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Abstract: Mobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and
accurate acquisition of the urban environment. From the generated point clouds, street furniture
can be extracted and classified without manual intervention. However, this process of acquisition
and classification is not error-free, caused mainly by disturbances. This paper analyses the effect of
three disturbances (point density variation, ambient noise, and occlusions) on the classification of
urban objects in point clouds. From point clouds acquired in real case studies, synthetic disturbances
are generated and added. The point density reduction is generated by downsampling in a voxel-
wise distribution. The ambient noise is generated as random points within the bounding box of
the object, and the occlusion is generated by eliminating points contained in a sphere. Samples
with disturbances are classified by a pre-trained Convolutional Neural Network (CNN). The results
showed different behaviours for each disturbance: density reduction affected objects depending
on the object shape and dimensions, ambient noise depending on the volume of the object, while
occlusions depended on their size and location. Finally, the CNN was re-trained with a percentage of
synthetic samples with disturbances. An improvement in the performance of 10–40% was reported
except for occlusions with a radius larger than 1 m.

Keywords: mobile laser scanning; mobile mapping systems; LiDAR; occlusions; point density; noise

1. Introduction

Although point clouds have proven to be a data source with many advantages, they
also have some limitations that cause undesired behaviour in processing algorithms. The
main disturbances in data acquisition are strong point density variations, noise, and
occlusions. These disturbances reach such an extent that a data pre-processing phase is
usually required to correct anomalies by density reductions, outliers and hole filling [1].

Point density is one of the main characteristics to consider for each point cloud [2]. The
average density and the point distribution vary according to the type of laser scanning [3].
The density defines the number of points in a specific space and it limits the measurement
and detection of the elements. Many authors prefer to work directly with high-density
point clouds, ensuring there are always enough points to identify the desired targets [4].
However, the density in the point cloud is not constant, since point density varies with the
distance to the laser and with the geometry of the environment. In [5], the authors reported
a variation up to 41 times in point density between the highest and the lowest density
areas of a Mobile Laser Scanning (MLS) acquisition. The distance between points is a
determining factor in point cloud processing. Segmentation or classification methods focus
the feature extraction in point-to-point relations, either by nearest neighbours, spherical
neighbourhood, raster, voxels, or convolutions [6–11]. When extracting features, it is
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important to consider both the point density to be handled and the possible variations to
give robustness to the proposed method.

Noise is another common disturbance in point clouds, although it does not appear as
significant as point density. Isolated points of noise can be found in the acquisitions due
to isolated reflections. Besides, a slight amount of noise may appear on the surface of the
objects depending on the LiDAR quality [12]. Noise does not affect all methods equally,
for example, methods based on edge detection are more sensitive than those based on
region growing [13]. To deal with noise, many authors design and implement methods
for denoising and removing outliers [14,15]. Some methods are especially robust and filter
high-density noise, specific to certain atmospheric and meteorological conditions, such as
fog, rain, or airborne dust [16–18], even though usually in those environments, acquisitions
are no longer performed. Another option is to design or adapt the methods so that they
can deal with a certain amount of noise in the point cloud [19].

Occlusions are a geometrical problem related to the visibility of objects in the envi-
ronment. The most common occlusions are related to occlusions between several objects
(one object occludes another), but also an object can partially occlude itself (most of the
time, one side of the object is not acquired). Although occlusions are a common problem
in all environments [20], there are no specific datasets for working with occlusions. In
autonomous driving, the occlusions considered most important to avoid collisions are
those affecting pedestrians, objects already with few acquired points [21]. Few authors who
focus on this problem choose to generate synthetic occlusions. Zachmann and Scamati [22]
generated occlusions in Aerial Laser Scanning (ALS) data to detect and classify targets
under trees. Despite the great difficulty of considering occlusions in point cloud process-
ing, Habib et al. [23] designed a method to classify objects based on the interpretation of
occlusion in ALS data.

Generally, works that assume the existence of disturbances, analyse them and take
advantage of them achieve better results [5,24]. Although normally, it is easier and more
straightforward to work with undisturbed data to show the advantages of the proposed
methods in ideal situations, without anomalies that worsen the perception of the results.

The objective of this work is to evaluate how these three disturbances (point density
variations, noise, and occlusions) affect the classification of urban objects in point clouds.
The classification method is based on the generation of multi-views from point clouds,
coupled with the use of a Convolutional Neural Network (CNN). Prior to the conversion
of the point cloud into images, synthetic disturbances are generated automatically with
different degrees of intensity. Finally, the CNN is re-trained with new objects with synthetic
disturbances and the results are compared. To the best of the authors’ knowledge, there
are no other works that generate and analyse the effect of these three disturbances in a
classification method based on multi-view and CNN. The major contributions of the work
are listed below:

• Automated generation of point density variation and noise addition at different
intensity levels.

• Automated generation of occlusions at five positions with different sizes.
• Analysis of accuracy and confusion in ten classes of urban objects: bench, car, lamppost,

motorbike, pedestrian, traffic light, traffic sign, tree, wastebasket, and waste container.
• Analysis of misclassifications by re-training the CNN with synthetic errors.

