a warehouse,
where several objects will be in the path and NLOS scenarios are more prob-
able. This environment can be seen in Figure 5.2.

Figure. 5.2: Floor plan and photograph of the test environment E2

• E3: The final environment was in a different place. This was the corridor of
a building. The corridor is 14.41 m long and 1.5 m wide. Even though there
were no objects in the corridor, the Radar was able to detect the objects inside
the apartments. The purpose of this environment is to emulate narrow paths
where the vehicle should have accurate localization to prevent crashes. This
environment can be seen in Figure 5.3. The position of the UWB anchors is:
1:(-0.75,0), 2:(0.75,0), 3:(0.75,14.41) and 4:(-0.75,14.41).

Figure. 5.3: Floor plan and photograph of the test environment E3
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5.2 Test Description
The performance evaluation was divided into three parts:

1. Accuracy and Robustness: The performance improvement of our localization
method (using UWB, IMU, and Radar) using three sensors over only two of
them (the method explored widely in literature). The test will be performed
in E1 and E2. The robustness will be tested in E1 and E3, where the vehicle
will drive longer paths and more complicated trajectories.

2. Latency: This part will be checked only in E3; note that the localization
latency remains robust to the test environment. Therefore performing the
test in only one environment is sufficient to obtain complete overview of the
performance.

3. Power Consumption: This part will be tested in E3, where the vehicle will
perform a continuous drive. The energy will be tested, in different sampling
rates, to compare the energy-efficiency of the system and its accuracy.

5.2.1 Accuracy and Robustness
Accuracy

The accuracy was evaluated with three different fusions: Fusion of Radar, UWB
and IMU (our method), Fusion of UWB and IMU, and Fusion of Radar and IMU.
To evaluate the fusion algorithm’s performance, two tests were performed, with
initial values of [x, y, Vx, Vy] = [0 m,0 m,0 m/s, 0 m/s]. The initial uncertainty is
[0.5 m, 0.5 m, 0 m/s, 0 m/s]. The initial values will not be the exact position in
the real world; nevertheless, the system should overcome this error. This test aims
to compare the three different fusions and determine which one has better results
at low (1.2 kmph) and high speed (4 kmph).

To measure accuracy, several test runs have to be made to observe all the vehicle’s
different behaviors. The accuracy and robustness will be measured in 2 different
scenarios at two different speeds, 1.2 and 4 kmph. The first scenario was driving
for 4.5 meters straight in E1. To obtain a more accurate measurement, this test
was performed with different orientations, in Figure 5.4 can be seen the North and
East orientations. The second scenario will be the same as the first one with the
variation of using E2 instead. Each scenario was tested twenty times. During the
testing will be observed which fusion has the best performance.
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Figure. 5.4: Experiments for investigating accuracy of our localization method.

Robustness

The robustness, as the accuracy, consists of two test scenarios. This test was run
twenty times at 1.2 kmph and 4 kmph in E1 and E3. The first scenario was also
in the office environment with the difference that the vehicle will perform a square
trajectory. Finally, the fourth scenario was E3, where the vehicle drive for 13
meters, almost the whole length of the corridor (14 meters). The purpose of this
scenario is to observe if there is no accumulation of error. In Figure 5.5 can be
seen the second and third scenarios.

Figure. 5.5: Experiments for investigating robustness of our localization method.

5.2.2 Latency
These tests were in E3, where the vehicle will drive for 13.5 meters at 4 kmph to
measure the fusion’s latency. A critical factor in autonomous driving is the time to
react, therefore having a fast algorithm is essential to perform in real-time. This
latency has to consider the time taken to sense the external environment until the
localization is achieved. Note that this includes several processes such as sensing,
pre-processing, and fusion., as shown in Figure 5.6. The measurements of the
latency were only taken in E3.
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5.3. Results

