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Abstract
Efficient traffic forecasting is an important compo-
nent of modern traffic management systems, en-
abling real-time route guidance and traffic control.
Graph Neural Networks (GNN) have demonstrated
state-of-the-art performance in this domain due to
their ability to capture spatial and temporal depen-
dencies in complex traffic data. However, GNNs
typically require extensive historical data and are
highly dependent on the specific road structure of
the training region, posing challenges for their ap-
plication in areas lacking such data. This study ex-
plores the transferability of GNN models in traffic
forecasting, specifically how a GNN, trained in the
region with long-horizon historical data, performs
when applied to structurally different regional sce-
narios without historical data. The research inves-
tigates the impact of spatial differences between
regions on the model’s performance. The paper
examines multiple metrics for regional similarity
between training and transfer regions and shows
their correlation with the transferred model’s per-
formance.

1 Introduction
Modern traffic management systems require traffic forecast-
ing tools for effective work. Short-term traffic forecasting can
be used for real-time route guidance and traffic control [1].
The main function of traffic forecasting models is to predict
the future traffic situation from a few seconds to several hours
based on historical traffic data [2].

Innovative deep neural network technologies can achieve
good performance in traffic forecasting. Graph Neural Net-
works (GNN) show state-of-the-art performance in traffic
forecasting according to Jiang & Luo’s survey on traffic fore-
casting [3]. The study noted that GNN can be applied for var-
ious traffic forecasting tasks and maintain the best short-term
prediction performance due to GNN’s ability to capture both
spatial and temporal data dependencies. However, GNNs are
strongly dependent on the road structure of the training region
and require long-horizon historical data to train.

Collecting consecutive historical traffic data in the region
is a complicated and costly process. It includes creating a net-
work of sensors and their maintenance for a long period. The
collected data should also be clean, and contain a minimum
amount of incomplete or corrupted data, to make traffic fore-
casting effective. The transferable traffic forecasting model
can resolve the issue of long historical data collection for
model training. Transferability is the ability to gain knowl-
edge in one domain and reuse it in another domain [4].

Transferability in traffic forecasting involves model train-
ing on one traffic region and deploying it for traffic predic-
tion in another area. Effective transferability can help one
pre-trained traffic forecasting model be used on multiple traf-
fic regions without extensive direct training over each of the
regions.

This project investigates how a pre-trained graph neural
network model, originally developed for traffic forecasting of

a specific region, performs when applied to different regional
scenarios. The research explores the impact of GNN’s strong
dependency on regional spatial data on the model’s transfer-
ability.

The research includes the comparison of multiple common
traffic forecasting models. It uses Diffusion Convolutional
Recurrent Neural Network (DCRNN) [5] as the experiment
model. DCRNN is a well-performing GNN trained directly
on the spatial dependencies of the graph. It is also used in
multiple studies related to transferability in traffic forecasting
[6, 7].

This research paper explores the relationship between the
differences in graph representations of traffic networks and
the performance of the DCRNN model in these regions. It
uses multiple distance metrics between the adjacency matri-
ces of the graph as the measure for road network spatial dif-
ferences.

Insights from this research are helpful for the development
of more adaptable and transferable GNN models for traffic
forecasting in data-scarce regions. They are also useful for
GNN traffic forecasting model applications in data-scarce re-
gions.

The research question guiding this study is:
How does the GNN traffic forecasting model, trained with

long-horizon historical data from one traffic scenario, per-
form in regions lacking historical traffic data, and how are
these performance variations correlated with spatial differ-
ences among the regions?

The main research question is further divided into the fol-
lowing sub-questions:

• What is the performance of the GNN model in the traffic
forecasting of the training region?

• What is the performance of the same model transferred
to different unexplored regions?

• How does the structural difference between training and
transfer regions correlate with the model’s performance
in the transfer region?

The research finds that the model performance varies based
on the selected region. It also shows that the models with
a good performance over the training region often perform
badly in transferability tasks. It concludes that the structural
difference between training and transfer regions is weakly
correlated with the model’s performance.

The structure of the paper is as follows: Section 2 describes
the background of the research. It shows the related literature
and formally defines the problem. Section 3 describes the
methods used to complete the experimental work. It gives an
overview of used data and metrics. It also compares models
and describes the graph selection procedure. Section 4 ex-
plains the model training and transfer process and obtained
performance results. Section 5 describes the experiments ex-
ploring the correlation between regional structure and model
transferability. Section 6 reflects on the ethical aspects of the
research paper. Section 7 evaluates the obtained results and
discusses the limitations of the current work. Section 8 sum-
marizes the findings obtained during the research and gives
the potential future improvements.
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2 Background
This section gives an overview of the literature about traffic
forecasting, graph neural networks for traffic forecasting, and
transferability possibilities for GNNs. It also formally defines
the problem that is researched in the experimental work.
Related Work
Traffic forecasting is a longly-studied research area. Poor
traffic flow prediction is still one of the biggest issues in im-
plementing advanced traffic management systems [8].

Jiang and Luo [3] provide a comprehensive literature sur-
vey on traffic forecasting using GNNs. The authors describe
the similarities between traffic road structure and graph struc-
ture. They state that GNNs show state-of-the-art performance
on traffic flow prediction problems and many other traffic
forecasting problems. The paper also specifically declares
Diffusion Convolutional Recurrent Neural Network to be one
of the best-performing traffic forecasting models that success-
fully capture traffic data complex spatial and temporal depen-
dencies.

