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ABSTRACT: Nanomechanical resonator devices are widely used as ultrasensitive mass
detectors for fundamental studies and practical applications. The resonance frequency of
the resonators shifts when a mass is loaded, which is used to estimate the mass. However,
the shift signal is often blurred by the thermal noise, which interferes with accurate mass
detection. Here, we demonstrate the reduction of the noise interference in mass detection
in suspended graphene-based nanomechanical resonators, by using applied machine
learning. Featurization is divided into image and sequential datasets, and those datasets
are trained and classified using 2D and 1D convolutional neural networks (CNNs). The
2D CNN learning-based classification shows a performance with f1-score over 99% when
the resonance frequency shift is more than 2.5% of the amplitude of the thermal noise
range.

KEYWORDS: applied machine learning, deep learning, graphene, mass detection, resonator

■ INTRODUCTION
The small size, light mass, and fast switching speed make
nanoelectromechanical systems (NEMS) attractive in research
and applications.1 Among NEMS devices, nanomechanical
resonator devices are being used in a wide range of research
fields�from fundamental physics for studying quantum
mechanical limits2−6 to practical applications such as the
ultrasensitive mass detection and single molecule bio-
sensing.7−10 A simple spring model is used to describe the
mechanism of mass detection using NEMS. When a mass is
added to a resonator, the mechanical resonance frequency is
proportionally down-shifted. The degree of the frequency shift
is used to determine the weight of the mass. Recently,
significant progresses have improved the detection resolution
of NEMS-based mass sensors to 1 yg.11 It was demonstrated
that NEMS resonators can be used as a single-particle
detection sensor of a mass spectrometer.12

NEMS-based mass spectroscopy has drawn attention as an
alternative approach to analyze biological systems.13,14 It was
particularly noted that NEMS resonators might be a promising
tool for an emerging research field of single-molecule protein
sequencing.15−18 If the mass detection resolution reaches the
order of several Daltons, it might be possible to distinguish
different proteins or different proteoforms including isoforms
from alternative splicing and post-translational modifications.19

It is envisioned that, if such a high resolution is achieved at
room temperature, NEMS-based mass spectroscopy can be
widely used for applications. However, it is practically unlikely
to implement a NEMS sensor that measures mass changes on

the order of several Daltons at room temperature. The main
difficulty is that when the temperature increases, the noise level
of the resonance frequency of the NEMS resonator becomes
very large due to thermal fluctuations.
Recently, an artificial-intelligence-based approach has been

used for data analysis. This machine learning (ML) has been
used in a wide range of applications such as voice search,20

image recognition,21 molecular/materials science,22,23 and
photonics devices.24,25 It has demonstrated that ML can
provide an efficient optimization and guidance for classification
of scientific data.22−25

In this study, we used a convolutional neural network
(CNN) learning-based applied ML technique for classification
and estimated the limiting in mass detection of a suspended
bilayer graphene-based nanomechanical resonator. This CNN
learning-based approach allowed us to more quantitatively
eliminate the thermal noise interferences and enable highly
accurate mass detection. Noise pattern training by the ML
algorithm can improve the accuracy of mass detection even
when the noise level is comparable to or even higher than the
signals from the mass change. Especially, 2D CNN can be
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applied to the various data, and it is26 a future-oriented
technology. The 2D CNN can classify the mass change in real
time using transfer learning that input data is adopted to
pretrained model. Furthermore, we choose 1D CNN model
because additional training on time-sequential data was also
needed.

■ MATERIALS AND METHODS
Generation of a Resonance Frequency Distribution. As

shown in a scanning electron microscopy (SEM) image (Figure 1a),
we fabricated nanoresonators by suspending a bilayer graphene on a
silicon substrate which was mounted on piezoelectric ceramic. The
resonance frequency of the suspended bilayer graphene was measured
using a 10 mW He−Ne laser with a wavelength of 633 nm and an AC
voltage (1 V) applied to the piezoelectric ceramic in vacuum
condition of 10−4 level. In this condition, the initial power of the laser
is 10 mW, and the laser power output to the device is attenuated
down to 0.1 mW in the detection process. The initial resonant
frequency of the resonator without particles was 70.9 MHz, and then
1.6 and 3.2 fg of Cr particles were deposited,27 the frequency shifted
by 2 and 5 MHz (Δfmass and 2Δfmass), respectively (Figure 1b). Figure
1c shows the initial resonant frequency obtained while measuring the
resonator without mass, where a noise error range was attributable to
thermal noise (white noise). There should be a lot of attributions,
such as thermal fluctuation, structural deformation on the graphene
device, oscillation on the circuits, and so forth, for generating errors
on the resonance frequency of the graphene mechanical resonance
device. In this simulation study, we focused on the thermal
fluctuation-mediated error factor on the nanomechanical resonator

