

Delft University of Technology

Tool-Driven Quality Assurance for Functional Programming and Machine Learning

Applis, L.H.

DOI
10.4233/uuid:4d048249-e59d-4a82-9e11-714b2b25163f
Publication date
2024
Document Version
Final published version
Citation (APA)
Applis, L. H. (2024). Tool-Driven Quality Assurance for Functional Programming and Machine Learning.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:4d048249-e59d-4a82-
9e11-714b2b25163f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:4d048249-e59d-4a82-9e11-714b2b25163f
https://doi.org/10.4233/uuid:4d048249-e59d-4a82-9e11-714b2b25163f
https://doi.org/10.4233/uuid:4d048249-e59d-4a82-9e11-714b2b25163f

Tool-DrivenQuality Assurance for
Functional Programming and Machine

Learning

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 29 october 2024 om 15.00

door

Leonhard APPLIS

Master of Science in Computer Science,
Technische Universität Georg Simon Ohm, Duitsland,

geboren te Starnberg, Duitsland.

Dit proefschrift is goedgekeurd door de

promotor: Prof. Dr. A. van Deursen
copromotor: Dr. A. Panichella

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A. van Deursen, Technische Universiteit Delft
Dr. A. Panichella, Technische Universiteit Delft

Onafhankelijke leden:

Prof. dr. G. Keller, Universiteit Utrecht
Prof. dr. C. Le Goues, Carnegie Mellon University,

United States of America
Prof. dr. F. Sarro, University College London,

United Kingdom
Prof. dr. K.G. Langendoen, Technische Universiteit Delft
Dr. J. Cockx, Technische Universiteit Delft
Prof. dr. A. Zaidman Technische Universiteit Delft, reservelid

The work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

Keywords: Software Engineering, Functional Programming, Search-based Software
Engineering

Printed by: ProefschriftMaken.nl

Cover: Leonhard Applis

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/
phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6510-186-6

https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template

iii

iv

Tradition ist nicht das Anbeten der Asche
Tradition is not to worship the ashes

sondern das Schüren des Feuers
but to stoke the fire

(frei, nach Jean Jaurés)

v

vii

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Features of Functional Programming & Haskell 3
1.3 Current Machine Learning in Software Engineering 4
1.4 Research Outline . 8
1.5 Methodology . 11
1.6 Origin of Chapters . 13
1.7 Artifacts . 14

2 Assessing Robustness of ML-Based Program Analysis Tools using Meta-
morphic Program Transformations 15
2.1 Introduction . 16
2.2 Background and Related Work . 17

2.2.1 Metamorphic Testing. 17
2.2.2 Metamorphic Testing for Machine Learning 18
2.2.3 Testing Code2Vec Models . 19
2.2.4 Documentation Generation . 20
2.2.5 Code Completion. 20

2.3 Our Framework: Lampion . 21
2.3.1 Overview . 21
2.3.2 Metamorphic Relation for Programs 21
2.3.3 Metamorphic Transformations 24

2.4 Empirical Study . 26
2.4.1 Research Questions . 26
2.4.2 Benchmark - CodeBERT . 27
2.4.3 Methodology / Experiment Design 27

2.5 Results . 30
2.5.1 Performance impact of first-order MTs 30
2.5.2 Performance changes with higher-order MTs. 31
2.5.3 Comparison of Changes per Transformer 34
2.5.4 Naturalness of Transformations 37

2.6 Discussion . 39
2.6.1 Practical implications . 39
2.6.2 Runtime Overhead . 39
2.6.3 Reflection of the initial experiment 39
2.6.4 Open Challenges for Data Augmentation. 40

2.7 Conclusion . 41
2.8 Online Resources. 41

viii Contents

3 Searching for Quality: Genetic Algorithms and Metamorphic Testing for
Software Engineering ML 43
3.1 Introduction . 44
3.2 Background & Related Work . 45

3.2.1 Code2Vec & Method-name Prediction 45
3.2.2 Metamorphic Testing. 46
3.2.3 Genetic Algorithms . 47

3.3 Approach . 47
3.3.1 Guided Metamorphic Testing. 48

3.4 Methodology . 51
3.4.1 Research Questions . 51
3.4.2 Benchmark and Dataset . 52
3.4.3 Evaluation Methods . 52
3.4.4 Experiment Setup . 53

3.5 Results . 54
3.5.1 Effectiveness of Search . 54
3.5.2 Minimizing Number of Transformations 55
3.5.3 Distribution of Transformations 56
3.5.4 Inverting Search-Goals . 57

3.6 Discussion . 58
3.7 Threats to Validity . 59
3.8 Conclusion . 59

4 HasBugs - Handpicked Haskell Bugs 61
4.1 Introduction . 63
4.2 Dataset Description . 64
4.3 Data Collection and Challenges . 67
4.4 Research Opportunities . 67
4.5 Attributes and Examples of Bugs . 68
4.6 Limitations and Future Work . 70
4.7 Conclusion . 70

5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language 71
5.1 Introduction . 72
5.2 Background and Related Work . 74
5.3 Approach . 78

5.3.1 Evaluation Trees . 78
5.3.2 Trace Data . 78
5.3.3 Example . 80
5.3.4 Persistence and Tix Upgrades 80
5.3.5 Output . 80
5.3.6 Summarization and Presentation 82
5.3.7 Data . 83

5.4 Initial Results . 84
5.5 Next Steps . 94
5.6 Conclusion . 96

Contents ix

6 PropR: Property-Based Automatic Program Repair 97
6.1 Introduction . 98
6.2 Background and Related Work . 99

6.2.1 Property-Based Testing. 99
6.2.2 Haskell, GHC & Typed Holes. 100
6.2.3 GenProg, Genetic Program Repair & Patch Representation 102
6.2.4 Repair of Formally Verified Programs & Program Synthesis 102

6.3 Technical Details — PropR . 103
6.3.1 Compiler-Driven Mutation . 103
6.3.2 Fixes . 107
6.3.3 Checking Fixes . 108
6.3.4 Search . 109
6.3.5 Looping and Finalizing Results 110

6.4 Empirical Study . 111
6.4.1 Research Questions . 111
6.4.2 Dataset . 112
6.4.3 Methodology / Experiment Design 112

6.5 Results . 114
6.6 Discussion . 118
6.7 Threats to Validity . 120
6.8 Conclusion . 120
6.9 Online Resources. 120

7 Functional Spectra for Fault Localization 121
7.1 Introduction . 123

7.1.1 Example . 123
7.1.2 Contributions . 127
7.1.3 Research Questions . 129

7.2 Background and Related Work . 130
7.2.1 Spectrum-based Fault Localization 130
7.2.2 Other Fault Localization efforts for functional programming 131
7.2.3 Related Work. 131

7.3 Implementation & Experiment Setup . 132
7.3.1 Spectrum Generation. 132
7.3.2 Rules . 133
7.3.3 Data . 135
7.3.4 Experimental Setup . 137

7.4 Results . 139
7.4.1 Attributes of Spectra . 139
7.4.2 Existing SBFL-Formulas . 141
7.4.3 Applicability of Rules and Correlations. 142
7.4.4 Attributes of SBFL Models . 145
7.4.5 Generalizability of SBFL Models 147

x Contents

7.5 Discussion . 154
7.5.1 Quality of formulas . 154
7.5.2 Project & Test Structure . 154
7.5.3 Moving Forward on SBFL Models 154
7.5.4 Future Work . 155

7.6 Conclusion . 156

8 Conclusion 157

Bibliography 165

xi

Summary

Finding and fixing software faults is a major part of software development and as such any
improvement for such tasks is a welcome aid for developers and a worthwhile field for
researchers. Like programming in general, debugging and repair need specialized tools to
provide the necessary information (like the usage of runtime resources) or assure quality
(e.g. with test suites). Only then, developers are able to repair faults without introducing
new ones. There are also more sophisticated tools that provide stronger, more automated
help to developers: Program coverage summarizes run-time behavior, fault localization
helps to narrow down suspicious parts of the code and automated program repair suggests
possible patches that lead to a passing test suite. On top of these approaches, large language
models show promising capabilities to generate, alter and test source-code, but they have
yet to be tested and hardened for their security and quality.

To enable the next generation of state of the art quality-assurance tools, this thesis
investigates different techniques and their respective tools to improve their precision and
correctness. To this end, we develop procedures to quantify the robustness of large language
models of code to identify their weaknesses when facing metamorphic noise or statistically
unlikely data. After examining quality of tools, this dissertation works towards improving
existing tools and approaches in the field of functional programming, particularly for
Haskell. Functional programming is a field rich of unique options such as properties, strong
type-systems, side-effect free functions, but also challenges like non-strict evaluation.

Our results regarding large language models show that there are short-comings when
dealing with redundant elements and that such elements can be intentionally searched for.
This implies a need for further improvement of the models, to provide more consistent
results for trivial changes.

The work centered around Haskell shows the value of utilizing compiler- and language-
features to enhance existing techniques: Program repair can be performed with a reduced
search space due to compiler-suggested elements, stack-traces and program-coverage can
be enhanced by introducing an evaluation-trace and fault-localization is aided by types
and expression-level granularity. While the implementation is specific, the approaches
remain transferable: Any feature that is used from Haskell in this dissertation, is (or can
be) implemented for Java.

In summary, this thesis touches on different topics of assuring software quality and
their tools by introducing novel information. This thesis lays groundwork to improve the
next generation of development-tools that utilize large language models or statically typed
languages.

xiii

Samenvatting

Het opsporen en herstellen van softwarefouten is een essentieel onderdeel van softwareon-
twikkeling. Elke verbetering voor dergelijke taken is een welkome hulp voor ontwikke-
laars en een waardevol onderzoeksveld. Net als programmeren in het algemeen, hebben
debuggen en repareren gespecialiseerde tools nodig om de benodigde informatie te ver-
strekken (zoals het gebruik van runtime-resources) of om kwaliteit te waarborgen (bi-
jvoorbeeld met test suites). Alleen dan kunnen ontwikkelaars fouten herstellen zonder
nieuwe fouten te introduceren. Er zijn ook meer geavanceerde tools die sterkere, meer geau-
tomatiseerde hulp bieden aan ontwikkelaars: Programmacoverage vat het runtime-gedrag
samen, foutlokalisatie helpt verdachte delen van de code te beperken en geautomatiseerde
programmareparatie suggereert mogelijke patches die leiden tot een geslaagde test suite.
Naast deze benaderingen tonen grote taalmodellen veelbelovende mogelijkheden om bron-
code te genereren, aan te passen en te testen, maar ze moeten nog worden getest en
versterkt voor hun beveiliging en kwaliteit.

Om de volgende generatie van state-of-the-art kwaliteitsborgingstools mogelijk te
maken, onderzoekt deze scriptie verschillende technieken en hun respectieve tools om
hun precisie en correctheid te verbeteren. Daartoe ontwikkelen we procedures om de
robuustheid van grote taalmodellen voor code te kwantificeren en hun zwakheden te
identificeren wanneer ze worden geconfronteerd met metamorfische ruis of statistisch on-
waarschijnlijke data. Na het onderzoeken van de kwaliteit van tools werkt deze dissertatie
aan het verbeteren van bestaande tools en benaderingen op het gebied van functioneel
programmeren, met name voor Haskell. Functioneel programmeren is een veld dat rijk
is aan unieke opties zoals eigenschappen, sterke type-systemen, side-effect vrije functies,
maar ook uitdagingen zoals niet-strikte evaluatie.

Onze resultaten met betrekking tot grote taalmodellen laten zien dat er tekortkomingen
zijn bij het omgaan met redundante elementen en dat dergelijke elementen opzettelijk
kunnen worden gezocht. Dit impliceert een behoefte aan verdere verbetering van de
modellen om consistentere resultaten te bieden voor triviale wijzigingen. Het werk rond
Haskell toont de waarde aan van het benutten van compiler- en taalfeatures om bestaande
technieken te verbeteren: Programmareparatie kan worden uitgevoerd met een verminderd
zoekgebied dankzij compiler-gesuggereerde elementen, stack-traces en programmacov-
erage kunnen worden verbeterd door een evaluatiespoor in te voeren en foutlokalisatie
wordt ondersteund door types en expressieniveau-granulariteit. Hoewel de implementatie
specifiek is, blijven de benaderingen overdraagbaar: Elke feature die in deze dissertatie van
Haskell wordt gebruikt, is (of kan worden) geïmplementeerd voor Java.

Samenvattend raakt deze scriptie verschillende onderwerpen aan met betrekking tot
het waarborgen van softwarekwaliteit en hun tools door nieuwe informatie te introduceren.
Deze scriptie legt de basis voor het verbeteren van de volgende generatie ontwikkeltools
die gebruik maken van grote taalmodellen of statisch getypeerde talen.

1

1

1
Introduction

It is not exactly unique that I like programming, both as work and as a hobby, because it is
a creative process and building things is fun. What made me pursue the fields of software
engineering as a researcher was a certain curiosity in the patterns I saw both in me and
my colleagues: When a new feature was required, it was designed, implemented, tested,
integrated, crashed, and then improved. This pattern was not always followed exactly, but
it repeated in both smallest unit-level elements, modules, infrastructure and even with
the introduction of new team members. For me, this overarching iterative pattern is what
makes software engineering more than just programming: Once you see the team members
as part of a project, the project is never truly finished.

This thesis investigates two of the trends that are forming in the early 2020s: A re-
naissance of functional programming (and its paradigms) [1] and the maturity of machine
learning that created the first generation of production-ready artificial intelligence for
software engineering (AI4SE) tools [2]. Let’s look at some of the trends in detail.

Functional Programming can be dated as early as 1956 and the functional language
Lisp [3], and bases itself in the legacy of one of computer science’s most renown figures,
Alonzo Church and his 𝜆-calculus [4]. With Churchs work as a logician, in addition to
many of the issues of computer science being centered around mathematical computation,
functional programming often thrives in fields that are closer to mathematics and physics
[5], conceptually fitting better than other paradigms. The stateless nature of functional
programs allows for an easy composition, and maybe more important, for readily testable
sub-routines. Unfortunately functional programming is not widely adopted, and languages
like Agda [6] and Coq [7] are effectively tied purely to academia. Other languages like
Haskell, Erlang, Scala or OCaml find more real-world application, yet their use falls short
compared to languages from different paradigms. The impact of functional programming
is still not to be under-estimated: Rust [8], an imperative programming language, chose to
adopt strong type checking similar to Haskell and extend the compiler-checks to identify
memory-usage. Java and C#, both object oriented languages, opted for more functional
features when it comes to data processing by promoting lambda functions in streams [9]
(Java) or LINQ [10] (C#) 1. Some domains, like large-scale data processing with SPARK
1LINQ looks (intentionally) like SQL, but forms a query of filters, joins, and mappings behind the scenes.

1

2 1 Introduction

[11], have been ground-up designed around immutable data and composable functions and
succeed with these principles. So even when Haskell and pure FP languages are not widely
adopted, the paradigm and its benefits are (selectively) reapplied in other domains [12][1].
This is a reasonable approach - if your domain is most approachable by the concept of
objects, object oriented programming (OOP) is what you want. Nevertheless, there are still
benefits to using functions as first-class citizens. Languages like Scala [13][14] and F# [15]
are designed to combine functional paradigms with OOP code-bases, and are well received
for their interoperability [16].

The other dominating trend is the rise of production-ready machine-learning tools.
This spans most industries, but is also prevalent in Software Engineering [17]. Specialized
tools like Github’s Copilot [18][19] but also (general) large language models (LLMs) like
ChatGPT yield promising results for code [20], tests [21] and documentation [22]. Right
after the questions of copyright [23], we must ask ourselves: Are they that good? To answer
this question, we need to put them to the test - which is also the goal of this thesis. As
shown later in Section 1.3, at the time of writing ChatGPT gives solid answers when facing
normal code, but once you introduce uncommon variable names, the behavior deteriorates
into a confused mess - exactly what our work on Lampion (Chapter 2) tries to assess. This
resonates with some of the latest findings in literature [24][25][26].

We see that complex systems are constructed of multiple components, such as LLMs or
functional elements, and quality-assurance in these fundamentals pays of as quality in the
final applications. Before we target downstream tasks, we need to address issues of noise,
traceability and explainability — but any progress on these matters will be inherited by
task-specific models and larger software projects. One direct way to reach improvements
is testing and debugging at the core-elements: The functional languages and the basic
machine-learning models. This dissertation aims to add improvements to various testing
and quality-assurance processes around software engineering when using models trained
on code and functional programming: While there is an emerging body of research on
adversarial and counterfactual examples for LLMs [27], the existence of large-scale noise
and nonsense is yet to be addressed. To show the importance of this topic, we investigate
and quantify the effects of redundant noise in Chapter 2 and Chapter 3. Improvements on
this matter should chain into most applications that utilize these models, as issues with
data-quality such as anti-patterns and smells are not limited to research-driven testing, but
are also produced by developers [28].

In its second part, this thesis revolves around fault localization (Chapter 7), under-
standing effects of non-strict evaluation with occurring errors (Chapter 5) and automated
program repair (Chapter 6) when facing different facets of Haskell bugs (Chapter 4). All of
these techniques form parts of typical quality assurance, to analyze, test and repair faulty
programs during software engineering. Haskell provides both special problems (e.g. issues
surrounding laziness) and solutions (e.g. property-based testing), that open up opportuni-
ties for the research conducted over the course of this thesis. As many formerly exclusive
functional-programming features have made it into other languages and paradigms [1], it
also introduced some of the issues (e.g. memory leaks [29]). This thesis progresses on state
of the art tooling, that can help both Haskell developers and potentially forms the start for
applications in other languages too.

1.1 ResearchQuestions

1

3

1.1 ResearchQuestions
The preamble motivates us to improve the roots of the trends, which leads to the two
primary research questions of this work:

RQ1 - Challenges in FP and AI4SE
How can we identify and fix quality issues originating from the use of lazy-functional
paradigms or in the behavior of machine learning models in software engineering tasks?

RQ2 - Tooling Opportunity in FP
Given the unique attributes of the Haskell ecosystem, how can we utilize compilers,
types and properties to build more reliable and efficient tools to assist quality assurance?

Due to the limitations of a single PhD, this thesis focuses on certain aspects of debugging,
fault localization and program repair in the discussed domains.

Investigating these research questions will allow us to choose appropriate tools by
measuring their impact and effectiveness, and to implement novel tools and approaches.
Tools have been a centerpiece of development, and very likely will remain as such. It is
important to see their value as the accumulated effort of developers and communities:
Program coverage can only be measured with a coverage tool, performance is commonly
measured with cost-centers, and many more tasks are only solved by the use of tooling. In
this manner, this dissertation introduces foundations for tooling based on unique Haskell
features and the behavior observed in machine learning models.

1.2 Features of Functional Programming & Haskell
Functional programming consists of a variety of languages that share some, often more
mathematical, paradigms [30]. Originating from lambda calculus, most functional lan-
guages are stateless and treat functions as first class entities [12]. Not mandatory, but
common, is a strong use of compositions and a strong compiler2 - centered around types,
a prominent goal in functional programs is to make faulty states un-representable3 or
express their possibility explicitly. To provide a simple example, most lookup functions for
lists, dictionaries etc. do not return an x but a Maybe x. This way code that invokes the
lookup must deal with the two possibilities of receiving Just x (an element) or Nothing.
Many types of effects, alternatives to consider or special behavior are expressed by Monads

[31], that define everyday constructs such as Maybe, Lists and IO.
The functional work presented in this thesis builds on Haskell [32]. Haskell is statically

typed (see the compiler behavior above), while also providing type-inference when possible
[33]. This combination leads to the proverb "once it compiles, it works", as the compiler
will reject a large number of implementations that are done without thought. The second
important attribute of Haskell throughout this work is laziness, i.e. all expressions are only
evaluated when required [34]. This allows for some functional pearls utilizing infinite lists
that would knock out imperative programs [35], but also poses challenges for performance
2
strong refers to the capabilities it hands to its users. Not only are binaries compiled, but it also provides plugins,
modules and access to internal processes as well as intermediate artifacts such as ASTs

3See Kings Blogpost Parse - don’t validate (https://lexi-lambda.github.io/blog/2019/11/
05/parse-don-t-validate/)

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

1

4 1 Introduction

and debugging. It can happen that a program happily generates a lot of thunks (pending
evaluations), that are due all at once (performance issues) or contain faulty elements (bugs)
which cause errors at a different point of time than their position in the call-stack indicates.
Both attributes are presented in more technical detail in their respective chapter 5.

The value of Haskell for software engineering is twofold:
First, many novelties in other languages are pioneered in the functional programming

community. The use of anonymous lambda-functions and higher order functions, as well as
their support in the type system as first class entities, stem from functional programming
languages. It is not unreasonable to expect other features that are currently explored, e.g.
dependent types [36], to make a similarly transfer into mainstream languages. The different
paradigm makes it possible to explore novel features that are not easily done in e.g. Python,
but might be a worthwhile longterm target. Barriers like this also regress tooling: Work
by Ye et al. [37] links a compiler to a neural network and includes the compilation output
(pass or failure) as part of the loss function. Despite this being an improvement of existing
work on LLMs, we should consider that many code-generation tools [38] are able to create
compiling code by design. Arguably, this is due to program-code being treated more as text
than as structured data, on top of compilers not providing direct programmatic interfaces4.
Both are matters of accessibility - and work in this thesis shows that once the compiler is
also a library tools can be designed with higher quality. Instead of being restricted, tools
benefit from the constraints and information provided by the compiler, offering guidance
that avoids many pitfalls and sub-optimal solutions.

Second, the strictly enforced paradigms also require a certain set of habits as a side
effect. As composing a complex function all at once proves difficult (both semantically and
syntactically), developers are forced to separate concerns into smaller functions. Due to
the stateless nature, it is also easy to write unit tests [39] or stronger quality assurance like
properties [40][41] and formal verification [42]. In general, resulting Haskell code is often
a bit complex, but adheres to general best practices [43] of programming, not limited to
functional programming paradigms. This is reflected by some (imperative) domains where
functional principles are chosen as standard, e.g. reactive programming [44][45] and their
frameworks like React [46] or RxJava [47] in non-functional languages.

1.3 Current Machine Learning in Software Engi-
neering

The role of machine learning is constantly growing, and with the advent of Githubs Copilot
[2], ChatGPT(4) and similarly strong generative models [48], the first useful, non-specialist
models became available to a broad audience. Anyone, be they excel-power-users, students
or hackers can ask anything about LaTeX, Linux or Lisp.

It is important to note that this generation of tools came out during the course of this
thesis, and the work around ML in this dissertation predates the latest generation of LLMs.
Nevertheless, a fundamental question is shared amongst the old models and the new ones:
How do I know it’s correct?

4One of Javas most prominent meta-programming libraries, Spoon, has to re-implement every element of Javas
language specification. https://github.com/INRIA/spoon

https://github.com/INRIA/spoon

1.3 Current Machine Learning in Software Engineering

1

5

When developing and testing large language models, in the same fashion as normal
programs, there are functional and non-functional requirements. Functional requirements
for code generating models revolve around the produced artifacts, i.e. does the code compile,
does it run, look ok (readability and minimalism to human readers), is the test suite passing,
etc. Non-functional requirements cover security, performance and, as a focus in LLMs, the
explainability of the process. Especially the non-functional requirements face numerous
challenges, which are only amplified by the rapid progress made in generative artificial
intelligence.

To provide a non-programming example, ChatGPT3 was among the first models that
could reliably answer a broad range of questions with reasonable background information.
Trying to address safety issues [49], OpenAI implemented checks for users that ask about
sensitive topics such as suicides or terrorism [50]. After its initial success, users quickly
discovered a work around: The Do anything now (DAN)-mode [51] could be activated, by
giving ChatGPT instructions to roleplay as a comic villain, Hollywood actor or novelist.
Despite OpenAIs efforts, this game of cat [52] and mouse [53] continues into ChatGPT4
[49][54].

One non-functional requirement that is explored and tested in this thesis is robustness,
which we define as the ability to deal with noise. There is a certain amount of noisy and
low-quality elements that is to be expected in code [55], and that are usually no issue for
compilers, analysis tools and programmers [56]. While semantically redundant, a change
in variable names can have a great impact on a LLMs performance. We see an example of
changed code in Figure 1.2 for which we asked ChatGPT45 to generate JUnit-tests with
100% branch coverage [57].

The original example is one of the Defects4J [58] and calculates the reciprocal of a
complex number. The changes are purely in naming and consist of English words.

The initially generated unit tests in Figure 1.2a have some virtues and cover all branches
andmost of the asserts are meaningful and understandable. Most important is that ChatGPT
is able to link the original code back to the Complex-class and utilizes methods from the
parent class (isNan()).

The renamed output in Figure 1.2b surprises us at a variety of places. First, ChatGPT
names the created objects instance which is arguably a loaded key-word in Java. It
still captures some of the logic that the class provides, like a tuple of values (like a complex
number does), but it is not able to derive the parent class like it did earlier. Lastly, instead
of providing meaningful asserts, the last tests suggest a DIY -approach for the developer to
add their own tests.

The original output is a set of solid unit -tests and the task of branch coverage is
achieved. A simple renaming leads to a noticeable drop of quality in naming, and defaulting
to not-null-asserts. The provided example is just one of many places where even initial
probing reveals shocking shortcomings; recent work by Sallou et al. [59] identifies a
set of concerning examples. The educated guess of the authors is that ChatGPT simply
memorized the Defects4J bugs [58], as they are publicly hosted on GitHub and widely
discussed in academic publications and forums like StackOverflow, which also (likely)6

5With ChatGPT4 as received on 1st of May 2024. We used different sessions for the different files.
6As of writing, OpenAI does not publicly provide information on their training data. A prominent candidate is the
open-source dataset the PILE[60], which was at some point part of the pre-training. The pile explicitly

1

6 1 Introduction

(a) Original Code (b) Renamed Code

Figure 1.1: A (known) Bug from Defects4J - original and renamed

form part of the training corpus. As part of their call to action, they suggest researchers to
utilize metamorphic testing similar to Figure 1.1, a task that is explored in chapter 2. These
changes make it possible to circumvent the models memorization, and reveal the quality of
reasoning and deduction when facing the tasks.

ChatGPT4 is one of the most popular models and in fact has sometimes surprising
capabilities. Still, even a simple set of tricks (such as renaming) makes half of the output
useless - an issue we seek to better understand in this thesis.

includes GitHub, StackExchange and Arxiv.

1.3 Current Machine Learning in Software Engineering

1

7

(a) Output of original code

(b) Output of renamed code

Figure 1.2: ChatGPT4 generated Unit-Tests before and after renaming

1

8 1 Introduction

1.4 Research Outline
In the following, we take a detailed look at sub-research questions and how they relate to
the chapters presented in this dissertation.

The first element we want to investigate is the quality of large language models and
other models of code. Examples like the one given in figure 1.2 are easy to reproduce and
occur in different downstream tasks. As emphasized in section 1.3, even simple changes
can lead to big differences. We want to provide more than anecdotal evidence of this
behavior: Lucky for us, as even trivial changes proof effective, we are able to automatize
their generation. In the field of testing, the concept of comparing outputs from equivalent

input is known was metamorphic testing. This approach to metamorphic testing for models
of code embodies RQ1.1:

RQ1.1
Are machine learning models that are trained on code robust to trivial, nonsensical or
noisy code and if so, to what degree can we identify weaknesses in LLMs?

RQ1.1 will be investigated in Chapter 2 and a set of experiments focused on intro-
ducing noise and observing deltas in performance. While initially successful in producing
statistically significant changes, the computational power for testing was already an impact-
ing factor, indicating even greater resource-need for an organized re-training of the models
to address the identified weaknesses. We sought to improve the procedure by finding better
counter examples quicker, and interpreted the generation of data as a search task. Solving
search tasks for software engineering data can face two juxtaposed issues: Interpreting
programs as text, and approaching the task from text-generation and search will lead to a
large amount of error due to programs simply being semantically or syntactically wrong.
Considering the task as program generation will encounter problems with search space,
as most languages are turing complete. This is not a novel problem, and one technique
that crystallized in the automated software engineering community as a solid starting
point is genetic search. It strikes a balance between the potential infinite combinations of
program-elements while preserving syntactic correctness. We try to investigate the merits
of genetic search in RQ1.2:

RQ1.2
Can geneticmethods be applied to improve the quality and performance of code-mutation
when testing software engineering machine learning models?

RQ1.2 is addressed within Chapter 3. We implement a genetic algorithm (GA) that
optimizes output-deltas in regard to the code-changes for a model under test. Due to GAs,
we are able to provide statistically significant changes quicker than the apply-all initial
approach and better than a random search.

Functional programming is sometimes considered a bit complex and it is unfortunately
under-represented in software engineering research. As it is a domain that often follows
different paradigms, some of the standard approaches are not applicable. Many projects
utilize properties as a form of unit testing, but these cannot simply be translated to a JUnit
unit test. As such, we should be carefully investigating their behavior before transplanting
existing techniques that utilize test suites. Other differences arise from the language

1.4 Research Outline

1

9

specifications: With lazy evaluation being the default, there can be parts of a program that
are executed in a failure, but never evaluated. Can we consider these expressions innocent?

These thoughts motivate RQ1.3, which is also meant to provide an easy (and measured)
introduction to the domain of Haskell bugs. Some of the later chapters assume a certain
understanding of special language features, so we first want to introduce some common
concepts and problems.

RQ1.3
What do faults in open source Haskell projects look like, and how are they fixed? Are
there visible trends in errors, approaches and methods?

We answer RQ1.3 in Chapter 4 with a novel collection of documented open-source
faults in Haskell Projects, in the fashion of Defects4J. As an addition for this thesis, some
thought and reflection on the reoccurring problems, their tests and maintainers have been
added.

One popular feature, but also source for unique issues, is Haskell’s laziness. While
the idea is simple, and smaller examples can be fully understood, once a complex system
is in place too many parts are in motion: On top of a larger code base, the effects of
compiler-optimization and runtime environments multiply the complexity, reducing the
developers agency back to trial and error. In currently unpublished work7 we interview
Haskell maintainers and a emerging trend is that they overhaul their debugging approach
once an issue is identified as a memory leak. Not all memory leaks are caused by laziness,
but it is a potential culprit and the developers investigate such issues with tooling (dynamic
analysis) plus manual efforts (bang patters). Not only performance, but other errors can
originate from laziness as well: It is possible to face an offset of crash and evaluation, which
we target in RQ1.4. Once this happens, a developer receives stack-traces that presents
recently called parts, while the last evaluated are the points of interest.

RQ1.4
Are there unique issues arising in Haskell Faults due to its lazy evaluation, and are we
able to make them visible and traceable?

For RQ1.4, Chapter 5 proposes an addition to the Haskell Program Coverage (HPC)
module that captures not only recently touched, but also recently evaluated code. In case
of an crash, we can see not only the last ’called’ expression, but also the last evaluated
(which is often the origin of the fault - un-evaluated expression cannot lead to a crash). As
an example application, we report the last evaluated expression next to the stacktrace on
crash and see if the fault is present in them and with which provenance. The experiments
show that for some crash-types, the last evaluated expression is preferable over the stack
trace, allowing developers to find the faulty location easier.

The work on RQ1.4 closes the first part of this dissertation, which can be roughly
grouped into identifying issues. For most developers as well as this thesis, identifying
problems is not enough: We also have to fix them. As such, the second part of this
thesis is devoted to assisting program repair, and RQ2.1 tries to address the issues but
7Under the working titleWhat about Haskell Bugs? Adapting Bug Taxonomies to Haskell’s Features and Community,
submitted to IFL2024 (The 36th Symposium on Implementation and Application of Functional Languages)

1

10 1 Introduction

also the possibilities of Haskell that we have seen in earlier chapters. While types and
properties might seem hard to master, once they are in place they can greatly aid de-
velopers, but also guide automated and semi-automated approaches. One particular ap-
proach that was brought to life (and my attention) by Matthías Páll Gissurarson are typed
holes (_) which developers can utilize as temporary placeholders (comparable with Javas
NotImplementedException). On compilation, the developer receives an error
about the typed hole with its expected type. Previous work [61] implemented hole fits —
and the developer is presented not only the required type, but possible elements in scope
that fit this signature. A prominent issue in program repair is the sourcing of donor code, i.e.
code that can be used for the repair. Again, we normally run into issues of a large search
space in case of program generation, or into syntactic issues if we treat code too much as
text, similar to the difficulties in RQ1.2. The availability of typed holes and hole fits might
be the ingredient that we are missing, and we investigate it with RQ2.1:

RQ2.1
Can the field of program repair benefit from strongly typed language features, for
example by exploiting typed holes in Haskell?

ForRQ2.1we present PropR inChapter 6, a novel program repair tool that uses genetic
search and typed holes to repair haskell modules. By replacing suspicious expressions with
a typed hole _, we can ask the compiler for suggestions of other expressions that have
the correct type. The suggestions are not limited to constants or module-sourced code,
but can include any expression in scope, covering the base-library and all dependencies in
scope. Our experiments show that repairs are possible, and a reasonable amount of the
fixes addresses the bugs (roughly 10%, similar to early findings in Astor [62], a mature
program repair approach for Java).

Automated program repair is a field where many software engineering techniques go
hand in hand - as such, the result is often only as good as their weakest part. For our initial
implementation, we used a simple heuristic for potential faulty code, by considering all
expressions that are touched by failing tests as targets for repair. This proofed feasible,
but mature tools such as Astor [62] utilize the more sophisticated approach of spectrum
based fault localization: Instead of filtering expressions binary, each expression is given a
suspiciousness from its execution pattern in the test suite, and locations that are in more
failing and less passing tests are considered better targets for replacement. In both Java
and C, techniques that are centered around program-coverage and program-spectra [63]
are common, and the availability of HPC in Haskell motivates RQ2.2:

RQ2.2
Is spectrum based fault localization (SBFL) applicable to real world Haskell programs
and can type information be used to improve its performance?

In Chapter 7 we present an extension to Haskell´s popular Tasty test framework8
that allows to gather spectra including types, to address RQ2.2. In our work we utilize the
HasBugs datapoints presented in chapter 4 to localize faults, and find that for many of the
faults existing SBFL techniques perform well. Some bugs had a outstanding, novel problem:
8https://hackage.haskell.org/package/tasty

https://hackage.haskell.org/package/tasty

1.5 Methodology

1

11

The code at fault was not touched by failing tests, for example due to code-generation or
as it was executed by a separate thread. For these faults normal SBFL formulas failed (as
they require candidate elements to be executed by a failing test) but the type features can
be used to identify some of the faulty expressions.

In summary, the research throughout this thesis aims to improve the life of a modern
software developer by utilizing progress in basic elements of a modern tech-stack (machine
learning models, program coverage, typed holes) and built better tools for them. The tools
built throughout this thesis are of a prototypical nature, keeping realism in mind (either by
using real programs, or by respecting computational boundaries). While the prototypes
presented in this thesis might fall short in adaptation, they are easy to understand, re-
implement and migrate.

1.5 Methodology
Throughout this thesis, common methods from the software engineering research commu-
nity are applied.

To form a foundation of software engineering research, a baseline of software artifacts
are required to evaluate approaches and tools against each other. This is often achieved by
mining software repositories [64][65][66], either by directly evaluating a tool or producing
a re-usable dataset. All of the datasets in this dissertation are sourced in that manner by
extracting information from public repositories on Github: CodeBERT [67] was trained
using data from the CodeSearchNET challenge [68], Defects4J [58] is a collection of well-
documented bugs in Java programs drawn from Github and HasBugs in Chapter 4 was
designed to follow the same approach as Defects4J. Only the data used in Chapter 5 stems
from a call-to-action in the Haskell community, where a nofib-performance benchmark
[69] was established for the GHC, which was adjusted by Silva [70] to produce faults. Many
of the faults were open source programs that got donated. The realism and availabilitymakes
mining software repositories a standard approach for the field of software engineering,
and the shared datasets provide a way to compare approaches. The importance of this
methodology is also reflected by the conference Mining Software Repositories (MSR), which
is collocated with the International Conference on Software Engineering(ICSE).

The general spirit of the research in this dissertation follows Design Science [71]: We
build a tool and evaluate (and quantify) its effects. This is either done against a status quo
(e.g. the fault localization in CSI-Haskell in chapter 5), or against existing approaches (like
the improvements using evolutionary algorithms in chapter 3).