Li et al. [5] introduce DCRNN model architecture. They
also show the model’s performance on two traffic forecasting
datasets popular for benchmarking (METR-LA and PEMS-
BAY). The authors compare the model performance with
multiple previously known models (such as Long Short-Term
Memory (LSTM) [9], feedforward Neural Network (FNN)
[10]). According to the paper, the DCRNN model performs
better than the other models. However, several recent papers
have introduced better-performing models.

Shao et al. [11] describe the Decoupled Dynamic Spatial-
Temporal Graph Neural Network (D2STGN) model, which
shows better performance than DCRNN on the benchmark-
ing datasets. The authors introduce the problem of the previ-
ous model’s dependency on the static graph adjacency matrix,
which restricts the ability to represent complex road struc-
tures. The paper presents a dynamic graph learning block
that learns the transition matrices based on static, dynamic,
and time information in historical traffic data.

A recent study by Lablack and Shen [12] presents a
current state-of-the-art model for the METR-LA dataset -
Spatio-Temporal Graph Mixformer (STGM). However, the
D2STGN model slightly outperforms it on PEMS-BAY
dataset. The authors use similarity learning and transformer
architecture in the model to achieve the performance.

Jiang et al. [4] introduce the idea of transferability in neural
networks. The paper also gives a formal definition of transfer-
ability as a task. It also describes the main stages of transfer-
ability tasks in deep learning of pre-training, adaptation, and
evaluation. The current study follows the transferability steps
introduced in this paper: the model is firstly pre-trained on
the chosen dataset, the adaptation step involves domain adap-
tation to fit the pre-trained model, and the evaluation step is
based on model performance evaluation on the adapted do-
main.

Mallick et al. [6] explain the possibilities of transfer learn-
ing regarding traffic forecasting. They introduce a way to
make DCRNN transferable to other regions. They also com-
pare the performance of different transferred models in traffic
forecasting. They introduce the assumption that GNN predic-

tion performance is strongly related to the road sensor graph
structure regarding the transferability problem. The current
study aims to investigate this assumption and show the cor-
relation between the sensor graph structures and the perfor-
mance of the transferred model.

The current study is not performing the transfer learning
as it is described in the Mallick et al. paper [6], the train re-
gion is not divided into multiple subgraphs and trained on all
of them, to keep the training graph structure static and us-
able for comparison. It uses smaller training and evaluation
region subsets, due to data availability and to reduce model
training and testing times. However, the current study fol-
lows the other steps of data preparation, model training, and
evaluation, introduced in the paper. The obtained results are
also compared with the given by Mallick et al. [6] results in
Section 4.

Formal Problem Description
Traffic forecasting aims to predict traffic conditions for a
given time series. According to Li et al. [5], the traffic fore-
casting problem includes predicting the future traffic speed in
the region based on the previously observed traffic flow. The
traffic forecasting models take a sequence of historical traffic
signals from the region and map it to future signal predictions
for a specific amount of timestamps, called forecast horizon.

The traffic region is represented by a set of n speed-
detecting sensors placed on the region’s main road. The re-
gion can be described as a weighted directed graph G =
(V,E). V represents the set of sensors, and weighted edges E
represent the road distances between sensors in graph G. This
research will describe the traffic region graph as G = (V,W ),
where W ∈ Rn×n is a weighted adjacency matrix represent-
ing road distances between the sensors. Each row of the ma-
trix represents the outgoing distances from a specific sensor,
and each column vector represents the incoming distances to
that sensor.

The GNN models take the graph with observed sensor data
for T ′ historical timestamps as the input and produce the pre-
dictions for the T future timestamps. The model’s perfor-
mance is measured by the comparison of y = {y1, . . . , yT }
representing the ground truth values and ŷ = {ŷ1, . . . , ŷT }
representing the predicted values for each sensor. The mea-
surement metrics are described in Section 3. The formal de-
scription of the traffic forecasting model is based on the text
of the paper by Li et al. [5].

The GNN models can potentially be used in transferred
problem scenarios. The idea of transferability in traf-
fic forecasting is the possibility of training the model on
one set of sensors Gtrain and the model application on
one of the other geographically different regions Gtest ∈
{Gtest1 , Gtest2 , . . . , Gtestn}. Since GNN models operate di-
rectly on the graph values, it is assumed that the model’s
transferability performance is strongly dependent on the local
structure of the training graph Gtrain, according to Mallick et
al. [6]. This assumption is researched in the current study by
the exploration of the Gtrain and Gtest similarity impact on
the performance of the model. The results for the experiments
are shown in Section 5.

The correlation between the similarity of two graphs and
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the performance of transferred model can majorly improve
future model transferring in traffic forecasting. The similar-
ity between two graphs is measured using graph distance met-
rics D(Gtrain, Gtest), where D is one of the distance mea-
sures between weighted directed graphs. The performance is
measured in prediction error E(Gtrain, Gtest) of the model
transferred from the region Gtrain to the region Gtest. Since
GNN models operate directly on the Gtrain and are designed
to predict the traffic on Gtest = Gtrain, the hypothesis for
the general correlation, explored in this study, is defined in
Equation 1.