This paper is structured as follows. In Section 2, the method for image generation,
classification and automated disturbance generation is explained. In Section 3, the case
study is presented, and the results are analysed and discussed. Section 4 concludes
this paper.

2. Method

The method for the classification of the objects in point clouds used in this work is
based on multi-view extraction. Multiview-based methods require lower computational
cost and enable further data augmentation than working directly on unordered point



Remote Sens. 2021, 13, 2135 3 of 20

clouds, while taking advantage of the wide variety of convolutional neural network (CNN)
architectures available [25].

Since disturbances are inherent to the acquisition of point clouds, and the generation of
disturbances in this work is performed on the point clouds, even if they are later converted
to images. The workflow of the experiment is shown in Figure 1. Disturbances can also
influence the extraction and individualisation of objects; however, the behaviour of other
algorithms in the presence of disturbances will not be analysed in this paper, as we focus
exclusively on classification.
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Figure 1. Workflow of the experiment.

2.1. Image Generation

The generation of the images is adapted from [26]. The selected view of acquired
objects to project in an image is the lateral view, as it provides more information and im-
proves the success rates in the classification. In addition, only the lateral view is used to the
maximum extent to improve visualisation and classification, and to make the disturbances
more visible and not hidden by overlapping points. To generate the images in maximum
lateral perspective, the point cloud object P(PXPYPZ) is rotated on the Z-axis based on the
maximum distribution of points in the XY plane. The orientation of the points calculated
by Principal Component Analysis is applied on the PX and PY components (Equation (1)).
From the eigen vectors, the angle of rotation α between the PX and PY components is
calculated (Equation (2)). Then, α is used to generate a 3D rotation R matrix over Z, which
is applied to the input object point cloud P (Equation (3)).

cov
(

PXY
)
=

[
c11 c12
c21 c22

]
= PXY PXY

T

n−1

Where PXY = PXY − mean(PXY)
(1)

α = atan(c12/c11) (2)

Protated = PR = P

 cos α − sin α 0
sin α cos α 0

0 0 1

 (3)

Once the object point cloud is rotated so that its maximum extent is shown on the
Y-plane, the image is generated on the Y-plane. The PY component (indicative of depth) of
the rotated point cloud is removed. A grid of cells (pixels) is generated on which the cloud
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points are structured. The size of the grid is defined by the size of the CNN input. The
generated image is a binary image: black in the pixels whose cells contain at least one point
and white in the pixels whose cells are empty. Although various cloud characteristics (such
as intensity) can be extracted to generate a greyscale image, binary images are generated
instead of greyscale images because from [26] it is concluded that the most important factor
for the classification of the point cloud is the silhouette and not so much the colour. The
result is an image where the silhouette and the object are well defined and contrasted
against the white background. The process of image generation is illustrated in Figure 2.
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2.2. Point Density Reduction

Point density depends on the proximity and orientation of the object to the MLS;
therefore, different urban objects have different densities even if they are acquired with
the same MLS device. Density reduction is applied on each point cloud before generating
the images. Before applying a density reduction, the current average point density must
be known to establish values for effective density reduction. In this article, density is
calculated as the average point-to-point distance [27] between the k = 5 nearest points with
the knn algorithm, assuming regular scanning patterns.

Point density reduction is performed using the 3D grid method or voxelization [28].
The input point cloud is enclosed in a bounding box, which is divided into 3d cells of side l,
with equal width, depth, and height. The value of l is variable and increases, as the distance
between output points and point density decreases. Once the input cloud is structured in a
3D grid, the points are filtered by cell. If the cell contains one point, this point is retained.
If the cell contains more than one point, the one nearest to the cell centre is selected. In the
case of empty cells, no points are selected [29].

2.3. Noise Addition

Ambient noise is produced by airborne dust or rain. This noise is measured as in the
previous section. The noise point density is calculated as the average distance from a point
to the five nearest points with the knn algorithm. However, the generation of noise points
is performed by the number of points enclosed in the bounding box object. Since each
object has a different volume and the points are generated randomly, it is very difficult to
generate noise of an exact point density value d for the test. For this reason, an iterative
noise generation process is chosen, generating an initial number of points n which is then
adjusted (Figure 3).
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Before generating any number of noise points, a test is conducted to establish a
relationship between the number of points and the point density in 1 m3. For 500 points,
an average distance of 0.115 m is measured with k = 5. The process starts by calculating
the bounding box of the object to obtain the volume. From the volume, n points are
generated and the average distance between k = 5 nearest neighbours is calculated. In case
of coincidence of the desired and calculated point density (±10%), the noise points are
added to the object point cloud and the image is generated. In case the current density is
outside the threshold, the number of points is increased/decreased by 10% accordingly.
The process iterates until the point density is within the threshold.

2.4. Occlusion Generation

Occlusions are caused by the existence of an object between the laser and the surface
to be acquired. The occluding element can be an object other than the occluded object, or
the acquired object itself (hidden unacquired side of the occluding object). The occlusions
are based on two variables, location and size, unlike the previously generated disturbances
which only depend on one variable.

