
Leveraging graphical user interfaces to facilitate selection of
elements in web-pages

Paul van Wijk
TU Delft

Delft, The Netherlands

ABSTRACT
Web-based interaction logging is an important concept for under-
standing user behavior on web-pages. LogUI is a powerful modern
framework for logging a user’s interactions. Integrating such a
framework in web-pages requires the construction of configura-
tion objects to define selectors that indicate which elements on a
web-page should be under observation. Writing such configuration
object can be a tedious task for researchers who are less experienced
in programming. Therefore, this paper addresses the potential of a
graphical user interface (GUI) to simplify the creation of configura-
tion objects. An experimental GUI-based tool was devised to aid
a user in the process of producing configuration objects in an in-
teractive fashion. Results from conducting a small scale user study
show that users are capable of creating configurations utilizing the
GUI-based tool with an average accuracy of 70%measured in terms
of selector equivalence. User experience evaluation shows that the
tool is perceived as efficient.

KEYWORDS
graphical user interfaces, web-based interaction logging, LogUI,
selectors

1 INTRODUCTION
With the increase of web-based applications [17] researchers devel-
oped an interest in understanding why users follow certain paths
in web-based information systems. Therefore, researchers have pro-
posed an information foraging model to provide insight into user
behavior in information systems [16]. To gather data for analyses
such as these, there exist several tools or frameworks which can
track a user’s interactions on a web-page.

One tool for analyzing such user’s behavior is LogUI [14]. Asweb-
pages can become quite complex, it becomes challenging to realize
a generic interaction logging framework which can be integrated
into any web-page. Therefore, frameworks such as LogUI require a
certain amount of configuration which is often done in a text-based
manner, for instance by writing out configuration files. This comes
with a few disadvantages. Primarily, some comprehension of a web-
page’s internal structure is required to be able to specify which
event should be observed on a particular element. Secondly, The
user is responsible for applying the correct syntax and semantics
to the configuration. This may be a complex task and may cause
the application to fail at runtime if the produced configuration
is incorrect or incomplete. These disadvantages can make similar
frameworks less accessible to researchers who are less experienced
in programming yet still desire to use such a framework.

CSE3000, June 27th , 2021, TU Delft
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/N/A

There have been studies on simplifying human-computer inter-
action with the help of graphical user interfaces (GUI) or visual
programming approaches such as the Alice programming environ-
ment [6] which allow tackling a programming problem in a visual
way. Such tools make it more convenient for a user to configure a
complex framework for their particular use case without writing
code. The research in this paper takes a similar approach and goes
into the analysis and development of an experimental tool to vi-
sually aid researchers in creating configuration objects. A GUI is
considered to facilitate the selection of events and elements on a
web-page in an interactive "point-and-click" fashion which in turn
allows for correct element identification and tracking by the LogUI
framework. We aim to answer the following research questions:

RQ1 Can a GUI-based tool be used to facilitate the construction
of configuration objects?

RQ2 Can users of the GUI-based tool create an accurate configu-
ration object?

RQ3 How do users perceive the GUI-based tool?

2 RELATEDWORK
2.1 Web-page structure
Currently, HyperText Markup Language (HTML) is the technology
used for developing web-pages (alternatively referred to as docu-
ments) as it is standardized by theW3C [1]. TheseHTML documents
are interpreted by web-browsers which yields a tree-like model
called the Document Object Model (DOM). This model provides the
necessary interface to access and modify HTML elements and their
associated events.

2.1.1 Selectors. In order to query one or more nodes in the DOM
tree, one can rely on selectors as a means to express which nodes
to select [5]. Selectors are primarily used in Cascading Style Sheets
(CSS) to bind style properties to the elements matching the pattern
defined in the selector. An example of such a selection process is
illustrated in Figure 1. The #description selector in 1b selects
the element in the DOM which has the ID description attached,
resulting in the second paragraph element being colored red. How-
ever, the usefulness of selectors goes beyond style sheets and can
be used by any application that requires access to specific DOM
nodes.

2.1.2 Specificity. A selector has a specificity value based on the
amount of ID’s, classes (or pseudoclasses) and element names that
constitute the selector. Specificity values determine which selector
gets preferred over other selectors selecting the same element. The
selector with the higher specificity takes the precedence. For in-
stance, the selector ul#results > li.result:nth-of-type(1)
has a specificity of {1, 2, 2} since it contains one ID (#result), two

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://doi.org/N/A

CSE3000, June 27th , 2021, TU Delft Paul van Wijk

<div >
<p>

Not a d e s c r i p t i o n
</p>
<p i d =" d e s c r i p t i o n " >

Thi s i s a d e s c r i p t i o n
</p>

</ div >

(a) HTML

d e s c r i p t i o n {
c o l o r : r ed ;

}

(b) CSS (c) Styled result

Figure 1: Applying style on the element with the description
ID using a selector

classes (.result and the pseudoclass :nth-of-type) and two ele-
ment names (ul and li).

