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a b s t r a c t

Due to the multi-level nature of public transport networks, disruption impacts may spill-
over beyond the primary effects occurring at the disrupted network level. During a public
transport disruption, it is therefore important to quantify and control the disruption
impacts for the total public transport network, instead of delimiting the analysis of their
impacts to the public transport network level where this particular disruption occurs.
We propose a modelling framework to quantify disruption impact propagation from the
train network to the urban tram or bus network. This framework combines an
optimisation-based train rescheduling model and a simulation-based dynamic public
transport assignment model in an iterative procedure. The iterative process allows devising
train schedules that take into account their impact on passenger flow re-distribution and
related delays. Our study results in a framework which can improve public transport con-
tingency plans on a strategic and tactical level in response to short- to medium-lasting
public transport disruptions, by incorporating how the passenger impact of a train network
disruption propagates to the urban network level. Furthermore, this framework allows for
a more complete quantification of disruption costs, including their spilled-over impacts,
retrospectively. We illustrate the successful implementation of our framework to a
multi-level case study network in the Netherlands.
� 2021 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

Relevance of quantifying disruption propagation

Quantifying and minimising the impacts of public transport (PT) disruptions is important from the perspectives of both
service users and service providers. PT disruptions can negatively affect passengers’ nominal and perceived journey time as a
result of longer in-vehicle times, additional transfers, and longer waiting times in case of missed connections. More severe
crowding levels on remaining services also increase perceived in-vehicle times and can potentially result in an increase in
the number of passengers being denied boarding (see for example Hörcher et al., 2017; Tirachini et al., 2017; Yap et al.,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijtst.2021.02.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ijtst.2021.02.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:M.D.Yap@TUDelft.nl
https://doi.org/10.1016/j.ijtst.2021.02.002
http://www.sciencedirect.com/science/journal/20460430
http://www.elsevier.com/locate/ijtst


M. Yap, O. Cats, J. Törnquist Krasemann et al. International Journal of Transportation Science and Technology 11 (2022) 83–106
2018a). Over a longer time horizon PT disruptions can influence the mode choice of travellers, reducing the PT share in the
modal split and reducing revenues for the PT service provider (Yap et al., 2018b). For a PT operator to provide an attractive
and a competitive public transport service to passengers, it is thus of utmost importance to understand and limit the impacts
of PT disruptions. In line with Oliveira et al. (2016), in this study we define a disruption as a change in system performance
caused by distinctive incidents or events (such as a signal failure). This is in contrast to disturbances, which are typically
defined as changes in system performance caused by stochastic demand or supply fluctuations (such as variability in pas-
senger volumes or running times). A perturbation - any change from normal system performance (Ghosh and Lee, 2000) -
can thus pertain either to a disturbance or a disruption.

An integrated PT network consists of different functional network levels - such as the (inter)national train network level,
the regional train network level, and the urban tram and bus network level - which are hierarchically connected to each
other. In this study, we use the term multi-level network to refer to the entire PT network consisting of these different net-
work levels. As disruption impacts can spill-over from one network level to another network level, it is important to quantify
and mitigate the disruption impacts for the total multi-level PT network, instead of delimiting the considerations to the dis-
ruption impact for the PT network level where this particular disruption occurs. The impact of a PT disruption on a certain
network level can propagate to a lower network level in two different ways: via primary and secondary effects. First, a pri-
mary effect relates to the direct impact of a disruption on journeys of passengers who travel over the different network levels
during one journey. For example, a passenger travelling on the regional train network level might miss the scheduled con-
nection to the urban tram network level, due to a delayed train arrival at the transfer stop following a disruption on this train
network level. Second, a secondary effect is experienced by passengers travelling on a lower PT network level who are
affected indirectly by a disruption on a higher network level. For example, a disruption on the regional train network level
might result in several delayed trains arriving almost simultaneously at the transfer stop. Consequently, this results in a sud-
den increase in transfer volume from the regional train network towards the urban network level, thus increasing crowding
levels in the first urban trips serving this transfer location. Passengers making a journey only at the urban network level
using one of these trips will experience higher levels of discomfort due to crowding, caused by a disruption on another net-
work level. Such secondary effects have been found by Malandri et al. (2018), where impacts of simulated disruptions were
observed at service segments located more than 10–15 km away from the location the disruption originated.

The abovementioned examples illustrate that disruption impacts do not stop at the border of the network level on which
the disruption occurs, as often assumed, but can propagate to another network level as well. For a full understanding of the
impact of a disruption and how to potentially mitigate its impact, one should therefore consider the impact a disruption may
have on the multi-level PT network as a whole, including its propagation. Meanwhile, it is also important to consider the role
other PT network levels can play in mitigating disruption impacts by increasing network robustness (as for example studied
by Jenelius and Cats, 2015; Yap et al., 2018c).

Literature review

Studies focusing on quantifying and mitigating PT disruption impacts can broadly be classified as optimisation-based or
simulation-based approaches. Several optimisation-based approaches propose a mathematical programming framework to
determine the optimal vehicle holding time to regulate PT services or to synchronise services for transferring passengers. For
example, Delgado et al. (2009) and Delgado et al. (2012) test vehicle holding, potentially combined with setting boarding
limits to regulate bus services on a PT corridor with a deterministic mathematical programming model. Sanchez-Martinez
et al. (2016) formulate a deterministic holding control model which incorporates dynamic running times and demand.
Hadas and Ceder (2010) develop a dynamic programming model which minimises passengers’ total travel time by synchro-
nising PT services in an optimal way. Optimisation-based approaches are also applied to synchronise last train services dur-
ing the late evening, for example for subway networks (e.g. Kang et al., 2015) or for bi-level networks to synchronise last
urban trains to enable transfers from feeder high-speed railway lines (Long et al. 2020). Optimisation-based approaches
are also commonly used to solve the railway traffic rescheduling problem, in case disruptions occur on the railway network.
Selected examples of the extensive research performed in this area are Törnquist Krasemann (2012) proposing a greedy algo-
rithm for train rescheduling, D’Ariano et al. (2007) using a branch-and-bound algorithm and Corman et al. (2010) testing a
tabu search algorithm. For a comprehensive literature overview of algorithms proposed for real-time railway rescheduling,
we refer the reader to Cacchiani et al. (2014).

Simulation-based approaches on the other hand are used for disruption impact quantification and for testing rule-based
strategies for disruption management. For example, Cats and Jenelius use the dynamic agent-based PT assignment model
BusMezzo to quantify the robustness value of spare capacity (Cats and Jenelius, 2016), the value of real-time information
provision (Cats and Jenelius, 2014), and the impact of partial link closures (Cats and Jenelius, 2018) for high frequent urban
PT networks. Leng et al. (2018) and Paulsen et al. (2018) use MATsim as agent-based simulation software to predict passen-
ger delay impacts from rail disruptions in the metropolitan areas of Zürich and Copenhagen, respectively. Younan and
Wilson (2010) develop a rule-based controller to support a real-time holding decision between two connecting bus routes
based on expected impact on passengers’ net travel time. Daganzo and Anderson (2016) use simulation to test a rule-based
holding control strategy for transfer synchronisation between metro and bus, whilst Laskaris et al. (2018) use a simulation-
based dynamic PT assignment model to test a multiline holding control strategy for transit corridors, applied to a selection of
bus lines in Stockholm, Sweden. Gavriilidou and Cats (2019) propose a rule-based holding controller for urban PT services
84
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which considers capacity constraints and on-board crowding levels using a dynamic PT assignment model. For an extensive
literature review on holding control strategies we refer to Gavriilidou and Cats (2019).

Few studies have adopted and applied a simulation-based optimisation approach for disruption impact quantification and
mitigation. One example is Shakibayifar et al. (2017), who use a simulation-based optimisation model with the objective of
minimising total train delay times during train disruptions. Schmaranzer et al. (2019) combine a discrete event simulation
model and metaheuristic optimisation model to optimise headways for urban PT systems.

The review of related research studies illustrates that optimisation-based approaches are typically applied for disruption
management on the train network level; whereas simulation-based approaches are primarily used for quantifying disruption
impacts and testing disruption management strategies for the urban PT network level or for metropolitan PT networks
where it is important to account for passenger flow re-distribution. Optimisation-based approaches, often using microscopic
or mesoscopic models, result in (an approximation of) optimal rescheduling, retiming and rerouting of train services in
response to a disruption. As the PT rescheduling problem for larger, real-world PT networks is considered NP-hard
(Desaulniers and Hickman, 2007), these optimisation-based approaches typically account only for limited stochasticity in
PT demand and supply. These studies predominantly employ deterministic mathematical programming models and gener-
ally do not consider stochastic passenger route choice over the PT network, stochastic demand patterns, or stochasticity
related to vehicle running times or dwell times. Dynamic interactions between demand and supply, such as bunching, are
typically not considered. Simulation-based methods, often using agent-based mesoscopic PT models, are able to capture
dynamics in PT demand and supply and their interactions. For example, these models can consider stochastic running times,
flow-dependent dwell times and stochastic and dynamic passenger route choice when being confronted with a disruption.
These methods allow for testing rule-based control strategies or for testing the impact of several disruption scenarios, albeit
without resulting in optimal disruption control strategies.