Location is relevant as it can erase key shapes of the object even if the occlusion is
small. Occlusion location describes the area or part of the object where the occlusion is
located. To uniform the possible locations in urban objects with large geometry variations,
it is decided to locate in each object five different occlusion origins on which occlusions
of different sizes are generated. The authors assume that five occlusion origins cover
most of the object to distinguish occlusion effects. The location of the occlusion origins
is selected using the k-means algorithm applied to the object cloud [13]. The k-means
algorithm clusters the point cloud into k groups where each point belongs to the group
whose mean value is the nearest. The central point of each group is selected as the origin
of the occlusion.

The size of the occlusion indicates how much of the object is hidden. The generation of
the occlusion is performed as a sphere from each origin calculated above. Therefore, from
the cloud of the input object, points with a radius to the origin smaller than r are detected
and removed. Even though this method generates exclusively round-shaped occlusions in
the image projection, for the CNN the loss of object information is more relevant than the
shape of the occluded object’s boundaries.

3. Experiments
3.1. Dataset and Pre-Trained CNN

The dataset was composed of 200 objects acquired by LYNX Mobile Mapper of
Optech [30] in the cities of Vigo (Spain) and Porto (Portugal). In order not to propa-
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gate errors from the process of object segmentation and individualisation, the objects were
manually extracted from the point cloud. However, there are numerous techniques for
the extraction of objects from the urban point cloud. One option is to detect ground and
façade planes to remove the corresponding points and break the continuity between objects;
then, the objects are individualised with connected components [26]. Other options are to
structure the cloud into super voxels [31], to cluster points with superpoint graphs [32]
or to implement techniques based on Deep Learning [33]. The ten selected classes were:
bench, car, lamppost, motorbike, pedestrian, traffic light, traffic sign, tree, wastebasket,
and waste container. A total of twenty objects were selected from each class. Ten objects
per class were used for the generation of disturbances and analysis of results. All selected
objects were checked for correct classification without disturbances by the pre-trained
CNN, in order to start from a correct classification and to find the degree of disturbance for
the first misclassification. The other ten objects per class were used for the CNN re-training
(Section 3.5).

The method selected to test analyse the disturbance was presented in [26]. Although
there are many methods for point cloud object classification, it was not possible to analyse
them all in the present work, so a state-of-the-art method with good classification rates was
chosen, based on the use of views and projections to classify the point cloud as an image
with Deep Learning. The pre-trained CNN was described in [26]. The network architecture is an
Inception V3 [34]. The softmax layer was changed to obtain a 1 × 1 × 10 output corresponding
to the number of classes (Figure 4). The samples used for training were (for each class)
450 images from internet sources (Google Images and ImageNet) and 50 images of objects
in point clouds. An additional 50 images of objects in point clouds were used in the
validation. The point clouds for pre-training were different from those used in disturbance
generation and re-training.
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3.2. Density Results and Analysis

The average point density per class measured using the knn algorithm with k = 5 is
presented in Table 1. The maximum difference between classes with the highest and the
lowest point density is 2 cm. The average of all densities was calculated to be 0.0256 m—
this value was taken as a starting point to apply density reduction and it was increased on
a pseudo-logarithmic scale until 1 m was reached. Examples of the generated images with
point density reduction are shown in Figure 5.
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Table 1. Average point density of input data.

Class Average Point-to-Point Distance (Meters)

Tree 0.0335
Bench 0.0219

Car 0.0292
Was. cont. 0.0169
Streetlight 0.0229
Motorbike 0.0359

Was. basket 0.0168
Pedestrian 0.0299
Traffic light 0.0253
Traffic sign 0.0235

Average 0.0256
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Table 2 shows the precision and Table 3 shows the recall of the classification ac-
cording to the density value l. Table 4 compiles three confusion matrices along with the
l variation. The reduction in the average precision and recall was constant up to l = 0.1 m.
Above l = 0.25 m, practically no class was well identified. The misclassification behaviour
was observed in two ways: an abrupt decline from very high accuracy to almost zero
accuracy, as in the case of cars and traffic signs; and a gradual decline as traffic signs
and streetlights showed for several consecutive l values a medium precision before being
completely misclassified.
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Table 2. Precision of the classification with point density reduction.

Point Density (Distance l Point-to-Point in Meters)

Class 0.03 0.04 0.05 0.065 0.085 0.1 0.25 0.5 0.75 1

Tree 1 1 1 1 0.9 0.9 0.6 0 0 0
Bench 1 1 1 1 1 1 1 0.5 0.8 0.8

Car 1 1 1 1 0.8 0.1 0 0 0 0
Was. cont. 1 0.9 0.5 0 0 0 0 0 0 0
Streetlight 1 1 1 0.8 0.7 0.7 0 0 0 0
Motorbike 1 0.9 0.7 0.1 0 0 0 0 0 0

Was. basket 1 1 1 1 1 0.9 1 0.1 0 0
Pedestrian 1 1 1 1 0.9 0.6 0.1 0 0 0
Traffic light 1 0.9 0.7 0.6 0.6 0.6 0.2 0 0 0
Traffic sign 1 1 1 0.9 1 0.8 0.2 0 0 0

Average 1 0.97 0.89 0.74 0.69 0.56 0.31 0.06 0.08 0.08

Table 3. Recall of the classification with point density reduction.