Although a selector with a higher specificity value will likely
yield a smaller set of selected DOM nodes than a selector with a
lower specificity, this is not always the case as it depends on the ele-
ments available in theDOM. For instance, the selector li:nth-of-type(1)
has a specificity of {0, 1, 1}. However, another selector .active hav-
ing a lower specificity ({0, 1, 0}) than the former selector can select
less elements depending on the amount of elements in the DOM
having a class of active. In this regard, specificity does not behave
linearly towards the amount of DOM elements selected.

There exist tools which require and manipulate DOM nodes by
using selectors, such as browser extensions. One example from the
domain of advertisement blocking is uBlock Origin [11]. This tool is
a widely used browser extension which provides an element picker
to aid a user in creating a so-called cosmetic filter by enabling them
to interactively select elements on the currently loaded web-page.
Filters such as these are expressed in selectors and are subsequently
used to filter out the selected elements from a page. Additionally, a
slider interface facilitates the refining of specificity. The experimen-
tal tool developed for this research follows the same philosophy
and is heavily inspired by uBlock Origin.

2.2 Web-Based Interaction Logging
Interaction logging is an important concept in the field of web-based
interactive information retrieval (IIR) systems [14]. An interaction
log, generated by capturing a set of events and user interactions
with theDOMof aweb-based application can be analyzed to provide
further insight into user behavior and usability of the application.
Therefore, many frameworks and tools have been developed for
capturing user interactions such as Search-Logger [19], WHOSE
[10], YASFIIRE [22] and UXJs [20]. Maxwell and Hauff [14] mention
that these tools come with certain drawbacks such as installation
of supplementary software, utilization of a proxy server, and in-
tegration issues with modern web-applications. LogUI is a recent
logging framework which mitigates many shortcomings of the
aforementioned frameworks.

2.3 LogUI
LogUI is a logging framework which consists of a client and a server
component operating together in capturing a user’s interaction
with a web-page or web-application [14]. The client is integrated
into (web-) applications by completing a series of steps [4], which
involves writing out a JavaScript configuration object. A minimal

representative configuration object is shown in listing 1. This ob-
ject contains two required configurations, logUIConfiguration
and trackingConfiguration. The former contains basic proper-
ties needed to establish a connection to the LogUI server. Further-
more, it contains the browserEvents configuration that defines
which browser-wide events to capture. LogUI currently supports
six browser-wide events which can be tracked such as mouse move-
ment events. The trackingConfiguration object defines in detail
which events on DOM elements of the web-page should be tracked
by LogUI. This is accomplished by specifying and associating event
listeners to a set of selectors which will trigger on user interactions
with the corresponding elements. Subsequently, this configuration
object definition will be utilized by the LogUI client bundle injected
into the web-application.

c o n f i g u r a t i o nOb j e c t = {
l o gU ICon f i g u r a t i o n : {

endpo in t : 'ws : / / l o g u i / endpo in t / ' ,
a u t ho r i s a t i o nToken : ' ' ,
v e rbo s e : t rue ,
b rowserEvent s : {

. . .
}

} ,
t r a c k i n gCon f i g u r a t i o n : {

' s e a r ch f o cu s ' : {
s e l e c t o r : '# search −box ' ,
e ven t : ' focus ' ,
name : 'SEARCH_FOCUS ' ,

} ,
. . .

}
}

Listing 1: LogUI Configuration Object

Completing these steps and correctly formulating the necessary
selectors for every experimental interaction logging system can
become a tedious and repetitive task for researchers. Therefore, an
alternative method to accomplish these tasks could be favorable.

2.4 Graphical user interfaces
Graphical user interfaces (GUI) have become ubiquitous over the
last decades and are currently a predominant way to interact with
computer applications. A fair amount of GUI’s have been developed
in academia and have proved to be helpful in assisting novice users
in accomplishing complex tasks by providing a visual way of tack-
ling the problem. Examples of such a tool is EXPGUI which provides
a platform independent GUI-based tool to facilitate interaction with
the Generalized Structure and Analysis Software [21]. Deducer [7]
is another example of a GUI which significantly reduces the effort
of performing analyses in the statistical programming language
R. Finally, Zbl-build [15] is a GUI which assists a user in creating
configurations for BibLaTeX .

