
 
 

Delft University of Technology

Dynamic Passenger Assignment for Major Railway Disruptions Considering Information
Interventions

Zhu, Yongqiu; Goverde, Rob

DOI
10.1007/s11067-019-09467-4
Publication date
2019
Document Version
Final published version
Published in
Networks and Spatial Economics

Citation (APA)
Zhu, Y., & Goverde, R. (2019). Dynamic Passenger Assignment for Major Railway Disruptions Considering
Information Interventions. Networks and Spatial Economics, 19(4), 1249-1279.
https://doi.org/10.1007/s11067-019-09467-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11067-019-09467-4
https://doi.org/10.1007/s11067-019-09467-4


Networks and Spatial Economics
https://doi.org/10.1007/s11067-019-09467-4

Dynamic Passenger Assignment for Major Railway
Disruptions Considering Information Interventions

Yongqiu Zhu1 ·RobM. P. Goverde1

© The Author(s) 2019

Abstract
Passenger assignment models for major disruptions that require trains to be
cancelled/short-turned in railway systems are rarely considered in literature, although
these models could make a significant contribution to passenger-oriented disruption
timetable design/rescheduling. This paper proposes a dynamic passenger assignment
model, where the passengers who start travelling before, during and after the disrup-
tion are all considered. The model ensures that on-board passengers are given priority
over waiting passengers, and waiting passengers are boarding under the first-come-
first-serve rule. Moreover, the model allows information interventions by publishing
information about service variations and train congestion at different locations with
the aim of distributing passengers wisely to achieve less travel time increase due to
the disruption. Discrete event simulation is adopted to implement the model, where
loading/unloading procedures are realized and passengers re-plan their paths based
on the information they receive. The model tracks individual travels, which helps to
evaluate a disruption timetable in a passenger-oriented way.

Keywords Major disruptions · Railway systems · Dynamic assignment ·
Information intervention

1 Introduction

Unexpected events affect railway operations in everyday life, which are either small
service perturbations called disturbances or relatively large incidents called disrup-
tions. During disturbances, train services will be delayed, but not cancelled/short-
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turned which however is necessary during disruptions. Due to the complexity of
handling disruptions, contingency plans are designed beforehand for different dis-
ruption scenarios. When a disruption happens, the corresponding contingency plan
is selected, and possibly modified by traffic controllers in terms of the specific
condition (Ghaemi et al. 2017b). However, in either the design or modification
procedure, passengers who should have been put first, are as yet not incorporated
directly, because traffic controllers are unable to anticipate the passenger flows over
the network. As a result, many alternatives for passenger reroutings are not consid-
ered, and thus passenger travel experiences during disruptions are usually less than
satisfactory.

To support passenger-oriented train service adjustments, it is necessary to have a
passenger assignment model that can anticipate the distribution of passengers. Based
on the model, whether a timetable is passenger-friendly or not can be evaluated, and
further how to adjust the timetable in a passenger-friendly way can be guided. Until
now, passenger assignment models are mostly proposed for planning purposes or
disturbance management (generally regarded as delay management), where services
are considered to be reliable or with minor perturbations. When major disruptions
like complete track blockages occur, multiple dispatching measures, e.g. retiming,
reordering, cancelling and short-tuning trains, are commonly applied, which result
in delayed trains, changed train orders, completely cancelled trains and short-turned
trains (Ghaemi et al. 2017a). As a result, the train services available during dis-
ruptions are rather different from the ones on normal days, thus leading to rather
different path options to passengers. For passenger assignment models during dis-
ruptions, it is necessary to formulate the major service variations properly and model
passenger responses to such major service variations accurately. Therefore, this paper
proposes a dynamic passenger assignment model taking major service variations,
vehicle capacity, and time-dependent passenger all into account. A preliminary ver-
sion of the model can be found in Zhu and Goverde (2017), which is improved by
introducing a new network formulation and information interventions for altering
passenger behaviour in this paper.

This paper considers passengers’ en-route travel decisions rather than passengers’
pre-trip travel decisions. This means that passengers are assumed to have planned
paths in mind before they actually arrive at the origin stations, however, possibly they
have to re-plan their paths due to major service variations, denied boardings or train
congestion. Such an assumption is justified, since nowadays passengers can rely on
various travel-planner applications or the official websites of operator companies to
find their preferred paths. This is particularly true for passengers who have a clear
travel purpose (e.g. commuters). Thus, once disruptions occur, passengers would
make en-route travel decisions by comparing the alternative paths during disruptions
with their planned paths.

Passenger attitudes towards path alternatives during disruptions could be differ-
ent from the ones on normal days. For example, due to reduced operation frequency
during disruptions, passengers may be willing to spend more waiting times at
origin/transfer stations than usual. Considering this, a new method is proposed
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to formulate the network with less arcs, which ensures all paths that could be cho-
sen by passengers to be fully covered. The formulated network is a directed acyclic
graph (DAG) with passenger perceived times on arcs, based on which the opti-
mal paths perceived by passengers can be searched using efficient shortest path
algorithms.

Path alternatives can be different if passengers re-plan paths at different locations
and times. This paper tracks the location of each passenger who starts travelling
before, during, or after the disruption, and decides when and where he/she re-plans
the path based on the information received. Information interventions are consid-
ered by delivering two kinds of information, service variations and train congestion,
separately at different locations. Usually, the congestion effect is considered as the
increase in travel times perceived by passengers (Cats et al. 2016; Larrain and Muñoz
2008). Instead, this paper aims to avoid travel time increase due to denied boarding,
by using congestion information to affect passenger behavior in the following way.
Imagine that a train is highly congested when departing from a stop, and there are
still many passengers wishing to board this train at its next stop. It is possible that
the train is unable to handle all these passengers. Thus, only some of them can board
the train successfully, while the others have to be denied. If there must be some pas-
sengers being denied for boarding a train, avoiding them to choose the train may
help them find better alternative paths compared to the ones they can find after being
denied. Considering this situation, if a train is potentially unable to handle all passen-
ger demand at its next stop, part of these passengers are notified with the congestion
information in order to encourage them to choose another train, while the other part
of these passengers are kept unaware of such information to ensure they will stay
with their choice for this train.

The key contributions of this work are summarized as follows:

– Proposing a new schedule-based passenger assignment model during major
disruptions.

– Developing a new network formulation to formulate the timetable as a directed
acyclic graph (DAG) with passenger perceived times on arcs.

– Taking time-dependent passenger demand, service variations, and vehicle capac-
ity constraints all into account.

– Formulating passenger responses towards major service variations, like short-
turned or cancelled trains.

– Using information interventions to influence passenger behaviour.
– Dealing with passengers who start travelling before, during and after the

disruption.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the relevant work. Section 3 explains the network modelling approach. In Section 4,
the proposed dynamic passenger assignment framework is shown, followed by the
explanation of the main parts in the framework. Next, the time complexities of the
proposed algorithms are analysed in Section 5. Finally in Section 6, a case study of a
complete open track blockage in part of the Dutch railway network is performed.
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2 Literature Review

Passenger assignment models for transit systems are typically classified into
schedule-based and frequency-based (Gentile and Noekel 2016), differing in whether
passengers make route choices in terms of the timetable that indicates the depar-
ture/arrival time of each train at each station. In general, frequency-based models are
suitable for such transit systems where the operations are so frequent that passengers
can be assumed to board the first train when waiting at a station. While in railway
systems where the operation frequency is relatively low, schedule-based models are
commonly used, like Binder et al. (2017a) and Rückert et al. (2017).

