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Abstract

Superconducting-normalconducting-superconducting (SNS) transmons with 2-facet Al-shell nanowires are
qubits compatible with magnetic fields above 10mT. There are important correlations of the room tempera-
ture nanowire resistance with the chance of the qubit being measurable: at a resistance of 2−3kΩ, the qubit
is almost guaranteed to work. The chance of success halves every 2− 3kΩ increase. This information can
be used to increase the yield. The flux noise power spectral density (PSD) of a model spin-1/2 fluctuator has
been investigated as a function of the magnetic field using the Zeeman interaction. Not only the fluctua-
tions parallel to the magnetic field contribute, but also the fluctuations perpendicular to the magnetic field.
Cross-terms cancel out. The flux noise PSD of the SQUID is a linear combination of these spin PSDs when
the spins are spatially uncorrelated. The magnetic field suppresses the parallel spin-axis noise PSD contri-

bution as cosh−2
(
µB B
kB T

)
. The magnetic field changes the perpendicular spin-axis PSD contribution due to the

Larmor precession frequency peak 2 fZ ∼ µB B , but does not influence the PSD contribution at frequencies
higher that the Larmor precession frequency. When rotational asymmetry in the SQUID geometry is present,
the PSD contributions of the perpendicular and parallel components can be separated.
In our setup, a perpendicular coil is used to align the magnetic field with the transmon plane. The align-
ment procedure of maximizing the resonator frequency vs. the perpendicular coil field has been verified. To
measure the flux noise, the perpendicular coil is first used to change the flux bias by large amounts. Then
a dedicated flux bias is used to make a fine-grained sweep over the flux without flux-jumps, to calibrate the
magnetic field at the SQUID. We have found a signal of the flux noise at zero field and at field. A flux noise
amplitude of

p
A ∼ 1000µΦ0 has been found at zero magnetic field.
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1
Introduction

The basic building blocks for scalable quantum computers are being developed right now. The building block
is the prototypical qubit. While an ideal qubit is a simple system to explain, it doesn’t paint the full picture:
there are many noise sources that break the carefully prepared state of a qubit. We can split these up in relax-
ation processes, where energy loss happens, and dephasing processes, where phase information is lost. This
is still a limiting factor for fault-tolerant quantum computing. The current state-of-the art circuit quantum
electrodynamics (cQED) devices relax in timescales of ∼ 100µs and decohere in timescales of ∼ 100µs.
Coherence of the prepared state is essential for multiple-qubit gates, which can create entanglement, a neces-
sary ingredient for quantum speedup over classical algorithms. This coherence for superconducting devices
using Superconducting QUantum Interference Devices (SQUIDs) is currently limited by flux noise in super-
conducting rings, in which a flux can determine the qubit energy spectrum, which is necessary for a scalable
quantum chip. There have been investigations on the origin of this noise to be able to suppress it [6],[39],[27].
As of writing the thesis, its origin has not been shown conclusively. This thesis aims to determine the effects
of a magnetic field on the flux noise by using a nanowire SNS junction [33], so that we can rule out or gain
confidence in the proposed noise models.

1.1. Qubits
The qubit is the basic building block of a quantum computer, just as a bit is the basis for a (classical) com-
puter. A qubit can be seen as a system with two levels (just like a bit), undergoing quantum mechanics. What
this means is that the qubit can be in the |1〉 and the |0〉 state, like a normal bit. However, the qubit can also
be a complex linear combination of these two, so we can write them as:

∣∣ψ〉= a |0〉+b |1〉
where a,b ∈C complex numbers satisfying |a|2 +|b|2 = 1. The energy required to excite the qubit from the |0〉
state to the |1〉 state is denoted at E01 =ħω01 = h f01.

1.2. Transmons
A transmon can form a qubit following the theory of circuit quantum electrodynamics. The prototypical
transmon can be modeled as in [24] by the following Hamiltonian

Ĥ = 4EC (n̂ −ng )2 −E J cos
(
φ̂

)
(1.1)

where EC is the charging energy given by the capacitance betweeen the transmon pads, n̂ is the number of
Cooper pairs transferred between the leads, ng is the charge offset in the system and E J is the Josephson
junction energy. The φ is the phase difference between the wavefunctions of the two superconducting leads
ψ1 ∝ e iφ1 and ψ2 ∝ e iφ2 . We can also write n̂ as −i ∂

∂φ̂
so that the commutation relation [φ̂, n̂] = i holds.

This Hamiltonian is solvable in the limit φ̂→ 0 and the transmon requirement E J À EC . In this regime, any
charge (offset) noise ng effect on the energy levels is exponentially suppressed. The found energies for the

7



8 1. Introduction

m’th energy level is

Em ≈−E J +
(
m + 1

2

)√
8EC E J − EC

12
(6m2 +6m +3) m = 0,1,2,3, . . . (1.2)

From this equation, a couple of important parameters can be deduced. The qubit excitation energy E01 =
E1−E0 ≈

√
8EC E J−EC and the 0-2 transition energy E02 = E2−E0 ≈ 2

√
8EC E J−3EC = 2(E01)−EC . The energies

E01 and E02/2 need to be different, such that we do not excite higher modes using the same frequency.

1.3. Qubit-resonator coupling
To read out the qubit, we need to connect it to a more accessible system for readout than the state of a plas-
mon. We do this by coupling the transmon capacitively to a resonator. A natural choice is the λ/4 quarter-
wave resonator, since it is smaller in length than a full wavelength resonator and its properties are well un-
derstood. This coupling can be represented by the Jaynes-Cummings Hamiltonian[36]

ĤJC =ħωq
σz

2
+ħωr (ââ† + 1

2
)+ħg (âσ++ â†σ−) (1.3)

where ωq = E01
ħ from the transmon energy levels found in Section 1.2, ωr is the resonant frequency of the

resonator, g the coupling constant dependent on the capacitance between transmon and resonator and â
(â†) is the annihilation (creation) operator for the bosonic photons in the resonators.
To determine the effects of the qubit on the resonator frequency, we apply the rotating wave approximation
(RWA) which implies the requirement that ∆= |ωq −ωr | ¿ωq +ωr . We also assume we are in the dispersive
limit (g ¿ ∆). These imply that the coupling constant must be smaller than typical qubit and resonator
frequencies, while also being smaller than the difference of the qubit and resonator frequencies. Using these
assumptions, we can solve the Hamiltonian to give the resonator frequency in the rotating frame which shifts
depending on the state of the qubit following

ωr,l oad =ωr,unload ± g 2

∆
(1.4)

where ωr,unload is the resonator frequency were there no qubit. The ± differs given by the state of the qubit.
This means that measuring ωr,l oad indicates the state of the qubit. However, even if the qubit frequency is
low such that

ωq

ωr
< 0.5 and the RWA does not apply anymore, the resonator still experiences a shift depending

on the qubit state[58].

1.4. Resonator readout
We use the resonator as a way to read out the state of the qubit. We first find the resonator without interacting
with the qubit. This is the resonator frequency when the qubit is in the ground state. We now realize that
the dispersive shift is dependent on the qubit state. So when the qubit is excited, the resonator frequency
changes. We keep reading out at the ground state resonator frequency, but now we are resonating less ef-
fectively. This can be seen in the transmission, as less power is retained in the resonator. Qualitatively, the
resonator would perform better when the dip in the transmission is as close to 0 as possible. Then the re-
sponse for a dispersive shift is large. However, sometimes the dispersive shift is small, and for that we want
to make the dip as thin as possible, so that the sensitivity become larger. We can tune both of these things as
will be discussed in Section C.

1.5. Qubit tunability through a flux bias
First of all, to make a quantum computer with many qubits, we could make all the qubits a fixed frequency,
spaced evenly from each other. We could use a method called cross-resonance to create 2-qubit gates. How-
ever, due to imprecision in fabricating the qubit frequency and stringent requirements on the relation of two
qubits interacting with each other, this method is not scalable. A solution is to be able to tune the frequency of
the transmon by adding a SQUID. A SQUID is a superconducting loop that houses two Josephson junctions,
one on each branch of the loop. The current changes in the junctions as a function of the flux penetrating
the SQUID. A current flows through the junctions to maintain flux quantization, creating a flux bias on a
SQUID. This can be used to tune the qubit frequency to a desired frequency. To find out the qubit transmon
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Hamiltonian of two Josephson Junctions in a SQUID loop, we write:

Ĥ = 4EC n̂2 −E j 1 cos
(
φ1

)−E j 2 cos
(
φ2

)
(1.5)

where EC is the charging energy, E j 1,E j 2 the Josephson energies of junction 1 and junction 2 respectively
and φ1 and φ2 the gauge invariant phase differences of the superconductor wave function for junction 1
and junction 2. For a SQUID loop, the flux quantization constraint dictates that φ1 −φ2 = 2πn +2π Φ

Φ0
with

Φ0 = h
2e ≈ 2.07 ·10−15 Wb We can rewrite the equation as [24]

Ĥ = 4EC n̂2 −E j ,tot cos

(
πΦ

Φ0

)√
1+d 2 tan2(

πΦ

Φ0
)cos

(
φ̂−φ0

)
(1.6)

where d = E j 1−E j 2

E j 1+E j 2
is the energy asymmetry, E j ,tot = E j 1 +E j 2 the equivalent Josephson energy, φ̂ = φ1+φ2

2

the phase operator and φ0 = d tan
(
πΦ
Φ0

)
the offset phase. This method has as advantage, that we can tune

the frequency reliably by sending a flux bias through the SQUID. Also, we can create 2-qubit gates called
conditional phase gates with flux pulses[14]. However, a disadvantage of this qubit is the additional unknown
flux noise that the SQUID exhibits, which limits coherence when φ 6=φ0.

1.6. Flux noise
Flux tunable transmons and flux qubits are currently being limited by flux noise. Qubit control can still be
improved by having more accurafte and faster hardware, but there are limitations inherent to the fabrication
of the qubit itself. The effects can often be measured by the T1 and T2 times of the qubit, called the relaxation
and decoherence time respectively. Relaxation is caused by loss of the excited state of the qubit due to loss
channels. Energy can be exchanged with these channels at the qubit frequency. The decoherence time can
be split into two contributions[38, 48]:

T −1
2 = T −1

φ + (2T1)−1 (1.7)

where Tφ is the dephasing time. So not only is the coherence time dependent on the relaxation, the qubit
is also affected due to the phase changing undesirably. The phase evolution is dependent on the qubit fre-
quency. Thus dephasing is an effect of the qubit frequency fluctuating [34]. In a flux tunable transmon, there
are be several ways that this could happen. The main effect investigated is the flux noise, due to fluctuations
in the magnetic field as sensed by the SQUID. Other effects would be photon number fluctuations in the res-
onator or the critical current noise of the Josephon junction. This SQUID is used by the qubit as a knob to
tune the qubit frequency, so any noise in the sensed magnetic field creates noise in the flux measured by the
SQUID and thus creates fluctuations in the qubit frequency. Ideally these noise sources do not increase the
dephasing such that Tφ¿ 2T1, making the T2 be 2T1-limited. Qubits are preferentially used at the sweetspot:
the flux bias where the qubit frequency is first-order insensitive to the flux. During two-qubit gates, flux
pulses are used to tune the qubits frequencies off-sweetspot and the qubit coherence times will decrease to
flux noise. This can limit the 2-qubit-gate fidelity [8]. Our nanowire transmons have the possibility of being
voltage tunable using a voltage bias gate, or being flux tunable by embedding the wire in a SQUID. Of these
two, only the flux tunable transmon is sensitive to flux noise.[33]. More on the flux noise will be covered in
Section 3.

1.7. Goal and outline of thesis
This thesis project had as goal measuring the 1/ f -flux noise of a flux tunable nanowire transmon as a function
of the magnetic field to try to gain more information about the microscopic origin of the this 1/ f -flux noise.
The thesis is structured as follows:
In Section 2 we look at a nanowire transmon (not flux tunable) in a magnetic field, and look at the behaviour
of these transmons at an angle.
In Section 3 we discuss what flux noise is, what might be its microscopic origin and how we would measure
the flux noise with nanowire transmons.
In Section 4, a model of a noisy spin near a SQUID in a magnetic field is described. An extensive example
is worked out for the flux noise caused by an ensemble of spin 1/2-particles on the SQUIDs surface in a
magnetic field due to the Zeeman interaction.
In Section 5, a flux tunable nanowire transmon in a magnetic field is discussed. We explore several obstacles
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and find a way around them.
In Section 6, we try to find the cause of the low yield of qubits by using room temperature resistance data
from chips fabricated in the period January 2018 to June 2019.
In the Appendix, other topics are handled, such as the measurement setup, the chip design, tabulated chip
design parameters and several derivations for the spin fluctuator example.



2
Nanowire transmon with an in-plane

magnetic field

Figure 2.1: The coordinate system used to control the magnetic field. X refers to the axis in the direction of the perpendicular coil,
which is also used as a qubit flux bias. Y and Z correspond to two physical magnets axes controlling the in-plane magnetic field. Due to
misalignment with this plane (exaggerated in this figure), we find virtual vectors V 1 and V 2 and use them to control the field to prevent
an out-of-plane magnetic field component.

Applying an in-plane magnetic field to the transmons requires careful alignment to maintain measurable
qubits. In the following sections, we will demonstrate the alignment procedure while ramping the magnet
fields and showing T1 and T2-times during ramping.

2.1. Why nanowires?
The conventional SIS junctions described in Section 1.2 are incompatible with high magnetic fields. Only
fields of 10mT are sustained by the typical Al-AlOx-Al junctions. One solution is to use a superconducting-
normal conducting-superconducting (SNS) junction, where due to Andreev bound states (ABS), there is a
transmission of Cooper pairs through the normal conducting material. However, a typical metal has a con-
tinuum of states, which causes a near infinite amount of conductance channels for the ABS, which facilitates
dissipation. So we would like to use systems in which there is a limited number of conductance channels

11



12 2. Nanowire transmon with an in-plane magnetic field

available. One such system is a semi-conducting nanowire. Nanowires have been investigated for their inter-
esting effects coming from their 1D nature. Their diameters are usually on the order of (tens of) nanometers.
Due to the semiconductor gap, no states are available, except for states caused by the one-dimensionality
of the nanowire. These states create the lateral energy quantization of the electrons travelling through the
nanowire. This is further explored in Section A.1. The nanowires we use are InAs nanowires, since they can
form Schottsky-barrier-free contacts providing high electron transparency.

2.2. SNS junction Hamiltonian
The nanowire can be described by the charging energy EC created on a transmon chip and the Josephson
energy E J described by the Superconducting-Normalconducting-Superconducting (SNS) junction. Instead
of Equation (1.1), we generalize the Hamiltonian to

H = 4EC (n̂ −ng )2 +V (φ̂) (2.1)

where the Josephson energy in a few-channel (N small), ABS dominated regime is given by [33]

V (φ̂) =−∆
N∑

i=1

√
1−Ti sin2(φ2/2) (2.2)

where Ti is the transmission coefficient for each channel, which is determined by the density of quasiparticles
present in the nanowire and other scatterers present. φ is the phase difference between the superconducting
leads and ∆ is the superconducting gap of the proximitized nanowire.

2.3. SNS Hamiltonian in a magnetic field
Due to the in-plane magnetic field, the Andreev Bound state (ABS) energies will follow Equation (2.2) where
in this case, we find that the superconducting gap closes as ∆ = ∆(B||). For BCS superconductors, far below
the critical temperature (T ¿ Tc ), this takes the form [44]

∆(B∥)

∆0
= E ABS (B∥)

E ABS (B = 0)
≈

√
1−

(
B∥
Bc

)2

(2.3)

where Bc is the critical field and B|| is the applied in-plane field. From Equations (2.3) and (1.2) we can find

f01(B||) ≈
√

EC E J

h

(
1−

(
B∥
Bc

)2)1/4

− EC

h
. (2.4)

2.4. Alignment to transmon plane
The chip and magnets might be misaligned during processing and installing the qubit chip onto the PCB or
in the fridge, see Figure 2.1. Ideally, the chip lies in the Y Z -plane. Otherwise, when ramping in the Y or Z
direction, we could misalign the field and cause a perpendicular field B⊥ on the superconducting CPW and
superconducting pads of the transmon. Above a critical field, these will form Abrikosov vortices, trapping flux
and lowering the Qi . We want to prevent this from happening. One solution is adding holes in the resonators
as described in Section C.2.1, increasing the critical field before vortices are formed. However, this alone does
not prevent vortices at a perpendicular field on the order of 10mT or less[2], due to focusing of the field.
Another way to prevent a perpendicular field, is using the flux bias coil as a magnet in the X -direction to
correct for this, instead of only as a flux source. A couple of resonator variables are affected by the perpen-
dicular field: the resonator frequency fr es and the Qi . Sweeping the X -magnet vs. the Qi to find a X -field
of maximum Qi fails, since every sweep, a couple of vortices are formed every time the field is swept, which
are irreversible to a certain extent[9]. Another method is to sweep the X -field vs. the resonator frequency
fr es , which is more sensitive to any perpendicular field, as visible in Figure 2.2. While a good parabole-like
dependence is visible, we also see jumps due to vortex formation.

In Figure 2.3 we can see this alignment procedure for a rampup. For the other rampups and rampdowns,
the trend is similar. We can conclude that the resonator frequency is aligned. Also, when the resonator fre-
quency is measured afterwards, it is on or near the measured maximum of the parabola. In Figure 2.4 a
rampup and rampdown of the field is depicted, where for every in-plane field strength, we show the swept
values of the perpendicular coil, and the best aligning perpendicular coil current, maximizing the resonator
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Figure 2.2: The resonator frequency as a function of the flux bias coil serving as X -axis magnet. This is a snapshot during ramping down
the second time and was at an in-plane field of 245mT. We can see a clear maximum.

frequency. There are interesting features visible. At first, we see that during the rampups, no misalignment
seems present until a certain threshold field, ∼ 50−120mT for this rampup (and around 100mT−200mT in
general). After that the aligning field changes a lot. Since rampup and rampdown are done on a resonator in
the middle of the chip. For another rampup and rampdown on the same chip, but on a resonator on the side
we can see that the directions of the misalignment changes. This might be due to an inhomogeneous field as
the perpendicular coil is smaller than the chip.
The misalignment, were it geometrical, would be tan(θ) ≈ 2.5mT

250mT → θ = 0.6◦ for the visible rampup and

tan(θ) ≈ −1.5mT
250mT → θ =−0.3◦ for the other rampup.

When ramping down, we get a feature, where the optimal aligned X -magnet strength goes even further up
than before. After that then goes down linearly as expected until it crosses BX = 0 and even shoots over to
±500µT. These two effects might be due to hysteresis effect in the resonator due to the magnetic field or due
to flux trapping.

The most important question is: does the alignment actually prevent vortices to form in big numbers? Mea-
suring the Qi of the resonator in question suggests: yes. This is shown in Figure 2.5 the aligned resonator. On

different rampups and rampdowns we find
Qi ,be f or e

Qi ,a f ter
≈ 1.5.