Figure. 5.6: Latency diagram of the system

5.2.3 Power consumption
The fusion with EKF should increase the accuracy of the system; nevertheless,
there is an area of opportunity also to reduce the power consumption of it. The
task of driving consists of three main actions, drive straight, turn, or brake. The
braking action is desired to be minimum to drive as smooth as possible; therefore,
the focus will be only on the driving straight action. The EKF will be computed
every time a sensor has an update, this meaning that the EKF will have a similar
rate as the sensor with the highest sampling rate. In this particular case, the sensor
with the highest frequency is the IMU, 1 kHz. While the AGD is driving straight,
it is easier to predict the next step. If the difference of orientation measured by
the IMU is smaller than one degree per second, the sensors sampling rate can
be reduced. Reducing the sampling rate will positively affect power consumption;
however, the accuracy will reduce. By performing tests for different sampling rates
an optimized behavior of the AGD can be found. The objective is to develop an
energy-efficient AGD maximizing the accuracy.

Measuring power consumption was important during this phase. To obtain this
measurement, the vehicle battery was charged at its full capacity (8.39 v) and let it
discharge with all the systems running, including the motors. Measuring the power
consumption of the system was performed with two different approaches. The first
one was to calculate with the information from all the sensors and the board’s
data-sheets. The second approach was performed by making an approximation
of the power consumption of each sensor according to its sampling rate. The
sampling rates for the whole system varied from 1 Hz to 1 kHz exponentially.
These sampling rates will also affect the accuracy of the fusion. Therefore, the
localization will be measured during this test for each sampling rate. With this,
we compare the trade-off between power consumption and accuracy.

5.3 Results
5.3.1 Accuracy and Robustness
Accuracy

The mean localization error and the standard deviation of the three fusions can be
seen in Figure 5.7. In Table 5.1 can be seen as the mean error and the standard
deviation of the three fusions fusion methods with AGD driving at low speed. The
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Radar and IMU fusion shows the worst behavior in this scenario, and, as expected,
the UWB, Radar, and IMU fusion show the best performance. In Table 5.2 are
shown the mean error and its standard deviation for the high speed test. The
results of the fusions have a Gaussian-like distribution, as can be seen in Figure
5.7. In Figure 5.8, the mean error at low and full speed is shown. All of the fusions
show a mean error smaller than 20 cm. Nevertheless, clearly, our method of sensor
fusion with the three sensors, UWB, Radar, and IMU, performs better than the
fusion of two sensors.

Mean error (cm) Std Dev (cm)
U,R, & I 9.95 9.51
R, & I 16.57 10.21
U, & I 12.73 8.03

Table 5.1: Mean error and Standard Deviation at 1.2 kmph.

Mean error (cm) Std Dev (cm)
U,R, & I 8.42 8.71
R, & I 14.60 9.14
U, & I 15.78 10.99

Table 5.2: Mean errror and Standard Deviation at 4 kmph.

Figure. 5.7: Error distribution fusion of UWB, Radar and IMU.

Figure. 5.8: Mean localization error and standard deviation of the different fusions and
speed profiles.
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In Figure 5.9 we present the absolute error of the three fusions is compared. The
error was plotted with the average of all the test runs. As can be observed, our
method shows a better prediction than the other methods. The fusions of UWB-
Radar-IMU and UWB-IMU show a considerable error at the starting point; this is
due to the difference between the initial position and the UWB data. This error is
corrected after the AGD runs for a few seconds. In the fusion of Radar and IMU,
it shows an increase of the error at the beginning of the run. This increase is a
consequence of the initial acceleration of the AGD.

Figure. 5.9: Variation of localization error with respect to euclidean distance between
current and initial position.

By analyzing the results, it was determined that the combination of the UWB,
Radar, and IMU delivers the best results at both speeds. An interesting aspect is
the small improvement of the fusion of Radar & IMU and the UWB, Radar & IMU
at 4 km/hr compared to the 1.2 km/hr. This improvement is because the Radar
calculates the distance to the objects by considering the Doppler effect; therefore,
when the vehicle is static or driving at low speed, the measurements get noisier
[50, 7, 48]. In the case of the fusion of the UWB & IMU the error increases while
the speed increases due to the sampling frequency of the UWB.

Robustness

The square trajectory test was performed in E1, and the vehicle drives around
a pair of chairs. To get a complete evaluation of the AGD performance, 20 test
runs were performed. During this test, the vehicle will be tested in all different
orientations and perform turns.