Some assignment models are proposed for planning purposes, for example, iden-
tifying the phenomenon of macroscopic congestion of a proposed transit system. In
these models, services are assumed to be constant or affected by minor perturba-
tions that do not require dispatching measures to be applied. For instance, Khani
et al. (2015) propose three path searching algorithms to make the assignment model
perform efficiently on large-scale transit networks, by assuming that the operation
is reliable and vehicle capacity is infinite. With limited vehicle capacity considered,
Poon et al. (2004), Hamdouch and Lawphongpanich (2008), and Binder et al. (2017a)
explore the interactions between the supply and the demand over time, which dif-
fer in the used priority rules for passenger boardings while share the assumption of
trains operating precisely on schedule. In practice, service variations cannot be fully
avoided. Thus, Nuzzolo et al. (2001), Hamdouch et al. (2014), and Cats et al. (2016)
take service variations into account, and describe the variations as irregularities of
train dwell and running times that are thought to be relevant to the passenger load-
ings of the corresponding trains. The considered train delays do not need timetable
rescheduling, which means that train orders remain unchanged and no trains are
cancelled or short-turned.

When train delays cannot be absorbed completely by the time supplements
reserved in the timetable, timetable rescheduling becomes necessary. A typical ques-
tion under such a case is that whether a train should wait for a delayed feeder train
or better depart on time (wait-depart decision). This problem is generally regarded
as delay management, where the relevant work mainly focuses on the optimiza-
tion and thus the formulation corresponding to the passenger assignment is usually
simplified by some assumptions. For example, Schöbel (2001) assumes that once
passengers miss a transfer connection, they would wait for a complete cycle time to
catch the next connection. Kanai et al. (2011), Dollevoet et al. (2012), Sato et al.
(2013), and Corman et al. (2017) consider the alternative choices that passengers
might have, where the capacities of vehicles are assumed to be infinite. While most
papers consider the train delays as known input to the optimization, Rückert et al.
(2017) observe the train delays in real time, and predict the passenger flows due to
any possible wait-depart decisions to help the dispatchers make informed decisions.
In these papers, train orders can be changed, but no trains are delayed significantly
or cancelled/short-turned, which however take place during disruptions.

A few papers consider the passenger assignment during disruptions. Cats and
Jenelius (2014) focus on disruptions that result in trains delayed significantly. The
considered case is that the tracks between two stations are totally blocked for 30
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minutes, and trains queue at the station before the blocked tracks during the disrup-
tion period. When the disruption ends, all these trains are again allowed to continue
the following operations, assuming that all on-board passengers in these delayed
trains are unable to alight from the trains at the holding stations. For a long-duration
disruption that lasts for one hour or even more, it is unlikely to hold trains at sta-
tions, but more likely to short-turn them. In such a case, on-board passengers must
alight from the trains, since the trains can no longer reach their expected destinations.
Binder et al. (2017b) formulate the passenger assignment as a multi-commodity prob-
lem and integrate it with the rescheduling together constituting a passenger-oriented
timetable rescheduling model for disruptions. The considered demand is the passen-
gers who start travelling during the disruption. An assumption is implicitly made
that all passengers collaborate together to achieve the system optimum. In the real
world, passengers may intend to reduce their personal inconvenience without con-
sidering and of course incapable of considering the impacts of their choices on the
system optimum. Thus, treating passengers as rational actors is necessary, which can
be implemented by introducing priority rules for passenger boardings.

The literature does not consider passengers’ en-route travel decisions duringmajor
disruptions for which cancelling/short-turning trains are necessary. This paper fills
the gap by proposing a schedule-based passenger assignment model to formulate the
changes of passenger responses from normal situations to during disruptions.

The model is based on three assumptions, which are also used in Cats and Jenelius
(2014) and Binder et al. (2017b). First, at the beginning of a disruption, the exact
disruption end time is known, which will not be extended or shortened. This assump-
tion can be relaxed by embedding the proposed model into an iterative framework
where at each iteration the disruption end time is updated and the model is performed
again based on the renewed disruption information and the corresponding disruption
timetable. The second assumption is that for the railway operators, the disruption
timetable is available directly at the beginning of the disruption. This is possible
when applying a real-time optimization model (e.g. Ghaemi et al. 2017a) to compute
the disruption timetable. The third assumption is that the passenger demand during
disruptions is the same as on normal days. This assumption is relaxed due to set-
ting the maximum acceptable delay of the re-planned path. In the model, a passenger
can drop the railways if the delay due to the re-planned path is not acceptable. Thus,
although a passenger is assumed to come to the railway origin station as planned,
he/she could immediately leave if the planned path is inapplicable and the minimal
delay across the current alternative paths provided by the railways exceeds the maxi-
mum acceptable delay. Such an immediate leaving is actually equal to not coming to
the railways.

3 Event-Activity Network

A transit assignment model depends on the network formulation that enables travel
path generation for passengers. This paper proposes a new approach to formulate the
train services as a weighted DAG based on which the optimal paths perceived by
passengers can be quickly searched. The characteristics of railway timetables (e.g.
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overtakings) and the fact that passengers might choose unusual paths (e.g. the ones
with long waiting/transfer times at stations) during disruptions, are all considered in
the proposed network formulation. As events are used to represent nodes and activ-
ities are used to represent arcs, the formulated network is called an event-activity
network. In the following, different kinds of events and activities that are necessary
to formulate the network are introduced, as well as the passenger preferred weights
on the activities.

3.1 Events

There are four types of events in the formulated network. They are arrival events,
departure events, duplicate departure events and exit events, which constitute the sets
Earr, Edep, Eddep and Eexit, respectively. Therefore, the set of events is

E = Earr ∪ Edep ∪ Eddep ∪ Eexit. (1)

For each event e ∈ E, the attribute ste that indicates the corresponding station
of e is assigned. Additionally for each event e ∈ Earr or Edep, two more attributes
tre and πe are assigned, which refer to the corresponding train and occurrence time
of e, respectively. An event e ∈ Eddep is the duplicate of a specific departure event
with the exactly same attributes that the departure event has. One and only one dupli-
cate is created for each departure event. The reason of creating duplicate departure
event is to construct waiting and transfer activities, which is explained in more detail
in Section 3.2. The notation of event attributes is described in Table 1 while the
attributes of different events are shown in Table 2.