Point Density (Distance l Point-to-Point in Meters)

Class 0.03 0.04 0.05 0.065 0.085 0.1 0.25 0.5 0.75 1

Tree 1 1 1 1 1 1 1 0 0 0
Bench 1 0.9 0.9 0.5 0.4 0.4 0.4 0.2 0.2 0.2

Car 1 1 1 1 1 1 0 0 0 0
Was. cont. 1 1 1 0 0 0 0 0 0 0
Streetlight 1 1 1 1 1 1 0 0 0 0
Motorbike 1 1 1 1 0 0 0 0 0 0

Was. basket 1 0.9 0.6 0.5 0.6 0.3 0.2 0 0 0
Pedestrian 1 1 0.9 0.9 1 0.9 0.3 0 0 0
Traffic light 1 1 1 1 1 1 1 0 0 0
Traffic sign 1 0.9 0.8 0.6 0.6 0.5 0.1 0 0 0

Average 1 0.97 0.92 0.75 0.66 0.61 0.3 0.02 0.02 0.02

In general, it was observed that objects were affected to a greater or lesser extent by
density reduction depending on the dimensions and shape of the object. The larger an
object was, the less it was affected by density reduction, as the main features could still be
seen. In particular, the volumetric point distribution in the tree canopy, produced by the
multibeam return, resulted in the preservation of more points than in other classes. As can
be seen in Table 4, when other classes such as cars and benches are difficult to distinguish
with l = 0.5 m, trees remain completely identifiable.

The shape of the object is the most important factor for classification. The CNN
looked at certain key points to identify each class. Simple shapes, such as squared waste
containers, were very often confused with waste baskets. Additionally, other objects,
such as motorbikes with many variations in shapes between models, were affected as
the CNN did not find common features between models. Among the pole-like objects,
streetlights and traffic lights showed similar behaviour, while traffic signs were more
similar to pedestrians.

From the confusion matrix (Table 4) with l = 0.065 m, a well-defined diagonal was
observed, except for the very early misclassification of the classes “Waste containers” and
“Motorbikes”, while with l = 0.1 m, the class “Cars” had already joined the misclassified
classes and “Pedestrian” and “Traffic lights” showed great confusion. From the confusion
matrix with l = 0.5 m, the “Bench” and “Waste basket” classes were the ones towards which
the confusion was directed. From these confusion results and the gradual precision loss of
Table 2 and the reduction in the recall in Table 3, it can be deduced that in the absence of a
class “Others”, the network considered waste baskets and benches as such a class.
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Table 4. Confusion matrices for density evaluation with l = 0.065 m, l = 0.1 m, and l = 0.5 m.

Predicted (l = 0.065 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 10 0 0 0 0 0 0 0 0 0
Bench 0 10 0 0 0 0 0 0 0 0

Car 0 0 10 0 0 0 0 0 0 0
Was. cont. 0 2 0 0 0 0 8 0 0 0
Streetlight 0 0 0 0 8 0 0 0 0 2
Motorbike 0 8 0 0 0 1 0 1 0 0

Was. basket 0 0 0 0 0 0 10 0 0 0
Pedestrian 0 0 0 0 0 0 0 10 0 0
Traffic light 0 0 0 0 0 0 0 0 6 4
Traffic sign 0 0 0 0 0 0 1 0 0 9

Predicted (l = 0.1 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 9 0 0 0 0 0 0 0 0 1
Bench 0 10 0 0 0 0 0 0 0 0

Car 0 8 1 0 0 1 0 0 0 0
Was. cont. 0 0 0 0 0 0 10 0 0 0
Streetlight 0 0 0 0 7 0 0 0 0 3
Motorbike 0 10 0 0 0 0 0 0 0 0

Was. basket 0 0 0 0 0 0 9 1 0 0
Pedestrian 0 0 0 0 0 0 4 6 0 0
Traffic light 0 0 0 0 0 0 1 0 6 3
Traffic sign 0 0 0 0 0 0 2 0 0 8

Predicted (l = 0.5 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 0 5 0 0 0 1 0 3 0 1

Bench 0 5 0 0 0 0 5 0 0 0

Car 0 10 0 0 0 0 0 0 0 0

Was. cont. 0 1 0 0 0 0 9 0 0 0

Streetlight 0 0 0 0 0 0 2 0 0 8

Motorbike 3 4 0 0 0 0 3 0 0 0

Was. basket 7 2 0 0 0 0 1 0 0 0

Pedestrian 0 0 0 0 0 0 10 0 0 0

Traffic light 0 0 0 0 0 0 5 4 0 1

Traffic sign 0 0 0 0 0 0 10 0 0 0

3.3. Noise Results and Analysis

The generation of random noise points was directly related to the volume of the
bounding box that encloses the point cloud object. The objects with the largest volume
were trees, streetlights, and traffic lights. The largest objects required a larger number of
random points (Table 5). The noise generation with the same density affected the image
generation due to the depth of the objects. For the same noise level, some classes could be
identified by a human observer, while in other classes, the projection of points generated a
practically black image (Figure 6). The selection of the noise values was limited between
d = 0.6 m and d = 0.02 m in a linear distribution, considering no significant changes occurred
beyond these two limits.
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Table 5. Average volume per class object.