However in Figure 2.6 we see a the Qi of a selected group of resonators, and it seems the X -magnet produces
an inhomogeneous field and as such, aligning one resonator does not align the field for all resonators. The
numbering follows the convention as shown in Figure B.2. Resonator 6 and 8 retain their Qi after rampup and
rampdown. They are spatially close to the aligned resonator (resonator 6). Resonator 1 and resonator reside
on the edges of the chip and are the furthest away from the aligned resonator (resonator 6). The Qi drops as
a result. We also did the experiment aligning on a resonator on the edge (not shown). We saw that the res-
onator closest retain their Qi and the resonator furthest do not. Due to this, we cannot ramp up to one qubit
aligning on a neighbouring resonator, ramp down again and ramp up on another qubit without decreasing
its Qi and the goodness of readout. A solution to decrease the inhomogeneity, is to increase to coil diameter
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Figure 2.3: The resonator frequency frequency as the X -magnet field is swept for every field ramped to a rampup. Clear parabolas are
visible for every field strength The orange dots are the resonator frequencies after setting the X -coil to the maximum before starting
qubit spectroscopy.

of the perpendicular coil.

2.5. Qubit coherence at field
After aligning to resonator to ensure a purely in-plane field, we can measure the qubit. We will combine
equation (2.3) and (2.1) to fit the qubit frequency spectrum numerically. The qubit frequency is shown in
Figure 2.7. We have also found the anharmonicity to be a constant −90MHz during rampup and −120MHz
during rampdown.
After a rampup to 250mT, the qubit frequency spectrum follows a BCS-like line, as described in Equation
(2.3) and the f02/2-transition only contained one peak. The anharmonicity only drifts about 5% while ramp-
ing down. Between the first and second rampup, the sample was recondensed.
During second rampup and rampdown, the qubit frequency response stayed similar during rampup and
rampdown, no qubit frequency jumps were observed. The spectrum looked similar to the BCS fit of the first
rampdown, with a different starting frequency.

From Figure 2.8, we can see the relaxation and coherence times for different rampups and rampdowns to
250mT. These have similar features, which we will address individually. First of all, the most important thing
to deduce from the plots is that we still can measure coherence, even at 250mT. At 250mT, we can measure
a clear T ∗

2 of ∼ 200ns. We also notice that during both rampups, a significant drop in T1,T e
2 and T ∗

2 appears
at around 100mT . We do not know why this happens, but it may be misalignment due to the nanowire not
being completely parallel to the V1-axis as we see during the angle scan.
We also see a return of the coherence at 200mT (rampup 1) or 160mT (rampup 2). We do not know what is
the cause of this.
During the rampdowns, we see an increase in the coherence and relaxation times until it reaches ∼ 50mT and
the T1,T e

2 drop again, even to zero field. We also do not know the origin of this process.
Another interesting aspect is the ratio of T1 to T e

2 , in which we see that T1 > T e
2 for fields B|| < 100mT and

T1 = T e
2 for B|| > 200mT. The exact moment of crossing over lies in between 100mT < B < 200mT, but differs

every rampup or rampdown. However, T e
2 is not 2T1-limited yet.



2.6. Qubit at an in-plane magnetic field angle 15

Figure 2.4: The orange dots are chosen as the maximum of the parabolas as shown in Figure 2.3. From top to bottom: Rampup 1 (aligned
on resonator 6), Rampdown 1, Rampup 2 (aligned on resonator 10), Rampdown 2.

2.6. Qubit at an in-plane magnetic field angle
After ramping up the field in the V 1-direction (as defined in Figure 2.1), we might be interested if other physi-
cal effects happen in the V 1−V 2-plane, since the nanowire is not rotationally symmetric in this plane. Turn-
ing on the Y -magnets, we ramp up to 25mT and scan fromΘ=−90◦ toΘ=+90◦ withΘ being the left-handed
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Figure 2.5: The Qi of the resonator on which was aligned during rampup and rampdown to 250mT.

Figure 2.6: The Qi ’s of selected resonators during rampup and rampdown, while being aligned on resonator a resonator in the middle of
the chip. See Figure B.2 for the numbering convention.

angle to V 1 in the V 1−V 2-plane. Angles below −90◦ and +90◦ were not possible to measure due to time con-
straints. However, it is expected that these measurements are similar to the measured semi-circle due to
mirror-symmetry.
The alignment, as has been described in Section 2.4, has been done while ramping up and while sweeping
the angle, to ensure V1 and V2 were correctly defined at every measurement.
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Figure 2.7: Results for the measured qubit f01 (diamonds) and f02/2 (crosses) frequency as a function of the field for different rampups
and rampdowns aligning the X -coil to different resonators. The first rampup and rampdown to 250mT is aligned on a resonator in the
middle (resonator 6). The second rampup and rampdown is aligned on a resonator on the edge (resonator 10).

The nanowire transmon measured had the nanowire nearly perfectly parallel to the V 1-axis with an error of
Θ= 0.57◦, as visible in Figure 2.9. It was designed as a flux tunable qubit, but it was not flux tunable.
In Figure 2.10 the results of the qubit frequency as a function of the angle is shown. We find that the qubit fre-
quency is influenced by the angle at which the in-plane field is applied. With the field parallel to the nanowire
(and in this case direction V 1, so Θ≈ 0), we find a maximum of the qubit frequency. We also discern certain
dips at which the qubit is not measurable due to peak broadening. Here we cannot perform time domain
measurements. I do not know the origin of these dips, however they are visible in a previous rampup on an-
other chip as well. The f02/2 frequency peak is only measurable for a limited range of angles most parallel to
the nanowire. The anharmonicity is constant to within 5%, and might correlate with f01 (not shown).
As for the time domain relaxation and dephasing measurements of the qubit graphed in Figures 2.11 and
2.12, we again see that there is an optimal angle for every field strength to optimize the the coherence. This
angle varies from Θ=−5◦ to +10◦. The coarse resolution of the angle scan poses limits on knowing the best
T1 possible at higher fields, but is at least ≥ 6µs at 100mT.
Measurements of T ∗

2 shows a similar trend, except that for 25mT, a double beating pattern can be observed
and extracted T ∗

1,spl i t are correlated with the ∆ fspl i t of the fit with the two exponentially damped oscillator

fits (see Appendix D).
A double beating pattern could not be observed after the first dip.

2.7. Second qubit in an in-plane magnetic field at an angle
Another fine-grained 360◦ angle scan has been made to make sure we have cylindrical symmetry. We find
that this symmetry is broken. To determine the qubit frequency at the magnetic field, we find that the critical
field is not the same at every angle, due to the rotational asymmetry of the nanowire. This means it will be
angle dependent and Equation (2.3) will be described approximately by

f (B ,θ) = f (B = 0)

(
1−

(
B

Bc (θ)

)2)1/4

(2.5)

This means we can characterize the critical field by

Bc (θ) ≈ B√
1−

(
f (B ,θ)
f (B=0)

)4
(2.6)

In Figure 2.13 we see that the qubit frequency peaks when it is aligned with the nanowire axis at an in-plane
angle θ0 =−11◦ to V 1. This is due to the Meissner effect having less of an effect on the Al-shell head-on. We
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Figure 2.8: Collection of T1,T E
2 and T∗

2 measurements as a function of field for different rampups and rampdowns. The first rampup and
rampdown is a sweep from 0 to 250mT while using the alignment procedure. Both plots are divided in three plots to clearly separate the
values of T1,T e

2 and T∗
2 during that rampup or rampdown.

also see an asymmetry for angles θ and π−θ. This might be a result of the 2-facet shell facing only one side.
We capture this phenomenologically through the equation:

f (B ,θ) = f (B = 0)

(
1−

(
B cos(θ−θ0)

Bc,g ood
−αg ood

)2

−
(

B sin(θ−θ0)

Bc,bad
−αbad

)2)
(2.7)
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Figure 2.9: Image created by the image recognition software made by Thijs Stavenga [42] to create the contacts holding the placed
nanowire. The nanowire in this figure is the nanowire observed in this section. It is almost perfectly aligned to the V1 axis (Θ= 0.57◦)

which implies that the B/Bc (θ) forms a scaled and translated ellipse around origin (αg ood ,αbad ). Due to
the fmax not being explicitly known, we have too many unknown to known to retrieve the correct values for
Bc,g ood , Bc,bad , αg ood and αbad . We only know αg ood is positive and αbad is negative.

2.8. Alignment during an angle scan
The alignment follows the same idea as Section 2.4, however, here we have to account for two different virtual
vectors at once. This can cause several problems. First of all, this causes the problem if we do not know
both basis axes V 1 and V 2 before starting the angle scan. we would re-adjust the angle of the field wrongly.
Example: say we have been aligned on the Z /V 1-axis, and its alignment corresponds to Bx = 0.01Bz . We do
not know the alignment for Y /V 2, so we assume Bx = 0By . However the true value might be BX = 0.02By .
This would mean that the closer the angle gets closer to the Y /V 2-axis, the stronger it tries to apply the Bx → 0
constraint, while we want to align it as Bx → 0.02By . This can be solve by making an excursion in both the Z
and Y -axes, or by calculating V 2 by using the known value of V 1 and the current aligned X-field.
Second of all, the alignment does depend on some hysteresis effect. Our alignment could fail making a circle.
We see in Figure 2.14 that when V 1 and V 2 are known (here at angles θ = 0 and θ = 90◦ respectively), that the
aligning perpendicular coil fields our found on the curve. This means our procedure is verified in the case of
angle scans. In fact, the Qi , Qc and fr es stay constant over the whole angle scan (not shown), except for a dip
in Qi at ∼ 78◦, perpendicular to the nanowire axis.
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Figure 2.10: Results for the measured qubit f01 frequency as a function of the angle to V 1. The qubit physically lies almost parallel to V 1,
as indicated by the maximum in f01. At 25mT, for angles < 59◦ and > 60◦, no qubit could be found. At the apparent dips (2 visible for
25mT and 4 visible for 50mT), the qubit frequency peak broadens until its SNR ratio is too low to measure. At 100mT the qubit frequency
goes too low for the chosen measurement range.

Figure 2.11: Results for the measured qubit relaxation time T1 frequency as a function of the angle to V 1. The relaxation time is strongly
dependent on the angle and the disappearance coincides with the first peak broadening in the qubit frequency.
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Figure 2.12: Results for the measured qubit coherence time T e
2 frequency as a function of the angle to V 1 for different in-plane magnetic

fields. The results again show a clear optimal angle, which coincides with T1 measurements.

Figure 2.13: Results for the measured qubit frequency vs. the full 360◦ angle scan. The fit used is
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Figure 2.14: The result for the angle scan. The blue values are the values swept against. These values were determined by the V 1 and V 2
values found in earlier alignments. The red dots show the perpendicular X -field for which the angle was aligned. The angle scan was
made at a constant field magnitude |B | = 25mT. It swept up from angle θ = 0 to a value of θ = 369◦ = 9◦.



3
Flux noise and its microscopic origin

3.1. Introduction
Flux tunable transmons and flux qubits are currently being limited by flux noise. Qubit control can still be
improved by having more accurafte and faster hardware, but there are limitations inherent to the fabrication
of the qubit itself. The effects can often be measured by the T1 and T2 times of the qubit, called the relaxation
and decoherence time respectively. Relaxation is caused by loss of the excited state of the qubit due to loss
channels. Energy can be exchanged with these channels at the qubit frequency. The decoherence time can
be split into two contributions[38, 48]:

T −1
2 = T −1

φ + (2T1)−1 (3.1)

where Tφ is the dephasing time. So not only is the coherence time dependent on the relaxation, the qubit
is also affected due to the phase changing undesirably. The phase evolution is dependent on the qubit fre-
quency. Thus dephasing is an effect of the qubit frequency fluctuating [34]. In a flux tunable transmon, there
are be several ways that this could happen. The main effect investigated is the flux noise, due to fluctuations
in the magnetic field as sensed by the SQUID. Other effects would be photon number fluctuations in the res-
onator or the critical current noise of the Josephon junction. This SQUID is used by the qubit as a knob to
tune the qubit frequency, so any noise in the sensed magnetic field creates noise in the flux measured by the
SQUID and thus creates fluctuations in the qubit frequency. Ideally these noise sources do not increase the
dephasing such that Tφ¿ 2T1, making the T2 be 2T1-limited. Qubits are preferentially used at the sweetspot:
the flux bias where the qubit frequency is first-order insensitive to the flux. During two-qubit gates, flux
pulses are used to tune the qubits frequencies off-sweetspot and the qubit coherence times will decrease to
flux noise. This can limit the 2-qubit-gate fidelity [8]. Our nanowire transmons have the possibility of being
voltage tunable using a voltage bias gate, or being flux tunable by embedding the wire in a SQUID. Of these
two, only the flux tunable transmon is sensitive to flux noise.[33].

3.2. History of flux noise
In 1987, Wellstood et al. [50] found the noise in SQUID devices of different sizes and materials below 500mK
to be

∼ 7µΦ0Hz−1/2 at 1Hz

with an 1/ f α-type noise and 0.58 <α< 0.65. This was measured by extracting the SQUID current as a result of
the changing flux. The measured frequency ranges of the power spectral density went from 0.1Hz to 10kHz.
After more than a decade, superconducting qubits were researched. Decoherence proved a difficult problem
to solve, so methods involving control sequences were investigated to quantify the noise sources, such as
critical current, charge or flux noise [34][18]. Among the first measurements of the flux noise in qubits were
Yoshihara [54] fitting A

f using
p

A = 1−2µΦ0Hz−1/2 for frequencies to which the Echo filter is sensitive, similar

to Wellstood. Kakuyanagi [23] found a similar result and Bialczak [6] fit A
f α using

p
A = 4µΦ0/

p
Hz and α =

0.95 for lower frequencies. New methods have been devised to probe the higher frequency components.
Nowadays, the measurements have found that the 1/ f -like signal spans over 13 order of magnitude (from
10−4 Hz to 109 Hz) with no clear indication of lower or upper cut-off frequencies[6][37].

23
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3.3. Measurements of flux noise
Different protocols have been devised to characterize the flux noise power spectral densities at different fre-
quency ranges. First off, the investigation began at lower frequencies. However, since no cut-off frequencies
have been found yet, methods to probe even GHz levels of noise have been developed. The measurement
methods used to date are:

1. By measurement of the SQUID flux using a second flux-locked SQUID and measuring its current or
voltage and sweeping the bias current of the first SQUID, which is useful for low frequency noise mea-
surements from 0.1Hz to 10kHz. [50][49][27].

2. By measuring the sensitivity of a qubit’s frequency vs. the change in flux, and calculating its dephasing
time using the Echo or Ramsey sequences, which are sensitive up to frequencies corresponding to 1

tmeas
,

where tmeas is the measurement time. [54][23][33]

3. By measuring the correlations in the Echo times with two coupled qubits , being sensitive to all noise
under ∼ 1MHz[55].

4. Fast repetitions of a single shot readout after a Ramsey experiment, with a fixed free induction time
and detuning frequency, using Bernoulli statistics to deduce S( f ) for frequencies 10Hz to the single
shot repetition rate 1

tr ep
, which can go up to kHz ranges. [52]

5. Measurement of the proportion of clockwise vs. counterclockwise currents in a flux qubit. Should be 1
at exactly zero flux bias. This can be used to probe the low frequency noise [29][30][37].

6. Measurement of the anti-correlation of positively biased and negatively biased qubit frequency devia-
tions. This measurement has been done to frequencies as low as 10−5 Hz[6].

7. By extracting, next to the sensitivites, the exact noise amplitude at a certain frequency independent of
the form of the spectrum, usable for Ramsey, Echo and CPMG sequences. This is useful for frequencies
1 to 10MHz[10].

8. Measurement of the relaxation time during driven evolution of qubit. This can probe the noise up to
200MHz[53].

9. Measurement of decay of Rabi oscillations at a strong driving field so that a certain Rabi oscillation
frequency (and noise frequency) is probed. Frequencies up to 1.4GHz are able to be probed using this
[56].

10. Measurement of the T1 and residual excitation population of a flux tunable flux qubit, tuned to a certain
frequency, and the ratio excitation and relaxation to discern classical and quantum noise. This probes
1−10GHz[37].

11. Measurement of the spurious excited state population of the qubit by showing excitation due to de-
phasing noise at a frequency equal to the detuning of the qubit-resonator. This probes GHz frequencies
[41].

These methods can be combined to give a complete view of the noise characteristics across the entire fre-
quency span. It has been shown that the methods give consistent results. Methods that could be used for our
transmon qubits include methods 2,4,7,8,9 and when modified 10.

3.4. Possible microscopic origins of the flux noise
In the process of improving the SQUID white temperature noise of the form ε/1Hz ≈ 16kB T

p
LC by lower-

ing the temperature, it was found that a residual 1/ f -noise was present at even the theoretical lowest noise
floors [45]. This has been investigated to not be fully explained by critical current fluctuations [25]. Even
at mK temperatures, it has been shown that the fluctuations were only weakly dependent on geometries. It
was proposed that the fluctuations could be caused by local magnetic moments [50]. It was also shown that
vortex motion by having a non-zero cooling magnetic field, could not explain the flux noise present at low-
Tc SQUIDs [26]. For (large) magnetic moments (far) outside the superconductor, the flux noise of magnetic
moments would scale linearly with the dimension. We do not observe this. It is also shown that nuclear spins
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can not sufficiently influence the flux by themselves [26]. It was subsequently shown that surface paramag-
netic magnetic moments exist. If it were electron spins, the density of spins would equal σs = 5 ·10−17 m−2

[39]. Over the years, several spin species have been proposed. This must have a defect site on which they can
bind. In amorphous SiO2 substrates, the E’ center, nonbridging oxygen hole center, superoxide radical [26]
or Pb center [13] could form a defect site. While in superconductors, OH defect sites could form, or other yet
unknown defects. [26] The candidates for the paramagnetic spin species are:

1. Physisorbed hydrogen [47]

2. Gap state created by oxygen electron deficiencies on neighboring O 2p orbitals [31]

3. Metal Induced Gap States [11]

4. Oxygen doublets (on Lewis base sites of sapphire [12])

5. Oxygen triplets [27][46]

There have been multiple hints of a large density of hydrogen on the surface [12][37]. Oxygen [27] has also
been seen as a source of flux noise. These spins also need an interaction with their environment to fluctuate.
This could be due to interaction with the environment, or others spins. The following processes have been
proposed:

1. Unpaired electrons that hop on and off defect sites through thermal activation. The spin does not
change at one defect site. [26]. However, there are only a few thermal TLSs at mK temperatures[17].

2. Dangling bond electrons (at substrate-oxide interfaces) flip their spin by spin-orbit interaction with
TLSs where TLSs tunnel by a phonon-induced transition [13]. Also, not sufficient TLSs are available to
use this as the main interaction.

3. The interaction between electron spins due to intermediate interaction with a conduction electron,
called the RKKY interaction. This causes spin diffusion.[17] However, it has been shown that magneti-
zation is not conserved, while the RKKY interaction is magnetization conserving.[7].