In recent years, different studies in the field of railway rescheduling have acknowledged that passenger route choice and
impact are often not sufficiently accounted for when using traditional optimisation-based train rescheduling models. In
response to this, some studies have proposed methods which account more explicitly for passenger delay impacts in disrup-
tion management. For example, Dollevoet et al. (2014) propose an iterative optimisation framework for delay management
and train rescheduling. Yin et al. (2016) develop an optimisation-based rescheduling model for metro networks in an energy
efficient manner, but explicitly incorporate time-dependent passenger arrival rates at different stations in their model. Zhu
and Goverde (2019) weight train rescheduling decisions according to the time-dependent volumes, while Van der Hurk et al.
(2018) adopt an iterative framework which combines a rolling stock and passenger advice optimisation model with passen-
ger simulation. Their aim is to minimise passenger disruption impacts on the train network, whilst being able to reflect that
passenger behaviour might not follow advice. Corman et al. (2017) and Ghaemi et al. (2018) combine a train rescheduling
model with a passenger routing model to improve the passenger perspective in disruption management. Other studies to
disruption management incorporate the passenger component using simulation-based optimisation (e.g. Altazin et al.,
2020), stochastic dynamic programming (e.g. Schön and König, 2018) or by combining an optimisation model with passen-
ger flow control strategies (e.g. Liu et al., 2020). Binder et al. (2017) propose an integer linear program to solve the multi-
objective railway rescheduling problem, which integrates passenger rerouting and train rescheduling. Methods to integrate
passenger assignment with railway optimisation can also be found in the planning phase when developing optimal timeta-
bles (e.g. Canca et al., 2016; Schmidt and Schöbel, 2015) or as part of delay management (e.g. Dollevoet et al., 2011; Corman,
2020). Our research builds on these works by combining passenger assignment and train rescheduling for multi-level PT net-
works, so that delay propagations to other PT network levels can be included and quantified in rescheduling decisions.

Railway networks do experience less stochasticity than urban PT networks on average, as train running times are not
influenced by interactions with cars, cyclists and pedestrians. Furthermore, the lower network density of train networks
reduces the route choice alternatives passengers realistically have. This results in deterministic route choice assumptions
being less problematic for train networks, compared to relatively high-density urban PT networks which offer route redun-
dancy. Moreover, the typically lower train frequencies combined with the prevention of early departures from most train
stations do reduce the dynamic interaction between demand and supply which can result in bunching, as often observed
for urban PT services. Due to the more complex interaction between PT demand and supply on the urban PT level,
simulation-based dynamic assignment models are often necessary for sufficiently realistic predictions of the impact of dis-
ruptions and disruption management strategies when considering larger, real-world urban PT networks.

Quantifying and controlling the effects of a train network disruption beyond merely the train network poses two method-
ological challenges. First, a disruption on the train network level is typically solved by an optimisation-based train reschedul-
ing model resulting in an updated train timetable. The extent to which a train disruption propagates to the urban network is
thus a function of the train rescheduling optimisation model. This entails that the train optimisation model needs to be con-
sidered, when quantifying propagated disruption impacts to the urban network - typically using a simulation model - ade-
quately. Second, this train rescheduling is based on the characteristics of the train network level only, and does not consider
the impact of this rescheduling strategy on disruption propagation to the urban PT network. Passenger trips on the urban
level can be subject to control strategies in response to this updated train timetable afterwards. This however implies that
urban network control strategies in response to a train network disruption are performed in a sequential way, where first
services on the train network level are optimised for this network level only, after which services on the urban network level
can only be controlled taken the train network rescheduling as a given. This sequential approach may yield sub-optimal
rescheduling solutions, as the disruption impacts are not considered for the integrated multi-level PT network simultane-
85



M. Yap, O. Cats, J. Törnquist Krasemann et al. International Journal of Transportation Science and Technology 11 (2022) 83–106
ously. Incorporating the impact of train network disruption management on the urban PT network level however requires
considering the stochasticity and dynamics of the urban PT network. These dynamics are difficult to incorporate in an
optimisation-based rescheduling model while still maintaining acceptable computation times.

Research contribution

In this study, we develop an iterative methodology to quantify the impact of a disruption occurring on the train network
for the PT network as a whole by accounting for delay propagation, i.e. cross-network spill-over effects. Our objective is to
develop a framework which can improve the development of PT contingency plans on a strategic and tactical level in
response to short- to medium-lasting PT disruptions and to quantify disruption costs retrospectively, by incorporating
how the passenger impact of a train network disruption propagates to the urban network level (see Fig. 1). Given our
research objective, it is necessary to test train rescheduling strategies obtained from an optimisation-based method, and
to assess the impact of each strategy on the integrated PT network including the urban level, calling for a simulation-
based evaluation approach. We therefore propose a simulation-based optimisation framework to quantify disruption impact
propagation from the train network to the urban network level. Using our proposed methodology, we test how different train
rescheduling strategies can be used to mitigate disruption propagation to the urban network level. In our study, we only con-
trol train trips to mitigate disruption propagation: controlling urban PT trips subsequently (e.g. by applying holding control
strategies tailored for the disruption conditions) falls outside our research scope. The main contribution of our work is the
development of a method to quantify the impact of a train network disruption on other PT network levels, as this is an
important research gap as identified in Section 1.2. To this end, we use two different models as our study input: an
optimisation-based train rescheduling model and a simulation-based PT assignment model. By combining these two individ-
ual models, we are able to answer new research questions in relation to quantifying disruption propagation. As this study
focuses on integrating a train optimisation model and PT simulation model, rather than developing or improving these indi-
vidual models, we deem it appropriate to use an established train optimisation model and PT assignment model of which the
individual performance is known to be good for their individual purposes. This gives us more confidence in our obtained
results to be accurate when integrating these components into our proposed framework. Our framework can be used to
improve contingency plans of PT agencies, in particular for more frequently occurring disruptions, to evaluate the impact
of different strategies on passengers on the entire, multi-level PT network. As such, it can reduce total passenger disruption
impacts and thus contribute to improved PT network robustness.

The main contributions of our study are the following:

� Development of a methodology to quantify disruption impact propagation from the train network to the urban PT net-
work level.

� Apply a simulation-based and an optimisation-based approach iteratively into one modelling framework to predict dis-
ruption propagation impacts.
Fig. 1. Illustration propagation of train network disruption to urban network.
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� Evaluation of the impact of different train rescheduling strategies on controlling disruption impacts for the multi-level PT
network.

The remainder of this paper is structured as follows. Section 2 discusses our proposed modelling methodology to quantify
and control disruption propagation. We apply this methodology to a real-world case study in The Hague, the Netherlands,
which is introduced in Section 3. Results of this case study application are discussed in Section 4. Section 5 provides conclu-
sions and recommendations for future research directions.
Methodology

This section discusses our proposed methodology to quantify and control disruption impact propagation over the multi-
level PT network. Section 2.1 and Section 2.2 introduce the dynamic PT assignment model and the train rescheduling model,
respectively, that we employ in this modelling framework. Section 2.3 describes our proposed modelling framework in
detail. Table 1 first introduces the notations used throughout this section.

Dynamic PT assignment model

This section shortly discusses the properties of the dynamic PT assignment model employed in this study. Appendix A and
Cats et al. (2016) provide more details on the properties of this model. We use a mesoscopic, simulation-based dynamic PT
assignment model to represent the multi-level PT network. The train network level, as well as the urban tram and bus net-
work level, are represented in this model using a directed graph G S;Að Þwith S being the set of all stops and train stations and
A the set of links. The train network level and urban network level are represented by subgraphs Gt St ;At� �

and Gu Su;Au� �
respectively, with Gt 2 G and Gu 2 G. Passenger demand nod is defined from each origin stop o 2 S to each destination stop
d 2 S. In terms of granularity each node corresponds to a PT stop, and each link is the direct connection between two stops
s 2 S. These links typically represent a PT connection between two adjacent stops, whereas they represent a walk connection
between stops located close to each other, for example within a single PT hub. We use an agent-based simulation model to
mimic the emerging order from interactions among numerous vehicles and passengers. To be able to reflect stochastic
demand patterns due to day-to-day variation, the arrival rate of passengers at the origin stop for each OD pair is assumed
to follow a Poisson distribution. The arrival rate parameter of the Poisson distribution can typically be estimated from Auto-
mated Fare Collection (AFC) data.

The set of PT lines is denoted by L, with jLj representing the total number of lines. Each line l 2 L is defined by a sequence
of stops l ¼ sl;1; sl;2::sl;j

�
} with F ¼ f 1; f 2::f j

� �
denoting the set of scheduled trips on this line. The scheduled headway of a line

is denoted byhl, which can be time-dependent. The total time tl;f it takes a vehicle to complete trip f of line l equals the sum-
mation of all running times trsl;f from stop slto stop slþ1 and dwell times tdwsl;f at each stopsl, as expressed by Eq.1. Running times

trsl;f can be assumed deterministic, using the scheduled times obtained from the timetable, or can be stochastic. In our study,

we use deterministic minimum running times for the train network, as these running times are relatively stable given the
limited interactions with other traffic. For urban tram and bus lines, we fit a lognormal or log-logistic distribution to the
empirical Automated Vehicle Location (AVL) data, to capture the predominantly stochastic running times within an urban
environment. The dwell times tdwsl;f for each trip f 2 F at each stop s 2 S depend on the number of boarding and alighting pas-

sengers nboard
sl;f

and nalight
sl;f . The departure time of a trip tdepsl;f

depends on the arrival time at that stop tarrsl;f
and the required dwell

timetdwsl;f (Eq.2). In case a stop is a holding point s 2 Sh and a schedule-based holding control regime is employed, the depar-

ture time can never be earlier than the scheduled departure time from that specific stopt
dep

sl;f
(Eq.3). For urban PT networks, a

selected number of stops are usually holding points, whereas all train network stations are holding points as passenger trains
are generally not able to depart ahead of schedule from any station.
tl;f ¼
Xsj�1

sl;1

trsl;f þ
Xsj�1

sl;1

tdwsl;f 8f 2 F; l 2 L ð1Þ

tdepsl;f
¼ tarrsl;f

þ tdwsl;f 8f 2 F; l 2 L; s R Sh ð2Þ

tdepsl;f
¼ max tarrsl;f

þ tdwsl;f ; t
dep

sl;f

� �
8f 2 F; l 2 L; s 2 Sh ð3Þ
The number of boarding and alighting passengers is obtained from a successive number of choices each individual pas-
senger makes during the journey. At each stop a passenger can make a boarding decision to board a certain trip or to wait, or
make a connection decision to walk to another PT stop. When boarded a certain trip, a passenger can make an alighting deci-
sion at each downstream stop whether to alight from this vehicle or to stay on-board. These decisions can be made en-route
87



Table 1
List with sets and indices, variables and parameters.