One way to quantify effects is statistics. A first, important differentiation when applying
statistics to software engineering results is to identify whether the underlying data is
normally distributed or not. An effective test for normality is the Shapiro-Wilk test [72].
When dealing with code and other derived artifacts, both normal and irregular distributions
can naturally occur: As code is similar to language [73], most of the tokens and their
attributes follow a normal distribution. The rare event of a bug, and the occurrence of
buggy lines of code, is sparsely distributed. In the same manner, many of the bug-related
tasks and metrics are also not normally distributed and require methods common for
outlier detection and statistics applicable for non-normal distributions. One way to test for
significance in non-normal distributions is the Wilcoxon rank-sum test [74], which asserts
if two distributions (e.g. a baseline and an improved result) are significantly different. When

1

12 1 Introduction

dealing with features and individual effects, it is possible to perform a two-way Analysis of

Variance (ANOVA) [75] which is able to determine significance of different features based
on sampling perturbations. Strongly simplified, when a result can depend on features A, B
and C, the ANOVA test draws random samples for each free and dependent variable and
compares the resulting distributions.

The software engineering community has also developed unique metrics depending on
their task. A good example is the Top-Xmetric used in recommender-systems [76], which
is also applied in defect prediction [77][78] and fault localization [79][76]. Classifying a
piece of code in faulty or non-faulty is a hard task, yet most classifiers will achieve good
F1-scores, as almost all statements are non-faulty. As many algorithms optimize for F1
score, a different metric was necessary: Within Top-X, the tools (or models) predictions
are listed in order of certainty, and the number of correct predictions within the first
X elements are counted. In case of only a single true element, the Top-X can also be
substituted with the mean-reciprocal rank (MRR). There are more task-specific
metrics like the BLEU-score [80], derivatives like CodeBLEU [81] and many others. If
applicable, they will be introduced and discussed in their respective chapters.

Some of the task-specific metrics are part of heated debates - especially the BLEU-score
is under criticism [82][83][84]. This uncertainty constitutes the need for the last part of
methodology: A qualitative evaluation. Statistics and metrics are very promising and
necessary for large-scale evaluations, yet nothing can replace a human sanity check. As an
example, many of the repairs produced by genprog [85] were not solving the relevant bug,
yet they bypassed the test suite [86]. The authors of Defects4J [58] emphasized manual
inspection of the bugs, fixes and tests [87] to assure quality. When applicable, results have
been labeled by two authors independently, and conflicts of labels have been resolved with
a short discussion. These initial labels, as well as their resolution and reason for agreement,
were provided alongside the project artifacts. For large datasets, a significant subset of
random elements was drawn. This lightweight qualitative assessment is based on existing
program repair research[88][89].

1.6 Origin of Chapters

1

13

1.6 Origin of Chapters
1. Chapter 2 is based on the short paper Assessing robustness of ML-based program anal-

ysis tools using metamorphic program transformations by Leonhard Applis, Annibale
Panichella and Arie van Deursen, published in the Proceedings of the 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2021). The version
in this thesis is a currently unpublished extension.

2. Chapter 3 originated from a master thesis with Ruben Marang that got accepted
as Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML by Leonhard Applis, Ruben Marang and Annibale Panichella at
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2023).

3. The Chapter 4 is an updated version of the dataset-paper HasBugs - Handpicked
Haskell Bugs by Leonhard Applis and Annibale Panichella at 2023 IEEE/ACM 20th

International Conference on Mining Software Repositories (MSR 2023). There have
been a few datapoints added since its original publication, and in addition a section
accessing the type and themes behind the faults is added.

4. Chapter 5 was published by Matthías Páll Gissurarson and Leonhard Applis at
IFL 2023: Proceedings of the 35th Symposium on Implementation and Application

of Functional Languages as CSI: Haskell-Tracing Lazy Evaluations in a Functional

Language.

5. Chapter 6 was published at Proceedings of the 44th International Conference on Soft-

ware Engineering (ICSE 2021) as Propr: property-based automatic program repair by
Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen
and David Sands

6. Chapter 7 presents a submission to the Proceedings of the 17th ACM SIGPLAN In-

ternational Haskell Symposium (HASKELL 2024) under the title Functional Spectra -
Exploring Spectrum-Based Fault Localization in Functional Programming by Leonhard
Applis, Matthías Páll Gissurarson and Annibale Panichella. It is currently being
re-iterated, as outlined in the chapters preface.

The chapters 2,3 and 4 are first-authored by me, while the works on Haskell (chapters
6, 7 and 5) share first authorship with Matthías Páll Gissurarson. For the shared works,
Matthí focussed on the compiler side while my main responsibility lied in the experiments
and evaluation.

1

14 1 Introduction

1.7 Artifacts
Many of the scripts, programs and data in this thesis are available online.

1. The Lampion transformers for Python and Java are available on Github at https:
//github.com/ciselab/Lampion and a replication archived underhttps:
//zenodo.org/records/7306931

2. A containerized replication of CodeBERT is available on Github at https://
github.com/ciselab/CodeBert-CodeToText-Reproduction

3. The CSI-Haskell experiments are available on Zenodo https://zenodo.org/
records/7307012

4. The changes toHPC to trace evaluation are athttps://github.com/Tritlo/
ghc/commit/62fa1edbe81d8942ce922d586d50c3f1f79ffca4 and
proposed inhttps://github.com/ghc-proposals/ghc-proposals/
pull/539

5. PropR is on Github https://github.com/Tritlo/PropR and the repro-
duction on Zenodo https://zenodo.org/records/5389051

6. HasBugs are available onGithubhttps://github.com/ciselab/HasBugs,
archived on Zenodo https://zenodo.org/records/7569299 and on-
line accessible on https://ciselab.github.io/HasBugs/

7. Tools and Experiments used in Chapter 3 are inhttps://github.com/ciselab/
Guided-MT-Code2Vec and archived on Zenodo https://zenodo.org/
records/7307012

8. The tasty-ingredient shown in Chapter 7 is inhttps://github.com/Tritlo/
TastySpectrum/ and an archived version under https://doi.org/10.
5281/zenodo.12168445

They are also listed again in their respective chapters.

https://github.com/ciselab/Lampion
https://github.com/ciselab/Lampion
https://zenodo.org/records/7306931
https://zenodo.org/records/7306931
https://github.com/ciselab/CodeBert-CodeToText-Reproduction
https://github.com/ciselab/CodeBert-CodeToText-Reproduction
https://zenodo.org/records/7307012
https://zenodo.org/records/7307012
https://github.com/Tritlo/ghc/commit/62fa1edbe81d8942ce922d586d50c3f1f79ffca4
https://github.com/Tritlo/ghc/commit/62fa1edbe81d8942ce922d586d50c3f1f79ffca4
https://github.com/ghc-proposals/ghc-proposals/pull/539
https://github.com/ghc-proposals/ghc-proposals/pull/539
https://github.com/Tritlo/PropR
https://zenodo.org/records/5389051
https://github.com/ciselab/HasBugs
https://zenodo.org/records/7569299
https://ciselab.github.io/HasBugs/
https://github.com/ciselab/Guided-MT-Code2Vec
https://github.com/ciselab/Guided-MT-Code2Vec
https://zenodo.org/records/7307012
https://zenodo.org/records/7307012
https://github.com/Tritlo/TastySpectrum/
https://github.com/Tritlo/TastySpectrum/
https://doi.org/10.5281/zenodo.12168445
https://doi.org/10.5281/zenodo.12168445

2

15

2
Assessing Robustness of

ML-Based Program Analysis
Tools using Metamorphic
Program Transformations

Summary
Metamorphic testing is a well-established testing technique successfully applied in various
domains, including testing deep learning models to assess their robustness against data
noise or malicious input. Currently, metamorphic testing approaches for machine learn-
ing (ML) models focus on image processing and object recognition tasks. Hence, these
approaches cannot directly be applied to ML targeting program analysis tasks. In this
chapter, we extend metamorphic testing approaches to ML models targeting software pro-
grams. We present Lampion a novel testing framework that applies (semantics preserving)
metamorphic transformations on the test datasets. Lampion produces new code snippets
that are semantically equivalent to the original test set but different in their identifiers or
syntactic structure. We evaluate Lampion against CodeBERT, a state-of-the-art ML model
for Code-To-Text tasks that creates documentation for given methods. Our results show
that simple transformations significantly impact the target models behavior, providing
additional information on the model’s reasoning apart from the classic performance metric.
We also prove a trend that some transformations affect Python and Java significantly dif-
ferently. We further elaborate on a failed experiment attempt, and provide a post mortem
advice for methodology and experiment design in the field of data-augmentation for SEML.

Parts of this chapter have been published as Assessing Robustness of ML-based Program Analysis Tools

using Metamorphic Program Transformations by Leonhard Applis, Annibale Panichella and Arie van
Deursen in the Proceedings of the 36th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2021)

2

16
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

2.1 Introduction
Artificial Intelligence(AI) has been applied to software engineering (SE) to address many
tasks, such as fault localization [90], test case generation [91], fuzzing [92] or optimizing
meta-parameters [93]. Recently, modern sequence-to-sequence deep learning models have
shown promising results sparking new types of applications. Among them is the creation
of code from verbatim description (text-to-code) [94], or the generation of documentation
for source-code of previously unseen methods (code-to-text) [95, 96]. Yet, we argue that it
is unclear to which extent these models truly behave as intended, apart from their reported
accuracy. Applying testing strategies for machine-learning (ML) based program analysis
solutions is critical — and we better do it early before we create untested ecosystems.

Recently there has been a surge in Testing ML, with goals beyond assessing accuracy
(see the survey by Zhang et al. [97]). Many approaches have been taken from classic

software testing and were adapted for ML. One example is metamorphic testing, a well-
established technique that is considered a powerful approach as it addresses the Oracle
Problem[98] in test generation. Metamorphic testing is successfully used in ML [99, 100]
for image processing and object recognition. For example, image rotation is an information-
preserving transformation as it alters the pixels in the image without changing its label
(oracle). In computer vision, a robust ML model must not provide different predictions
for the image altered with metamorphic transformations. Hence, quantifying the number
of transformed images on which an ML model provides different answers quantifies its
robustness against such transformations.

While extensive research has been conducted on metamorphic testing for vision com-
puting tasks [99–101], the existing metamorphic transformations are domain-specific.
Hence, they cannot be applied and do not hold for different domains and types of data. In
this paper, we extend the concept of metamorphic testing to machine learning models trained

on and targeting source code.
We define a set of transformations that alter features of code but yield the effectively

equal program, such as introducing if(true)-conditions or +0 behind integer expres-
sions. Using those, we modify the datapoints (programs) in order to detect differences in
the models’ predictions and metrics. We expect that the models are robust towards some
transformations while others affect the metrics (negatively). The information gained could
help to evaluate existing models, compare them to each other and provide suggestions and
warnings for end-users and researchers alike. With our research and tool, we contribute to
the following points:

1. A systematic approach, called Lampion , that used metamorphic transformations to
quantify the robustness of ML models for code

2. Empirical evidence indicating that metamorphic transformations have a substantial
effect on the performance of ML models for code

3. Identified challenges for the application of metamorphic transformations for data
augmentation with sequence-2-sequence models

This paper is an extension of our preliminary study [102], which showed that even
single transformations can have heavy impact on models. The added content consists of
a cross-language comparison, the application and analysis of multiple transformations

2.2 Background and Related Work

2

17

per datapoint (higher order application), a perplexity based analysis of the naturalness of
altered code and an investigation of Lampion for data augmentation.

Our initial experiments on CodeBERT [94], a state-of-the-art ML model widely used in
the SE literature [103–106], demonstrate the feasibility of the approach, and the type of
lessons that can be learned from applying Lampion . After this initial assessment, we also
want to investigate whether the tool can be utilized to act on the found issues: We conduct
a second experiment reproducing the OpenVocab-Model [107], where we additionally try
to improve the models robustness by augmenting the training-data.

The first experiment on CodeBERT shows that different (but not all) transformations
affect models trained on Java and Python code. We also observe that various kind of
transformations stimulate the models differently, and that multiple applications tend to
have a stronger effect on the results. We provide a detailed insight into the variations in the
BLEU scores and statistical tests to analyze the behavior of the models. There is room for
debate on the discovered behavior and counter-measures — but exactly this data-backed
debate is what we consider a primary contribution of our approach.

The second experiment on OpenVocab showed that data augmentation can quickly
hit computational limits and other pitfalls. We discuss the experiment and dissect the
problems, so that other researchers can take them into account.

The remainder of the paper is structured as follows: In Section 2.2 we summarize related
work on metamorphic testing, explainability and documentation generation. Section 2.3
explains the Lampion approach and the individual transformers. The explicit research
questions and their methodologies are covered in Section 2.4.1, with the results presented
in Section 2.5. The issues encountered when applying Lampion to OpenVocabCodeNLM
are presented in Section 2.6.4. The work is closed by a discussion in Section 2.6 and a
conclusion in Section 2.7. All code artifacts, results and reproduction packages are linked
in Section 2.8.

2.2 Background and Related Work
2.2.1 Metamorphic Testing
Metamorphic testing is a technique based on the concept of metamorphic relations, a
property-based technique that exploits known equality of certain output values. Prominent
examples are programs that implement mathematical functions, which are known to have
metamorphic relations. For example, the sine function has a well-known metamorphic
relation: ∀𝑥 ∈ ℝ ∶ 𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛(𝑥 + 2𝜋). With such a relation, testers can easily create
new test cases to verify the sine function and prove that this property holds. If one can
define such strong properties, a common approach is property-based testing (e.g., using
QuickCheck [40]) that generates test-cases utilizing the given metamorphic relations.

The earliest work on metamorphic testing can be traced back to Chen et al. [108] for test
amplification. Relatedwork in the field applied this testing technique to numerical programs
(e.g., [108]), web services and applications (e.g., [109]), computer graphics (e.g., [110, 111]),
embedded systems (e.g., [112]), simulation engines (e.g., [113, 114]), bioinformatic (e.g.,
[115]), and compilers ((e.g., [116, 117]). A complete view of metamorphic testing studies
and applications can be found in the survey by Segura et al. [118].

The popularity of metamorphic testing is due to its ability to address the oracle problem,

2

18
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

which is one of the open challenges in software testing [98]. In general, a metamorphic test
uses the following pattern: Given an existing test 𝑡(𝑥) = 𝑦 and a metamorphic transforma-
tion𝑚(𝑥) = 𝑥

′, a new follow-up test can be generated as 𝑡(𝑥′) = 𝑦. In case the metamorphic
relation 𝑚(.) can generate multiple metamorphic input datapoints, it can be used to gener-
ate multiple follow-up test cases. In case the results of the follow-up test cases differ from
the original ones, the metamorphic relation is violated. This indicates that the program
under test is defective [118].

Metamorphic testing is domain-dependent: Metamorphic relations that hold for certain
domains (e.g., numerical programs) may not hold in different domains (e.g., image process-
ing). Besides, this technique cannot be applied if no metamorphic relation is known for
a given program and domain. Lastly, the generated test cases might not yield additional
value, for example testing every number for the sine function is unlikely to be a valuable
test suite. One important pre-requisite for the effectiveness of metamorphic testing is that
it should make the execution of the follow-up test case as different as possible from the
original test case [118].

It is worth noting that all aforementioned studies focus on metamorphic relations
with the goal of generating new test input data for existing test cases. Instead, in this
paper, we aim at generating new follow-up programs to assess and validate machine
learning models trained on source-code snippets. While metamorphic testing has not been
applied to ML models for SE, metamorphic transformations and relations are known in
software engineering and are tightly coupled to refactoring, program optimization, and
linting. There are many ways to express the same code, starting from varying indentations
to effectively equal loop structures or simply different comments. Another common field
where metamorphic transformations on code are used extensively is optimization, where
a compiler creates more efficient code using techniques like loop unrolling or function
inlining [119].

When it comes to images, metamorphic transformations may change what humans
recognize in images, but when it comes to source-code the metamorphic relations we define
in this paper produce program-variants that are provably equivalent to the original ones,
without requiring human judgment.

2.2.2 Metamorphic Testing for Machine Learning
Metamorphic testing has been applied recently to machine learning, especially to image-
based object-detection tasks [99]. A metamorphic transformation on images performs
information-preserving alternations on a given image. For example, the image of a cat
might be mirrored, yet a classifier should still be able to recognize it as such. Other such
transformations include (slightly) blurring, rotating, or changing hue-values of images.
These operations change the values of images significantly; nevertheless, they are still
easily classifiable by humans. The research on image-based models splits into two main
categories, either a pure approach of standalone ML models [100], or the use of the models
in applications and cyber-physical systems [120], both of which employ metamorphic
testing.

Another use of metamorphic transformations is testing robustness of a model, by gen-
erating more datapoints in the test-set [100], which we also emphasize in our experiments.
Such approaches can also be applied to generate more training-data, which can result in a

2.2 Background and Related Work

2

19

more robust or precise model [101]. This idea is picked up within our second experiment,
but due to a change of domain we had to re-define robustness in our own terms. Apart
from testing the models performance, Xie et al. [100] showed that metamorphic testing is
useful to test the ML-frameworks producing models.

Similar work to this paper stems from Rabin et Al. [121] [122] which shares the same
motivation and a very similar approach. Incidentally, the authors happened to work on
the same topic in parallel. While this could hurt the novelty, we would like to stress
that it is considered best scientific evidence if two scientists independently come to the
same conclusions using different methodologies [123][124]. Within their work [121] they
implement various transformers for Java, and they perform an experiment [122]. The
primary differences (apart from the underlying experiments) is in the evaluation, where
Rabin et Al. utilize a binary-migration metric that yields more insight on the type of
change. Within this paper, we use statistic tests which are not that detailed, but can be
used task-agnostic. Furthermore, we try to improve the model using data augmentation,
which to the best of our knowledge has not been done in a cohesive approach of testing
and hardening for SE Models.

2.2.3 Testing Code2Vec Models
For testing ML-SE models Yefet et al. [125] — the authors of Code2Vec — showed that they
can generate adversarial attacks on Code2Vec-based classifiers by changing variable names
or introducing new variables. They generate the attacks by choosing a desired classification
label and then altering an existing piece of code towards the target label using gradient
ascent. Two mutations used by Yefet et al. (introduction of variables or alternation of
existing names) for adversarial attack generations share some similarities with two of the
metamorphic transformations we present in Section 2.3. The main difference is that Yefet
et al. [125] optimize for variables and identifiers that produce an adversarial attack. In our
case, we consider identifier renaming as one metamorphic relation, which is utilized to
change variable names with any random name, without searching for a specific different
classification/result. The approach by Yefet et al. aims at generating names of common
libraries or abbreviations, while the ones created in our approach are either fully random
or not associated with programming-related meaning. Finally, Yefet et al. approach is
white-box while our framework treats the model as a black-box. Black-box strategies have
a wider application, for example if the model is hidden behind an API or if the model is
intentionally secret (when a model is bought as a service).

Another related work is from Compton et al. [126] that introduces randomization of
variable-names in the training-dataset as a way of training data augmentation. Their study
shows that the model trained on the augmented training-dataset achieves slightly better
accuracy than the model trained on the original dataset. Variable-renaming satisfies a
metamorphic relation; hence, it is also included in our work, among other transformations.
Their results on data augmentation motivates our second experiment, where we try to see
the impact of different transformations. Compton et al. observed the same shortcoming of
some models, which is a shared motivation with our work. While Compton et al. achieve
an improvement in accuracy, this does not necessarily mean an actually more robust model
— which is the key objective of our work.

2

20
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

2.2.4 Documentation Generation
One of the tasks covered during the empirical study is the generation of program docu-
mentation. Historically, documentation-generation has been interpreted as an information-
retrieval task that tries to summarize key-elements of the text [127][128]. The often
rule-driven approaches look for keywords and utilized symbolic execution [129] to cover
program flow and exceptions, to produce (often mechanic) summaries. Modern approaches
utilize deep learning [67][130] while interpreting the summarization as a translation task —
it translates from a code-sequence to a sequence of human language. These models produce
good readable summaries that are evaluated via proximity to human documentations, but
unfortunately humans do not exactly provide a gold standard for documentation [131][132].

Evaluating summaries is a sophisticated topic [133], as there are many attributes we
want for a summary: Conciseness, readability, information and coherence are just a few
attributes. Most research that does not qualify as philosophy is centered around the gold-
standard that is seen as the best performance. Within documentation generation, the data
is usually mined from software repositories, and existing documentation is seen as the gold
standard both for training and evaluation. The common metric used for documentation
generation is the BLEU-Score [80] which was initially introduced for machine-translation
tasks. The BLEU-Score first calculates a unigram-precision, ignoring token-position and
factors in a brevity penalty. The penalty is necessary, as many algorithms would overfit on
guessing a few tokens right, without producing actual sentences. Other simple options for
metrics are n-gram-overlap or cosine-similarity.

Amore complex option is ROUGE [134], whichmeasures n-gram co-occurrence. ROUGE
tends to be stricter in evaluation (the same summaries score worse in ROUGE than in
BLEU) and covers the naturalness of sentences better. We see that ROUGE has not been
adapted as, despite existing literature [135][136][73], code is still treated as widely different
from natural language.

2.2.5 Code Completion
The other task covered in our study is code completion.

The primary task of code completion is to predict a (masked) token within a sequence of
code. Code completion is likely the most prominent task of machine learning for software
engineering that developers use every day, and is an integral component for every IDE.
The manifold approaches for code completion range from rule systems [137][138], over
search based approaches [139][140] to (deep) neural networks [135][94][141][142].

Research in code completion has also identified different variations to the problem: A
common differentiation is code completion in standard,dynamic ormaintenancemode [135].
Standard describes the procedure as above. Dynamic refers to an online-learning approach
where the files seen from the current project are taken into account for ongoing prediction -
it therefore requires a test-set separated into projects. The cache/model are reset after every
project. The dynamic approach is intended to match the experience a developer has when
they adapts code completion to a new project. Lastly, maintenance mode describes the case
that the projects’ files were incorporated in the training data and it is not considered taboo

to introduce information or context of the data into training. These modes tend to yield
better metrics as they provide the model with more information. However, the authors
will focus on the standard metric. While the other modes lean towards everyday use by

2.3 Our Framework: Lampion

2

21

developers, we would like to focus on a technical side of machine learning and focus on
clean and cross-task metrics to prove stronger generalizability of our approach.

Another differentiation is based on the input sequence. Some models (especially bi-
directional model like CodeBERT [94]) require the whole sequence of a statement, which
is considered insufficient for live-usage — when creating code, outside of maintenance, one
usually does not have elements to the righthand-side of the token to complete. Also it
might be argued that the concept of order in natural language does not hold with the rules
and scopes of programming languages.

2.3 Our Framework: Lampion
2.3.1 Overview
Figure 2.1 depicts the metamorphic testing approach, we named Lampion , and designed for
testing ML models trained on source-code programs. Lampion relies on the metamorphic
transformations (MTs) defined in the subsections below. Our approach consists of three
main steps. First, Lampion takes as inputs a pre-trained model and a program not used
during the training process (items 5⃝ and 1⃝ in Figure 2.1). Then, it generates program
variants (item 4⃝) by using our MTs (item 2⃝) and based on a given configuration file (item
3⃝). The configuration file specifies the type of transformation to apply and the number of
repetitions (order). Then, the original program and its equivalent variants are fed to the
pre-trained model. Finally, Lampion compares the outcome produced by the pre-trained
model for the original program (item 6⃝) and its metamorphic variants (item 7⃝). If there
is no difference in the outcome, it means that the model is robust to the metamorphic
transformation. Otherwise, Lampion detects some weaknesses in the pre-trained model.
The type of weakness or issue is related to the type of transformation with which the
model generates different results. For example, suppose the pre-trained model produces
different results when introducing redundant if-statement. In that case, it is not robust to
AST modifications that do not impact the program behaviors.

In addition to generating metrics for inspection and analysis, one can formulate a
hard test-case given the insights gained from the Lampion approach: "The models’ output
should not be significantly affected by trivial if-statements". Such test-cases can provide a
comparable insight on the model’s behavior apart from the performance metric, especially
in early stages where the model is still in conceptualization.

Alongside this paper, we provide the metamorphic transformer and the evaluation as
open-source artifacts. Apart from the metamorphic transformations shown in the sections
below, further six MTs are implemented and more can easily be added. In the following
sections, we highlight the basics of the approach, consisting of metamorphic relations for
programs and the metamorphic transformations used in the case study.

2.3.2 Metamorphic Relation for Programs
The first step is to identifymetamorphic relations for software programs, which are the data
points for ML-based SE applications. For example, software modules are data points for
defect prediction models, where the goal is to predict whether the modules are defective
or not. In source-code summarization or documentation, ML models take as input code
snippets and produce the corresponding natural language documentation. Metamorphic

2

22
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

TransformationsSolution (For Paper)

Metamorphic
Transformer

Configuration

ML
Model

Original
Outcome

Evaluation

Altered
Outcome

1

2

4

5 6

7

8

3

Program

Program
Variants

Figure 2.1: Lampion — Metamorphic Testing Framework for ML in SE Models

relations (MRs) relate multiple programs that differ in their structures (e.g., AST) but that
are equivalent. As such, ML models should provide the very same output (e.g., defect
prediction label) for programs that are related to one other according to an MR. Therefore,
given a program 𝑃 , we use MRs to generate equivalent yet different programs 𝑃 ′

1
, … , 𝑃 ′

𝑘
to

test a given ML model under analysis.

Theorem 1 Given an oracle function 𝑂 ∶ 𝑃 → {𝑙1,… , 𝑙𝑛} where 𝑃 is an input program and

{𝑙1,… , 𝑙𝑛} is the set of possible output labels (oracle); a relation 𝑓 (.) is metamorphic if it satisfies

the following property:

∀𝑃 ∶ 𝑂(𝑃) ≡ 𝑂(𝑓 (𝑃)) (2.1)

In ML applications, the oracle function corresponds to the labels that humans would
provide for a given program 𝑃 . The type of label for each program (data point) is task-
dependent. For example, in ML-based program documentation, the label (oracle) is the
natural language description developers would write for the program 𝑃 .

We identify two types of metamorphic relations for programs and that are useful to
test ML models for program analysis:

MR-1: Addition of uninformative code elements. An uninformative code element (e.g.,
comments, un-used variables, un-used parameters, etc.) does not change the behavior of
the target program 𝑃 . As such, the label (oracle) for 𝑃 and its variants with MR-1 relation
remains the same. However, the different program variants are characterized by different
ASTs.

MR-2: Replace a code element with another equivalent element. Equivalent program
elements (e.g., different variable names) do not change the AST of the programs but the
labels of the nodes within the AST. Using different yet equivalent elements does not change
the behaviors of a program 𝑃 either.

2.3 Our Framework: Lampion

2

23

Table 2.1: Overview of metamorphic transformations for programs

Tr
an
sf
or
m
at
io
n

Sh
or
t

D
es
cr
ip
tio

n
Es
tim

at
ed

Eff
ec
t

Va
ria

tio
ns

if-
tru

e
M
T-
IF

W
ra
pp

in
g

a
ra
nd

om
ex
pr
es
sio

n
in

an
i
f
(
t
r
u
e
)
st
at
em

en
t

St
ru
ct
ur
al
Ch

an
ge
s,
in
tro

du
ct
io
n
of

co
n-

di
tio

ns
,i
nt
ro
du

ct
io
n
of

ke
yw

or
ds

if-
fa
lse

-e
lse

ad
d-
un

us
ed
-

va
ria

bl
e

M
T-
U
V

Ad
d
a
ra
nd

om
un

us
ed

va
ria

bl
e

In
tr
od

uc
tio

n
of

na
m
es
,i
nt
ro
du

ct
io
n
of

ty
pe
s

Fu
ll
ra
nd

om
an
d
ps
eu
do

ra
nd

om
na
m
es

(P
os
tfi
x
R
&
P)
,n

am
es

lo
ok

ed
up

fro
m

a
di
ct
io
na
ry

or
th
e
pr
og

ra
m

un
de
rt
es
t

re
na
m
e-
en
tit
y

M
T-
R
E

Re
na
m
e
a
cl
as
s,
m
et
ho

d
or

va
ria

bl
e

In
tr
od

uc
tio

n
of

na
m
es
,
re
m
ov
al

of
kn

ow
n
na
m
es

Fo
rv

ar
ia
bl
es
,c
la
ss
es

an
d
m
em

be
r-
ty
pe
s

se
pa
ra
te

la
m
bd

a-
id
en
tit
y

M
T-
ID

W
ra
p
an

ex
pr
es
sio

n
in

an
id
en
tit
y-
la
m
bd

a
fu
nc
tio

n
(in

cl
ud

in
g
fu
nc
tio

n
ca
ll)

In
tro

du
ct
io
n
of

co
m
pl
ex

st
ru
ct
ur
e,
in
tro

-
du

ct
io
n
of

op
er
at
or
s

-

de
le
ga
tio

n-
m
et
ho

d
M
T-
D
M

ex
tra

ct
an

ex
pr
es
sio

n
to

af
un

ct
io
n,

in
vo
ke

th
e
fu
nc
tio

n
in
st
ea
d
of

th
e
m
et
ho

d
St
ru
ct
ur
al
ch
an
ge
s,
ch
an
ge

of
sc
op

e
fo
r

in
fo
rm

at
io
n,

in
tro

du
ct
io
n
of

na
m
es

sa
m
e
as

M
T-
UV

co
m
m
en
t-

al
te
rn
at
io
n

M
T-
C
O

Ad
d,
re
m
ov
e
or

m
ov
e
co
m
m
en
ts

In
tr
od

uc
tio

n
or

re
m
ov
al
of

na
tu
ra
ll
an
-

gu
ag
e

Fu
ll
or

ps
eu
do

ra
nd

om
co
m
m
en
ts
ge
n-

er
at
ed

pa
ra
m
et
er
-

in
tro

du
ct
io
n

M
T-
PI

In
tro

du
ce

an
un

us
ed

pa
ra
m
et
er

Ch
an
ge

of
m
et
ho

d
sig

na
tu
re
,i
nt
ro
du

c-
tio

n
of

na
m
es
,i
nt
ro
du

ct
io
n
of

ty
pe
s

sa
m
e
as

M
T-
UV

w
hi
te
sp
ac
e-

al
te
rn
at
io
n

M
T-
W

S
Ad

d
or

re
m
ov
e
w
hi
te
sp
ac
e

Ch
an
ge

of
co
de
-la

yo
ut

-

ad
d-
ne
ut
ra
l-

el
em

en
t

M
T-
N
E

A
dd

th
e
ne
ut
ra
le
le
m
en
tt
o
a
pr
im

iti
ve
ly

ty
pe
d
ex
pr
es
sio

n
Ch

an
ge

of
st
ru
ct
ur
e,
in
tro

du
ct
io
n
of

to
-

ke
ns

Co
m
pl
ex

eq
ui
va
le
nt

tr
an
sf
or
m
at
io
ns

(e
.g
.r
ep
la
ci
ng

t
r
u
e
w
ith

0
1
=
=
1
)

2

24
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

1 // Before
2 public void someMethod(){
3

4 // Methodbody...
5

6 }

(a) Before

1 // After
2 public void someMethod(){
3 if (true) {
4 // Methodbody...
5 }
6 }

(b) After

Figure 2.2: Example if-true-transformation

2.3.3 Metamorphic Transformations
Given the two MRs defined above, we can define a set of metamorphic transformations that
satisfy our MRs. A metamorphic transformation (MT) is a procedure that generates new
programs 𝑃 ′

1
, … , 𝑃 ′

𝑘
(follow-up programs) starting from an input program 𝑃 and using a

metamorphic relation. The mathematical definition for our metamorphic transformations
breaks down into two parts: First, the oracle function must give the same output for the
initial program 𝑃 and the transformed program 𝑓 (𝑃). Second, if 𝑃 is a valid input for the
ML model, then the result of the transformation function must be a valid 𝑃

′ for the model
too. Hence, the transformation forms a homomorphism over the model domain.

In this paper, we choose MTs that satisfy the following properties:

1. The transformed program 𝑃
′ always compiles if the original program 𝑃 compiles

2. The transformation can be applied any number of times

3. Different transformations are not mutually exclusive (e.g., addition and removal of
comments void each other)

A list of the MTs is presented in Table 2.1. In the remainder of this section, we describe
the transformations in more detail and elaborate on their purpose and how they affect the
AST.

MT-IF:Adding if-statements with tautologies. The first transformation consists of adding
trivial if conditions that are always true (tautologies). An example of transformation is
shown in Figure 2.2. This transformation aims to alter the abstract syntax tree, adding
nodes and keywords and increasing distances between tokens. A good classifier should be
robust against trivial structure changes in the AST and be able to extract the relevant code
patterns and features.

Note that the example in Figure 2.2 is simplified as it does not include the case where
the transformed Java method does not include a return statement. For methods with a
return statement, the transformation must add an else-statement returning a trivial element
for the code to compile successfully.

MT-UV: Adding unused variables. Our second transformation adds an unused but
declared variable, as shown in Figure 2.3. Many ML models for code analysis heavily
depend on identifiers, class names, and datatypes. This is particularly true for Code2Vec-
based classifiers, as explained in Section 2.2.3. This transformation comes in two flavors:
Either the newly introduced variable has a fully random, alphanumeric name (MT-UVR),

2.3 Our Framework: Lampion

2

25

1 // Before
2 public void someMethod(){
3 // Methodbody...
4

5 }

(a) Before

1 // After
2 public void someMethod(){
3 int raging_racoon = 3;
4 // Methodbody...
5 }

(b) After

Figure 2.3: Example add-variable-transformation

1 // Before
2 public void someMethod(){
3 int a = 1;
4 // Remaining Methodbody...
5 }

(a) Before

1 // After
2 public void someMethod(){
3 int a = 1 + 0;
4 // Remaining Methodbody...
5 }

(b) After

Figure 2.4: Example add-neutral-element-transformation

or an English-like name (MT-UVP) is provided (such as "raging_racoon"). With these two
options, we can assess whether the model is robust against unused variables in general
and whether semantic information included in the names of the identifiers is relevant to
the prediction. The type of the variable is chosen at random1 from the primitive data types.
Both the name and value of the introduced variable are randomly generated and depend
on the type of the variable being injected.

MT-NE: Adding neutral elements. This transformation adds a neutral element to a given
literal, such as arithmetic or conditional expressions. An example of MT-NE transformation
is reported in Figure 2.4). To add a neutral element, the program under analysis needs to
have at least one primitive typed expression (e.g., arithmetic operations). Hence, methods
that either have no typed expressions (only method-calls without return values) or that
only use complex data types, cannot be transformed.

This transformation changes the abstract syntax tree in a similar way to the MT-IF
transformation, but without the use of control structures and reserved keywords. The
transformation can be applied at any expression with primitive types, including conditions
and return statements. Any primitive data type is supported, and if necessary, parentheses
are added.

MT-RE: Rename entities. This transformation changes the name of entities, i.e., classes,
methods, and variable names. This transformation does not impact the AST of a program
𝑃 , but it changes the labels of the nodes in the AST. This transformation also comes in
two flavors: (1) replacing a given name with a completely random alphanumeric string
(MT-RER), and (2) using a pseudo-random, English-like name (MT-REP).

Depending on the language, there are many possible transformations. In functional
languages, currying and un-currying are good examples for MTs that are not easily achieved

1A random seed is used for all occurring randomness.

2

26
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

in non-functional languages. Furthermore, there might be more options depending on the
program’s domain.

For a program, it is possible to change data-structures or sorting algorithms while
maintaining functionality.

2.4 Empirical Study
2.4.1 ResearchQuestions
We first want to assess whether the proposed MTs impact the performance of machine
learning models. In an ideal case, ML models should not be affected by the metamorphic
transformations, i.e., themodel is not sensitive to changes that do not alter the code behavior.
Hence, RQ1 should cover the general impact of applying one single transformation at the
time, hereafter referred to as first-order MTs:

Research Question 1
To what extend do first-order metamorphic transformations affect the performance of
ML models?

We further want to estimate the impact of applying the same transformation multiple
times to a single code snippet, hereafter referred to as higher-order MTs. We would expect
that there is a monotonic relationship between the order (i.e., number of transformations)
and the changes of ML model performances. With RQ2, we want to analyze the general
behavior of the model and gain insights on its robustness when the code slowly decays, e.g.,
by applying up to 10 times the MT-IF transformation. RQ2 aims to quantify the impact of
applying higher-order transformations:

Research Question 2
What is the impact of higher-order MTs on the performance of ML models compared to
first-order MTs?

We also want to compare the different types of transformations w.r.t the benchmark.
We may expect that different transformations have different impacts on ML models. Fur-
thermore, we aim to understand which model features are more robust, e.g., whether
name-changes affect the model more than structural AST changes.

Research Question 3
To what extent do different types of MTs have a different impact on the performance of
ML models?