4. Dipole-dipole interaction, but the typical interaction noise is too small to explain the flux noise [17].

5. Spin-orbit interaction, but flux noise is still seen when orbital angular momenta of the atoms are zero
[51], also the resulting noise would be too small to explain the flux noise [17]

6. Interaction due to hyperfine splitting with nuclei [51]

None of these models have been conclusive. However, there has been evidence of spin diffusion at low fre-
quencies, due to spin-spin interaction on SQUIDs. The characteristic crossover frequency would be depen-
dent of fc ∝ 1

W 2 . For W = 1µm it was found fc ≈ 0.1−1Hz[30], however no signal was found in [49].
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Spin fluctuator noise in a magnetic field

Figure 4.1: A superconducting loop showing the coordinate systems used in this chapter. The spin lives at location (Ru ,Rv ,Rw ) and is
pointing in the ẑ-direction. The ŷ-axis is perpendicular to SQUID loop ûv̂-plane. The û-axis is radially inwards and the v̂-axis signifies
the direction in which the current JSC flows (or comes from, for negative currents). Through the loop area, a magnetic flux Φ can form,
depending on the applied magnetic fields. The superconducting loop has ring width W and film thickness b.

Since the qubits we are looking at are compatible with in-plane magnetic fields above 10mT, we would like
to know what the effect of the magnetic field is on the flux noise amplitude. The consensus is that the noise
is caused by local magnetic moments, thus we want to find out the coupling of spins near the SQUID to the
flux and to couple the spin fluctuations to the flux fluctuations. Furthermore, we assume there are many
such fluctuators present in the SQUID region, with different rates of flipping. These all couple to the SQUID
with their spin-flipping, which makes the measured flux through the SQUID fluctuate a tiny, but noticeable

27
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amount. Since we are dealing with three different coordinate systems: the magnet direction with the corre-
sponding spin basis coordinate system, the SQUID geometry coordinate system and the spin position coordi-
nates. We have depicted them all in Figure 4.1. In this chapter, we will discuss the relation of spin correlations
to flux fluctuations in Section 4.1, find the spin fluctuator power spectral densities in Section 4.2, find the
exact coupling constants in Section 4.4 and work out an example for surface electron spins on our SQUIDs in
Section 4.6.

4.1. Coupling of the spin fluctuations to the SQUID flux
In these subsections, we follow the outline of LaForest and De Sousa [28] to arrive at the coupling between
the total flux created by spins on, in or near the superconducting film, and the spin state. We can find the flux
fluctuations as a function of spin-fluctuations, assuming some constraints on the spin interactions.
The analysis is based on the fact that each spin can be linearly coupled to the flux through

Φs (t ) =−∑
n

F(Rn) ·sn(t ) (4.1)

where Φs is the flux added by the collection of spins near the SQUID, F(Rn) is a vector in R3 that describes
the u, v or w contribution of the n’th spin at location Rn . The unit of F is [Wb]. sn is a vector in R3 giving the
direction of the i ’th spin. sn is dimensionless and for S = 1/2-particles (such as electrons), we find |sn | = 1

2 . In
[28] and Appendix H it has been shown thatΦs is indeed linear in s.
Using the Wiener-Khinchin theorem, we find that

SΦ( f ) =
∫

d f e2πi f t 〈Φ(t )Φ(0)〉 (4.2)

where SΦ( f ) is the power spectral density of the flux through spin fluctuations. f is the frequency in Hz. 〈. . .〉
is the thermal equilibrium expectation value, given quantum mechanically through

〈
Â

〉 = Tr
(
ρT h A

)
where

ρT h = exp(−H /kB T )
Z , where H is a Hamiltonian of the spin dynamics and Z = Tr

(
exp(−H /kB T )

)
. We will

show that the flux power spectral density is linearly related to the spin component (cross) power spectral
densities. A full derivation can be found in Appendix G, we will give the outline here.
We assume the interaction between spins to be zero, and that the individual spins are independent and iden-
tically distributed. However, the processes of interaction given in Section 3.4 actually use spin-spin interac-
tions to fluctuate. So this model only works if the Zeeman splitting is the dominant energy scale. We de-
compose the spin correlation to their components in the x̂, ŷ , ẑ-directions as in Figure 4.1. In a later section
the magnetic field direction will be chosen to be ẑ. We suppose a continuum of spins in space with a den-
sity of spins σ(R). We finally suppose all spin components have their proper (cross) power spectral density
Sαβ( f ) = ∫

d f e2πi f t
〈

sα(t )sβ(0)
〉

. We can define the total direct spin-to-SQUID coupling using

Cαβ :=
∫

d 3Rσ(R)Fα(R)Fβ(R) (4.3)

and we can find, all written out:

SΦ( f ) = ∑
α,β=i , j ,k

CαβSαβ( f )

=Cxx Sxx ( f )+Cy y Sy y ( f )+Czz Szz ( f )+Cx y (Sx y ( f )+Sy x ( f ))

+Cxz (Sxz ( f )+Szx ( f ))+Cy z (Sy z ( f )+Sz y ( f ))

(4.4)

We will find expressions for Sαβ( f ) in Section 4.2 and values for Cαβ in Section 4.4.

4.2. Spin fluctuator model
We start by looking at a spin-1/2 particle that has a certain incoherent flipping rate Γ. We would like to find
the dependence of the magnetic field on the spin. Thus we assume the dominant Hamiltonian influencing
the spin is due to the Zeeman effect

HZ =−µ ·B. (4.5)

Here µ is the magnetic moment of the spin and B is the (externally) applied field on the magnetic moment.
This means the energy difference of the spin-1/2 particle is dictated by the magnetic field. To clarify, the
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magnetic moment of a spin-1/2 can be described by:

µ= gs q

2m
ħs = gµs s (4.6a)

s = 1

2
σ (4.6b)

where gs is the g -factor, q the charge of the particle, m the mass of the particle and s the spin operator acting
on the spin states. σ is the vector of Pauli matrices, each matrix having eigenvalues of ±1.
Typical values for an electron are g ≈−2 andµB = | eħ

2me
| so that this can be written as HZ ≈ µBσ·B We assume

without loss of generality that the magnetic field is in the +ẑ direction, as shown in Figure 4.1, B = B ẑ. The
spin axis of quantization is chosen along B . The resulting energy levels for a spin-1/2 system are:

E± =± gsµs

2
B (4.7)

where the positive energy is where µ is anti-parallel to B and the negative lower energy is where µ is parallel
to B . We also assume the system is in thermal equilibrium, and through the Boltzmann equation, we find

P (ψ=ψ+) = e−B̃

e+B̃ +e−B̃
(4.8a)

P (ψ=ψ−) = e+B̃

e+B̃ +e−B̃
(4.8b)

where B̃ = gsµs B
2kB T . We can use this to determine the relaxation and excitation rates:

Γ↑ := Γ−→+ = Γ P (ψ+)

P (ψ−)+P (ψ+)
(4.9a)

Γ↓ := Γ+→− = Γ P (ψ−)

P (ψ−)+P (ψ+)
(4.9b)

where Γ = Γ↑ + Γ↓. This means that for a general spin fluctuator under Zeeman interaction, we will find
Γ↑ = exp

(−2B̃
)
Γ↓. Since we can assume either Γ↑,Γ↓ or Γ to be fixed while sweeping the field, we need to

choose one. In this chapter Γ↓ is kept fixed. Reasoning and more explanation for this choice will be given in
Section 4.5.

4.2.1. Power spectral density of Szz( f ,B)
Using the model defined above, we use QuTiP [21] [22] to simulate a fluctuating spin using a fixed Γ↓ and
different fields. We can also derive an analytical solution for the power spectral density, as found in Appendix
F. The solution is a Lorentzian and follows the relation:

Szz ( f ) = 1

cosh
(
B̃

) exp
(−B̃

)
Γ↓

(2exp
(−B̃

)
cosh

(
B̃

)
Γ↓)2 + (2π f )2

+ 1

4
tanh2(B̃)δ( f ) (4.10)

The results for several fields B and rates Γ↓ are visible in Figure 4.2. Simulations for negative frequencies have
also been done in QuTiP. They show that Szz ( f ) = Szz (− f ), as expected, since this noise can be described
classically.
We can distinguish two regions of the Lorentzian. One where f ¿ Γ↓, and one where f À Γ↓. These features
can be described as

Szz ( f ¿ Γ) = exp
(+B̃

)
4cosh3(B̃)Γ↓

(4.11a)

Szz ( f À Γ) = exp
(−B̃

)
cosh

(
B̃

) Γ↓
(2π f )2 . (4.11b)

We see that the low frequency components of a fluctuator do not change at lower frequencies; it is peaked.
However, the high frequency components go down as ∼ f −2. We can also look at what the influence of the
field is at low fields (B̃ → 0) and high fields (B̃ →∞):
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Figure 4.2: The values of a single spin fluctuator. The dots and squares are simulation results, while the lines are Equation (4.10). The
green lines are taken at B = 20mT, the red at B = 250mT. The squares use a rate Γ↓ of 10µs−1, while the diamonds use a rate of 0.1ms−1.
The temperature used in the simulation is 50mK.

lim
B→0

Szz ( f ) = Γ↓
Γ2
↓+ (2π f )2

and

lim
B→∞

Szz ( f ) ≈ lim
B→∞

exp
(−2B̃

)
Γ↓

Γ2
↓+ (2π f )2

→ 0

We find that at zero field there exist only fluctuations by some other mechanism. At high fields, the Zeeman
effect dominates these other interactions and polarizes the spins. As such, the total fluctuations tend to 0.
As a consistency check, we integrate over all frequencies

∫
d f Szz ( f ) to check the total noise power. We find

using
∫

d x a
a2+(2πx)2 = arctan(2πx/a)

2π and Equation (4.10)

〈
s2

z

〉= ∫ ∞

−∞
d f Szz ( f ) = 1

2cosh2(B̃)

[
1

2π
arctan

(
2π f

2exp
(−B̃

)
cosh

(
B̃

)
Γ↓

)]∞
−∞

+ 1

4
tanh2(B̃) = 1

4

1+ sinh2(B̃)

cosh2(B̃)
= 1

4
(4.12)

This is also what you would expect statistically from
〈

s2
z

〉 = (+ 1
2

)2
P (ψ+) + (− 1

2

)2
P (ψ−) = 1

4 (P (ψ+) + (1 −
P (ψ+)) = 1

4 .

4.2.2. Power spectral density of Sxx( f )
However, a spin is not only a classical two level system, it also precesses due to the time evolution imposed
by the Hamiltonian:

U (t ,0) = exp

(
− i

ħHZ t

)
= exp

(
i

ħ
[

gµs B

2

]
σ̂z t

)
(4.13)

We can now define the precession frequency fZ := gµs B
4πħ so that U (t ,0) = e2πi fZ σ̂z t , which is called the Larmor

precession. We determine the autocorrelation function, in the case there are no flips Γ= 0.

〈σx (t )σx (0)〉 =
〈

U †(t ,0)σxU (t ,0)σx

〉
= 〈

exp
(−2 ·2πi fZσz t

)〉= e−B̃ e−4πi fZ t +e+B̃ e+4πi fZ t

2cosh
(
B̃

) (4.14)
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We find similarly that 〈σx (0)σx (t )〉 = 〈
exp

(
2 ·2πi fZσz t

)〉
. Both results are consistent and give the following

result for positive and negative f at Γ= 0:

Sxx ( f ) = e B̃δ( f +2 fZ )+e−B̃δ( f −2 fZ )

2cosh
(
B̃

) . (4.15)

We note that the relation

Sxx (− f ) = Sxx ( f )+
∫ ∞

−∞
d te2πi f t 〈[σx (0),σx (t )]〉 (4.16)

holds. Equation (4.15) implies that Sxx (2 fZ )
Sxx (−2 fZ ) = e−2B̃ , which we verify in simulations. Now we turn on the

incoherent flipping. Again, we fix Γ↓ and can sweep the magnetic field. We simulate again and plot the results
for several fields in Figure 4.3. We have found an equation that fits almost everywhere, except near the peaks:

Ŝxx ( f ) = 1

4

2Γav g(
Γav g

)2 + (2π f −2 fZ )2
(4.17)

where Γav g = Γ↓+Γ↑
2 . Note the term (2π f − 2 fZ ), where we subtract a normal frequency from an angular

frequency. I do not know the origin, but since the simulated Szz ( f ) follows the exact analytical derivation, we
assume that in the simulation a factor 2π is missing. We can also calculate Sxx (− f ) for negative frequencies.
We can see an inequality around 2 fZ . This can be seen more clearly in Figure 4.4. We see three effects as B̃

Figure 4.3: The power spectral density in the X X -direction of a single spin fluctuator using a low flipping rate (Γ/ 2 fZ ). The temperature
used in the simulation is 50mK.

grows higher. The peak at f = 2 fZ shrinks, until it disappears. The peak at − f = 2 fZ almost stays unchanged.
However, it changes to match Equation (4.17) perfectly. To investigate the effect of the field on the frequency

peak, we look at Sxx (± f )
Ŝxx ( f )

for low flipping rates Γ. A peak appears centered around 2π f = 2 fZ . The peak value
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Figure 4.4: The power spectral density in the X X -direction of a single spin fluctuator using a low flipping rate (Γ¿ 2 fZ ). (Top) The
shifteng and widening/disappearance of the Larmor precession peaks. The values are normalized to emphasize the peak behavior.
(Bottom) The (multiplicative) error from the approximation Ŝxx ( f ) from Equation (4.17). The dots are equation (4.15). The temperature
used in the simulation is 50mK.

is consistent with the magnitude from Equation (4.15):

Sxx

(
f = 2 fZ

2π

)
= exp

(−B̃
)

cosh
(
B̃

) Ŝxx ( f ) (4.18)

Sxx

(
f =−2 fZ

2π

)
= exp

(
B̃

)
cosh

(
B̃

) Ŝxx ( f ) (4.19)
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The limits f ¿ 2 fZ , f À 2 fZ can be described by:

Sxx (±( f ))

Ŝxx ( f )
= 2 fZ · exp

(∓B̃
)

2cosh
(
B̃

) (2π f ) when f ¿ 2 fZ (4.20)

Sxx (±( f ))

Ŝxx ( f )
= 2 fZ · exp

(∓B̃
)

2cosh
(
B̃

) 1

2π f
when f À 2 fZ (4.21)

with tails of ∼ f at low frequencies and ∼ 1
f over high frequencies. The curve does not match a Gaussian or

Lorentzian.

4.2.3. Other (cross-)spectra
Through reasoning, we would expect that Sxx ( f ) = Sy y ( f ), since the Hamiltonian does not change its form if
we rotate the system around the Z -axis. We also expect to have Sxz = Szx = Sy z = Sz y = 0, for all positive and
negative frequencies, all fields and all switching rates. The explanation lies in the fact that 〈sz sx〉 = 〈sz〉〈sx〉 is
independent and that 〈sx〉 is zero. All important relations between spectral densities are shown in Table 4.1.

However, we do see some small activity of Sx y ( f ),Sy x ( f ) at positive and negative frequencies. However, sim-
ulations show they are related by Sx y ( f ) = −Sy x ( f ). This and all other information is summarized in Table
4.1.

Table 4.1: Relation of the different spectral densities Sαβ to each other. A "0" means that the PSD is zero at all frequencies.

Sαβ( f ) x y z
x Sxx ( f ) = Sy y ( f ) Sy x ( f ) =−Sx y ( f ) 0
y Sy x ( f ) =−Sx y ( f ) Sxx ( f ) = Sy y ( f ) 0
z 0 0 Szz ( f )

The fact that Sxx = Sy y and Sx y =−Sy x implies that Equation (4.4) can be simplified to

SΦ( f ) = (Cxx +Cy y )Sxx ( f )+Czz Szz ( f ) (4.22)

Since Sx y ( f ) and Sy x ( f ) cancel in this equation, we do not follow up on its exact formulaic nature.

4.3. Ensemble of fluctuators
To get to the ubiquitous 1/ f -noise signal, it is customary (see e.g. [40]) to assume a distribution of relaxation
rates Γ↓ = 1

T1
that is distributed as P (Γ↓) = 1

Γ↓ (or equivalently P (T1) = 1
T1

) with some maximum and minimum
Γ↓,max , Γ↓,mi n .
We can now solve for the Szz ( f ) spectrum for an ensemble of fluctuators. A more complete derivation can be
found in Appendix I. We find for Γmi n < f < Γmax

Szz,ens ( f ) = π

2ln(Γmax /Γmi n)

1

2cosh2(B̃)(2π f )
(4.23)

We can see this ensemble plotted in Figure 4.5.

We can derive the same for Ŝxx , the estimate of the Sxx . Due to the singularity at 2π f = 2 fZ , we need the full
analytical solution and which is

Ŝxx,ens ( f ) = 1

16

1

ln(Γmax /Γmi n)

2

(2π f −2 fZ )

arctan

 1+exp(−2B̃)
2 Γmax

2π f −2 fZ

−arctan

 1+exp(−2B̃)
2 Γmi n

2π f −2 fZ

 (4.24)

Note that Ŝxx,ens is nearly independent of magnetic field. However, fZ ∝ B , so the peak shifts. Also, since Ŝxx

did not describe the peak at 2 fZ well, the real spectrum might be inconsistent with this formula. In Section
4.6, that the inconsistency is only important near the Larmor precession peak.
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Figure 4.5: The average ensemble power spectral density of the Z -component of the spin fluctuator. It uses a temperature of T = 50mK.
The black dashed lines are a guide to the eye. The dash-dotted lines are Equation (4.23), while the green and orange dashed lines are
(I.4). The dots represent the simulation results.

4.4. The flux vector F
In Section 4.2, we found that the flux noise PSD is a linear combination of the spin PSD, in the constants Cαβ.
To find a value for these constants, we can follow the model of LaForest and De Sousa to model the SQUID we
are using. We can find equations for F relating the spin to the flux inside of the loop. The derivation can be
found in Appendix H. The derivation assumes a thin film, where the (bulk) magnetic penetration depth λ is
smaller than the width W , and on the same order (or smaller) than the thickness b. It also assumes all current
flows in the direction of the wire (v̂). The formulae for F inside, outside and on the superconductor surface
can be found. For clarity, we define the SQUID film to be residing at −W /2 < Ru <W /2 and −b < Rw < 0. We
find

Fu(Ru ,Rw ) =− gµsµ0

4π

∫ 1

−1
d x

{
JSC

( 2x
W

)
ISC

ln

[
(x −Ru)2 +R2

w

(x −Ru)2 + (Rw +b)2

]}
(4.25a)

Fv (Ru ,Rw ) = 0 (4.25b)

Fw (Ru ,Rw ) = gµsµ0

2π

∫ 1

−1
d x

{
JSC

( 2x
W

)
ISC

[
arctan

(
Rw +b

x −Ru

)
−arctan

(
Rw

x −Ru

)]}
. (4.25c)

Here g ,µs are the g -factor and the magnetic moments of the spin-particle respectively, µ0 the vacuum per-
meability, W and b are the width and the thickness of the thin-film superconductor strip creating the SQUID.
JSC is the current density at a certain point along the width. The expression for the current density can be
found in Appendix H.
We can visualize the results for F for our SQUID in Figure 4.6.
Immediately, important symmetries are visible (also present in Equations 4.25).