Web-based applications can also be classified as GUIs and have
been shown to be effective in aiding users to accomplish complex
tasks in a visual way. For instance, [13] have developed a web-based
tool for running experiments in the field of molecular dynamics.

2

Leveraging graphical user interfaces to facilitate selection of elements in web-pages CSE3000, June 27th , 2021, TU Delft

2.5 GUI generation
GUI generation is a term commonly applied to techniques which
transform some general data model or task description into an
interactive GUI and can reduce the time and effort of manually
developing a GUI. This has been accomplished in different ways.
Jelinek and Slavik [12] have shown a method to generate GUIs
by analyzing GUI directives in source code annotations without
explicitly defining the GUI itself. Fischer et al. [8] have developed
"Brassau, a virtual assistant which can transform natural language
commands into GUIs". Various different templates of common as-
sistant tasks were used to generate these GUIs.

For this research, a similar approach is taken and is described in
section 3 where the DOM of a web-page is used as an input model
to generate an interactive user interface. Such an approach has the
potential that the tool can be utilized on any DOM thus being a
general tool.

3 LOGUI BROWSER EXTENSION
The most popular desktop web-browsers allow support for exten-
sions allowing developers to provide additional functionality to
the browser itself and any page content loaded in the browser
[3]. To devise a GUI generator, a Chrome browser extension has
been developed as a tool to select elements on the currently loaded
web-page. The tool serves as a means to facilitate the construction
of configuration objects for the LogUI framework by following a
point-and-click philosophy. This process is illustrated in figure 2.

Figure 2: Process of creating configuration objects using a
generated GUI

3.1 Overview
A GUI generation approach is accomplished by attaching additional
event listeners to the DOM elements of the current web-page en-
abling an element picking mode. When the cursor is positioned

over any element on the web-page, the user is provided with imme-
diate feedback indicating which element will be selected when a
mouse-click follows. This is attained by displaying a highlight over
the bounding client rectangle1, i.e. "the smallest rectangle contain-
ing the entire element". An example usage of the element picker
functionality on a Search Engine Result Page (SERP) is shown in
figure 3.

Figure 3: Element picker

Succeeding the selection of an element using the picker, the user
is presented with an interface serving to complete the tracking con-
figuration object as required by LogUI. An instance of the interface
is illustrated in figure 4. In 1 , the name of the tracking event is
entered which will be utilized by the LogUI framework to label this
event in the log. Subsequently, the specificity level of a selector
can be adjusted using the slider in 4 . Alternatively, if the desired
specificity level is not obtainable by using the slider, the user can
specify their own selector by entering one in the text field 2 . Both
approaches provide immediate visual feedback indicating which
elements on the page will be selected when the selector is modified.
In the example, the .gs_rs selector will select every description
of search results as is indicated by the highlighted elements 3 .
Lastly, the desired event listener is associated with the tracker by
making a choice from a set of predefined event names 5 .

3.2 Basic Configuration Popup
In order to visualize the current state of the configuration object, the
extension features a popup. This component displays a view of the
two configuration models described in 2.3. Furthermore, the popup
allows users to modify the properties of the configuration object
and presents which values are required in an intuitive way. The
basic entries consist of the web-socket endpoint URL, authorization
token and verbose mode. Furthermore, six trackable browser-wide
events can be enabled or disabled for logging by utilizing on/off
switches. Finally, the popup contains buttons to activate the element
picker, to delete previously added trackers, and to export the current
state of the configuration object into a JavaScript Object Notation
(JSON) file.

1https://developer.mozilla.org/en-US/docs/Web/API/Element/getBoundingClientRect
3

CSE3000, June 27th , 2021, TU Delft Paul van Wijk

Figure 4: Tracking configuration editor. Numbered items are
explained in section 3.1

3.3 Element Selection
The usual method to conceive selectors is by writing these down.
This is normally accomplished by individuals who have a good
understanding of the web-page’s structure. Non-expert users may
be less likely to know the correct selector for one or more partic-
ular elements. Therefore, the extension simplifies this process by
providing an element picker (figure 3). The picker becomes active
on the currently loaded page by the user’s command. The aim of
this picker is to generate a selector based on the element picked by
the user. Such a selector can be used in future interaction logging
experiments which require logging the selected element.

Selectors are typically used to define which elements on a web-
page to select. However, in the case of using an element picker for
constructing selectors, this is the reversed process. In this paper, se-
lectors are deduced from a user’s selection of one or more elements
on a web-page.