Sets and indices

s; S public transport stop as node of graph G, set of stops
a;A edge of graph G, set of links
l; L unidirectional public transport line, set of lines
f ; F public transport trip, set of trips
o;O public transport stop representing origin node of G, set of origin nodes
d;D public transport stop representing destination node of G, set of destination nodes
i; T index for train trip, set of all train trips
j;B index for rail infrastructure segment of train network, set of segments
k; E index for time slot request event by train for a rail infrastructure segment, set of events
p; P index for track for each train infrastructure segment, set
dw index for dwell time
h index for holding stop
r index for running time
s index for scenario
t index for regional train network level
u index for urban public transport network level
ivt index for in-vehicle time
wkt index for walking time
wtt index for waiting time
wtt � d index for waiting time due to denied boarding
on� board index for passengers on-board a public transport trip
alight index for alighting passengers
board index for boarding passengers
tf index for transferring passengers
arr index for trip arrival
dep index for trip departure

Variables

h scheduled headway of a public transport line
n number of passengers
q binary variable indicating if an event uses a certain track
r binary variable indicating if an event occurs before another event
s binary variable indicating if an event is rescheduled to occur after another event
t Time
v generalised passenger journey cost
w train arrival time deviation
z train delay

Parameters

a weight for penalising track changes
b weight for alighting passengers in transfer-alighting based delay minimisation strategy
c weight for transferring passengers in transfer-alighting based delay minimisation strategy
e weights for passenger perception coefficients of travel time components
f threshold convergence criterion 1
g threshold convergence criterion 2
l track or platform initially intended to be used by an event

M. Yap, O. Cats, J. Törnquist Krasemann et al. International Journal of Transportation Science and Technology 11 (2022) 83–106
and in a stochastic and dynamic way if the expected utility of a certain choice changes during a journey, for example in
response to high crowding levels or to information provided about a downstream disruption. The model considers in-
vehicle time, walking time, waiting time (regular waiting time as well as waiting time caused by denied boarding in case
of crowding) and the number of transfers, weighted by the corresponding coefficients. Whilst the model specification in this
study assumes fixed (average) walking speeds between different stops or platforms, it is possible to specify a walking time
distribution instead. In case station (over)crowding is expected to result in passengers missing their connecting service, one
could specify a walking speed distribution to incorporate the passenger delay impact which might result from this. A single
non-equilibrium assignment procedure without day-to-day learning is applied.
Train rescheduling model

This section shortly discusses the mesoscopic optimisation model used for train rescheduling in response to a train net-
work disruption. The optimisation is formulated as mixed integer linear programming (MILP) problem and details of this
model can be found in Appendix B and in Törnquist and Persson (2007). This model only represents the train network
levelGt 2 G, which is a subset of the total multi-level PT network G considered in this study. In this model, individual train
trips are represented. Each node corresponds to a train station or infrastructure junction, such as a movable bridge or track
88
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merging; each separate track between two nodes is represented by an individual link. In this train rescheduling model, Gt is
represented with a higher granularity than in the dynamic PT assignment model to allow for optimal rescheduling of each
individual train trip in case of a disruption. Let T represent the set of all train trips in the selected train network level and let B
denote the set of segments that defines the rail infrastructure for the train network level. E denotes the set of events, where
an event can be seen as a time slot request by a train for a specific network segment. The index i is associated with a specific
train service in the set T (i.e.i 2 T), while the index j is associated with a specific network segment (j 2 B), and index k is asso-
ciated with an event (k 2 E). An event is associated with a combination of a network segment and a train service. The set
Ki # E is an ordered set of events for each train tripi, while Lj # E is an ordered set of events for each network segmentj. Each
segment j in Bhas a number of parallel tracks, with each track indicated byp 2 Pj.

This train rescheduling model focuses primarily on train delay minimisation but allows for weighting the delay of differ-
ent trains based on the number of passengers on-board the trains, in order to adopt a more passenger-oriented approach in
the train delay minimisation. It should however be noted that passengers and their dynamic route choice are not explicitly
modelled here, since incorporating demand- and supply-related stochastics and dynamics of both network levels of a real-
world PT network is computationally expensive (as addressed in Section 1). The objective function of this model in its most
basic form is therefore the minimisation of the sum of all delays z for all train trips. For our proposed iterative modelling
framework, we have formulated new objectives functions (presented in Section 2.3) to better incorporate the passenger per-
spective and the additional delays for passengers which may result from missing their connections to the urban transport
services.

Modelling framework

The main contribution of this study is the development of a simulation-based optimisation modelling framework as a
methodology for quantifying and controlling the propagation of a train network disruption to the urban PT network. This
modelling framework combines two different models: a simulation-based dynamic PT assignment model (Section 2.1)
and an optimisation-based train rescheduling model (Section 2.2). The train rescheduling model is required, as the disrup-
tion propagation of a train network disruption to the urban network is a function of the train rescheduling strategy being
applied to train services in response to a disruption. Using a dynamic PT assignment model which represents the entire
multi-level PT network enables the quantification of the direct and propagated impact of a train network disruption for
the PT network as a whole, including the dynamic and stochastic demand and supply characteristics particularly relevant
for the urban network level.

Passenger train rescheduling strategies
To control train network disruption propagation to the urban network, different rescheduling strategies applied to the

train network are tested. We consider a strategy as a certain intervention – in this study a train rescheduling intervention
– aimed at reducing the passenger impact of a certain disruption scenario. A scenario is here defined as any new reality
resulting from a certain disruption. A scenario is external and cannot be influenced as such, whilst strategies aim to mitigate
the consequences of this scenario. Although passengers are not explicitly modelled within the train rescheduling model, it is
possible to incorporate different passenger-oriented rescheduling strategies by adding different weights to the delays of dif-
ferent trains in the objective function based on the number of passengers in each train. This gives, for example, more impor-
tance to a delay of a busy train compared to a delayed train which is less busy. In our study, we test four different train
weights, which are aimed to control the propagation of train disruption impacts to the urban PT network. These four differ-
ent weights result in four alternative objective functions applied to the train rescheduling model, taking the objective func-
tion as introduced by Eq. B1 in Appendix B, as a base. We test the following train rescheduling strategies (S1-S4):

� Passenger based delay minimisation (Eq.4) (S1): minimise train delays larger than two minutes zþ2
i;k , where each train is

weighted by the expected number of passengers leaving the corresponding train at each stop nalight;t
i;k þ ntf ;t!u

i;k (both alight-
ing and transferring passengers).

� Transfer based delay minimisation (Eq.5) (S2): minimise train delays larger than two minutes zþ2
i;k , where each train is

weighted by the expected number of transferring passengers from the train network level to the urban PT network level

ntf ;t!u
i;k . This implies that trains are only weighted according to the number of transferring passengers to the urban level.

� Transfer-time based delay minimisation (Eq.6) (S3): minimise train delays larger than two minutes zþ2
i;k , where each train

is weighted by the number of transferring passengers to the urban PT network level multiplied with the headway of the

urban PT service where is transferred to ntf ;t!u
i;k � hu

l . This reflects the expected passenger waiting time for transferring pas-
sengers in case a scheduled transfer from train to urban network level would be missed due to a delayed train arrival at
the transfer stop.

� Weighted transfer-alighting based delay minimisation (Eq.7) (S4): minimise train delays larger than two minutes zþ2
i;k ,

where each train is weighted based on the number of alighting passengers nalight;t
i;k and the number of transferring passen-

gers from train to urban PT network level ntf ;t!u
i;k , with different weights b and c respectively being applied to the two pas-
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senger segments. This reflects that the impact of a delayed train arrival can potentially be more severe for transferring
passengers, when a connection to the urban network level would be missed, than for alighting passengers reaching their
final destination. This typically results in a higher weight c > b being applied to the number of transferring passengers.

The resulting objective functions corresponding to the different train rescheduling strategies are shown in Eq. 4–7. The
model permits for example trains to run faster than scheduled and to run ahead of schedule at certain stretches between
stations (i.e. arriving before the scheduled arrival time) in order to enable trains to catch-up from delays and make way
for other trains quicker. The departure time from stations is however not permitted to start before the original scheduled
departure time. The model also permits trains to change tracks and platforms at stations as well as to overtake and meet
at other locations than initially planned, if that leads to a reduction of knock-on delays. Hence, in order to ensure that only
such beneficial ‘delay-reducing’ rescheduling decisions are adopted, those need to be associated with a smaller penalty cor-
responding to e.g. one minute delay. Therefore, in addition to delay minimisation, the objective functions also minimise all
arrival time deviations and track changes. The objective is to minimise train delays larger than two minuteszþ2

i;k , weighted by
a passenger component depending on the rescheduling strategy, arrival time deviationswi;k and track changes. qi;k;p is the

binary decision variable related to the use of track p 2 Pj by an event k, as defined in Appendix B. The parameter ltrain
i;k spec-

ifies the track or platform that was initially intended to be used by event k belonging to train tripi. The parameter a specifies
the weight used for penalising track changes. If the time-related variable values are given in e.g. seconds, the value of a needs
to be set quite high in order to balance the trade-off between reducing train delays and keeping the timetable intact as much
as possible with respect to the planned routes of the trains through/within the stations.
minimise
X
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The following train rescheduling actions are permitted in this model:

� Retiming: changing the departure and arrival times, while respecting the initial earliest departure time and minimum
dwell times at commercial stops and running times of the trains.