1. Fv = 0 everywhere.
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Table 4.2: Dimensions of our SQUID and SQUID materials. The effective λe f f = λ
tanh(b/λ) [20] using the λ found in [43].

SQUID property Value
Material NbTiN
Dimensions L1 ×L2 2×3µm
Width W 1.5µm
Thickness b 100nm
Magnetic penetration depth λ 246nm
Effective magnetic penetration depth λe f f 640nm
Coherence length ξ0 1−10nm

2. Fu(Ru ,Rw ) = Fu(−Ru ,Rw ), so symmetric in the width (around Ru = 0).

3. Fu(Ru ,−b/2+Rw ) = −Fu(Ru ,−b/2−Rw ), so antisymmetric in the thickness (around Rw = −b/2). So
Fu = 0 when Rw =−b/2.

4. Fw (Ru ,Rw ) =−Fw (−Ru ,Rw ), so antisymmetric in the width (around Ru = 0). So Fw = 0 when Ru = 0.

5. Fw (Ru ,−b/2+Rw ) = Fw (Ru ,−b/2−Rw ), so symmetric in the thickness (around Rw =−b/2)

6. As a result |F | is symmetric in the width and thickness (Ru = 0 and Rw =−b/2) with |F | = 0 when exactly
in the middle of the wire (Ru = 0,Rw =−b/2).

We find that the high values of F are concentrated around the surface, as expected. This can be explained by
the current density being highest at the two sides at Ru =±W /2.

Figure 4.6: The value of F̃u = Fu
gµs

(top) and F̃w = Fw
gµs

(bottom) at or around the wire. A positive value implies that a spin located at that

point adds a positive flux to the total flux. The blue dashed line outlines the superconducting film used for our SQUID. Its top is at Rw = 0
and its bottom surface at Rw =−b. F̃v = 0 everywhere and not shown.

We notice in Equation (4.22) that we only invoke products of FαFβ. The magnetic field will only lie in the
û, v̂-plane of the film (and the ẑ-direction of the spin). We find, with the help of Figure 4.1 that Fy = Fw . We
now define an angle θ that corresponds to the angle between the u-axis radially inwards of the SQUID and
the angle of the magnetic field. We define θ = 90◦ as the angle that the B-field aligns with the v-axis. We ap-
ply a basis transformation on F from the SQUID coordinate system (û, v̂ , ŵ) to the spin-fluctuator coordinate
system (x̂, ŷ , ẑ). So Fx = cos(θ)Fu − sin(θ)Fv and Fz = sin(θ)Fu +cos(θ)Fv . The terms Fv are zero.
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We find Cxx = ∫
d 3Rσ(R)cos2(θ)F 2

u(R) and Cy y = ∫
d 3Rσ(R)F 2

w (R) and Czz = ∫
d 3Rσ(R)sin2(θ)F 2

u(R) to ex-
tend Equation (4.22) to

SΦ( f ) = Sxx ( f )[cos2(θ)Cuu +Cw w ]+Szz ( f )sin2(θ)Cuu (4.26)

Since we have found the Fu ,Fv ,Fw to be dependent on gµs , which is particle species-dependent we can
separate the spin species and geometry through defining a new constant C̃αβ for every non-curved SQUID
segment of length L:

Cαβ,s,g =σd ,s,g (gsµs )2 · C̃αβ,g L (4.27)

where the index s defines a spin species, such as nuclear spins or electron spins, and the index g defines a
geometry for the spins, such as the interior spins, superconductor-vacuum interface spins, superconductor-
substrate interface spins or substrate spins. σd is the areal density (for interface geometries) or volume den-
sity. (for volume geometries) and L the length of this segment of the thin-film (for square SQUID wash-
ers of outer dimensions L1 ×L2, the length of a segment would either L1 −W or L2 −W ). We can see that
C̃αβ is solely dependent on the dimensions of the cross-section of the superconducting thin film. Its unit is

[
(

Wb · m−2 A−1
)2

m−1 m−d] where d = 2 for area geometries and d = 3 for volume geometries.
We could now calculate the flux noise for a straight SQUID segment of length L using the sum of of the con-
tributions of spins from different geometries and species:

SΦ( f ) = ∑
s∈S,g∈G

(µs gs )2Lσd ,s,g
[
Sxx,s ( f )[cos2(θ)C̃uu,s,g + C̃w w,g ]+Szz,s ( f )sin2(θ)C̃uu,g

]
. (4.28)

A worked out example of this will be shown in Section 4.6.

4.5. The nature of flipping rates
We have three natural choices of fixing the flipping rates in this simulation model in comparison to the mag-
netic field. We have Γ↓, which is the rate at which the spin relaxes to the lowest energy state. This is the
natural choice to fix when the system is in equilibrium and can only dissipate energy to its environment. In
e.g. Bloch-Redfield theory, the T1 = 1

Γ↓ is used to describe the spin dynamics. Another choice is the Γ↑, which

is the excitation due to the environment. A last rate to consider is the Γtot = Γ↓+Γ↑. This is the rate of going to
a thermal equilibrium, when brought out of equilibrium. This can be clearly seen in Equations (F.6). As such,
it is entirely dependent on the Hamiltonian of the system and its environment.
In Appendix I, we found that for a Lorentzian, the chosen flipping rate does not influence the final 1/ f -rate,
except for a change in amplitude depending on differences in 1

ln(Γi ,max /Γi ,mi n) and behaviour for f > Γmax or

f < Γmi n . This means the results given in this chapter still holds (up to a factor unity) for any choice of Γi .

4.6. Tying everything together: a S = 1/2-electron example
For our SQUID, the dimensions are given in Table 4.2. Following the strategy of Section 4.4, we can find
the values of all components of F(R)

gµs
for all desired spin positions R using Equations (4.25). We can now

calculate the constant C̃αβ,g for a geometry g . The geometry that will be used in this example is the vacuum-
superconductor interface. This interface is described by the top surface of the film, −W /2 < Ru < W /2 at
Rw = 0, and the sides of the film, −b < Rz < 0 at Rw = W /2 and Rw = −W /2. Using Equations (4.3) and
(4.27), we find C̃uu,top = 2.0 · 10−7, C̃w w,top = 0.47 · 10−7 for the top surface of the SQUID. For one side, we
find: C̃uu,si de = 0.02 · 10−7 and C̃w w,si de = 0.38 · 10−7. The total, one top surface and two sides, amounts to
C̃uu = 2.0 ·10−7 (Wb ·m−2A−1)2m−3 and C̃w w = 1.25 ·10−7 (Wb ·m−2A−1)2m−3

We will assume only one spin specie to be participating, and electronic in nature. This means g ≈ −2 and
µs =µB . We assume the surface spin density to be σd = 5 ·1017 m−2 [39].
We can now use Equation (4.28) to find a relation of a straight segment of length L

SΦ( f ) = (−2µB )2σd L
[
(C̃uu cos2(θ)+ C̃w w )Sxx ( f )+ C̃uu sin2(θ)Szz ( f )

]
(4.29)

We can now assume a range of rates Γ↓, such that we find the values of Sxx ( f ) and Szz ( f ) for an ensemble
of spins. We use Section 4.2 to give an approximation of the resulting spectra. We assume Γmax = 1012 and
Γmi n = 10−5.

SΦ( f ) ≈ π(−2µB )2σd

2ln(Γmax /Γmi n)

[
C̃uu cos2(θ)+ C̃w w

16(2π f −2 fZ )
+ C̃uu sin2(θ)

2cosh2(B̃)(2π f )

]
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We then take a square washer SQUID of dimensions L1 ×L2 (with inner loop dimensions L1 −2W ×L2 −2W )
and integrate over the length in the four different directions (so we integrate each part with θi = θi−1 + π

2 ).
This can be described as:

SΦ( f ) ≈ π(−2µB )2σd

2ln(Γmax /Γmi n)
×

(
(2L1

[
C̃uu cos2(θ)+ C̃w w

16(2π f −2 fZ )
+ C̃uu sin2(θ)

2cosh2(B̃)(2π f )

]
+ 2L2

[
C̃uu sin2(θ)+ C̃w w

16(2π f −2 fZ )
+ C̃uu cos2(θ)

2cosh2(B̃)(2π f )

]
)

) (4.30)

in reality, we use Equations (4.23) and (4.24) for Sxx,ens and Szz,ens to find a better approximation for the
flux noise power spectral density. We can now find the dependency of the flux noise as a function of the
frequency, the field magnitude and field angle. Since we do not know the full formula for Sxx ( f ), we again use
simulations to create Figures 4.7 and 4.8.
Some important features are:

1. At very high fields (see 1T in Figure 4.7 ), the only spin component that contributes to the flux noise is
the Sy y ( f )-spectrum.

2. If L1 6= L2, there is a dependence of the flux noise to the angle of the magnetic field with the SQUID as
visible in Figure 4.8. The dependence is proportional to (|L1/L2| − 1)cos2(θ). This dependence shifts
π/2 when measuring f > 2 fZ .

3. Using this angle dependence, we can deduce the separate contributions of Sxx ( f ) and Szz ( f ).

4. The Sxx ( f ) spectrum is the dominant contribution to the measured spectrum at and above f ≥ 2 fZ .

5. Above f > 2 fZ , we see the sensitivity of the flux noise to the magnetic field dropping.

4.7. Further research and outlook
This model is only a prototype of more extensive models. The obvious extension would be adding examples
or equations for S > 1

2 , which could be used for coupled spin systems in certain defect sites (e.g. the oxygen
triplet state). Hyperfine splitting with the hydrogen atom is also a strong contender for simulation.
A good exercise would be to find the dynamic susceptibility of a boson bath or spin bath and find the relation
to the relaxation rates (or excitation rates) of the spin system.
We could also try to include secondary interactions next to the Zeeman effect, to the model, introducing
spin-spin correlations. A good first step would be to explore nearest-neighbour interaction. We could also
skip using simulation by using the spin diffusion model. This is an alternative to taking a distribution of flip-
ping rates P (Γ) ∝ 1

Γ to find an 1/ f noise spectrum. We might use that to model the spin dynamics instead.
We could also investigate different geometries, aka triangle shaped washers or pentagon-shaped washers.
These should give a different effect on the flux noise as the angle of the magnetic field is changed. See Section
4.6 for an example of a square washer SQUID.
Another avenue to investigate might be to look at specific molecules and the effect of spin-orbit coupling on
the flux.
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Figure 4.7: The result of a complete flux noise calculation given in this chapter for different magnetic fields at T = 50mK. The dashed
lines are the analytical equations described in Equation (4.30); the solid lines describe the simulation results.

Figure 4.8: The change in the SΦ( f ) at a certain frequency as a function of the angle θ that the magnetic field makes with the SQUID
loop. This is done for f ¿ fZ and low and high fields.



5
Flux tunable nanowire transmon in a

magnetic field

Figure 5.1: A flux arc of a flux tunable qubit. We have made a frequency sweep for different flux bias line currents. The red dots consti-
tute the qubit peaks that have been correctly determined. The red line is a fit to these points using Equation (5.1). We have found an
asymmetry of d = 0.67, which is large compared to the expected value of 1. and found that the conversion of one flux quantum vs. the
flux bias current is 118mA/Φ0. The offset is 26mA.

In this section we will discuss a flux tunable nanowire transmon, a Dmon, in an in-plane magnetic field. This
is on a chip without airbridges and with on-chip wirebonds where a flux tunable qubit with a qubit frequency
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in the desired range of 4−6GHz was available.
We will discuss the difficulties encountered in characterizing this qubit and results found during this explo-
ration.
The main path towards measuring flux noise has the four following requirements:

1. A qubit with measurable T e
2 Echo times > 5µs

2. A flux tunable qubit

3. Measurement of a continuous qubit frequency arc for at least a flux sweep of ∼ Φ0
2

4. A stable in-plane magnetic field

5. A qubit that has measurable T e
2 up to at least 250mT.

We have met all these requirements in isolation, but as of yet, every qubit had at least one of the requirements
not met.

5.1. Flux tunability
We have designed our flux tunable qubits so that they are tunable using the perpendicular coil and - if avail-
able - a dedicated flux bias line. An example of a flux tunable qubit is shown in Figure 5.1. This is a qubit with
a dedicated feed bias line. We vary the feed bias line and see that the two sweetspots (where the maximum
and minimum frequencies are) are only a few GHz apart, indicating a very large asymmetry in the Josephson
junction.
The asymmetry in the nanowires qubits can be approximated by using Equations (1.2) and (1.6) in tandem,
when we are in the transmon regime E J À EC :

f01(Φ) ≈ f01,max

(
(1−d 2)cos2(

πΦ

Φ0
)+d 2

)1/4

(5.1)

where f01,max ≈ √
8Ec E j ,tot . The minimum frequency can also be found to be f01,mi n = p

d f01,max . Fitting
this with the data shown in Figure 5.1, we see d = 0.67 and we get the flux bias current corresponding to one
flux quantum Φ0. The flux bias offset in comparison to the flux bias current zero-point is due to a shift in
the magnetic field due to the perpendicular coil shifting the field. An additional correction term is provided
by the asymmetry. With a flux tunable qubit come a few problems. In the following sections, we will try to
answer some.

5.1.1. Method for determining a quickly changing qubit frequency
On the flux tunable Dmon on this chip, there are many difficulties finding the qubit at any field, even zero
field. First of all, as is discussed in Section 6, we find that it is hard to predict whether the qubit is at all visible
in the spectroscopy before cooling down, let alone knowing its target frequency beforehand. Finding it the
first time takes quite some effort and examples of how to find the qubit can be found in e.g. [16].
After being found, traditionally we could make a map from the qubit frequency fq to the coupled resonator

frequency fr eso . We use, as given in Section 1.3, the fact that the resonator shifts χ∼ g 2

∆ when the qubit is in
the ground or excited state, compared to an uncoupled resonator. As such, measuring only the resonator, we
could also predict the qubit frequency. This is shown in Figure 5.2 for a large collection of datapoints mea-
sured at 25mT at different angles. We see that the fit is good at high frequency, but worsens as the frequency
lowers.

This mapping will only be correct when none of the following happen:

1. Using the perpendicular coil to change the flux, also affects the bare, unloaded resonator frequency,
such that this mapping is only valid for a small excursion in the flux supplied by the perpendicular coil.

2. Ramping the in-plane magnet also decreases the bare frequency, rendering the mapping invalid.

There are other problems to take in consideration:
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Figure 5.2: All data points were made at different in-plane angles at a fixed in-plane magnetic field of 25mT. (Left) A fit made using the
measured loaded resonator frequencies compared to the separately measured qubit frequencies. The fit uses the dispersive shift and
assumes a constant fbar e . (Right) A fit made using the measured power shift and the measured qubit frequencies. The fit was made
assuming the dispersive shift, without assuming a constant fbar e and introducing a correction to the frequency shift. The largest errors
to the measured values are < 40MHz.

1. While consistently aligning the in-plane magnetic field to be as parallel as possible, a flux tunable qubit
is extremely sensitive to a misaligned field, and as such, the qubit frequency changes as the magnetic
field changes.

2. The qubit frequency itself also reduces due to the closing of the superconducting gap at an unknown
field, rendering a fixed frequency span unwieldy.

Taking all of these in consideration, we might correct for problems by measuring the bare and shifted res-
onator frequency and using ∆ f = g 2/∆. However, since our qubits do not guarantee that they will not be at
a low frequency, the rotating wave approximation (RWA) which uses ∆¿ fq + fr , might not hold. As such,

we have tried the approach given in [58]: ∆ f = g 2
(

1
∆ + 1

2 fq−∆
)
. Even this does not satisfactorily predict the

exact qubit frequency using the shifted resonator frequency as a function of power, the power shift. A better,
phenomenological fit is

∆ f + fo f f = g 2
(

1

∆
+ 1

2 fq −∆
)

(5.2)

where ∆ f is the measured power shift, g the coupling between the resonator and the qubit and fo f f is some
phenomenological offset to fit the qubit frequency. The fit is shown in Figure 5.2 with a fit of fr ≈ 6.666GHz,
g = 67.44MHz and fo f f = 0.55MHz, where fr is the bare resonator frequency and does not need to be known
precisely for the fitting procedure. This method works extremely well, even for low qubit frequencies, only
having an error in prediction of 20−30MHz.

5.1.2. Flux tunability at field
To measure flux noise at a higher field, we also want to have a flux tunable qubit at high fields. Using the
power shift method described in Section 5.1.1. We have found that even at 245mT in-plane field, we can tune
the qubit. However, due to difficulty in finding the qubit frequency, we could not aqcuire any time domain
data. We did get a clear signal of the flux tunability in the power shift as seen in Figure 5.3.
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Figure 5.3: The resonator frequencies measured during a small excursion in the perpendicular field at high and low power. At low power,
the resonator is shifted due to the qubit coupling. The shift is increased as the qubit comes closer. The bare frequency changes as an
effect of the perpendicular field of the perpendicular coil lowering the bare resonator frequency.

5.2. Stable magnetic fields: magnet current source noise
The current source of the magnet is also a source of noise. By sampling the current in the magnet current
source as measured by the magnet current source programmer, we can reconstruct the noise in the field and
as a result, we can determine if this noise would influence our Echo and Ramsey measurements.
From the measured magnet source current, we can create a power spectral density (PSD), S IS ( f ), as can be
seen in Figure 5.4. Now, we will try to estimate the noise present in the in-plane field. To do this, we suppose
the magnet is connected to the current source in an RL-circuit.
The R will be the equivalent resistance including the source (contact leads) resistance and the resistance of
the persistent switch being normalconducting. We take a conservative estimate of R = 0.1Ω
The inductance in the Y -axis magnet coil is 1.8H and in the Z -axis magnet coil 0.7H.
The RL-circuit equations would read:

−L
d Imag

d t
= R(Imag − IS )

In frequency space, we can find the transfer function Imag (ω) = H(ω)IS (ω) with

H(ω) = R

iωL+R
.