An important point to consider is the naturalness of the produced code after trans-
formations. There is a decent chance that the model is only dropping in metrics because
the introduced tokens are out-of-vocabulary, or that the distribution is skewed. This is
captured in the last RQ:

Research Question 4
How much do the MTs affect the naturalness, and can we observe relations between the
naturalness of altered code and the performance of ML models?

2.4 Empirical Study

2

27

As a follow up to these RQs, we wanted to investigate data augmentation in the field of
SE tasks using Lampion . We hoped that wewould either benefit on initial metric, robustness
or both. Unfortunately, the experiments proved to were computationally unfeasable due
to the behavior on augmented datapoints. We give a detailed analysis of the problems in
Section 2.6.4.

2.4.2 Benchmark - CodeBERT
The used benchmark is CodeBERT by Feng et al. [94], a bimodal model trained on sequences
of program language and natural language. It is publicly available in the Microsofts’
reproduction suite CodeX -GLUE [67]. CodeBERT is trained using a pair of (1) a tokenized
method and (2) the natural language (tokenized) documentation. The model is trained by
masking tokens and generating possible solutions for the masked token. As a bimodal
model, CodeBERT’s generation capabilities can be applied to both Code-To-Text and to
Text-To-Code tasks. For this paper, we focus on Code-To-Text since our metamorphic
transformations apply to source programs.

CodeBERT has been trained on 6 programming languages with a total of 8.3M datapoints
(code snippets) and achieves state-of-the-art results of an average BLEU4-Score of 17.65
in the CodeSearchNet-challenge [68]. The models provided by Microsoft come in two
variations: (1) cold-started, that is without language-specific training, or (2) the model can
be re-trained using language-specific data.

For this paper, the Java- and Python-specific CodeBERT models will be used. We
could not reproduce the results for the cold-started model, but we retrained the model and
achieved an average BLEU-Score of 17.64 on the uncleaned test set, which is very close to
the results (17.65) reported by Feng et al. [94] for Java programs.

The Code-To-Text task addressed by CodeBERT is the generation of Java documentation
on function-level given as input the source-code of a Java method. This performance of
CodeBERT on this task is computed by comparing the original Java documentation (seen
as the gold-standard) to the output (documentation) generated by the model [94]. The
metric used by CodeBERT is the BLEU-Score [80], a common metric for translation tasks.
For the BLEU-score, the gold-standard and the generated text are tokenized and grouped
into n-grams; and these sets of n-grams are compared to each other. The BLEU-Score
ranges from 1.0 (perfect translation) to 0 (not a single matching word or n-gram). There
are different variants of BLEU-Score calculation, where BLEU4 promotes short translations.
We use the BLEU4-Score to evaluate the research questions formulated in Section 2.4.1,
following the methodology used by Feng et al. [94].

2.4.3 Methodology / Experiment Design
For the empirical study, we developed metamorphic transformers for Java and Python-
Programs that work at the source-code level. In addition, we developed a set of benchmark-
specific scripts that help to bridge the formats of the benchmark and the transformer.
In particular, the CodeBERT model expects a .jsonL file, which contains the methods
tokenized as well as the gold-standard tokenized; instead, our transformer requires .java
files. The scripts help the conversion in both directions. The implementations can be found
in Section 2.8.

We chose a set of transformer-parameters, such as the kind of transformation(s) applied,

2

28
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

the number of transformations applied per code snippets, and the random seed of the
transformer.

We trained the CodeBERT models as described in the official repository by Microsoft
[67], using the standard-parameters given in the readme. The CodeXGLue repository
provides both the instructions and scripts to train the model, as well as the training- and
test-sets. The training-set has 164,923 datapoints (Java methods), the validation-set has
5,183, and both have been used as-is. The test-set has 10,955 datapoints and has been used
to initially assess the model, and as starting points for the generated follow-up tests using
our metamorphic transformations.

We had to remove a few datapoints from the initial test-set because they were either
malformed or could not be compiled, or had encoding issues. More precisely, we had to
(manually) remove 28 entries from Java and 162 from Python in total, which corresponds
to 0.25% and 0.01% respectively of the test sets.

The cleaned dataset is provided for an easy reproducibility.
With these artifacts, we conduct our empirical study following the steps below:

1. The test-set is a .jsonL file which contains all code-snippets and their gold-
standard; therefore, the first step was to extract each code-snippet and store them
into .java / .py files.

2. Apply the MTs as specified in the configuration to a copy of the code-files generated
in the previous step.

3. Once we obtain the follow-up code-snippets we convert them back to a .jsonL
file, which is the input format for CodeBERT.

4. Run CodeBERT upon the .jsonL file from the previous step; producing a new set
of source-code summaries.

5. Evaluate performance metrics (BLEU4) and similarity (Jaccard Distance) for the new
summaries.

When a transformation is named MT-A + MT-B it means that multiple transformations
have been applied. In this case, the type of MT to apply is randomly selected. Notice that
the different transformations have the same probability of being selected.

To answer RQ1, we apply first-order MTs to all datapoints (methods) in the cleaned
test set, resulting in a set of variant-code-snippets. We then re-calculate the BLEU4-Score
for the variant-code snippets (metamorphic test cases) as well as for the original ones.
This metric is a common translation metric, to compare the gold-standard documentation
against the generated documentation [67]. In addition to BLEU-score, we want to look into
the number of changes disregardful of their comparison with the gold standard. To this
aim, we use the Jaccard-distance. In particular, let 𝐴 and 𝐴

′ be two Java-doc-comments,
generated before and after applying an MT, the Jaccard-distance is computed as follows

𝑗𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴,𝐴′
) =

|𝑡(𝐴) ∩ 𝑡(𝐴
′
)|

|𝑡(𝐴) ∪ 𝑡(𝐴
′
)|

(2.2)

where 𝑡 is a tokenization-function. For tokenization, we used the implementation available
in the CodeXGLUE repository [67].

2.4 Empirical Study

2

29

To assess the significance of the differences in BLEU-Score achieved by the documenta-
tion generated by CodeBERT with and without metamorphic transformations, we use the
Wilcoxon rank-sum test [74]. The Wilcoxon test is a non-parametric test; therefore, it does
not make any assumption on data distribution. We tested beforehand whether the achieved
results (e.g., BLEU scores) follow a normal distribution by applying the Shapiro-Wilkinson
test [72]. According to this test, all data are not normally-distributed (𝑝-values< 0.01), thus,
supporting our choice of using non-parametric tests. For both statistical tests, we used a
95% confidence level.

To better understand the impact of transformations, we grouped the code-snippets into
four different categories: Setter, Getter, methods with a short gold-standard javadoc and
others. Setters and Getters are methods whose gold standard contain "set" and "get" is
shorter than 10 words; Short methods have less than 5 words in their gold standard that
are not Getters or Setters; Others include all methods that do not belong to the previous
methods. This allows us to analyze how much the BLEU-score changes for each category.

We also checked whether the type of method had an impact on the dependent variable,
which is the BLEU-Score. To this aim, we used a two-way permutation test [75], which
is a non-parametric equivalent of the two-way Analysis of Variance (ANOVA). We set
the number of iterations of the permutation test to 10,000,000 to ensure that results did
not vary over multiple executions of the procedure [75]. If the 𝑝-value is <0.05, it means
the impact of the MTs on the BLEU-score significantly varies across the different types of
methods. In other words, some methods are more sensitive to changes in the BLEU-Score
than others, when applying MTs.

To answer RQ2, we apply the MTs multiple times per datapoint in the test-set, creating
variant code-snippets for higher-order MTs. For the sake of this analysis, we applied each
MT (and combination) 5 and 10 times, respectively. We recalculate the BLEU-Score for the
higher-order-code-snippets and for the original code-snippet.

To assess whether higher-order MTs have a larger impact than first-order MTs, we
use the Friedman test [143] and the post-hoc Nemenyi test [144]. The former test is the
non-parametric equivalent to ANOVA, and it is used for assessing the statistical significance
of differences between first- and higher-order MTs. The Friedman test shows whether there
is a difference, but it does not specify ranks amongst them. To rank the impacts, we use
the post-hoc Nemenyi test to perform a pairwise comparison. The Nemenyi test measures
the difference across treatments (i.e., the order of the MT) by computing the average rank
of each treatment across all datapoints in the test-set. A lower average rank means that a
treatment changes the BLEU-scores more significantly.

Similar to RQ2, we answer RQ3 by grouping the existing results by type of MT. On the
MT-groupings we also apply the Friedman and post-hoc Nemenyi test, to rank the MTs by
their impact on the BLEU-Score. Transformations with lower ranking have a statistically
more significant impact on the BLEU-Score than others.

To investigate the naturalness of RQ4 we follow an approach by Hindle et. al. [73]
and fit n-gram models and utilize their perplexity to estimate the naturalness. For our
particular experiment, we train on the training-data of CodeBERT [68] and apply our
transformations to a randomly chosen subset of 50 entries of the validation set. In this
fashion, we follow the same separation as in the experiments earlier - and CodeBERT
cannot have seen the datapoints beforehand.

2

30
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

When applying the n-grams, it can happen that out-of-vocabulary tokens are encoun-
tered. The standard behavior of ntlk is to return an math.inf perplexity for such
points. For reporting, we include those infinite perplexities for the median, but exclude
them in the mean. The renaming-tranformers were only applied up to 50 times, as they
run out of transformable elements.

2.5 Results
2.5.1 Performance impact of first-order MTs
Figure 2.5 shows the histogram of deltas in BLEU4-Score produced by CodeBERT before
and after applying first-order MTs. On the righthandside it shows the histogram of jaccard
distances (entries with changes) and on the lefthandside the resulting differences in BLEU
Score. The observed changes show that many of the produced metamorphic tests fail; in
other words, the model is not robust towards the first-order MTs.

Of 62970 produced documentations 13131 entries produced a non-zero delta in BLEU-
Score (20.9%). The Python Model behaves flakier than the Java Model on that regard (28.3%
in changes opposed to 19.3%). On average the difference in BLEU is 0.07, which resembles
a difference of a few tokens.

While many entries have no deltas in BLEU-Score, there are many more methods with
differences in the generated summaries before and after applying first-order MTs. This
is highlighted by the results obtained with the Jaccard distance between the summaries
generated before and after MTs. In total, there were Jaccard differences for 29.2% of entries.
Hence, many summaries change when we apply the MTs, they just perform similarly in
terms of BLEU-Scores to the gold-standard (e.g. missing the same key words).

To assess the statistical significance of the results, we run the Wilcoxon rank-sum test
comparing the BLEU-Scores achieved by CodeBERT before and after applying the first-
order MTs. The test revealed that the differences are statistically significant (𝑝-value<0.01)
for the code snippets with changes between pre- and post-trans-formations. 2 According
to the permutation test, there is a significant interaction between the BLEU-Score of the
transformed code-snippets and the method types (𝑝-value<0.01). Applying Cliff’s delta
effect-size, we observed that indeed the Setters and Getters had a small effect-size (0.26 and
0.30), while short methods had a large effect size (-0.51), and other methods had a negligible
effect size. This means that metamorphic transformations have a larger impact on short
method-types over the others.

We also observed that on most metrics the Python Model performs less consistent -
we have three primary possible explanations: 1⃝ The Python dataset is about 1/5 of the
Java dataset 2⃝ the Python documentation has lower quality and/or is heavier impacted
by preprocessing 3⃝ for the Python code, some of the introduced patterns are rarer than
in jung2021commitbertava (e.g. lambda-functions). We expect the dataset size to be the
primary factor, however we also observed big issues with the quality of the gold-standard
documentation (see Section 2.6).

2The changes over all entries are not-significant, as many elements did not change in first-order MTs.

2.5 Results

2

31

Figure 2.5: Overview of changes for first-order MTs

Summary RQ1
When applying first-order MTs, 20.9% of methods in the test set have a non-zero differ-
ence in BLEU-Score, and 29.2% have a non-zero Jaccard distance. Since the differences
are statistically significant, our results suggest that CodeBERT is not robust towards
first-order MTs.

2.5.2 Performance changes with higher-order MTs
The number of code snippets in the test set for which CodeBERT generates different
summaries before and after applying MTs increases with higher-order MTs. In particular,
18730 out of 62970 (29.7%) code snippets have different summaries with first-order MTs,
compared to 31044 (49.3%) when applying 5th-order, and 34225 (54.4%) when applying
10th-order MTs. The impact of changes for higher-order MTs are presented in Section 2.5.2
and Figure 2.6.

On average, the BLEU-Score decreases by 1.2 (absolute difference) for 10th-order MTs. A
particularly strong difference is obtained when applying MT-RER+MT-UVR, which reduces
the BLEU-Score down to 16.2. Putting this into perspective, Feng et al. [94] mention
that RoBERTa —a model that has not been trained on source-code— achieves an average
BLEU-Score of 16.47. Hence, after 10 transformations per datapoint, CodeBERT sometimes
performs worse than a model that has never seen code.

A practical example can be seen in Table 2.3, which shows the Java model’s behavior for
a rising order of MT-IF applications. We see that after the first-order MT-IF, the generated
summary becomes significantly shorter compared to the reference summary (i.e., without
MTs). When the order increases to 5 and 10, the length of the summary grows. We also
observe that the generated summaries vary greatly in their information with rising orders.

An overview of the effect strength is in Figure 2.7e. In short the MTs have an statistical

2

32
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

Table 2.2: Development of BLEU-Scores for multiple MTs by Language

Ba
se

M
T-
IF

M
T-
N
E

M
T-
RE

P
M
T-
UV

P
M
T-
RE

R
M
T-
UV

R
M
T-
L

M
Ts

1
5

10
1

5
10

1
5

10
1

5
10

1
5

10
Ja
va

18
.0

17
.6

17
.4

17
.4

17
.7

17
.6

17
.5

17
.2

16
.8

16
.8

17
.2

16
.8

16
.7

17
.5

17
.2

17
.2

Py
th
on

17
.0

17
.1

16
.7

16
.3

16
.5

14
.6

13
.6

16
.5

15
.0

13
.9

16
.4

15
.1

14
.1

17
.3

16
.8

16
.6

To
ta
l

17
.8

17
.5

17
.2

17
.2

17
.5

17
.1

16
.8

17
.1

16
.5

16
.3

17
.1

16
.5

16
.2

17
.3

16
.8

16
.6

2.5 Results

2

33

Figure 2.6: BLEU4-Scores for increasing number of metamorphic transformations (applied n-times per datapoint)

Table 2.3: example results for higher order MT-IF application (in Java)

Config. #Order Result BLEU-Score

Gold — Un capitalizes the first character
of theword given . It will convert
i to I

1.000

No MT — Capitalize the first character of
the first word .

0.223

MT-IF 1 Uppercase character 0.000
MT-IF 5 Uppercase character . 0.002
MT-IF 10 Capitalize the first character of a

word .
0.140

2

34
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

Table 2.4: Example of CodeBERT output for a single method under different transformations

Configuration #Order Result

Gold — recipe for makeAFishyDecision
with the numberOfFish

No MT — Make sure that the given number
of non - empty words .

MT-IF 1 Make sure that the given number
of fights in the given image .

MT-IF 5 Make sure that the given number
of non - empty words should be dis-
played .

MT-NE 10 Make sure that the given number
of fights with the given number of
functions .

MT-UV + MT-RE 5 Make a fancy message .

significant impact(see above), but applying 10 MTs has a significantly bigger impact (effect
strength) than applying less. This matches with our expectations - more changes in code
lead to more changes in outcome. Further elaboration of the tests presented by Figure 2.7
is located in Section 2.5.3.

Summary RQ2
Higher-order MTs produce more changes and have a statistically significant higher
impact on the BLEU-Score. This means that CodeBERT is less robust against higher-
order MTs than towards first-order MTs.

2.5.3 Comparison of Changes per Transformer
The average BLEU-Scores achieved by CodeBERT when applying different types of MTs
can be seen in Section 2.5.2 and Figure 2.6. We can observe that, on average, there are
strong differences per MT and per language, e.g. adding neutral elements seems to be
negligible for Java models but has a high impact on Python. Changing parameter names
and adding unused variables (MT-RE & MT-UV) seems to affect performance for both
languages. These trends persist over higher-order MTs, i.e., when applying the same type
of MT multiple times.

One particular example that struck out was a code snippet in the test set that contains
a kids tutorial on learning Java switch-case-expressions3. In the example, the method
performs a switch-case over an integer to display a FancyMessageBox with up to two fishes.
A subset of the summaries generated by CodeBERT with different MTs for this example
can be seen in Table 2.4.

First, we can notice that there are differences between the summary generated on the
original code-snippet compared to the ones created after transformations. In two of the

3Found under https://github.com/TeachingKidsProgramming/
TeachingKidsProgramming.Source.Java/blob/master/src/main/java/org/
teachingkidsprogramming/recipes/completed/section07objects/WhichFish.
java

https://github.com/TeachingKidsProgramming/TeachingKidsProgramming.Source.Java/blob/master/src/main/java/org/teachingkidsprogramming/recipes/completed/section07objects/WhichFish.java
https://github.com/TeachingKidsProgramming/TeachingKidsProgramming.Source.Java/blob/master/src/main/java/org/teachingkidsprogramming/recipes/completed/section07objects/WhichFish.java
https://github.com/TeachingKidsProgramming/TeachingKidsProgramming.Source.Java/blob/master/src/main/java/org/teachingkidsprogramming/recipes/completed/section07objects/WhichFish.java
https://github.com/TeachingKidsProgramming/TeachingKidsProgramming.Source.Java/blob/master/src/main/java/org/teachingkidsprogramming/recipes/completed/section07objects/WhichFish.java

2.5 Results

2

35

(a) MTs over all Orders (b) Java T = 1

(c) Java T = 5 (d) Java T = 10

(e) Order over all MTs (f) Python T = 1

(g) Python T = 5 (h) Python T = 10

Figure 2.7: Overview of Post-Hoc Nemenyi Results on Significance of MTs and Order

2

36
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

presented summaries, the word "fights" appears, despite there is no such a token in the
post-MT snippets nor in the inline-comments.

For MT-UV+MT-RE, we observe substantial differences compared to the other sum-
maries. The model generates completely different tokens, except for the word "make".
However, it can be argued that this is actually a meaningful summary, as the code is mostly
about displaying items in a FancyMessageBox. This summary is more accurate than those
about counting non-empty words obtained with other MTs.

Another general trend we can observe is that certain keywords appear or disappear
over the transformations. One example is "non-empty" keyword, which appears in the
reference summary, disappears for MT-IF first-order, and re-appears for MT-If fifth-order.
Hence, the model does not provide stable results, although all variants of the program are
equivalent according to the MRs.

We applied the Friedman test and the post-hoc Nemenyi procedure to analyze the impact
of the different MTs on the BLEU-Score. With a 𝑝-value<0.01, the Friedman test indicates
a statistical difference across the different types of MTs. A summary of the statistical tests
can be seen in Figure 2.7, which presents an overview of the Nemenyi Posthoc Ranks of
different configurations; The primary observation is, that for the Java and Python different
MTs achieve different rank in their effect. Noteworthy are the movements in Python —
while for low transformations all MTs have an effect, with growing transformations the
MT-L and MT-NE have significantly higher effect than the other MTs. For Java we find a
similar movement but Renaming and Adding Variables are the dominant MTs. Figure 2.7a
and Figure 2.7e show the nemenyi results before grouping by language and order. MT-RE
& MT-UV are the dominant MTs overall, and the highest effect is produced by applying 10
transformations.

We further applied the two-way permutation test to assess whether different co-factors
also impact the BLEU-Score achieved by CodeBERT when applying our MTs. In particular,
we considered (i) type of method, (ii) type of MTs, language of the model (iii) ,length
of the gold-standard4 (iv), and (v) order of the transformations as co-factors that could
play a role in decreasing the BLEU-score when applying our MTs. The achieved results
indicate that the language, type of transformation and method type have significant impact
on their own (𝑝-value<0.05). From the combined multifactoral analysis, the significant
combinations are {MT,number of transformations}, {MT,language} and {MT, language,
number of transformations}. This confirms our results for RQ1, where we observed that
getter, setter, and short methods are more affected by our MTs w.r.t. the summaries
generated with CodeBert.

Outside of the proven significances, we would also point out some of the results that
are not statistically significant for the outcome: the complexity of the gold-standard turned
out to be un-important in the ANOVA-analysis, and the number of transformations is only
relevant in regard of language and MT.

4we took the length of the gold-standard as a proxy of the complexity of the datapoint — short summaries are
easier to guess

2.5 Results

2

37

Summary RQ3
Different MTs have a statistically different impact on the BLEU-Scores achieve by Code-
BERT. Adding unused variables (MT-UV) has the strongest impact, while adding a
redundant if-statement (MT-IF) has the lowest impact.

2.5.4 Naturalness of Transformations
The achieved results for the bi-gram perplexity are shown in Figure 2.8, separately for
Java and Python. Three- and Four-grams yielded comparable results, with the overall
perplexities being lower but resulting in the same rankings.

For Java, we see mostly expected trends in Figure 2.8a: The introduction of new, unused
variables with random or pseudo-random names increases the perplexity. It shows a higher
change for fully-random identifiers than for pseudo-random ones, which we expect to be
based on the way the tokinezation is conducted. For CodeBERT, words and identifiers
are split into sub-tokens, and the pseudo-random identifiers use some elements that are
likely within the vocabulary. The renaming increases the perplexity and then stagnates,
because it ran out of transformable identifiers. We also see a great disparity between the
median and the mean, indicating that for most elements a low perplexity is returned, while
some tokens are outliers with a high perplexity. We also see some transformers reducing
the overall perplexity: Lambda- and If-Transformations produce lower mean and median
perplexities. This is due to a majority of the introduced tokens being brackets, which are
ubiquitous and have a low perplexity.

In Python, we observe similar trends with the exception of neutral elements increasing
perplexity the most. On inspection, the changes consisted mostly of empty strings and
zeros added, as well as brackets. An educated guess is that, for the most part, the Python
code does not have the redundant +0 which leads to a high perplexity when encountering
these two tokens after each other. It’s important to note that the Python perplexity rises
drastically more than the Java perplexity. Both have an initial average of ≈ 15, but after 10
transformations the altered Python results in a mean of 60 to 160, more than three times of
it’s Java counterparts.

Generally speaking, the trends from Figure 2.8 are inverse to the reduction in BLEU-
score seen in Figure 2.6. Transformers that produce a low change in perplexity (neutral
element) for Java, also produce a low change in BLEU. The same neutral elements drastically
change the perplexity for Python, and results in the biggest delta of BLEU. Based on the
selected sample, it seems there is a direct correlation between the deltas of perplexity and
BLEU.

Summary RQ4
Transformations that yield a higher average perplexity (i.e. introduce elements that are
unnatural to the language-model) reduce the BLEU score the most.

2

38
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

(a
)B

ig
ra
m

Pe
rp
le
xi
ty

fo
rJ
av
a
Tr
an
sf
or
m
at
io
ns

(b
)B

ig
ra
m

Pe
rp
le
xi
ty

fo
rP

yt
ho

n
Tr
an
sf
or
m
at
io
ns

Figure 2.8: Development of BiGram-Perplexity with higher-order Transformations

2.6 Discussion

2

39

2.6 Discussion
2.6.1 Practical implications
We presented an effective approach for testing the robustness of a model towards meta-
morphic transformations on source-code. According to the empirical results, our approach
is capable of producing significant changes in the summaries generated by CodeBERT,
highlighting potential weaknesses in the model as it does not satisfy metamorphic relations.
In other words, slightly different variants of the same program have vastly different results.
While in this paper we focus on the Code-To-Text tasks of CodeBERT, we expect the found
implications to hold true for other down-stream tasks as well. This can be considered a
call-to-arms for researchers and practitioners to test machine learning models trained on
source-code using metamorphic testing in addition to the traditional performance metric
(e.g., accuracy). Our metamorphic transformations can be applied for other ML-based SE
tasks that process source-code. However, the set of transformations can be extended and
adapted to the domain and specific task under analysis. As part of future work, we try to
apply the approach to other tasks such as defect-prediction, ML-based smell-detection and
predictive mutation testing. Metamorphic testing can also be used to increase the size of
the test-set by generating new program variants, without requiring human labeling. This
could be potentially beneficial for SE tasks where labeling data is very expensive or few
datapoints are available — or harmful, by introducing unrealistic or uncommon patterns
that might not represent the ground truth.

2.6.2 Runtime Overhead
It is worth noting that generating follow-up code-snippets using our MTs incurs very
negligible runtime overhead, in the order of 7 milliseconds per MT per code-snippet.
However, it will result in having more datapoints in the test set, multiplying the runtime of
model-inference. For CodeBERT, if one code-snippet leads to having 10 different variants
using MTs, it will result in ten-times longer runtime for model-evaluation.

For our experiment, a single run of inference for the test-set took 13h, which had to be
re-done for every MT configuration, resulting in another 13h wait time. While this has to
be done only once for model evaluation, the time for inference still grows linearly. It might
be interesting further work to filter for only promising MTs, similar to what is done for
sampling in mutation testing [118] — we pursue this in Chapter 3 by introducing genetic
search to find MTs that maximize the delta in performance metrics.

2.6.3 Reflection of the initial experiment
Lastly, we would like to highlight that engaging intensively with the original study like
we did also suggests some improvements to the original setup. One concern is that the
BLEU-Score has still very forgiving results, despite vague or uninformative summaries. For
example, if both summaries just have matching words like "the",""a","an" etc., it will still
return a decent BLEU-Score.

Another issue is the dataset used, as not all of the data is up to production standard.
We found examples of tutorials-code for kids books and code written in german. Hence,
a stronger filter on the test-set should be applied, e.g., filtering out Getters, Setters and
similar noise. Also, the preprocessing should be done differently, as the current Javadoc

2

40
2 Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations

get cut off after the first @ token. As many code snippets contain (valuable) text in or after
the parameters, this information should be preserved.

2.6.4 Open Challenges for Data Augmentation
We tried to apply Lampion for data augmentation, but we faced some serious computational
problems. We reused the model and benchmark produced by Karampatsis et al. [107]
in their work Big code!= big vocabulary: Open-vocabulary models for source code for code
completion. They introduce the concept of Bytepair-Encoding (BPE) to SE-tasks in machine
learning, achieving comparable results to SOTA approaches. OpenVocabCodeNLM was
trained on different benchmarks, one is a publicly available py150k benchmark [145]
consisting of 150 000 Python files mined from GitHub.

Starting from a reproduction, we used Lampion to augment the training data by copying
datapoints and transforming them. The resulting dataset would have the original datapoints
plus additional noisy datapoints that contained smells, obfuscated names or redundant
structural elements. However, when we set out to perform training on the augmented
dataset, we encountered a series of errors related to the memory of GPUs. For the data
augmentation, we expected that doubling the data would result in a doubled training time.
The general assumption was that augmentation would result in a linear growth.

This is wrong for two reasons:

1. OpenVocabCodeNLM is a sequence-learning task. Due to model architecture, the
computational cost growths exponentially with the sequence length. Adding re-
dundant elements (even after encoding) increases this sequence length, leading to
exponential growth.

2. The training of OpenVocabCodeNLM tries to minimize the perplexity of all tokens
in the provided sequence. The perplexity measure used in the experiment (and
commonly used in NLP tasks), also growths exponentially with the sequence-length.

Additionally, many of these effects are not compensated by the BPE: The BPE is designed
to cover frequently co-occurring tokens in a corpus, but many of the changes we introduce
are either exotic (fully random names) or short and un-common (adding + 0). For every 1
token we introduce with our transformations, 1 or more tokens are added into the final
sequence after encoding. By accident, BPE amplifies the computational problems.

It is possible to re-design experiments by limiting transformations to those that do not
alter token-amount too greatly. Due to the current scope of the work, this remains future
research. In general, this forms a limitation for data augmentation approaches regardless of
Lampion , and motivates to consider real-world constraints of the model architecture when
designing the next methods. While Lampion can be applied for test-data augmentation, it
should be carefully used for training-data augmentation.

The failing experiment and datasets are provided for reproduction.

2.7 Conclusion

2

41

2.7 Conclusion
This paper introduces metamorphic relations to test ML-models program analysis solutions.
Using this technology, our objective is to gain further information on the model’s behavior
apart from the performance metric (e.g., accuracy).

To achieve this, we presented a generic approach (Lampion) and applied it in a case
study on CodeBERT’s Code-To-Text tasks. To evaluate the case study, we perform various
statistical tests to prove or disprove changes in the resulting performance metric.

Our approach and framework can empower experts and laymen alike to assess the
robustness of their models and provide additional tests on quality.

We tried to keep the approach 1⃝ lightweight in concept, 2⃝ expendable functionality
(due to plug-in MTs), 3⃝ independent of the task (any language and quality metric).

While our initial implementation is in Java and Python, we expect that a re-implementation
for any language is an easy task and the statistical analysis can be reused for most experi-
ments.

2.8 Online Resources
The code for a sample metamorphic transformer, the grid experiment and the evaluation
can be found on Github under the Lampion repository5. The model,cleaned test-set and
post-transformation datasets can be found on Zenodo under DOI:10.5281/zenodo.6400572 .
We provide CodeBERT6 and OpenVocabCodeNLM7 as containerized reproduction packages
for other researchers.

5https://github.com/ciselab/Lampion
6https://github.com/ciselab/CodeBert-CodeToText-Reproduction
7https://github.com/ciselab/OpenVocabCodeNLM

https://github.com/ciselab/Lampion
https://github.com/ciselab/CodeBert-CodeToText-Reproduction
https://github.com/ciselab/OpenVocabCodeNLM

3

43

3
Searching forQuality:

Genetic Algorithms and
Metamorphic Testing for
Software Engineering ML

Summary
More machine learning (ML) models are introduced to the field of Software Engineering
(SE) and reached a stage of maturity to be considered for real-world use. But the real
world is complex, and testing these models lacks often in explainability, feasibility and
computational capacities. Existing research introduced metamorphic testing to gain addi-
tional insights and certainty about the model, by applying semantic-preserving changes to
input-data while observing model-output. As this is currently done at random places, it can
lead to potentially unrealistic datapoints and high computational costs. With this work, we
introduce genetic search as an aid for metamorphic testing in SE ML. Exploiting the delta
in output as a fitness function, the evolutionary intelligence optimizes the transformations
to produce higher deltas with less changes. We perform a case study minimizing F1 and
MRR for Code2Vec on a representative sample from java-small with both genetic and
random search. Our results show that within the same amount of time, genetic search was
able to achieve a decrease of 10% in F1 while random search produced 3% drop.

This chapter was published as Searching for Quality: Genetic Algorithms and Metamorphic Test-

ing for Software Engineering ML by Leonhard Applis, Ruben Marang and Annibale Panichella at
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2023).

3

44
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

3.1 Introduction
Producing a good model is hard. Not only is achieving good metrics often quite a challenge
itself, but once entering the real world new problems emerge: Fairness [146], extrap-
olation [147], speed [148], security and robustness [97] are important non-functional
requirements when it comes to machine learning (ML). And while good metrics make it
into academic publications, poor non-functional qualities make the news [149]. In the realm
of programming languages, ML applications have unique benefits, such as a large body of
data publicly available in version control systems like GitHub or GitLab and discussion
forums such as StackOverflow.

Unlike other domains, SE tasks have well-defined problems (e.g., code completion,
test generation) and metrics (e.g., code coverage) that can be tackled with ML. Still, previ-
ous research shows that even in clean domains like software engineering problems with
robustness and performance exist [102, 122, 125, 150]. How is that?

We argue that one missing piece is the lack of tools for expressing non-functional
requirements as actionable tests. Ameta-survey on Requirements-Engineering for ML [151]
found that a considerable amount of publications are aware of non-functional requirements,
but few go beyond defining the problem. Hence, we have a rich concept of requirements,
but any good requirement must be expressed as a (repeatable) test.

Within this work, we target robustness of ML models as an exemplary non-functional
requirement. Robustness expresses the ability of the model to perform reliably when
facing noise and degrading data quality. Such noise in code consists of poor naming-
standards, unused elements and redundant structures. As the rules for programming
languages are well-defined, we can produce noise while keeping the program identical
in behavior using metamorphic transformations. Metamorphic transformations utilize
metamorphic relations to generate new alternative datapoints for which a ML model should
give the same prediction/classification outcome. A robust model is capable of detecting
redundant elements and stay mostly unaffected by variable names. Robust models do not
come for free and existing research shows that Code2Vec[152] is affected by metamorphic
transformations; even just renaming variables can completely change its outcome [125].

Assessing robustness as part of quality is the job of a tester, adapted for working on
machine-generated models instead of code written by human developers. We argue that
a non-functional requirement like robustness can be expressed using a statistical test
which is explainable in layman terms. Similar approaches have been done by previous
research [102, 122, 150], which are limited by blind (random or stacking) application of
transformations. To implement the test, we use a search technique (genetic algorithms) in
combination with metamorphic transformations. Introducing evolutionary intelligence
ought to deal with these two crucial limitations, realism and computational efficiency. We
aim to produce datapoints creating similar deltas, while requiring less computation and
enabling more realistic datapoints. The created datapoints can be saved and re-used, to
re-evaluate the model, forming an acceptance test.

The contributions of this paper can be summarized as follows:

1. Formulation of metamorphic testing as a search based problem within the SE4ML
domain

2. Expand existing metamorphic testing within the domain with genetic search

3.2 Background & Related Work

3

45

3. Assess differences between random and genetic search w.r.t. generating effective
metamorphic tests that affect code2vec

4. Sound statistical analysis based on multiple experiments utilizing genetic search, in
particular for repeated transformations

Our results show that genetic search performs significantly better in reducing F1 score
than random application of transformers. Based on the assumption that less transformations
yield more realistic input-data, genetic search produces the same statistical difference in
metrics with less transformations which we consider an increase in realism. Aligning with
existing research, applying more transformation leads to bigger differences, which is further
amplified if the right transformations are kept through genetic selection. An inspection of
the most dominant transformation showed that especially those which add elements to the
abstract syntax tree (AST) prevail, which we argue is connected to Code2Vecs’ mechanisms
based on AST-traversal.

3.2 Background & Related Work
3.2.1 Code2Vec & Method-name Prediction
Our experiments reuse the approach and artifacts1 of Code2Vec [152] by Alon et al.
Code2Vec is based on AST-path extraction for which code is translated into an AST and
sampled into triples of [leaf,path,leaf]. These triples are merged into an vector-
embedding per method, which shows promising results for the task of method-name
prediction, and in particular their embeddings behave similar to generic nlp-embeddings.
An important detail for this work is that the paths are extracted by performing random
walks (default 200), limited by some further constraints (e.g. maximum width and depth).
Due to the walks, the structure of the AST has paramount effect on the embeddings, as a
single new leaf node doubles the amount of possible paths. Not only can the introduction
of new nodes drastically change the amount of available paths, but also changes in the AST
can lead to exclusion of previous valid paths. Hence, manipulation of the AST can lead to
significant changes for better or worse - both important information as well as noise can
be left out either by exclusion criteria or by chance.

Method-name prediction is a research area [153] where for a given method-body, a
descriptive method-name is wanted. Descriptiveness is measured as F1-score by calculating
sub-word token overlap of produced and actual method-names. Code2Vec outputs method-
names with corresponding certainties, suitable to evaluate mean-reciprocal rank (MRR)
that is based on the rank at which the correct prediction was placed. Within Code2Vec, the
MRR was reported but only the F1-score was used for model training.

In addition to their work, Alon et al. provide Java-datasets and we use java-small for
our experiments. We sample 350 of the ∼6000 files, which satisfies 95% significance at 5%
error rate.

1Note: We use a fork with minor changes due to machine dependencieshttps://github.com/ciselab/
code2vec

https://github.com/ciselab/code2vec
https://github.com/ciselab/code2vec

3

46
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

3.2.2 Metamorphic Testing
Metamorphic testing is based on the concept of metamorphic relations, relations that
generate new test inputs that should result in the same test outcome. Humans as well
as tools can easily create new test cases based on these relations. An overview of the
metamorphic testing landscape can be found in a survey by Segura et al. [118]. While
metamorphic testing is not yet widely adopted tomachine learning for software engineering
(ML4SE), both transformations and relations are known in SE and are well explored for
test case generation, refactoring, program optimization, and linting.

Metamorphic Testing forML. Metamorphic testing has gained popularity in machine
learning, particularly in image-based object-detection tasks [100][99]. These transforma-
tions on images apply information-preserving changes to images: The picture of a dog can
be mirrored, but a model should still be able to classify it as such.