E(Gtrain, Gtest1) > E(Gtrain, Gtest2)

⇐⇒ D(Gtrain, Gtest1) > D(Gtrain, Gtest2)
(1)

The current study’s formal hypothesis can be described
as follows: the prediction error increases as the graph dis-
tance between the training and test regions increases, and
conversely, the prediction error decreases as the graph dis-
tance between these regions decreases.

3 Methodology
This section gives an overview of methods defined to do the
experimental work. It describes the used datasets, defines
metrics used to evaluate the results, explains the choice of
the GNN model, and shows the graph selection techniques.
3.1 Data preparation and dataset description
Two real-world traffic speed datasets were used in the exper-
iments.
Dataset for model training
The model was trained on part of the METR-LA dataset. The
METR-LA dataset consists of 207 average speed sensors on
the highways in Los-Angeles County, USA. It contains data
for the period from March to June 2012. There are 34272
timesteps with a 5-minute difference between each timestep.

Two subsets of the initial dataset were used for training.
The first subset consists of 50 sensors on the three highly used
highways in the region. (see Figure 1) This sensor set repre-
sents small-scale traffic patterns, such as road intersections,
and bigger-scale regional patterns, such as a circle formed by
multiple roads. The second subset comprises 10 sensors on
two highway intersections (see Figure 2). This sensor set only
represents small-scale traffic patterns. This sensor selection
helped significantly decrease model training times compared
to the full METR-LA dataset training. It also made it easier
to find similar regions suitable for model transferring, by in-
creasing the number of potential testing regions in the dataset
for transferring.
Dataset for transferring
The PEMS-BAY dataset was used to find the regions for
transferring. The PEMS-BAY dataset consists of 325 aver-
age speed sensors in the San Francisco Bay Area, USA. The
PEMS-BAY contains traffic data from January to June 2017.
The dataset consists of 52116 timesteps with a 5-minute rate
between them. The overall structure of the dataset is similar
to the METR-LA dataset, making it suitable for the model’s
transferability.

Figure 1: Map of Los Angeles: Orange markers are 50 training
sensors; blue markers are the full METR-LA dataset

Figure 2: Map of Los Angeles: Orange markers are 10 training
sensors; blue markers are the full METR-LA dataset

Data preprocessing
Both datasets were divided into 3 parts: the first 70% of the
dataset was used for the model’s training, the next 10% was
used for validation during the training process, and the last
20% was used to test model performance. The data division
can be observed in Table 1. The data division is based on the
paper of Mallick et al. [6] and Li et al. [5] and makes it pos-
sible to compare the model’s performance with the literature.

Only the testing part of the PEMS-BAY dataset was used in
the later experiments for model transfer. Using the full dataset
for transferability testing could potentially increase the ac-
curacy, however, it would significantly increase the testing
times. This paper decides to stay with the initial data setup
described in the paper of Mallick et al. [6] and use only the
subset of the PEMS-BAY dataset to decrease the computa-
tional complexity of the experiments.

Datasets contain missing values for multiple sensors (e.g.
zero or NaN values). However, removing this data from the
datasets is impossible due to the disruption of data conti-
nuity. This issue is fixed by using the performance metrics
with missing value masking. The performance metrics are
described more in Section 3.2
Distance dataset
Two datasets with road distances between METR-LA and
PEMS-BAY sensors are used for adjacency matrix creation.
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Dataset Timestep Period
METR-LA 34272 2012.03.01 - 2012.06.27

METR-LA train 23990 2012.03.01 - 2012.05.23
METR-LA validate 3428 2012.05.23 - 2012.06.04

METR-LA test 6854 2012.06.04 - 2012.06.27
PEMS-BAY 52116 2017.01.01 - 2017.06.30

PEMS-BAY test 10423 2017.05.25 - 2017.06.30

Table 1: Datasets used for model training, testing, and tranfering

The datasets represent a road distance from one sensor to
another. The distance datasets contain the driving distances
from each sensor to the sensors with a driving distance
smaller than approximately 20000 feet (6096 meters), creat-
ing a non-complete graph with the region structure. Farther
distances are represented with infinity value in the adjacency
matrix.
3.2 Evaluation metrics
Performance metrics
Mean Average Error (MAE) is used as the main performance
metric in the research. Additionally, Root Mean Squared Er-
ror (RMSE) is added to compare the performance of the mod-
els. MAE and RMSE are calculated as shown in Equations 2
and 3. Both metrics were adjusted to mask the missing values
in the data. The missing values are not considered in the per-
formance measurements, by excluding indexes of zero, nega-
tive, or not-a-number values from the Ω set.

MAE =
1

n

n∑
i=1

1

|Ω|
∑
i∈Ω

|yi − ŷi| (2)

RMSE =
1

n

n∑
i=1

√
1

|Ω|
∑
i∈Ω

(yi − ŷi)2 (3)

where:
n : amount of sensors
Ω : indices of observed samples
y : ground truth values
ŷ : predicted values
Masked MAE and RMSE metrics are used in many traffic

forecasting papers [3, 5] and can be used to evaluate perfor-
mance compared to related research. Lower values of MAE
or RMSE indicate a better model prediction performance.
Graph distance metrics
Graph distance metrics, introduced here, are used to mea-
sure the similarity between two road traffic regions in this re-
search. Graph distance metrics represent the difference in the
structure of two graphs. Lower distance values correspond to
the bigger similarity between the two graphs.