3.4 Specificity Levels
Picking a DOM element using the aforementioned element picker
is the first step of constructing the selector. However, it might occur
that the user does not require solely the picked element but all
elements of the same type. One example use case is when a selector
is required which selects every list item in an ordered list. This
is an indication that the selector resulting from the picker might
need refinement. Therefore, specificity levels are introduced. Each
level defines a strategy used to decide the structure of the resulting
selector.

The extension provides a set of six predefined levels of specificity
which are available for selection with the slider 4 shown in figure
4:

(1) The selected element’s ID. This is the most specific type of
selector as it exclusively selects the element on the page
which has the ID attached.

(2) The structural location in the DOM tree. If an element has
no ID or classes attached, a selector for this particular ele-
ment can be resolved by traversing up the ancestors in the
DOM tree. When this traversal reaches an ancestor that has
an ID attached, this ancestor can be used as a "checkpoint".
While traversing further up the DOM tree can increase the
specificity of the resulting selector, this is redundant as the
selector will select the same element due to the ID contribut-
ing significantly to the specificity. Selectors generated in
this level are composed as a path-like structure from the
checkpoint to the element.

(3) Sibling types. This is useful in scenarios when the user re-
quires selecting siblings of the same element type, such as
all li elements in a ul.

(4) Explicit classes. It can occur that the selected element has
attached classes.

(5) Element types. It may be required to select all elements in
the DOM which are of the same element type, for instance,
every anchor (<a>) element.

(6) The universal selector *. This selector has the lowest speci-
ficity value and selects every element. This may be useful
in cases where it is required to attach an event listener to
every element in the DOM.

For other use cases in which users are not able to reach the de-
sired level of specificity, it is possible to enter the selector manually
in the text box 2 shown in figure 4.

3.5 Limitations
Contemporary web-pages can convey different appearances and
behaviors across browsers due to the implementation of multiple
different standards. For this research, exclusively the desktop ver-
sions of the Chrome and Chromium browsers are considered.

The specificity levels defined in 3.4 are primarily based on heuris-
tics. There can be special use cases where the user requires a com-
plex selector which can not be formed using any of the predefined
strategies. Finding if the current amount of specificity levels is ei-
ther sufficient, insufficient or superfluous is a topic open for future
research.

The prototype of this tool does not cover every aspect of LogUI.
A configuration object with the minimum required settings can be
obtained using the tool whereas LogUI offers significantly more
features which can be defined in the configuration object. For in-
stance, application specific data and additional metadata per tracker
may be specified for logging.

4 METHOD
To answer RQ1, the tool in chapter 3 was developed as a prototype
and superficially tested on arbitrary web-pages. To gain further
insight in the usage of the tool and to answer RQ2, a small scale
user study was set up to examine selectors created by research
participants. Furthermore, to address Q3, the user experience is
studied.

4.1 Participants
To conduct the user study, five participants committed to the exper-
iment. The participants are PhD students and experts in the field

4

Leveraging graphical user interfaces to facilitate selection of elements in web-pages CSE3000, June 27th , 2021, TU Delft

of web information systems which makes them possible candidates
to use LogUI. Three participants did not have previous experience
with the LogUI framework and were given a brief explanation of
the configuration object prior to the experiment. All participants
were given instructions to install the extension prototype in their
own Chrome or Chromium browser. For each participant, a short
fifteen minute online interview was conducted.

4.2 Task Description
During the experiment, participants were given a set of tasks to
perform by interacting with the extension. A simple web-page 2

was conceived for participants to select elements from using the
tool.

The first task involved entering the basic LogUI configuration
values. A short requirement story was given from which the partic-
ipant can extract the necessary entries. Successful entry of these
items constitute a well-formed logUIConfiguration object.

Subsequently, in order to cover a fair amount of selector types
in the experiment, participants were given the task of including six
diverse tracking configurations in their configuration object. Each
task was formulated as a natural language phrase:

(1) Add a click listener to the third result. Give it the name
thirdresult.

(2) Add a click listener to the search box. Give it the name
searchbox.

(3) Add a click listener to all search results. Give it the name
searchresult.

(4) Add a click listener to the first advertisement. Give it the
name firstad.

(5) Add a focus listener to any advertisement. Give it the name
adfocus.

(6) Add a focus listener to the search button. Give it the name
searchfocus.

The reason for using natural language in the task description is
that this approach eliminates the need for thinking in programming
terms such as "selectors" or "elements" and diverges more into the
semantics of the task. After fully constructing the configuration
object, participants were asked to export it to a JSON file and submit
this file for further analysis.