Researchers have adapted and evaluated metamorphic testing to ML models in the
ML4SE domain, i.e., to models that aim to semi-automate SE tasks. Compton et al. [150]
introduced obfuscation techniques for variable names and showed howCode2Vecmodels
are vulnerable to variable name changes. Our underlying framework and approach share
similarities, which we extend by adding search algorithms. The combination of existing
research (transformers for models of code), search algorithms and statistical tests forms
the unique novelty of this paper.

Yefet et al. [125] proposed a further metamorphic relation introducing unused variables
in addition to variable-name obfuscation. Their study on Code2Vec-based classifiers
showed how these simple code-snipped transformations could generate adversarial attacks
that fool the model under test. While this forms a search using metamorphic transforma-
tions, our approach differs in three primary aspects: 1⃝ we use Code2Vec as a black-box
model, 2⃝ we approach search as a quantitative task on multiple (many) datapoints, instead
of creating single counter-examples and lastly 3⃝we target robustness as a quality attribute,
and not security.

Cito et al. [154] generated “counterfactual examples” to assess the robustness of BERT-
like models. Although they use different terminology, these examples are generated by
applying perturbations to initial code-snippets by replacing tokens with plausible alterna-
tives that do not alter the code’s behavior; hence, these transformations are metamorphic.
Their study showed how transformations could find counterexamples for BERT-like models
that are in line with the rationale provided by human experts.

A more extensive list of metamorphic transformations for ML-models applied to source
code has been introduced in Lampion by Applis et al. [102] and seen in this dissertation
at chapter 2 in table 2.1. In particular, Lampion considers multiple different metamorphic
transformations, which either add unused information (e.g., add unused variables, input
parameters, and wrap an expression in identity-lambda functions) or replace a code ele-
ment with another equivalent element (e.g., rename a class, method or variable). Their
study investigated the extent to which different transformations affect the performance of
CodeBERT [94].

Limitations. Despite these undisputed advances, metamorphic tests for ML models
are created in ML4SE by using random sampling. In particular, given a set of possible
transformations, existing approaches randomly select and apply these transformations
(one or more times) until the model under test produces different test results (e.g., wrong

3.3 Approach

3

47

classification). In this paper, we proposed the use of evolutionary intelligence (and evolu-
tionary algorithms in particular) with the goal of 1⃝ leading to model miss-prediction faster
via intelligent search and 2⃝ reducing the number of transformations needed to do so.

3.2.3 Genetic Algorithms
Search-based software testing (SBST) relies on search algorithms to seek for solutions to
software testing problems. Since the 1990s, researchers have proposed and applied different
meta-heuristics to optimize various testing problems, such as test case generation [155–
157], regression testing [158, 159], and mutation testing [160]. The most applied meta-
heuristics in the SBST literature include but are not limited to hill climbing [155], simulated
annealing [161], and genetic algorithms [85, 157, 162]. Previous work has also shown how
evolutionary intelligence can outperform random sampling (or random search) in specific
testing applications [163–166], thus motivating our idea to use evolutionary testing for
metamorphic testing.

Genetic algorithms (GAs) [167] are a group of search techniques inspired by natural

selection and natural evolution. GAs evolve a pool of solutions (referred to as “individuals” or
“chromosomes”) or “population”. Usually, the initial population is randomly generated and
it is iteratively recombined and mutated using crossover and mutation operators. Solutions
are selected for reproduction according to a fitness function that measures how good
the solutions are toward solving a specific problem (e.g., generating tests that maximize
coverage). Over the course of different iterations (or generations), this procedure of selecting,
recombining, and mutating solution converges towards best-fit solutions. GAs terminate
when either the optimal solution to the problem is found or when the search budget (e.g.,
the number of generation) is depleted. For a detailed reading on the matter, we suggest the
work by Sette et al. [168].

3.3 Approach
Proving a program (or here a model) to be correct is generally unfeasible: Instead, one tests
for failures. Programs are asserted for a general quality expressed through happy-paths,
and checked for negative behavior, error recovery, and other issues through tests. In this
tradition, we also design our model-test-cases failure-based: We are looking for input
that makes the model perform poorly. We assume the happy-path is successfully covered
through the performance in training and test.

Creating a single faulty data point to produce errors is an easy task, but also one that
does the model’s statistical nature injustice: The issue here is that single data points likely
will not be useful in producing a fix. An easy way for a model to deal with a single faulty
data point would be over-fitting to avoid this particular data point, and any generalization
could be mere coincidence. Hence, we zoom out a bit and consider approaches that focus
on multiple data points and attributes of the dataset.

How would you go about finding these datapoints? We formulate this as a classic
search problem:

Theorem 2 Let 𝑋 ∶ 𝑃 ⟶ 𝑂 be a pre-trained model that takes as input a program 𝑃 and

returns an outcome 𝑜 ∈ 𝑂 (e.g., method-name prediction). Let 𝐹 = {𝑓1,⋯ , 𝑓𝑛} be a set of meta-

morphic transformations such that 𝑓𝑖(𝑃) ≡ 𝑃 ∀𝑓𝑖 ∈ 𝐹 . Let 𝑚 ∶ (𝑋,𝑃)⟶ ℝ be a performance

3

48
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

Figure 3.1: schematic Control-Flow of Guided-MT Program

metric (e.g., F1-score) computed on a pre-trained model 𝑋 with input program 𝑃 .

Problem: finding a program 𝑃
′
obtained by applying 𝐹 to 𝑃 that maximizes the differences

in the performance metric 𝑚:

max
|
|
𝑚(𝑋,𝑃

′
)−𝑚(𝑋,𝑃)

|
|
with 𝑃

′
≡ 𝑃 (3.1)

The formulation above can be applied to any performance metric. In this paper we
focus on F1-score; our goal consists in finding a program 𝑃

′ that is equivalent to an initial
program 𝑃 (hereafter referred to as seed) that maximizes the difference in F1-score achieved
by a model 𝑋 on 𝑃 and 𝑃

′, i.e., max
|
|
𝐹1(𝑋,𝑃

′
)−𝐹1(𝑋,𝑃)

|
|
. Equation (3.1) corresponds to

our fitness function to optimize for metamorphic testing (our search guidance).

3.3.1 Guided Metamorphic Testing
To optimize Equation (3.1), we implemented a genetic algorithm, whose high-level workflow
and its components are depicted in Figure 3.1. Within our experiments, we focused on
Java programs and target Code2Vec as main the model under test. For Code2Vec, we
re-use the artifacts provided by Alon et al. [152], including code, model, and dataset. To
apply the metamorphic transformations, we use the Lampion framework [102] since it
provides the most extensive set of metamorphic transformations for Java programs.

Encoding
As mentioned before, solutions to the problem in Section 3.3 are produced by altering
a seed program 𝑃 by applying metamorphic transformations. Instead of encoding a so-
lution as a complete code-snippet, we only encode the changes applied to the AST of

3.3 Approach

3

49

Table 3.1: List of metamorphic transformations (MTs) for Java programs [102].

ID Description

MT-IF Wrapping a random expression in an if(true) statement
MT-FI Wrapping a random expression in an if(false) else statement
MT-UV Add a random unused variable
MT-RE Rename a variable
MT-PR Rename a parameter
MT-ID Wrap an expression in an identity-lambda function (including func-

tion call)
MT-NE Add the neutral element to a primitively typed expression

the seed image (mask). In particular, given the seed program 𝑃 , we encode a solution
(genotype) as a sequence of changes to the AST of 𝑃 : 𝑃 ′

= ⟨𝑝1,… ,𝑝𝑘⟩. Each entry 𝑝 in 𝑃
′ is

a tuple [𝑛𝑜𝑑𝑒𝑖, 𝑓𝑗], where 𝑛𝑜𝑑𝑒𝑖 denotes the 𝑖-th nodes in the AST of P and 𝑓𝑗 is the 𝑗-th
metamorphic transformation applied to that AST node.

Initialization
The first step for our GA requires creating an initial population of metamorphic tests
(or solutions). The initial population consists of creating 𝑁 copies of the seed program
𝑃 (i.e., empty mask 𝑆 = ⟨⟩) and randomly applying one of the available metamorphic
transformations at a randomly selected AST node of 𝑃 . In this paper, we consider seven
metamorphic transformations proposed in Lampion [102] and listed in Table 3.1.

Selection
Metamorphic tests are selected for reproduction using simple tournament selection with a
tournament size 𝑡𝑠 =4 [168]. This selection method first randomly samples four solutions
from the last population and selects the solutionwith the best fitness function (Equation (3.1)
in our case) as the winner of the tournament (parent).

Crossover
New solutions/tests are generated by recombining parent solutions selected as described in
the previous subsection. In particular, we apply the multi-point (also known as scattered)
crossover. This operator creates two new metamorphic tests by combining the entries of
two parent solutions around multiple cut points. First we create a crossover-mask consisting
of a binary vector with randomly generated entries, this entry determines whether a
crossover at this position will take place. Each offspring is created as a copy of one of the
two parents, and the transformation at index 𝑖 is replaced by the gene of the other parent if
the mask entry at 𝑖 is 𝑡𝑟𝑢𝑒.

The masks’ length is bounded by the shortest gene, in case of diverging length the
crossover happens between the overlapping genes and the remaining genes are left un-
touched in the longer offspring (copy of the longer parent).

Mutation
Given a newly generated test 𝑂 , we designed two types of mutation operators that in
turns add or delete metamorphic transformations to 𝑂 . The probability of application is
configurable (for the experiments we chose 80% add and 20% shrink), the application is

3

50
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

mutually exclusive. The chance to trigger a mutation is set to 50%, leading to (in average)
one of the offsprings to be mutated.

The add operator iteratively adds multiple metamorphic transformations following a
hyperbolic distribution. In detail it adds a (randomly selected) metamorphic transformation
to 𝑂 to an AST node with probability 𝜎. Once it is added, a second (randomly selected)
transformation is applied with probability 𝜎

2, and so on until no more transformation
is added. In general, at each mutation iteration 𝑛, a new transformation is added with
probability 𝜎𝑛. Notice that a new transformation is added if and only if the limit 𝐿= 20 is not
reached. This non-linear operator is inspired by the add operator used in EvoSuite [156, 169]
for unit test suite/case generation. In this paper, we set 𝜎 = 2/3 as it asymptotically applies
three metamorphic transformations on average (statistical expectation).

The remove operator randomly removes one metamorphic transformation previous
applied to 𝑂 . This corresponds to deleting one of the entries 𝑜𝑗 in the mask 𝑂 = ⟨𝑜1,… , 𝑜𝑘⟩,
with 𝑗 ∈ {1...𝑘}. This operator tackles the potential bloating effect [170, 171], i.e., the length
of the metamorphic tests might steadily increase through the generations. This remove

operator can shorten solutions with spurious transformations that do not contribute to the
fitness function throughout the generations.

Elitism
At the end of each generation, there are 𝑁 parent solutions and 𝑁 offspring solutions
produced via the selection, crossover, and mutation. The new population for the next
generation is obtained by selecting the 𝑁 best solutions among parents and offspring.
This survival mechanism is called elitism since the best solutions can survive across the
generations.

Termination
The search terminates when the total search budget is reached or the fitness function
cannot be further improved. We prefer running time over number of iterations as a
search budget as it is considered the fairest metric to measure the cost of test generation
approaches [163, 164, 166]. This is because the cost of applying the genetic operators (<10
seconds) is —in our context— negligible compared to the cost of computing the fitness
function, which requires evaluating the generated solutions against the model under test
(2-10 minutes for Code2Vec).

3.4 Methodology

3

51

3.4 Methodology
3.4.1 ResearchQuestions
Based on existing research (Section 3.2) Code2Vec is vulnerable to metamorphic trans-
formations, especially centered around identifiers. Thus, we want to investigate if genetic
search improves the produced effect and the speed needed to influence the model. Differ-
ences between random search and evolutionary search for a performance drop are covered
in the first research question:

RQ1: Effectiveness of Search
How effective is searching for metamorphic transformations that produce a maximum
drop in performance metrics (F1, MRR) of Code2Vec?

The random search adds a number of randomly chosen transformations. Primarily it is
the search technique used in the existing body of research w.r.t. metamorphic testing in the
ML4SE domain [102, 125, 154] and it is the current state-of-the-art. Second, random search
is natural baselines when assessing search-based approaches considering its simplicity
and strength. Previous studies showed that random search can outperform evolutionary
algorithms in specific SE domains [172, 173].

We want to explore trade-offs between the number of transformations and their pro-
duced effect. We expect a larger number of transformations to produce bigger changes in
Code2Vec output, but how much difference can be achieved for fixed 𝑛 transformations?
A low number of transformations keeps the code understandable, i.e., a few redundant con-
trol structures or variable names could very well be an oversight in normal programming.
These realistic data points are the golden fleece of our second research question:

RQ2: Minimizing Number of Transformations
What are the trade-offs between keeping a low amount of transformations and producing
a difference in metrics?

To position this work better in the body of existing research, we unravel the genotypes
and investigate the obtained transformations. With our third research question, we aim to
get an insight into the models behavior and/or data — we aim to answer a set of questions
such as: "Align our distributions of transformers with other publications?" or "For different
metrics, do we get different transformations?"

RQ3: Distribution of Transformations
What are the dominant transformations that lead to highest changes in performance?

Existing work shows that metamorphic transformations reduce the metrics on average

— but individual transformed datapoints can produce a better prediction. We consider this
an exotic premise: Can noise make our data better? We hope to gain insights on the topics
data quality, model fitting and the stochastic nature of ML with our last research question:

RQ4: Search-Goal Inversion
Can the search be inverted, to produce an increase in performance metrics?

3

52
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

3.4.2 Benchmark and Dataset
Code2Vec, the model under test, is a neural attention-based approach that learns em-
beddings for programs (e.g., method-names) as continuous distributed vectors. The code
embedding aims to preserve the semantics of the programs such that semantically similar
methods are mapped into similar vectors. To this aim, programs are represented as path
contexts, i.e., paths between nodes on the program AST.

We use the pre-trained model by Alon et al. [152], trained on more than 12M Java
methods extracted from 10,072 Java projects available on GitHub. Together with the pre-
trained model, the training-, validation-, and test-sets are also available in the replication
package by Alon et al. [152].

For our paper, we focus on the pre-trained model and use the java-small test-set,
which contains ∼6000 Java methods. We randomly sampled 350 methods from the test-set
to use a representative sample. We restricted our evaluation to a smaller set of methods
in the test-set because of the large number of runs needed for a sound statistical analysis.
We had to choose between using a larger sample of seed programs with few runs or a
smaller sample but with enough runs to allow sound statistical analysis within a feasible
wall time. We have opted for the latter based on the existing guidelines on assessing
randomized algorithms in SE [174, 175], which highlight the importance of performing
multiple runs for a proper assessment of search algorithms (including random search and
genetic algorithms).

3.4.3 Evaluation Methods
In our experiment, we run GA and random search 10 times for each program seed in
the dataset. This accounts for the random nature of the employed search algorithms. In
each run, we collected the best solution (i.e., the metamorphic tests with the best fitness
function value), its corresponding performance metrics, and its sequence of metamorphic
transformations such solution included. We re-ran the same experiments twice, once for
each fitness function in Equation (3.1) instantiated with F1-score and a second time using
MRR (Mean Reciprocal Rank). In total, for RQ1, we run 350 (seed programs) × 2 (algorithms)
× 10 (runs) × 2 (fitness functions) = 14,000 runs.

To answer RQ1, we compare the average (median) differences in F1-score and MRR
scores achieved by the two search algorithms in the comparison. Note that achieving a
lower F1-score indicates a better ability of a search algorithm to find metamorphic tests
that impact Code2Vec. In addition to analyzing the median results, we also applied
sound statistical tests as suggested by Arcuri and Briand [174, 175].

In particular, we applied the Wilcoxon rank sum test [176], with threshold 𝑝-value=0.05.
We complement theWilcoxon test with Vargha-Delaney Â12 statistics [177], which provides
a measure of the effect size (or magnitude of the difference). Â12=0.50 indicates that two
distributions in the comparison (e.g., F1-score drops achieved by GA and random search)
are equivalent. For F1-score, Â12 > 0.50 indicates that GA achieves a significantly larger
drop in F1-score compared to random search (i.e., GA is better). Â12 also provides an easy-
to-interpret classification of the effect size in negligible, small, medium, and large [177].

We use non-parametric tests for both significance and effect size over parametric
alternatives (e.g., the paired t-test) because the data does not follow a normal distribution

3.4 Methodology

3

53

[178]2.
To answer RQ2, we compare the number of transformations required by genetic al-

gorithms and random search to achieve the same delta for Code2Vec. In particular, we
analyze how F1-score and MRR vary when applying varying number of metamorphic
transformations.

For RQ3, we performed a deeper analysis of the data collected for RQ1. We analyze
the genotype (sequence of applied transformation) of the best solution produced by ran-
dom search and GA in each individual run. Our goal is to determine whether certain
metamorphic transformations appear more than others in the best solutions.

Finally, we re-run the experiment for RQ1 but search for improving rather than de-
creasing the performance metrics for Code2Vec, i.e., increasing the F1-score and reducing
MRR. We want to understand the extent metamorphic testing could be used to increase
the robustness of Code2Vec rather than looking for adversary examples in which it is
vulnerable. Hereafter we refer to F1-min and F1-max to distinguish between the setting
used in RQ1 to assess the robustness of Code2Vec and the one used in RQ4 to strengthen
the performance of Code2Vec.

3.4.4 Experiment Setup
We ran the experiments utilizing CPUs on a server with an AMD EPYC 7H12 64-Core
Processor. We conducted ten experiments in parallel, which lead to a total wall-time of
3 days and a computation-time of ∼400h. We provide all experiments, data and model
within a replication package https://doi.org/10.5281/zenodo.7306931 . The code is sep-
arately provided at https://doi.org/10.5281/zenodo.7307012 and results are available at
https://doi.org/10.5281/zenodo.7307208 .

For the GA, we set a small population size of 10 individuals. This choice considered
the high cost of the fitness evaluation (against the model), which can take between 2 and
10 minutes for our population size. Small population size is widely recommended in the
literature for expensive fitness functions [179, 180]. For the selection operator, we used
tournament selection with a tournament size of 4, which allows better exploitation and
fast convergence rate [168]. The mutation rate is set to 0.50, which is relatively high, but it
prevents genetic drift in case of a small population size [168]. Finally, we set the crossover
rate 𝑐𝑟=1.00, which is within the recommended range [181]. For both random search and
genetic algorithm, we use the same termination criteria of 360 minutes search time. For
GA, we terminate earlier if the (best) fitness has not changed for 8 continuous steady
generations. Most of the experiments terminated around 4 hours due to convergence.

2We pre-tested the nature of the data distribution using the Shapiro-Wilk test of normality [72]

https://doi.org/10.5281/zenodo.7306931
https://doi.org/10.5281/zenodo.7307012
https://doi.org/10.5281/zenodo.7307208

3

54
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

Figure 3.2: Comparison of F1 for random and genetic search

3.5 Results
3.5.1 Effectiveness of Search
Figure 3.3 shows an overview of the achieved changes in metrics for different experiment
setups, with a detailed view on the primary experiments in Figure 3.2. Experiments
prefixed with random exploit random search, while those without utilize genetic search.
Most of the configurations do not achieve a visible difference of metrics within the search
budget, except for F1-min detailed in Figure 3.2. Table 2 summarizes the statistical tests
for comparison of F1-min and random-F1-min: Both experiments achieve a statistical
significant difference and F1-min achieves higher levels of difference quicker than its
random pardon. On average random search needs three generations for 1% drop in F1
while genetic search needs two. The reported Wilcoxon p-value prooves that there is a
significant different distribution for the algorithms, and effect size (Â12) shows that after
one generation there is a large difference between random and genetic search.

The second biggest difference in F1 are achieved by random-MRR-max/min, which
simply apply random transformations. Random search produces less movement than
F1-min, but creates a higher delta than genetic search for MRR or F1-max.

Our setup seems unable to search for a change inMRR (at least as an dedicated objective).
We expect this to be inherent for the model as it was trained solely for F1 and MRR was only
reported for comparison with other research. Hence, while side-effects are possible, we
consider that the model is blind towards unknown metrics — which is somewhat expected.
Within the F1-min experiment we see an unexpected effect: While the F1-score is
dropping, the MRR rises accordingly.

The counter-play of F1 and MRR seems to be related with the dataset and the properties
of the metrics. In general, the method-names of the datasets are short and most are between
2-4 sub-tokens. The average prediction without any MTs tends to be slightly longer (2-6

3.5 Results

3

55

Figure 3.3: Overview of Metric-Movements

tokens). Minimizing F1 pushes the predictions to be shorter, which as a side-effect moves
the predictions more towards the right token-distribution, achieving a better MRR in
the process. The shorter words are worse for F1, as in general longer words are more
forgiving. Given 5 or 6 sub-tokens, a partial overlap can produce some scores, but with 1
or 2 sub-tokens it is "hit or miss".

Summary RQ1
Within 15 generations, we found datapoints resulting in a drop of up to 10% in F1-score.
While the F1-Score drops for this experiment, the MRR rises respectively. Random search
performs about half as good the genetic search, but is in itself significant.

3.5.2 Minimizing Number of Transformations
In terms of (co-)relations between transformations and deltas in metrics, the clear trend we
found was a simple correlation between produced movement and number of transforma-
tions: More transformations produce a higher change, being nearly proportional (See Table
2 and Figure 3.2). Over the generations, initial iterations produced a higher drop in metrics
and more transformations being added which eased out in later generations, however the
symmetry between transformations and deltas persists.

Our intended tradeoff-analysis utilizing a weighted-sum approach failed due to this
correlation: When equally weighting number of transformations and the observed delta,
the fitness remained at roughly the same value producing a stale search, degrading into
behavior similar to random search. Introducing more sophisticated approaches such as
multi-objective optimization over different metrics is considered valuable future work, as
we attribute issues solely to a simplistic fitness function.

3

56
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

Figure 3.4: Metric-movement for random & genetic of F1-min

Summary RQ2
Movements in metrics are proportional with the amount of transformations. A weighted-
sum approach to find tradeoffs failed due to this correlation.

3.5.3 Distribution of Transformations

Figure 3.5 shows the distribution of transformers over generations for minimizing the
F1-score. Over the generations, it crystallizes that If-True Transformations and Lambda-
Identity-Transformations seem to have the greatest effect on metrics, while renaming
variables occur the least.

We attribute this to the embedding-logic as presented in section 3.2.1 as the prominent
transformations alter the AST quite heavily: The added redundant condition adds a total of
6 nodes to the AST, the lambda creates additional 5. On the contrary, renaming a variable
adds no node and are less represented in our results. The work by Compton et al. [150]
proves that the variable names play an important role in prediction, but given our results,
it seems that structural changes out-weight the changes in information, i.e. the form of the
AST weights more than the content of the nodes.

The failed experiments (MRR-based and F1-maximization) show a near-evenly dis-
tributed composition of transformers. They behave parallel to random search, and form
another piece of evidence that with the current model and approach we cannot search for
these optimization goals.

3.5 Results

3

57

Table 3.2: Statistical Tests for F1 Score and MRR

Gen Results for F1-score Results for MRR

Random GA 𝑝-value Â12 Random GA 𝑝-value Â12

0 0.50 0.50 <0.01 0.59 small 0.56 0.56 <0.01 0.41 small
1 0.51 0.49 <0.01 0.84 large 0.55 0.57 <0.01 0.17 large
2 0.51 0.47 <0.01 0.93 large 0.55 0.59 <0.01 0.07 large
3 0.50 0.46 <0.01 0.91 large 0.56 0.60 <0.01 0.07 large
4 0.50 0.45 <0.01 0.97 large 0.56 0.62 <0.01 0.03 large
5 0.49 0.44 <0.01 0.97 large 0.57 0.63 <0.01 0.02 large
6 0.49 0.43 <0.01 0.97 large 0.57 0.64 <0.01 0.03 large
7 0.49 0.43 <0.01 0.97 large 0.57 0.65 <0.01 0.02 large
8 0.48 0.42 <0.01 0.98 large 0.58 0.66 <0.01 0.01 large
9 0.48 0.41 <0.01 0.99 large 0.58 0.67 <0.01 0.01 large
10 0.48 0.41 <0.01 0.99 large 0.59 0.67 <0.01 0.01 large
11 0.48 0.40 <0.01 0.98 large 0.59 0.68 <0.01 0.02 large
12 0.47 0.40 <0.01 0.99 large 0.59 0.68 <0.01 0.01 large
13 0.47 0.40 <0.01 0.99 large 0.59 0.68 <0.01 0.01 large
14 0.47 0.40 <0.01 0.99 large 0.60 0.68 <0.01 0.00 large

Summary RQ3
The most common transformations were IfTrue and LambdaIdentity. Trans-
formations seen in existing research had less impact than these structural changes.

3.5.4 Inverting Search-Goals
Initially this RQ was inspired by existing research [102, 150] that found flaky datapoints
when applying transformations: some got worse, while others got better, with the average
being worse. We expected to find symmetrical behavior for maximizing and minimizing
alike: If we can find datapoints that produce worse metrics once we add noise, we found a
model that overfits on clean data. If we can find datapoints that produce better metrics
once we add noise, we found a model that is still underfit.

Our experiments show that with the presented approach we cannot search for a maxi-
mization, or that the model is truly robust against the changes. Regarding the latter, we
still observe the flakiness, but there is no clear movement on average. Further generations
produce stronger oscillating results, but it cannot keep positive-changes while discarding
those that decrease, simply because any change applies in both directions.

It is however strange that the approach did not proxy the search for MRR by the inverse
optimization of F1 — after all, given Figure 3.3 they seem near correlated.

Summary RQ4
Neither maximizing F1 nor MRR was possible. The MRR noticeably increased when
minimizing F1, but this is related to a specific attribute in F1 for the dataset.

3

58
3 Searching forQuality: Genetic Algorithms and Metamorphic Testing for Software

Engineering ML

Figure 3.5: Applied Transformers for minimizing F1-score

3.6 Discussion
MRR Experiments. It is puzzling that searching for MRR did not succeed, despite
F1-min quite successfully maximizing MRR. Why does the MRR-max not simply do
what F1-min does? Looking back at the setup, the error seems to be in the Genetic
Search. Measurement and evaluation works, and creation of datapoints that increase
MRR is successful as per F1-min. The reasons could either be related to the feedback-loop
as a whole, or be inherent to the search algorithm and its configuration.

To solve this open question, we suggest further research including a model trained
on both metrics. We envision a set of models trained for MRR, F1 and in best case both,
adopting the experiment from this work for each model. If we observe the same blindness
towards F1 when trained on MRR, we see a connection between training metrics and search
success.

Failed Maximizing. The performed experiments failed to achieve a maximization of
metrics showing a behavior similar to random search. With the current configuration we
apply a change to every datapoint in the test-set, but a more fine grained application is pos-
sible. In theory, a gene could be constructed consisting of changes-per-file. While
this forms classic future research, we want to take a moment to dis-encourage attempts:
The used dataset with 680 methods forms a representative sample of the original dataset,
with an average F1-score of 0.50 Gaussian distributed. Even if every single transformation
would maximize F1 for a given datapoint from 0 to 1, this transformation will at most
contribute 1

680
= 0.14% towards a better F1 score. To achieve movements similar to those

observed in this work, hundreds of generations are necessary3.

3This is only for java-small — the other available datasets are magnitudes bigger

3.7 Threats to Validity

3

59

3.7 Threats to Validity
Construct validity While we assume the metamorphic tests generated by either GA
or random search are equivalent to the original seed programs (due to the metamorphic
relations), the resulting mutated programs might not be realistic (e.g., too many nested if
conditions).

Internal validity. We selected 350 programs from the Code2Vec test-set using a
randomised sampling that ensured diverse programs were selected considering (1) the
original source project from GitHub, (2) the application domain, and (3) code character-
istics (e.g., code complexity). We picked a representative sample size, however, due to
implementation details, we had to re-draw the sample in some corner cases. Some elements
were unsupported by our transformers, such as Java files consisting of (only) enums. The
final elements are unaltered from the original dataset and are provided in the replication
package. In a similar direction, some files contained multiple classes, and many of the
files contained varying amounts of methods — leading to different weight in the fitness
calculation as we apply the transformers per class. We consider these uncertainties to be
addressed by our statistically significant sample size.

Conclusion validity. To address the randomness in the search process, we ran
each search algorithm ten times on each seed program with a different random seed
(for the random number generator) in each run. Besides, we applied statistical tests (i.e.,
the Wilcoxon rank sum test and the Vargha-Delaney statistics) following the existing
guidelines on how to assess randomized algorithms [174, 175]. While the choice to re-run
the algorithms multiple times reduced the number of seed programs we could consider,
our analysis is statistically sound.

3.8 Conclusion
The goal of this paper is to expand existing metamorphic testing for SE4ML with an
evolutionary search to save on computational costs and produce more realistic data points
(w.r.t. the number of applied transformations). To that end, we implemented a Java
program combining Code2Vec and a genetic algorithm using the models’ metrics as fitness
functions. We designed an experiment sampling a representative amount of data points
from Code2Vecs’ java-small-dataset and tried to minimize F1 and MRR with both
random and genetic search.

Our results show that both random and genetic search significantly change the model
metrics, with genetic search being stronger with progressing generations (determined
per effect size) and leading to a total reduction of 10% in F1 for genetic and 3% in F1 for
random. Minimizing MRR did not succeed with genetic search, performing similar to
random search, likely due to the model being trained solely on F1 score. We found a
near-proportional relation between change in metrics and applied transformations, failing
our trade-off analysis experiments due to leveling the weighted-sum fitness function.

In summary, genetic search improved the existing research by proposing a more in-
telligent way to generate example. We consider our successes a worthwhile adoption for
current approaches and our failures to be good starting points to address topics such as
derived metrics and tradeoff analysis.

4

61

4
HasBugs - Handpicked

Haskell Bugs

Summary
We present HasBugs, an extensible and manually-curated dataset of 34 real-world
Haskell Bugs from 8 open source repositories. We provide a faulty, tested, and fixed version
of each bug in our dataset with reproduction packages, description, and bug context. For
technical users, the dataset is meant to either help researchers adapt techniques from
other programming languages to Haskell or to provide a human-verified gold standard for
tools evaluation and enable future reproducibility. We also see applicability for qualitative
research, e.g., by analysis of bug lifecycles and comparison to other languages. We provide a
companion website for easy access and overview under https://ciselab.github.
io/HasBugs/.

Figure 4.1: HasBugs - Detailed Haskell Bugs

This chapter has been published as HasBugs - Handpicked Haskell Bugs by Leonhard Applis and
Annibale Panichella at 2023 IEEE/ACM 20th International Conference on Mining Software Repositories

(MSR 2023).

https://ciselab.github.io/HasBugs/
https://ciselab.github.io/HasBugs/

4

62 4 HasBugs - Handpicked Haskell Bugs

Preface - Positioning of HasBugs
HasBugs came to life as an idea already before the other work on Haskell - as seen with
numerous examples in the introduction, data sets play a very important role for designing
and evaluating software engineering tools. This has only become more prominent with
machine learning tools requiring massive amounts of data, and data quality becoming a
visible issue, might impacting the models heavily (as seen in the first two chapters). Having
no such data for Haskell constituted a big barrier for research on my favorite programming
language and started the thought of gathering bug-data. As a more personal opinion, I
believe that the data will shape the tools we create with it. That is, if we have only datasets
with single location faults, we are unlikely to see tools fixing bugs in multiple locations -
after all, how would we evaluate its features? For machine learning, such issues arise by
their definition.

Another issue that we see is that even good-hearted tool developers will hit a wall once
in a while, and need to filter out data. When looking at Defects4J [87], it also contains
datapoints for Kotlin1. The Kotlin datapoints broke with many of the other (mostly
Apache) conventions, using a different test framework and utilizing compiler pragmas.
This lead to Kotlin being effectively abandoned from Defects4J, and excluded by most
research on the matter. The resulting tools focused on JUnit as input, and Kotlins ghost
was only redeemed with the first LLMs (e.g. [182]) revisiting Defects4J. For Haskell, there
is currently no overview what is popular and it is not quantifiable as it is for Java. More so,
some metrics become debatable - a set of good properties can be worth a thousand unit
tests. Does being used more often mean that unit tests are more popular? Are properties
more powerful and form a stronger test suite?

HasBugs aims to open up the discussion about these topics. While limited to open
source Haskell projects, we already see a variety of test tools, frameworks, features and
conventions. For example, the tools seem to employ a mix of properties, unit and golden
tests, where regression is usually covered by golden tests originating from the issues. This
observation also leads to different research: Program repair should incorporate golden
tests, while test generation might benefit from focusing on properties that lead to efficient
coverage. Having HasBugs as a (small) data set also makes this terra nova accessible for
tool designers and researchers.

Why is this before the Haskell work? This is arguably a debatable design decision.
The motivation to put HasBugs here is to provide easy introduction to Haskell and the
challenges it faces with bugs. The later chapters require more knowledge about specific
mechanisms (e.g. typed holes and laziness) which will then be discussed in detail. The
bug dataset is understandable for readers not familiar with functional programming de-
tails. Among domain-specific bugs (HLS-3 deals with locally defined type-families in
an IDE), uncommon tests (Cabal-1 starts and compares system PIDs), there are also
mundane problems such as issues with string escaping (hledger-3) or user-experience
(hakyll-1 was swallowing too many errors) One goal is that people coming from auto-
mated software engineering in Java (the first chapters) see the HasBugs as an appetizer
to understand the domain and see value in its challenges without diving head-first into
stack-traces of lazy evaluation.

1https://kotlinlang.org/

https://kotlinlang.org/

4.1 Introduction

4

63

4.1 Introduction
Bugs are usually seen as obstacles - nuances and failures resulting from mistakes. For
researchers in software engineering (SE), however, bugs are opportunities. They form
the foundation for techniques such as fault localization [76][183], test generation/fuzzing
[155][91], and program repair [162][184]. Observations in these fields show the age-old
adage garbage in - garbage out applies to these domains as well: It took the community a
while to realize that not all patches produced by GenProg [85] actually fix the program
[88] - despite passing the test suite. While we can blame individuals for this, such mistakes
happen and the more constructive approach is to mitigate these issues with better input.
The information missing in Defects4J was a summary of the bug, so generated patches
could not (easily) be checked by the respective researchers. The assumption ‘passing CI =

fixed program‘ turned out to be insufficient.
In this light, we present HasBugs - an extensible, high-quality dataset of Haskell

Programs with bugs, tests, and fixes. We emphasize three key aspects in particular: (1) It
provides a rich context of the bug and fixes, (2) it includes different artifacts for Software
Engineering research tools and techniques, and (3) it allows easy reproduction.

We link the repository, issues, and pull requests (PRs) alongside a bug summary to
capture the bugs context. This enables future researchers to verify results for their applica-
bility within the domain - e.g., whether a generated test actually asserts against the given
bug it was meant to find, or actually finds a new one. Similarly, we hope that discussions
in PRs and issues help to understand implementation details. Why were things changed
the way they were? Was it a hard or an easy bug?

Different research tools and techniques need different inputs. We address this by
covering common artifact types for various techniques: Within the datapoint, we provide
a fault location and location of the fix to clearly specify the points of interest within the
patches. These locations can span multiple methods, as from our observation, it became
obvious that fixes often need to be applied in connected methods. The failing test is
provided in a separate patch, which helps comparing test generation tools and creates a
failing-but-tested-version. Running this tested version produces output necessary for, e.g.,
fault localization and program repair. This contrasts with many other datasets - our faulty
versions usually have a passing build.

Lastly, we provide reproduction by capturing the current builds in Docker-images
available for download. The used Dockerfiles capture the required environments as well as
commands and empower users to easily alter the code of the respective versions.

The contributions can be summarized as follows:

1. 34 datapoints from 8 FOSS Haskell programs and libraries

2. Rich context information linking source code and GitHub

3. Multi-point fault-locations, test-patches and 3-stage-versions (faulty, tested & fixed)

4. Dockerfiles and pre-produced available images running builds

Similar Datasets are Defects4J [58] for Java programs, and in particular, the scripts
and support created around it later2[87]. We provide the same granularity/content of
2https://github.com/rjust/defects4j

4

64 4 HasBugs - Handpicked Haskell Bugs

bugs with the difference that our bugs exist without a failing test case first. In case of a
passing CI, a failing test case is also provided separately, constituting a third version. We
hope to increase the reproducibility by providing Dockerfiles for most datapoints, saving
researchers from the time-intensive work of configuring necessary dependencies. While
there are multi-fault locations in the newer supplements of Defects4J [185], we provide the
multi-fault locations within the dataset.