Class Average Bounding Box Volume (Meters3)

Tree 453.00
Bench 2.38

Car 17.88
Was. cont. 5.98
Streetlight 101.03
Motorbike 3.14

Was. basket 0.15
Pedestrian 0.84
Traffic light 58.28
Traffic sign 1.55
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Table 6 shows the precision and Table 7 shows the recall of the classification results
according to ten noise levels, while Table 8 compiles confusion matrices obtained from
three noise levels. The precision loss was gradual until a very high misclassification with a
noise density of d = 0.04 m was reached. Comparing Tables 6 and 8, there is a direct relation
between misclassification and volume. The objects with the highest volume (tree light and
traffic light) were the first to be confused. They lost the shape of the object due to a large
number of projected noise points. Without considering large objects, no specific behaviour
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of each class in relation to their shape was observed. The largest drop in precision occurred
between d = 0.2 m and d = 0.04 m. The “Motorbikes” and “Pedestrian” classes, despite
losing precision, maintained high recall values until they were misclassified.

Table 6. Precision of classification with different levels of noise.

Noise Point Density d (Distance Point-to-Point in Meters)

Class 0.6 0.5 0.4 0.3 0.2 0.1 0.08 0.06 0.04 0.002

Tree 0.8 0.7 0.6 0.2 0 0 0 0 0 0
Bench 1 1 1 1 1 1 1 1 0.7 0

Car 1 1 1 1 1 0.6 0.6 0 0 0
Was. cont. 1 1 1 1 0.9 0.7 0.7 0.3 0 0
Streetlight 1 0.6 0.5 0.2 0.1 0 0 0 0 0
Motorbike 1 0.9 1 0.8 0.7 1 0.5 0.2 0 0

Was. basket 1 1 1 1 1 1 1 1 1 1
Pedestrian 1 1 1 1 0.9 0.7 0.8 0.2 0 0
Traffic light 0.9 0.8 0.9 0.9 0.5 0.3 0.2 0 0 0.2
Traffic sign 1 1 0.9 0.9 1 0.6 0.3 0.3 0 0.5

Average 0.97 0.90 0.89 0.80 0.71 0.59 0.46 0.30 0.17 0.17

Table 7. Recall of classification with different levels of noise.

Noise Point Density d (Distance Point-to-Point in Meters)

Class 0.6 0.5 0.4 0.3 0.2 0.1 0.08 0.06 0.04 0.002

Tree 1 1 1 1 0 0 0 0 0 0
Bench 1 1 1 0.8 0.7 0.8 0.7 0.6 1 0

Car 1 1 1 1 1 1 1 0 0 0
Was. cont. 1 1 1 1 1 1 0.9 0.6 0 0
Streetlight 0.8 0.8 0.6 0.3 1 0 0 0 0 0
Motorbike 0.9 1 1 1 1 1 1 1 0 0

Was. basket 1 0.7 0.6 0.6 0.3 0.2 0.2 0.2 0.1 0.2
Pedestrian 1 0.9 1 1 1 1 1 1 0 0
Traffic light 1 1 1 1 1 0.6 0.3 0 0 0.3
Traffic sign 1 0.9 0.8 0.6 0.7 0.6 0.5 0.3 0 0.1

Average 0.97 0.93 0.9 0.83 0.77 0.62 0.56 0.37 0.11 0.06

From the confusion matrices (Table 8), the confusion was gradual, starting with trees
and streetlights and predicting all objects erroneously as waste baskets. The network had
considered the class “Waste basket” as the class “Others”, as indicated by high precision
values and low recall.

3.4. Occlusions Results and Analysis

The analysis of the influence of occlusions on the classification focused on the different
origins and sizes of occlusions. Therefore, five possible origins for each object and ten
different occlusion sizes per origin were selected. In total, 5000 images were generated in
the study of the occlusions. The occlusion origins for an object of each class are shown
in Figure 7. The k-mean estimated origins matched between the different objects in each
class. An occlusion radius range between r = 0.1 m and r = 5 m was selected to analyse
both small-size occlusions and those with a size potentially affecting larger objects. Large
occlusions applicable to small objects imply the disappearance of these objects. An example
of the generation of occlusions of different sizes is shown in Figure 8.
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Table 8. Confusion matrices for noise evaluation with d = 0.3 m, d = 0.1 m, and d = 0.06 m.

Predicted (d = 0.3 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 2 1 0 0 3 0 4 0 0 0
Bench 0 10 0 0 0 0 0 0 0 0

Car 0 0 10 0 0 0 0 0 0 0
Was. cont. 0 0 0 10 0 0 0 0 0 0
Streetlight 0 0 0 0 2 0 3 0 0 5
Motorbike 0 2 0 0 0 8 0 0 0 0

Was. basket 0 0 0 0 0 0 10 0 0 0
Pedestrian 0 0 0 0 0 0 0 10 0 0
Traffic light 0 0 0 0 0 0 1 0 9 0
Traffic sign 0 0 0 0 1 0 0 0 0 9

Predicted (d = 0.1 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 0 0 0 0 0 0 10 0 0 0
Bench 0 10 0 0 0 0 0 0 0 0