since the device was operated at room temperature. The other noise
factors could be removed or significantly reduced by improving the
device fabrication procedure or measurement setup. However, the
thermal excitation can be an inevitable error factor on detecting the
mechanical resonance of a graphene device if we utilize this device for
the mass detection sensor at room temperature. This is the reason
why we especially focused on the thermal fluctuation-mediated error
on the graphene mechanical resonator-based mass sensor. Here, the
range of 11 measurement resonant frequencies is the drift level of
thermal noise. The median value of the noise error range, Δf noise = 68
kHz, was estimated from the repeated measurements. Data
concerning arbitrary mass change was generated following a normal
distribution and stored in a database based on the frequency shift
caused by mass change (Δfmass) and the noise error range caused by
thermal noise (Δf noise), as shown in Figure 1d.
Data Preprocessing and Feature Engineering: The Flow

Chart for Learning and Classifying. A noise error owing to
thermal noise or white noise always occurs in the bilayer graphene
resonator. The noise is caused by the fluctuation of the molecules
constituting the bilayer graphene and is thermal noise with a shift in
mechanical frequency. Such noise obstructs an accurate mass
detection using the resonator, making it essential to develop a
technique capable of correcting it. For accurate and efficient mass
detection against the effect of thermal noise, we used ML. Datasets
were generated based on Gaussian distribution in which the measured
shifts of resonance frequency due to the mass change (Δfmass) and the
noise range (Δf noise) were combined as shown in Figure 2a. As shown
in Figure 2b, the generated dataset consisted of 11 labels with
different masses (0, Δfmass, ..., 9Δfmass, and 10Δfmass), and feature
engineering was performed in two methods based on this dataset. The

Figure 1. (a) SEM image of nanoresonators composed of suspended bilayer graphene. (b) Resonance frequencies of a suspended bilayer graphene
resonator before and after depositing specific masses of Cr atoms (the above insets show the schematic of suspended bilayer devices before and
after depositing Cr particles). (c) In situ 11 measurements without depositing a mass to estimate the thermal noise range in a bilayer graphene
resonator. (d) Generated resonance frequency distributions based on Δfmass and Δfnoise.
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sample size is 500−1000 per label, and labels of each dataset are
incremented in multiples of the smallest unit of mass. If Δfmass is
0.02Δfnoise, label 1, label 2, label 3, label 4, and label 11 are Δfnoise,
0.02Δfnoise, 0.04Δfnoise, 0.06Δfnoise, and 0.2Δf noise.

The first approach for featurization was to visualize a graph with
frequency on the x-axis and amplitude on the y-axis, and the 11 labels
were categorized as a function of resonance frequency shift from mass
changes. The data corresponding to each label consisting of 1000
different graphs were combined with the thermal noise�within the
estimated range as shown in Figure 1c�and the resonance frequency

shift for a specific mass. The second approach for featurization was to
produce time sequential data, in which the resonance frequency shifts
when a mass is loaded at a specific time. In the first approach, the 11
labels were divided according to the mass change, and each was
composed of 500 different time sequential data with thermal noise
added. For cross-validation, the dataset was divided into a training set
of 80% randomly selected and a test set with the remaining 20%
before training the dataset. Then, as shown in Figure 2c, learning was
performed using a CNN,28 the first dataset consisting of image data
was learned with 2D CNN,29−31 and the time sequential dataset was

Figure 2. Flowchart for learning and classifying resonance frequencies with generated thermal noises. (a) Collecting the data of resonance
frequencies and thermal noises in a bilayer graphene resonator. (b) Process of feature engineering the input data into image and sequential datasets
based on the measured data. (c) Deep learning process with 2D and 1D CNNs. Steps of (d) classification and (e) evaluation.

Figure 3. Detailed flowcharts of the 2D and 1D CNN algorithms.
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learned with 1D CNN.32 The values learned through CNN were
estimated as the probability for each label and classified as the specific
label with the highest probability after 5-fold cross-validation as
shown in Figure 2d. Consequently, such CNN learning-based
classification was evaluated through the classification accuracy and
also through the confusion matrix and f1-score in Figure 2e. Since
simple classification accuracy is not high when data imbalance exists,
classification accuracy was evaluated with the f1-score, which is the
harmonic mean of precision and recall, and confusion matrix. Both
precision and recall are related with the percentage of correct answer.
Accurately, precision is the probability of actual correct answer among
the predicted correct answer. Recall is the probability of predicted
correct answer among the actual correct answer. f1-score can be
checked through calculating the harmonic mean of precision and
recall. If the data label is the correct answer but it is classified as the
incorrect answer, it is false negative. If the data label is the incorrect
answer but it is classified as the correct answer, it is called a false
positive. In the confusion matrix, the remained parts are false negative
and false positive except for true positive and true negative, indicating
the accuracy score for each label.