The distance between the weighted directed graphs can be
expressed as the matrix norm on the difference between this
graph adjacency matrices [13].

Multiple matrix metrics are used in this research to repre-
sent the distance between graphs. The primary metric used is
the Frobenius norm (see Equation 4). As described by Golub
and Van Loan [14] the Frobenius norm is one of the most pop-
ular matrix norms. This norm represents the Euclidean dis-
tance between two matrices. The research also uses the sum

of absolute values (see Equation 5) in the matrix. This metric
represents the Manhattan distance for matrices and is less im-
pacted by the outlier values in the matrix than the Frobenius
norm.

FroD(A,B) =

√√√√ m∑
i=1

n∑
j=1

|aij − bij |2 (4)

AbsSum(A,B) =

m∑
i=1

n∑
j=1

|aij − bij | (5)

where:
A,B : compared matrices
m,n : amount of rows and columns in the matrices
aij , bij : values of a and b in the row i and column j

The last metric used in the research is the cosine distance
between column and row vectors in two matrices. Cosine dis-
tance is the distance representation of cosine similarity. It is
often used to find the degree of similarity between objects,
represented as vectors [15]. Cosine distance measures an an-
gle between two vectors, where 0 is a similar vector, 1 is an
orthogonal vector and 2 is an opposite vector. Cosine dis-
tance can take values only from 0 to 1 when operated on non-
negative vectors.

The research uses the average of column-wise and row-
wise cosine distances between two matrices (see Equation 6),
comparing the similarity between incoming and outgoing dis-
tance vectors for each pair of sensors in two matrices.

CosD(A,B) =
1

2

(
1

n

n∑
i=1

1− Ai· ·Bi·

∥Ai·∥∥Bi·∥

+
1

m

m∑
j=1

1− A·j ·B·j

∥A·j∥∥B·j∥

 (6)

where:
Ai·,Bi· : the row vectors from matrices A and B
A·j ,B·j : the column vectors from matrices A and B

Correlation metric
Pearson correlation coefficient is used to measure the ob-
served correlation between graph distance and the model’s
performance in the research. Accordingly to Segwick [16],
the Pearson coefficient is a good representation of linear cor-
relations between two variables. The Pearson coefficient can
take values from -1 to 1, where -1 shows a strong negative
correlation, 0 means a lack of correlation, and 1 shows a
strong positive correlation.
3.3 Model selection
A wide variety of models can be used for traffic forecasting
problems. The survey by Jiang and Luo [3] describes Dif-
fusion Convolutional Recurrent Neural Network (DCRNN)
[5]. However, there are multiple innovative traffic forecasting
models, that were not included in a survey. Here is the com-
parison of DCRNN model with Decoupled Dynamic Spatial-
Temporal Graph Neural Network (D2STGN) [11] and Spatio-
temporal graph mixformer (STGM) [12] models introduced
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in Section 2 in terms of the current research questions.
According to Li et al. [5] DCRNN model is introduced

specifically to solve a traffic forecasting problem. The model
consists of diffusion convolutional layers that learn the pat-
terns in data based on spatial dependencies. Additionally,
recurrent neural network architecture is used to capture the
temporal dependencies of data. The combination of both ar-
chitectures makes it possible to learn complex dependencies
of traffic data and show reasonable performance.

D2STGN [11] architecture is based on the DCRNN model.
D2STGN uses a dynamic graph learning algorithm, that mod-
els dynamic relationships in traffic spatial data, based on his-
torical information. This feature helps to improve the model’s
performance compared to DCRNN but requires historical
data of the specific region for it.

STGM model [12] uses the convolutional layers to capture
spatial dependencies, together with a gated mechanism and
mixer layer to integrate information effectively. The model
uses a similarity estimator trained on historical data to ap-
proximate node contributions. This architecture leads to in-
creased performance and lower memory usage.

This paper opts to use the DCRNN model for experiments
on model transferability. Firstly, the DCRNN model applies
weights directly to a static sensor distance matrix, that can be
obtained from regions without the historical traffic data. The
other models use a dynamic approach to create the adjacency
matrix, which can be difficult in transferability research. Sec-
ondly, the DCRNN model was successfully used in the other
transfer learning research [6]. Due to this reason, the perfor-
mance results of this research can be compared with those
obtained in the literature. Lastly, DCRNN is a widely recog-
nized and well-documented model, ensuring that the method-
ology and implementation are well-understood and can be re-
liably replicated.

The biggest limitation of DCRNN usage is the impossibil-
ity of testing on the different size regions. The testing region
of DCRNN should consist of the same amount of sensors as
the training region of this model. The data zero padding was
introduced to address this issue in the paper by Mallick et
al. [6]. However, it will not be used in this research paper
due to the need to explore the similarity between training and
transfer regions.
3.4 Graph selection
Random graph selection
Random sensor set generation is one of the easiest approaches
for selecting traffic network regions. This research uses a
pseudo-random generator function to choose the fixed-size
random subgraph from the original graph.