4.3 Responsible Research
For every participant it was explicitly requested if the session may
be recorded prior to the start of the recording. It was made clear
which data will be collected for the research, which were the config-
uration object produced by the participant and their questionnaire
response which were both anonymized prior to their analysis. The
required tasks did not put the participant at risk. The source code for
the experimental tool is made available on GitHub 3 and can be used
to reproduce the results of the conducted experiment. However,
due to human unpredictability, exact results may differ.

There were no conflicts of interest conducting this research.

2https://pjvanwijk.github.io/fakesearch.html
3https://github.com/pjvanwijk/LogUI-config-builder

4.4 Metrics
Two metrics are captured in the user study. Namely, the accuracy
and the user experience. Both are described in this section.

4.4.1 Accuracy. To perform accuracy measurements of a selector
generated by a participant, it is necessary to define suitable metrics
that can give insight towards the usefulness of employing a graphi-
cal user interface for creating selectors. Geneves et al. [9] present
a formalization for style sheets. Though we are less concerned
with style sheets, the analysis provided in this paper is useful for
comprehending the workings of selectors. A similar approach is
taken when reasoning about the equivalence of selectors later in
this section.

Firstly, a predefined calibration standard, henceforth referred
to as the gold standard configuration object is an object of which
the selectors are guaranteed to select the elements as required in
the task description. It is necessary that participants have no prior
knowledge of the gold standard when conducting the experiment
as such knowledge could influence the decisions made. The selec-
tors generated by the participants are compared against the gold
standard based on two accuracy metrics, particularly the selection
accuracy and specificity accuracy. The former metric is necessary
to acknowledge that the user-generated selector selects the same
elements on the experimental web-page as the accompanying se-
lector defined in the gold standard. The latter metric is necessary
to guarantee that the user-generated selector does not select more
elements than is required by the task description.

Consider the following scenario; it may be desired to obtain a
selector which selects a particular button, for instance a search-
button on theweb-page. However, it might occur that this is the only
button on the page. In this case, a user can create the button selector
which will yield the correct resulting element set for the current
page and therefore is considered accurate in terms of selection
accuracy. However, such a selector will select all buttons on the
web-page and is hence considered insufficiently specific. For a
completely accurate selector, both the selection accuracy and the
specificity accuracy need to be tested for correctness. A selector
declining either metric is considered to be inaccurate.

Hence, to measure the accuracy of a selector, a comparison is
made between the user-generated selector and its corresponding
gold standard value. The method is based on the "equivalence of
selectors" test from [9]. This is implemented by applying both
selectors to the experimental web-page and verify that the resulting
selections of elements are equal. Finally, the specificity value of
both selectors are calculated and compared to verify that the user-
generated selector has a specificity value equal to or higher than
the gold standard selector’s specificity.

4.4.2 User Experience. The user experience is measured using the
User Experience Questionnaire (UEQ) [18]. Such a questionnaire is
useful for obtaining an immediate insight into user experience by
analyzing feedback from the user of the tool. Participants were
requested to fill in the questionnaire after they fulfilled the task of
constructing a configuration object. The questionnaire contained
26 questions concerning the attractiveness, perspicuity, efficiency,
dependability, stimulation and novelty aspects of the experimental
tool. Four additional open-ended questions were appended to the

5

https://pjvanwijk.github.io/fakesearch.html
https://github.com/pjvanwijk/LogUI-config-builder

CSE3000, June 27th , 2021, TU Delft Paul van Wijk

questionnaire regarding the functionality of the tool. This was
done particularly to gain insight in the usability of the predefined
specificity levels. However, it was not mandatory to answer these
questions. The following questions were asked:

(1) What type of selectors do you consider important but were
not possible to select using the specificity slider?

(2) Does the specificity slider provide too much, too few or
enough levels of specificity to choose from?

(3) Were there any tasks you particularly struggled with when
constructing the configuration object?

(4) Do you have any other remarks or suggestions?

5 RESULTS
In this section, results obtained from the user study are presented.
All five participants completed the tasks described in the previous
section. Out of the five participants, four have responded to the
user experience questionnaire. The results are presented relating
to the research question they contribute to.

5.1 RQ2. Accuracy
An aggregated visualization of the resulting selectors produced
by the participants is shown in figure 6. Highlights are positioned
over the bounding client rectangle of the selected element, captions
represent the name of the selector as requested in the task descrip-
tion. A higher intensity of highlighting (darker) indicates that more
participants created selectors that select the highlighted element.