� Reordering: permitting shift of train order and overtaking to neighbouring stations, while respecting the safety con-
straints in the network.

� Local rerouting: allowing change of track and platform assignment at train stations.

Our model does not incorporate (full or partial) train cancellations, global rerouting (i.e. rerouting trains via a completely
different route) or the supply of rail-replacement bus services in the optimisation. This has implications for the type and
magnitude of disruptions this model can be applied to. Our study focuses on disruptions which do not result in the complete
blockage of certain rail infrastructure. For example, one can think of vehicle or infrastructure related disruptions (e.g. a signal
failure, a faulty train) which result in delays, but which do not result in the complete unavailability of a certain infrastructure
segment. When infrastructure becomes unavailable, train cancellations, short-turning or (global) train rerouting are mea-
sures commonly applied. Additionally, our method focuses primarily on unplanned disruptions with a short to medium-
long duration (up to a couple of hours). For planned disruptions and for long-lasting unplanned disruptions - for example
a disruption which lasts for multiple days - supply of rail-replacement buses can be expected. In these cases, a wider demand
response than only rerouting can be expected as well, as passengers might also change their mode choice, destination choice
or trip frequency choice.

Iterative modelling framework
The iterative modelling framework we propose in this study is shown in Fig. 2. This framework consists of three mod-

elling steps, which needs to be performed to adequately quantify the disruption propagation impact subject to different train
rescheduling strategies.

The first step is the model initialisation, where the dynamic PT assignment model is used to assign the total PT passenger
demand n (for train and urban network level) over the multi-level PT network for a scenario without disruption s0. This
results in passenger route choice over the total multi-level PT network in case there would be no disruption, yet subject
to recurrent service variations. Based on this, passengers’ generalised travel costs v s0 in the steady-state condition can be
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Fig. 2. Iterative modelling framework.
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computed by multiplying the different travel time components (walking time twkt , waiting time twtt , in-vehicle time tivt , wait-
ing time due to denied boarding twtt�d, number of transfers ntf ) by their corresponding weights e reflecting the passenger
perception of each component, after which the sum of this is multiplied by the value of time (VoT) (Eq. 8). This implies that
we do not only consider the disruption impact on the nominal passenger journey time, but also on the perceived passenger
journey time.
vod
s0

¼ eivt � tivt;od þ ewkt�twkt;od þ ewtt�twtt;od þ ewtt�d � twtt�d;od þ etf � ntf ;od
� � � VoT ð8Þ
Second, the train rescheduling model is applied to perform an optimal train rescheduling for a given train network dis-
ruption si. The train rescheduling model requires the number of alighting passengers from each train trip at each train station

nalight;t
i;k as input, as well as the number of transferring passengers ntf ;t!u

i;k from the train network level to the urban network

level. Depending on the rescheduling strategy applied in this model, the scheduled headway of each urban PT linehu
l where

passengers transfer to is also required as input (Eq.6). These three variables are outputs from the assignment process of the
dynamic PT assignment model and are fed into the train rescheduling model as input for the objective function of a certain
train rescheduling strategy. A train network disruption is coded as input for the train rescheduling model, after which the
train rescheduling problem is solved for a selected rescheduling strategy. As output, the train rescheduling model provides

an updated train timetable with rescheduled train departure times t
dep

sl;f
(which are based on the decision variables values for

xbegini;k in the MILP model presented in Appendix B). The scheduled train departure times for each station in the undisrupted
case are equal for the train trips modelled in the train rescheduling model and in the dynamic PT assignment model. Due
to the difference in granularity between the two models, only updated departure times from commercial train stations
are fed back into the dynamic PT assignment model, i.e. departure times from other timetable time points such as movable
bridges are not fed back from the train rescheduling model to the PT assignment model.

Third, the dynamic PT assignment model is applied again for each rescheduling strategy applied in the train rescheduling
model. The updated train departure times from the train rescheduling model in response to the modelled disruption on the
train network are used as input. Using this updated train timetable, the total PT demand is re-assigned over the multi-level
PT network, based upon which the generalised travel costs v sican be computed (Eq.8). Due to the stochastic nature of the
dynamic PT assignment model, multiple replications of this model are required in both step 1 and step 3 of the model
sequence. The number of replications required within one iteration is calculated using the convergence criterion based on
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the procedure detailed in Dowling et al. (2004), such that the allowable percentage error does not exceed 5%. The generalised
travel costs are then averaged over the number of replications.

Next, step 2 and step 3 are repeated iteratively. This is of relevance as the re-assigned train passenger flows in the
dynamic assignment model can update the number of alighting and transferring train passengers used as weights in the
objective function of the train rescheduling model, which can affect the train rescheduling results as a consequence. This
iterative process between step 2 and step 3 terminates when convergence is reached. We define two different convergence
criteria in this study, of which at least one needs to be satisfied to consider results of the total model sequence as converged.
The first criterion compares the generalised journey costs v si for the total multi-level network between two iterations, as can
be computed from the outputs of the PT assignment model (Eq.9). When the difference in generalised costs of Dv si - as aver-
age over the multiple replications within each iteration - between two subsequent iterations j and j� 1 is smaller than a
predefined threshold f, convergence is reached after j iterations. In our study we use a strict convergence criterion of
0.5% for f. The second criterion compares the passenger volume assigned for each train trip i 2 T on each track segment
between two iterations. If at least 95% of the train segment passenger volumes in the model differs by less than a predefined
threshold g from the volumes in the previous iteration, convergence is reached (Eq.10). The abovementioned value of 95% is
obtained from standard modelling guidelines applied in the United Kingdom for (e.g.) model validation, where it is suggested
that across screenlines and cordons the difference in passenger volumes should, in 95% of the cases, be less than a certain
threshold (TAG, 2020). The value of the threshold depends on the spatial level of analysis. When comparing across screen-
lines, TAG typically recommends a threshold of 15% for g, whereas a higher threshold of 25% is allowed when considering
individual links or services (as in our study). In our study we opted for a stricter threshold of 10% for g, even though we
are comparing passenger volumes for individual train services and links. Please note that g and f have no dimension and
are expressed as percentages (see Eq.9 and Eq.10). This implies that the convergence performance will depend on the tem-
poral discretisation and/or absolute link volume, as low absolute demand changes may result in large relative changes. In
TAG (2020) it is therefore recommended to exclude links from the comparison where the hourly flow is less than 150 pas-
sengers, which we adopted here as well. We use two convergence criteria in this study, as this relates to the two models
used. If the total assignment results between two iterations do not differ more thanf, the PT assignment model results
can be considered stable (first convergence criterion). If the train passenger volumes used as input for the train rescheduling
model do not differ more thang from the previous iteration, it indicates that the updated train departure times resulting
from the train rescheduling model will be stable. As these are used to update the PT assignment model, consequently the
results of the assignment model will be stable as well (second convergence criterion). Hence, satisfying one of these criteria
is sufficient to consider the model results as converged, based on which the solutionminimising total generalised travel costs
can be selected.
Dv si ¼
X
o2S

X
d2S

vod;j
si

� vod;j�1
si

� �
=
X
o2S

X
d2S

vod;j�1
si

� �
ð9Þ

Dnon�board;t
i;k ¼ non�board;t;j

i;k � non�board;t;j�1
i;k

� �
=non�board;t;j�1

i;k 8i 2 T; k 2 E ð10Þ
Eq.11 quantifies the total passenger disruption impactDv , expressed as generalised passenger delay costs. The generalised
journey costs resulting from disruption si after convergencev si are compared with these costs when there is no disruptionvs0 .
We distinguish between journeys with their origin and destination at the train network level or urban network level, which
results in four different passenger segments. This enables the quantification of the impact of a train network disruption on
this disrupted network level, as well as the spill-over impacts due to propagation to the urban PT network level. The disrup-
tion impact of a train network disruption on the disrupted train network level Dv t relates to the increase in generalised tra-
vel costs for passengers starting and terminating their journey at the train network level Gt . The disruption propagation to
the urban network level Dvu relates to the additional generalised journey costs for passengers with their journey starting
and/or terminating at the urban network level Gu. Dv t and Dvu can be computed by using Eq.11 for the relevant subset of
passenger segments.
Dv ¼
X
o2t;u

X
d2t;u

vod
si
� vod

s0

� �
ð11Þ
Case study

This section discusses the case study for which our methodology is applied. Section 3.1 introduces the case study network
of The Hague, the Netherlands. Subsequently, Section 3.2 describes the tested disruption scenario.

Case study network

We apply our methodology to the multi-level public transport network of The Hague, the Netherlands. The Hague is the
third largest city in the Netherlands, located in the main economic area of the Netherlands called the Randstad in the west-
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ern part of the country. The population size of the city is over 500,000 inhabitants. The urban agglomeration of The Hague
including its surrounding cities covers an area of 405 sq.km with more than 1 million inhabitants.