Random graph selection is a performance-efficient and eas-
ily implementable approach. It helps to create a large amount
of test regions, so the average performance of the model can
be tested effectively. However, this approach mostly gener-
ates sparse datasets with large distances within the sensors. It
can not create graphs with some specific required structure.
Simulated annealing selection
Another approach for graph selection is based on the search
for graphs with specific parameters. The current research sce-
nario involves searching the graphs with various graph dis-

tances to the model training graph for deeper research of the
correlation between transfer graph distance to the training
graph and the transferred model performance. However, the
large search space makes it impossible to use classical search
algorithms to select graphs with a maximally wide distance
variation.

The current study uses a simulated annealing algorithm to
search for structurally different graph generation. Simulated
annealing (SA) [17] is the optimization algorithm introduced
to find the global optima of the cost function. It iteratively
accepts or rejects neighbor solutions with a certain probabil-
ity. The probability is based on the difference in previous and
next solution costs.

The distance between the target and searched graphs is
used as the explored cost function in the current study sce-
nario. The graphs with the difference in one sensor are as-
sumed to be the neighbor graphs. This makes searching for
the graphs with the possibly best and worst distances possible
using the SA algorithm.

This research introduces the Bucketed Simulated Anneal-
ing (BSA) approach to select the graphs with a wide variation
of distances to a target graph. The SA algorithm is limited to
searching only for minimum values of the function, because
of that the modified version of SA is introduced in this study.
The BSA algorithm divides the range of cost function values
into smaller, similarly sized ranges (buckets) and uses the SA
approach to search for the graph in each bucket. For this sce-
nario, the cost function for simulated annealing is adjusted
to equal the difference between the distance and the closest
value in the required range (see Equation 7).

C(Gtest) =


|D(Gtrain, Gtest)− rmin|, if D < rmin

|D(Gtrain, Gtest)− rmax|, if D > rmax

0, otherwise
(7)

where:
D(Gtrain, Gtest) : graph distance between target graph

and test graph
rmin : minimum value in the bucket
rmax : maximum value in the bucket
C : cost of the solution

4 Model training and transfer
This section describes the setup of experiments to train and
transfer the GNN model. It also shows the performance re-
sults of the model in the training region and transferred into
other areas.
4.1 Model training
This research uses PyTorch 2.3.01 implementation of
DCRNN model2. Models were trained on two datasets dis-
cussed in Section 3. Delft University of Technology super-
computer was used to train the models. It uses Intel XEON
E5-6448Y 32C 2.1GHz CPU and NVIDIA Tesla A100 80GB
GPU for computations. The models were trained with the pa-
rameter specification described in the paper by Li et al. [5],

1Available at: https://pytorch.org/
2Available at: https://github.com/chnsh/DCRNN PyTorch

5

https://pytorch.org/
https://github.com/chnsh/DCRNN_PyTorch


Dataset MAE RMSE
Full dataset 3.60 7.59

50-sensor subset 2.92 6.43
10-sensor subset 4.75 14.56

Table 2: Model performance for 1 hour predictions on sensors with
historical data in METR-LA area

Model MAE RMSE
STGCN 6.53 10.07

FC-LSTM 4.69 8.48
GMAN 4.05 7.57
DCRNN 3.3 6.91

50-sensor subset DCRNN 4.74±0.02 9.96 ±0.03
10-sensor subset DCRNN 3.75±0.04 7.78±0.07

Table 3: Transfered model performance on sensor sets in
PEMS-BAY. The first 4 rows represent models trained on full

dataset. The last 2 rows represent the average performance of the
model tested on subsets of the dataset with the standard error

which proved to be optimal for this model for traffic forecast-
ing.

The model performance was tested on the METR-LA test-
ing dataset and performance was compared to the results
shown in the paper by Li et al. [5]. Table 2 shows the model
performance on the full dataset obtained from the paper and
the model performance on subset graphs obtained during the
experimental work. The model performs best on the 50-
sensor subset. This can be due to the strong dependencies
between the sensors and good spatial representation of the
road network. The model’s performance on the smaller re-
gion is much lower, due to the lack of regional information
from neighbor nodes.

4.2 Model transfer
The model’s performance was tested on random sensor sets
from the PEMS-BAY testing dataset to check the model’s
general transferability. The sensor sets were chosen to have
the same amount of sensors as the training region of the
model. due to the limitation of DCRNN described in Sec-
tion 3.3. 200 random graphs were taken from the San Fran-
cisco Bay Area for each scenario and model performance was
tested on the graphs.

The observed results were compared with the information
provided by Mallick et al. [6]. The study by Mallick et al.
shows the results for the models trained on the full LA dataset
and transferred to the full PEMS-BAY dataset. The compari-
son with current research models can be observed in Table 3.
The error of this research model is given as the average error
for 200 random graphs. Both subset models underperform
compared to the DCRNN model trained on the full METR-
LA dataset and tested on the full PEMS-BAY dataset, yet they
still outperform several other models. The difference in per-
formance can happen because DCRNN learned more global
traffic patterns from the bigger dataset.

The model trained on a smaller subset outperforms the
model trained on a larger sensor set in the transfer regions.
This can occur because the 50-sensor subset is strongly cor-
related, causing the model to learn specific regional data pat-
terns that do not generalize well to the other regions and harm

the predictions. Conversely, the smaller subset model learned
primarily individual sensor behavior without relying on a par-
ticular graph structure, which helps the model to perform bet-
ter in transfer problem scenarios.