Car 0 0 6 0 0 0 4 0 0 0
Was. cont. 0 0 0 7 0 0 2 0 0 1
Streetlight 0 0 0 0 0 0 6 0 1 3
Motorbike 0 0 0 0 0 10 0 0 0 0

Was. basket 0 0 0 0 0 0 10 0 0 0
Pedestrian 0 2 0 0 0 0 1 7 0 0
Traffic light 0 0 0 0 0 0 7 0 3 0
Traffic sign 0 0 0 0 0 0 3 0 1 6

Predicted (d = 0.06 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 0 0 0 0 0 0 10 0 0 0
Bench 0 10 0 0 0 0 0 0 0 0

Car 0 2 0 0 0 0 3 0 0 5
Was. cont. 0 2 0 3 0 0 5 0 0 0
Streetlight 0 0 0 1 0 0 3 0 4 2
Motorbike 0 2 0 0 0 2 6 0 0 0

Was. basket 0 0 0 0 0 0 10 0 0 0
Pedestrian 0 0 1 0 0 0 7 2 0 0
Traffic light 0 0 0 0 0 0 10 0 0 0
Traffic sign 0 0 0 1 0 0 6 0 0 3

Table 9 shows the precision and Table 10 shows the recall of the classification with
different occlusion sizes. In Table 11, three confusion matrices are compiled. The incidence
of occlusions varied mainly according to the size of the object, since if the object is large,
a large occlusion is needed to remove a relevant part of the points. The location of the
occlusion was another important factor, as in certain objects it can remove key features that
characterise the object. This is the case of trees, streetlights, some traffic lights, or signs,
where if the occlusion is at the top and is large, the image was simply a vertical line. In
some traffic lights, no misclassification was observed since they had a double light (top
and middle) (Figure 8iii) and the elimination of both only happened in extreme cases. The
“Streetlight” class showed very high robustness, with high precision and recall rates even
in extreme cases. Other classes, such as trees, also showed good precision, although in the
worst case, the CNN tended to over detect them.



Remote Sens. 2021, 13, 2135 13 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Distribution of occlusion origins (red points) in point cloud objects. 

(i) 

Car 
                   

(ii) 

Pedestrian 

   

 

(iii) 

Traffic 
light 

    
 (a) r = 0.3 (b) r = 0.5 (c) r = 1 (d) r = 3 

Figure 8. Images generated with occlusions of different sizes. 

Table 9 shows the precision and Table 10 shows the recall of the classification with 
different occlusion sizes. In Table 11, three confusion matrices are compiled. The incidence 
of occlusions varied mainly according to the size of the object, since if the object is large, 

Figure 7. Distribution of occlusion origins (red points) in point cloud objects.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Distribution of occlusion origins (red points) in point cloud objects. 

(i) 

Car 
                   

(ii) 

Pedestrian 

   

 

(iii) 

Traffic 
light 

    
 (a) r = 0.3 (b) r = 0.5 (c) r = 1 (d) r = 3 

Figure 8. Images generated with occlusions of different sizes. 

Table 9 shows the precision and Table 10 shows the recall of the classification with 
different occlusion sizes. In Table 11, three confusion matrices are compiled. The incidence 
of occlusions varied mainly according to the size of the object, since if the object is large, 

Figure 8. Images generated with occlusions of different sizes.



Remote Sens. 2021, 13, 2135 14 of 20

Table 9. Precision of classification with different occlusion sizes.

Occlusion Size Radius r (in Meters)

Class 0.1 0.2 0.3 0.5 0.75 1 1.5 2 3 5

Tree 1 1 1 1 1 1 0.9 0.9 0.6 0.3
Bench 1 1 1 1 1 0.8 0.2 0 0 0

Car 1 1 1 1 0.9 0.8 0.7 0.5 0 0
Was. cont. 1 1 1 1 0.9 0.4 0 0 0 0
Streetlight 1 1 1 1 1 0.9 0.8 0.9 0.7 0.7
Motorbike 1 1 0.9 0.6 0.3 0.2 0 0 0 0

Was. basket 1 0.9 0.7 0.2 0.5 0.9 1 1 1 1
Pedestrian 1 0.8 0.9 0.9 0.5 0.3 0.1 0 0 0
Traffic light 1 1 1 1 0.9 0.9 0.8 0.6 0.4 0.3
Traffic sign 0.9 0.8 0.8 0.7 0.7 0.7 0.5 0.3 0 0

Average 0.99 0.95 0.93 0.83 0.76 0.69 0.51 0.42 0.28 0.22

Table 10. Recall of classification with different occlusion sizes.