3.2 Activities

There are five types of activities in the formulated network. They are running activ-
ities, dwell activities, wait activities, transfer activities and exit activities, which
constitute the sets Arun, Adwell, Await, Atrans and Aexit, respectively. In addition, Await
consists of two sub-sets that are AddW and AadW, which correspond to the wait activ-
ities between duplicate departure events and the wait activities between arrival events
and duplicate departure events. Namely,

Await = AddW ∪ AadW. (2)

Therefore, the set of activities is

A = Arun ∪ Adwell ∪ AddW ∪ AadW ∪ Atrans ∪ Aexit. (3)

Table 1 Notation of event
attributes Symbol Description

ste The station of event e

tre The train of event e

πe The occurrence time of event e
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Table 2 Attributes of different
events Event Attributes

Arrival event: e ∈ Earr (ste, tre, πe)

Departure event: e ∈ Edep (ste, tre, πe)

Duplicate departure event: e ∈ Eddep (ste, tre, πe)

Exit event: e ∈ Eexit ste

Running activities enable passengers travelling from one station to another:

Arun = {(
e, e′) ∣∣e ∈ Edep, e

′ ∈ Earr, tre = tre′ and ste is upstream

neighbouring to ste′ } . (4)

Dwell activities enable passengers dwelling at the station in a train:

Adwell = {(
e, e′) ∣∣e ∈ Earr, e

′ ∈ Edep, tre = tre′ and ste = ste′
}
. (5)

Wait activities and transfer activities together enable passengers waiting to board
trains at origins or transferring from one train to another at other stations:

AddW =
{(

e, e′)
∣∣∣∣e ∈ Eddep and e′ = argmin

{
πe′ | πe′ > πe : e′ ∈ Eddep, tre′

�= tre, ste′ = ste}
}

, (6)

AadW =
{(

e, e′)
∣∣∣∣e ∈ Earr and e′ = argmin

{
πe′ |πe′ > πe : e′ ∈ Eddep, tre′

�= tre, ste′ = ste}
}

, (7)

Atrans =
{(

e, e′)
∣∣∣∣e ∈ Eddep, e

′ ∈ Edep, tre = tre′ , ste = ste′ and πe = πe′
}
. (8)

Here, Eq. 6 means that each duplicate departure event is linked to the next time-
adjacent duplicate departure event that is at the same station but for another train.
Similarly, Eq. 7 means that each arrival event is linked to the next time-adjacent
duplicate departure event that is at the same station but for another train. Finally, Eq. 8
means that each duplicate departure event is linked to its original departure event.

Exit activities enable passengers to leave the railway system once arriving at the
destinations:

Aexit = {(
e, e′) ∣∣e ∈ Earr, e

′ ∈ Eexit, ste = ste′
}
. (9)

In Fig. 1, the formulated event-activity network is shown for an example with
four stations (i.e. A, B, C and D) and three trains numbered 1 to 3. The attributes
corresponding to each event are enclosed in an ellipse, rectangle or circle that refer
to an arrival/departure event, duplicate departure event or exit event, respectively. For
instance, an ellipse with (dep,1,B) represents the departure event of train 1 at station
B. A path is represented by a series of time-ordered events. For example, one of
the paths available for a passenger who arrives at station A after time t1 but before
time t2 and wishes to travel to station D is: (ddep,2,A) → (dep,2,A) → (arr,2,B) →
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dep,1,A

dep,2,A

dep,3,Addep,3,A

ddep,2,A

ddep,1,A

arr,1,B

arr,2,B

dep,1,B

dep,2,Bddep,2,B

ddep,1,B

arr,3,B

dep,3,Bddep,3,B

B

arr,1,C

dep,1,Cddep,1,C

C

arr,2,D

arr,1,D

arr,3,D

arr,3,C

dep,3,Cddep,3,C

DA Station

Time

arrival/departure event exit eventduplicate departure event

run/dwell  activity transfer activitywait activity exit activity

1
t

2
t

3
t

Fig. 1 Event-activity network

(ddep,1,B)→ (dep,1,B)→ (arr,1,C)→ (dep,1,C)→ (arr,1,D). This path means that
the passenger boards train 2 at station A, but transfers to train 1 at station B and stays
in this train until the destination (i.e. station D).

3.3 Weights of Activities

Usually, paths are perceived differently by passengers due to the path attributes like
waiting time at the origin (torigin), in-vehicle time (tvehicle), waiting time at a transfer
station (ttrans), and number of transfers (ntrans). A utility function is used to quantify
the utility of each path by giving different weights on the path attributes. In this paper,
the utility of a path r is quantified as:

Ur = β1t
r
vehicle + β2(t

r
origin + t rtrans) + β3n

r
trans, (10)

where β1, β2, β3 are the weights of the corresponding attributes of path r . Here, the
values of β1, β2 and β3 are set as 1, 2 (Wardman 2004) and 10 (de Keizer et al. 2012)
for each minute, respectively.

In this paper, the path utility calculation is realized in the procedure of path search-
ing. This means that once a path is generated by a path search algorithm (e.g. shortest
path algorithm, k-shortest path algorithm, etc.), the distance of this path is actually
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the utility of this path. For this purpose, different weights are assigned to different
activities, as follows.

– For each activity a = (e, e′) ∈ Arun∪Adwell, the weight of a is set as β1(πe′−πe).
– For each activity a = (e, e′) ∈ AddW ∪ AadW, the weight of a is set as β2(πe′ −

πe).
– For each passenger p, the weight of a transfer activity could be different depend-

ing on where the passenger started travelling. For an activity a = (e, e′) ∈ Atrans,
the weight of a is set as zero if ste = op (op is the origin of p). Otherwise (i.e.
ste �= op), the weight of a is set as a fixed value β3.

– For each activity a ∈ Aexit, the weight of a is set to the same positive value, since
it is not used to distinguish paths.

The weights of all activities are contained in the set W . Thus, the formulated event-
activity network is

G = (E, A, W). (11)

3.4 Searching the Optimal Path Perceived by Passengers

Let a passenger p have the attributes (op, dp, top) referring to the origin, destination
and actual arrival time at the origin, respectively. To search the optimal path perceived
by p for the travel from op to dp, a pair of source and sink nodes should be given.
Here, the sink node v is defined as

v = {
e ∈ Eexit

∣∣ste = dp

}
, (12)

and the source node u is defined as

u = argmin
{
πe

∣∣∣πe ≥ top : e ∈ Eddep, ste = op

}
, (13)

which means that the source node u is set as the duplicate departure event e at the
origin station op, of which the occurring time πe is closest to the passenger’s arrival
time at the origin top. Note that defining the source node this way takes the passenger’s
choice about the boarding train at the origin into account. For example in Fig. 1,
suppose (depp,1,A) is chosen as the source node for a passenger who plans to travel
from station A to station D. Then, the passenger could take train 1 as the first boarding
train, or also could wait a bit longer to take train 2 as the first boarding train.

With the assigned pair of source and sink node, the shortest path in utility can be
searched, by performing a shortest path algorithm on the formulated event-activity
network G, which by construction is actually a directed acyclic graph (DAG) with
positive arc weights. Such a shortest path algorithm topologically sorts the nodes of
DAG in passenger perceived times, thus making the predecessor node of an edge
always appear before the successor node of the edge in a linear ordering (Cormen
et al. 2009). Using the topological order, the shortest path is found in time complexity
O(A + E).