As an example, Figure 3 compares two model predictions
for one specific sensor. The 10-sensor model can recognize
some major traffic changes. However, the 50-sensor model
shows large prediction fluctuations and recognizes incorrect
traffic patterns. This pattern repeats for most other time-
frames and sensors, providing insights into overall model per-
formance values.

Figure 3: Comparison of DCRNN predictions using 10 sensors
(top) and 50 sensors (bottom) for a specific sensor, showing ground

truth (blue) versus predictions (red)
(Dataset: PEMS-BAY; Sensor: 404586; Timeframe: 4500-5000)

5 Correlation of Sensor Structure and Model
Performance

The correlation between the transfer region structure and the
model’s performance is explored here. Multiple metrics de-
scribed in Section 3 are used here as the metrics for the dis-
tance between the model’s training region and transfer region
and will be later mentioned as graph distance.

The DCRNN model is trained on the normalized version
of the graph adjacency matrix, where far-away distances are
set to 0 and closer distances result in higher values up to 1.
Such matrix is created using Gaussian kernel and is further
described in the paper by Li et al. [5]. However, this ma-
trix normalization does not fully represent the graph’s ad-
jacency matrix. In this research, the non-normalized adja-
cency matrices of the graphs are used to compute the graph
distance as well. The adjacency matrices of non-complete
graphs have infinite values representing non-connected ver-
tices. The masks of 0 - as the minimum value in distance
datasets, 20000 - as the approximate maximum value of dis-
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Metric Mask Correlation ± SE
CosD 40000 0.129 ± 0.061
CosD 20000 0.102 ± 0.055

AbsSum 0 -0.028 ± 0.030
FroD 0 -0.037 ± 0.026

AbsSum normalized -0.051 ± 0.057
CosD normalized -0.078 ± 0.030
FroD normalized -0.089 ± 0.046

AbsSum 40000 -0.121 ± 0.100
FroD 40000 -0.128 ± 0.104

AbsSum 20000 -0.128 ± 0.106
FroD 20000 -0.142 ± 0.112
CosD 0 -0.192 ± 0.100

Table 4: Correlation between graph distances and model
performance for randomly selected transfer graphs (average

between two models)

tance datasets, and 40000 - as the twice bigger value than the
maximum value, are used for infinite distance values. This
makes it possible to use graph distance metrics, defined in
Section 3.2, in the later graph comparison.

The choice of mask value influences the calculated dis-
tance metrics. Smaller mask values (like 0) might lead to an
underestimation of distances, while larger mask values (like
40000) increase the impact of missing values on the overall
distance values. This research tests 3 possibilities of mask
values. However, the effect of the chosen mask on the graph
distance and model performance should be further examined
in future work.
5.1 Correlation on random graphs
The correlation values between the model’s performance and
graph distance metrics were checked on the 200 randomly
selected graphs for each model. Table 4 show the average
correlation for each of the metrics between 2 models. Full
results can be observed in Appendix A.

Most correlation values are close to 0, meaning no strong
correlation is observed. The possible reason is that most test-
ing graphs are not similar to the training graph and show a
large distance metric. The model should be tested on the
graphs with different ranges of graph distance to investigate
the correlation.

It can be observed, that most of the correlations are nega-
tive, meaning that this metric recognizes incorrect graph sim-
ilarities. The model performs better on the graphs that are
less similar to the training region by such metrics.
5.2 Correlation using simulated annealing
This research takes 4 metrics with the most promising corre-
lation, based on Table 4, to further investigate their correla-
tion with performance.

The BSA approach is used for each metric to find 50 graphs
with diverse distances. Firstly, the approximate maximum
and minimum values of the distance between all the graphs
are found using the standard simulated annealing approach.
After, the distance range is divided into 50 buckets and BSA
is used to find a graph within each of the buckets. This results
in 50 graphs with a wide difference in graph distance to the
training graph.

The simulated annealing parameters were adjusted for each

Metric Mask 50-sensor model 10-sensor model
CosD 40000 0.4 0.35
CosD 20000 0.23 0.11

AbsSum 0 -0.37 -0.24
FroD 0 -0.55 -0.32

Table 5: Correlation between graph distances and performance of
the 50-sensor and 10-sensor models for the transfer graphs selected

using BSA

metric using a manual trial-and-error approach. Parameter
optimization has small importance in our scenario because
bucketed simulated annealing will perform a local search in
the worst case. This gives a reasonable algorithm perfor-
mance for our scenario even with a local search approach.
However, all the parameters are given in Appendix B for the
result reproducibility.

The results for 4 different metrics are shown in this re-
search. The cosine distance with 20000 and 40000 masks
were researched, as the only metrics with a positive corre-
lation on random graphs. Frobenius distance and Absolute
Sum with 0 mask were explored, as the metrics with close to
0 correlation.

Table 5 shows the correlation values for the researched
metrics. All the obtained results can be explored visually in
Appendix C.
Cosine distance
The results, observed in Table 5, show that the cosine dis-
tance metric performs the best compared to other metrics,
especially with a 40000 mask. The cosine distance is the
only metric showing a positive correlation. This suggests,
that the model’s performance improves as the graph distance
between the training and transfer regions, measured by cosine
distance, decreases.