Another test performed is with a high density of objects; this was performed in E2.
The purpose of the test was to evaluate the behavior of the AGD in environments
with a high-density of objects. A total of 20 test runs were performed.

Finally, in E3, the test of driving 13.5 m was evaluated; in this scenario, there
will not be any object in the corridor. However, the Radar should be able to de-
tect objects behind the doors. Figure 5.10 shows the mean localization error and
standard deviation of the three tests. Table 5.3 shows the mean values obtained of
these three tests. The performance of our method is similar to the results obtained
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previously.

E1 E2 E3
Speed Mean error (cm) Std Dev (cm) Mean error (cm) Std Dev (cm) Mean error (cm) Std Dev (cm)

1.2 kmph 10.48 9.41 9.80 8.25 8.89 5.49
4 kmph 9.38 8.77 8.70 7.26 8.45 6.77

Table 5.3: Mean localization error and standard deviation of E1, E2 and E3.

Figure. 5.10: Mean localization error and standard deviation in three different environ-
ments and speed profiles.

Figure 5.11 can be observed the real and the predicted vehicle position during
these tests. This trajectory was challenging to follow the same route every time.
During the square trajectory, it was not possible to get a 100 % accurate real
position; therefore, an approximation was performed as seven straight lines. As
can be seen, the vehicle turns are where the most significant errors occur; this will
be one reason for the small increase of the mean error. Another reason is that
the Radar gets an increase in the errors while turning due to this sensor can not
measure the changes in the orientation angle.

Figure. 5.11: Absolute error as a function of Eucliean distance of the vehicle from initial
position in a square trajectory test in E1.

The absolute error of the tests in E2 and E3 can be observed in Figures 5.12 and
5.13 respectively. The systems show robustness against different environments and
trajectories of the AGD. Therefore, it can be said that our method is robust.
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Figure. 5.12: Absolute error as a function of Eucliean distance of the vehicle from initial
position in a 4.5 meters trajectory test in E2.

Figure. 5.13: Absolute error as a function of Eucliean distance of the vehicle from initial
position in a 13.5 meters trajectory test in E3.

5.3.2 Latency
The latency measurements were taken while the vehicle moved around to have a
better estimation of when the data is changing. To calculate the latency of the
algorithm, 120,000 samples were used as data. The latency obtained shows Gaus-
sian distribution, as shown in Figure 5.14. The mean and the standard deviation
of the latency are 3.218 ms and 0.533 ms respectively. Our results show a latency
sufficient to perform in real-time. The measurement of the latency is considered
accurate for all the environments.
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Figure. 5.14: CDF of localization latency of our system

5.3.3 Power Consumption
Besides the latency of the system, another significant factor in industry is power
consumption. In the AGD used, the elements that are powered by the battery
are shown in Figure 3.10.a. To measure the power consumption of the motors
while moving was not possible in this analysis. Therefore the analysis will only be
performed on the sensors and the board. The power consumption obtained from
the data-sheet can be seen in the table below.

Average (W) Maximum (W)
NUCLEO-L4R5ZI 1.5 1.575
DWM1001dev 0.67 0.737
MPU6050 0.01289 0.01418

AWR1843BOOST 1.92 2.67
Total 4.1029 4.9918

Table 5.4: Power consumption of the system [50, 45, 11, 21]

The power consumption obtained during the tests is shown in Figure 5.15, where
power consumption and mean localization error are plotted as functions of sam-
pling rate in logarithmic scale. It can be seen that while the mean error is a
decreasing function of sampling rate, the power consumption is an increasing func-
tion of it. Interestingly, it can also be noticed that beyond 32 Hz, there is only
a marginal improvement in the localization accuracy. On the other hand, power
consumption increases linearly with the sampling rate. This suggests that there is
a huge potential for making our system extremely energy-efficient without trading
off the localization accuracy by tuning the sampling rate of the sensors.
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Figure. 5.15: Power consumption vs Sampling rate vs Mean error

5.4 Comparison against state of the art
The results obtained during this thesis will be compared against four different
fusions for indoor environment. It will be compared the speed, accuracy, deviation,
latency, and operating frequency to make an accurate analysis. The four different
fusions to compare the results of this thesis are:

1. Radar and ultrasound [56]

2. UWB and IMU [2]

3. LiDAR and UWB [55]

4. LiDAR, UWB, and IMU [53]

In our proposed AGD, the trade off between speed and accuracy shows better
results. The systems’ latency is smaller than the 3 ms of the fusion of LiDAR and
UWB [55]. A considerable advantage of our methodology is the development cost;
three of them exceed the $ 4000 . It is important to note that $ 4500 is only the
cost of the LiDAR and the $ 4000 the cost of the mobile robot.