Here, the optimal path perceived by a passenger p is represented by rp, which
is first searched by the shortest path algorithm and then processed by excluding the
duplicate departure events and the exit event. In other words, rp only consists of the
events that directly serve the path. Based on rp, the departure/arrival events of p
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are extracted further, which correspond to the boarding/alighting actions. Here, Bp

represents the set of departure events that correspond to the boarding actions of p at
origin and transfer stations (if any), and Lp represents the set of arrival events that
correspond to the alighting actions at transfer stations (if any) and destination.

Note that the way of deciding the source node in Eq. 13 is only for the passengers
who are at the origins before travelling (and have not been denied for boarding). For
the passengers who have already started travelling within trains, at transfer stations,
or at the stations where they are forced to get off due to cancelled services, the ways
of choosing the source nodes for searching paths are different, which are explained
in Section 4.3.4.

4 Dynamic Assignment Model

The framework of dynamic passenger assignment during disruptions consists of three
parts, as shown in Fig. 2.

– Part I assigns each passenger to a planned path based on the original timetable.

Planned Path 
Generation

Re-plan Event Decision

Event-based Passenger 
Assignment

End

Start

Original 
event list

Part I

Network 
Formulation

Disruption 
timetable

Updated 
event list

Part II

Part III

Network 
Formulation

Original 
timetable

Passenger 
demand

Fig. 2 Framework of the dynamic passenger assignment model during major disruptions
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– Part II decides which passengers are affected under the disruption timetable due
to delayed/cancelled services, and also decides when these affected passengers
would re-plan the paths considering different locations of publishing service
variations.

– Part III simulates passenger loading and unloading procedures and also the path
re-plannings of passengers because of service variations, denied boardings, or
train congestion.

In what follows, the three parts are introduced successively. The used notation is
described in Table 3.

4.1 Passenger Planned Path Assignment (Part I)

In part I, the original timetable is formulated as an event-activity network Gplan
where the arrival events and departure events form the original ordered event list
E

plan
train. Passenger demand P is a given input, where each passenger p ∈ P is

described with the attributes (op, dp, top) that correspond to origin, destination and

arrival time at the origin, respectively. The planned path r
plan
p of a passenger is

searched by performing a shortest path algorithm on Gplan assuming that a passen-
ger chooses the path with the minimum utility as shown in Eq. 10 to be the planned
path.

4.2 Passenger Re-Plan Event Decision (Part II)

In part II, the disruption timetable is formulated as an event-activity network Gdis
where the arrival and departure events form the updated ordered event list Edis

train.

Comparisons are made between Edis
train and the original event list E

plan
train to define the

set Ecancel
train or E

delay
train , which contains all events that are cancelled or delayed during

the disruption. For each passenger p whose planned path is r
plan
p ,

– if r
plan
p ∩ Ecancel

train �= ∅, then r
plan
p is a cancelled path either partially or

completely;
– if r

plan
p ∩ Ecancel

train = ∅ and r
plan
p ∩ Edelay �= ∅, then r

plan
p is a delayed path.

For the passengers whose planned paths are cancelled, they must reconsider path
options. For the passengers whose planned paths are delayed only, they are also given
the chance of re-planning paths in the model, while the possibility of staying with
the original planned one is still kept in case no better alternative can be found. Here,
the passengers whose planned paths are cancelled or delayed are called the affected
passengers.

The affected passengers re-plan their paths at different locations and times, which
is influenced by two factors: where they are at the moment the disruption occurs and
how the information of service variations are delivered to them. The main purpose of
Part II is to decide when and where an affected passenger will take the re-plan action,
considering his/her location and two ways of publishing service variations, either at
stations only or at both stations and trains.
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Table 3 Notation

Symbol Description

E
plan
train The set of original departure and arrival events (i.e. original event list)

Edis
train The set of rescheduled departure and arrival events (i.e. updated event list)

Ecancel
train The set of cancelled departure/arrival events: Ecancel

train ⊂ E
plan
train and Ecancel

train ∩ Edis
train = ∅.

E
delay
train The set of delayed departure/arrival events: Edelay

train ∩ E
plan
train = E

delay
train ∩ Edis

train, but they

differ in the times of occurrences.

Edis
arr The set of rescheduled arrival events

Econgest The set of departure events that correspond to potential congested run activities

P The set of passengers who plan to travel by train

Pcurr The set of passengers currently staying in the railways (either at stations or within trains)

Pdrop The set of passengers who drop the railways

Parr The set of passengers who arrive at the destinations by train

Pboard The set of passengers who want to board the same train (local variable)

Palight The set of passengers who want to alight from the same train (local variable)

Preplan The set of passengers who re-plan paths upon the same arrival event (local variable)

op The origin station of passenger p

dp The destination station of passenger p

top The arrival time of passenger p at the origin station

r
plan
p The planned path of passenger p from op to dp

rdisp The re-planned path of passenger p from the station where p re-plans to dp

t
alight
p The latest alighting time of passenger p, which is initialized with the value 0
ˆtdp The planned destination arrival time of passenger p

tdp The actual destination arrival time of passenger p

B
plan
p The set of departure events that correspond to the planned boarding actions of passenger

p

L
plan
p The set of arrival events that correspond to the planned alighting actions of passenger p

δp The re-plan indication of passenger p, which indicates when and where p would re-plan
the path

λp The number of times of passenger p being denied for boarding a train

μ A unique positive number that is used to indicate that a passenger would re-plan a

path at the origin

stshort The station where trains are short-turned or cancelled

t startdis Start time of a disruption

FullInfo The variable indicating the location of publishing train congestion information

FullInfo=Train: publish train congestion information on trains only

FullInfo=None: publish train congestion information nowhere

ratio The specified congestion ratio that triggers updating the corresponding congestion

information of a train

η Maximum passenger accepted destination delay
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4.2.1 Information of Service Variations is Published at Stations Only

Publishing service variations only at stations means that passengers can only know
about the service variations at stations. Under this circumstance, a passenger would
consider re-planning either at the planned origin/transfer station or at the station
where his/her train is short-turned/cancelled. Figure 3 (Fig. 4) shows how to decide
when and where a passenger p with a delayed (cancelled) planned path would
re-plan, which is indicated by δp.

The basic idea of Fig. 3 is that:

– for a passenger p whose first planned boarding time at the origin is after the
disruption start t startdis , p re-plans at the origin (δp = μ),

– for a passenger p whose first planned boarding time at the origin is before t startdis
but the ith planned boarding (i ≥ 2 here) at a transfer station happens after t startdis ,
p re-plans when arriving at the transfer station,

– for a passenger p whose planned boarding time at the origin is before t startdis while
p has no planned transfer or the planned transfers all happen before t startdis , p will
not re-plan (δp = ∅).