However, the obtained correlation values are weak to mod-
erate based on Turney [18]. The strong dependency also can
not be observed based on data plots shown in Figure 4 and
Figure 5. There is also a big variation in the performance of
the graphs with a small graph distance to the training region.

Figure 4: Correlation between graph distance(measured in CosD
with mask 40000) and performance of the 10-sensor model

Other metrics
The analysis of other metrics, including Frobenius distance
and the Absolute Sum distance, showed negative correlations
with model performance. The full results can be observed in
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Figure 5: Correlation between graph distance(measured in CosD
with mask 40000) and performance of the 50-sensor model

Appendix C. This indicates that the metrics are not suitable
for the transferability measure in traffic forecasting. The neg-
ative correlations imply that as the graph distance increases,
indicating a greater structural difference between the train-
ing and transfer regions, the model’s performance improves,
which disapproves the proposed hypothesis.

The analysis of the plots reveals an absence of a strong cor-
relation between the distance to the training region and model
performance. The plots show high variability in model per-
formance across the graphs with similar distances, suggest-
ing that regional differences do not consistently impact the
model’s effectiveness.

6 Responsible Research
In conducting this research, several ethical considerations and
measures were taken to ensure research trustworthiness. This
section describes the concerns ensuring that this study’s con-
tributions to model transferability in traffic forecasting are re-
liable, valuable, and ethical.

6.1 Data privacy
Data privacy is an important aspect of the research. The re-
search adheres to data privacy standards by using anonymized
and aggregated traffic data, thus respecting individuals’ pri-
vacy and adhering to ethical guidelines for data usage. The
primary datasets, METR-LA and PEMS-BAY, consist of pub-
licly available traffic data collected from sensors on public
roads, ensuring no personally identifiable information is in-
volved.

6.2 Research reproducibility
Reproducibility is a key aspect of responsible research, and
this study has taken several steps to ensure that the meth-
ods and results can be reliably reproduced by others. De-
tailed descriptions of the datasets, data preprocessing steps,
and experimental setup are provided in Section 3 and Sec-
tion 4, allowing other researchers to replicate the study. The
use of the publicly accessible and well-documented model,
such as the DCRNN model implementation in PyTorch 3,
further supports reproducibility. All code used for data pro-
cessing, model training, result collection, and evaluation is

3Available at: https://github.com/chnsh/DCRNN PyTorch

made available through a public GitHub repository4, promot-
ing transparency and enabling result verification.
6.3 Research integrity
Integrity in the research is essential for ensuring the trust and
reliability of findings. The study adheres to honesty, trans-
parency, independence, and responsibility, as outlined in the
Netherlands Code of Conduct for Research Integrity [19].
The findings are reported truthfully, throughout the study, us-
ing rigorous and justified methods, and disclosing potential
conflicts of interest. Upholding these standards helps to pre-
vent harm and promotes a culture of mutual trust among re-
searchers and the public.

7 Discussion
This section discusses the results of the presented experi-
ments and points out the limitations of the research.
7.1 Results of the study
The performed experiments explore the transferability of
GNN for traffic forecasting. The study shows the perfor-
mance of DCRNN model in transferability tasks and is tested
on multiple structurally different regions. Two DCRNN mod-
els were trained on size and structurally different sensor sets
to make the research less specific on the training set.

The models were trained on the different subsets of the
METR-LA dataset and the performance was tested to answer
the first subquestion of the research. Accordingly to Section
4.1 it can be concluded, that the model performance depends
on the chosen sensor set and performs the best on the dataset
with the strong spatial dependencies when tested in the same
region.

The two trained models were transferred to the random
graphs from another dataset in the Section 4.2. It can be ob-
served that the smallest model (10-sensor) performs the best
in transferability, despite showing the worst performance in
the direct learning task. It can be observed, that the model
trained on the less spatially correlated region performs the
best in transferability tasks because it avoids overfitting to
specific spatial patterns of the training region.

The next experiment explores the correlation between the
transfer region distance to the training region and the model’s
performance in those regions. It shows the regional spatial
structure metrics that can be correlated with the model per-
formance on that region data. It can be observed that most of
the metrics are not useful in terms of transferability and show
a negative correlation with the model performance.

The cosine distance is the only metric that showed a pos-
itive correlation. However, the observed weak to moderate
correlation and the diversity in model performance for the re-
gions with similar metric values show a small dependency of
the model’s performance on that metric. It is suggested that
the usage of this metric for GNN transferability in traffic fore-
casting should be explored more in later deeper research.

As it can be observed, the correlation varies based on the
selected metric. Other graph distance metrics can be re-
searched in the future, for the possible findings of the better-
performing metrics. The variety of different matrix distance

4Available at: https://github.com/ikrvc/dcrnn transferability
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metrics [20] can be explored in further research.
7.2 Limitations
The current study was limited in exploring the transferabil-
ity due to the short time frame of the research and limited
access to computing power. The research was performed in
10 weeks, limiting the possibility for extensive experimen-
tal work and literature research. The long access queues to
the computation power on DelftBlue supercomputer and the
high computational complexity of DCRNN model limited the
amount of practically performed experiments and the size of
the chosen datasets.