Another close dataset is Bugswarm[186], which is mined from FOSS Java Projects using
Travis CI. Bugs in Bugswarms are, hence, not human-evaluated. With over 3000 data points,
a manual inspection is unlikely at this point. We tried to adapt ease-of-use from Bugswarm
and, in particular, their very accessible website. We purposefully did not try to automate
bug-mining to keep high quality and double-check every entry.

The last related dataset is Simple Stupid Bugs [187], which is automatically mined from
FOSS Java Projects with single-line fixes. By far the biggest dataset, it also has the least
context information, and its quality assessment is based on sampling. Furthermore they
rely on SZZ [188], itself debated [189][190], for fix-localization.

In general, HasBugs is meant to be a starting point for re-implementing and progress-
ing on software engineering algorithms in the Haskell Domain, or to be a gold standard in
evaluation. We are aware that the size of the dataset is not suitable to train deep learning
models, but such a model needs to be evaluated against high-quality human-checked data
before production use. We see great potential for SE tools in functional programming,
with outstanding examples like the Haskell Language Server (HLS), and want to aid the
development of a broader range of tools by providing HasBugs as a resource to the
community.

4.2 Dataset Description
Currently, HasBugs contains 34 bugs from 8 repositories as shown in Table 4.1. Every
bug consists of a primary json file that holds the unique information of the bug: the
Git repository, relevant commits, PRs, descriptions, etc. A subset of the information is
shown in Figure 4.3, which has been shortened for the sake of readability. With each
datapoint, we provide a Dockerfile for a reproducible build, alongside the bug-asserting
test isolated into a git patch. The HasBugs-Dockerfile exists alongside potential
project-inherent Dockerfiles and performs the compilation during build-stages and has
the test-command as the entrypoint. This addresses Haskell‘s long compilation times -
pulling the image from a container registry3 starts from compiled source-code immediately
with running tests.

These reference-files are a lightweight set of information that can either be used
directly or be manifested into heavier artifacts (using shell scripts). The download of
repositories is automated from a data point, providing an artifact of the repository usable
for static analysis. The archived projects in their three-fold states can be accessed under
https://doi.org/10.5281/zenodo.7569135. On top of that, the repositories can be built inside
docker containers either by using the provided HasBugs-Dockerfiles or by pulling
pre-compiled images from the repository. Both activities are supported by shell scripts
accompanying the data repository.

3https://github.com/orgs/ciselab/packages?repo_name=HasBugs

https://doi.org/10.5281/zenodo.7569135
https://github.com/orgs/ciselab/packages?repo_name=HasBugs
https://github.com/orgs/ciselab/packages?repo_name=HasBugs

4.2 Dataset Description

4

65

Figure 4.2: Overview of one Data-Point in HasBugs

Table 4.1: Summary of HasBugs per Repository

Repository Bugs Stars .hs-Files Domain

Cabal 6 1.5k 1.3k Build System
Pandoc 8 27.7k 291 Document Conversion

ShellCheck 5 31.2k 24 Linter
HLS 4 2.3k 1.3k IDE Language Server

Purescript 1 8.0k 220 Transpiler
HLedger 3 2.3k 156 Accounting
Duckling 6 4.1k 609 Entity Extraction

To ease access and provide a barrier-free entry, we developed a companion website:
https://ciselab.github.io/HasBugs/.

The website contains a summary of our motivation and a lightweight entry to the
features presented in this paper. Outside of advertisement, the website allows browsing
the data points and their respective features directly without pulling the repositories and
setting up your local machine. This covers the descriptions, links to GitHub, and categorical
information, e.g., the license. Lastly, the website contains a more elaborate tutorial on
how to approach different artifacts with concrete shell commands to run. We aim for the
website to quickly enable researchers to assess whether the dataset fits their objectives and
to ease adoption. For qualitative research, the website itself mitigates barriers for a less
tech-savvy audience.

https://ciselab.github.io/HasBugs/

4

66 4 HasBugs - Handpicked Haskell Bugs

Figure 4.3: Example HasBugs Datapoint.json (edited for readability)

1 "id": "cabal-1",
2 "repositoryurl": "git@github.com:haskell/cabal",
3 "license": "BSD-3",
4 "faultcommit": "01844...",
5 "fixcommit": "55e03...",
6 ...
7 "description": "Cabal starts multiple processes to build a project.
8 'cabal run' termination does not terminate all child
9 processes automatically as well. The solution is to use
10 'withCreateProcess' rather than 'createProcess' and throw
11 an asynchronous exception from the main thread when a
12 termination is wanted.",
13 "categories": ["system-test","os","multi-threading","multi-processing"],
14

15

16 "relatedissues": ["https://github.com/haskell/cabal/issues/7914"],
17 "relatedprs": ["https://github.com/haskell/cabal/pull/7921",
18 "https://github.com/haskell/cabal/pull/7757"],
19

20 "faultlocations" : [{
21 "startline": 127,
22 "endline": 127,
23 "file": "cabal/src/distribution/simple/program/run.hs",
24 "module": "distribution.simple.program.run",
25 "function": "runprograminvocation"
26 }, ...],
27 "fixlocations" : [{
28 "startline": 127,
29 "endline": 127,
30 "file": "cabal/src/distribution/simple/program/run.hs",
31 "module": "distribution.simple.program.run",
32 "function": "runprograminvocation"},
33 {
34 "startline": 175,
35 "endline": 175,
36 "file": "cabal-install/main/Main.hs",
37 "module": "Main",
38 "function": "main"
39 },
40 ...

4.3 Data Collection and Challenges

4

67

4.3 Data Collection and Challenges
The data collection was primarily a manual process. We started by gathering a list of
high-star repositories from GitHub and Hackage4 and filtered it for suitable FOSS licences,
which resulted in a list of 44 libraries and programs.

These projects have been assessed in various categories by the authors, such as quality
of issues, linkage pr to issue, linkage commit to issue, etc. A total of 7 categories were
considered, forming a (subjective) score of the ease of access for each repository. This
overview is provided in the resources of the dataset repository.

From the most suitable projects, the authors decided on the initial data points by
diversity: We aimed to cover as many domains as possible, to cover a variety of different
bugs. This led, e.g., to the inclusion of Cabal (a build framework for Haskell), while Stack
(another build framework) was left out. In general, many tasks covered by Haskell libraries
revolve around parsing and compiling, but we consider the projects shown in Table 4.1 a
good, diverse view of the mainstream applications of Haskell.

From the chosen repositories, we looked into issues and PRs labeled bug, extracting
faulty and fixed commits. For simplicity’s sake, we consider the ’last known faulty version’,
i.e., the commit before the fix was applied. We limit our search to bugs of at most two years
of age and Haskell framework versions above 8.10 (released march 2020) to provide an
accurate snapshot of today’s Haskell Project rather than a historical view. The suggested
bug-summary and categories were provided by one author and evaluated by one
other author. We later normed the granularity of entries in joint meetings.

While we initially considered providing our own tests for bugs, this was unnecessary:
Most bug fixes in the repositories provide a test within the fix-commit, that was provided
by the author of the fix. We hence extracted the test from the fix-commit and verified that
it failed once applied to the faulty commit.

The providedDocker images are built using the project’s documents, e.g., their README,
configurations, or existing Dockerfiles. The docker builds formed a unique challenge for
this project, as they come with big space and computation requirements. We hence decided
to diverge slightly from the repositories intended GHC-version that was used at the time of
commit, and tried to minimize the number of our base images to utilize better caching and
save disk space. As a heuristic, we bumped versions up, assuming newer GHC versions
generally remove more issues than they introduce.

The list of bugs provided for the initial version of this dataset is not exhaustive for their
respective repositories: Projects such as Pandoc still have bugs left, but we decided to focus
on other repositories for a wider variety of domains.

4.4 Research Opportunities
From our initial perspective of the dataset, we see two directions: 1⃝ Technical solutions
and their validation and 2⃝ qualitative analysis of the Haskell FOSS ecosystem.

Technical contributions consists of tools for fault localization, test generation,
test amplification & carving or automated program repair (APR). As our dataset has
(often) multiple fault and fix locations, the field of multi-location fault-localization [185]
could be investigated, as well as automatic analysis of which part of a patch contributes
4The central Haskell package archive https://hackage.haskell.org/

4

68 4 HasBugs - Handpicked Haskell Bugs

to the fix. Test generation [171, 191], amplification [192], carving [193], and regression
testing [158] are particularly supported as we provide the fixed version and a sample test,
which cover the requirements for most common techniques in the field. Comparing the
existing test can help to assess readability, coverage, and functionality. Further relevant
research approaches in the field on mining software repositories (MSR) that can highly-
benefits from our dataset include bug prediction, crash replication, fault localization, bug
severity classification, and bug-introducing commit identification. Inspired by Sobreira et
al. [87], program repair benefits from the specified bug-reason which supports humans in
assessing automatically produced patches. The two significant challenges for APR - a stable
running build as well as failing tests - are addressed by our dataset and the containers.

For qualitative analysis, we see good opportunities in the communication patterns of
the ecosystem. The Haskell community is often perceived as slightly alien or elitist, with
one of the prominent mantras being: "you don’t write bugs in Haskell - once it compiles,
it works". Judgments aside, our faulty versions compile and pass tests, and the presented
self-admitted bugs can originate from manifold sources, for example actual implementation
errors, missed requirements, or environmental factors (e.g., OS changes). We consider it
fruitful to investigate the nature of the bugs and their fixes, and compare it to studies on
Java [187].

Another point of interest is the type of test: Most supplied tests were system- or
integration-level tests, although they could be translated into unit tests. Why did contrib-
utors choose high-level over low-level tests? We can imagine many factors, e.g. "being
closer to the bug report", easier adaption of end-to-end-tests by copying existing ones, or
implementation challenges for unit tests. Despite Haskell being fully functional, many
functions rely on context-heavy constructs such as monadstacks or self-implemented
data types.

The above-mentioned qualitative analysis could also help to address one of the limi-
tations of this work: It is not imminent if we are looking at a dataset of survivors. While
we see mostly integration- or system-level issues and their corresponding tests, we are
lacking similar findings on the unit level. This could be an under-reporting of unit-level
issues, maybe unit-level problems are caught at higher levels. On the other hand, it could
be that Haskell unit-level development is outstanding and produces little errors. Findings
from this could help in education by catalyzing them into best-practices for later stages of
development.

4.5 Attributes and Examples of Bugs
Most of the work in this chapter focussed on the technical details of the data, but it is also
worth to look at some of the datapoints and their artifacts in detail.

Testing & Testing Efforts The functional nature and encapsulation of side-effects lends
itself for Haskell to be easy unit-testable. This should apply to all levels of testing, including
regression tests, but does not seem to be followed. The type of test is mostly determined
by the project setup, but most regression tests fall into the category of system level tests.
Projects like Pandoc often receive a document as part of their issue, and utilize exactly
the reported (minimal) document as part of a system test. The majority of cabal bugs

4.5 Attributes and Examples of Bugs

4

69

(in HasBugs) are related to the console, and the tests also revolve around the packaged
binary. Hledger mostly uses Shelltest, which are system-level golden tests. Notable
exceptions to this are ShellCheck and Duckling, where bugs also directly relate to input-
data. Unlike the other projects, the input-data for both are strings, making it easier to bring
them to unit tests.

Why the projects utilize testing in this matter is not fully clear, but we’d like to propose
some rationales: First, translating the faulty parts of input data takes effort, but might
not produce a better test. Second, formulating the regression test around input data, as a
system level test, verifies the behavior that users might experience. Especially for pandoc
and cabal, reports are made for bugs that users experienced system-level, and it is a solid
assumption that a fixed system-level test will also alleviate the issues of the user. It also
allows for a direct mapping of tests, issues and commits, as many projects seem to embrace.

Bug and Fix Length The average fault touches 1.08 mean files, and has a mean length
of 4.58 lines of source-code. This is the accumulated result over small, one-file-one-line
patches (e.g. shellcheck-5, duckling-4), and fixes that require the removal of larger pieces
of functions (e.g. cabal 5, purescript 10).

The average fix touches 1.3 mean files and introduces changes to a mean of 17.5 lines of
source-code. This again is partially due to small, one line changes, but often larger pieces
of code are introduced. Cabal-5, for example, removes a pattern match and re-introduces a
function that handles the cases. Many of the larger patches in HasBugs follow this pattern,
e.g. cabal-4 or pandoc-7. Most of the bugs that introduce new functionality, also introduce
a new function. Sometimes, these functions are not declared on module level, but as a local
function (e.g. cabal-6 introduced a local function packageDBsToUse).

As rough categories, the bugs fall in three categories: Simple, one-line changes similar
to SSTUBS [194], one-line faults that introduce a function for its fix, and lastly larger
changes that delete, and introduce new functions. These categories should be kept in mind
when pursuing further research - e.g. a tool that cannot introduce new functions is not able
to replicate a patch in the same manner as the maintainers did. For many other disciplines,
like test-generation and fault-localization, single line tools are likely sufficient, given the
average fault length.

Interactions in Issues and PRs Most issues report a high level of detail, often directly
referring to code or providing a test-case. From the expertise expressed in the issues, it can
be safely assumed that the users are (Haskell) developers too. The exception to this are
Pandoc (many users report behavior with a file as example) and Duckling. Duckling has a
test suite centered around examples, and it is easy to translate a report into a unit-level
test.

Cabal, HLS, Pandoc, ShellCheck and Purescript provide Issue-templates, that are gener-
ally followed by the users. For many of the other issues, the users self-provide a similar
approach of separating their report into steps-to-reproduce, expected behavior and their
system setup. For Duckling many of the fixes are provided as pull requests, without an
initial issue.

The general sentiment throughout all interactions is positive and constructive. In
Hledger, reporters of bugs are explicitly appreciated. Contributors of merged Pull Requests

4

70 4 HasBugs - Handpicked Haskell Bugs

are thanked in ShellCheck, Pandoc, HLS, Hledger, Cabal and Duckling with the notable
exceptions of project-maintainers not thanking themselves. It might be the case that in
short accepted Pull Requests there are other, less explicit ties between the actors and they
might communicate on other channels.

HLS, Cabal and Pandoc have longer discussions, especially around code, from mul-
tiple (more than 2) contributors. The review often considers alternative implementa-
tions,readablity (especially conciseness) and performance.

4.6 Limitations and Future Work
The primary limitation for the SE community is that the size of the programs is likely
insufficient for model-fitting. It might be possible to fit approaches like decision trees,
however, neural networks can only be usedwith other techniques, e.g., transfer learning. We
aim to assist these tasks by providing a dataset big enough for validation and benchmarking,
as well as providing actionable results due to rich contextual information. Similarly, the
high compilation times of Haskell programs might impact the development of tools utilizing
dynamic analysis, but analog to the above, we hope to aid their evaluation.

An internal threat to validity is the data collection - we only took into account self-
admitted bugs that have been made visible through either PRs or issues. This can lead to a
set of biases, e.g., our over-representation of system-level tests, as the user-reported bugs
are expressed as issues. Unit-tests and their bugs might be solved by developers before
publishing and are hence invisible to us.

We aim to address this after publication through a community effort — we want to reach
Haskell developers to verify our assumptions and gain more data points. This discussion
can also shape the tools that the community needs.

4.7 Conclusion
Drawing from existing datasets, HasBugs provides a rich data points suitable for most
SE applications. We enable qualitative research by linking to social artifacts in issues and
PRs, static analysis by providing code, diffs, and locations, as well as supporting dynamic
approaches with containerization. Due to the limited size, we aim forHasBugs to become
a benchmark for tool and model evaluation, as well as to provide a starting point for the
next generation of Haskell SE tools.

Online Resources
The repository is found on GitHub under https://github.com/ciselab/HasBugs and its
archived form at https://doi.org/10.5281/zenodo.7569327.

The manifested datapoints are archived under https://doi.org/10.5281/zenodo.7569135
and the docker images are in the GitHub container registry.

https://github.com/ciselab/HasBugs
https://doi.org/10.5281/zenodo.7569327
https://doi.org/10.5281/zenodo.7569135
https://github.com/orgs/ciselab/packages?repo_name=HasBugs

5

71

5
CSI: Haskell - Tracing Lazy
Evaluations in a Functional

Language

Summary
In non-strict languages such as Haskell the execution of individual expressions in a program
significantly deviates from the order in which they appear in the source code. This can
make it difficult to find bugs related to this deviation, since the evaluation of expressions
does not occur in the same order as in the source code. At the moment, Haskell errors
focus on values being produced, whereas it is often the case that faults are due to values
being consumed. For non-strict languages, values involved in a bug are often generated
immediately prior to the evaluation of the buggy code. This creates an opportunity for
evaluation traces, tracking recently evaluated locations (which can deviate from call-order)
to help establish the origin of values involved in faults. In this paper, we describe an
extension of GHC’s Haskell Program Coverage with evaluation traces, recording recent
evaluations in the coverage file, and reporting an evaluation trace alongside the call stack
on exception. This lets us reconstruct the chain of events and locate the origin of faults. As
a case study, we applied our initial implementation to the nofib-buggy data set and
found that some runtime errors greatly benefit from trace information.

This chapter was published as CSI: Haskell-Tracing Lazy Evaluations in a Functional Language by
Matthías Páll Gissurarson and Leonhard Applis at IFL 2023: Proceedings of the 35th Symposium on

Implementation and Application of Functional Languages. It won the Peter Landin Prize for best paper.

5

72 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

5.1 Introduction
Problem and Motivation In crime scene investigation (CSI), establishing the sequence
of events constituting a crime is a key technique in solving cases. While less dramatic,
programs can still die: despite satisfying the compiler, even Haskell code can crash or
have faulty output. When an error occurs at runtime, a common approach is investigating
the reported call stack to determine where the error originated. As an example, the code
in Figure 5.1 crashes with *** Exception: Prelude.head: empty list, and
provides an error message containing the stack trace (seen in Figure 5.2). Despite the
crash in head, the root cause of the error is based on divs n which results in an empty
list when n is prime (there is an off-by-one error: n should be n+1 in line 4). This is a
motivating case of an error caused by the wrong data being produced, in contrast to errors
caused by the right data being incorrectly consumed

1 (e.g. evaluating an undefined that
should have been replaced). The stack trace in Figure 5.2 does not mention divs, and only
indicates that the error stems from head. This lack of information makes it difficult for
developers to reconstruct the events that led to the error and determine the root cause of
the fault.

Without further hints, any function used (and its dependencies) is a potential suspect.
This offset in the tempo of call and evaluation is not a novel discovery; in fact, a similar
example to Figure 5.1 was presented by Marlow in 2007 [195].

1 module Main where
2

3 divs :: Int -> [Int]
4 divs n = go 2
5 where go i | i == n = []
6 go i = if d i
7 then i:(go (i+1))
8 else go (i+1)
9 d i = n `mod` i == 0
10

11 smallestDiv n = head (divs n)
12

13 main :: IO ()
14 main = print (smallestDiv 13)

Figure 5.1: Our running example, a generator for the divisors of a number, with an off-by-one error in the base
case.

Approach To address the issue, we implement an extension to Haskell Program Coverage
(HPC) built into GHC: in addition to tracking expression evaluation with ticks, we also
emit instructions in the intermediate language to track the order of started evaluations and
completed evaluations. HPC is discussed in further detail in Section 5.2. We also track the
current evaluation depth, the number of ongoing evaluations. This allows us to reconstruct
1This can be translated to blame: is it the producer or the consumer that is wrong? Call stacks help to spot bugs
in consumers, while we focus on bugs in producers for this work.

5.1 Introduction

5

73

divs: Prelude.head: empty list
CallStack (from HasCallStack):
error, called at libraries/base/GHC/List.hs:1643:3
in base:GHC.List
errorEmptyList, called at
libraries/base/GHC/List.hs:82:11 in base:GHC.List
badHead, called at libraries/base/GHC/List.hs:78:28
in base:GHC.List
head, called at Div.hs:10:17 in main:Main
CallStack (from -prof):
Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)

Figure 5.2: Error message generated by the program in Figure 5.1.

a partial evaluation tree an overview of completed, partial, and uncompleted evaluations
of expressions, when an exception occurs (see Section 5.3.2 for details). We also track a
global trace index that allows us to reconstruct a trace across all modules from the trace of
each individual module. These recent evaluations are kept in a circular buffer alongside the
HPC ticks and can both be inspected directly at runtime or summarized and reported on
an exception alongside the call stack.

In particular, adding an evaluation trace for users is as easy as passing an additional
flag during the compilation phase. It constitutes a noninvasive addition to debugging, does
not require any changes to the developer’s code (such as call stack annotations) and allows
a better understanding of what is going on at runtime even when external libraries are
being used.

This extension for tracking evaluation traces constitutes the main contribution of this
work. Improved runtime errors are one low-level domain that motivates the extension
and is easy to understand for broad audiences. In the future, these evaluation traces could
be used for more sophisticated use cases, such as program repair or visualization (see
Section 5.5).

Experimental Evaluation We apply our prototype to a subset of the nofib-buggy
data set [70]. The data consist of a selection of nofib programs which GHC uses for
internal validation with artificially introduced bugs (see Section 5.3.7). These bugs result
in either a runtime exception (e.g. index-out-of-bounds or division by zero) or incorrect
output. In our pre-processing of the data set, we

• remove all non-terminating programs, and

• add assert statements to those data points that return incorrect output to force a
runtime exception.

This accounts for a total of 21 investigated data points. From the initial findings, we see a
trend that certain exceptions benefit from trace information, depending on the exception

5

74 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

type. The data points using assert usually cover the fault, but the quality of the trace
is dependent on the scope of the test — unit tests are more precise, while system tests
produce crowded traces with many locations irrelevant to the introduced bug. We analyze
the performance overhead introduced by collecting traces, which seems stable: most data
points require between 100% and 300% more compute time, depending on the length of the
collected trace. Maximum memory usage increases from 20% to 120%, and the additional
binary size is negligible. There is a general trend that the additional memory allocation
is related to the number of modules, while the additional compute time seems to depend
primarily on the total number of evaluations the program makes. As the nofib data set is
used in the current test suite and the benchmarking of GHC, we consider it representative
of performance estimates. We thus suggest collecting and reporting the evaluation on a
per-exception basis. In the long-term view, we hope to support debugging for new and
seasoned Haskell programmers alike, but we also see the potential for classroom use: using
the data collected by HPC at runtime the evaluation tree can be partially reconstructed (up
to the length of the trace) and a clearer view of non-strict evaluation presented to students.
Understanding laziness is a big challenge for students from other programming paradigms,
and visualizing (both buggy and working) program evaluation traces can be a great aid.
Our experiments are shared in a replication package2.

We utilize nix and shell scripts for easy replication, but we also provide the output
(enhanced error messages) for lightweight investigation without additional dependencies.
The contributions presented in this work can be summarized as follows:

1. a prototype implementation of a non-invasive, optional, coverage-based tracing of
evaluations,

2. example tooling-improvement by reporting of evaluation traces alongside call stacks,

3. an initial investigation on the nofib-buggy data set, and

4. estimates of performance overhead

5.2 Background and Related Work
Thunks In non-strict languages, values are not evaluated until needed in the computation.
In Haskell, this is implemented through thunks: instead of directly producing a value,
expressions produce a thunk that represents that unevaluated expression. This behavior
is similar to asynchronous concepts in other languages like Promises (JavaScript) or
Task (C#), which are often used for side-effectful computations (e.g. network requests),
while in Haskell they are used for all computation. When the value of that expression is
required, the thunk is evaluated and resolved to a value. This value might be fully-evaluated
if it is, e.g., an integer. But it might also be just the head of a list, with the rest of the
list being another thunk. Thunks are in most cases memoized, meaning that the value is
evaluated only once, and the result saved. This is then shared if the value is needed again
at a later time, without requiring re-computation.

2https://doi.org/10.5281/zenodo.10090375

https://doi.org/10.5281/zenodo.10090375

5.2 Background and Related Work

5

75

Program Coverage and Ticks Haskell Program Coverage (HPC) is a tool that is part
of GHC and allows developers to track which expressions were evaluated during the
execution of the program: whenever an expression is evaluated, it bumps a number in an
array (a “tick”) [196, 197]. These numbers are unique identifiers specified in a per-module
mix-file, which are on tick registered in a companion per-program tix-file. For this
work, we reuse the mix-files and identifiers unchanged, and extend the tix-files with
extra arrays using the identifiers. Note that HPC does not require changes to the source
code, but instead operates with compilation flags that emit additional instructions to the
intermediate language. As we consider this an elegant interaction, we also strive for a
flag-based change to the intermediate language.

The data collected by HPC can be used to generate a report on how many times each
expression was evaluated and used, for example, to check the test coverage or identify
unused code.

Stack Traces & Error Messages While research on the use of stack traces is a popular
topic, e.g. when applied for program slicing or crash reproduction, their dedicated value
for manual debugging is not thoroughly investigated. Bettenberg et al. [198] investigate
differences originating from different perspectives of bug reports. One of their findings
is that developers need information that users rarely provide, of which stack traces are
particularly useful.

We also recommend the work of Becker et al. [199] as a general overview of research on
error messages. Their extensive meta-study covers many findings and trends from the fields
of technical implementation, pedagogic use, and improvement of error messages. Among
their primary findings relevant to this work are: students and programmers alike actually
read error messages and stack traces [200], students are discouraged when error messages
do not point toward the faults [201–203] and that cognitive load should be considered
in the design and presentation of errors [204–206] (i.e., do not overwhelm the user with
information). Lastly, motivating this work, they identify localization as one of the defining
technical attributes of error messages that constitute their quality, and we aim to enable
better localization.

We argue that our work contributes towards the usefulness of traces and forms a starting
point for similar research on Haskell. In the absence of detailed analysis in Haskell, our
objective is to provide a similar investigation to that of Schroeter et al. [207] in the coverage
of bug locations through stack traces. In their work, Schroeter et al. run buggy programs
with known faults and investigate the produced stack traces to determine whether and
where they contain the fault. We reproduce this for the nofib-buggy stack traces and
apply the same approach for the evaluation traces.

Stack Traces for Haskell We often take stack traces for granted, but they have only
been available in a limited form until recently for Haskell. As late as 2009, Allwood et al.
[208] andMarlow [195] tackled the first issues that appeared due to a mismatch between the
source code and the optimized executed code. Their central contribution is to address the
differences between the behavior of the stack (and stack traces) and the original program
syntax, by introducing a transformation of GHC core programs into ones that simulate
passing a stack around to preserve the stack trace of the executed program [208]. This

5

76 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

was further improved by introducing the HasCallStack constraint that does not need
to be simulated by the runtime system, but while this constraint can sometimes be inferred,
our experiments with the nofib-buggy data set show that this is not often the case.
Similarly, the simulated call stack adding -prof in conjunction with the -fprof-auto
and -fprof-auto-calls flags is either

• not printed for the exceptions in nofib-buggy, with the output being Main:
divide by zero or similar,

• or in the form of

CallStack (from HasCallStack):
assert, called at Main.lhs:78:5 in main:Main
CallStack (from -prof):
Main.main (Main.lhs:(75,3)-(78,59))
Main.CAF (<entire-module>)

indicating the assert and the main-function, without giving further clue to the
location of the bug.

In the output of our running example div from Figure 5.2, adding the -prof
-fprof-auto -fprof-auto-calls improves the situation slightly, indicating the
smallestDiv function, but this improvement does not extend to the nofib-buggy
data points. Using GHC’s profiling also requires annotating the Prelude.head function
with a HasCallStack constraint, but it is still not enough to locate the fault. Manual
annotations with HasCallStack are non-optimal for programmers and in our running
example extend the information on the crash, but not on the source of it.

Based on the existing research, the current state of Haskell stack traces faces two main
challenges: higher-order functions and lazy evaluation. Especially when combined, these
tend to disturb stack traces or produce errors that are not aligned with the reported traces.
We hope that our work improves the quality of errors for lazy evaluation and enables later
researchers to improve errors for higher-order functions.

Tracing Evaluations for Haskell There have been some approaches to tracing Haskell
evaluations, which differ from the coverage-based technique presented in this work. Chitil
et al. [209] compared three systems available in 2000: HAT [210], HOOD [211], and Freja
[212]. Another system mentioned is Buddha [213].

Some approaches are conceptually different, namely Buddha and Hood require changes
on a source code level. This limits their application, e.g. is it hard to extend tracing to
external libraries.

A part of Freja consists of a customHaskell compiler that covers a subset of theHaskell98
standard (e.g. excluding IO). The code that is compiled is altered in an intermediate
language, and the redexes are recorded. Frejas concept is the closest to the one presented in
this work. Our approach differs by 1⃝ extending existing GHC modules instead of requiring
an extra compiler 2⃝ covering a trace of the last evaluations instead of all evaluations and 3⃝

tracking whether an evaluation was started and or finished separately. In a similar manner,
HAT is tied to nhc98 and transforms the source code outside of the compilation process,

5.3 Approach

5

77

which can cause performance issues and is harder to integrate with external tools. With
their dual systems of data creation and browsers, the existing tools went a step further than
the contribution of CSI: Haskell. Concepts of how to use the evaluation data produced
are presented in Section 5.5. We also hope that the separation of tracing and debugging
helps to create additive tools in a modern Haskell landscape.

Static Methods CSI: Haskell is a dynamic approach, based on running the code, in
contrast to static methods, which analyze faults without running the code. In Haskell,
there is already a rich type system that allows expressing a wide variety of behavior that
is checked at compile time. However, these do not capture many attributes commonly
expressed with properties. One approach to lift “property-style” testing and debugging
to static checking is to use refinement types [214]. These types of checks are integrated
through a GHC plugin [215], allowing properties such as x > 0 ==> f x > 0 to be
statically checked by an SMT solver. One extension to this is lazy counterfactual symbolic

execution [216]: When paired with refinement types such as those in Liquid Haskell, lazy
counterfactual execution allows the localization of refinement type errors, revealing faults
in the code to be found without need for tracing. This constitutes a heavier approach
and raises the entry barrier for ecosystems (including libraries) that do not yet have a
refinement type specification.

Algorithmic debugging Algorithmic debugging methods are dynamic approaches
based on recording information during program execution and then asking the developer
whether the intermediate statements agree with their intention [217]. In most languages,
this debugging suffers from side effects, which are no concern in pure functional languages,
making Haskell a prime candidate for algorithmic debugging. One tool for Haskell is HOED
[217], which extends the debugger HOOD [211] with GHC’s profiling information. Like
HOOD, it requires users to annotate the functions that they wish to “observe” and create
profiling cost centers. Based on this combination, it is possible to construct a computation
tree from the collected traces for the observed expressions [217]. This rich approach
provides a lot of information but differs from CSI: Haskell in a few points. First, CSI:
Haskell utilizes HPC and thus coverage and does not rely on tracing and cost centers.
Second, our approach is capable of capturing evaluation trees, in a similar manner to
computation trees, providing information on the actual execution of an evaluation (that is,
the state of each value within the captured tree), but do not capture the values themselves.
Lastly, CSI: Haskell gathers data on the entire project and does not require manual
annotations on suspicious elements of the codebase. Thus, we start with an earlier stage of
debugging, where suspicious elements still need to be identified.

We consider CSI: Haskell not as a debugger, but instead a source of trace information
for follow-up tools. The example presentation as evaluation traces could greatly benefit
from concepts of algorithmic debugging, but lies beyond the scope of this work.

5

78 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Figure 5.3: Evaluation tree for head (divs n) in Figure 5.1. Superscripts refer to indices of expressions in
the Section 5.3.3 example.

5.3 Approach
5.3.1 Evaluation Trees
The approach taken byCSI: Haskell is aimed at the collection of just enough data at runtime
to reconstruct the global evaluation tree of a program. Lazy functional program evaluation
can be viewed in terms of an evaluation tree: the evaluation of each expression requires
the evaluation of its subexpressions whenever those expressions are needed to produce
output [218]. For Haskell, this evaluation has been linearized using implementations
of machines such as Sestoft’s lazy abstract machine [219], placing evaluation trees on
sound theoretical foundations and (by now) a robust amount of experience. Re-using the
theoretical structures lends itself for the application of debugging too: For debugging, a
tree-like view of the expressions and the order of evaluations for each component is an
important part of understanding the programs and how they behave. This is especially
relevant when the programs fail and throw an exception at runtime, e.g. the evaluation
tree in Figure 5.3.

This tree shows how evaluation proceeds by resolving the functions to be used in the
relevant context (using big-step semantics, denoted by “⇓” for readability), which are then
applied to the fully resolved value of their arguments, resulting in their final value.

5.3.2 Trace Data
To collect the data used in constructing the trace, we extend HPC, the Haskell Program
Coverage built into GHC by Gill et al. [196]. HPC divides the source code into expression

boxes, which are extracted during compilation and stored in an associated mix file. The
code is then instrumented with additional instructions in the intermediate language (C- -)
to add a bump to the appropriate array value when the evaluation of an expression starts
(i.e. its output is demanded). At runtime, HPC maintains a module-per-module in-memory
array, with one entry per expression in the original program. Whenever an expression starts
to be evaluated, the corresponding array entry is incremented with the bump instruction,
allowing HPC to track the coverage of programs [196]. CSI: Haskell adds three additional
in-memory arrays to the runtime system, along with additional bookkeeping, the trace
array, evaluation depth array, and global index array. An example of these for the program
in Figure 5.1 is provided in Section 5.3.3.

The Trace Array
The first additional array holds the trace itself, a log of values corresponding to the expres-
sion boxes defined by HPC. This array contains an entry whenever an expression starts
being evaluated, and another entry whenever an expression finishes being evaluated to the

5.3 Approach

5

79

outermost constructor. Each entry represents an explicit expression in the source code,
which is the same as that used for the original HPC coverage: for any single expression 𝑒,
the original coverage tracks the number of times that expression is evaluated. For example,
if we look at an expression 𝑒𝑖 with 𝑖 = 5, at the beginning of the evaluation of 𝑒, the index
number 5 would be incremented in the corresponding array in the tix-file. With our
additions, the index 5 is written in a trace array both when the expression starts to be
evaluated and when it has finished evaluating. Note that since Haskell is non-strict, the
evaluation of an expression might not return a fully evaluated value, but rather a weak
normal form represented by a constructor whose components might further, not yet fully-
evaluated thunks. To log these evaluations, an additional register is introduced, in which
the (possibly partial) value of an expression is saved. The completion is then recorded and
the register is returned. This allows us to log the completion of evaluations even when
they would have immediately returned, at the cost of additional overhead at runtime.

The Evaluation Depth Array
The second array keeps a log of the current evaluation depth before the start of the evaluation
of an expression and the depth before the completion of the evaluation of an expression.
Using the two in conjunction, the evaluation depth and trace arrays allow us to reconstruct
a partial view of the full evaluation tree of the program and determine whether an entry
in the trace array corresponds to the start of evaluation or the completion of evaluation
of the indicated expression. It also lets us determine which evaluations have started and
not finished, allowing us to determine the current call stack in terms of expressions. This
allows us to see which evaluations were started and finished in the same subtree of the
evaluation tree, allowing us to highlight the branches of the evaluation that are “close” in
the tree.

The Global Index Array
The third array tracks a global counter, associating each index in the other two arrays with
a unique integer timestamp. This allows us to reconstruct a global trace across modules,
by gathering the trace for each module and sorting by the global counter.

Trace Length & Circular Buffers
Keeping track of an arbitrarily long run of a program would require a trace entry for each
expression evaluated. For long-running programs, this would require an excessive amount
of memory. As noted in the introduction, errors usually involve recently evaluated data.
By keeping the length of the arrays constant and introducing a modulus operation to the
running index, we effectively treat them as circular buffers. This allows us to keep track of
only the most recently evaluated locations at the time of an error, giving us a “window”
into what the program was executing right before the error occurred. Configurable with a
compiler flag, this allows users to select how much memory overhead they are willing to
trade off for a longer trace. Alongside the computational impact, there is also an information
trade-off: Some errors are captured only in longer traces, but unnecessarily long traces
form a barrier to understanding. We investigate both trade-offs in Section 5.4.