The case study multi-level PT network encompasses the complete urban PT network of The Hague consisting of 12 tram
lines and 8 bus lines, and all train services calling at The Hague as depicted in Fig. 3. The tram and bus lines are operated by
HTM, the urban public transport operator of The Hague. Two tram lines are light rail lines connecting the main city of The
Hague with the satellite city of Zoetermeer. The other 10 tram lines function on the urban network level providing connec-
tions between different areas within The Hague and neighbouring municipalities. The eight considered bus lines all belong to
the urban concession area of HTM in The Hague. The case study network consists of 498 bus, tram and light rail stops. All
train services from/to the directions Leiden, Gouda and Delft starting at, terminating at, or serving one of the train stations
of The Hague are incorporated in our case study. Both intercity train services, serving only larger cities, and local train ser-
vices stopping at all stations are simulated. The train network is cordoned at the stations Leiden, Gouda and Delft Zuid,
meaning that these stations are modelled as gate nodes for the parts of train services extending beyond the boundaries
of the case study network. The cordoned train network consists of 16 stations, of which 10 stations allow passengers to
transfer between the (inter)regional train network level and the urban tram and bus network of The Hague.

The passenger demand is obtained from Automated Fare Collection (AFC) data from 20 working days between 5 March
and 30 March 2018. For the urban tram and bus network in The Hague, a distance based fare system applies where passen-
gers are required to tap in and tap out at in-vehicle devices for each journey leg. This means that each complete AFC trans-
action consists of a tap in time, stop, line and vehicle ID, as well as a tap out time and stop (see also Van Oort et al., 2017). The
dataset consists of 6.48 million AFC transactions solely for the urban tram and bus network, equating �325,000 AFC trans-
actions per average working day made on the urban PT network. 29,271 AFC transactions (0.5%) were incomplete due to an
error in the AFC system and removed from the dataset. Due to the on-board tap in and tap out devices, destination inference
is not required for complete AFC transactions. In case of an incomplete AFC transaction where a passenger (un)deliberately
did not tap out, a trip chaining algorithm is applied to infer the most plausible tap out stop (Munizaga and Palma, 2012). If
there is only one AFC transaction made by a certain card ID on the day of the incomplete transaction, or if no candidate
alighting stop is found within a plausible walking distance of 400 Euclidean metres from the next registered boarding stop,
no destination inference is performed. Consequently, another 43,427 (0.7%) AFC transactions were removed from the dataset.
For all remaining 6.39 million AFC transactions on the urban PT network, a transfer inference algorithm is applied to con-
Fig. 3. Case study public transport network (yellow: train services / green: tram and light rail services / red: bus services).
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struct stop-to-stop journeys based on Gordon et al. (2013) and Yap et al. (2017), thereby using both the AFC and AVL (open)
data corresponding to this 20 working days period.

To construct a multi-level stop-to-stop OD matrix, the OD matrix generated solely for the urban PT network is amended
based on information about transfers between the train and urban PT network. As the train and urban PT network are oper-
ated by different PT operators, AFC systems of these network levels are generally not linked together. Therefore, no direct
multi-level OD matrix is available. However, the relative distribution of transferring passengers between intercity and local
train services of the three case study train corridors (directions Leiden, Gouda or Delft), and the urban PT network was pro-
vided to us for each multi-level transfer location in The Hague. These transfer flows are distributed proportionally over the
different urban PT stops as origins and destinations, thereby replacing the multi-level transfer location as origin/destination
for the original urban PT journey. This results in an OD matrix for the total multi-level PT network. It should be noted that
this complete OD matrix could alternatively be obtained from a strategic transport model rather than using direct empirical
data, depending on data availability for the considered case study area.

In our case study, we focus on the disruption impacts for AM peak journeys with starting time between 7-9AM. Alongside
simulating PT demand and supply between 7–9 AM, demand and supply are also simulated between 6-7AM and 9-10AM as
warm-up and cooling-down period. This is necessary to make sure all passengers starting their journey between 7-9AM have
PT supply available at all locations to start and finish their journey. It is also necessary to reflect crowding levels in PT ser-
vices adequately by incorporating passengers starting their journey outside the AM peak, who affect crowding levels of pas-
sengers who started their journey within the AM peak. After applying the abovementioned transfer inference algorithm,
there are about 104,000 journeys simulated for the multi-level PT network starting between 7-9AM in total. About
55,000 journeys (52%: marked blue in Fig. 4) start and/or end at the urban PT network level and can potentially benefit from
our iterative approach, whilst approximately 49,000 journeys (48%) are only using the train PT network level.

Disruption scenario

We illustrate our proposed modelling framework by applying it to a disruption scenario. We would like to emphasise that
this disruption case study only serves an illustrative purpose to demonstrate that our method can be applied successfully to
real-world PT networks to quantify disruption propagation impacts. Given the variety of disruption types, lengths and loca-
tions, the disruption costs and performance of different rescheduling strategies always depend on the specific location, dura-
tion and time a specific disruption starts. For this scenario we quantify how the impact of a train network disruption
propagates to the urban PT network level, after applying optimised rescheduling and control strategies to train services
on the disrupted (inter)regional train network. We simulate an infrastructure failure - such as a signal failure or switch fail-
ure - at a certain (fixed) location, resulting in lower speeds and thus delays for all passing trains. The disruption is simulated
just before Leiden for all inbound trains towards The Hague coming from Schiphol Airport (see Fig. 5). In this figure, the four
most important transfer stations between the train network and the urban PT network are indicated (The Hague Central, The
Hague HS, The Hague Laan van NOI and Delft). Potential disruption propagation from train to urban network occurs mainly
via these stations. The disruption is simulated to last from 6AM to 9AM during the simulation period. The simulation hour
from 9AM to 10AM is used for service recovery. It is assumed that all trains passing this disruption location between 6-9AM
obtain a random delay drawn from a normal distribution with an average delay of 15 minutes and a standard deviation of 5
minutes. As our case study only serves an illustrational purpose to show how one can quantify propagated disruption
impacts to other PT network levels, we only solved this for one instance. It is however recommended to perform multiple
draws from this distribution to test the stability of the model outcomes when one wants to implement contingency plans
in practice.

In our experiments we use BusMezzo as dynamic PT assignment model (Cats et al., 2010). The optimisation model for
train rescheduling is implemented in Java and solved using Gurobi version 6.5.1. The exchange of inputs and outputs
Fig. 4. Distribution of total AM peak (7–9 h) demand over the four distinguished passenger segments.
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Fig. 5. PT network with disruption before Leiden affecting multiple trains from direction Schiphol Airport. The yellow lines in the figure left correspond to the
train network as shown in the figure right.
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between the two models is performed automatically using a model integration tool built in Java (Obrenovic, 2019). We test
the four different train rescheduling strategies as outlined in Section 2.3. Table 2 provides an overview of the parameter val-
ues used for our case study. The coefficients of the travel time components of the generalised cost function (Eq.8) are
obtained from a Revealed Preference study performed by Yap et al. (2018a) utilising smart card data records. The Value
of Time is in line with values typically applied in the Netherlands. We use f=|0.005| and g=|0.10| as thresholds for our con-
vergence criteria. This entails that convergence is reached if the passenger journey costs for the total network do not change
more than 0.5% between two iterations, or if for at least 95% of all train segments the passenger load does not change more
than 10% between two iterations.
Results and discussion

This section discusses train rescheduling results (Section 4.1), disruption impact results (Section 4.2) and case study
implications (Section 4.3). For discussion of our case study results, we refer to the four different train rescheduling strategies
as follows: S1 refers to total passenger based train delay minimisation, S2 to transferring passenger based train delay min-
imisation, S3 to transfer-time based train delay minimisation, and S4 to weighted alighting-transferring passenger based
train delay minimisation.
Train rescheduling results

Based on the convergence criteria we adopted in this study, strategies S1, S2, S3 and S4 require 7, 3, 5 and 5 iterations,
respectively, to reach convergence. For each iteration of the dynamic PT assignment model, 15 replications were required to
capture the stochasticity in PT demand and supply for this case study. One replication of the dynamic PT assignment model
takes about 3 minutes on a regular Dell Core i7 laptop, whilst solving the train rescheduling problem requires 5–10 minutes.
Therefore, one complete iteration of both the train rescheduling model (5–10 minutes) and PT assignment model (3*15 = 45
minutes) requires 50–55 minutes. Please note that aforementioned values are computed on a regular single threaded laptop
without any parallelisation being applied. Computation times could be reduced substantially if multiple processors would be
used. However, the abovementioned computation times imply that our framework is best suitable to apply in the strategic /
tactical planning phase to test contingency plans, and in the evaluation phase to assess the disruption impacts of past dis-
ruptions. For this framework to be applied in real-time control decisions, it would require a further reduction of computation
Table 2
Parameter values for case study.

Parameter Parameter function

a = 60 Weight for penalising track changes
b = 1 Weight for alighting passengers
c = 3 Weight for transferring passengers
eivt = 1 / ewkt=1.58 / ewtt=1.58 / ewtt�d=3.5 / etf =4.8 Coefficients in generalised travel cost function
f=|0.005| Threshold for first convergence criterion
g=|0.10| Threshold for second convergence criterion
VoT=€9 / hour Value of Time
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times even when considering potential parallelisation, as decisions will typically be required within 1–2 minutes after the
occurrence of a disruption.