The CNN learning-based classification discussed in the previous
section was performed with 2D (image) and 1D (sequential) CNN
depending on the configuration of the dataset as shown in Figure 3.
First, in the case of 2D CNN, the input image with the fixed range of
the x (frequency) and y (amplitude) axes is resized to 224 × 224. As
shown in Figure S1, 112 × 112 and 300 × 300 resized images were
also generated, learned, and classified, followed by estimating the
training time and classification accuracy. (The accuracy and time
increased as the resolution of the image increased, and the
optimization in this study was performed based on the image of
224 × 224 size, considering the learning time). The resized image
data passed through several convolution layers and pooling processes
to extract features of pixels, and then the final score for each label was
calculated through the softmax layer. The 1D CNN method was
simpler than the 2D case, and features of one-dimensional data
(frequency−time) were extracted through convolutional layer and
flattening, and a score for each label was calculated through the
softmax layer. Furthermore, the accuracy for classification and f1-score
were obtained through 5-fold cross-validation33 for both 2D and 1D
CNNs. We also performed the hyperparameter tuning through
changing conditions such as epoch and batch size to find optimal
conditions.

■ RESULTS AND DISCUSSION
Classification Accuracy and Classifiable Limiting

Mass. To estimate the classifiable limiting mass, learning
and classification should be performed while changing the
resonance frequency shift (Δfmass), which defines the label.
Therefore, learning and classification processes were

repeated by determining Δfmass as a specific percentage (10,

5, 3.3, 2.5, and 2%) of the amplitude of the thermal noise range
(Δf noise). Figure 4 shows confusion matrices for classification
of 11 classes (labels) at a resonance frequency shift of 3.3%
amplitude of noise range (Δfmass = 0.033Δfnoise) through both
2D and 1D CNNs. The confusion matrix of 1D CNN learning-
based classification (sequential) in Figure 4b shows that the f1-
score is as low as 0.67, and the actual label and predicted label
do not match well with each other. In the case of 2D CNN
learning-based classification (image) in Figure 4a, however, the
f1-score is as high as 0.99, and the confusion matrix
demonstrates a strong diagonal tendency, indicating that the
predicted label correctly classifies the actual label (see Table
S1).
Figure 5a shows confusion matrices for the classification of

11 classes in 2D CNN at resonance frequency shifts having 10,
5, 3.3, 2.5, and 2% of Δfnoise, respectively. The 2D CNN
learning-based classification has a f1-score of 0.95 or more
when Δfmass ≥ 0.025Δfnoise as shown in Figure 5b and Table
S1, indicating that the performance of this classification
method is good enough to classify the correct label. When
Δfmass = 0.02Δfnoise, however, this method has an f1-score of
0.85, resulting in poor classification accuracy. We confirmed
that the minimum resolution for the mass detection is
0.025Δfnoise when the 2D CNN approach was used. On the
other hand, 1D CNN shows high classification performance
with an f1-score of 0.99 when Δfmass ≥ 0.05Δf noise but has an
f1-score of 0.61 or less when Δfmass < 0.05Δfnoise, resulting in
severe performance degradation.

■ CONCLUSIONS
We showed that the limit of mass change detection using the
NEMS resonator-based mass sensor can be improved by using
applied ML. A suspended bilayer graphene resonator was
adapted as a model device for this study, and the resonance
frequency shift according to the mass was used as the test
dataset for analysis. By using CNN-based ML, we demon-
strated the classifiable limiting mass in a bilayer graphene
resonator. Featurization is divided into image and sequential
datasets, and those datasets are trained and classified using 2D
and 1D CNNs, respectively. The 2D CNN learning-based
classification shows an excellent performance when Δfmass
0.025Δf noise, and 1D CNN also shows a similar high
performance when Δfmass ≥ 0.05Δfnoise. In conclusion, the
combination of the suspended graphene resonator and applied
ML is expected to enable more precise mass detection. Given
that the state of the art of NEMS resonator mass detection

Figure 4. Confusion matrices for classification of 11 classes at a resonance frequency shift of 3.3% Δfnoise in (a) 2D CNN and (b) 1D CNN.
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resolution is reported9 around 100 Da level at room
temperature, we expect that several Dalton of mass difference
could be classified against noises by using our ML method.
This work suggests the prospect of utilizing the NEMS
resonator-based mass sensor for mass spectroscopy on the
biomolecule detection including protein sequencing.
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