To examine the accuracy of the selectors created by participants,
the following table 5 shows a summary of the obtained results from
running the experiment with five participants. The amounts in
the # Selection column represent the number of participants that
created a selector which selects an equal set of elements as the
corresponding selector defined in the gold standard. Likewise, the
Specificity column represents the number of participants that
created selectors with equal to or higher specificity than its relating
gold standard.

Theminimumof selection and specificity𝑚𝑖𝑛(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦)
is exactly the amount of participants that was able to constitute a
completely accurate selector for the corresponding tracking con-
figuration, i.e. a selector which selects the required elements and
has the required specificity. The overall accuracy of the tracker is
defined by dividing𝑚𝑖𝑛(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦) by the number of
participants.

It can be observed that participants are generally able to accu-
rately create selectors with an average score of 70%. However, it is
necessary to criticize the methodology used to obtain this result.
Since the tasks carried out by the participant are described in nat-
ural language phrases, there may be semantic ambiguities when
describing a selector as such a phrase. A participant may interpret
the task wrongly which could contribute to inaccurate selectors.

Ambiguities may also arise from the composition of elements
in the web-page. In some cases, web-pages contain groups of el-
ements which serve a common purpose. For instance, a "search
result" on a search engine result page can be interpreted in multiple
ways. Questions might emerge such as "is the description also part
of the search result?". It might be challenging to clearly indicate
which element contributing to such a component should be selected.

The same applies to list-like structures. The natural language de-
scription "list of results" can be interpreted to mean either the list
element containing all results, or all result elements that are con-
tained by the list element. Such different interpretations will lead
to distinct selectors. A similar misinterpretation can be observed in
the accuracy of adfocus. The term "any advertisement" could be
understood to mean one or more advertisements.

Tracker # Selection # Specificity Accuracy
thirdresult 5 5 1.0
searchbox 4 4 0.8
searchresult 3 5 0.6
firstad 4 5 0.8
adfocus 1 4 0.2
searchfocus 4 4 0.8

Figure 5: Resulting selector accuracy for 5 participants. Val-
ues represent the amount of participants who created an
accurate selector. Undefined selectors are considered inaccu-
rate.

5.2 RQ3. User Experience
The results from the conducted user evaluation questionnaire are
analyzed by creating a benchmark allowing us to draw a conclu-
sion about the tool’s user experience in general. To accomplish
this, the summarized data is compared against a benchmark data
set provided by [2]. This particular data set contains data from
21175 individuals originating from 468 studies concerning general
products such as "business software, web-pages, web-shops and
social networks." The resulting benchmark is shown in figure 7.

It can be observed that the mean score of the questionnaire is
excellent in all aspects. However, caution must be applied when
interpreting this score by the fact that the sample size of represen-
tative participants was very small (𝑛 = 4). Another observation that
can be made is that the mean score shows a peak in the efficiency
aspect. This might be an indication that the GUI tool presented in
this research could be beneficial for researchers.

As previously stated, the participants were asked additional open-
ended questions so that the user’s opinion on the heuristics applied
to the specificity levels can be evaluated. To (1), half of the re-
sponses stated that the slider generated appropriate selectors for
the tasks. Three suggestions were given regarding selector types
which are not obtainable by using the slider. Namely, the click se-
lector, selectors containing class names and selectors testing for
substrings in text. To (2), the general answer was that there is a
sufficient amount of specificity levels. Two responses mention that
it depends on the web-page. To (3), two participants indicated to
experience difficulties in creating the configuration object. Partic-
ularly, one response mentioned a difficulty selecting more than
one (element) at once. Another stated a difficulty producing the
selector for the adfocus tracker which involved the usage of the
slider being counter-intuitive.

In the next section, the obtained results will be discussed and
evaluated to draw conclusions and obtain answers to the research
questions.

6

Leveraging graphical user interfaces to facilitate selection of elements in web-pages CSE3000, June 27th , 2021, TU Delft

(a) thirdresult (b) searchbox (c) searchresult

(d) firstad (e) adfocus (f) searchfocus

Figure 6: Overview of selectors created by participants. Green highlights indicate the chosen elements for the corresponding
selector

Figure 7: Benchmark of the tool based on the UEQ responses
of 4 participants

6 DISCUSSION, CONCLUSIONS AND FUTURE
WORK

RQ1. By the results shown in the previous section it has been shown
that users are able to create configuration objects which involve
selectors by using a graphical user interface. However, in practice
the prototype tool is not perfect. Superficial manual testing the tool
on several well-knownweb-pages such as the DuckDuckGo4 search
engine and the BBC News5 pages has shown that there are various
challenges that need to be addressed when generating a GUI from

4https://duckduckgo.com
5https://www.bbc.co.uk/news

the DOM. Due to the dynamic nature of the web-page it may be
difficult to reach certain elements using an element picker interface.
For instance, elements in a drop-down menu are not possible to
pick as doing so would require clicking on it and thus conflicts with
the click event of the picker.