The results of the train rescheduling model show different updated timetables in response to the disruption, when dif-
ferent control strategies are applied. An example of the visualisation of the updated train timetable resulting from the
rescheduling process is shown in a time–space diagram in Fig. 6. In Table 3, some high level statistics are shown for the dif-
ferent train rescheduling strategies. It can be seen that in strategy S1 most trains are rescheduled, but that average arrival
delays at the final station of these trains are smaller than for the other strategies. Strategy S2 shows the opposite effect: the
least trains are rescheduled, at cost of the largest arrival delay. Strategies S3 and S4 both sit between S1 and S4 in this regard.
Fig. 7 provides the arrival delay of the affected train trips which arrive at The Hague Central, which is a terminal station for
all train services and the most important transfer location between train and urban network level for our case study. It can be
seen that the most severe delayed trains suffer from�22minutes delay when arriving at the destination. For a couple of train
trips, the different rescheduling strategies result in the same arrival delay at The Hague Central. Overall, we see that control
strategies which incorporate the number of alighting (non-transferring) passengers result in a more similar train reschedul-
ing: the results of strategy S1 and strategy S4 are similar for most trains. On the other hand, control strategies which are only
based on the number of transferring passengers (strategies S2 and S3) result in comparable rescheduling decisions as well. In
case relatively large passenger volumes transfer from a certain train to an urban tram or bus with a relatively low frequency,
this train gets prioritised in strategy S3 compared to strategy S2, as can be seen for trains 2,246,001 and 2118001. Compared
to strategy S2, strategy S3 results in higher train arrival delays for trains with fewer passengers interchanging to urban lines
with relatively low frequencies (e.g. trains 2,446,001 and 2263001). When comparing strategies S1 and S4 on the one hand,
and strategies S2 and S3 on the other hand, we conclude that the transfer(-time) based strategies S2 and S3 result in fewer
trains arriving late at The Hague Central, with the average arrival delay being slightly smaller than for strategies S1 and S4.
The (weighted) passenger based strategies S1 and S4 tend to distribute the delays over more trains, resulting in delays for a
larger number of trains. This confirms that strategies which only incorporate transferring passenger volumes in the weighted
train delay minimisation, tend to result in fewer trains arriving delayed at the important transfer stations.
Disruption impact results

The results from the dynamic PT assignment model allow for quantifying the disruption impact on the disrupted train
network level Dv t and the spilled-over disruption propagation to the urban PT network level Dvu. Table 4 provides the mon-
etised disruption impact in Euros between 7-9AM (left), and the relative share of disruption impact costs on the disrupted
network level and the spilled-over urban network level. These values result from applying Eq.11, in which generalised costs
are computed for the disrupted and undisrupted scenario using Eq.8. Depending on the rescheduling strategy being applied,
the propagated disruption costs make up 5–15% of the total passenger disruption costs. For this case study, our results thus
show that neglecting disruption propagation to the urban network results in an underestimation of 5–15% of the total dis-
ruption costs for passengers. The delayed train arrivals caused by this disruption influence journeys starting at the train net-
work and terminating at the urban network (and in the opposite direction) due to potential missed connections or prolonged
waiting times. In addition, the shifted train arrival trains can result in less uniform transfer volumes to the urban PT trips,
thereby resulting in higher average crowding levels for urban PT trips. This can have a negative impact on journeys entirely
made on the urban network as well.

When comparing the different control strategies, one can see that disruption propagation costs differ substantially
between the strategies. When rescheduling strategy S1 is applied, the forecast propagated disruption costs are €3,100.
Fig. 6. Illustration time–space diagram for updated train timetable after rescheduling. Bold, dashed lines represent rescheduled trains, whereas the red dashed
line shows the first train being rescheduled.
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Table 3
Comparison train rescheduling results between strategies.

Number of rescheduled trains Average arrival delay of rescheduled trains (min)

Strategy S1 – passenger 42 6.5
Strategy S2 – transfer 39 7.6
Strategy S3 – transfer time 40 6.8
Strategy S4 – alighting-transfer 41 7.2

Fig. 7. Train arrival delay at The Hague Central for different train rescheduling strategies.
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Rescheduling strategies S2-S4, which all add relatively more importance to transferring passengers to the urban network
compared to alighting passengers during the train rescheduling, are all able to reduce the spilled-over disruption impact
to the urban network. Strategies S2 and S4 result in spilled-over disruption impacts of €2,200-€2,500, whilst a further reduc-
tion in disruption propagation is forecast for strategy S3 (€1,600). When the headway of the urban PT service where passen-
gers transferring to is incorporated (strategy S3), the propagated impact can be further reduced compared to strategy S2
which only considers the number of transferring passengers. This can be explained by the potential longer waiting times
inflicted on passengers if passengers would miss a transfer to an urban PT route with a relatively low service frequency.
In this specific case study, strategies S2 and S4 seem to provide beneficial impacts on both the train and urban network level,
resulting in lower total disruption costs than strategies S1 and S3. Strategy S4, which does consider both alighting and trans-
ferring passengers, results in the lowest total disruption costs. These results suggest that for this case study putting more
emphasis on transferring passengers during the train rescheduling process can result in more optimal rescheduling results
from a total network perspective.
Table 4
Disruption impact for different train rescheduling strategies (7-9AM).

Disruption impact (Euro) Share of disruption impact

Disrupted level (train) Spilled-over level (urban) Total Disrupted level (train) Spilled-over level (urban)

Strategy S1 – passenger € 29,817 € 3,070 € 32,886 91% 9%
Strategy S2 - transfer € 23,554 € 2,543 € 26,097 90% 10%
Strategy S3 - transfer time € 31,335 € 1,600 € 32,935 95% 5%
Strategy S4 - alighting-transfer € 12,115 € 2,163 € 14,278 85% 15%

All values are computed by comparing the total generalised costs for passengers between the disrupted and undisrupted scenario (Eq.11). The generalised
costs per scenario result from the perceived passenger delay monetised using a Value-of-Time (Eq.8)
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Fig. 8 shows the total and propagated disruption impacts for the four passenger segments distinguished in this research,
depending on whether the passenger journey starts and/or ends at the regional train network or urban network level. Plot (a)
shows the total passenger journey costs from each strategy and confirms that most disruption impacts apply to journeys
made exclusively using the train network (dark blue). Plots (b), (c) and (d) zoom in to journeys which start and/or end at
the urban network, thus effectively excluding the regional-regional journeys as shown in plot (a). These plots show that
the propagated disruption impact primarily affects journeys entirely made on the urban network, and journeys from urban
to train network. Based on total journey costs (plot b), nominal journey time (plot c) and additional waiting time (plot d), we
can see that strategy S3 is most effective in reducing delay propagation to the urban network, whilst strategy S4 realises the
lowest total network delay when also incorporating the impact on the disrupted level (plot a). Strategies S3 and S4 both out-
perform strategies S1 and S2 in terms of reducing spilled-over delay propagation. Strategy S4 primarily reduces delay prop-
agation for the urban-urban segment, which is the smallest across the four strategies (plot b). However, this reduction comes
at the expense of increasing the journey costs for the urban-regional segment, particularly in comparison to strategy S3.

Discussion

The main contribution of the proposed method is that it enables to assess the dependencies between the different PT net-
work layers and their control mechanisms. Compared to existing models used to predict or control disruption impacts for
either the train network, or the urban PT network, the main beneficiary of the proposed modelling framework is that it
can be quantified how a disruption spills over from one network level to another. In addition, this framework allows quan-
tifying how the impacts of control interventions directed at one network level can influence the extent that a disruption
propagates over the integrated PT network. Hence, this method provides most added value for PT systems where there
are relatively strong interdependencies between different network levels, for example caused by multiple transfer locations
between different networks or a relatively high share of multi-level passenger journeys. In the event of relatively interde-
pendent network levels, the benefit of incorporating disruption propagation in control decisions has the potential to out-
weigh the costs of adopting this more extended, but also computationally more expensive modelling framework. This
modelling framework is based on the principle that control interventions are taken in the benefit of passengers from an over-
all passenger perspective, thereby considering the disruption impacts on passengers for the entire PT network. Implemen-
tation of such integrated control strategies can be relatively straightforward if the same service provider operates PT services
Fig. 8. Total and propagated passenger delay impact for different passenger segments.
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on the different network levels. When different PT operating companies are involved, implementation can potentially
become more challenging when commercial aspects come into play. In these cases, there is a role for the overarching trans-
port authority to incentivise train operating companies to apply control strategies which are most beneficial from an inte-
grated network perspective, rather than for their subnetwork only, for example via contractual agreements or compensation
schemes.

As mentioned earlier in Section 2.3, the train rescheduling model as used in this study applies particularly to the devel-
opment of contingency plans for disruptions with a short to medium-long duration in which a rail infrastructure segment is
not entirely blocked, given that global rerouting of trains, supply of rail-replacement bus services and wider passenger
demand responses are not captured. Most value can be expected when these contingency plans are developed for disruption
types which occur relatively frequently, or for locations which are frequently exposed to certain disruptions. Rail-
replacement buses could however be incorporated in the dynamic PT assignment model, based on which train rescheduling
could be optimised using the availability of certain bus-bridging routes as input. Moreover, generalised journey costs result-
ing from the dynamic PT assignment model could be used to assess the expected reduction in PT demand levels during cer-
tain disruption types, for example by adopting an elasticity-based approach (e.g. Yap et al., 2018b) or by coupling this
assignment model to a variable demand model.