5

80 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

5.3.3 Example
As an example, consider the evaluation of the expression head (divs n) and its evalua-
tion tree shown in Figure 5.3. Here, 𝐸1 corresponds to the expression superscripted with 1,
that is, head (divs n), 𝐸2 to head, 𝐸3 to (divs n), and so on. Note that each expres-
sion has an annotation, as well as each of its subexpressions. In the interest of brevity, 𝐸6
and 𝐸7 are not shown, nor are any of their subexpressions. Using the annotations provided
in the figure, a successful evaluation trace would be [𝐸1,𝐸2,𝐸2,𝐸3,𝐸4,𝐸4,𝐸5,𝐸5, ...,𝐸3,𝐸1],
with the associated evaluation depths [0,1,2,1,2,3,2,3,2, ...,2,1]. The global trace array
would simply be [1,…], since there is only one module involved. The evaluation proceeds as
follows: At the start of evaluation, the evaluation depth is 0. We start by evaluating head
(divs n), indicated by 𝐸1. The evaluation depth is now 1. 𝐸1 demands evaluation of
head, i.e. 𝐸2. Since we started evaluating 𝐸2 and have not finished 𝐸1, the depth of the
evaluation is now 2. The function head is from a library, which returns directly, indicated
by 𝐸2, and the evaluation depth decreases to 1. Now the implementation of head, head’
demands its first argument, which causes evaluation of (divs n), i.e. 𝐸3, resulting in
an evaluation depth of 2. This continues until 𝐸3 completes, which in turn lets 𝐸1 complete,
and the program is fully evaluated. However, if 𝐸3 results in an empty list, the evaluation
Γ ⊢ head’ xs’ ⇓ 𝑣 will throw an exception, aborting execution before logging that 𝐸1
finished. The trace will show that 𝐸3 was the last expression to complete evaluation before
the error.

5.3.4 Persistence and Tix Upgrades
As CSI: Haskell is integrated with HPC, we also extend the tix file format that HPC
generates to persist information between runs to include the trace and evaluation depth
information.

Apart from changes to the tix-format, the tracking is noninvasive and requires no
modification of the programs on behalf of the user. Setting the size of the trace buffers to a
sufficient length can be used to generate traces across multiple runs of a program. These
extended tix files, along with the associated mix files that store the expression boxes, can
be parsed by external tools for further analysis and presentation. One such presentation is
a SARIF file derived from the a trace, allowing further integration of Haskell traces into
IDEs [220]. This has been explored with a short prototype by the authors and is feasible.
With respect to the scope, we consider it future work (see Section 5.5). A non-textual
presentation of the trace could be to visualize the behavior of the program as a graph, as
shown in Figure 5.5.

5.3.5 Output
The additional information can be accessed via runtime reflection using the GHC-API, and
consumed by external tools such as automatic program repair tools, testing frameworks,
and IDEs. As one immediately accessible application, we adjust the current runtime error
printing in GHC and add a message detailing the recently evaluated locations. Using the
trace array in conjunction with the evaluation depth array, we generate a list of recently
evaluated locations. By comparing the current evaluation depth on an error and the
evaluation depth array, we determine the involved expressions whose evaluation was
demanded by the expression on top of the call stack at the time of crash. We label the

5.3 Approach

5

81

divs: Prelude.head: empty list
CallStack (from HasCallStack):
error, called at
libraries/base/GHC/List.hs:1749:3 in base:GHC.List
errorEmptyList, called at
libraries/base/GHC/List.hs:89:11 in base:GHC.List
badHead, called at
libraries/base/GHC/List.hs:83:28 in base:GHC.List
head, called at Divs.hs:10:17 in main:Main
CallStack (from -prof):
Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)
Recently evaluated locations:
Divs.hs:4:25-4:26 ... = []
Divs.hs:4:16-4:21 |...,i == n,...=... (was matched)
repeats (11 times in window):
Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:7:21-7:28 ... = go (i+1)
Divs.hs:5:19-5:21 ...else d i
Divs.hs:8:9-8:28 Main:divs>d
Divs.hs:5:16-7:28 ... = if d i...
Divs.hs:4:16-4:21 |...,i == n,...=... (not matched)
Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:3:1-8:28 Main:divs
Previous expressions:
Divs.hs:10:1-10:29 Main:smallestDiv
Divs.hs:13:1-13:29 Main:main

Figure 5.4: The improved error message includes a list of recently evaluated locations. The preceding number is
the index of the expression in the mix file and is used to distinguish different expressions at a glance.

5

82 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Figure 5.5: A graphical representation of the trace in Figure 5.4 generated by CSI: Haskell and an external script.

rest as “previous expressions”, whose evaluation was complete before the evaluation of
the expression on top of the call stack started and therefore were not triggered by the
expression on top of the call stack. As an example, Figure 5.4 shows the new output
generated for divs from Figure 5.1, which shares the evaluation tree with the example
above.

5.3.6 Summarization and Presentation
Since we track all evaluated expressions, the traces can become quite long. To effectively
display error messages, filtering and summarizing traces is important. The summariza-
tion of traces is a rich field [221, 222], but often involves the full instrumentation of the
program from the beginning to the end, while CSI: Haskell has a limited window of
recently evaluated locations. To be useful as the default when printing error messages, the
summarization of the traces must be done quickly and efficiently, avoiding unnecessary
delay when reporting errors. The current approach in CSI: Haskell is to remove all un-
conditionally evaluated expressions done before the last branch. This makes the traces
much shorter while keeping the relevant information about the evaluated expressions
immediately preceding the error. Another summarization that CSI: Haskell implements is
to merge repeated patterns that occur in loops and indicate them as repetition in the output,
with the caveat that it only captures repetition in the “window” that the trace offers and
may miss out on some longer patterns. This technique struggles when there is variation in
the loop, such as when it is conditionally different for each iteration, e.g. cases for odd and
even numbers. We aim to mitigate such variations using graph-based trace modeling and
using more of the information available on the structure of the code during summarization
(see Section 5.5). As described earlier, we used the evaluation depth at the time of a crash
in conjunction with the tracking of the evaluation depth to segregate expressions that were
evaluated at the current evaluation depth or lower and those that occurred earlier. Looking
at the evaluation depth array also allows us to construct a partial notion of the call stack at

5.3 Approach

5

83

the time of the crash, though some information might have been lost due to truncation in
long-running programs. In this way, we can track the call stack for any program without
manual annotations of HasCallStack => throughout the code. Since CSI: Haskell is
integrated into the compiler and runtime system itself, it can be easily applied to external
Haskell libraries and dependencies simply by adding an additional flag during compilation.
This helps developers trace issues that originate in external libraries and understand the
interaction of their code with the library.

As for presentation, the current implementation reads the relevant locations from
the source file, and displays them in a manner appropriate to their form, whether it is
a branching if statement, guard or qualifier in a list comprehension or a non-branching
expression. To further shrink the output, we only show non-branching expressions up to
the last branching expression in the trace. This allows the focus to be on the control flow
up to the point where the evaluation of a non-branching expression might have caused
the error. When the total number of evaluations exceeds the window, a short statement is
appended to the error message showing the total number of evaluations and suggesting
to increase the trace length before rerunning. We stress that the current presentation is a
prototype and outline the need for further research in Section 5.5.

5.3.7 Data
Apart from the motivating example in Figure 5.1, we draw data from the nofib-buggy
data set [70]. In this data set, Silva introduced artificial bugs of various categories to the
data points of the nofib benchmark [69] used in the GHC test suite.

We utilize a subset of 21 bugs summarized in Table 5.1. Our biggest exclusion criteria
of the original nofib-buggy was the category of non-termination: Since our evaluation
is based on crashes, non-termination does not provide the output we need. Similarly,
StackOverflowExceptions are errors of the environment, not necessarily in the
program. These exceptions come from the runtime system itself and not from the program,
so such exceptions were excluded as well.

Lastly, for ease of comparison, we modified programs that merely produced incorrect
results to fail with an exception using an assert. These assertions are constructed using
the console output (stdout) of the correct programs. Due to the lack of annotations, the
call stacks in these examined cases are all trivial and only show the call for equality in the
assert, but the evaluation traces often span relevant locations in the code. We admit that
the assertions based on string comparison are neither sophisticated nor best practice. In
the spirit of a vertical prototype, we aimed to see “can evaluation traces help with testing?”

Despite looking a bit ad-hoc, the insights might be as valuable as the inspection of runtime
errors: a healthy project should address problems in the test suite and not at runtime.
Additions to the testing toolkit may pay off earlier than post-mortem debugging tools.

5

84 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Table 5.1: Overview of the nofib-buggy programs used

nofib-buggy Imaginary Spectral Real
Error Type
Exception paraffins

digits-of-e2
sorting
primetest

anna

Assert digits-of-e1
rfib
tak
integrate
gen_regexps
bernoulli
wheel-sieve1
wheel-sieve2
x2n1

chichelli
fish
minimax

gg
parser
reptile
lift

5.4 Initial Results
To analyze the results, we recompiled the nofib-buggy data set with a fork of GHC and
HPC that implements CSI: Haskell as described in Section 5.3. After obtaining crash logs,
two authors looked at each log separately, deriving data and judging the merits of the new
output. All code, data points, logs, and evaluations are provided in the companion package
archived at https://doi.org/10.5281/zenodo.10090375. The remainder
of this section covers the summary and highlights of the findings.

Summary & Overview Table 5.2 presents the results achieved by the nofib-buggy
data as shown in Section 5.3.7: of the 21 data points, 13 have the location of the error
appear within a trace length of 50 and 19 in traces of length 1000 visualized in Figure 5.6
and Figure 5.7.

Visible in Figure 5.73 is that in data points with exceptions appear much earlier
than their assert counterparts, and most issues are covered at the top of the exceptions.
For most of the data points, the displayed position in the log was quite prominent (usually
within the first 10 lines).

The required trace length did not directly depend on the size of the program, but
rather on the amount of thunks that the program builds up during evaluation. We can see
this behavior in Figure 5.9. Naturally, the real data points produce a lot of thunks and
evaluations due to their complexity, but some of the spectral and imaginary data points
(artificially) produce large amounts of thunks (spectral/minimax) or evaluations
(imaginary/rfib). For a helpful exception, it is necessary that both the start of
evaluation and end of evaluation of the involved expressions be in the window of recent
evaluations. But the window should be as small as possible - as seen in Table 5.2. For both
reptile and minimax the position of the faulty statement appears later for a trace
length of 1000 compared to the trace length of 50.
3Note the log-scale on the x-axis

https://doi.org/10.5281/zenodo.10090375

5.4 Initial Results

5

85

Table 5.2: Summary of nofib-buggy results. LOC indicates the location in the output after the initial exception,
and minimum trace length the shortest length in which the error location appears out of [25,50,100,500,1000].

data point Uses assert minimum
trace
length

LOC
50

LOC
1000

LOC
1000
Strict

imaginary
bernoulli Y 50 6 6 6
digits-of-e1 Y 500 - 11 21
digits-of-e2 N 25 1 1 -
gen_regexps Y - - - -
integrate Y - - - -
paraffins N 500 - 24 24
rfib Y 500 - 4 7
tak Y 25 4 4 2
wheel-sieve1 Y 25 2 2 -
wheel-sieve2 Y 50 7 8 -
x2n1 Y 25 2 2 2

spectral
cichelli Y 1000 - 36 -
fish Y 25 3 3 1
minimax Y 50 28 260 -
primetest N 25 2 2 2
sorting N 25 1 1 1

real
anna N 25 1 1 -
gg Y 25 1 1 -
lift Y 500 - 32 -
parser Y 500 - 13 19
reptile Y 25 29 35 94

5

86 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Figure 5.6: Minimum trace length to cover the error

Performance We provide a summary of the compute time used in Figure 5.8 and of
the allocated (peak) memory in Figure 5.10. All reported values are derived from a set
of five measured runs on a dedicated machine, dropping the highest and lowest values
(outliers) and averaging the remaining three. Measurements were conducted with the Linux
/usr/bin/time executable and the bash time command on a cloud-based machine
with 32GB of RAM and 6 Intel Xeon E312xx @2GHz 64bit vCPUs. We also performed a
set of runs with profiling turned on, using the GHC flags -fprof, -fprof-auto, and
-fprof-auto-calls, which yielded comparable increments. As profiling introduces
more side effects, we prefer to report the non-profiling numbers in this work. Profile
performance measures are included in the companion package.

Figure 5.8 is a kernel density estimate plot [223] summarizing the distribution of the
calculated time deltas for all data points. It presents a smooth growth of wall-clock time to
increase the trace length, with the majority of data points needing between ∼100% and
∼300% longer. We can also observe that outliers move respectively, keeping their relative
position throughout increasing trace lengths. In particular, the hungriest data point was
rfib from the imaginary data set that needed 760% longer to finish. We take a closer look
at rfib in the paragraph limitations.

The box plot in Figure 5.10 shows the memory usage and we observe a trend towards
slightly higher resource need. The data points in the imaginary set allocate ∼15% memory
at peak use and the data points in the spectral set ∼60% in the median. For the data points
in the real set the biggest difference was found, with one data point exceeding twice the

5.4 Initial Results

5

87

Figure 5.7: Histogram of position in the trace by data set and error type. Note that the x-axis is logarithmic.

Figure 5.8: Kernel density estimate plot of increased compute time with varying trace lengths

memory usage. Due to the small amount of data points, and each data point in the real
set being unique, we don’t want to infer general assumptions about the memory usage of
these programs.

Our recommendation is to investigate these individually when necessary. We also
observe that memory use grows in general with the use of traces, but the size of the trace
does not have a huge impact on the preliminary results. The overhead originates from data
collection, and not from storing and bookkeeping.

We measured the size of the binary compiled for each program. The difference in most
programs was negligible (≤ 1𝑀), but we must note that the size increase can be notable for
longer trace lengths4. For a run gathering full-traces (i.e., trace length set to 100k), each

4This is due to an in-binary representation of the tick-arrays, to address internal mechanics such as garbage

5

88 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Figure 5.9: Distribution of maximum evaluation depth and total number of evaluations

binary grew between two and ten Mb.
As traces are used to locate errors, the overhead presented in this work is expected to

occur during development and maintenance and will not affect production environments.

Highlights Among the best results are two data points for the spectral data set,
sorting and primetest. The errors are division-by-zero and a non-exhaustive
pattern match, respectively. These errors have little information by default, with no
location or stack trace. The extended output (see sorting in Figure 5.11) with the trace
information that CSI: Haskell adds shows the starting positions where incorrect data was
produced and does so quite precisely.

The second group of promising results is demonstrated by the data points forminimax
andgg: the bug introduced to minimax consists of not applying a minimax algorithm to Tic-
Tac-Toe, but instead performing a minimin. Figure 5.12 catches this behavior by repeating
the Game:min' function, while we would expect alternating min and max functions.
This is not exactly unique to evaluation traces, but we get “a bit of coverage
for free”. Without enhanced traces, this would also be spotted when running a HPC
coverage report and seeing the uncalled max function.

Similarly gg from the real data set uses a wrong variable, leaving large parts of a
where block unevaluated.
collection. For normal coverage, the addition is bounded by the modules and their expressions, while our
additions can vary in length and thus grow the binary to varying degrees.

5.4 Initial Results

5

89

Figure 5.10: Additional memory usage per data set for a trace length of 1000

This second group of bugs can be quickly noticed using program coverage, and it is
possible to get the same information from a coverage report. Unfortunately, we must
admit that this is an enlightened guess – we knew what was going wrong, and thus we
found patterns and clues in the traces. These bugs can be found quite easily when program
coverage is visualized, and thus we hope that a visualization of traces would also yield
such benefits, motivating more complex tooling.

Before we leave the highlights, we want to emphasize the possibilities of generated
traces for mechanical evaluations. Some of the traces presented throughout this paper
are a bit crowded or hard to understand, but nevertheless, they contain the information
necessary for better fault-localization and other warnings. We see potential tooling that
spots mismatches in coverage and evaluation, or that warns about potential performance
issues with a lot of thunks, like we see in the rfib example.

Full Evaluation Record versus Suffix A thread running through this paper is the
initial scenario: is it enough to determine what happened immediately before a crash in
order to locate the fault? We consider the recent evaluations the suffix of all evaluations.
Shown in Table 5.2, the errors appear in 90% of the data points examined. Furthermore, a
relatively short trace of only 50 locations per module is sufficient in 62% of the cases. When

5Note that some of the right hand sides are missing here, due to a mismatch between the locations reported by
HPC and the actual location in the file... caused by the mixing of tabs and spaces! Fixing this is beyond the scope
of the prototype.

5

90 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Main: divide by zero
Recently evaluated locations:
./Sort.hs:146:25-146:25 2
./Sort.hs:146:23-146:23 2
./Sort.hs:146:22-146:26 (2-2)
./Sort.hs:146:14-146:26 k `div` (2-2)
Previous expressions:
./Sort.hs:146:5-146:26 Sort:heapSort>div2
./Sort.hs:128:52-128:67 ... =
repeats (4 times in window):
./Sort.hs:128:5-132:84 Sort:heapSort>to_heap
Main.hs:14:36-14:43 ... =
Main.hs:13:5-22:57 Main:mangle>sort
Main.hs:10:1-22:57 Main:mangle
Main.hs:5:1-7:33 Main:main
There were 668 evaluations in total but only 86 were recorded.
Re-run again with a bigger trace length for better coverage.

Figure 5.11: The improved error log for Sorting - the first locations of the trace are the precise consumers and
producers of the division-by-zero error5.

running the program in Figure 5.13, there are 95845589 evaluations in total, of which only
500 were in the final recorded trace, which is enough to cover the faulty location. Despite
losing analytical benefits of the complete trace, we are able to locate the fault while keeping
only 0.0005217% of the trace. We thus recommend capturing the only the last evaluations,
with a little fine-tuning in trace lengths depending on the number of evaluations (unless
necessary for follow-up analysis).

Strict vs. Lazy Behavior For comparison, we conducted experiments with the
-XStrict language extension, in addition to the -fno-strictness and
-fno-full-laziness flags to observe changes in evaluation behavior. Without the
extension, the trace for each data point was identical, with or without the flags. Our
initial (naive) assumption was that for strict programs consumption and production of
errors would align, resulting in always perfect locations. The heavy-handed use of the
-XStrict extension meant that some of the programs would no longer terminate, as
many of them rely on laziness to be computable. This resulted in 8 data points that do not
finish when strict evaluation is forced.

Among the terminating data points, we see mixed results - fish and tak perform
slightly better, while some evaluations appear later than in their non-strict configuration.
We attribute this to the general offset in consumption and production that is also observed
in strict & imperative programming languages (e.g., in the work of Zhang et al. [224]):
The distance between fault-introduction and fault-consumption also exists in Haskell,
but non-strict evaluation can shrink the gap between fault-introduction evaluation and
fault-consumption evaluation.

To paraphrase, there is always a gap between fault and error, but non-strict evaluation
can bridge this gap by postponing evaluations.

5.4 Initial Results

5

91

Main: Assertion failed
CallStack (from HasCallStack):
assert, called at Main.hs:12:5 in main:Main
CallStack (from -prof):
Main.main (Main.hs:(10,1)-(12,57))
Recently evaluated locations:
./Game.hs:32:59-32:59
./Game.hs:31:30-31:30
./Game.hs:36:23-36:23 e
./Board.hs:57:53-57:56 Board:showsPrec
./Board.hs:57:53-57:56 Board:show
./Game.hs:31:27-31:31 ... =
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...
(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'
./Board.hs:57:70-57:71 Board:(==)
./Board.hs:26:33-26:55 ... = [[r1,r2,insert p r3 x]]
./Board.hs:23:26-23:46 |...,not (empty pos board),...=...
(not matched)
./Board.hs:41:24-41:27 ... = True
./Board.hs:39:1-42:18 Board:empty'
./Board.hs:36:26-36:36 ... = empty' x r3
./Board.hs:34:1-36:36 Board:empty
./Board.hs:23:1-26:55 Board:placePiece
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...
(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'
...

Figure 5.12: The improved error log for minimax - notice the repetition of min’, without the appearance of a
max’.

5

92 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Thus, laziness modulates the distance between bug occurrence and consumption. This
affects our configuration for the trace lengths: for short traces, a faulty location can be
covered but might have been rotated out of the current trace buffer. With long and short
traces alike, there is a chance that the location is reported later in the output, missing
the user’s attention. An example of this is paraffins, where sharing is a source from
which an incorrect value is evaluated long before it is used. Potentially, this can be further
adjusted by introducing more laziness into programs by making other adjustments, such
as explicitly disabling sharing [225].

Limitations The first limitation is represented in rfib, which needed a surprisingly
long trace for a rather simple program (calculating Fibonacci numbers). Inspecting Fig-
ure 5.13, we observe that the rfib program performs a cascading recursion and postpones
evaluation, with a lot of redundant re-computation producing a lot of thunks. For our
current reporting, it is necessary that the trace length covers a coherent sequence (i.e.,
covers both creation and resolution of thunks), but this coherence is only perceived when
the trace length is long enough. To mitigate this, users are presented with a message when
we detect that the trace length is not long enough to cover the entire execution of the
program.

We are slightly divided about this topic: On the one hand, many functional pearls utilize
recursion and laziness, and thus will trigger a similar behavior for our traces. Especially
for these cases, the insights in the evaluation would have great potential for learning
and visualization. On the other hand, recursion of this type should usually be written in
a tail call-optimized fashion (see Figure 5.14), which is less graceful but is preferable in
performance and also benefits the traces introduced by this work.

1 nfib :: Double -> Double
2 -- BUG: The following line contains a bug:
3 nfib n = if n < 1 then 1 else nfib (n-1) + nfib (n-2)

Figure 5.13: nofib-buggy’s rfib: The code first builds up a large number of thunks using recursion before
completing any evaluation, posing a challenge for evaluation traces

1 fib :: Double -> Double
2 fib n = fib' n 0 1
3

4 fib' :: Double -> Double -> Double -> Double
5 fib' 0 a _ = a
6 fib' 1 _ b = b
7 fib' n a b = fib (n-1) b (a+b)

Figure 5.14: Alternative Fibonacci implementation that utilizes tail-call optimization

Current evaluation traces are also limited by sharing [218]. Consider the function in
Figure 5.15: Here, the call to
three_partitions (n-1) is used in line 3 to generate triples of integers to partition

5.4 Initial Results

5

93

1 rads_of_size_n radicals n =
2 [(C ri rj rk)
3 |(i,j,k) <- (three_partitions (n-1)),
4 (ri:ris) <- (remainders (radicals!i)),
5 (rj:rjs) <- (remainders
6 (if (i==j) then (ri:ris) else radicals!j)),
7 rk <- (if (j==k) then (rj:rjs) else radicals!k)]

Figure 5.15: Part of the paraffins example showcasing sharing

a list. There is an error in this function that causes the 𝑘s to be invalid out-of-bound indices
for the radicals list. Since i and j are used in lines 4 and 5 respectively, the triplets
are evaluated and then the same result is shared later when the invalid k is used in line 7.
This means that the distance from production to consumption increases due to sharing,
which means that there will be more unrelated evaluations prior to the error in the trace.
This could be addressed by post-processing traces and removing those evaluations that are
“unrelated” (such as those in lines 4 and 5), but this would require a richer view of which
values are involved in each expression. This view could possibly be created by adding
provenance information to the values (see Section 5.5).

We spare the reader examples for readability, but it is easy to imagine that evaluation
traces are not always useful. Mainly we see that traces either don’t contain relevant
information, or there is a major overhead attached, and we do not expect people to work
through 100+ lines of trace information. A prominent example of this issue is minimax,
for which the fault-location is covered, but only in the sense that the relevant statement
was touched. It is not immediately clear what to do, as the issue originates from the unused
parts of the program. Providing too much information can also discourage developers
from reading error messages[201]. and time spent in the wrong places is a waste and
reduces trust in traces and error messages[199, 203]. Thus, another crucial improvement
is to determine what criteria constitute the relevance of a trace for the problem and only
present them when applicable.

Discussion Based on the limitations and highlights, our current suggestion is to show
evaluation traces for certain types of exceptions. The prime candidates are index errors,
failed pattern matches, and exceptions for dynamically typed values, such as those from
Data.Dynamic. These programs showed great results without any real overhead and
are a perfect point-in-case for evaluation traces.

From the data points that yield wrong results and have been investigated using asser-
tions, we see a trend that unit-level tests provide better evaluation traces than system-level
tests. In particular, the nofib-buggy/real data points that use a string comparison
for stdin and stdout did not really benefit from the evaluation traces. We expect
that lower-level tests and assertions are far more useful, especially when combined with a
sound approach to testing and coverage.

We also recognize the size of the errors and sometimes mechanic coverage of traces
- as shown in Figure 5.6, some faults require long traces to be covered, and the resulting
output is bound to be verbose. We do not consider these traces to be actionable due to their

5

94 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

size and the effort necessary to comprehend them. Nevertheless, we hope that the tools
can pick up the verbose trace information to further filter and visualize critical elements of
the code.

Currently, Prelude provides two functions error and
errorWithoutStackTrace. We suggest expanding this to errors with (only) eval-
uation traces and a combination of stack and evaluation. The choice is left to individual
exceptions as to whether evaluation traces make a worthwhile addition. Another necessary
step is to provide a starting guide on how to read and use evaluation traces. Typically,
people google their exceptions to find some help [199, 226], but with this newly introduced
addition, that is not an option. Thus, some kind of central starting point and tutorial should
accompany any changes.

5.5 Next Steps
Evaluation Asserts A potential new area is the construction of evaluation asserts - using
the enhanced coverage information, and a known expression in the source code, one can
formulate tests that check for the (full) evaluation of an expression. While this comes
with some difficulties in implementation (e.g. not evaluating the expression through the
assert), there are certain areas where this can support developers: One application of this
is in debugging, for which developers might want to check the state of their variables.
Although this is not exactly in the spirit of functional paradigms, existing research [227]
shows that Haskell developers often fall back to imperative approaches during debugging.
Furthermore, we face functions such as foldr, foldr’ and co. whose results are
identical, but their internal traversal strategies differ. Another application is for systems
that revolve around or provide evaluation strategies such as GHC itself. It can provide
capabilities to test, e.g. BangPatterns and data structures.

Study An obvious next step is a detailed study. The examples presented in this work
highlight initial results but hardly represent the real world. Thus, the authors plan to
conduct a broader study utilizing most of the nofib-buggy real data points and
modern examples from the HasBugs data set [228]. Such a study should help to grasp how
often evaluation trace information covers bugs and, if so, how long the trace should be.

Furthermore, a study is necessary to estimate the computational feasibility. Addi-
tional instrumentation always comes with a performance cost, and the exploration in
nofib-buggy is unfortunately not representative of a complete evaluation.

Provenance of Values One problem that arises when strictness and sharing are involved
is that an expression might have been evaluated long before usage, such as the k in the
paraffins example (Figure 5.15). This means that many unrelated evaluations occur between
the production and consumption of a value, making the trace less useful to find the source
of the error. One way to address is to attach provenance to values, highlighting the part of
a trace involved in the production of any values touched on in an error.

5.5 Next Steps

5

95

Environment Integration and Presentation This work presents basic steps and low-
level implementation for evaluation traces, but the findings might be diamonds in the rough.
Especially for longer traces of the real data points, guidance and assistance are necessary.
We touched on potential tools and extensions throughout the work, which we would like
to summarize:

First, summarizing and filtering traces is necessary to keep the output human-readable,
especially for long traces. Solutions could cover filtering modules or limit the depth and
width of the presented evaluation tree. In addition to trace data, there are opportunities to
accumulate data from multiple sources (test success, program coverage, etc.) and perform
program slicing [229]. This is essential to scale to large programs. Another important
integration is with test and build frameworks. At the moment, traces are reported on
runtime exceptions, which is arguably not the best state of a program to be in. Most of the
time, software engineering utilizes tests, and therefore evaluation traces should be presented
in an accessible way for test failures. We hope that in the future, Haskell developers can
write unit tests and investigate their evaluation for anomalies, finding potential issues
before they become problems. Lastly, we did early sketches of integrating SARIF[220] based
on tix- and mix-files with a prototype. Transforming the information is quite easy and
can then be picked up from other popular tools such as VSCode. Especially in light of the
Haskell Language Server that also targets VSCode, we hope that representation of coverage
and evaluation in the IDE can be a result of this work. Such tools should not only be based
on solid data (this work), but must also meet standards and needs of developers, drastically
expanding the scope by a necessary user-study or other ways to capture user-experience.
Thus, this work focus‘ lies on the creation, maintenance and mapping of evaluation-traces.

Automated Fault Localization Although this work covers fault-localization as amanual
task, automated fault localization is a popular research topic with often great results
[230, 231]. Automated fault localization often exploits a spectrum of coverage per test to
find code that is suspiciously often involved in failing tests. These approaches are based
on the program coverage of strict languages (Java, C), and revolve around expression or
statement coverage. Directly copying these approaches might not be applicable to Haskell
— due to laziness, we might call expressions but not evaluate them. Thus, focusing on
evaluation over coverage is necessary to build a spectrum of code that was executed, and
not only touched.

Apart from adjustments necessary to reproduce existing approaches, the evaluation
information can also form the basis of novel techniques: normal spectrums are binary,
things are covered or not. With evaluation, we express the concept of full or partial
evaluations and can derive a continuous spectrum.

Optimization Weare aware that this is merely a prototype implementation. We hope that
producing a non-invasive method for gathering and reporting information on evaluation
resonates positively in the community, but know that we have made some arbitrary design
decisions. In this spirit, we do not consider the implementation done but are looking
forward to feedback on this work and towards an eventual GHC proposal.

5

96 5 CSI: Haskell - Tracing Lazy Evaluations in a Functional Language

Required trace length estimation One pain point with the current design of CSI:
Haskell is that the trace length is fixed and a value must be provided by the developer.
One way to address this could be to have a more dynamic trace, discarding entries not
involved in the current evaluation and keeping only the parts of the trace which involve
values which are currently accessible and have not been garbage collected. This would
involve a much deeper integration with the runtime system and memory management,
but could be vital for tracing long-running programs, keeping both relevant parts of the
trace but still keeping memory requirements manageable. Another approach would be to
do static analysis of the program to suggest a useful length for the trace, using the call
graph and structure of expressions to approximate the required length within some order
of magnitude. This would involve more advanced termination checking than feasible for
this chapter, but can reduce the guesswork in finding a good length. In the interim, we
suggest using a trace length of approximately 100 for smaller programs and approximately
1000 for larger ones (as suggested by our experiments on the nofib-buggy data set)
and increase or decrease as necessary.

5.6 Conclusion
This chapter presents an initial implementation to gather evaluation traces and report
them alongside current stack traces on runtime exceptions. The approach utilizes boxes
similar to regular HPC and only requires additional flags for compilation — extending from
the program even into dependencies. This novel data was used to improve the runtime
exceptions reported with information on the evaluation. We ran the changes on a subset of
the nofib-buggy data set, investigating at which point of the trace the faulty location
was reported. For 19 of the 21 data points, the fault was covered in a trace of 1000 entries
long, and most of the locations appeared in the first 50 lines of the trace. In general, valuable
information is covered by the trace, but a current limitation is the size and verbosity of the
output. Most data points required two to 2 to 3 times more runtime and about 50% more
memory. Outliers in performance were based on excessive amounts of thunks and a large
number of modules.

Providing evaluation traces can help to spot certain errors, especially those related to
lazy evaluation. The examples provided in this paper show that evaluation traces help to
establish the chain of events behind certain errors better than a plain stack trace, as due to
lazy evaluation the origin of a problem and its occurrence can be offset.

6

97

6
PropR: Property-Based

Automatic Program Repair

Summary
Automatic program repair (APR) regularly faces the challenge of overfitting patches —
patches that pass the test suite, but do not actually address the problems when evaluated
manually. Currently, overfit detection requires manual inspection or an oracle making
quality control of APR an expensive task. With this work, we want to introduce proper-
ties in addition to unit tests for APR to address the problem of overfitting. To that end,
we design and implement PropR, a program repair tool for Haskell that leverages both
property-based testing (via QuickCheck) and the rich type system and synthesis offered by
the Haskell compiler. We compare the repair-ratio, time-to-first-patch and overfitting-ratio
when using unit tests, property-based tests, and their combination. Our results show that
properties lead to quicker results and have a lower overfit ratio than unit tests. The created
overfit patches provide valuable insight into the underlying problems of the program to
repair (e.g., in terms of fault localization or test quality). We consider this step towards
fitter, or at least insightful, patches a critical contribution to bring APR into developer
workflows.

This chapter was published as Propr: Property-based Automatic Program Repair by Matthías Páll Gis-
surarson, Leonhard Applis, Annibale Panichella, Arie van Deursen and David Sands in the Proceedings
of the 44th International Conference on Software Engineering (ICSE 2021)

6

98 6 PropR : Property-Based Automatic Program Repair

6.1 Introduction
Have you ever failed to be perfect? Don’t worry, so have automatic program repair (APR)
approaches. APR faces many challenges, some inherited from search-based software
engineering (SBSE), like overfitting [232, 233], predictive-evaluation in search [234], and
duplicate handling [235]. Other challenges are unique to the domain itself, such as deriving
ingredients for a fix [236] and producing valid programs [237]. Consequently, APR has
open research in all of its core aspects: search-space, search-process, and fitness-evaluation.
The research community is shifting its focus towards other solutions, either leaving behind
boundaries of search space using generative neural networks [238? , 239], or by empirical
evidence that fixes are often related to dependencies, not the code itself [240, 241]. Fixes are
usually validated by running against the test suite of the program, assuming that a solution
that passes all tests is a valid patch. However, Le Goues et al. [242] showed that Program
Repair can overfit, i.e., that a fix passes the test suite despite removing functionality or just
bypassing single tests.

Usually, generated patches are evaluated against a unit test suite of the buggy program
[85]. The fitness is defined as the number of failing tests in the suite [162], making a fitness
of zero a potential fix. The problem is the quality of the tests — often not all important
cases are covered, and the search finds something that passes all tests but doesn’t provide
all wanted functionality [232]. This is considered an overfit repair attempt. A particularly
good example for this is the Kali approach [242], that removes random statements of a
program. In a later study, Martinez et al. [89] showed that out of 20 of the repair attempts
that passed the tests, only one was a real fix. One approach by Yz et al. [243] to address
overfitting was to introduce tests generated with EvoSuite [244] to have a stronger test
suite, reporting only an improvement in speed, not in found solutions. Unfortunately,
EvoSuite introduces a new problem: If the program was faulty (which programs that we are
trying to repair are), an automatically generated test suite may assert the faulty behavior
and make test-based repairs unable to ever produce a correct program, despite passing the
(generated) test suite. Thus, current automated test-case generation is not the be-all and
end-all for overfitting in APR.

This work aims to improve APR with addressing the overfitting problem by introducing
properties [245] in addition to unit tests. A software property is an attribute of a function
(e.g., symmetry, idempotency, etc.) that is evaluated against randomly created instances
of input data. Well-written properties often cover hundreds of (unit) tests, making them
attractive candidates for fitness evaluation.

We argue that properties can be an improvement to the overfitting challenge in APR.
While property-based testing frameworks exist for a range of languages, the practice is
particularly natural for functional programming, and widely used in the Haskell community.
Therefore, we implement a tool called PropR, which utilizes properties for Haskell-Program-
Repair and evaluate the repair rates and overfitting rates for different algorithms (random
search, exhaustive search, and genetic algorithms). Our fixes follow a GenProg-like ap-
proach [85] of representing patches as a set of changes to the program, with the major
difference that our patch ingredients (mutations) are sourced by the Haskell compiler using
a mechanism called typed holes [61]. A typed hole can be seen as a placeholder, for which
the compiler suggests elements that produce a compiling program. As these suggestions
cover all elements in scope (not only those used in the existing code), we overcome to some

6.2 Background and Related Work

6

99

degree the redundancy assumption [236], i.e., the concept that patches are sourced from
existing code or patterns, which is common to GenProg-like approaches.

Our results show that properties help to reduce the overfit ratio from 85% to 63% and
lead to faster search results. Properties can still lead to overfitting, and the union test suite
of properties and unit tests inherits both strengths and weaknesses. We therefore argue
to use properties if possible, and suggest to aim for the strongest test suite regardless of
the test-type. The patches from PropR can produce complex repair patterns that did not
appear within the code. Even patches that are overfit can give valuable insight in the test
suite or the original fault.

Our contributions can be summarized as follows:

1. Introducing the use of properties for fitness functions in automatic program repair.

2. Showing how to generate patch candidates using compiler scope, partially addressing
the redundancy assumption.

3. Performing an empirical study to evaluate the improvement gained by properties
with a special focus on manual inspection of generated patches to detect eventual
overfitting.

4. An open source implementation of our tool PropR, enabling future research on
program repair in a strongly typed functional programming context.

5. Providing the empirical study data for future research.

The remainder of the chapter is organized as follows: Section 6.2 introduces property-
based testing and summarizes the related work in the fields of genetic program repair
as well as background on typed holes, which are a key element of our patch generation
method. In Section 6.3 we present the primary aspects of the repair tool and their reasoning.
Section 6.4 presents the data used in the empirical study, and declares research questions
and methodology. The results of the research questions are covered in Section 6.5 and
discussed in Section 6.6. After the threats to validity in Section 6.7 we summarize the work
in Section 6.8. The shared artifacts are described in Section 6.9.