We can now estimate the noise in the magnet current through PSD transformation law:

S Imag ( f ) = |H(ω)|2S Is ( f )

Following this, we can find the field in the coil by B =Ccoi l Imag , where Ccoi l is the coil constant of the mag-
net, which is 49.6mT ·A−1 for the Z-axis and 13.2mT ·A−1 for the Y-axis.
We can find the field PSD by SB ( f ) = C 2

coi l S Imag ( f ). The sensitivity of the qubit frequency to the in-plane
magnet field can be approximated by the equation:

f01(B) = f01(0)

(
1−

[
B

Bc

]2)1/4

(5.3)
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Figure 5.4: Noise measured for the Y-axis magnet current supply, and for the Z-axis magnet current supply. Fits are made using a white

noise floor Aw and the function A
f

B+ f α , where Aw , A,B and α were free parameters. For the Y-axis and Z-axis, these values were

(Aw , A,B ,α) = (3.6 ·10−12,1.0 ·10−8,1.0,3.87) and (Aw , A,B ,α) = (3.7 ·10−12,0.36 ·10−8,0.08,3.73) respectively.

and its first-order sensitivity given by

∂ f01

∂B
(B) =− f01(0)

2B 2
C

[
1−

(
B

BC

)2]−3/4

B. (5.4)

The dephasing of the qubit is given by (see e.g. [10])

〈
Φ2〉= (

∂ f01

∂B

)2 ∫
d f SB ( f )W ( f , t ) (5.5)

where W ( f , t ) is the filter of the measurement (e.g. a Ramsey or Spin Echo measurement) as a function of the
frequency and time.
The Echo filter function is given by [34]

WE ( f , t ) = tan2(π f t/2)
sin

(
π f t

)2

(π f )2 (5.6)

So compiling all the equations into one, we get the resulting noise for a magnet in persistent mode at an
in-plane magnetic field

〈
Φ2〉= f01(0)2

4B 4
C

B 2
[

1−
(

B

BC

)2]−3/2 ∫ fq

0

[
tan2(π f t/2)

sin
(
π f t

)2

(π f )2 C 2
coi l

R2

(2π f )2L2 +R2 S IS ( f )

]
d f (5.7)

Plotting this, using P1 = exp
(−〈

Φ2
〉

/2
)

in Figure 5.5, gives an estimate of the total dephasing caused by the
in-plane Y and Z magnets.
What’s even more: we know that the qubit plane might be slightly misaligned compared to the magnets. This

means for a flux tunable qubit that any change in the magnetic field could also cause a change in the perpen-
dicular magnetic field penetrating the SQUID loop. This is through Φ= B⊥Ae f f = sin(α)B∥Ae f f , where B⊥ is
the perpendicular component of the aligned in-plane field, Ae f f the effective area of the SQUID loop and α
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Figure 5.5: Result on the Ramsey if no other effect was present except for dephasing due to the noise in the magnetic field. Assumed was
Bc = 45mT as was measured in one of the qubits.

the misalignment in angle. α = 0 means perfectly aligned. Through misalignment of the chip in the sample
holder, we can cause in-plane field noise to propagate to the perpendicular field as

SB⊥ ( f ) = sin2(α)SB∥ ( f ) (5.8)

We can now repeat the analysis, using the first-order sensitivity of the qubit to the SQUID flux changing using
Equation (1.6)

∂ f01

∂Φ
=− fmax

π

2Φ0

(1−d 2)cos(πΦ/Φ0)sin(πΦ/Φ0)(
(1−d 2)cos2(πΦΦ0

)+d 2
)3/4

(5.9)

This means the SQUID is sensitive to changes in the perpendicular magnetic field, so Echo and Ramsey ex-
periments are further affected negatively. We have found that at field, the Y and Z-axis magnets cause de-
phasing due to noise in the current source. This happens for all qubits, even gatemons and non-tunable
qubits. This means that at field, Ramsey measurement T ∗

2 will be dominated by magnet current noise. Echo
experiment T e

2 are not affected significantly. Next to that, flux-tunable qubits have the extra dephasing chan-
nel of misalignments. This affects both the Ramsey and Echo experiments significantly. The advice is: for
flux-tunable qubits, the magnets should be operated in persistent current mode, where the current source is
essentially disconnected from the magnet, to prevent current noise from dominating the Ramsey and Echo
experiments. For non-flux tunable qubits, it might be sufficient to measure in non-persistent mode when at
low fields B ¿ Bc .

5.3. Measurement of a continuous frequency arc vs. flux
We have seen that we have a flux tunable qubit. However, there are difficulties in measuring the full flux arc.
Since the Y and Z -axis magnet fields drift, the SQUID loop might feel a drift in the flux bias offset due to
this. A solution had been implemented: decrease the SQUID loop size. However, now we have the problem
of the SQUID loop not having sufficient sensitivity to flux to completely characterize one full flux quantum.
To resolve this, we have tried to use the perpendicular X -coil as a flux bias. This has the range of several flux
quanta. However, there is the problem of flux jumps, as we will discuss in Section 5.3.1. This happens when
using the perpendicular coil. To get a full flux quantum of continuous qubit measurement, we need to use
the perpendicular coil and the flux bias line in tandem.
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5.3.1. Flux jumps

Figure 5.6: A (mock) example of a flux jump. (Left) A typical flux arc without flux jumps. (Right) A situation where the flux bias using the
perpendicular coil is swept up and a flux jump occurs.

What are flux jumps? There are qubit frequency jumps in the spectrum of the qubit while sweeping the field
perpendicular to the plane. This can be explained by flux jumps, which are depicted in Figure 5.6. Since the
qubit is sensitive to the magnetic field applied to its SQUID loop, the qubit frequency changes as the flux
changes. If the flux jumps discontinuously, the qubit frequency jumps discontinuously as well. This limits
the possibility of measuring the flux noise, since the way to measure flux noise, is to use the fluctuating qubit
frequency as detector for the flux noise. Two main hypotheses are given for the discontinuous flux jumps:

1. The presence of a superconducting loop around the SQUID, in which the magnetic field tries to pene-
trate the outer superconducting loop. The outer loop responds by coursing a current to resist creating
a flux. This continues until the total flux Φ inside of the outer loop exceeds +Φ0 or −Φ0, after which
the superconducting ring imposes the flux quantization constraintΦ= nΦ0 where n ∈Z. The total flux
then jumps to a multiple of Φ0 and a small part of the magnetic field will thread the loop. As a result,
the smaller SQUID loop also gets affected by the different magnetic field, and a flux jump is visible.

2. The trapping of flux in vortices of the superconductors near the SQUID loop, since one vortex changes
the total field going through the SQUID itself. This would also be visible in the resonator frequency by
changing its kinetic inductance.

5.3.2. Flux jumps due to a superconducting loop in the system
One example of flux jumps happening on the qubit can be seen in Figure 5.7(Top). The qubit frequency
does not change as the perpendicular field to the SQUID is changed. The jumps happen at intervals (which
happen to be the same during each sweep) and have an hysteresis effect which is observed when the sweeping
direction changes. A further investigation using the same data can be found in Figure 5.7(Bottom). We can
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Figure 5.7: The perpendicular coil current, providing a flux bias to the SQUID of the qubit, was swept up and down. Starting from
−0.1mA, keeps sweeping between −0.1mA and 0.1mA. (Top) The qubit frequency as measured during the sweeps. The red and magenta
colours indicate downwards sweeps and the blue and green colours indicate upwards sweeps. (Bottom) The qubit frequency change in
during an up or down sweep between two consecutive (in time) measurements. A linear fit fq = 0.2375 · Icoi l − 44.3 was made to the
jumps present, where Icoi l in µA and fq in MHz to reveal a linear dependence. A second fit was made with the exact same function
inverted and shifted by 95µA so that fq, f i t (Icoi l ) →− fq, f i t (Icoi l −95mA). All areas where no jumps happened stay close to zero change,
as expected.

see that the qubit frequency difference that happens when the flux jumps, follow a linear relationship with
the perpendicular coil current. This means the flux jumps are evenly spaced and small compared to the
flux arc of the qubit. The flux threading the SQUID loop is on the slope of a flux arc which can often be
well approximated by a parabola, explaining the linearity of the differences. Since in the up sweeps, the
qubit frequency increases again, the qubit frequency difference follows exactly the same fit. We assume this
hysteresis effect to be due to the outer loop being able to create a counter-current to formΦ=−Φ0 toΦ=+Φ0.
This would imply that the hysteretic shift is exactly 2Φ0 of the outer loop, which gives the precise current at
which one jump happens: Io = 42.5µA.
To give an indication of the area that this loop should have, we examine the constraint for a flux jump:
Φ0 = Ae f f ·Bapp , where Ae f f is the effective area of the loop and Bapp the applied field. Due to the mag-
netic field not being able to penetrate a superconductor, the magnetic field lines might bend through the
loop hole, increasing the flux more than only the hole area Ahol e would predict. This is called flux focusing.
As such, we include a factor f f ocus to account for this. This factor can have a value ranging from 2/3 to 20−30
depending on the material and geometry of the SQUID. We can also determine the applied field from the coil
current by imposing that the applied field is linear in current: Bapp =Ccoi l Icoi l .
Doing this for both the outer loop and the SQUID loop, we find the relation:

Φ0 = fS ISC AS = fo IoC Ao (5.10)

Where the subscript äS denotes the SQUID loop and äo the outer loop. f is the flux focusing factor, I the coil
current necessary to give one flux quantum and A the area of either loop. We find IS through guessing one
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period of the qubit arc vs flux. We find Io by analyzing the interval between jumps.

Using the SQUID loop hole dimension 6µm2 and assume a strong flux focusing factor of fS
fo

= 20, and eye-
balling one flux period of the SQUID being IS = 300µA, and using Io = 42.5µA , we find the outer loop area to
be Ao = 850µm2.
However, in photo’s of the qubit junction structure, no small loop as such can be found.

5.3.3. Flux jumps due to a vortex in the superconductor

Figure 5.8: The result of sweeping the perpendicular coil current, used as flux bias, upwards from 0 to 300µm. (top) A measurement of
the transmission |S21| for every perpendicular coil current measurement. Only a part of the bare resonator frequency measurement is
shown to increase the resolution. We can some polynomial tendency in the bare resonator, in addition to discontinuous jumps. The
green dots indicate the fits to the resonator frequency dip. (bottom) The found qubit frequency for every perperdicular coil current. The
green dots are the fits to the qubit frequency, and the green dashed line is a guide to the eye for discontinuous jumps.

The other explanation would be the creation of vortices in the superconducting film near the SQUID loop.
We can see in Figure 5.8 that the jumps in the qubit frequency correspond to the jumps in the bare resonator
frequency. This is what we would expect to see when vortices would be created. As reasoning, we can see
that the qubit frequency is uncorrelated with the bare resonator frequency, which leads us to believe that the
qubit does not have an effect on the resonator (like the dispersive shift on the loaded resonator frequency
as in Equation (1.4)). Moreover, the jump heights of the bare resonator frequency do not correspond to the
magnitude of the jumps of the qubit frequency. We therefore believe that the jumps are due to a third factor:
the creation of a vortex near the SQUID.

5.4. Flux noise measurements
We have measured flux noise in a chip (see Figure 5.9). The characterization of the flux noise at field is still in
progress. To measure the flux noise, we have done a flux sweep and measured the corresponding T1s and T e

2 s.
We have fit the measured flux by using the flux arc and the frequency. We have then changed the sensitivity

of the frequency by taking the derivative d f
dΦ , as done in Section 5.2. We have calculated the Tφ as defined

in Equation (3.1). After fitting the dephasing rate vs. the flux sensitivity of the qubit at different fluxes, we
can extract the flux noise amplitude. We have assumed SΦ( f ) = A

f +σ where σ is white noise and have foundp
A ∼ 1000µΦ0, higher than expected.
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Figure 5.9: The dephasing rate, calculated using the Echo times (green) and the Ramsey times (red). The Echo times have been fit to find
the flux noise amplitude at 1Hz



6
Statistical analysis of nanowire junction

room temperature resistances

A quantitative measurements of the nanowire we can do before cooling down the chip, is to measure the room
temperature resistance. For SIS Josephson junctions, we can predict the qubit frequency of a transmon by
measuring the room temperature resistances of the two contact pads besides the junction. This is due to the
Ambegaokar-Baratoff relation, linking the measured normal resistance and the Josephson junction critical
current together [1]. We would like to investigate if the room temperature resistance for nanowire junctions
also can tell us something about the qubit properties. It turns out that we cannot yet predict qubit perfor-
mance through this proxy measurement, but there definitely is a correlation in the chance of a qubit being
measurable and the measured resistance at room temperature. In the following sections, we will explain our
data analysis method and probable causes of low performance chips.

6.1. Data analysis

Figure 6.1: All data since January 2018 collected on room temperature resistances of nanowire transmon junctions. All shorted and open
junctions were only determined using microscopy images. Fabrication was done in batches of 4 chips yielding 48 measurements (or less
in case of failure) per batch. The measurements presented here are in chronological order.

Due to well-documented fabrication details, we could collect data on the nanowire junctions used since Jan-
uary 2018. To fabricate nanowire transmons, nanowires are placed in the junction area, dark field microscopy
images are taken to determine the exact location of the nanowires. Then the image recognition software [42]
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creates contacts to connect the nanowire to the transmon. The contacts may form different structures form-
ing different types of tunability. Creating a voltage bias side gate ∼ 200nm next the nanowire creates a Gate-
mon. Forming a SQUID loop, containing two Josephson junctions using the single placed nanowire creates a
Dmon. Just connecting the two ends of the nanowire to the contacts creates an untunable transmon. Several
problems may arise in this process:

1. The nanowire is not placed correctly or is washed away, before liftoff, creating an open or shorted junc-
tion.

2. The image recognition software did not recognize the nanowire in the junction area, creating an open
or shorted junction.

3. The image recognition software accidentally overlapped the two superconducting contacts, creating a
short.

4. The position calibration of the contacts fabrication drifted, so that the etched contacts do not overlap
the nanowire, creating an open junction.

5. The nanowire, after etching the contacts, was washed away, creating an open junction.

All the subsequent data collected includes: designed type of qubit, presence of airbridges on chip, maximum
power shift measured, maximum qubit frequency measured, the g -coupling between resonator and qubit,
maximum T1,T e

2 and T ∗
2 measured, measured tunability of qubit, voltage threshold before power shift pres-

ence and maximum predicted field compatibility.
To give an indication of the resistances due to other effects while probing the nanowire resistance, two trans-
mons without nanowires are on the chip. One is shorted with a strip of NbTiN and the other does not have
a contact at all, mimicking an open. As such, we can measure two more values for every chip: shorted resis-
tance Rs and open resistance Ro . With these, we can retrieve a better estimate of RNW through the simple
equivalent R calculation:

RNW = RmRo

Ro −Rm
−Rs (6.1)

where RNW ,Rm ,Ro ,Rs are the nanowire resistance, the measured resistance, the open resistance and the
shorted resistance respectively. The measured room temperature resistances are shown in Figure 6.1. We can
see a clear band of measurements present in the data. The junctions that were visibly shorted or open seem
to create their own bands at low resistances and high resistances respectively. At measurement index 217, the
image recognition software improved, improving the yield.

Only a fraction of these chips went into the refrigerator and were cooled down. For these junctions, we have
data about the presence of a power shift, indicating a measurable qubit. This is shown in Figure 6.2. It seems
that low resistances lead to measurable qubits. We like to investigate quantitatively what we can say about
this.

6.2. Probability distribution of resistances
Since we have around 500 data points of junction resistances, we can apply a statistical treatment to the
data to find a distribution. We use a empirical cumulative distribution function (ECDF) to see if there is a
distribution that describes the collection of resistances well.
We fit the resistances to the ECDF using the method described in [5], using Fourier expansion and a two-sided
Kolmogorov test to find a smooth probability density function that is statistically indistinguishable from the
data as shown. The results are shown in Figure 6.3.

Fitting this to all available data, we find the sum of two log-normal distributions where log10(RNW ) ∼N (µ1,σ1)+
N2(µ2,σ2). The second peak centered at 280kΩ is most likely an indicator that the junction has an undetected
open. The first peak then is the distribution of working nanowire junction resistances. The resistancs are cen-
tered around 20kΩ, indicating a mean resistance higher than optimal, as we will see in Section 6.3.
Since a log-normal distribution normally appears when there is a multiplicative process going on, such as
percentage growth, this might give insight into why the nanowires have this distribution.



6.3. Prediction of qubit measurability 51

Figure 6.2: All data since January 2018 collected on room temperature resistances of nanowire transmon junctions cooled down. Only
junctions are graphed in case no visible short or open was detected. The measurements index is the same as Figure 6.1.

Figure 6.3: Empirical CDF data of junction data. (Top) The empirical distribution with a fit using the method described in [5]. (Bottom)
The corresponding PDF that fits the CDF. Each dot represents one measurement. The log-normal distribution uses parameters amplitude
A = 0.80, mean µ= log10(20.5kΩ), variance σ= 0.43 for the high peak and A = 0.15, µ= log10(280kΩ) and σ= 0.37.

6.3. Prediction of qubit measurability
We have also measured 26 power shifts throughout the year, of which 22 were a qubit with measurable prop-
erties, such as the qubit frequency. The room temperature resistance of the nanowires does not seem to
correlate with the maximum measured power shift. It is therefore hard to determine a link between the qubit
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Figure 6.4: The probability of any qubit working found using Equation (6.2). Also showns are the fitted pdfs for the nanowire resistance
RNW calculated by Equation (6.1). The dashed lines are constituents of the Bayes theorem to find the desired fit. All measurements are
shown as dots on the dashed lines.

frequency and the junction resistance. What we can do, is find the probability that a qubit can be found given
a certain resistance.
This can be done using Bayes’ theorem:

P (q | log10(RNW )) = p(log10(RNW )|q)P (q)

p(log10(RNW ))
(6.2)

where P (q | log10(RNW )) is the probability that we can measure a qubit given a certain calculated RNW , p(log10(RNW )|q)

the Probability Distribution Function (PDF) of the RNW given that we have measured a qubit, P (q) = # of qubits
# of cooled junction

the probability of a qubit working in general, and p(log10(RNW )) the PDF of the RNW . We use the RNW in log-
space for ease of use. We can see the result in Figure 6.4. A clear dependence on the room temperature
nanowire resistance is visible. We see that the one measurement at 2.5kΩ is the lowest measurement which
corresponds to a qubit. Between 2.5 and 5kΩ, the chance of having a measurable power shift is > 50%. How-
ever, the success rate drops significantly as the resistance goes higher. Junction resistances higher than 80kΩ
have not yet provided a measurable qubit. We can approximate the given curve by

P (q,RNW ) ≈
{

0 when RNW < 2kΩ or RNW > 80kΩ
0.27

log10(RNW )1.4 when 2 < RNW < 80kΩ . (6.3)

We will assume that this probability is independent of factors such as: aging, fabrication differences or NbTiN
wafer differences and differences between nanowire batches. This due to having insufficient data points for
each of the separate categories.

6.4. Batch differences
It can be seen that in one single batch of chips, made with the same fabrication process simultaneously, that
the separate chips generally follow the same distribution. However, between batches from different fabrica-
tion cycles, the resistances differ substantially. This can be seen in Figure 6.5. This implies that the quality of
the nanowire resistances, in which lower is better, is only dependent on the differences between batches. We
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Figure 6.5: The empirical CDF functions for two different batches. The thick lines represent all data from one batch. The thinner lines
are separate chips from that batch. The solid lines and dashed lines represent two different batches.

try to explain these differences in the following sections using the presence of airbridges and due to nanowire
aging.

6.5. Effect of airbridge fabrication

Figure 6.6: The empirical CDF functions comparing chips with airbridges or with on-chip wirebonds. The blue line depicts all data
available in the dataset, the orange line all junctions on chips where airbridges (AB) were fabricated. The green line depicts all junctions
where no ABs were present.
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For this, we use the complete dataset, excluding the obvious visible defects such as opens and shorts, and
using the RNW as a method of determining the effect of e.g. fabricating airbridges. We have compared data-
points for junctions where airbridges were fabricated to junctions where on-chip wirebonds were used. Air-
bridges have as a function to ground the on-chip plane next to the various resonators, to suppress odd modes.
We show the differences in the junctions on chips with airbridges and no airbridges in Figure 6.6. We see that
the fabrication of the airbridges has a clear effect on the distribution of resistances. At least a factor 2 or 3 in-
crease can be seen in the measured resistances. From Figure 6.2 we can read that this factor of 2 or 3 decreases
the probability of finding a measurable qubit by about 70%.