Fig. 3 Deciding the re-plan events for passengers with delayed planned paths if disruption info is
published at stations only
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Figure 4 shows how to decide when and where a passenger p with a cancelled
planned path would re-plan. The basic idea is that:

– for a passenger p whose planned boarding time at the origin is after t startdis , p

re-plans at the origin,
– for a passenger p whose planned boarding time at the origin is before t startdis but

the ith planned boarding (i ≥ 2 here) at a transfer station happens after t startdis ,

– p re-plans when arriving at the transfer station, if the transfer station is
upstream relative to the short-turn station,

– p re-plans when being forced to get off from the train at the short-turn
station, if the transfer station is downstream relative to the short-turn
station,

– for a passenger p whose planned boarding times at the origin is before t startdis
while p has no planned transfer or the planned transfers all happen before t startdis ,
p re-plans when being forced to get off from the train at the short-turn station.

4.2.2 Information of Service Variations is Published at Both Stations and Trains

Figure 5 shows how to decide when and where a passenger p with delayed/cancelled
planned path would re-plan, if service variations are published at both stations and
trains.

Fig. 4 Deciding the re-plan events for passengers with cancelled planned paths if disruption info is
published at stations only
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The basic idea of Fig. 5 is that:

– for a passenger p whose planned boarding time at the origin is after the
disruption start t startdis , p re-plans at the origin,

– for a passenger p whose planned boarding time at the origin is before t startdis , the
type of the latest occurring event e′ of the current train tr when the disruption
starts determines δp:

– δp is set as e′, if e′ is an arrival event,
– δp is set as e′′ of which (e′, e′′) is a run activity, if e′ is a departure

event.

4.3 Passenger Realized Path Confirmation (Part III)

In part III, the passengers’ arrivals at the origins, the loading and unloading pro-
cedures and the re-plan actions are all implemented by discrete event simulation.

Fig. 5 Deciding the re-plan events for passengers with delayed/cancelled planned paths if disruption info
is published at stations and trains



Y. Zhu, R.M.P. Goverde

Publishing train congestion information on trains or not is considered to con-
strain some passengers’ re-planned path choices. Note that publishing train con-
gestion information at stations makes no sense for limiting passenger awareness
of such information (i.e. all passengers can get any information published at
stations), while publishing train congestion information at trains can let the pas-
sengers who are at the origins be unaware of such information. Therefore, an
adaptive event-activity network G∗

dis is introduced, which is initialized as Gdis
and further updated during the assignment by excluding some run activities of
which the corresponding train congestions reach a specified level ratio. Passen-
gers make re-planned path choices based on either G∗

dis or Gdis depending on
whether they are informed with congestion information. This is explained in detail in
Section 4.3.4.

In the following, the main algorithm (i.e. Discrete event passenger assignment),
together with the three supporting algorithms (i.e. UpdateDep, UpdateArr and
RePlan) are introduced successively.

4.3.1 Discrete Event Passenger Assignment

In Algorithm 1, different sets are initialized, and the previous system clock time is
set as 0 (lines 1-3). In line 4, each event in Edis

train is iterated over to implement a
passenger arrival at the origin, and the loading or unloading procedure. Edis

train is a
given input, of which the contained events are previously sorted in time-ascending
order and then in alphabetical order regarding the event type (arrival or departure),
to ensure that the assignment proceeds with time, and an arrival event occurs before
a departure event if their time instants are the same. In lines 5-6, the first element
from Edis

train is chosen as the current event e to be executed, and the current sys-
tem clock time is set as the occurence time of e. In the loop starting from line 7,
each arrival of a passenger at the origin between the previous and the current sys-
tem clock time is simulated. In line 8, the origin arrival passenger p is included to
the set Pcurr that contains all passengers who are currently staying in the railways. If
p needs to re-plan at the origin, the function RePlan will be called to realize the re-
plan action (lines 9-10). In line 11, p is excluded from P to avoid being included in
Pcurr again.

If the current event e is a departure (line 12), then the passengers who want to
board train tre are defined by Pboard (line 13). If Pboard is not empty (line 14), it is
excluded from the set Pcurr (line 15) and the loadings of passengers in Pboard are
implemented by calling the function UpdateDep (line 16). In line 17, the updated
Pboard is included to Pcurr again. The reason of having lines 15 and 17 is that when
executing UpdateDep, some passengers could be removed from Pboard to Pdrop,
because they drop the railways due to denied boardings and no preferred alterna-
tives can be found. Function UpdateDep also outputs Econgest and G∗

dis, which are the
set of departure events that correspond to potential congested run activities, and an
adaptive event-activity network that excludes the potential congested run activities
from Gdis.
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If the current event e is an arrival (line 18), the passengers who want to alight
from the arriving train are defined by Palight and the passengers who will re-plan
paths when e occurs are defined by Preplan (line 19). If at least one of the two sets is
not empty (line 20), the union Palight ∪ Preplan is excluded from Pcurr first (line 21)
and then the function UpdateArr is called to implement the unloadings of passengers
in Palight and the re-plan actions of passengers in Preplan (line 22). In line 23, the
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updated Palight ∪ Preplan is included to Pcurr again. The reason of having lines 21 and
23 is that when executing UpdateArr, some passengers could be removed from Palight
to Parr because they reach the destinations, and some passengers could be removed
from Preplan to Pdrop because they cannot find preferred re-planned paths and thus
drop the railways. If train congestion information is published on trains (line 24),
for each passenger who is dwelling at train tre and the next boarding train is highly
congested as notified (lines 25-27), the passenger is given the chance of re-planning
(line 28).

After finishing executing the current event, the previous system clock time is set
to the current system clock time, and the current event is removed from the event list
to be executed (lines 29-30).

4.3.2 Passenger Loading

In algorithm 2, if the available capacity captre of a train tre is sufficient to cover
all passengers Pboard who want to board the train, captre is updated accordingly (lines
1-2). Then, for each p ∈ Pboard, the current event e is excluded from the set Bp that
contains all departure events corresponding to the boarding actions of p (lines 3-4).
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If the available capacity of a train can only cover part of the passengers in Pboard (line
5), captre is updated accordingly (line 6) and then the passengers in Pboard are sorted
in ascending order according to their arriving times at the current stations (line 7).
Here, t

alight
p refers to the latest alighting time of passenger p, of which the value is

initialized with 0 when p arrives at the origin and further be updated when p alights
from a train at another station. Line 7 ensures the loading rule of first-come-first-
served. The first captre passengers in Pboard can board the train (lines 8-9), while the
remainders are denied for boarding and RePlan is called for re-planning (line 10-12).
If the available capacity of a train is zero, none of the passengers in Pboard can board
the train, but only re-plan paths (lines 13-16).

Furthermore, if train congestion information is published and the congestion ratio
of the train tre,

(
1 − captre/cap

max
tre

)
, has reached the specified congestion level

ratio, then the departure event e′ that corresponds to the next run activity a of tre is
added to Econgest (lines 19-20), while a is excluded from the adaptive event activity
network G∗

dis (line 21). Here, cap
max
tre

represents the maximum number of passengers
that train tre can hold.