Another issue is that there exist multiple ways to implement
event listeners on DOM elements, making it more difficult to allow
the element picker’s events to take precedence over the ones already
associated with the element.

A final major issue that was discovered during one of the inter-
views was that other extensions may conflict with the experimental
tool. For instance, there are extensions such as Grammarly 6 which
add class names to elements of the currently loaded DOM. These
classes may interfere with the generation of selectors as these
classes can then appear in the selector whilst they should not.

RQ2. With the results it has been shown that users are able to
create selectors with an average accuracy of 70%. However, there
are some flaws in the methodology regarding ambiguities in the
task descriptions. This is worth to consider when performing user
studies in the future that involve natural language tasks.

6https://www.grammarly.com
7

https://duckduckgo.com
https://www.bbc.co.uk/news

CSE3000, June 27th , 2021, TU Delft Paul van Wijk

RQ3. The results of the UEQ have shown that users generally find
the tool useful in terms of user experience. However, as the study
conducted with a small amount of participants, it might be con-
venient to conduct further research on the user experience of the
experimental tool presented in this paper.

6.1 Limitations
There are a few limitations to this work. The GUI described in
this research was developed as an extension for the Chrome and
Chromium browser. However, it could be extended to work in other
browsers or applications as well. Furthermore, the tool supports
construction of bare minimum versions of LogUI configuration
objects and does not account for some optional configurations such
as logging additional metadata for specific selectors.

REFERENCES
[1] [n.d.]. HTML Standard. https://html.spec.whatwg.org/multipage/.
[2] [n.d.]. User Experience Questionnaire (UEQ). https://www.ueq-online.org/.
[3] [n.d.]. What Are Extensions? https://developer.chrome.com/docs/extensions/mv3/overview/.

[4] 2021. Logui-Framework/Client. The LogUI Framework.
[5] Tantek Çelik, Elika J. Etemad, Daniel Glazman, Ian Hickson, Peter Linss, and John

Williams. 2018. Selectors Level 3. https://www.w3.org/TR/2018/REC-selectors-3-
20181106/.

[6] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: A 3-D Tool for
Introductory Programming Concepts. Journal of Computing Sciences in Colleges
15, 5 (April 2000), 107–116.

[7] Ian Fellows. 2012. Deducer: A Data Analysis GUI for R. Journal of Statistical
Software 49, 1 (June 2012), 1–15. https://doi.org/10.18637/jss.v049.i08

[8] Michael Fischer, Giovanni Campagna, Silei Xu, and Monica S. Lam. 2018. Brassau:
Automatic Generation of Graphical User Interfaces for Virtual Assistants. In
Proceedings of the 20th International Conference on Human-Computer Interaction
with Mobile Devices and Services (MobileHCI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3229434.3229481

[9] Pierre Geneves, Nabil Layaida, and Vincent Quint. 2012. On the Analysis of
Cascading Style Sheets. In Proceedings of the 21st International Conference on
World Wide Web (WWW ’12). Association for Computing Machinery, New York,
NY, USA, 809–818. https://doi.org/10.1145/2187836.2187946

[10] Daniel Hienert, Wilko van Hoek, Alina Weber, and Dagmar Kern. 2015. WHOSE
– A Tool for Whole-Session Analysis in IIR. In Advances in Information Retrieval
(Lecture Notes in Computer Science), Allan Hanbury, Gabriella Kazai, Andreas
Rauber, and Norbert Fuhr (Eds.). Springer International Publishing, Cham, 172–
183. https://doi.org/10.1007/978-3-319-16354-3_18

[11] Raymond Hill. 2021. Gorhill/uBlock.
[12] Josef Jelinek and Pavel Slavik. 2004. GUI Generation from Annotated Source

Code. In Proceedings of the 3rd Annual Conference on Task Models and Diagrams
(TAMODIA ’04). Association for Computing Machinery, New York, NY, USA,
129–136. https://doi.org/10.1145/1045446.1045470

[13] Sunhwan Jo, Taehoon Kim, Vidyashankara G. Iyer, and Wonpil Im. 2008.
CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. Journal
of Computational Chemistry 29, 11 (Aug. 2008), 1859–1865. https://doi.org/10.
1002/jcc.20945