6.6. Effect of aging

Figure 6.7: All data from chips produced around the start of 2018. These are junction measurements on chips without airbridges and
from the same nanowire batch.

To investigate the effect of aging on the nanowires, we select all junctions from the dataset without airbridges
(which have been shown above to have a big effect on the resistances) and the same nanowire batch. To see a
difference between batches, we look at junction resistances during two separate periods and see if there is a
significant difference. This is shown in Figure 6.7.
We see a significant difference, even though no airbridges were involved. As such, we must conclude that
the aging of the nanowires will influence the qubit quality as well. The quality of the vacuum in which the
nanowires are stored may be an important factor.

6.7. Other effects
There is no discernible effect of the qubit position on the resistances or the amount of shorts (not shown).
There is no discernible effect between the different types of qubits (Gatemons or Dmons) (not shown). There
might be an effect due to different types of nanowires, but we cannot control it for the airbridges and the ag-
ing variables. Since from all qubits, the T1 and T e

2 were also measured, we have found that these correlate and
that the maximum measured T e

2 ≈ T1. We also find that the tunability of the Gatemons are quite consistent
when measurable, while the tunability of Dmons has only a 50% success rate when measured.
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6.8. Further research
We still do not know the physical significance of the nanowire resistance at room temperature and its relation
to its superconducting properties. Also, the reason for having a log-normal distribution is not immediately
obvious.
A dataset is kept in .csv -format for future research, and hopefully, more data will be added in the future to
extend these investigations.
We have not yet tried to fit the effects of aging and airbridge fabrication simultaneously, which might give
reveal a better explanation for the shift in nanowire resistances. Another way to gain more information, is to
fit every batch with a log-normal distribution, and see if a pattern emerges from the resulting log-mean and
log-variance.
The data supports revising and improving the image recognition software for a higher yield, and investigating
different processes in the fabrication process. A rise in resistances after executing a process might give insight
into the nanowire failure modes.
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Conclusions and prospects

The flux tunable nanowire transmon is a suitable qubit to use as a sensitive quantum sensor for measuring
flux noise in a magnetic field.
The room temperature resistances of the nanowires in the transmon junctions have been collected and show
that the resistances in general follow a log-uniform distribution. There are big differences in the mean and
spread of this distribution between each fabrication cycle consisting of 48 nanowire junctions. Different chips
from the same cycle show similar distributions.
The resistances of the nanowire junction are a good proxy to knowing whether the nanowire transmon will
be measurable or not. A room temperature resistances of 2−3kΩ predicts that the transmon is almost gau-
ranteed to be measurable. The chance of success halves every 2−3kΩ increase. The shift of the mean of the
distribution is correlated strongly with the fabrication of airbridges and with the aging of the nanowire. No
discernible correlation of the nanowire resistances were found with the positions of the qubit on the chip,
the qubit type (gatemon or Dmon) or nanowire batch. There might be no correlation with qubit frequency or
success of tunability, but we need more data points from measurable qubits to support this.
The chip design code has been ported to PyQip3, to speed up design iteration. A relation between the elbow
coupler length and the coupling quality was found for this chip design. To improve readout, the coupling
quality factor was increased, sharpening the peaks of the resonators. This worked as expected. The resonator
targeting shows a deviation from the targeted frequency. This deviation depends on the qubit being on one
or the other side of the feedline.
The behavior of a nanowire transmon qubit in a magnetic field was investigated. An alignemnt procedure
for aligning the magnetic field on the qubit plane has been tested. This procedure ensures that the perpen-
dicular field is zero and the field is entirely in the transmon plane. The alignment is performed on a nearby
resonator and it is found that maximizing the resonator frequency of a resonator nearby the qubit is a valid
way to align on the qubit. The internal quality factor Qi of the aligned resonator returns to its zero field value
after ramping up and down the field, indicating that almost no magnetic flux vortices were formed. Also, the
alignment is dependent on the position of the resonator on the chip. This is due to inhomogeneity of the
perpendicular magnetic field. A solution is to use a bigger perpendicular coil diameter. The alignment shows
hysteresis while ramping the field. This means that we can not assume a perfect relation Bx,al i g n ∝ B∥ for
aligning and need to align during and after ramping.
One of the measured qubits has a T e

2 ∼ 0.5µs at 250mT. The coherence times T1,T 2
2 and T s

2 are influenced
heavily by the magnetic field, with an interesting pattern of increases and decreases in these times at 50 and
100mT and a peak at 200mT. The rampdown has a very different relation, losing coherence as the field ramps
down to zero field.
Next to ramping the magnetic field magnitude at a constant angle in-plane, the nanowire transmon has been
investigated at a fixed magnetic field magnitude, but at a changing in-plane angle of the magnetic field.
Knowing the virtual in-plane vectors V 1 and V 2, the alignment procedure produces the best aligning perpen-
dicular field correctly for the whole angle sweep. The in-plane angle between the nanowire and the in-plane
magnetic field is crucial to measurements, since the qubit frequency is maximum when the nanowire is par-
allel to the applied in-plane magnetic field and minimal when perpendicular. This can be explained by the
proximitized nanowire superconducting gap that has a higher critical magnetic field parallel to the magnetic
field. The qubit frequency also shows an asymmetry between θ and θ+π. This might be due to an asymmetry

57



58 7. Conclusions and prospects

between the two perpendicular sides of the nanowire, such as the 2-facet shell facing only one side, while the
other side is bare InAs nanowire.
The origin of 1/ f -flux noise is investigated and several important characteristics of its origin have been dis-
cussed. Consensus is that the flux noise originates from local spin fluctuators near or on the SQUID loop.
Promising candidate spins include hydrogen and oxygen, and proposed spin fluctuation processes include
the RKKY-interaction and hyperfine splitting. Several methods are given that would apply for a transmon
qubit to the characterize flux noise at several frequency ranges.
Spatially uncorrelated spin fluctuators in a magnetic field has and their coupling to the flux noise have been
investigated and simulated. The power spectral density (PSD) of the flux mirrors the PSD components of the
spin fluctuator. This means that not only the component parallel to the field is important, but also the com-
ponents perpendicular. An analytical equation for the PSD of the spin fluctuator parallel to the magnetic field
(zz-component) was derived. Simulations have verified this equation. An approximate equation for the PSD
of the spin fluctuator perpendicular to the magnetic field (xx-component) has been found. This component
exhibits different effects at positive and negative frequencies of the PSD, corresponding to quantum noise
due to Larmor precession. Other cross-spectral densities are deemed to be unimportant to the problem due
to symmetries or its negligible values.
An ensemble of fluctuators has been investigated. This ensemble gives us the 1/ f -noise as expected. Using
approximations, the coupling of the spins to our SQUID have been found and captured in geometry and spin
species independent constants. An example of a spin-1/2 particle using our SQUID dimensions and literature
values has been worked out and the flux noise PSD has been simulated and approximated. It shows that the
magnetic field suppresses the zz-contribution of the spin PSD by ∼ cosh−2(µB B/kB T ). The field also changes
the Larmor precession frequency fZ ∼ B , determining the frequency at which the peak in the xx-contribution
appears. Next to that, the xx-contribution is insensitive at frequencies higher than 2 fZ . At frequencies higher
than 2 fZ , the xx-contribution is the dominant factor. The simulations also show that the angle the magnetic
field makes with the SQUID influences the flux noise amplitude by a factor of about 1.5. This can be increased
by increasing the rotational asymmetry of the SQUID loop.
A flux tunable nanowire transmon was investigated in a magnetic field. It has proved difficult to find the qubit
frequency, since the resonator frequency does not correspond perfectly to the qubit frequency. This is due to
the bare resonator frequency shifting. A solution is to use the power shift to determine the qubit frequency
through a modified dispersive shift relation. The magnet introduces significant noise in Ramsey experiments
for all qubits at field, and for flux tunable qubits there is an additional noise component quadratically pro-
portional to the misalignment angle. We have found that a qubit can be flux tunable at 245mT.
Flux sweeps were made using the perpendicular coil as flux bias at several fields and angles. It has been found
that we could not calibrate the flux bias to multiples of Φ0. This is due to vortex forming near the SQUID
loop. Therefore, the sensitivity necessary for the measurement of flux noise cannot be extracted. Dedicated
flux bias lines have been (re)introduced and these do not introduce flux jumps. A flux noise amplitude ofp

A ∼ 1000µΦ0 was measured.
Finally, a new magnet current source system has been installed and troubleshot. This system can rotate a full
360◦ and can go to 500mT, the maximum field the system can provide. This system had several unexpected
issues, which were diagnosed, solved and documented. The used design parameters of the chip were docu-
mented and an improved method to fit the double beating patterns in the Double Ramsey experiments was
implemented.

7.1. Future research
The first step would be to increase the yield of flux tunable qubits. The statistical analysis of the nanowire re-
sistances can be used as a room temperature measure of the yield. Since we have found the fabrication cycle
to impact the resistance, changing fabrication parameters and seeings its effect on the nanowire resistances
might give a way to increase the yield. An explanation also needs to be found to explain the log-uniform dis-
tribution of the nanowire resistances. Another way to increase the yield, is to change the bias line setup to
include six flux bias lines, since qubits without them will not be usable for measuring the flux noise.
Another change to the chip design, would be to extend the resonator holes to the very edge of the coplanar
wave guides, since the current density of thin-film superconductors is highest at the edges. A vortex on the
edge will create the dominant loss channel for the resonator.
With more usable qubits, improving the collective alignment is the next issue. A good way to go forwards is
to increase the coil diameter of the perpendicular field coil to remove inhomogeneities and to automate the
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field alignment procedures, so that we are not time-limited by human efforts and errors.
Areas to investigate for (non-flux tunable) qubits are the coherence for fields up to 0.5mT and its relation to
angles for the full 360◦ in-plane field. These will give more insight in potential undesirable nanowire effects
on the qubit frequency and the application of the BCS gap critical magnetic field approximation at high fields.
Now turning to the flux noise measurements in a magnetic field, our simulations can be extended to include
models using S 6= 1/2 or the hyperfine splitting with the hydrogen atom. Another avenue is the full simulation
of spin coupled to a spin bath, retrieving the relaxation rates or excitation rates of the spin-spin interaction
system in question (for which contenders are RKKY-interaction or hyperfine splitting interaction). In the sim-
ulation, it would be good to also include other non-rotationally symmetric SQUID washers, such as triangle
washers or rectangular washers. These are shown to create a difference between the flux noise amplitudes as
a function of the angle of the magnetic field. This can be used to separate the contribution of the perpendic-
ular spin fluctuation component and the parallel spin fluctuation component.
For the flux tunable nanowire transmon, the qubit frequency can be found more easily by making a power
shift map to the qubit frequency, and automating this process. This will prevent losing the qubit frequency
and might be used as a robust backup routine if the main strategy of finding the qubit fails. A next improve-
ment would be to implement a system where a full flux quantum flux sweep can be performed automatically,
with the perpendicular coil and dedicated flux bias line working in tandem.
After these things have been completed, the qubit echo times vs. flux at different fields, different field angles
and fridge temperatures need to be mesaured to extract the flux noise amplitude. Moreover, techniques to
extract GHz-noise levels should be implemented to investigate the noise at the frequencies on and around
the potential peaks of the hydrogen hyperfine splitting peak or any electron spin Larmor precession peak.
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A
Nanowire transmon physics

A.1. Nanowire subband Hamiltonian

Figure A.1: The energy levels Eλ,µ in a cylindrical nanowire for different values of the wave number k. Using me f f = 0.034 and R = 65nm.
We can clearly see that the gaps are of the order 5meV.

To gain intuition in the basic 1D subband structure on which the use of nanowires is based, we will work
through a simplified model.
Assuming an electron-like particle in a perfect cylindrical and infinitely long nanowire, we can model it using
the Hamiltonian in cylindrical coordinates (ρ,φ, z) as

Hψ=− ħ2

2m
∇2ψ+V (x)ψ= Eψ (A.1)

where we assume a infinite quantum well where the wavefunction is 0 on the nanowire-to-air/vacuum inter-
face by assuming an infinite well potential

V (x) =
{

0 if ρ < R
∞ if ρ ≥ R

here ρ is the perpendicular coordinate, R the radius of the nanowire and φ will be the angular coordinate of
the wavefunction. Solving this system assuming a plane wave in the z-direction, we find eigenfunctions

ψλ,α(ρ, t ) = J|λ|(
αλ,µ

R
ρ)exp

(
iλφ

)
e i (kz−ωt ) (A.2)
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66 A. Nanowire transmon physics

where λ ∈N≥0 is a parameter indicating the amount of angular nodes and µ ∈N≥1 a parameter indicating the
amount of radial nodes, Jν(x) the Bessel function of the first kind, k the wave number and ω wave frequency
of the electron-like particle. αλ,µ is the µ’th zero of the Bessel function J|λ|(x). The eigenenergies of this
system can be found as

E = ħ2k2

2me f f
+ ħ2

2me f f

α2
λ,µ

R2 (A.3)

where we can see that we can limit the amount of energies available by decreasing the radius R. We use
experimental data found in [19] where they use an InAs nanowire of radius R = 7.5nm, to match Equation
(A.3) using me f f = 0.034me . The energy levels are given in Figure A.1 are then given for a nanowire of radius
65nm like used on our chip. This model contains some unrealistic assumptions, as the wavefunction will
not be exactly zero at the nanowire-air/vacuum interface and the nanowires we use have a superconducting
aluminum half-shell. Also, the nanowires used are hexagonal instead of perfectly cylindrical.

A.2. Possible measurements using a (nanowire) transmon
This gives a short summary of the relevant types of measurements in the experiment.1

1. Anharmonicity measurement. This can be done by probing a f02/2 measurement.

2. Rabi experiment. Here, we measure the oscillation between the excited and ground state of the qubit
by a microwave pulse as a function of the pulse shape.

3. T1-experiment. Here, we excite a qubit, and measure the time it takes before it returns to the ground
state.

4. Ramsey (T ∗
2 ) experiment. We determine the decoherence and dephasing of the qubit along the equator

of the Bloch sphere

5. Double beating Ramsey. If a double beating is present, a TLS flips the qubit frequency between two
different frequencies.

6. Hahn echo experiment. We determine the decoherence and dephasing of the qubit like a Ramsey ex-
periment, but we filter out the low noise by adding a refocusing pulse.

7. Power shift measurement, where we measure the resonator frequency at low power, so that we measure
the dispersive shift, and at high power, which is the bare frequency.

1A more complete introduction to measurement with our setup can be found in this presentation: http://aqis-conf.org/2016/wp-
content/uploads/2015/12/20160828langford_aqis_tutorial.pdf

http://aqis-conf.org/2016/wp-content/uploads/2015/12/20160828langford_aqis_tutorial.pdf
http://aqis-conf.org/2016/wp-content/uploads/2015/12/20160828langford_aqis_tutorial.pdf


B
Experimental setup

Figure B.1: The setup for measuring the qubit devices. Image from Florian Lüthi’s PhD thesis [32].

Our setup, visible in Figure B.1, is build to create an environment at tens of mK with a controllable 3-axis mag-
netic field and microwave RF electronic connections. We use a Leiden Cryogenics CF-450 He3/He4-dilution
refrigerator, which can deliver around ∼ 450µW of cooling power during operation. It has different temper-
ature stages through which all wiring has to go, which contain attenuators or low temperature amplifiers. At

67



68 B. Experimental setup

Table B.1: Properties of the Y and Z -axis magnets used. Data taken from datasheet.

Y -axis Z -axis
Inductance [H] 1.8 0.7
Coil constant [T/A] 0.0132 0.0496
Maximum current [A] 37.88 40.32
Maximum ramp rate 1[A/s] 0.0543 0.677

the coldest stage, the Mixing Chamber (MC), it should be able to have a base temperature as low as 12mK.
However, in our experiments, a temperature of ≥ 22mK has been measured. It can house different tempera-
ture or pressure sensors. The most unique quality of this particular fridge is its 3-axis magnet. These magnets
can collectively deliver fields to the device in the MC. This allows a full characterization of magnetic effects
on the superconductors or qubits on the device. To shield the chip from external magnetic fields, additional
magnetic shields were added [2].
A typical measurement can be done using an Arbitrary Wave Generator (AWG) as an arbitrary pulse genera-
tor. The signal is mixed using IQ-mixing to upconvert the signal using a 10MHz local oscillator, to protect the
system to low-frequency noise. Between the mixer and the device is 45dB attenuation (see Figure B.1). This
should cause an average of one photon to arrive in the chip. After interacting with the chip, the output signal
travels through circulators, preventing power to dissipate back into the chip. The signal is amplified in higher
temperature stages by 100dB through 3 sequential amplifiers. The resulting I and Q are digitized and sent
to computer memory. Additionally, we can apply voltages biases and dedicated flux biases to certain chosen
qubits. In total, 6 lines are available, where we have chosen 3 voltage bias lines and 3 flux bias lines (supplying
current) as are visible in Figure B.2 as V 1−V 3 and F 1−F 3 respectively.

B.1. Magnets and magnet current sources
For a 3-axis magnet, 3 dedicated magnets are necessary, each supplying a field in an orthogonal direction.
Any misalignments can be solved using the other magnets to correct for this. This is used later, since the
devices will also not be perfectly aligned to the fields as expected.
The magnet perpendicular to the plane of the chip, from hereon dubbed the ’perpendicular coil’, is a thin-
wire coil resting immediately next to the chip holder. It has a wire diameter of∼ 0.1 millimeter, and is supplied
by small currents (maximum 40mA), providing small fields below 8mT. This is by design, since thin-film su-
perconductors create vortices at a perpendicular field, see Section C.2.1.
The Y and Z -axis magnets (supplying fields in-plane of the device), are encapsulated in a magnetic shield
and surround the device. The Z -axis surrounds the chip and the Y -field is delivered by 2 coils on either side
of the device. They simultaneously can deliver a field of 500mT.
The Y and Z -axis magnets have a persistent current mode, in which they are disconnected from source cur-
rent noise due to an internal superconducting loop. This loop contains a persistent switch. This is a device
that, when heated, turns normalconducting and creates a resistance in the superconducting loop. This dissi-
pates current and creates a link with any current source connected.
The relevant properties of the magnets used are listed in Table B.1. These values are e.g. used in Section 5.2
to calculate the participation of the current source noise on our measurements.

An effect of having the magnets in the MC, is the possibility of heat transfer through radiation and conduction
into the MC. During rampup of the field, we noticed a significant increase in temperature. We use at least two
magnets during ramping, to align the field. We have found the perpendicular coil as the main contributor for
this heat load on the MC.