4.3.3 Passenger Unloading

In algorithm 3, for each passenger p who wants to alight from the train tre, the
available capacity of the train is updated accordingly (lines 1-2), and event e is
excluded from the set Lp that contains all arrival events corresponding to the alight-
ing actions of p (line 3). After that, an empty Lp means that passenger p has reached
the destination (line 4), thus the actual destination arrival time tdp is updated and p is
removed from Palight to Parr (lines 5-7). If Lp is not empty, the latest alighting time

t
alight
p is updated (lines 8-9). For each passenger who will re-plan path when e occurs,
RePlan is called (lines 10-11).
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4.3.4 Passenger Re-Planning

In line 1, the source and sink nodes (i.e. u and v) are determined for searching the
re-planned path of passenger p (line 1). The sink node is always the exit event cor-
responding to the destination dp, while the source node u is different under different
re-plan situations.

– If Zj = Z1, u is set as the duplicate departure event that is closest to the
passenger’s arrival time at the origin: top.

– If Zj = Z2, u is set as the duplicate departure event that is closest to the current
departure event e at the station ste.

– If Zj = Z3 ∪ Z4, u is set as the current arrival event e.

All re-plan situations are listed in Table 4.
In line 2, the event-activity network G that is used to search the re-planned path

of passenger p, is determined according to the values of FullInfo and Zj .

– If FullInfo=Train, then train congestion information is published at trains only.
Thus, G is set as G∗

dis,

Table 4 Re-plan situations

Situation Time and location

Z1: re-plan before travelling due to service variations When arriving at the origin station

Z2: re-plan during travelling due to denied boarding When planning to board at any possible station

Z3: re-plan during travelling due to service variations When arriving at the specified station

Z4: re-plan during travelling due to train congestion When arriving at a station
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– if Zj = Z2 and ste �= op, which means passenger p re-plan paths due
to denied boarding at the station that is not his/her origin, or

– if Zj ∈ {Z3, Z4}.
Passenger who satisfies either of the above conditions must have taken a train
where he/she is notified with train congestion information.

– If FullInfo=none, then train congestion information is published nowhere. Thus,
G is always set as Gdis whatever Zj is.

In line 3, the optimal path r is searched through G, of which the destination arrival

time is tdr (line 4). Thus, the resulting delay of r is (tdr − ˆtdp) where ˆtdp is the planned
destination arrival time of p.

If the delay is no longer than passenger’s maximum accepted delay η (line 5), r

is chosen as the re-planned path (line 6), and the sets of events corresponding to the
boardings and alightings are updated accordingly (line 7). Additionally for the re-
plan situation of Z3 or Z4, a passenger who does not plan to alight from the train tre
might now want to get off due to the re-planned path (lines 8-9). In such a case, the
available train capacity, the set of alighting events, and the latest alighting time are
all updated accordingly (lines 10-12).

If the delay of r is longer than η (line 13), the passenger will drop the railway.
Thus, the set Pdrop and the set Pboard (or Preplan) are all updated accordingly (lines
14-15).

5 Time Complexity

Algorithm 1, the main algorithm working for passenger assignment, is based on three
sub-algorithms (i.e. Algorithms 2,3 and 4), while Algorithms 2 and 3 also need to
call Algorithm 4. Figure 6 shows the relations between the algorithms.

In RePlan, lines 1, 3 and 7 require non-constant time. Line 1 takes O
(∣∣Eddep

∣∣)

time, where Eddep represents the set of duplicate departure events. Line 3 takes
O (|A| + |E|) time, where A and E refer to the activities and events contained in the

formulated event-activity network, respectively. Line 7 takes O
(∣∣∣rdisp

∣∣∣
)
time, where

Passenger assignment
(Algorithm 1)

RePlan
(Algorithm 4)

UpdateArr
(Algorithm 3)

UpdateDep
(Algorithm 2)

Fig. 6 The relations between algorithms
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rdisp refers to the re-planned path of passenger p, which contains all events that p will
pass through. Thus, the time complexity of Algorithm 4 is

T 4
Alg = O

(∣∣Eddep
∣∣) + O (|A| + |E|) + O

(∣∣∣rdisp

∣∣∣
)

,

≤ O (|E|) + O (|A| + |E|) + O (|E|) ,

= O (|A| + |E|) .
In UpdateArr, the for loop from line 1 to line 9 takes O

(∣∣Palight
∣∣) time, while the

for loop from line 10 to line 11 takes O
(∣∣Preplan

∣∣ · (|A| + |E|)) time. Thus, the time
complexity of Algorithm 3 is

T 3
Alg = O

(∣∣Palight
∣∣) + O

(∣∣Preplan
∣∣ · (|A| + |E|)) .

In UpdateDep, line 7 takes O (|Pboard| log |Pboard|) time by using heapsort. Thus,
lines 1-16 take O (|Pboard| log |Pboard|) + O (|Pboard| · (|A| + |E|)) time. Because
log |Pboard|  |A| + |E| and lines 17-21 take constant time, the time complexity of
Algorithm 2 is

T 2
Alg = O (|Pboard| · (|A| + |E|)) .

As for Algorithm 1, the while loop makes one iteration per event of Edis
train. Let N

be the size of Edis
train, thus in all N while iterations:

– the for loop from line 7 to line 11 takes at most
∑N

i=1

∣∣P i
ori

∣∣ · (|A| + |E|) opera-
tions, where P i

ori represents the set of passengers who arrive at the origins in the
ith iteration. This is equal to O (|P | · (|A| + |E|)) time, where P represents the
total passenger demand.

– due to the calls of UpdateDep, lines 12 - 17 take at most
∑N

i=1

∣∣P i
board

∣∣ ·
(|A| + |E|) operations, where P i

board represents the set of passengers who wish
to board the train at the ith iteration. By defining m as the maximum num-
ber of boardings/alightings that a passenger may encounter, there must be∑N

i=1

∣∣P i
board

∣∣ = m|P |. Because the maximum number of boardings/alightings
corresponding to a passenger must be finite and relatively small, the time
complexity is O(|P | · (|A| + |E|)).

– due to the calls of UpdateArr, lines 18-23 take
∑N

i=1

∣∣∣P i
alight

∣∣∣ +
∣∣∣P i

replan

∣∣∣ ·
(|A| + |E|) operations, where P i

alight (P
i
replan) represents the set of passengers

who will alight from the train (re-plan paths) at the ith iteration. This is not larger
thanm |P |+|P |·(|A| + |E|). Thus, lines 18-23 totally takeO (|P | · (|A| + |E|))
time.