Our study results can be applied when developing contingency plans at a strategic and tactical level, which describe in
which way train rescheduling can be performed from a passenger perspective, thereby including propagating impacts to
other PT networks. Our proposed framework enables testing and optimising train rescheduling for different disruption types,
with different disruption durations at different locations on the train network. This can support controllers in their decisions
which trains to prioritise in case of different types of disruptions. Based on historical data about expected demand levels dur-
ing different times of the day, it is possible to develop contingency plans for different times of the day. Given the required
computation times of our modelling framework, we deem our method most suitable to apply for the development of con-
tingency plans during the planning phase. For our framework to be used during real-time rescheduling, it is necessary to
reduce computation times to only a few minutes in total. As mentioned in Section 4.1, these could be reduced substantially
if parallel computing would be applied. In addition, it is possible to reduce computation times by applying our model in a
non-iterative manner. Although this clearly comes at cost of accuracy, it is possible to run only one model sequence from
Step 1 to Step 3, without further iterating between Step 2 and Step 3 (see Fig. 2). In Fig. 9, we set out a comparison in per-
formance between the first and final iteration of each of the tested strategies to assess the impact on the solution quality. On
average for the different strategies tested, it can be shown that reducing the computation times with up to factor 7 (by elim-
inating the need for the required seven iterations for strategy S1) comes at a cost of the solution quality being 32% less than
using the converged solution. This provides insights into the trade-off between accuracy and computation time one could
make, when applying this method in a real-time application rather than for contingency planning purposes.

For our case study, we assumed a disruption duration of 3 hours in our modelling work. However, due to uncertainty
regarding the disruption duration, modelled and real-world disruption impacts might differ. Setting an appropriate disrup-
tion duration upfront is a non-trivial task, which depends on the risk strategy (often implicitly) adopted by the PT operator in
practice. The modelled duration is not necessarily limited to the expected or average disruption duration obtained from his-
torical data, but can take on any value from the duration distribution function. In case of a more optimistic, risk-taking strat-
egy where a short disruption duration is assumed, there is a risk that passengers need to be informed twice when the
disruption proves to last longer than expected and additional trains need to be rescheduled. On the other hand, adopting
a more pessimistic, risk-averse strategy assuming a long duration might risk trains being rescheduled longer than necessary.
We refer to the work of Ghaemi et al. (2018), which illustrates the passenger impacts when adopting different modelled dis-
ruption lengths. For our study, this entails that any duration from the disruption length distribution might be selected,
depending on the strategy of the particular PT operator. Estimates for disruption length can be derived from historical data
as proposed by Yap et al. (2018c).
Conclusions

In this research we propose a methodology to quantify the propagation of the impact of a train network disruption to the
urban PT network level, as well as the extent to which it is potentially mitigated when applying different train rescheduling
control strategies. We propose a modelling framework which consists of a dynamic PT assignment model and an
optimisation-based train rescheduling model in an iterative process. We incorporate the number of transferring passengers
to the urban network level in the optimisation process by weighting train delays accordingly. This allows the train reschedul-
ing model to incorporate potential disruption propagation to the urban PT network level when determining which trains to
prioritise for retiming, reordering or rerouting.

We tested our modelling framework successfully to a multi-modal case study in the Netherlands. This illustrates how our
framework can contribute to the development of improved contingency plans in anticipation of short- to medium-lasting PT
disruptions, by considering spill-over disruption impacts to other PT network levels. In addition, our framework can be used
to quantify the PT disruption costs in a more complete and accurate way when evaluating the impact of past disruptions. For
this specific case study disruption, our findings illustrate that adding more importance to transferring passengers compared
to alighting passengers in the objective function of the train rescheduling model can considerably reduce propagation of pas-
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Fig. 9. Comparison of disruption costs between converged and non-iterative solution.
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senger delays to the urban network level, whilst in some cases also reducing passenger delays at the train network level. For
our case study, this suggests that weighting alighting and transferring passengers equally may yield suboptimal (i.e. Pareto
inefficient) rescheduling from a total passenger perspective.

Based on our findings we recommend train network managers to consider how control decisions can result in train dis-
ruption impacts propagating to the urban PT network with which they interface. Whilst operators in practice often only con-
sider the trips and passengers on the part of the network they are assigned to monitor and control, our research offers
evidence that it can be made beneficial for all passenger groups to consider the wider PT network in control decisions. This
can potentially reduce the disruption impact for passengers on the network level where the disruption occurs, as well as for
passengers travelling on another PT network level. For a successful implementation of these overarching control strategies,
attention should be paid to removing practical barriers between parties resulting from the institutional context of the PT
system. These barriers can for example rise due to conflicting (control) interests of different operators, conflicting contractual
agreements with the transport authority, or due to commercial interests conflicting with sharing required data.

We formulate several recommendations for future research directions. The main purpose of our case study application is
illustrating that our modelling framework can be used to quantify propagated disruption impacts at other PT network levels
for large, real-world public transport networks. For future research we recommend testing the disruption (propagation)
impacts for more disruptions, locations and time periods, and exploring the use of different weights for control strategy
S4 using our proposed modelling framework. This can provide a more systematic insight into the relation between different
train control strategies and their impact on controlling disruption propagation, and hence provide more generalizable con-
clusions based on the case study outcomes. In addition, in this research only the passenger costs that are associated with a
disruption are quantified. Other disruption costs for the service provider, such as crew-related costs, rescheduling costs or
reduced revenues, are not calculated in this study as our focus is on the passenger disruption impacts. Notwithstanding, cal-
culating the disruption costs for the PT service provider is a relevant topic we recommend to incorporate in future research.
Moreover, it is recommended to determine a selection of stations to be subject to these control interventions, in order to
make the problem manageable. A method as proposed by Yap et al. (2019), which adopts a data-driven approach to identify
the most important stations for control, can potentially be applied for this purpose. At last, in our study we only consider
train trips to be subject to control interventions to mitigate disruption propagation. It should however be mentioned that
additional control can be applied to urban PT trips to further alleviate disruption propagation impacts, for example by hold-
ing an urban trip to enable delayed passengers to make their connection. This would require quantifying the trade-of
between passengers on-board and waiting downstream for the urban service (experiencing longer in-vehicle or waiting
times), and transferring passengers (saving additional wait time for the next service) to determine the optimal holding strat-
egy (see for example Gavriilidou and Cats 2019). For future research, we therefore recommend exploring how control of train
trips and urban PT trips can be applied simultaneously to further mitigate and encapsulate the impacts of disruptions.
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Appendix A

This appendix provides details of the dynamic, simulation-based PT assignment model as used in our study. Table A1 lists
the sets and indices, variables and parameters used for this model.

PT supply dynamics

Each line l 2 L is defined by a sequence of stops l ¼ sl;1; sl;2::sl;j
�

} with F ¼ f 1; f 2::f j
� �

denoting the set of scheduled trips on
line l 2 L. The total time tl;f it takes a vehicle to complete trip f of line l equals the summation of all running times trsl;f from

stop slto stop slþ1 and dwell times tdwsl;f at each stopsl, as expressed by Eq.A1. Running times trsl;f can be deterministic, using the

scheduled times from the timetable, or stochastic.
Table A
List wit

Sets

s; S
a;A
l; L
f ; F
o;O
d;D
g;G
dw
h
r
s
t
u
ivt
wkt
wtt
wtt �
on�
aligh
boar
tf
arr
dep

Varia

h
n
t
v

Para

d
e

tl;f ¼
Xsj�1

sl;1

trsl;f þ
Xsj�1

sl;1

tdwsl;f 8f 2 F; l 2 L ðA1Þ
The dwell times tdwsl;k for each trip f 2 F at each stop s 2 S depend on the number of boarding and alighting passengers nboard
sl;f

and nalight
sl;f . The flow-dependent dwell time function used in this study assumes a linear relation between the number of

boarding and alighting passengers and the required dwell time, whilst the model also allows for adding a non-linear effect
of on-board crowding on dwell times based onWeidman (1994). As crowding levels for our case study network are relatively
1
h sets and indices, variables and parameters for dynamic PT assignment model.

and indices

public transport stop as node of graph G, set of stops
edge of graph G, set of links
unidirectional public transport line, set of lines
public transport trip, set of trips
public transport stop representing origin node of G, set of origin nodes
public transport stop representing destination node of G, set of destination nodes
passenger route choice action, set of actions
index for dwell time
index for holding stop
index for running time
index for scenario
index for regional train network level
index for urban public transport network level
index for in-vehicle time
index for walking time
index for waiting time

d index for waiting time due to denied boarding
board index for passengers on-board a public transport trip
t index for alighting passengers
d index for boarding passengers

index for transferring passengers
index for trip arrival
index for trip departure

bles

scheduled headway of a public transport line
number of passengers
time
generalised passenger journey cost

meters

dwell time coefficient
weights for passenger perception coefficients of travel time components
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low, even when subject to the disruption types we consider, we deem using a simple linear function sufficient and beneficial
in terms of computation times. For PT networks or disruption types where severe crowding occurs, the use of a dwell time
function with non-linear crowding effect is however recommended. In case separate doors of a vehicle are used for boarding
and alighting, the dwell time depends on the maximum of the number of boarding and alighting passengers, multiplied by
the related dwell time coefficient d which reflects the required boarding or alighting time per passenger (Eq.A2). When all
doors are used for both boarding and alighting, the dwell time is calculated using Eq.A3. The dwell time function is calibrated
for different vehicle types (e.g. high-floor trams, low-floor trams and buses) by executing a regression analysis predicting the
realised dwell times based on the boarding and alighting volumes obtained from AFC and AVL data. A separate dwell time
function is calibrated for each vehicle type. If different bus vehicle types (e.g. buses with a different number of doors or with
different boarding regimes) would be used for different lines, different coefficients need to be calibrated. Similarly, if a tram
line would be operated by longer trams (for example, two coupled tram carriages), separate coefficients need to be estimated
for this line due to the different number of total doors available for boarding and alighting. For our case study, the calibrated
dwell time constant d0 equals 20.4 / 16.2 / 19.8 seconds; boarding coefficient d1 equals 0.188 / 0.178 / 0.313; and alighting
coefficient d2 equals 0.218 / 0.119 / 0.177 seconds for high floor trams, low floor trams and buses, respectively.
tdwsl;f ¼ d0 þmax d1 � nboard
sl;f