Radar & US UWB & IMU LiDAR & UWB UWB, LiDAR &
IMU

UWB, Radar &
IMU

Speed (km/hr) 4.32 2.5 2.88 2.52 4
Accuracy (cm) 15 10.2 7.6 10 8.54
Std Dev (cm) 10.24 – 12.2 – 7.39
Latency (ms) – – 3 – 2.66

Cost 4000 (USD)** – 4,500.00 (USD)* 4,500.00 (USD)* 347.21 (€)
Power Consumption (W) – 8* 8* 4.1029

Table 5.5: Fusion for indoor localization.
∗Lidar value. ∗ ∗ Mobile robot cost

The comparison of the power consumption of the system will be performed only
with the Radar. The sensor with the highest consumption will be compared against
LiDARs used in [38, 53, 14]. In Table 5.6 it can be seen that the Radar has a lower
consumption than the LiDARs.
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Velodyne HDL64E Velodyne VLP-16 Hokuyo UTM-30LX-EW Hokuyo UST-05LN AWR1843BOOST
Average Consumption (W) 60 8 8 3.6 1.77
Max Consumption (W) 60 8 8 9.6 2.14

Table 5.6: Power Consumption Radar VS LiDAR.

As can be observed from Tables 5.5 and 5.6, the accuracy obtained with the fusion
of UWB, Radar, and IMU is similar to the accuracy of state of the art. The
advantage of this design is that the computation time is reduced compared and
also power consumption.
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Chapter 6

Conclusions and Future
Work

With autonomous vehicles gaining an ever-increasing attention of academia and
industries, it is crucial to localize them with accuracies in the scale of a few cen-
timeters in an energy-efficient manner. In this thesis, we addressed this challenge
of localization for autonomous vehicles in indoor environments where standard lo-
calization techniques using GPS cease to work. Our contributions in this thesis
are manifold.

• We developed a low-cost, energy-efficient Autonomous Ground Drone (AGD)
equipped with UWB, IMU, and Radar for the purpose of localization.

• We employed EKF to combine the signals acquired by these sensors in or-
der to enable reliable localization. We demonstrated that our localization
method can achieve a mean accuracy of 8 cms in a variety of test environ-
ments. Further, the localization can be performed in real-time with a mean
latency of 3 ms. Our method outperforms state of the art in localization.

• We investigated the accuracy and energy-efficiency of our system as a func-
tion of sensing sampling rate and demonstrated that the energy consumption
can be reduced substantially without trading off the localization accuracy.

6.1 Future Work
Despite the promising results obtained by this research, few upgrades can be done
to the system to increase accuracy. As noted in Chapter 3, the Radar work with a
limited FOV of ±100◦, and as it was explained in the results, the Radar is sensitive
to low-speed objects. Nevertheless, some work has been done with beam steering
techniques to overcome the sensitivity and increase the FOV [8, 36]. This upgrade
will probably reduce the noise, increase the Radar’s detection, and, in consequence,
the accuracy of the EKF.

The sensors selected have the desired behavior for localization on autonomous driv-
ing, but some capabilities have not been explored in this thesis, such as communi-
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cation of the UWB. With these set of sensors can be performed: Object detection,
tracking objects, and path planning. Besides, applying the beam steering to the
Radar to increase the system’s performance will be difficult with just one vehicle.
Therefore explore the performance of a network of AGDs is a future step in the
evolution of this project.

While analyzing the results, we notice that there is an opportunity to develop an
adaptation to the EKF to increase the accuracy in turns and also reduce the power
consumption by modifying, in real-time, the sampling rate of the sensors.
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