Due to the limitations discussed here, the experiments were
performed only on two trained models and smaller datasets.
A larger number of models could give a greater confidence
level and generalizability of the results and derived conclu-
sions. Not all the metrics, shown in the Appendix C, were
explored using the simulated annealing approach due to the
shortage of time and complexity of computations. However,
the four most promising metric configurations were analyzed
and described during the research. A deeper exploration of
metrics and mask values could help to give more confidence
in the conclusions.

8 Conclusions and Future Work
This paper explores the transferability of GNN in traffic pre-
diction tasks. DCRNN model is used for the paper as one
of the most suitable and researched GNN models for trans-
ferability. The study examines the model’s performance
within the training region and evaluates its effectiveness when
applied to a different regional context. Finally, the paper
presents the correlation of the model performance and the dis-
tance between the train and transferred traffic regions.

During the model training step, it can be noticed, that the
model performance varies based on the selected training re-
gion. The model performs best in the region with a strong de-
pendency between sensors, which supports the general idea
of GNN’s ability to capture regional spatial patterns.

However, in transfer scenarios, the model with a smaller
correlation between sensors shows better performance. It can
be concluded that the model is learning spatial patterns in
the region, which can potentially be harmful for transferred
model predictions. This supports finding the graph metrics
that will reveal useful spatial patterns and be valuable in trans-
fer domain adaptation.

Diverse graph distance metrics were explored to identify
the potential of their usage for the model transferability. This
study concludes that most metrics, such as Frobenius distance
and Absolute Sum distance, can not identify the required pat-
terns and show a negative correlation with the model perfor-
mance. Onky the cosine distance metric showed a positive
correlation with the model performance, making it potentially
useful for future transferability tasks in traffic forecasting.
However, the observed correlation was weak to moderate, so
it can not be presented as a reliable metric.

The observed correlation between graph distance and the
model’s performance disproves the proposed hypothesis of
positive correlation. The metrics mostly capture incorrect
regional spatial patterns or are unrelated to performance. It
shows that the approach of using the more generally trained

model, as described in the paper by Mallick et al. [6], will be
more effective in transferability tasks than the domain adapta-
tion based on graph distance metrics. However, the proposed
hypothesis can be researched more deeply by examining other
possible metric configurations in future work.

The future work for the full exploration of model trans-
ferability will include (1) training and testing the model for
different datasets and regional scenarios to research the gen-
erality of this research findings (2) exploration of all the pro-
posed metrics configurations using the simulated annealing
approach and (3) exploration of other possibilities for the
mask values and graph distance metrics to make extensive
research of a metric with a strong positive correlation possi-
bly, (4) deeper exploration of cosine distance between graphs
as the transferability measure.
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Appendices

A Random graph correlation
Metric 50-sensor model 10-sensor model Average ± SE

Frobenius with 0 mask -0.011 -0.063 -0.037 ± 0.026
Frobenius with 20000 mask -0.030 -0.254 -0.142 ± 0.112
Frobenius with 40000 mask -0.024 -0.232 -0.128 ± 0.104
Frobenius with normalized

matrices
-0.134 -0.043 -0.089 ± 0.046

CosD with 0 mask -0.092 -0.292 -0.192 ± 0.100
CosD with 20000 mask 0.047 0.156 0.102 ± 0.055
CosD with 40000 mask 0.068 0.190 0.129 ± 0.061

CosD with normalized matrices -0.108 -0.048 -0.078 ± 0.030
AbsSum with 0 mask 0.002 -0.058 -0.028 ± 0.030

AbsSum with 20000 mask -0.022 -0.234 -0.128 ± 0.106
AbsSum with 40000 mask -0.021 -0.221 -0.121 ± 0.100

AbsSum with normalized matrices -0.108 0.006 -0.051 ± 0.057

Table 6: Correlation between graph distances and performance of the 50-sensor and 10-sensor models for randomly selected transfer graphs

B Bucketed simulated annealing (BSA) parameters
Metric Graph

size
(number

of
sensors)

BSA
Iterations

BSA
Tempera-

ture

BSA
Cooling

Rate

Minimum value Maximum value

Frobenius with 0 mask 50 10000 10000 0.95 233343.36 346821.4
CosD with 20000 mask 50 10000 100 0.95 0.097311556 0.249699056
CosD with 40000 mask 50 10000 100 0.95 0.284320593 0.472720206
AbsSum with 0 mask 50 10000 10000 0.95 8778837 15218598

Frobenius with 0 mask 10 10000 10000 0.95 31184.63 77306.36
CosD with 20000 mask 10 10000 100 0.95 0.039547563 0.485200286
CosD with 40000 mask 10 10000 100 0.95 0.069766998 0.456905723
AbsSum with 0 mask 10 10000 10000 0.95 176105.9 655629.5

Table 7: Parameters for BSA graph search for each metric

C Correlation graphs for explored graph distance metrics



(a) CosD (20000 mask) with 10-sensor model (b) CosD (20000 mask) with 50-sensor model

(c) CosD (40000 mask) with 10-sensor model (d) CosD (40000 mask) with 50-sensor model

(e) FroD (0 mask) with 10-sensor model (f) FroD (0 mask) with 50-sensor model

(g) AbsSum (0 mask) with 10-sensor model (h) AbsSum (0 mask) with 50-sensor model

Figure 6: Correlation between graph distances and performance of the 10-sensor (left column) and 50-sensor (right column) models for the
graphs selected using BSA for transferring
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