Occlusion Size Radius r (in Meters)

Class 0.1 0.2 0.3 0.5 0.75 1 1.5 2 3 5

Tree 1 1 1 0.9 0.8 0.8 0.7 0.8 0.8 0.9
Bench 1 1 0.8 0.6 0.7 0.5 0.4 0 0 0

Car 1 1 1 1 1 0.9 1 1 1 0
Was. cont. 1 1 1 1 1 1 0 0 0 0
Streetlight 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.8 0.7 0.7
Motorbike 1 1 1 1 0.7 0.4 0 0 0 0

Was. basket 1 1 0.9 0.8 0.7 0.7 0.3 0.2 0.1 0.1
Pedestrian 1 1 0.9 0.7 0.4 0.3 0.2 0 0 0
Traffic light 1 0.9 0.9 0.9 0.8 0.8 0.6 0.6 0.5 0.5
Traffic sign 1 1 1 0.9 0.7 0.8 0.6 0.9 0.3 0

Average 0.99 0.98 0.94 0.86 0.76 0.7 0.45 0.43 0.34 0.22

The class “Bench”, being small-sized objects, was affected from occlusions of size
r = 1 m. Although partially occluded benches were classified correctly, occlusions larger
than r = 1.5 m eliminated the benches completely. The class “Car” showed similar behaviour.
Additionally, the occlusions which caused the most errors were the central ones that broke
the car in two parts, or the occlusions located on the wheels. The class “Waste containers”
was not affected by the position of the occlusions since the origins were centred in the
object. Similarly, the motorbike class showed the same behaviour, as there was no area
where the occlusion generated the most error.

The waste baskets behaved in two ways depending on the occlusion size. Small-sized
occlusions were mistaken for benches. The class “Bench” already showed some behaviour
as class “Others” in the point density analysis. As the size of the occlusions increased, the
confusions between classes were dispersed, and with large occlusions when many objects
were completely occluded, the class “Waste basket” acted as a class “Others”, showing
high precision and low recall.

Pedestrians began to be misclassified as having occlusions with more than r = 0.5 m
located on the torso.

The choice of five points was a compromise solution to cover several parts along the
entire length of the object. Many more points could have been chosen; however, given the
low effect of small occlusions on the classification, there was no need to increase the number
of occlusion origins. On the other hand, the large occlusions covered several origins, so it
was not necessary to increase the number of occlusion origins for this reason either.
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Table 11. Confusion matrices for occlusion evaluation with r = 0.5 m, r = 1.5 m, and r = 3 m.

Predicted (r = 0.5 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 50 0 0 0 0 0 0 0 0 0
Bench 0 49 0 0 0 0 0 0 0 1

Car 0 0 49 0 0 1 0 0 0 0
Was. cont. 0 0 0 50 0 0 0 0 0 0
Streetlight 0 0 0 0 48 0 0 0 2 0
Motorbike 0 7 0 0 0 32 0 11 0 0

Was. basket 4 25 1 0 0 0 9 6 0 5
Pedestrian 2 2 0 1 0 0 2 43 0 0
Traffic light 0 1 0 0 1 0 0 0 48 0
Traffic sign 0 0 0 0 9 0 0 0 5 36

Predicted (r = 1.5 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 46 0 0 0 1 1 0 0 2 0
Bench 2 10 0 1 0 0 21 0 0 16

Car 0 1 35 0 0 8 0 5 1 0
Was. cont. 7 9 0 0 6 1 4 13 9 1
Streetlight 0 0 0 0 44 0 0 0 6 0
Motorbike 3 3 0 0 0 0 29 14 0 1

Was. basket 0 0 0 0 0 0 50 0 0 0
Pedestrian 2 0 0 0 0 0 42 6 0 0
Traffic light 0 0 0 0 6 1 0 1 39 3
Traffic sign 4 1 0 0 5 0 3 1 9 27

Predicted (r = 3 m)

Reference Tree Bench Car Was.
contain. Streetlight Motorbike Was.

basket Pedestrian Traffic
light

Traffic
sign

Tree 30 1 0 0 6 2 3 4 4 0
Bench 0 0 0 0 0 0 50 0 0 0

Car 6 2 1 0 1 4 18 10 7 1
Was. cont. 0 0 0 0 0 0 50 0 0 0
Streetlight 0 0 0 0 35 0 2 1 12 0
Motorbike 0 0 0 0 0 0 50 0 0 0

Was. basket 0 0 0 0 0 0 50 0 0 0
Pedestrian 0 0 0 0 0 0 50 0 0 0
Traffic light 0 0 0 0 5 2 20 0 21 2
Traffic sign 1 0 0 0 1 0 44 2 1 1

3.5. Re-Train of CNN

The re-training aims to assess whether adding data with disturbances in the network
training can minimise misclassification. A second dataset not previously used in the
analysis of results was used to re-train the network (Figure 9). In this second dataset,
composed of the same number and classes of objects as the previous dataset, disturbances
were generated, added to the objects, and transformed into images. From all the images
generated, 10 images with point density variations, 10 images with noise and 30 images
with occlusions were randomly selected per class. More occlusion samples were selected
due to the variation in occlusion positioning and size, which generated a larger amount of
data than the other two disturbances. The selected images were added to the training set
that was used to pre-train Inception V3 for the previous classification. The hyperparameters
of the training were the same as in the pre-training (optimisation method sgdm, learning
rate 10−4, Momentum 0.9, L2 Regularisation 10−4, Max Epochs 20, and Mini Batch Size
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16). The network was trained in 200 min with a GPU NVIDIA GTX1050 4 GB GDDR5, CPU
i7-7700HQ 2.8 Ghz, and 16 GB RAM DDR4.
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The re-training showed a great improvement in the classification of the point density
tests (Figure 10) in the low and central values l. Specifically, up to l = 0.1 m, the re-training
maintained a high precision and improved the initial results by up to 40% and slowed
down the appearance of misclassification effects caused by point density. However, above
l = 0.1 m, although with much higher precision than the original, the classification results
continue to have very high misclassification rates. At the extremes of the l values, where
the image showed no change (both the undisturbed point cloud and unrecognisable), the
same precision as in the original results was observed.
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The use of images with noise points in re-training produced a consistent improvement
of 10–20% for all d values (Figure 11). However, in cases with a high level of noise, the
CNN was still not able to correctly classify the objects.
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Re-training with occlusions showed a turning point in the results obtained (Figure 12).
Up to r = 1 m, the classification with small occlusions improved up to 10% and the
misclassification effect was slowed down. However, from r = 1 m onwards, the reverse
effect occurred, and the results worsened. This turning point is related to the size of
the occlusion concerning the size of the object, as many small objects with occlusions of
r = 1 m to 1.5 m started to occlude almost entirely. Applying occlusions of radius greater
than r = 1.5 m, most of the objects that conserved information were the large ones, mainly
pole-like objects. When these objects were partially occluded, the resulting sample was
usually only a pole, which was very difficult to identify.
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4. Discussion