B.2. Magnet current source upgrade
The old current source was a Kepco current source. This current source did not have positive and negative
current polarity, and was not software programmable. To resolve this, we installed two 4Q06125PS-430 power
supply units, one for both the Y and Z -axis. This power supply works as follows: the current source supplies
a current to the magnet through the leads. This current is controlled by the voltage that the AMI430 program-
mer outputs. The AMI430 programmer is the interface that connects through Ethernet with the computer
and is programmable. It has connections for the persistent switch heaters and the voltage probes (hint: keep
the voltage probes an open, do not connect them in any way, shape or form to the fridge). A short sum-
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Figure B.2: A collection of greater magnitude zooms of the chip. The high level overview shows the chip with resonators, qubits Q1-Q12,
the test qubits Qopen and Qshort, and labels for all electronic connections outside the chip. The second zoom level shows the transmon
structure and its connection to the resonator and flux bias line, from [32]. The third zoom shows the contacts that will be etched on the
junction area for a flux tunable qubit around the nanowire, the fourth zoom shows a Scanning Electron Microscope (SEM) picture of the
SQUID loop that was made. This is used to tune the qubit frequency by applying a flux through the loop. The last zoom level depicts the
InAs nanowire with the superconducting aluminium 2-facet shell, where a part of the shell is etched to create a Josephson junction.

mary of peculiarities can be found in Appendix J. A module has been written to interface this system with
the Magnet class, a module written in Python which controls the fields and prevents sudden and unwanted
changes in the field. It is also used to align the magnet to any misalignment as will be discussed in Section 2.4.

B.3. Qubit device
A zoom of a collection of chips is shown in Figure B.2. There are eight electronic connections to the chips.
The feedline, represented as I and O for input and output, is the electronic wire through which all microwave
pulses, gate control and readout is fed. The connectors labeled V 1/V 2/V 3 are the voltage bias lines, pro-
viding a voltage side gate bias to the nanowire qubits, tuning the qubit frequency. The connectors, labeled
F 1/F 2/F 3 are the flux bias lines. On qubits with a SQUID loop, this tunes the qubit frequency through flux
tunability as described in Section 1.5. The qubits can be found in the yellow inset , where the big curved
pads create a capacitance, and the rightmost structure a SQUID loop containing a nanowire creating two
weak-link Josephson junctions. The blue zoom shows the SQUID loop and the two nanowire junctions. The
chip also contains two transmon structures, without nanowires. Qshor t has instead of a nanowire junction, a
small strip connected between the two pads. Qopen does not have a nanowire junction at all. The reason for
this is elucidated in Section 6. Any perpendicular magnetic field creates vortices in the CPWs, changing the
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resonator frequencies and losses. We create holes in the resonator, to prevent these from forming, due to un-
wanted misalignment and field inhomogeneities. The chips previously had on-chip wirebonds, connecting
the grounds across the feedline and the coplanar waveguides. They had been superseded by airbridges, but
we have returned to using on-chip wirebonds.



C
Chip design

The design of the chip needs to adhere to design constraints. In this thesis, we are going to focus on the res-
onator targeting, the effect of the holes to prevent Abrikosov vortices and the coupling quality targeting.

C.1. Shape of the resonator transmission
The readout resonator, through which we can couple with the resonator, can be characterized by the S21-
transmission. This is the transmission from the input port to the output port of the feedline. The resonator is
sensitive to a certain frequency. At this frequency, the transmission goes to zero since all signal goes into the
resonator. We can model this using [3]

S21 =
S21,mi n + i y

1+ i y
(C.1)

where S21,mi n is the minimum of the resonator and y = 2Ql
δω0
ω0

= 2Ql
(ω−ω0)
ω0

the relative frequency deviation
from the actual resonator frequency. Ql is the total quality factor of the resonator and can be divided into
an internal and external coupling quality component through Q−1

l =Q−1
i +Q−1

c . The minimum transmission
S21,mi n is

S21,mi n = Qc

Qi +Qc
. (C.2)

Ideally, we have a perfect dip S21,mi n ≈ 0. As such, we need Qc ¿Qi . Assuming the minimum to be S21,mi n =
0, we find the absolute value of S21 in the form

|S21| = y√
1+ y2

(C.3)

which means that the full width at half minimum (FWHM) of the dip can be described by |S21| = 1
2 , for which

we find the solution

FW H M = 2δω0

(
|S21| = 1

2

)
= 2ω0

1

2
p

3Ql
≈ ω0

1.7Qc
(C.4)

It is favorable to increase the Qc to obtain a thinner dip, means we can more easily measure a shift in the
resonator frequency due to the dispersive shift, since the S21 changes more rapidly as ω0 shifts. However, we
still need to satisfy the requirement Qi ÀQc . We can find a formula to estimate Qc from the dimensions and
properties of the resonator and feedline fabrication, as will be seen in Section C.3.
The internal quality factor is determined by material quality and the fabrication process. This is sufficiently
high (105 −106) and we will assume intrinsic losses to be negligible.

C.1.1. Measuring the coupling quality factor
Where does this coupling quality factor come from? The resonator is, in fact, not floating in air, but it is
coupled to a feedline. This coupling is capacitative and we find that it shifts the resonator frequency a few
percent as [35],[3]

ωl oaded =ωunloaded

(
1− 2Z0

πZ0, f eedQc

)
(C.5)
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Figure C.1: Chip design made in January/February of 2019 to incorporate the nanowire transmons in pyQip 3. Annotated is the used
convention of numbering resonators and qubits. The green colours indicate the holes in the coplanar waveguides (CPWs) serving as
resonators. Only resonator 12 (only given as pink lines in the top right) does not have holes. In red, you can see the airbridges, creating a
connection of the ground planes over the CPWs.
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where ωl oaded is the same as the resonator frequency ωr,unload used in the dispersive shift equation (1.4). 1

We have Z0 the impedance of the resonator, Z0, f eed the impedance of the feedline and Qc the capacitative
coupling quality factor of the resonator with the feedline.

Figure C.2: The deviation of the resonator targeting ( fmeas − fpr ed ) for all chips S2 and T2 for different resonators. The red line indicates
no deviation. The blue crosses give the deviation in frequency for S2 and the magenta crosses the same, but for chip T2.

C.2. Chip design
We start by discussing the resonator targeting. This is important due to the readout only being sufficiently
amplified between the 4−8GHz range. Also, the resonators need to be spaced in frequency so that there will
be no overlap due to resonator mistargeting. A frequency spacing of 100MHz is taken for every resonator
fr es < 6.2GHz and 200MHz for fr es > 6.2GHz. This is often sufficient.
The resonator targeting is influenced by the bare quarter wave resonator frequency and its loading by the
feedline as described in Equation (C.5). As such, the parameters of interest are `,C ,L, Z0 and Qc , where `
is the length of the resonator, C the capacitance per unit length, L the total inductance per unit length ,Z0

the impedance of the resonator and Qc the coupling quality of the resonator to the feedline. Most impor-
tantly is describing the resonator frequency. This is, without coupling to the transmon and the feedline, given
by ωunloaded = 1

4`
p

LC
where ` is the length of the resonator, L is the inductance per unit length of the res-

onator and C is the capacitance per unit length of the resonator. We assume the feedline impedance to be
Z0, f eed = 50Ω. To use the benefits of impedance matching, we aim for Z0 := Z0,r es = L/C = 50Ω. This means
that when either C or L is chosen, the other is fixed. Using the calculated L and C , we can change the length
to get the targeted resonator frequency.

C.2.1. Abrikosov vortices
With a perpendicular field, Abrikosov vortices might form. The vortices are small traps of flux. These contain
a multiple of Φ0 flux, as dictated by flux quantization. They create additional loss channels in the resonator,
degrading readout performance. To prevent these from forming, we make holes in the resonator. The holes
in the resonators were designed by J. Assendelft [2]. An additional effect of the fabricated holes is an added
kinetic inductance. Since the kinetic inductance goes ∼ 1

A where A is the cross section of the central strip

1Note that in Equation (C.5), we mean ’loaded’ to be ’the resonator is coupled to the feedline’ and ’unloaded’ the opposite, while in
Equation (1.4) we mean ’loaded’ to be ’the qubit is coupled to the resonator’
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of the resonator, creating holes effectively reduces A and increases the kinetic inductance. For all resonator
with holes, the value of the kinetic inductance is multiplied by Nmag i c = 1.1 to reflect this. For resonators
with holes, the measured resonator frequency correspond to the targeted resonator frequency with an error
< 100MHz, as is visible in Tables E.4 and E.5 and Figure C.2. However, for resonators numbered 12, where no
holes are present, the resonator frequency is systematically off by 120MHz. This is due to the magic number
Nmag i c being a catch-all for even non-hole related miscalculations. Since resonator 12 will without holes not
be suitable for this thesis’ goal of non-zero magnetic fields, we have chosen to include holes into this res-
onator as well.

Figure C.3: The measured coupling quality factors of all resonators of four different fabrication cycles. The dashed line indicates the
targeted coupling quality. The crosses indicate the predicted values for the quality factor given Equation (C.7) and the values derived for
this equation. Chip S2/T2 are made before updating the coupling lengths, Chip C3/D1 were made after updating the coupling quality
targeting.

C.3. Targeting the coupling quality
The coupling quality factor Qc describes the radiation losses of the resonator into the feedline. Increasing the
coupling quality increases sensitivity to small resonator frequency shifts, but also increases readout time. For
targeting the coupling quality, we can use [35]

Qc = 1

2

2π

|S31|2
= π

Z 2
0 (ωC )2

(C.6)

where Z0 ≈ 60−70Ω, ω= 2π fr es the resonator frequency, C the capacitance of the resonator to the feed line.
This follows an approximate relation:

C = A(LC +LC ,o f f ) (C.7)

where A is a constant, LC the length of the elbow coupler parallel to the feedline and LC ,o f f the offset due
to the elbow not being accounted for. The current problem is finding the appropriate constants A,Lc,o f f .
Simulations were made by Marc Beekman giving A,Lc,o f f for certain CPW gap and slot widths for the res-
onators, the feedline and strip that couples them[4]. However, the exact dimensions used in our chip design
were not simulated. Because of that, we extrapolated the values for A,LC ,o f f from all available simulation
data and fit it to the measured coupling lengths presented in Tables E.4 and E.5. The extrapolated values
are A = 3.28 ·10−17 F/m and LC ,o f f = 42.4µm. We have found that the prediction made by the extrapolated
A,LC ,o f f matches the measured Qc better than its current implementation, as is seen in Figure C.3. This is
implemented in the chip design for chips C3 and D1. There is a large fluctuation visible in the measured Qc .
This might be due to the Qi being lower than expected and interfering with the fitting of the Qc . We see that
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the coupling quality is better on target.

C.4. Finalized chip design
Using the new coupling quality targeting and the programming framework of pyQip3 developed by Marc
Beekman, a new chip design using the parameters of Table E.3 was created. The new chip design is shown in
Figure C.1. The new resonator targeting values are tabulated in Table E.2.





D
Multiple damped oscillator Ramsey

analysis

A typical Ramsey experiment is sensitive to most types of noise or fluctuations. Sometimes, there are two
frequencies available due to a strongly coupled TLS switching the qubit frequency during the measurement
time. Due to this, our results show a sum decay functions for two differing qubit frequency. These Ram-
sey experiments can be described by a set of multiple exponentially damped oscillators, one for each qubit
frequency:

S(t ) =
n∑

i=1
Ai cos

(
2π fi t +φi

)
exp(−t/Ti ) (D.1)

Using Eulers identity, decomposing cos
(
2π fi t +φi

)= 1
2

(
e i (2π fi t+φi ) +e−i (2π fi t+φi )

)
up in exponentials:

S(t ) =
n∑

i=1
Bi ,+ exp

(
λi ,+t

)+Bi ,− exp
(
λi ,−t

)
(D.2)

where Bi ,+ = Ai
2 exp

(
iφi

)
,Bi ,− = Ai

2 exp
(−iφi

)
, λi ,+ = 2πi fi − 1

Ti
, λi ,− =−2πi fi − 1

Ti
.

We now explore the case n = 2 of a double exponentially damped oscillator. First of all, when f1,T1 and f2,T2

are known, we can deduce the Ai and φi : for every data point s[m] measured at index m,

s[m] = v[m]b

where v[m] = [eλ1,+m∆t ,eλ1,−m∆t ,eλ2,+m∆t ,eλ2,−m∆t ] and b = [B1,+,B1,−,B2,+,B2,−]T .
We now create a vector s = (s[0], s[1], . . . , s[m], . . .)T and a matrix V , where each m’th row is v[m]. We now can
create the overdetermined matrix equation

s =V b

and we can estimate b using least squares

b̂ = (V H V )−1V H x

We can transform back from b̂ to Ai and φi through Ai = 2|Bi ,+| = 2|Bi ,−| and φi =∠Bi ,+ =−∠Bi ,−.

D.1. Finding fi and Ti
This leaves only the problem of finding f1,T1, f2 and T2. We use the overview given in [57], using Bertocco’s
algorithm. However, due to lack of spectral resolution, we will extend this using the ZoomFFT algorithm.
We will start from the Fourier Transform of a discrete (uniformly sampled) signal x[n]:

X (Ω) =
N∑

n=1
x[n]exp(−iΩn) (D.3)
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78 D. Multiple damped oscillator Ramsey analysis

If we define x[n] to be: x[n] = e iφi eλn where λ=−D + iω=− 1
Ti

+2πi fi :

X (Ω) =
N−1∑
n=0

e iφi eλn exp(−iΩn) =
N−1∑
n=0

e iφi e−Dne iωn exp(−iΩn)

= e iφ
N−1∑
n=0

exp(−D + i (ω−Ω))n = e iφ 1−exp(−D + i (ω−Ω))N

1−exp(−D + i (ω−Ω))

= e iφ 1−χN e−i NΩ

1−χe−iΩ

(D.4)

where χ = exp(−D + i (ω)) = exp(λ) We can now find the value for a single damped oscillator (using that
e−i NΩ = 1)

S(Ω) = A

2

(
1−χN

1−χe−iΩ
+ 1− χ̄N

1− χ̄e−iΩ

)
(D.5)

where χ̄= exp(−D − iω).
Our algorithm relies on the fact that we can use ZoomFFT, where we can use several Fast Fourier Transforms
(FFTs) to get the DFT for an arbitrary angular frequency Ω. This means that we can find all peaks coarsely
in the positive spectrum of an FFT and subsequently zoom in using ZoomFFT for a better resolution. Since
around this pointΩ≈ω, we can neglect the second term of S(Ω). We can now use a method called Bertocco’s
algorithm. This method involves defining and finding the ratio

R = X (Ω+δΩ)

X (Ω)
≈

A
2

(
e iφ 1−λN

1−λe−i (Ω+δΩ)

)
A
2

(
e iφ 1−λN

1−λe−iΩ

) = 1−λe−iΩ

1−λe−i (Ω+δΩ)
(D.6)

such that

χ= e iΩ 1−R

1−Re−δΩ
. (D.7)

Then we can use D = −Re{ln
(
χ
)
} = 1

Ti
to find the relaxation time of the oscillator. This is called Bertocco’s

algorithm.



E
Collection of chip design parameters

Table E.1: Material parameters used to predict the inductance and the capacitance of the coplanar waveguides

Parameter Value
Material CPW films NbTiN
CPW thickness t 68nm
NbTiN Tc at thickness t 13.5K
NbTiN resistivity ρ at thickness t 0.911µΩm
Material substrate Silicon
Permittivity Silicon 11.45

Table E.2: Chosen or calculated parameters for the new chip influencing the resonator targeting, such as length and coupling length
influencing the fr es and Qc very strongly. The targeted Qc is 15 ·103

Resonator nr. Lr es [µm] Lcoup [µm] Targeted fr es [G H z]
1 4384 108.9 5.6
2 4307 106.2 5.7
3 4233 103.6 5.8
4 4161 101.2 5.9
5 4092 98.8 6.0
6 4025 96.5 6.1
7 3960 94.2 6.2
8 3836 89.9 6.4
9 3720 85.9 6.6

10 3610 82.1 6.8
11 3507 78.6 7.0
12 3409 75.2 7.2
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Table E.3: Dimensions of the chip design. All these values were used to verify the dimensions in the .gds files in which the design is saved.

Parameter Value[µm]
Chip width 7000
Chip height 2300
Min dist of structures to chip edge 250
Feedline center strip width 12
Feedline gap width 2.3
Feedline edge strip width 4
Resonator center strip width 12
Resonator gap width 6
Resonator edge strip width 4
Bias line center strip width 12
Bias line gap width 2.3
Bias edge strip width 2
Minimum curve radius 60
Strip width coupling feedline and resonator 1
Strip width coupling resonator and qubit 1
Straight length along resonator-qubit coupling 315
Lattice constant ’Abrikosov’ holes 0.5
Radius ’Abrikosov’ holes 0.05

Table E.4: Chosen or calculated parameters influencing the resonator targeting, such as length and coupling length influencing the fr es
and Qc very strongly. The measured values of S2 are given in this table. The targeted Qc is 15 ·103

Resonator nr. Lr es [µm] Lcoup [µm] Targeted fr es [G H z] fr es [G H z] S2 Qc [103] S2 Qi [105] S2
1 4378 185 5.6 5.641 8.31 1.5
2 4301 182 5.7 5.728 8.73 1.82
3 4226 179 5.8 5.823 8.55 5.73
4 4155 176 5.9 5.914 7.86 3.69
5 4085 173 6.0 6.024 7.95 0.76
6 4018 170 6.1 6.112 8.20 2.49
7 3952 167 6.2 6.197 8.76 1.0
8 3829 162 6.4 6.388 9.64 3.1
9 3713 157 6.6 6.607 10.42 0.59

10 3603 153 6.8 n.a. n.a. n.a.
11 3500 148 7.0 6.950 6.71 0.46

12 (no holes) 3346 144 7.2 7.323 3.85 2.7

Table E.5: Chosen or calculated parameters influencing the resonator targeting, such as length and coupling length influencing the fr es
and Qc . The measured values for chip T2 are given in this table. The targeted Qc is 15 ·103

Resonator nr. Lr es [µm] Lcoup [µm] Targeted fr es [G H z] fr es [G H z] T2 Qc [103] T2 Qi [105] T2
1 4378 185 5.6 5.557 9.2 1.68
2 4301 182 5.7 5.6368 8.8 0.58
3 4226 179 5.8 5.770 9.0 2.15
4 4155 176 5.9 5.836 7.8 0.47
5 4085 173 6.0 5.963 6.4 0.84
6 4018 170 6.1 6.04 6.8 0.11
7 3952 167 6.2 6.169 7.5 0.92
8 3829 162 6.4 6.356 9.0 0.89
9 3713 157 6.6 6.657 6.6 0.41

10 3603 153 6.8 6.767 7.1 0.083
11 3500 148 7.0 6.953 5.8 1.68

12 (no holes) 3346 144 7.2 7.318 3.8 0.18
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Table E.6: Parameters and dimensions of other structures on the chip.

Parameter Dimension [µm]
Transmon pad width 400
Transmon pad height 100
Width of finger 20
Width between fingers 20
Finger curve radius 30
Height of finger from base 60
Height from edge to base 10
Right finger middle to JJ attach block 50
JJ attach block width 10
JJ attach block height 20
JJ attach inner curve 5
JJ attach tip curve 2.5
Pad edge curve radius 5
Edge of transmon pads to edge strip 20
Edge strip width 5
Edge strip inner curve radius 20
Edge strip outer curve radius 25

Table E.7: Airbridge parameters. * indicates that the CPW must be included and a value of 2g +w must be added, where g is the gap
width and w the strip width. This is 24µm for the chosen resonator CPW and 16.6µm for the feedline and bias line CPWs.