– lines 5-6 and lines 29-30 totally take O(N) time, where N is smaller than |E|.
If train congestion information is not published, the time complexity of Algorithm 1
thus is

T 1
Alg = O (|P | · (|A| + |E|))+O(|P | · (|A| + |E|))+O (|P | · (|A| + |E|))+O(N),

= O(|P | · (|A| + |E|)).
If train congestion information is published, in each while iteration of Algo-

rithm 1, the for loop from line 25 to line 28, at most take |P | operations in case
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Table 5 Notations used in proving the time complexity of Algorithm 1

Symbol Description

P i
ori The set of passengers who arrive at the origins at the ith while iteration of Algorithm 1

P i
board The set of passengers who wish to board the train at the ith while iteration of Algorithm 1

P i
alight The set of passengers who will alight from the train at the ith while iteration of Algorithm 1

P i
replan The set of passengers who re-plan paths upon arrival event due to service variations at the ith

while iteration of Algorithm 1

m The maximum number of boardings/alightings a passenger could encounter

Pcurr = P and (Palight ∪ Preplan) = ∅. In such a case, T 1
Alg becomes O (N · |P |) +

O (|P | · (|A| + |E|)). As N < |A|+ |E|, T 1
Alg is still O (|P | · (|A| + |E|)), although

train congestion information is published.
The notation used is given in Table 5.
In summary, the time complexity of the proposed passenger assignment model is

relevant to the size of the given passenger demand and the scale of the considered
network. To reduce computational burden, one way is to group the passengers who
share the same travel characteristics (e.g. the origins, the destinations, the arrival
times at the origin, etc.). However, this is at the expense of assignment accuracy,
since two passengers who have exactly the same travel characteristics could still be
distributed to different trains if vehicle capacities are in short supply.

6 Case Study

6.1 Description

The model is applied to a subnetwork of the Dutch railways, where 17 stations are
located and six train lines are operated (see Fig. 7). The disruption scenario is defined
as a complete track blockage between stations Hze and Mz, which occurs from 7:57

Fig. 7 The considered network
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to 9:00. Here, only the disruption timetable of the corridor where the disruption hap-
pens is shown (see Fig. 8), as the timetables of the other two corridors remain as
planned. The number of nodes (events) and arcs (activities) in the network formula-
tion are 2085 and 3539, respectively. In Fig. 8, the solid lines represent the services
scheduled in the disruption timetable, while the dashed (dotted) lines represent the
original scheduled services that are cancelled (delayed) in the disruption timetable.

Passenger demand is generated for the period from 7:00 to 10:00, which con-
tains the time frame before the disruption starts, during the disruption and after
the disruption ends, since passengers who start travelling during these hours could
be influenced by the disruption. The total number of passengers who travel in the
considered network during the considered period is 7515.

To consider information interventions, different schemes of information provision
are set, which are listed in Table 6. Each row of Table 6 indicates the locations where
service variations and train congestion information are published (i.e. ServiceInfo and
FullInfo), the specified train congestion level (i.e. ratio) that triggers updating the
congestion information, and the maximum accepted destination delay of each passen-
ger (i.e. η). For example the current congestion ratio of a train is 0.85; if ratio is set
as 0.85, then the operators update the congestion information by telling passengers
that the next run of this train would be highly congested. However, if ratio is set as
0.9, no such information will be given to passengers, because the current congestion
ratio of the train, 0.85, does not reach the level of 0.9. A train of which the congestion
ratio currently reaches ratio, is thought to be potentially unable to satisfy all board-
ing demands for its next run. Thus, notifying some passengers with the congestion
information can avoid them boarding the next run of the train, while some passen-
gers who are not notified with information may still keep their choices. As for η, two

kinds of values are set here, which are ( ˆtdp − top) referring to the planned travel time

Ehv
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Time
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Fig. 8 Disruption timetable
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Table 6 Case study settings
ServiceInfo FullInfo ratio η [min]

Station Train 0.8,0.9,or 1 ( ˆtdp − top) or 63

Station None – ( ˆtdp − top) or 63

Station & Train Train 0.8,0.9,or 1 ( ˆtdp − top) or 63

Station & Train None – ( ˆtdp − top) or 63

None None – ( ˆtdp − top) or 63

of passenger p, and 63 min which is the defined disruption duration. The value of
η may affect the number of passengers who drop the railways, which further affects
the congestion of trains. Also baseline scenarios are created, in which neither service
variations nor train congestion is provided. In these scenarios, passengers can only
know the service variation when they really experience it themselves. For instance, a
passenger knows he/she cannot board a train as planned when the train does not show
up at the station due to delay or cancellation.

6.2 Results

By applying the model on the defined disruption scenarios with the settings of
Table 6, 18 results are obtained, which are shown in Table 7. In each result, three indi-
cators are used, which are the number of dropped passengers, the number of denied
boardings, and the travel time deviation. The computation time for scenario 9 is the
least, which is 15 seconds, and the computation time for scenario 16 is the most,
which is 26 seconds. The computation times for other scenarios are between these
two.

The number of dropped passengers is calculated as |Pdrop|, and the number of
denied boardings is calculated as

∑
p∈P λp where λp represents the number of times

a passenger being denied for boarding and P = Parr∪Pdrop. The travel time deviation
is calculated as

–
∑

p∈Parr

(
tdp − ˆtdp

)
+ ∑

p∈Pdrop

( ˆtdp − top

)
, when η is set as ˆtdp − top, or

–
∑

p∈Parr

(
tdp − ˆtdp

)
+ 63

∣∣Pdrop
∣∣, when η is set as 63,

where tdp( ˆtdp) represents the actual(planned) destination arrival time of passenger p,
and top represents the actual origin arrival time of passenger p. Note that tdp could be

smaller or larger than ˆtdp , which means the total travel time deviation consists of both
negative and positive individual travel time deviations.

6.2.1 Influence of Maximum Accepted Delay: η

It is found from Table 7 that the total travel time deviations in all cases are positive,
which means that the actual travel times increase compared to the planned travel
times. When the maximum accepted destination delay (i.e. η) is set as an individual’s
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Table 7 Results of disruption scenarios between stations Hze and Mz

Scenario η ServiceInfo FullInfo ratio # drop # denied Travel time

passengers boardings deviation

[min] [min]

1 ˆtdp − top Station Train 0.8 551 0 25243

2 ˆtdp − top Station Train 0.9 551 0 25243

3 ˆtdp − top Station Train 1 551 0 25243

4 ˆtdp − top Station None – 551 0 25243

5 ˆtdp − top Station & Train Train 0.8 551 0 25187

6 ˆtdp − top Station & Train Train 0.9 551 0 25187

7 ˆtdp − top Station & Train Train 1 551 0 25187

8 ˆtdp − top Station & Train None – 551 0 25187

9 ˆtdp − top None None – 565 0 28399

10 63 Station Train 0.8 118 178 39758

11 63 Station Train 0.9 113 193 40687

12 63 Station Train 1 113 193 40693

13 63 Station None – 113 193 40693

14 63 Station & Train Train 0.8 116 178 39707

15 63 Station & Train Train 0.9 110 193 40590

16 63 Station & Train Train 1 110 193 40595

17 63 Station & Train None – 110 193 40595

18 63 None None – 88 358 47234

planned travel time (i.e. ˆtdp − top), the travel time increases are the smallest, while the
numbers of dropped passengers (i.e. 551 or 565) are the largest (scenarios 1-9). When
η is set as the disruption lenth (scenarios 10-18), the travel time increases grow, while
the numbers of dropped passengers reduce. These indicate that

– the provided disruption timetable leads to 565 passengers to whom the increased
travel time in the railways is at least equal to the planned travel time, and

– the limited vehicle capacities lead to more travel time increase when more
passengers remain in the railways to reach the destinations.