[14] David Maxwell and Claudia Hauff. 2021. LogUI: Contemporary Logging In-
frastructure for Web-Based Experiments. In Advances in Information Retrieval,
Djoerd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele Perego, Mar-
tin Potthast, and Fabrizio Sebastiani (Eds.). Vol. 12657. Springer International
Publishing, Cham, 525–530. https://doi.org/10.1007/978-3-030-72240-1_59

[15] Guido Milanese. 2015. Zbl-Build: A GUI Interface for Biblatex. (2015), 4.
[16] Peter Pirolli and Stuart Card. 1999. Information Foraging. Psychological Review

106, 4 (1999), 643–675. https://doi.org/10.1037/0033-295X.106.4.643
[17] Gustavo Rossi, Matias Urbieta, Damiano Distante, Jose Matias Rivero, Sergio

Firmenich, Gustavo Rossi, Matias Urbieta, Damiano Distante, Jose Matias Rivero,
and Sergio Firmenich. 2016. 25 Years of Model-Driven Web Engineering. What
We Achieved, What Is Missing. CLEI Electronic Journal 19, 3 (Dec. 2016), 5–57.
https://doi.org/10.19153/cleiej.19.3.1

[18] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. 2014. Applying
the User Experience Questionnaire (UEQ) in Different Evaluation Scenarios. In
Design, User Experience, and Usability. Theories, Methods, and Tools for Designing
the User Experience (Lecture Notes in Computer Science), Aaron Marcus (Ed.).
Springer International Publishing, Cham, 383–392. https://doi.org/10.1007/978-
3-319-07668-3_37

[19] Georg Singer, Ulrich Norbisrath, Eero Vainikko, Hannu Kikkas, and Dirk
Lewandowski. 2011. Search-Logger Analyzing Exploratory Search Tasks. In
Proceedings of the 2011 ACM Symposium on Applied Computing (SAC ’11). As-
sociation for Computing Machinery, New York, NY, USA, 751–756. https:
//doi.org/10.1145/1982185.1982350

[20] Jaime Solís-Martínez, Jordan Pascual Espada, Rubén González Crespo, B. Cristina
Pelayo G-Bustelo, and Juan Manuel Cueva Lovelle. 2020. UXJs: Tracking and
Analyzing Web Usage Information With a Javascript Oriented Approach. IEEE
Access 8 (2020), 43725–43735. https://doi.org/10.1109/ACCESS.2020.2977879

[21] Brian H. Toby. 2001. EXPGUI , a Graphical User Interface for GSAS. Journal
of Applied Crystallography 34, 2 (April 2001), 210–213. https://doi.org/10.1107/
S0021889801002242

[22] Xing Wei, Yinglong Zhang, and Jacek Gwizdka. 2014. YASFIIRE: Yet Another
System for IIR Evaluation. In Proceedings of the 5th Information Interaction in
Context Symposium (IIiX ’14). Association for Computing Machinery, New York,
NY, USA, 316–319. https://doi.org/10.1145/2637002.2637051

8

https://doi.org/10.18637/jss.v049.i08
https://doi.org/10.1145/3229434.3229481
https://doi.org/10.1145/2187836.2187946
https://doi.org/10.1007/978-3-319-16354-3_18
https://doi.org/10.1145/1045446.1045470
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1007/978-3-030-72240-1_59
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.19153/cleiej.19.3.1
https://doi.org/10.1007/978-3-319-07668-3_37
https://doi.org/10.1007/978-3-319-07668-3_37
https://doi.org/10.1145/1982185.1982350
https://doi.org/10.1145/1982185.1982350
https://doi.org/10.1109/ACCESS.2020.2977879
https://doi.org/10.1107/S0021889801002242
https://doi.org/10.1107/S0021889801002242
https://doi.org/10.1145/2637002.2637051

	Abstract
	1 Introduction
	2 Related work
	2.1 Web-page structure
	2.2 Web-Based Interaction Logging
	2.3 LogUI
	2.4 Graphical user interfaces
	2.5 GUI generation

	3 LogUI browser extension
	3.1 Overview
	3.2 Basic Configuration Popup
	3.3 Element Selection
	3.4 Specificity Levels
	3.5 Limitations

	4 Method
	4.1 Participants
	4.2 Task Description
	4.3 Responsible Research
	4.4 Metrics

	5 Results
	5.1 RQ2. Accuracy
	5.2 RQ3. User Experience

	6 Discussion, Conclusions and Future Work
	6.1 Limitations

	References