Parameter Dimension[µm]
Airbridge width 30
Airbridge base height* 71
Airbridge rounding radius 15
Safe region width 170
Safe region base height* 100
Safe region gap width 20
Safe region gap base height* 90





F
Derivation of the spin-fluctuator spectrum

To model the effects happening to the spin particle, we assume a Markovian (memory-less) process. The spin
particle is represented by being in the x+ state or in the x− state. When it is in the x+-state, it has a probability
of transitioning to the x−-state and vice versa. We call Γ↓ = 1

〈t−〉 the transition rate from x+ to x−. This system
is also called random telegraph noise system (RTN). To find the power spectral density of this system, we want
to find the autocorrelation function of this process.
The autocorrelation is defined as rxx (t ) = 〈x(t )x(0)〉 for stationary signal. The autocorrelation rxx (τ) for a
RTN is a measure of how long it will stay in (or transition back to) the same state. If we define the lower state
x↓ = a and the higher state x↑ = b, we can reason to find

rxx (τ) = a2P↓(0)P↓↓(t )+ab(+)+b2P↑(0)(P↑↑(t ))+ab(P↑(0)P↑↓(t )+P↓(0)P↓↑) (F.1)

where P↓(0) is the probability that the spin can initially be found in the x− state and P↑(0) to be found in the
x+-state. P↑↓(t ) is the probability that we will find the state in the x− state at time t , when we initially were in
the x+ state. Similar for P↑↑(t ),P↓↑(t ),P↓↓(t ).
To find e.g. P↑↑(t ), we will want to know the probability of a transition happening away or towards the x+
state. We see that P↑↑(t ) increases in time interval d t with rate P↑↓(t )Γ↑d t and decreases in the time interval
with rate P↑↑(t )Γ↓d t . We can find thus find the total change in a time interval d t :

P↑↑(t +d t ) = P↑↑(1−Γ↓d t )+P↑↓Γ↑d t (F.2)

which in the limit d t → 0 is
dP↑↑

d t
= Γ↑−P↑↑(Γ↑+Γ↓) (F.3a)

We can do the same procedure for the other probabilities:

dP↑↓
d t

= Γ↓−P↑↓(Γ↑+Γ↓) (F.3b)

dP↓↑
d t

= Γ↑−P↓↑(Γ↑+Γ↓) (F.3c)

dP↓↓
d t

= Γ↓−P↓↓(Γ↑+Γ↓) (F.3d)

Using initial conditions P↑↑(t = 0) = 1, P↓↑(t = 0) = 0 and similar for the others:

P↑↑ =
Γ↓

Γ↓+Γ↑
e−(Γ↑+Γ↓)t + Γ↑

Γ↑+Γ↓
(F.4a)

P↓↑ =− Γ↑
Γ↑+Γ↓

e−(Γ↑+Γ↓)t + Γ↑
Γ↑+Γ↓

(F.4b)

P↑↓ =− Γ↓
Γ↑+Γ↓

e−(Γ↑+Γ↓)t + Γ↓
Γ↑+Γ↓

(F.4c)
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84 F. Derivation of the spin-fluctuator spectrum

P↓↓ =
Γ↑

Γ↑+Γ↓
e−(Γ↑+Γ↓)t + Γ↓

Γ↑+Γ↓
(F.4d)

We use the fact that P+ is the same as the average fraction that the RTN system resides in the x+-state.

P+ = τ+
τ−+τ+

= Γ↑
Γ↑+Γ↓

(F.5a)

P− = 1−P+ = Γ↓
Γ↑+Γ↓

(F.5b)

using that we defined Γ↑ = 1
τ− and Γ↓ = 1

τ+ . To gain more insight, we also calculate the time dependencies of
P+(t ) and P−(t ), following the same intuition as in Equation (F.2). We find

P+(t ) =
(
P+(0)− Γ↑

Γ↑+Γ↓

)
e−(Γ↑+Γ↓)t + Γ↑

Γ↑+Γ↓
(F.6a)

P−(t ) =
(
P−(0)− Γ↓

Γ↑+Γ↓

)
e−(Γ↑+Γ↓)t + Γ↓

Γ↑+Γ↓
(F.6b)

We could now simplify Equations (F.4).
Now we investigate, using that we define a := x↓ and b := x↑ and substitute the found equations in (F.1):

rxx (t ) = a2P↓(P↑e−(Γ↑+Γ↓)t +P↓)+ab(P↑(−P↓e−(Γ↑+Γ↓)t +P↓)+P↓(−P↑e−(Γ↑+Γ↓)t +P↑))+b2P↑(P↓e−(Γ↑+Γ↓)t +P↑)
(F.7)

This all can be simplified to
rxx (τ) = (a −b)2P↑P↓e−(Γ↑+Γ↓)t + (aP↓+bP↑)2 (F.8)

Since this is a classical system rxx (t ) = rxx (−t ), meaning that we substitute t →|t |.
To simplify the derivation and come closer to our fluctuator system, we will use a =−S and b = S. We get:

rxx (τ) = 4S2 Γ↑Γ↓
(Γ↑+Γ↓)2 e−(Γ↑+Γ↓)t +S2

(
Γ↓−Γ↑
Γ↓+Γ↑

)2

(F.9)

Using the definition for the power spectral density SS ( f ) = ∫ ∞
−∞ e2πi f t rxx (t )d t we get

S( f ) = 4S2 Γ↑Γ↓
(Γ↑+Γ↓)2

2(Γ↑+Γ↓)

(Γ↑+Γ↓)2 + (2π f )2 +S2
(
Γ↑−Γ↓

(Γ↑+Γ↓)

)2

δ( f ) (F.10)

where δ( f ) is the Dirac delta distribution.
Now we introduce the physical side of the derivation. We are investigating a spin system in thermal equilib-
rium, so we can apply Boltzmann statistics. We will use the Zeeman Hamiltonian (4.5) to find the rates of a

fluctuator. The energy levels of a s = 1
2 -system are± gµs B

2 . We define now B̃ = EZ /kB T = gµS B
2kB T for convenience.

We can now find the canonical partition function

Z = exp
(−B̃

)+exp
(
B̃

)
(F.11)

Now we can find the probability of find a spin in the up state (which we define to be parallel to the magnetic
field, and as such a higher energy):

P↑ =
exp

(
B̃

)
Z

(F.12a)

P↓ =
exp

(−B̃
)

Z
(F.12b)

We now find the values of Γ↑,Γ−↓ through Equations (F.5) and (F.12).

Γ↓ = ΓP↓ = Γexp
(−B̃

)
(F.13a)

Γ↑ = ΓP↑ = Γexp
(
B̃

)= Γ↓ exp
(−2B̃

)
(F.13b)

where Γ= Γ↓+Γ↑ We now substitute S = 1
2 and all Equations found above to find the eventual power spectral

density of a spin-1/2 fluctuator

S( f ) = 1

cosh
(
B̃

) exp
(−B̃

)
Γ↓

(2exp
(−B̃

)
cosh

(
B̃

)
Γ↓)2 + (2π f )2

+ 1

4
tanh2(B̃)δ( f ) (F.14)



G
Derivation of the linear spectrum

contributions of the spin PSD

To find the power spectral density forΦ from spin fluctuations, we will start with equation (4.1) and try to find
the autocorrelation function of 〈Φ(t )Φ(0)〉 through

〈Φ(t )Φ(0)〉 =
〈(∑

n
F(Rn) ·sn(t )

)(∑
m

F(Rm) ·sm(0)

)〉
(G.1)

Now we assume that the interaction between spins sn and sm is zero if n 6= m (meaning there are no spin-spin
interactions whatsoever) and the spins are independent. We can simplify

〈Φ(t )Φ(0)〉 =
〈∑

n

∑
m

(F(Rn) ·sn(t )) (F(Rm) ·sm(0))δnm

〉
=

〈∑
n

(F(Rn) ·sn(t )) (F(Rn) ·sn(0))

〉
(G.2)

Using Equation (G.2) in (4.2) we find

SΦ( f ) =
∫

d f e2πi f t
∑
n
〈(F(Rn) ·sn(t )) (F(Rn) ·sn(0))〉 (G.3)

working out the dot products for 3 dimensions x̂, ŷ , ẑ (considering the magnetic field direction later to be ẑ):

SΦ( f ) =
∫

d f e2πi f t
∑

α,β=x,y,z

∑
n

Fα(Rn)Fβ(Rn)
〈

sn,α(t )sn,β(0)
〉

(G.4)

realizing that
〈

sn,α(t )sn,β(0)
〉

is the same for every independent and identical spin:

SΦ( f ) =
∫

d f e2πi f t
∑

α,β=x,y,z

∑
n

Fα(Rn)Fβ(Rn)
〈

sα(t )sβ(0)
〉

(G.5)

Now taking the continuum limit
∑

n F (Rn) → ∫
d 3RF (R)σ(R) (which we could transform back by σ(R) =∑

n δ(R−Rn)):

SΦ( f ) =
Ï

d f d 3Rσ(R)e2πi f t
∑

α,β=x,y,z
Fα(R)Fβ(R)

〈
sα(t )sβ(0)

〉
(G.6)

Now we can find the spin power spectral densities or cross spectral densities using Sαβ( f ) = ∫
d f e2πi f t

〈
sα(t )sβ(0)

〉
and we find

SΦ( f ) =
∫

d 3Rσ(R)
∑

α,β=x,y,z
Fα(R)Fβ(R)Sαβ( f ) = ∑

α,β=x,y,z
Sαβ( f )

∫
d 3Rσ(R)Fα(R)Fβ(R) (G.7)

We define now a total direct spin-to-SQUID coupling using

Cαβ :=
∫

d 3Rσ(R)Fα(R)Fβ(R) (G.8)
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86 G. Derivation of the linear spectrum contributions of the spin PSD

so that we find, all written out:

SΦ( f ) = ∑
α,β=x,y,z

CαβSαβ( f ) (G.9)

=Cxx Sxx ( f )+Cy y Sy y ( f )+Czz Szz ( f )+Cx y (Sx y ( f )+Sy x ( f ))

+Cxz (Sxz ( f )+Szx ( f ))+Cy z (Sy z ( f )+Sz y ( f ))

(G.10)

where we see that the flux noise spectral density can be written as the weighted sum of the spin spectral
densities for all combinations of basis components.



H
Derivation of the Flux vector F

First of all, we can determine the flux added by one single spin sn by considering the vector potential An that
a electron undergoes while traveling on a closed loop around the SQUID. We need to sum over all possible
closed loops

Φn =∑
C

∮
C

An(r ) ·d` (H.1)

If we suppose that the current flows entirely in the direction of the wire, we find that
∑

C

∮
C d`→Ð

d 3r JSC (r)
so that

Φn =
Ñ

d 3rAn(r) · JSC (r)

Itot
(H.2)

Now we find the equation for An using the spin-dipole expression for very small magnetic dipoles:

An(r ) =− gµsµ0

4π

sn × (r −Rn)

|r −Rn |3

By supposingΦn = F(R) ·sn and using basic vector calculus identities, we find the resulting expression for F.

F(R) = gµsµ0

4π
∇R ×

[∫
d 3r

JSC(r )

ISC|r −R |
]

(H.3)

For thin films, we can find JSC analytically [15] when b ≤λ,λ̄= λ2

bW ¿ 1 and ξSC ¿W where λ is the magnetic
penetration depth, b is the thickness of the film, W is the width of the film and ξSC is the superconducting
coherence length of the film. The solution reads

JSC(r ) = 2ISC

πbW (1−γ
√

2λ̃)
v̂ ×

 1p
2λ

e−
(1−λ̃−|u|)

2λ for (1− λ̃) < |u| É 1
1p

1−u2
for |u| É (1− λ̃)

(H.4)

where γ = 2
(
2−e1/2

)
/π = 0.2236 and u = 2x/W . Now we can find the values of F inside, outside and on the

wire surface. Using these values, we can find:

Fu(Ru ,Rw ) =− gµsµ0W

8π

∫ 1

−1
d p

{
JSC(p)

ISC
ln

[
(x −Ru)2 +R2

w

(x −Ru)2 + (Rw +b)2

]}
(H.5a)

Fv (Ru ,Rw ) = 0 (H.5b)

Fw (Ru ,Rw ) = gµsµ0W

4π

∫ 1

−1
d p

{
JSC(p)

ISC

[
arctan

(
Rw +b

x −Ru

)
−arctan

(
Rw

x −Ru

)]}
(H.5c)
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I
Derivation of the ensemble of spin

fluctuators PSD

We start by looking at a general formula for the single fluctuator spectrum

Ssi ng le = g (B̃)
Γi

Γ2
i +h(B̃)2(2π f −2π f0)2

(I.1)

where Γi are Γ↑,Γ↓ or Γav g , depending on use case, g (B̃) is any function of B̃ , and h(B̃) a function of B̃ such
that we can write Γi as one of the desired rates to integrate over. We suppose that the probability distribution
goes as P (Γi ) = A

Γi
and has a minimum and maximum flipping rate Γmi n and Γmax such that A = 1

ln
(
Γmax
Γmi n

) . We

then can solve for an ensemble of different fluctuators:

Sens

=
∫ Γmax

Γmi n

P (Γi )g (B̃)
Γi

Γ2
i +h(B̃)2(2π f −2π f0)2

dΓi = Ag (B̃)
∫ Γmax

Γmi n

dΓi

Γ2
i +h(B̃)2(2π f −2π f0)2

= A
g (B̃)

h(B̃)(2π f −2π f0)

[
arctan

(
Γmax

h(B̃)(2π f −2π f0)

)
−arctan

(
Γmi n

h(B̃)(2π f −2π f0)

)]
.

(I.2)

If the maximum (minimum) flipping rates are higher (lower) than typical frequencies h(B̃)2π f ,h(B̃) fZ , we
can take the limit[

arctan
(

Γmax

h(B̃)(2π f −2π f0)

)
−arctan

(
Γmi n

h(B̃)(2π f −2π f0)

)]
=π/2 to find

Sens ( f ) = π

2ln
(
Γmax
Γmi n

) g (B̃)

h(B̃)(2π f −2π f0)
(I.3)

For Szz , integrating over Γ↓ we have g (B̃) = 1
2cosh2(B̃)(1+exp(−2B̃))

and h(B̃) = 1
1+exp(−2B̃) and f0 = 0. We find that

Szz ( f ) = 1

ln
(
Γmax
Γmi n

) 1

2cosh2(B̃)(2π f )

[
arctan

(
Γmax (1+exp

(−2B̃
)
)

(2π f )

)
−arctan

(
Γmi n(1+exp

(−2B̃
)
)

(2π f )

)]
. (I.4)

Similarly for Sxx ( f ) with g (B̃) = 1
4

2
(1+exp(−2B̃))

, h(B̃) = 2
(1+exp(−2B̃))

, f0 = 2 fZ /2π, we find:

Sxx ( f ) =
(

1

4

)2 1

ln
(
Γmax
Γmi n

) 1

(2π f −2 fZ )

arctan

Γmax
(1+exp(−2B̃))

2

(2π f −2 fZ )

−arctan

Γmi n
(1+exp(−2B̃))

2
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Magnet use: issues and step-by-step

checklist

Since the installation of the AMI 430 Programmer and first uses, we have run into problems. There are three
main issues:

1. The programmer supplying a voltage to the current source without reason, sourcing a current and heat-
ing up the fridge until the He-mix is all evaporated.

2. The magnet current source ramping to the wrong current (by ∼ 1%)

3. Small oscillations of the current/field after ramping

The first problem is very pressing. We found that the source of these problem was the AMI430 programmer
applying a large undesired charging voltage to the current source. This was found to be feedback from the
AMI430 programmer to the magnet voltage measured by the magnet voltage probes. For example: if the mag-
net voltage probes measure a large voltage (meaning the current through the magnet changes rapidly), the
AMI430 tries to counteract this by supplying a countercurrent. A faulty probe could unintentionally cause a
big current in this way. Another failure mode is the voltage probe reading 0V while the current is ramping.
The AMI430 programmer might interpret this as the magnet not reacting, and as such tries to increase the
current by using a higher charging voltage, while the current is already increasing. The solution to this prob-
lem is disconnecting the voltage probes such that a high resistance is measured. The AMI430 recognizes this
and as a result, the probes will not be used for control.
The second problem: the unknown offset from the desired field can be traced back to the ’Paused’-mode of
the AMI430 programmer. This mode is intended as pausing ramping and keeping the current/field the same
as the last measurement. However, this mode creates an offset from the desired field ∼ 0.5mT, even while in
steady state on a field. The solution is to use the ’Paused’ mode as little as possible.
The last problem, the oscillations, can be found in Figure J.1. This can be attributed to the rate at which the
field is changing. The characteristic time of the magnet to reach its desired value is tRL = R

L where R and L
is the total resistance of the circuit and L the inductance of the magnet. We could find that by lowering the
ramping rate of the magnet, these oscillations disappeared.

To ensure a good initialization of the magnet system, I have prepared a small step-by-step checklist on ini-
tializing the magnets using the AMI 430 programmer and AMI power supply:

If the current lead of the AMI power supply are not yet connected to the fridge:
1. Make sure the magnet leads are disconnected , the power supply is off and the Persistent Switch Heaters
are off.
2. Turn on the AMI 430 Programmer, connect it using LAN and check the settings using the asserts in AMI
power supply init python file.
3. Turn off the AMI 430 programmer.
4. Connect magnet leads.

91



92 J. Magnet use: issues and step-by-step checklist

Figure J.1: Ramping the magnet from I = 4mA to I = 20mA. We see that at the end of the ramp, the current oscillates. This is due to the
RL-circuit having a delay (on the characteristic time scale R/L) and the AMI430 programmer trying to correct for it.

If the current leads are connected:
1. Make sure the magnet leads are connected, the power supply is off and the Persistent Switch Heaters are
off.
2. Make sure the voltage probes are not connected and feel an open (connecting them to the matrix module
on the ‘GND’ or ‘Open’ mode still makes a connection).
3. Turn on the AMI 430 Programmer, connect it using LAN.
4. Check the programmer settings using the asserts in ‘ AMI power supply init’ python file and see if they
compare to the datasheet.
5. Start up the data acquisition software (Magnet DAQ) supplied by AMI to get continuous programmer data
for better debugging.
6. Check if the Persistent Switch Heaters are switched from ‘Ground’ to ‘Measured’ on the IVVI rack.
7. With the persistent switch heaters still off, turn on the AMI Power supply.
8. Ramp to zero if necessary.
If this is the first time the persistent switch heaters are activated after condensation:
1. Turn on Persistent Switch Heater Z and wait until the fridge pressures are stable.
2. Turn off the Persistent Switch Heater Z and make sure the field is zero.
3. Turn on Persistent Switch Heater Y and wait until the fridge pressures are stable.
4. Turn off the Persistent Switch Heater Y and make sure the field is zero.
If we have already turned on the persistent switch heaters once after condensation:
9. Turn on both Persistent Switch Heaters one after another.
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