The objects were extracted from the urban point cloud manually. Although distur-
bances may affect detection and individualisation, only the classification of urban objects
was evaluated in this work. Effects such as extreme density reduction, or total occlu-
sion, would logically discard the extraction of samples from the environment as objects
would not be recognisable by the extracting algorithm. In the opposite case, the existence
of extreme noise would not allow clustering algorithms such as DBSCAN or connected
components correctly, and occlusions can break the object into several parts producing
over segmentation.
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The selection of values for the synthetic generation of the disturbances and their
distribution was based on several considerations. The values were delimited between those
that produced almost no effect on the classification and those that rendered the samples
completely useless. Between the two limits, the range of values was selected in such a way
as to provide constant information at classification intervals and the range was reduced
where changes were more abrupt. The distributions were in linear or pseudo-logarithmic
intervals. In addition, the maximum, minimum and intervals had to apply to objects of
very different dimensions, ranging from waste baskets of just 1 m to trees of more than 5 m
in height.

The process of generating synthetic disturbances was automated to produce all sam-
ples easily, reliably, and with the ability to be replicable. As far as possible, the design of
the algorithm corresponded to the disturbances produced in the real world, although they
were taken to extreme situations to seek to break the classification algorithm. As mentioned
above, very distant objects to MLS (with low point density) would not be extractable from
the urban point cloud or would be mistaken for noise. On the other hand, in conditions of
extreme environmental noise (such as that generated by torrential rain or large amounts
of dust-sand in suspension), MLS acquisitions are not scheduled or executed. Occlusions,
although generated in various parts of the objects, are typically only located in low areas
for the tall objects [35], where it was found to have little effect on the misclassification of
pole-like objects, trees, or even pedestrians. Completely occluded objects were also not
extracted from the urban point cloud for further classification.

Re-training with samples containing synthetic errors provides robustness to the CNN
classifier. The classification of objects with low point density, noise, and small occlusions
was improved; however, re-training did not solve the most serious problems. From these
results, it is recommended to use some samples with synthesised disturbances in the
training to make the classifier less sensitive to point density variations, ambient noise, and
small occlusions.

5. Conclusions

In this work, three disturbances (point density, noise, and occlusions) were evaluated
as affecting a CNN to classify the main classes of urban objects acquired with MLS. Syn-
thetic disturbances with different levels of intensity were generated and applied to point
clouds of urban objects acquired the cities of Vigo and Porto. The CNN was also re-trained
with some of the new synthetic samples to assess whether the effects of the disturbances
could be mitigated.

The main disturbances affecting the classification were density reduction and large
occlusions. Reducing the density to a distance between points of 0.1 m, the precision
was halved (0.56), and with a distance of 0.25 m, few samples were classified well. Noise
showed a behaviour linked to the volume of the object and did not significantly affect the
classification until very extreme levels that would never occur in a real acquisition. Thus, at
the same noise level, bulky elements such as streetlights were unrecognisable, while smaller
ones, such as waste baskets, were clearly visible. In samples with occlusion of radius 1 m,
the precision fell to 0.69, while with 1.5 m the precision stood at 0.51. Small occlusions
(less than 1 m of radius) had little effect in misclassification, while large occlusions showed
problems when small objects were completely hidden or when occlusion was located on
top of tall objects. However, if occlusions obscure an entire object, it would no longer be
removable from the environment, and occlusions in high areas of objects do not usually
occur in the urban MLS acquisition. With occlusion of radius 1 m, the precision fell to 0.69,
while with 1.5 m the precision stood at 0.51.

Re-training the CNN with synthetic disturbance data provided some robustness to
the classifier. The classification of samples with low density was improved up to 40%,
ambient noise up to 20%, and occlusions up to 1 m radius up to 10%. In extreme cases
of disturbances, there was not enough improvement to obtain a good classification. At
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the most extreme level of disturbances, none of the precisions exceeded 30%, even after
network re-training.

In future work, other classification methods will be tested, and the simultaneity of the
disturbances will be compared to see which disturbances are affected to a greater degree.
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