6.2 Background and Related Work
6.2.1 Property-Based Testing
Property-based testing is a form of automated testing derived from random testing [246].
While random testing executes functions and APIs on random input to detect error states
and reach high code coverage, property-based testing uses a developer defined attributes
called properties of functions that must hold for any input of that function [245]. Random
tests are performed for the given property: If an input is found for which the property
returns false or fails with an error, the property is reported as failing along with the input
as a counter example [245]. Some frameworks will additionally shrink the counter example
using a previously supplied shrinking function to offer better insight into the root cause of
the failure [245].

There are some variations on property-based testing, e.g. SmallCheck, which performs
an exhaustive test of the property [41]. QuickCheck approximates this behavior with a

6

100 6 PropR : Property-Based Automatic Program Repair

prop_1 :: Double -> Test
prop_1 x =
sin x ~== sin (x + 2*𝜋)

prop_2 :: Double -> Test
prop_2 x =
sin (-1*x) ~== -1*(sin x)

prop_3 :: Test
prop_3 = sin (𝜋/2) == 1

prop_4 :: Test
prop_4 = sin 0 == 0

unit_1 :: Test
unit_1 =
sin 𝜋 ~== sin (3*𝜋)

unit_2 :: Test
unit_2 = sin 0 == 0

unit_3 :: Test
unit_3 = sin (𝜋/2) == 1

unit_4 :: Test
unit_4 =
sin (-1*𝜋/2) == -1*(sin 𝜋/2)

(~==) :: Double -> Double -> Bool
n ~== m = abs (n - m) <= 1.0e-6

Figure 6.1: Comparison of Properties and Unit Tests for sin

configurable number of random inputs (by default 100 random samples). Figure 6.1 provides
an example comparison of properties and unit tests of a sine function. The properties
require an argument Double -> Test and must hold for any given Double. On any
single QuickCheck run, 202 tests are performed, forming a much stronger test suite for a
comparable amount of code.

A remaining question is whether one cannot just reproduce these 202 tests by unit tests.
For a single seed, this is doable — but it is a special strength of properties that the new tests
are randomly generated on demand. We hope this addresses the problem of overfitting
[232], as there are no fixed tests to fit on as long as the seed changes. Furthermore, we
stress that maintaining 2 properties is easier than maintaining 200 (repetitive) unit tests.

6.2.2 Haskell, GHC & Typed Holes
Haskell Haskell is a statically typed, non-strict, purely functional programming language.
Its design ensures that the presence of side effects is always visible in the type of a function,
and it is typical programming practice to cleanly separate code requiring side effects from
the main application logic. This facilitates a modular approach to testing in which program
parts can be tested in isolation without needing to consider global state or side effects.

Haskell’s rich type system and type classes allow tools such as QuickCheck [245] to
efficiently test functions using properties, where the inputs are generated by QuickCheck
based on a generator for a given datatype.

Valid Hole-Fits Our tool is based on using the Glasgow Haskell Compiler (GHC), which
is widely used in both industry and academia.

GHC has many features beyond the Haskell standard, including a feature known as
typed holes [61].

A “hole”, denoted by an underscore character (_), allows a programmer to write an
incomplete program, where the hole is a placeholder for currently missing code.

6.2 Background and Related Work

6

101

Using a hole in an expression generates a type error containing contextual information
about the placeholder, including, most importantly, its inferred type.

In addition to contextual information, GHC suggests some valid hole-fits [61].
Valid hole fits are a list of identifiers in scope which could be used to fill the holes

without any type errors.
As a simple example, consider the interaction with the GHC REPL shown in Figure 6.2.

GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d * _ / 180

<interactive>:4:30: error:
• Found hole: _ :: Double
In the expression: d * _ / 180
Valid hole fits include
d :: Double (bound at <interactive>:4:22)
pi :: forall a. Floating a => a (imported from ‘Prelude’)

Figure 6.2: Example code with a hole and its valid hole-fits

Here the definition of degreesToRadians contains a hole. There are just two
valid hole-fits in scope: the parameter d and the predefined constant pi. GHC can not only
generate simple candidates such as variables and functions, but also refinement hole-fits. A
refinement hole-fit is a function identifier with placeholders for its parameters. In this way
GHC can be used to synthesize more complex type-correct candidate expressions through
a series of refinement steps up to a given user-specified refinement depth. For example,
setting the refinement depth to 1 will additionally provide, among others, the following
hole-fits:

negate (_ :: Double)
fromInteger (_ :: Integer)

In this work we use hole fitting for program repair by removing a potentially faulty
sub-expression, leaving a hole in its place, and using valid hole-fits to suggest possible
patches.

Hole-Fit Plugins By default, GHC considers every identifier in scope as a potential
hole-fit candidate, and returns those that have a type corresponding to the hole as hole-fits.
However, users might want to add or remove candidates or run additional search using
a different method or external tools. For this purpose, GHC added hole-fit plugins [197],
which allows users to customize the behavior of the hole-fit search. When using GHC as a
library, this also allows users to extract an internal representation of the hole-fits directly
from a plugin, without having to parse the error message.

6

102 6 PropR : Property-Based Automatic Program Repair

6.2.3 GenProg, Genetic Program Repair & Patch Representa-
tion

Search-based program repair centered mostly around the work of Le Goues et al. [85]
in GenProg, which provided genetic search for C-program repair. One of the primary
contributions was the representation of a patch as a change (addition, removal, or replace-
ment) of existing statements. Genetic search is based around the mutation, creation and
combination of chromosomes — the basic building bricks of genetic search. A chromosome
of APR is a list of such changes rather than a full program (AST), making the approach
lightweight. Utilizing changes is based on the Redundancy Assumption [247], i.e., assuming
that the required statements for the fix already exists. The code might just use the wrong
variable or miss a null-check to function properly. This assumption has been verified by
Martinez et al. [236], showing that the redundancy assumption widely holds for inspected
repositories. We adopted the patch-representation in our tool, but were able to weaken the
redundancy assumption (see Section 6.3).

Since GenProg, much has been done in genetic program repair [248] mostly for Java.
Particularly Astor [62] enabled lots of research [249–252] due to its modular approach, as
well as real-world applications [253, 254]. This modularity, mostly the separation of fault
localization, patch-generation and search is a valuable lesson learned by the community
that we adopted in our tool. Compared to this body of research, our scientific contributions
lie within the patch-generation and the search-space (see Section 6.3.1).

6.2.4 Repair of Formally Verified Programs & Program Syn-
thesis

Another field of research dominant in functional programming is formal verification, in
which mathematical methods are used to prove the correctness of programs. Due to its
strengths it has been widely applied to various tasks, such as hardware-verification [255],
cryptographic protocols [256] or lately smart contracts [257]. But formal verification has
also been applied to the domain of program repair and synthesis [258, 259], and some
languages can arguably be considered synthesizers around constraints (e.g. Prolog).

Using specification-based synthesis in combination with a SAT solver can be effective,
however the accuracy is closely tied to the completeness of the post-condition constraints
[260].

For Haskell, these approaches revolve around liquid types, which enrich Haskell’s type
system with logical predicates that are passed on to an SMT solver during type checking
[261–264].

The existing approaches [265–267] focus primarily on the search-aspects of program
synthesis due to the (infinite) search space and often perform a guided search similar to
proof-systems.

The approach used in the Lifty [268] language is especially relevant:
Lifty is a domain-specific data-centric language in which applications can be statically

and automatically verified to handle data specified as per declarative security policies, and
suggest provably correct repairs when a leak of sensitive data is detected.

Their approach differs in that they target a domain-specific language and focus on type-
driven repair of security policies and not general properties. Another interesting approach
is the TYGAR based Hoogle+ API discovery tool, where users can specify programming

6.3 Technical Details — PropR

6

103

tasks using either a type, a set of input-output tests, or both, and get a list of programs
composed from functions in popular Haskell libraries and examples of behavior [269].
It is however focused on API discovery and not program repair, although incorporating
Hoogle+ into PropR is an interesting avenue for future work. The approach by Lee et al.
[270] is in many ways similar. They also operate on student data and find very valuable
insights from repair and identical challenges. The approach they developed (FixML) exploits
typed holes to align buggy student programs with a given instructor-program based on
symbolic execution. FixML is different as it requires a gold standard, and synthesizes
by type-enumeration after symbolic execution. To some degree, this is similar to our
implementation of an exhaustive search. Semantics-based repair using symbolic-execution
like that of Angelix [271] can be very effective in fixing real-world bugs, and uses symbolic
expressions similarly to our typed-holes. However, there are some scalability concerns for
symbolic execution, and while they can be mitigated using a carefully chosen number of
suspicious expression and their derived angelic forests [271], they can also be mitigated
using genetic algorithms and the more lightweight property-based analysis, motivating
their usage in PropR. Compared to program synthesis, program repair is better able to
take advantage of a "reasonable" baseline program from the developers.

In terms of utilizing specifications, the primary benefit of QuickCheck is the easy
adoption for users, whereas formal verification comes with a high barrier of entry for
most programs and requires dedicated and educated developers. To some degree we utilize
formal verification due to the type-correctness-constraint that already greatly shrinks the
search space — while we assert the functional correctness with tests and properties. A
full formal verification-suite might produce better results, but we ease the adoption of our
approach by utilizing comprehensive properties and tests.

6.3 Technical Details — PropR
To investigate the effectiveness of combining property-based tests with type-based syn-
thesis, we implemented PropR. PropR is an automated program repair tool written in
Haskell, and uses GHC as a library in conjunction with custom-written hole-fit plugins
as the basis for parsing source code, synthesizing fixes, as for instrumenting and running
tests. PropR also parametrizes the tests so that local definitions can be exchanged with new
ones, which allows us to observe the effectiveness of a fix. To automate the repair process,
PropR implements the search methods described in Section 6.3.4 to find and combine fixes
for the whole program repair. An overview of the PropR test-localize-synthesize-rebind
(TLSR) loop is provided in Figure 6.3. The circled numbers n⃝ in this section refer to the
labels in Figure 6.3.

As a running example, imagine we had an incorrect implementation of a function to
compute the length of a list called len, with properties, as seen in Figure 6.4.

6.3.1 Compiler-Driven Mutation
To repair a program, we use GHC to parse and type-check the source into GHC’s internal
representation of the type-annotated Haskell AST. By using GHC as a library, we can
interact with GHC’s rich internal representation of programs without resorting to external
dependencies or modeling. We determine the tests to fix by traversing the AST for top-level

6

104 6 PropR : Property-Based Automatic Program Repair

Figure 6.3: The PropR test-localize-synthesize-rebind loop

len :: [a] -> Int
len [] = 0
len xs = product $ map (const (1 :: Int)) xs

prop_abc :: Bool
prop_abc = len "abc" == 3

prop_dup :: [a] -> Bool
prop_dup x = len (x ++ x) == 2 * len x

Figure 6.4: An incorrect implementation of length. We map over the list and set all elements to 1 :: Int,
and take the product of the resulting list. This means that len will always return 1 for all lists. An expected
fix would be to take the sum of the elements, which would give the length of the list.

bindings with either a type (TestTree) or name (prop) that indicates it is a test 1⃝. We

6.3 Technical Details — PropR

6

105

prop'_abc :: ([a] -> Int) -> Bool
prop'_abc f = f "abc" == 3

prop'_dup :: ([a] -> Int) -> [a] -> Bool
prop'_dup f x = f (x ++ x) == 2 * f x

Figure 6.5: The parametrized properties for len

abc_prop :: Bool
abc_prop = prop'_abc length

dup_prop :: [a] -> Bool
dup_prop = prop'_dup length

Figure 6.6: The parametrized properties applied to a different implementation of len, the standard library
length

use GHC’s ability to derive data definitions for algebraic data types [197] and the Lens
library [272] to generate efficient traversals of the Haskell AST. To determine the function
bindings to mutate, we traverse the ASTs of the properties and find variables that refer to
top-level bindings in the current module 2⃝. We call these bindings the targets.

In our example, both prop_abc and prop_dup use the local top-level binding len
in their body, so our target set will be {len}.

Parametrized properties To generalize over the definition of targets in the properties
and tests, we create a parametrized property from each of the properties by changing
their binding to take an additional argument for each of the targets in their body. This
allows us to rebind (i.e., change the definition of) each of the targets by providing them
as an argument to the parametrized property 3⃝. Once the parametrized property has
received all the target arguments, it now behaves like the original property, with the target
bindings referring to our mutated definitions. We show the parametrized properties for
the properties in Figure 6.4 in Figure 6.5.

The new properties in Figure 6.6, abc_prop and double_prop will now behave the
same as the original prop_abc and prop_dup, but with every instance of len replaced
with length:

abc_prop = length "abc" == 3
double_prop x = length (x ++ x) == 2 * length x

This allows to create new definitions of len and evaluate how the properties behave with
the different definitions.

Fault localization PropR uses an expression-level fault localization spectrum [230],
to which we apply a binary fault localization method (touched or not touched by failing
properties). A notable difference to other APR tools like Astor is that we can perform fault

6

106 6 PropR : Property-Based Automatic Program Repair

localization for the mutated targets. This enables PropR to adjust the search space once a
partial repair has been found, i.e. one that passes a new subset of the properties. Since fault
localization is expensive, by default we only perform it on the initial program similarly to
Astor [62, 162]. GHC’s Haskell Program Coverage (HPC) can instrument Haskell modules
and get a count of how many times each expression is evaluated during execution [196].
Using QuickCheck, we find which properties are failing and generate a counterexample for
each failing property 4⃝. For properties without arguments (essentially unit tests), we do
not need any additional arguments, so we can run the property as-is: the counterexample
is the property itself. By applying each property to its counterexample and instrumenting
the resulting program with HPC, we can see exactly which expressions in the module
are evaluated in a failing execution of property 5⃝. The expressions evaluated in the
counterexample of the property are precisely the expressions for which a replacement
would have an effect: non-evaluated expressions cannot contribute to the failing of a
property. We call these the fault-involved expressions. These will be all the expressions
involved in failing tests/properties, and covers every expression invoked when running
counter-examples.

In our simple example, only prop_dup requires a counterexample, for which Quick-
Check produces a simple, non-empty list, [()]. When we then evaluate prop_abc and
prop_dup [()], only the expressions in the non-empty branch of len are evaluated:
the empty branch is not involved in the fault.

Perforation For the targets, we generate a version of the AST with a new typed hole
in it, in a process we call perforation. When we perforate a target, we generate a copy of
its AST for each fault-involved expression in the target, where the expression has been
replaced with a typed hole 6⃝. The perforated ASTs are then compiled with GHC. Since
they now have a typed hole, the compilation will invoke GHC’s valid hole-fit synthesis
[61] 7⃝. We present a few examples of the perforated versions of len in Figure 6.7.

len [] = 0
len xs = _

len [] = 0
len xs = _ $ map (const (1 :: Int)) xs

len [] = 0
len xs = product $ _

len [] = 0
len xs = product $ _ (const (1 :: Int)) xs
...

Figure 6.7: A few perforated versions of len. N.B. the empty branch is not perforated, as it is not involved in
the fault

6.3 Technical Details — PropR

6

107

6.3.2 Fixes
A fix is represented as a map (lookup table) from source locations in the module to an
expression representing a fix candidate. Merging two fixes is done by simply merging the
two maps. Candidate fixes in PropR come in three variations, hole-fit candidates, expression
candidates, and application candidates.

Hole-fit Candidates Using a custom hole-fit plugin, we extract the list of valid hole-fits
for that hole, and now have a well-typed replacement for each expression in the target
AST.

Found hole: _ :: [Int] -> Int
In an equation for 'len':
len xs = _ $ map (const (1 :: Int)) xs
Valid hole fits include
head :: [a] -> a
last :: [a] -> a
length :: Foldable t => t a -> Int
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
sum :: (Foldable t, Num a) => t a -> a
Valid refinement hole fits include
foldl1 (_ :: Int -> Int -> Int)
...

Figure 6.8: Hole-fits for a perforation of len, where product has been replaced with a hole

{<interactive:3:10-15>: head}
{<interactive:3:10-15>: last}
{<interactive:3:10-15>: length}
...
{<interactive:3:10-15>: sum}

Figure 6.9: Candidate fixes derived from the valid hole-fits in Figure 6.8. The location refers to product in
len

We derive hole-fit candidates directly from GHC’s valid hole-fits, as seen in Figure 6.8,
giving rise to the fixes in Figure 6.9. These take the form of an identifier (e.g., sum), or an
identifier with additional holes (e.g., foldl1 _) for refinement fits.

Since we synthesize only well-typed programs, we cannot use refinement hole-fits
directly: the resulting program would produce a typed hole error.

To use refinement hole-fits, we recursively synthesize fits for the holes in the refinement
hole-fits up to a depth configurable by the user. This means that we can generate e.g.,
foldl1 (+) when the depth is set to 1, and e.g., foldl1 (flip _) → foldl1

6

108 6 PropR : Property-Based Automatic Program Repair

(flip (-)) for a depth of 2, etc. By tuning the refinement level and depth, we could
synthesize most Haskell programs (excepting constants). However, in practical terms, the
amount of work grows exponentially with increasing depth.

To be able to find fixes that include constants (e.g., String or Int) or fixes that would
otherwise require a high and deep refinement level, we search the program under repair for
expression candidates [273]. These are injected into our custom hole-fit plugin and checked
whether they fit a given hole using machinery similar to GHC’s valid hole-fit synthesis, but
matching the type of an expression instead of an identifier in scope. In our example, these
would include 0, (1 :: Int), (x ++ x), and more. For each expression candidate, we
then check that all the variables referred to in the expressions are in scope, and that the
expression has an appropriate type. We also look at application candidates of the form
(_ x), where x is some expression already in the program, and _ is filled in by GHC’s
valid hole-fit synthesis. This allows us to find common data transformation fixes, such as
filter (not . null).

Regardless of technical limitations, this approach can be considered a form of localized
program synthesis exploited for program repair. By using valid hole-fits, we can utilize the
full power GHC’s type-checker when finding candidates and avoid having to model GHC’s
ever-growing list of language extensions. This allows us to drastically reduce the search
space to well-typed programs only.

6.3.3 Checking Fixes
Once we have found a candidate fix, we need to check whether they work. We apply a fix
to the program by traversing the AST, and substituting the expression found in the map
with its replacement.

len1 [] = 0
len1 xs = head $ map (const (1 :: Int)) xs
...
len3 [] = 0
len3 xs = length $ map (const (1 :: Int)) xs
...
len7 [] = 0
len7 xs = sum $ map (const (1 :: Int)) xs

Figure 6.10: New targets defined by applying the fixes in Figure 6.9 to the original len

We do this for all targets, and obtain new targets where the locations of the holes have
been replaced with fix candidates.

For the given len example, the fixes in Figure 6.9 give rise to the definitions shown in
Figure 6.10.

We then construct a checking program that applies the parametrized properties and
tests to these new target definitions and compile the result.

A simplified example of this can be seen in Figure 6.11, though we do additional work
to extract the results in PropR. It might be the case that the resulting program does not
compile: as our synthesis is based on the types, we might generate programs that do not

6.3 Technical Details — PropR

6

109

PropR> mapM sequence
[[quickCheck (prop'_abc len1), quickCheck (prop'_dup len1)]
,[quickCheck (prop'_abc len2), quickCheck (prop'_dup len2)]
,[quickCheck (prop'_abc len3), quickCheck (prop'_dup len3)]
...
,[quickCheck (prop'_abc len7), quickCheck (prop'_dup len7)]]
-- Evaluates to:
[[False, False],[False, False],[True, True],[False, False]
,[False, False],[False, False],[True, True]]

Figure 6.11: Checking our new targets from Figure 6.10

parse because of a difference in precedence (precedence is checked during renaming, after
type-checking in GHC). We remove all those candidate fixes that do not compile, obtaining
an executable that takes as an argument the property to run, and returns whether that
property failed.

We run this executable in a separate process: running it in the same process might
cause our own program to hang due to a loop in the check.

By running in a separate process, we can kill it after a timeout and decide that the
given fix resulted in an infinite loop. After executing the program, we have three possible
results: all properties succeeded; the program did not finish due to an error or timeout; or
some properties failed 8⃝.

In our example, we see in Figure 6.11 that len3 and len7 pass all the properties,
meaning that replacing productwith length or sum qualifies as a repair for the program.

6.3.4 Search
Within PropR, we implemented three different search algorithms: random search, exhaustive
search, and genetic search 9⃝.

All three algorithms share a common configuration: they all have a time budget
(measured in wall clock time) after which they exit, and return the results (if any) that
they’ve found.

For the genetic search, PropR implements best practices and algorithms common to
other tools such as Astor [62] or EvoSuite [244]. A mutation consists of either dropping a
replacement of a fix, or adding a new replacement to it. The initial population is created as
picking n random mutations. The crossover randomly picks cut points within the parent
chromosomes, and produces offspring by swapping the parents’ genes around the cut points.
We support environment-selection [167] with an elitism-rate [274] for truncation. Elitism
means that we pick the top 𝑥% percent of the fittest candidates for the next generation,
filling the remaining (100−𝑥)% with (other) random individuals from the population. We
choose random pairs from the last population as parents and perform environment selection
on the parents and their offspring. Our manual sampling of repairs-in-progress on the data
points showed that genetic search requires high churn in order to be effective: changing a
single expression of the program usually failed more properties than it fixed. Hence, the
resulting configurations for the experiment have a low elitism- and high mutation- and
crossover-rate.

6

110 6 PropR : Property-Based Automatic Program Repair

Within random search, we pick (up to a configurable size) evaluated holes at random
and pick valid hole-fits at random with which to fill them. We then check the resulting
fix and cache it. The primary reason for using random search is to show that the genetic
search is an improvement over guessing. Nevertheless, Qi et al. [172] showed that random
search sometimes can be superior to genetic search, further motivating its application.
Besides, random search is a standard baseline in search-based software engineering to
assess whether more “intelligent” search algorithms are needed for the problem under
analysis.

For exhaustive search, we check each hole-fit in a breadth-first manner: first all
single replacement fixes, then all two replacement fixes and so on until the search bud-
get is exhausted. Exhaustive search is deterministic apart from inherent randomness in
QuickCheck. We use exhaustive search to demonstrate the complexity of the problem,
and to show that search is better than enumeration. The deterministic search pattern of
exhaustive search would be ideal for a single fix problem such as our example.

The fitness for all searches is calculated as the failure ratio number of failures
number of tests , with a non-

termination or errors treated as the worst fitness 1 and a fitness of 0 (all tests passing)
marks a candidate patch. Such patches are removed from populations in genetic search
and replaced by a new random element.

Within the test-localize-synthesize-rebind loop (Figure 6.3) we perform one generation
of genetic search per loop, and after the selection of chromosomes the program is re-bound
and coverage re-evaluated. The authors observed that this is a bit over-engineered for
small programs — the fault localization did not greatly change when the programs had only
a single failing property. As an optimization, we added a flag to skip the steps 5⃝ to 7⃝ in
the loop to speed up the actual search. This configuration was enabled during experiments
presented in Section 6.4. The exhaustive and random search do not perform any rebinding.

6.3.5 Looping and Finalizing Results
Looping If there are still failing properties after an iteration of the loop, we apply the
current fixes we have found so far to the targets and enter the next iteration of the loop
10⃝, repeating the process with the new targets until all properties have been fixed, or the
search budget runs out.

Finalizing and Reporting Results After we have found a set of valid fixes that pass all
the properties, we generate a diff for the original program based on the program bindings
and the mutated targets constituting the fix 11⃝. This way the resulting patches can be fed
into other systems such as editors or pull requests.

6.4 Empirical Study

6

111

diff --git a/<interactive> b/<interactive>
--- a/<interactive>
+++ b/<interactive>
@@ -1,2 +1,2 @@ len [] = 0
len [] = 0
-len xs = product $ map (const (1 :: Int)) xs
+len xs = length $ map (const (1 :: Int)) xs

diff --git a/<interactive> b/<interactive>
--- a/<interactive>
+++ b/<interactive>
@@ -4,2 +4,2 @@ len [] = 0
len [] = 0
-len xs = product $ map (const (1 :: Int)) xs
+len xs = sum $ map (const (1 :: Int)) xs

Figure 6.12: The final result of our repair for len

6.4 Empirical Study
6.4.1 ResearchQuestions
Given the concepts presented in Section 6.3, research interests are twofold: How well
does the typed hole synthesis perform for APR, and what is the individual contribution of
properties. As within the integral approach of PropR, the effects cannot truly be dissected:
The only contributions that we can separate for distinct inspection is the use of properties,
under which we will investigate the patches generated by PropR.

We first want to answer whether properties add value for guiding the search. Ideally,
properties should improve the repair-rate, speed and quality regardless of the approach,
which we address in RQ1:

Research Question 1
To what extent does automatic program repair benefit from the use of properties?

Given that properties do have an impact (for better or worse), we want to quantify its
extent on configuration and selection of search algorithms. For example, we expect that
the use of properties helps with fitness and search, but will increase the time required for
evaluation — this would motivate to configure the genetic search to have small but well
guided populations. To elaborate this we define RQ2 as follows:

Research Question 2
How can we improve (and configure) search algorithms when used with properties?

With the last research question we want to perform a qualitative analysis on the results
found. Previous research showed that just maximizing metrics is not sufficient. With a
manual analysis we look for the issue of overfitting and try to investigate new issues and
new patterns of overfitting.

6

112 6 PropR : Property-Based Automatic Program Repair

Research Question 3
To what extent is overfitting in automatic program repair addressed by the use of
properties?

6.4.2 Dataset
The novel dataset stems from a student course on functional programming. Within the
exercise, the students had to implement a calculator that parses a term from text, calculates
results and derivations. While the overall notion is that of a classroom exercise, the problem
nevertheless contains real-world tasks asserted by real-world tests. The calculator itself
is a classic student-exercise, but the subtask of parsing is both common and difficult,
representing a valuable case for APR. In total, we collected 30 programs that all fail at
least one of 23 properties and one of 20 unit tests. The programs range from 150 to 700
lines of code (excluding tests) and have at least 5 top level definitions. These are common

file-sizes for Haskell, e.g. PropR itself has an average of 200 LoC per file. The faults are
localized to one of the three modules provided to PropR.

The most violated tests are either related to parsing and printing (especially of trigono-
metric functions, also seen in Figure 6.18) or about simplification (seen in Figure 6.13),
which are core-parts of the assignment. The calculator makes a particularly good example
for properties, as attributes such as commutativity, associativity etc. are easy to assert but
harder to implement. Hence, we argue that the calculator-exercise makes a case for typical
programs that implement properties (i.e., they are not artificially added for APR).

Data points were selected from the students submissions if they fulfilled the following
attributes: A⃝ it compiled B⃝ it failed the unit test suite and the property-based test suite
separately. An error-producing test is considered as a normal failure. We selected them
by these criteria to draw per-data-point comparisons of properties to unit tests and their
unison. We consider a separate investigation of repairing unit test failing programs versus
properties failing programs and their overfitting future research.

prop_simplify_idempotency :: Expr -> Bool
prop_simplify_idempotency e =

simplify (simplify e) == simplify e

Figure 6.13: A property asserting the idempotency of simplify

The anonymized data is provided in the reproduction package.

6.4.3 Methodology / Experiment Design
To evaluate RQ1 and RQ2 we perform a grid experiment on the dataset with the parameters
presented in Table 6.1. For every of the 45 configurations we make a repair attempt on every
point in the dataset. The genetic search uses a single set of parameters that was determined
through probing. We utilize docker and limit every container to 8 vCPUs @ 3.6ghz and
16gb RAM (the container’s lifetime is exactly one data-point). Further information on the
data collection can be found in the reproduction package.

6.4 Empirical Study

6

113

Table 6.1: Parameters for Grid Experiment

parameter inspected values
tests Unit Tests ; Properties ; Unit Tests + Properties
search random ; exhaustive ; genetic
termination 10 minute search-budget
seeds 5 seeds

Given this grid experiment, we collect the following values for each data point in the
dataset:

1. Time to first result

2. Number of distinct results within 10 minutes

3. The fixes themselves

The search budget starts after a brief initialization, as PropR loads and instruments the
program. We round the measured times to two digits as recommended by Neumann et al.
and remove Type-1-Clones (identical up to whitespace) from the results [275, 276].

To answer RQ1 we check every trial whether at least one patch was found (whether it
was solved). We then perform a Fisher exact test [277] to see if the entries originate from
the same population, i.e., if they follow the same distribution. We consider results with a
p-value of smaller than 0.05 as significant.

To answer RQ2 we perform a pairwise Wilcoxon-RankSum test [278] on the data points
grouped by their test configuration. The Wilcoxon test is a non-parametric test and does
not make any assumption on data distribution. In its pairwise application, we first compare
the effect of unit tests against the effect of properties, then unit tests against combined unit
tests and properties etc. We choose a significance level of 95%.

After we have seen whether properties have a significant impact on program repair, we
can quantify the effect size by applying the Vargha-Delaney test [177] to the given pairs of
configurations. In the Vargha-Delaney test, a value of e.g. 0.7 means that algorithm B is
better than algorithm A in 70% of the cases, estimating a similar probability of dominance
for future applications on similarly distributed data points. Note that a result of 0.5 does
not mean there was no effect — the groups can still be significantly different without being
clearly better.

RQ3 can (to the best of our knowledge) only be answered by human evaluation. Existing
research on automatic patch-validation by Qi [279] requires an automatic test-generation
framework (which is not available for Haskell) as well as a gold-standard fix to work as
an oracle. They used existing git-fixes as oracles, but we expect some data points to be
correct despite not matching the sample-solution. Similarly, work by Nilizadeh et al. [280]
utilizes formal verification to automatically verify generated patches, but unfortunately,
no specifications were available for our dataset. Instead, we perform the analysis manually,
similar to [242] and [89]. As there are too many results to manually inspect, we sampled

6

114 6 PropR : Property-Based Automatic Program Repair

70 fixes1 and let two authors label them as overfit or not overfit. The authors do so based on
their domain-knowledge and in accordance with a given gold-standard. On disagreement,
the authors provide a short written statement before discussing and agreeing on the fix-
status. The conclusion of the discussion is also documented with a short statement. The
manual labels as well as the statements are shared within the replication package.

6.5 Results
The following section answers the research questions in order and presents general infor-
mation gained in the study.

RQ 1 — Repair Rate In total, PropR managed to find patches for 13 of 30 programs
of the dataset. In Table 6.2 we show the detailed results of these 13 programs. We found
228 patches in total, with a median of 3 patches per successful run. A visualization of
the results can be seen in Figure 6.14 and Figure 6.15.

For every entry, we performed a Fisher exact test based on the repair per seed of every
test suite. The contingency tables are based on whether the specific seed found patches
for the test suite. It showed that 4 of the 13 repaired entries were significantly better in
producing repairs with properties (E1, E3, E4, and E14 from Table 6.2).

A global Fisher exact test and Wilcoxon-RankSum test showed no statistical significant
difference between the test suites (p-values of 10%-20%). Whether properties are beneficial
is a highly specific topic, and we expect it more to be a matter whether the bug is properly
covered by the test suite. We argue that properties can produce stronger test suites than
unit tests, but whether they are applicable and well implemented is ultimately up to the
developers.

Figure 6.14 shows genetic search outperforming exhaustive search in any test suite
configuration, and most effectively for properties.

Figure 6.15 shows the overlap of solved entries by test suite. It shows that four entries
were uniquely solvable by using only properties and one entry was uniquely solvable
by the combined test suite. All entries solved by unit tests have also been solved by the
properties. This does not necessarily imply that properties are better — the patches can
still be overfit and are to be evaluated in RQ3.

Summary RQ1
Properties do not significantly help with producing patches. In our study, properties
found unique patches that unit tests did not produce. The difference between results in
genetic and exhaustive search were greatest for the properties.

RQ 2 — Repair Speed We grouped the results per seed and compared the median
time-to-first-result for each test suite. All two-way hypothesis-tests reported a significant
p-value of less than 0.01, proving that there are significant differences in distributions.

1The threshold of 70 has been calculated after seeing 230 patches being generated, which is sufficient sample for
a p-value of 0.05 at an error rate of 10%

6.5 Results

6

115

Table 6.2: Number of independent runs that produced at least one patch for genetic search

Programs E01 E02 E03 E04 E05 E07 E08 E09 E12 E13 E14 E18 E25

Units 0 1 5 5 5 5 5 5 5 0 0 0 5
Props 5 1 1 0 5 5 5 5 2 1 5 2 3
Both 0 1 4 0 1 5 5 5 3 0 0 0 3

Figure 6.14: Solved Entries per Test-Suite and Algorithm

In particular, we performed a test2 whether properties are faster than unit tests in
finding patches, which was the case with a p-value of 0.02. The Vargha and Delaney effect
size test showed an estimate of 0.28 which is considered a medium-effect size, showing
that properties are faster than unit tests.

An overview of the time-to-first-result can be seen in Figure 6.16. We would like to
stress that similar to some results of RQ3, the test suites’ speed seems to behave in such a
way that the slowest and hardest test determines the magnitude of search. Properties do
not have a significant overhead by design, which is positively surprising. The cost of their
execution is compensated by the speedup in search.

Summary RQ2
Genetic Search finds patches faster for properties than for unit tests. The combined test
suite also yields combined search speed.

RQ 3 — Manual Inspection From the sample of 70 patches the authors agreed on 49 to
be overfit and 21 to be fit. Given the overall population of 230 and an error rate of 10%,
we expect 62 to 76 of total patches to be correct. This results in a total non-overfit rate of
2Wilcoxon-RankSum with less

6

116 6 PropR : Property-Based Automatic Program Repair

Figure 6.15: Venn-Diagram of Solved Entries per Suite

27% to 33%. In particular, patches in the sample found for unit tests were overfit in 85% of
cases (19/23), but the properties were overfit in 64% of cases (21/33). The combined test
suite overfit in 63% (9/14) cases.

These are not evenly distributed — some programs are only repaired overfit while
others are always well fixed. Hence, we deduct that of the 13 Entries that have fixes, 3 to 4
have non-overfit repairs. This estimates an effective repair-rate of 10% or respectively 13%,
which performs similar to the rates reported by Astor [89] (13%) and better than GenProg
[89](1-4%). Arja [281] reports an effective repair rate of 8% which we slightly outperform.

A typical example found by manual inspection was adding space-stripping to the
addition-case of showExpr, as seen in Figure 6.17.

There is a single unit test (see Figure 6.18) to assert a printed addition without spaces.
Within the patch only the "+" case gets repaired — this is due to the precedence of the
expression which is correctly picked up. Hitherto, the change in the addition actually
removes all white-space and correctly passes the test. This (actually) solves the unit test
as expected and is therefore arguably not truly overfitting. Nevertheless, a developer
would perform the string-stripping on all cases, not only on the addition. Here we see a
shortcoming of the test suite — this would have not been possible if we had a property
prop_showExpr_printNoSpaces or if we simply had unit tests for all cases. In other
data points, where the showExpr had a unified top-level expression (not an immediate
pattern match), the repair was successful by adding top-level string-stripping. We would
also like to stress the quality of the patch generated despite overfitting: It draws 4 elements
(filter, toLower, isSpace, (.)) which were not in the code beforehand and applied
them at the correct position.

Another issue observed were empty patches — these appeared when the QuickCheck
properties exhibited inconsistent behavior. We suspect a property that tests for the idempo-
tency of simplify seen in Figure 6.13, which requires a randomly generated expression.
The property is meant to assert that e.g., x * 4 * 0 gets reduced to 0 and not to x * 0.
Whether this case (or similar ones) are tested depends on the randomly created expressions
— which makes it an inconsistent test. These are issues with the test suite that were uncov-

6.5 Results

6

117

Figure 6.16: Distribution of Time to First Patch per Entry

diff --git a//input/expr_units.hs b//input/expr_units.hs
--- a//input/expr_units.hs
+++ b//input/expr_units.hs
@@ -59,6 +59,6 @@ showExpr (Num n) = show n
showExpr (Num n) = show n
-showExpr (Add a b) = showExpr a ++ " + " ++ showExpr b
+showExpr (Add a b) =
+ showExpr a ++ ((filter (not . isSpace)) (" + ")) ++ showExpr b
showExpr (Mul a b) = showFactor a ++ " * " ++ showFactor b
showExpr (Sin a) = "sin" ++ showFactor a
showExpr (Cos a) = "cos" ++ showFactor a
showExpr (Var c) = [c]

Figure 6.17: A PropR patch showing overfitting on a unit test

prop_unit_showBigExpr :: Bool
prop_unit_showBigExpr = strip (showExpr expr) == strip res

where
res = "sin (2.1 * x + 3.2) + 3.5 * x + 5.7"
strip = filter (not . isSpace)
arg = Expr.sin (add (mul (num 2.1) x) (num 3.2))
expr = add (add (add (mul (num 3.5) x)) (num 5.7)) arg

Figure 6.18: The unit test corresponding to the fix in Figure 6.17

ered due to the hyper-frequent evaluation. The only way to mitigate this is to provide a
handful of unit tests or write a specific expression-generator used for the flaky property.
We labeled empty patches to be overfit as we do not consider them proper repairs.