; d2 � nalight
sl;f

� �
8f 2 F; l 2 L; s 2 S ðA2Þ

tdwsl;f ¼ d0 þ d1 � nboard
sl;f

þ d2 � nalight
sl;f

8f 2 F; l 2 L; s 2 S ðA3Þ
The departure time of a trip tdepsl;f
depends on the arrival time at that stop tarrsl;f

and the required dwell timetdwsl;f (Eq.A4). In case

a stop is a holding point s 2 Shand a schedule-based holding control regime is employed, the departure time can never be

earlier than the scheduled departure time from that specific stopt
dep

sl;f
(Eq.A5). For urban PT networks, a select number of stops

are usually holding points, whereas all train network stations are holding points as trains are generally not able to depart
ahead of schedule from a station.
tdepsl;f
¼ tarrsl;f

þ tdwsl;f 8f 2 F; l 2 L; s R Sh ðA4Þ

tdepsl;f
¼ max tarrsl;f

þ tdwsl;f ; t
dep

sl;f

� �
8f 2 F; l 2 L; s 2 Sh ðA5Þ
PT demand dynamics

The number of boarding and alighting passengers is obtained from a successive number of choices each individual pas-
senger makes during the journey. At each stop a passenger can make a boarding decision to board a certain trip or to wait, or
make a connection decision to walk to another PT stop. When boarded a certain trip, a passenger can make an alighting deci-
sion at each downstream stop whether to alight from this vehicle or to stay on-board. These decisions can be made en-route
and in a stochastic and dynamic way if the expected utility of a certain choice changes during a journey, for example in
response to high crowding levels or to information provided about a downstream disruption. These successive decisions
are based on the expected utility of a path vg corresponding to a certain action g as logsum over the path set Ag 2 Aod asso-
ciated with this action (Eq.A6). The probability of passenger n choosing this action g is calculated using a multinomial logit
(MNL) model (Eq.A7), which results in stochastic route choice over the network. The structural part of the utility function is
calculated based on the sum product of the expected values of the different travel time attributes and the weights of the
corresponding coefficients. The model considers in-vehicle time (nominal and perceived in-vehicle time caused by crowd-
ing), walking time, waiting time (regular waiting time as well as waiting time caused by denied boarding in case of crowd-
ing) and the number of transfers. For different travel time components, different coefficients are used reflecting the
perceived time by passengers, as well as a fixed transfer penalty for each transfer. To alleviate potential violations of the
IIA assumption of the MNL model, common stops and lines are merged into hyper-paths. A single non-equilibrium assign-
ment procedure without day-to-day learning is applied.
vn;g ¼ ln
X
a2Ag

evn;a 8n 2 N; g 2 G ðA6Þ

pn;g ¼
evn;gP
g2Gevn;g

8n 2 N; g 2 G ðA7Þ
Appendix B

In this appendix, the mixed integer linear programming (MILP) formulation of the optimisation-based train rescheduling
model is provided.
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Objective function and decision variables

Let T represent the set of all train trips on the selected train network level and let B denote the set of segments that
defines the rail infrastructure for the train network level. E denotes the set of events, where an event can be seen as a time
slot request by a train for a specific network segment. The index i is associated with a specific transport service in the set T
(i.e.i 2 T), while the index j is associated with a specific network segment (j 2 B), and index k is associated with an event
(k 2 E). An event is associated with a combination of a network segment and a transport service. The set Ki # E is an ordered
set of events for each transport servicei, while Lj # E is an ordered set of events for each network segmentj. Each segment j in
Bhas a number of parallel tracks, with each track indicated by p 2 Pj. Each track requires a separation in time between sub-
sequent events (i.e. the minimum time required between one train leaving the track and the next train entering the same

track). The latter is reflected by dmj for the minimum time between trains driving in the opposite direction, and by dfj for trains
following each other in the same direction.

The objective function of the train rescheduling model in its most basic form is the minimisation of the sum of all delays
(larger than a certain threshold value) for all train trips (Eq.B1). The decision variables reflecting the retiming, reordering,
and track allocation decisions to be made during the train rescheduling are reflected by Eq.B2-B5 below.
minimise
X
i2T

X
k2Ki

zþsi;k
� �

ðB1Þ

qi;k;p ¼
1; if event k uses track p; k 2 Ki; k 2 Lj; i 2 T; p 2 Pj; j 2 B

0; otherwise

�
ðB2Þ

r
k;bk ¼ 1; if event k occurs before event bk; k 2 Lj; j 2 B : k < bk

0; otherwise

(
ðB3Þ

s
k;bk ¼ 1; if event k is rescheduled to occur after event bk; k 2 Lj; j 2 B : k < bk

0; otherwise

(
ðB4Þ

xbegini;k ; xendi;k ; zþsi;k ;wi;k � 0; k 2 Ki; i 2 T ðB5Þ
Constraints

The optimisation is subject to several constraints related to the timing and sequence of events and the capacity and safety
limitations of the infrastructure. We introduce the following notations specifically related to the model constraints. The vari-

ables xbegini;k and xendi;k reflect the arrival time at a segment for a specific train, and the departure time from this segment, respec-

tively. The initially scheduled start and end time of each event are reflected by binitial
i;k and einitiali;k , whilst a disruption is

modelled by changing the start and end time of selected events to bstatic
i;k and estatici;k . The minimum running time of each trip

for each segment di;k is provided as model input. The constraints reflected by Eq.B6-B13 are related to train restrictions. Each
event of a specific train trip needs to be followed directly by the next event of this trip (Eq.B6). Events which started before
the disruption starts, but are not finished yet when the disruption start, should start as planned (Eq.B7-B8). The duration of
each event for a certain segment should at least be equal to the minimum running time required for this segment (Eq.B9),
whilst events are not allowed to start before their original scheduled departure time (Eq.B10). In Eq.B11, the train delay zi;k
exceeding threshold s minutes is calculated for each event. Eq.B12-B13 compute the time deviation of each event.
xendi;k ¼ xbegini;kþ1; k 2 Ki; i 2 T : k–jKij ðB6Þ

xbegini;k ¼ bstatic
i;k ; k 2 Ki; i 2 T : bstatic

k > 0 ðB7Þ

xendi;k ¼ estatici;k ; k 2 Ki; i 2 T : estatick > 0 ðB8Þ

xendi;k � xbegini;k þ di;k; k 2 Ki; i 2 T ðB9Þ

xbegini;k � binitial
i;k ; k 2 Ki; i 2 T ðB10Þ

xendi;k � einitiali;k � s � zþsi;k ; k 2 Ki; i 2 T ðB11Þ
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xendi;k � einitiali;k � wi;k; k 2 Ki; i 2 T ðB12Þ

einitiali;k � x
end

i;k
� wi;k; k 2 Ki; i 2 T ðB13Þ
The constraints as formulated in Eq.B14-B20 concern the permitted interactions between trains, given the capacity lim-
itations of the infrastructure (including safety restrictions). First, each event must use exactly one track per segment (Eq.
B14). Eq.B15-B19 make sure that if two events using the same track within a segment, this can only occur if the first event

has finished and the minimum required time dmj or dfj has passed (depending whether these subsequent trains are running in

the same or opposite direction). ok refers here to the point of origin of event k, which enables determining whether two sub-
sequent events are using a segment in the same or in opposite direction. M is a large positive constant. Eq.B20 guarantees

that an event k cannot be scheduled both before and after event bk.
X
p2Pj

qi;k;p ¼ 1; k 2 Kik 2 Lj; i 2 T;p 2 Pj; j 2 B ðB14Þ

qi;k;p þ qbi ;bk;p � 1 � r
k;bk þ s

k;bk ;
k; bk 2 Lj; k 2 Ki;

bk 2 Kbi ;p 2 Pj; j 2 B; i;bi 2 T : k < bk ðB15Þ

xbeginbi;k � xendi;k � dmj rk;bk �M 1� r
k;bk

	 

;

k; bk 2 Lj; k 2 Ki;
bk 2 Kbi ;p 2 Pj; j 2 B; i;bi 2 T : k < bk; obk–ok ðB16Þ

xbeginbi;k � xendi;k � dfj rk;bk �M 1� r
k;bk

	 

;

k; bk 2 Lj; k 2 Ki;
bk 2 Kbi ;p 2 Pj; j 2 B; i;bi 2 T : k < bk; obk ¼ ok ðB17Þ

xbegini;k � xendbi;k � dmj sk;bk �M 1� s
k;bk

	 

;

k; bk 2 Lj; k 2 Ki;
bk 2 Kbi ;p 2 Pj; j 2 B; i;bi 2 T : k < bk; obk–ok ðB18Þ

xbegini;k � xendbi;k � dfj sk;bk �M 1� s
k;bk

	 

;

k; bk 2 Lj; k 2 Ki;
bk 2 Kbi ;p 2 Pj; j 2 B; i;bi 2 T : k < bk; obk ¼ ok ðB19Þ

r
k;bk þ s

k;bk � 1; k; bk 2 Lj; j 2 B : k < bk ðB20Þ
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