If operators aim for a low travel time increase while satisfying passenger demand
as much as possible, one way is to design a disruption timetable that provides
faster services and ensures less denied boardings by adjusting the schedules to dis-
tribute passengers wisely. However, this is rather challenging, since many factors
(e.g. passenger behaviour, vehicle capacities, infrastructure restrictions, etc.) need
to be considered in the rescheduling. Thus, another way is proposed, information
intervention, which is easier to be implemented in practice. Here, information inter-
vention means that operators provide passengers at different locations with different
information about service variations or train congestion.
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6.2.2 Influence of Information Intervention

When η is set as ˆtdp − top or 63 min, compared to not updating passengers with
any information (scenario 9 or 18), providing information for them (scenarios 1-8
or 10-17) helps to reduce the number of dropped passengers, the number of denied
boardings, and/or the travel time increase. This indicates that it is helpful to update
passengers with certain information during disruptions.

When η is set as ˆtdp − top, providing service variations at both stations and trains
(scenarios 5-8) always lead to less travel time increases compared to the cases in
which service variations are announced at stations only (scenarios 1-4). However,
publishing train congestion information does not make any sense, since no one has
been denied for boarding even though train congestion information is not published.
This indicates that

– if vehicle capacities are not in short supply, publishing service variations at both
stations and trains is able to reduce more travel time increase, compared to
publishing service variations at stations only.

This is because by additionally receiving service variations on trains, the on-board
passengers at the moment the disruption occurs can re-plan paths just at the next
stop of the train rather than several stops later where they get off from the train, and
such earlier re-plans help to find better alternatives which result in less travel time
increases.

When η is set as 63 min, more passengers remained in the railways and thus some
passengers were denied for boarding due to insufficient vehicle capacities. Under this
circumstance, additionally publishing train congestion information on trains helps
to reduce travel time increase, if ratio is set to an appropriate value. For example
when service variations are published at stations only, compared to not publishing
train congestion (scenario 13), publishing such information on trains leads to better
performance when ratio is set as 0.8 or 0.9 (scenario 10 or 11), or does not change
performance when ratio is set as 1 (scenario 12). These phenomena are also found in
the cases where service variations are published at both stations and trains (scenarios
14-17). These indicate that

– if vehicle capacities are in short supply, the performance of publishing train
congestion on reducing travel time increase is influenced by the value of ratio.

For example if ratio is set as 0.8 and the current congestion ratio of train tr1 is 0.85,
then the information that tr1 is highly congested is published to on-board passengers,
which prevent them from boarding the next run of tr1, while the passengers who
wait at their origins to board the next run of tr1 still keep their choices. In this way,
passengers who demand for boarding the next run of tr1 are distributed, since tr1 is
thought to be highly congested now and may be unable to satisfy all demands later.
If there must be some passengers being denied for boarding a train, avoiding them to
choose the train may help them find better alternatives compared to the ones they can
find after being denied. It is also possible that all subsequent demands are satisfied
if these demands are small, or lots of passengers get off before the next run, thus
avoiding some passengers boarding the train might not be helpful since the avoided
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passengers may not be able to find better alternatives. Clearly, the setting of ratio

is important, which decides whether publishing train congestion is good or not. One
way to ensure the accuracy of ratio is to assign each train with a customized ratio

that varies with times and locations according to the estimated boarding demand and
alighting amount. However these are also hard to be estimated accurately, as during
the period from the departure of the current run to the departure of the next run, there
could be extra demand or alightings emerging. In this paper, a general value of ratio

is set to to all trains, while it would be interesting to enable a dynamic customized
ratio to each train in future research.

6.2.3 Impacts on Passengers Who Start Travelling Before/During the Disruption

In the model, the passengers who start travelling before the disruption, but are still
within the railways at the moment the disruption occurs, are also considered explic-
itly. According to the case study results, these passengers are affected a lot by the
disruption, thus overlooking them in the assignment model is unreasonable. In Figs. 9
and 10, the individual delays of scenario 1 and 10, are shown respectively, which are
distinguished by passengers’ travelling start time. As few passengers who start trav-
elling after the disruption ends (i.e. 9:00) are delayed (9 individuals in scenario 1
or scenario 10), only the individual delays of passengers who start travelling before
or during the disruption are shown. It is found that under the same setting of η (i.e.
the maximum acceptable destination delay), individual delays are not significantly
different. Thus, scenario 1 is chosen as the representative of setting η to individual
planned travel time, and scenario 10 is chosen as the representative of setting η to the
defined disruption lenth. Individual delay is only calculated for the passenger who
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Fig. 9 Individual delays of scenario 1 (η=individual planned travel time)
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Fig. 10 Individual delays of scenario 10 (η=disruption length)

actually arrived at the destination later than planned. Thus, individual delay is calcu-

lated as tdp − ˆtdp for p ∈ Parr, if tdp > ˆtdp . For p ∈ Pdrop, individual delay is computed
as the corresponding value of η. Note that in Figs. 9 and 10, individual delays are
shown in ascending order, and an individual numbered in Fig. 9 does not correspond
to the individual numbered the same in Fig. 10.

Figures 9 and 10 both show that passengers who start travelling before the dis-
ruption are delayed more seriously. Most individual delays are below 50 minutes in
Fig. 9, while in Fig. 10, there are a lot of individual delays reaching 60 minutes. This
indicates that most passengers’ planned travel times are below 50 minutes and it is
hard for them to find the alternatives of less than 50 minutes delay under the current
disruption timetable, while the congestion issue increases passenger delays further.
To reduce passenger delays, one way is to improve the disruption timetable by pro-
viding passengers with better alternatives (i.e. less resulting delays), which could be
done by incorporating passenger responses into timetable rescheduling. Additionally,
it is found that there are 21 passengers in scenario 10 being delayed, not because
of service variations (i.e. their planned paths are not cancelled/delayed) but due to
denied boardings only. Under these circumstances, increasing vehicle capacities or
providing alternatives outside the railways (e.g. shuttle buses), would be helpful to
reduce passenger delays.

7 Conclusions and Future Research

In this paper, a dynamic passenger assignment model is proposed considering
major disruptions that require trains to be cancelled or short-turned. Information
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interventions are introduced by delivering the information of service variations and
the information of train congestion at different locations. By applying the model
on part of the Dutch railway network where a complete track blockage is assumed
during one morning peak hour, it is found that when vehicle capacities are always
sufficient (i.e. no denied boarding), publishing service variations at both stations and
trains helps to reduce the travel time increase due to the disruption, while additionally
publishing train congestion does not make any sense. When vehicle capacities are
in short supply (i.e. denied boardings exist), additionally publishing train congestion
can reduce the travel time increase due to the disruption, of which the performance
depends on how a train is defined as highly congested in order to proactively avoid
some passengers boarding the next run of the train.

Although only one case is performed in this paper, more applications could be
performed with the proposed model. For example, considering the fluctuation of
day-to-day passenger demand and the frequency of disruptions, reasonable vehicle
capacity reservations for improving the service resilience during disruptions can be
proposed. Besides, the proposed assignment model will be applied on larger net-
works and combined with rescheduling models in the future, where passengers will
be grouped to speed the computation.
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