6

118 6 PropR : Property-Based Automatic Program Repair

Summary RQ3
Adding properties reduced the overfit ratio from 85% to 63%, doubling the number of
good patches. The resulting effective repair rate of 10% to 13% is comparable to other
tools. Overfitting appeared despite the use of properties, but generally less due to an
overall stronger test suite.

6.6 Discussion
Overfitting on Properties Similar to the overfitting of empty patches shown in RQ3, we
had cases of patches where one or more failing properties exhibited inconsistent behavior,
and an overfit patch was considered a successful patch. We observed an example that
changed the simplification of multiplication to return 0 whenever a variable was in the term.
This satisfies the prop_MultWith0_Always0 property and should fail other properties
such as multiplicative associativity, but (in rare cases) Quick-Check produced examples for
the other properties that also evaluate to 0.

This overfitting shows that a test suite is not better just because it is utilizing properties.
APR-fitness is still only as good as the test suite — properties help define better test suites
and well-written properties positively influence APR.

Exploitable Overfitting A noticeable side effect of the tool is that if the repair overfits, it
produces numerous (bad) patches, as can be seen from the number of generated proposals.

However, the repairs’ output is not useless despite the overfitting: the suggested
patches clearly show the shortcomings of the test suite. The proposed overfit patches help
developers with fault localization and improving the test suite. In particular, as properties
and unit tests are not exclusive, developers can consider a test-and-repair-driven approach,
where they adjust the test suite and program iteratively assisted by the repair tool. We
consider this approach attractive for class-room settings, where the programs are of lower
complexity and allow for fast feedback. While we don’t expect PropR to be enough to
solve the tasks for the students, it clearly shows where the problems in the tests or code
are. Exploring class-room usage is an interesting direction for future work.

Drastically Increased Search-Space Due to the novel approach to finding repair can-
didates, the search space drastically increased as compared to using existing expressions
or statements only. This can be seen with the absence of random-search findings. Other
studies showed at least some results with random search, sometimes reporting random
search as most successful [172]. As we find (many) patches with exhaustive search, the
problems are generally solvable with small changes. This implies that the only reason for
random search to yield no results is the increased search space.

This finding motivates further investigating the genetic search and its optimization
for more complex problems that do not achieve timely results with exhaustive search.
We consider it worthwhile to revisit existing datasets, that were not solvable due to the
redundancy assumption in most repair tools, using a typed hole approach.

Transference to Java As Java is the most prominent language for APR, it begs the
question of which results can be transferred fromHaskell into more mainstream approaches.

6.6 Discussion

6

119

Properties are supported by JUnit-Plugins3 and can easily be added to any common test
suite and build-tool. The positive effects of properties as presented in Section 6.5 only
require Java programs with sufficient properties. Unfortunately most Java-projects are not
utilizing properties. Even less complex JUnit-Features, such as parameterized tests, are not
widely adopted. This is in stark contrast to functional programming communities, where
tools like QuickCheck are popular.

The hole-fitting repair approach cannot be easily reproduced for Java: The JavaC,
unlike GHC, is not intended to be used as a library. Nevertheless, Java is strictly typed
and the basic hole-fitting-approach can be integrated using meta-programming libraries
like Spoon [282]. Many challenges remain: As Java’s methods are not pure functions, they
cannot be just transplanted. Side effects can wreak havoc and just on a technical level
polymorphism, that is often only resolvable dynamically, bares huge follow-up-challenges.

But not all is lost for the JVM: Repair approaches that focus on the bytecode [283, 284],
can easier adapt hole-fitting. In particular, one could imagine a tool that produces holes for
bytecode and introduces the hole-fits utilizing more strict JVM Compilers such as Closure
or Scala. We consider this extension a hard but valuable track for further research.

Future Work The primary research challenge we see is to combine existing approaches
with the newly introduced PropR hole-fitting. A hybrid approach that could produce high
churn with techniques from Astor [62] or ARJA [281] in combination with the fine-grained
changes produced by PropR could solve a broader range of issues. Specific to Haskell is the
need to introduce left-hand side definitions, i.e. new pattern matches or functions. These
could be provided by generative neural networks [2, 285] and either be used as mutations
or as an initial population of chromosomes. Representing multiple types of changes is only
a matter of representation within the chromosome — the remaining search, fitness and
fault localization can be kept as is.

For fault localization, we currently use all the expressions involved in the counter-
examples. However, it should be possible to use the coverage information and the passing
and failing tests for spectrum-based fault localization to narrow the fault-involved expres-
sions further to suspicious expressions, rather than all the expressions involved in the
failing test.

In terms of further evaluation, the next steps are user surveys and experiments on real
world applications such as Pandoc4 or Alex5. In particular, we envision a bot similar to
Sorald [241] that provides patch-suggestions on failing pull-requests. We would like to
ask maintainers and the public community to give feedback on the quality of repairs, and
whether the suggested patches contributed to fault localization or improvements of the
test suite even if not added to the code.

3https://github.com/pholser/junit-quickcheck
4https://pandoc.org/
5https://www.haskell.org/alex/

https://github.com/pholser/junit-quickcheck
https://pandoc.org/
https://www.haskell.org/alex/

6

120 6 PropR : Property-Based Automatic Program Repair

6.7 Threats to Validity
Internal Threats We addressed the randomness in our experiments by running 5 runs
with different seeds according to the suggestions of Arcuri and Fraser [286]. The tool used
in our experiment could contain bugs. We’ve published it under a FOSS-license to gain
further insights and suggestions from the community. The experiment and dataset may
contain mistakes, which we address by providing a reproduction package and open source
the experiment and data. The package also contains notes on the data-preparation for the
experiment.

External Threats The dataset is based on student data, which could be considered
artificial. We stress that student data has been used in literature for program repair
previously [248, 287–289]. A real-world study on program such as Pandoc [290] is part of
future work. Pandoc, a popular Haskell document-converter, is rich in properties that test
e.g., for symmetry over conversions.

6.8 Conclusion
The goal of this paper is to introduce a new automatic program repair approach based on
types and compiler suggestions, in addition to utilizing properties for repair fitness and
fault localization. To that end, we implemented PropR, a Haskell tool that utilizes GHC for
patch-generation and can evaluate properties as well as unit tests. We provided a dataset
with 30 programs and their unit tests and properties. On this dataset we performed an
empirical study to compare the repair rates for different test suites and search-algorithms,
and manually inspect the generated patches.

Our analysis of 230 patches show that we reach an effective repair rate of 10%-13%
(comparable to other state-of-the-art tools) but have a reduced rate of overfitting (from 85%
to 63% when applying properties). The novel approach for patch generation produces a
greatly increased search space and promising patches on manual inspection. We observed
that properties did not increase the number of programs for which patches were found,
but solutions were less overfit and found faster. Overfitting based on unit tests persisted
into the combined test suite. Similarly, we have observed that properties can produce cases
of overfitting too.

Our results attest to the stronger utilization of language-features for patch generation to
overcome the redundancy assumption, i.e., only reusing existing code. Using the compiler’s
information on types and scopes, the created patches are semantically correct and come
in a much greater variety, which was reported as a missing feature for many APR tools.
Our manual analysis motivates to use the generated patches (if not directly applicable) as
guidance for fault localization or to improve the test suite.

6.9 Online Resources
PropR is available onGitHub underMIT-license athttps://github.com/Tritlo/
PropR. The reproduction package which includes the data, evaluation and a binary of
PropR is available on Zenodo https://doi.org/10.5281/zenodo.5389051

https://github.com/Tritlo/PropR
https://github.com/Tritlo/PropR
https://doi.org/10.5281/zenodo.5389051

7

121

7
Functional Spectra -

Exploring Spectrum-Based
Fault Localization in

Functional Programming

Summary
Fault localization plays an important role in debugging, one technique thereof is spectrum-

based fault localization, which uses tests and program coverage to produce a spectrum

of locations involved in passing and failing tests. Despite its extensive application in
Java, this technique remains underexplored within functional programming languages.
This gap underscores a critical challenge: adapting spectrum-based fault localization to
accommodate the unique characteristics of functional paradigms. Addressing this challenge,
we evolve current spectrum-based approaches by extending the spectra with types and AST
structure. We introduce a rule-based system tailored to capture more complex attributes of
the spectrum. Spectrums are generated using an ingredient for the Tasty test framework,
which allows easy adoption and reproducibility. Through an empirical study involving 11
real-world programs, we meticulously investigate the generated spectra along with the
effectiveness of the rule-based system and their correlation to faults. Furthermore, we
employ a set of classifiers to evaluate the potential for cross-program extrapolation of our
findings. For most bugs, conventional spectrum-based formulas perform promisingly well
in a functional context and are only outperformed by classifiers incorporating formulas.

This chapter presents a submission to Proceedings of the 17th ACM SIGPLAN International Haskell

Symposium (HASKELL 2024) under the working title Functional Spectra - Exploring Spectrum-Based

Fault Localization in Functional Programming by Leonhard Applis, Matthías Páll Gissurarson and
Annibale Panichella. It is currently being revisited and submitted to 18th IEEE International Conference
on Software Testing, Verification and Validation (ICST) 2025. We elaborate in the preface.

7

122 7 Functional Spectra for Fault Localization

Preface - Functional Programs and Spectra
This chapter is a point in time of ongoing work. The original motivation stems from PropR,
where only a simple heuristic is used in place of a full-fledged fault-localization method.
With PropR, we were confident that sourcing the repair from the compiler was a very
fruitful technique, so improving the primitive parts in its ensemble was prioritized. We
expected that employing a fine-grained approach, like spectrum-based fault localization
would increase our chances of repairing the right place.

To bring this to life step-by-step, we sought out to first investigate fault localization as
a isolated topic. After all, Haskell programs are different from Java, and we might have
a bite too big to swallow if we bring it straight into automated program repair. To pay
respect to the complexity, get the tooling incrementally in place and hopefully understand
the application-domain better, we started working on a novel SBFL tool for Haskell.

One issue arose by related work from Li et al. [291], who independently worked on
the topic in parallel, and even happened to have an overlap in datapoints. This forced us
to extend the research scope beyond "Applying SBFL for Haskell" and introduce additional
novel elements which form the majority of the chapter. When considering novelties, we
reflected on a previous theme that stretches also over this thesis: That the compiler gives us
most of the help we need. As such, we set our mind on extending the spectra by introducing
compiler information, such as types and AST attributes. From the drawing board, these
attributes lend themselves to arguments about faults in a schizophrenic manner: A complex
type can do both, be the origin of bugs, or protect the developer from mistakes. Without
evidence it is not clear to say if complicated types correlate with bugs.

To gather the required evidence, we opted for a Rule-approach: Instead of directly
sorting compiler information in good or bad categories, by e.g. introducing them into a
new SBFL-formula, we wanted to capture it quantifiable per expression and evaluate its
merits. We implemented rules around execution-frequency, AST-attributes and types as
presented later in this chapter. The goal behind this approach was two-fold: One, we hoped
to find correlations between single-attributes (for example, type complexity) and faults.
This itself could lead to an interesting insight on Haskell Bugs, and may open up research
and debates. Second, the good rules can be directly combined into a expert-rule system.
Dominant in reviews was a lack of clarity in results - reviewers expressed that there is no
clear answer of what to do with the rules, and that the classifiers failed to do so as well. In
general, there was too little distinction between rules, attributes, formulas and classifiers.

The current ongoing work on SBFL for Haskell tries to emphasize some of the learnings
by introducing rule-based spectrum-filters. We still believe that the programs attributes
correlate with faults, yet our first attempt did not (significantly) out-perform existing
formulas while introducing high complexity. The formulas often yielded decent results,
and seemed to mostly struggle with the granularity of expression level spectra. A lot
of unrelated elements, or entries with an identical spectrum-entry, clock up the first x
results and impact the TopX negatively. The novel found uncovered faults, faults that
are not covered by the programs failing tests, must be solved with something beyond the
spectrum-filters. Machine learning, or additional information by e.g. test generation or
test carving, might be possible solutions.

7.1 Introduction

7

123

7.1 Introduction
Functional programming achieved its good reputation by leading research on types and
programming languages, but we believe it can also be championed in tooling and software
engineering practices. It remains open what tooling functional programmers really want,
but tooling they need. Haskell is known for adapting more niche tools than elsewhere or
writing their own solutions.

According to modern developer surveys, approximately 50% of development is spent
debugging, half of which is spent fixing bugs [292]. An important part of the debugging
process is fault localization, i.e. determining which part of the program is at fault. For some
developers, it can be enough to highlight code touched by failing tests and shade more
frequently failing code darker. For maintainers, a solution in the continuous integration (CI)
pipeline could be appropriate, showing the most suspicious code on failing pull requests
(PRs). Lastly, for projects that heavily utilize code generation, linking identifiers and types
of failing and passing code might help find faulty patterns on a broader, more abstract
scale. These challenges cross most software paradigms, including functional programming
[293, 294].

One way to assist the process is to introduce automated tools [295, 296], for example,
spectrum-based fault localization (SBFL). A programs spectrum is created by running
individual tests and collecting program coverage [63]; thus capturing different aspects of
the program by branching over the test suite. Spectra have been successfully applied in
imperative languages but have yet to be established in functional communities. Spectrum-
Based Fault Localization is based on the premise that by comparing elements involved in
failing tests and those involved in passing tests, we can deduce which location is at fault.
The program spectrum captures the data required to determine which element is touched
by which test through code instrumentation, running each test, and marking involved
locations.

7.1.1 Example
Consider the function and properties (from QuickCheck [245]) in figure 7.1.

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = 0
3 foldInt f z (x:xs) = (foldInt f z xs) `f` x
4

5 prop_sum, prop_prod, prop_diff :: [Int] -> Bool
6 prop_sum xs = foldInt (+) xs 0 == sum xs
7 prop_prod xs = foldInt (*) xs 1 == product xs
8 prop_diff xs = foldInt (-) xs 0 == negate (sum xs)

Figure 7.1: A buggy program and associated properties

Here, we intended to implement foldl, but made a mistake: we accidentally wrote 0
instead of z in line 2. The prop_sum and prop_diff touch all locations in the spectrum,
but prop_prod only touches the base case, since QuickCheck’s initial test is always [].

Running the properties for the program in figure 7.1, produces a spectrum similar to
that in table 7.1. A standard spectrum consists of only the tests, whether they pass or fail,

7

124 7 Functional Spectra for Fault Localization

Table 7.1: A spectrum for the code in figure 7.1 (numbers below locations specify the executions)

na
m
e

ty
pe

re
su
lt

2:
18

3:
31

3:
35
-3
6

3:
22
-3
7

3:
43

3:
22
-4
3

2:
1-
3:
43

ty
pe

In
t

In
t-
>
In
t-
>
In
t

[In
t]

In
t

In
t

In
t

id
en
tifi

er
f

xs
x

su
m

Q
C

Tr
ue

10
0

21
62

22
55

22
55

22
55

22
55

23
55

pr
od

Q
C

Fa
lse

1
0

0
0

0
0

1
di
ff

Q
C

Tr
ue

10
0

22
24

23
19

23
19

23
19

23
19

24
19

7.1 Introduction

7

125

and the locations involved in each test. We augmented spectra to also include the types of
expressions and tests involved, the name of the identifier, and the number of evaluations of
this location in the test. The notation 2:18 represents line 2 column 18, and - indicates a
range of characters. We see that for location 2:18 the passing tests execute 100, which
maps to the default amount of tries in QuickCheck, while the failing one aborts after the
first attempt, namely []. Using the standard formulas detailed in section 7.3.2 on the
spectrum, we can score the locations as detailed in figure 7.2. Here, the most suspect
location is indeed the underlined 0 in 2:18: it is involved in more failing tests than other
locations, apart from the definition of the entire foldInt that spans lines 2 and 3.

location score
2:18 0.577

2:1-3:43 0.577
3:31 0

(a) Top 3 as per Ochiai

location score
2:18 0.5

2:1-3:43 0.5
3:31 0

(b) Top 3 as per Tarantula

location score
2:18 0.5

2:1-3:43 0.5
3:31 0

(c) Top 3 as per DStar 2

Figure 7.2: Results of some of the classic SBFL formulas, with the bug location in bold.

Although replacing the definition of foldInt is certainly an option, the type infor-
mation in the augmented spectrum allows us to distinguish expressions from locations.
Using the type information to deduce that 2:18 is an expression, we can break the tie of
suspiciousness-formulas and correctly point to 0 as the most suspicious expression in the
spectrum.

However, it is not often as clear which location is at fault. If, for example, we had gotten
the base case correct but had written f x (foldInt f z xs) in line 3, we would have
accidentally implemented foldr instead of foldl.

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = z
3 foldInt f z (x:xs) = f x (foldInt f z xs)

Figure 7.3: The program from figure 7.1, slightly modified.

Running the properties again, this accidental foldr produces the spectrum in table 7.2.
Here, it is not as clear which location is at fault: while prop_sum and prop_prod pass,
now prop_diff fails and touches all except f in foldInt f z xs in line 3, since
QuickCheck tests the empty list and then singleton lists. This exonerates the base case, but
does not help us to distinguish the remaining locations. As seen in figure 7.4, formulas fall
short in this case.

7

126 7 Functional Spectra for Fault Localization

Table 7.2: A spectrum for the code in figure 7.1, with a fixed based case but f x (foldInt f z xs)
in line 3

na
m
e

ty
pe

re
su
lt

2:
18

3:
24

3:
35

3:
37

3:
39
-4
0

3:
26
-4
1

3:
22
-4
1

2:
1-
3:
41

ty
pe

In
t

In
t

In
t-
>
In
t-
>
In
t

In
t

[In
t]

In
t

In
t

id
en
tifi

er
z

x
f

z
xs

su
m

Q
C

Tr
ue

10
0

26
54

25
60

26
54

26
54

26
54

26
54

27
54

pr
od

Q
C

Tr
ue

10
0

26
04

25
09

26
04

26
04

26
04

26
04

27
04

di
ff

Q
C

Fa
lse

7
4

0
4

4
4

4
11

7.1 Introduction

7

127

location score
2:18 0.577
3:24 0.577
3:37 0.577

3:39-40 0.577
3:26-41 0.577
3:22-41 0.577
2:1-3:41 0.577
3:35 0.0

(a) Ochiai scoring

location score
2:18 0.5
3:24 0.5
3:37 0.5

3:39-40 0.5
3:26-41 0.5
3:22-41 0.5
2:1-3:41 0.5
3:35 0.0

(b) Tarantula scoring

location score
2:18 0.5
3:24 0.5
3:37 0.5

3:39-40 0.5
3:26-41 0.5
3:22-41 0.5
2:1-3:41 0.5
3:35 0.0

(c) DStar 2 scoring

Figure 7.4: Classic SBFL formula results with the bug location in bold.

While this is a challenge to traditional SBFL formulas, we investigate a rule-based
approach that allows us to distinguish these cases, by inspecting the AST structure, types,
and identifiers. The rule-based approach is detailed further in section 7.3.2, but for this
example, we could proceed as follows: we can filter out the non-expression by limiting
ourselves to only those locations that have a type. In this case, we see that the columns
for the remaining faulty expressions look the same, except for 2:18. We then sort by
the AST-based rTFailFreqDiffParent rule (see section 7.3.2), which assigns a
value of 0.71 to z in 2:18, 2.29 to f x (foldInt f z xs) in 3:22-41, and 3 to
all the others: most locations are evaluated alongside their parent, but 3:22-41 and
2:18 are not always evaluated with their parent (2:1-3:41). As the test is a property
and properties test the base case first, a failure for the empty list would result in fewer
evaluations, similar to what we saw in table 7.1. With that, we can rank 3:22-41 as the
most suspicious.

The reasoning presented in this example conceptually follows a decision tree based on
the rules provided in our work. Deriving and applying such trees is a promising approach
to fault localization, but not always fruitful, as shown by our results (see section 7.4). This
motivates us to do a detailed analysis to shed light on which attributes are important.

7.1.2 Contributions
In this paper, we construct spectra and apply popular existing suspiciousness scoring
algorithms to Haskell and enrich them with some unique, novel features: Most faulty
localization research addresses procedural or object-oriented language, and operates on
block-level coverage or statement-level coverage, while we target a finer granularity on an
expression level. We use Haskell Program Coverage (HPC) instrumentation to determine
whether a location was touched during a test, but also to extract how often the location was
evaluated. Tests are separated by test frameworks (e.g., QuickCheck, HUnit) to account
for their individual nature and allow for the emergence of patterns. Lastly, Haskell’s type
system allows us to capture the type, constraints, and identifiers of locations that correspond
to expressions within the spectrum, forming a new foundation for type-augmented spectra
and fault localization.

7

128 7 Functional Spectra for Fault Localization

We provide the tool for spectrum generation as an ingredient1 (ingredients are the
framework’s nomenclature for modular add-ons) for the popular Tasty test framework2.
Our spectra have multiple new attributes compared to existing spectra that increase their
information, compared in table 7.3.

Table 7.3: Comparison between functional spectra and classical spectra

Common Spectrums Functional Spectrums
Statement-level granularity Expression-level granularity

Binary coverage Counts number of evaluations
No inferred type-information Types and constraints
No treatment of identifiers All existing Identifiers included
No AST structure involved AST structural relations analyzed

Difficulties with Tie-breaking Nuanced ranking with rich information

The extensive research on Spectrum-Based Fault Localization (SBFL) includes sophisti-
cated methods introduced over many years. However, just transplanting existing research
might not be sufficient [291]. Issues can arise from different syntax and constructs (e.g.,
higher-order functions), community tooling (e.g., QuickCheck properties [245]) and com-
putational challenges (expression-level spectra are much larger). Going straight for the
best-of-breed approaches of Java or C might be overly complex and unfruitful due to the
differences in paradigms. Hence, for this early stage of exploration, our suggestion is to
adhere to explainable, straightforward approaches.

To explore the attributes and differences of spectra, we implement a rule-based approach
that allows us to transplant the existing literature. For example, by defining rules for the
Tarantula or Ochiai score. New information from analyzing AST structures or types
can be implemented within the same rule framework. The targets for rules are (1) test
attributes (test types, executions, frequency), (2) program attributes (abstract syntax tree
structure), (3) existing SBFL formulas, and (4) type-based complexity measures (constraints,
arity, order).

Note that while we are mainly interested in expressions, the coverage is based on
locations. Expressions such as let x = a in b, are separated into the subexpressions
a, b, and the whole expression let ... in ..., including the binding x = a, all
of which are valid locations in the spectrum. Bindings, function definitions, and other
nonexpression locations will not have an associated type but are included for completeness.

Based on the rule-results, we are able to investigate the data points and their relevant
dimensions. Generally, we would like to know whether spectra can be applied to a
expression-level functional context, and if additional sources, such as typing infor-
mation and AST-based rules, can help localize faults. In particular: a⃝ Do faults generally
occur in primitive types? b⃝ Do existing formulas perform well? c⃝ Does a type-based
analysis of the locations involved increase accuracy? To answer these questions, we gather
spectra from Haskell programs and analyze rule results, trying to find correlations of faulty
expressions and their rules. To obtain a final suspiciousness ranking, we concatenate the
1under https://doi.org/10.5281/zenodo.12168445
2https://github.com/UnkindPartition/tasty

https://doi.org/10.5281/zenodo.12168445
https://github.com/UnkindPartition/tasty

7.1 Introduction

7

129

rule results into a vector and apply simple machine learning (ML) algorithms such as linear
regression, decision trees, and (shallow) neural networks. These simple predictors are
designed to maintain high levels of explainability, crucial for the intuitive inspection of
cross-program generalization capabilities and for drawing comparisons with traditional
SBFL formulas. Even when certain predictors may not be directly applicable in practical
settings, their intrinsic value lies in the insights they offer. For instance, decision trees
provide a transparent view into the rules most effective at isolating specific bugs, while
regression models capture the correlations between rule attributes and the presence of
faults. This helps to support human understanding and guides the development of future
rules and models.

Upon investigation, SBFL for functional programs proved to be a nuanced problem
and numerous challenges have been identified over the course of this work that adjusted
the goal. Rather than striving for improved outcomes by selectively interpreting metrics
or meta-tuning classifiers, our goal is to offer insights and trends encompassing both
successful and unsuccessful techniques. This empowers fellow researchers to approach
future challenges with a well-informed perspective.

This work investigates spectrum-based fault localization for Haskell to identify promis-
ing techniques and relevant factors. We provide an easy-to-adapt tool for practitioners
and researchers to extract rich spectra. We use popular open-source projects to verify the
feasibility of spectrum extraction and analyze Real-world bugs in detail by formulating
rules that capture spectrum attributes. We re-implement existing SBFL formulas and in-
vestigate them for suitability, and explore simple ML algorithms with rule-based vectors.
This will reduce barriers for other researchers and spark new educated approaches to
spectrum-based fault localization for typed functional programs.

7.1.3 ResearchQuestions
Our first research question centers on attributes of the faults and the programs themselves.
To provide a basis for further research, it is important to know how many faults exist in
the programs and what attributes distinguish them from their non-faulty counterparts.
This also covers other attributes, such as the number of test failures and the frequency of
their executions.

RQ1.A: Attributes of faulty data points and their spectra
What attributes significantly differentiate faulty and non-faulty expressions within
spectra?

Before advancing existing research, it is worth looking at how the preceding literature
performs for typed functional programs. We thus apply common spectrum-based formu-
las and see how well they perform without any additions. The inspected formulas are
summarized in table 7.4.

RQ1.B: Effectiveness of SBFL formulas for typed functional programs
How well do existing SBFL formulas perform for the given Haskell dataset?

To close the investigation of the data, we try to spot correlations between different
rules. Some are trivially connected, e.g., if the number of executed tests correlates with

7

130 7 Functional Spectra for Fault Localization

the frequency of execution, but we hope to see more complex and less obvious patterns.
One suspicion that the authors hold is that higher-order functions combined with short
identifiers lead to bugs, but this can only be verified by analyzing the data:

RQ1.C: Correlation of Spectrum-Rules
Are there significant correlations between the rules for faulty expressions?

Based on the original data investigation and rules, we apply a set of different simple
classifiers and regressors to the data. While we do not hope to supersede existing research
on their effectiveness, we hope that there is insight on what are promising directions for the

functional programming community? Thus, we focus on explainable models and investigate
their attributes after fitting:

RQ2.A: Attributes of simple SBFL Models
When fitted to a data point, what rules were the most important for the different models?
Are there reoccurring patterns and weights?

The primary use of a model is to diagnose faults in (unseen) data, which makes de-
bugging more effective. With RQ2.B we want to see how well the models perform on the
programs that they are not fitted for, and if there are recurring patterns, successes, and
challenges amongst them:

RQ2.B: Generalization of SBFL Models
How well do the fitted models perform on programs and faults outside of their training
data?

In summary, this research aims to a⃝ analyze a sample of real world faults and b⃝ explore
directions for predictors that perform better than existing formulas.

7.2 Background and Related Work
7.2.1 Spectrum-based Fault Localization
Spectrum-based fault localization (SBFL) was developed as a technique to cover well-
testable issues related to the year 2000 problem [63], and is considered one of the most
prominent due to its efficiency and effectiveness [297]. After defining a failing test that
triggers the Y2k problem of an application, the program tests were executed in order, and
their coverage was recorded. Under the assumption that there are (passing) tests covering
expected behavior, the issue must originate in the statements that are covered by failing
tests without being in passing tests.

The Y2K problem consists of straightforward fixes, and thus it is difficult to transfer the
techniques developed there to more complex issues. Nevertheless, the idea of collecting per-
test coverage to narrow down suspicious statements formed the core of modern SBFL: from
the initial concept of intersection, many techniques emerged that use formulas [295, 298–
300] to assign suspiciousness scores to different parts of the program. With differences
in the details, all formulas take into account how often a given statement was touched by
failing and passing tests, in addition to global attributes of the spectrum (e.g., total number

7.2 Background and Related Work

7

131

of failing tests). The result of the formulas is used to produce a ranking of (all) statements
and report the most suspicious locations.

Many refinements have been proposed: promising work revolves around the introduc-
tion of new AST elements and program states [301], the application of mutation [291, 302–
304], meta- or machine learning approaches [305–307], or the filtering of tests and state-
ments [308–310].

An important piece of work from which we draw is from Naish et al. [311] which
discusses the mathematical attributes of spectrum-based formulas. In addition to intro-
ducing two new formulas, they prove that some formulas must result in the same ranking
(equivalence classes). Within this work, we aim to implement at least one formula from
each identified equivalence class. Due to our use of weights, investigating further individual
formulas would be redundant.

This work draws from existing literature by constructing the spectrum in the same
fashion and re-implementing existing formulas. Some research (Tarantula, Ochiai, DStar)
is directly ported in our work. We hope to contribute to classical fault localization by
providing spectra as .csv files to enable non-Haskellers to apply their methods.

7.2.2 Other Fault Localization efforts for functional pro-
gramming

Fault localization in a functional setting has been explored in Liquid Haskell [312], using
refinement types, a type system augmented with logical predicates. They collect
constraints and localize faults by mapping a minimal set of atomic unsatisfiable type
constraints to likely bug locations. The work relies on a more powerful type system than
Haskell has, namely liquid types, which localize (and repair) errors on the type level.

The Liquid Haskell approach requires precise modeling of the expected system-behavior
at the type level, which often means giving up type-inference

In this work, we target programs with existing test suites, and enable developers to get
more out of previous testing efforts. Using liquid types, a form of test generation can form
supplementary work similar to test generation efforts in program repair.

7.2.3 Related Work
Li et al. Comparable work on spectrum-based fault localization for Haskell originates
from Li et al. [291]. They collect open source bugs and apply existing SBFL formulas on an
expression-level spectrum. To improve generalizability and introduce an ML approach, the
programs were also mutated to extend their data set. Although they publish the dataset
which we reuse, the original code is not available. Li et al. have similar goals in introducing
SBFL for Haskell, but many of the details differ. On a more fundamental level, our spectra
extend previous work with unique attributes of types, tests, and identifiers. We introduce
rules that extend the existing literature to capture more concepts than SBFL formulas
currently can. Their approach includes data augmentation, which forms a great venue to
synthesize the efforts of both works in future research.

HaskellFL HaskellFL implements the Ochiai and Tarantula algorithms for Haskell code
[313]. They develop a custom compiler that compiles the program into SKI-combinators
for evaluation, to determine the lines involved in a fault. As they do not integrate with

7

132 7 Functional Spectra for Fault Localization

HPC or GHC, an application for real-world programs proves difficult, and no evaluation
on large programs is provided.

7.3 Implementation & Experiment Setup
7.3.1 Spectrum Generation
We introduce a tasty-spectrum package which adds an ingredient to the Tasty test frame-
work that captures coverage when tests are run and generates a spectrum. Tasty-Ingredients
are a modular way to implement plugins for Tasty to add additional behavior around tests
such as re-running, timeouts, or, in this case, data extraction.

To generate spectra, we use the instrumentation provided by Haskell Program Coverage
(HPC) and programs compiled with the -fhpc flag. This generates .mix files that allow
HPC to connect the indices it produces to the source locations in the modules. Our
implementation also includes a GHC source plugin, which integrates with the compiler and
extracts type and identifier information from modules during compilation and generates
.types files.

GHC Source Plugins GHC allows users to define source plugins, which are run at the
end of various stages of compilation, including parsing, type-checking, and renaming.
These plugins allow the user to modify and interact with the source code after each stage.
In the tasty-spectrum package, we define a plugin that operates at the end of the type-
checking stage, where we traverse the type-checked expressions, and note their types in the
.types file. The .types files are saved alongside the .mix files and later combined
with the .mix information during spectrum generation.

Haskell Program Coverage (HPC) HPC instrumentation is integrated into GHC, and
is based on maintaining an array that counts executions for each source location (which
corresponds to expressions) in the module during runtime. Whenever an expression is
evaluated, this also triggers a “bump” in the array, allowing HPC to track the number of
times each expression was evaluated in the module. Outside of standard behavior, HPC
also allows for the setting, reinitializing, and accessing this array at runtime.

Spectra are generated by running the test suite. As the code has been compiled with
the -fhpc flag, the RTS will keep the Tix array in memory. Before running each test, we
reset the HPC state. After each test, we read the current state of HPC, and track which
expressions were evaluated.

After running all tests, the Tix array for each test is combined with the module structure
from theMix files and the type/identifier information from the .types files to produce a
type-augmented spectrum as a .csv file. This .csv file contains the names of the tests,
their results, the full path of each location involved in each test, and how often times each
location was evaluated per test. The locations themselves include information about which
lines of source code correspond to the location, as well as its type and identifier, if available.
To compress the data, we only include locations that are involved in any of the tests, silently
dropping those that have zero evaluations across the test suite. The .csv file containing
the spectrum is available for further processing with our library or alternatively with other
external tools.

7.3 Implementation & Experiment Setup

7

133

7.3.2 Rules
Fault localization commonly ranks locations based on their suspiciousness. To achieve this,
the information in the spectrum is quantified and turned into a score. This is traditionally
done using formulas that depend on the number of times a location is involved in passing
or failing tests, 𝑛𝑒𝑝 and 𝑛𝑒

𝑓
respectively, and the number of total passing and failing tests,

𝑛𝑡𝑝
and 𝑛𝑡

𝑓
.

In our analysis, we include these classic formulas, but we also quantify other elements
of the augmented spectrum, aiming to find correlations with faults.

• Test-type count the number of tests, passing or failing, that this location is involved
in.

• SBFL-Formulas apply existing formulas from previous literature; the rule output is
the calculated value of the formula.

• AST structure-based rules use information based on the distance from a failing location
or whether a parent or sibling was executed often.

• Type-based rules are based on structural analysis of the typed locations to quantify
them for further downstream analysis. This analysis is done after the generation of
the spectrum to reduce any dependency on specificGHC versions after the generation
of the spectrum. As a downside, we work with a parsed string representation of the
type and not the type as it appears in the typechecker, disabling instance resolution
or further analysis beyond what the type tells us.

• Meta-rules operate on the results of the previous, per-module, rules and supplement
the data with further analysis. These include the quantile rules and the rules that
count how often types, component types, and identifiers appear in failing tests.

Table 7.4 provides an overview of the type-based rules.
We want to further motivate some of the rules presented in table 7.4. One general

notion is that properties are stronger than regular unit tests, as they cover a wider range
of input values and have logic beyond an assert. It makes sense to rate an expression that
is in many passing properties as less suspicious. In a similar, less algorithmic viewpoint,
golden tests, i.e. tests that use output comparison, are often written after users report a
bug. Instead of writing unit tests to follow up, the report is used to create a failing test
case. Thus, it could make sense to rate golden test failures as more suspicious, as they
often capture failing behavior, contrary to properties that often test positive program paths.
Lastly, we will use the test frequency and other patterns by separating the test frameworks.
Golden tests often span wide ranges of code (such as system-level tests), while properties
should result in many executions. Taking this into account, there is no one test better than
the others - but there might be patterns that we only find when inspecting them separately.

AST rules are based mainly on existing research on active and algorithmic debugging
[195, 217, 314]. rFailUniqueBranch aims to capture uniqueness in execution and
amplify such patterns. If an expression is in the only failing branch of a function, that is a
good indicator for investigation. Similarly, rFailFreqDiffParent identifies critical
irregularities in program execution, such as recursion bases, pattern matches, or monadic
constructs, which, although less executed, are of disproportionate significance.

7

134 7 Functional Spectra for Fault Localization

Table 7.4: Overview of the rules in the rules-based system.

Rules Description

Test-type count

rTFail & rTPass Total number of failing tests involving this location

rPropFail & rPropPass Number of failing QuickCheck tests involving this location

rUnitFail & rUnitPass Number of failing unit tests involving this location

rGoldenFail & rGoldenPass Number of failing golden tests involving this location

rOtherTestFail & rOtherTestPass Number of other failing tests involving this location

rTFailFreq & rTPassFreq Sums the number of evaluations in failing and passing tests
involving this location.

Formulas from SBFL literature 𝑛𝑒𝑝
/𝑛𝑒

𝑓
is the number of passing/failing tests the expression

is involved in, while 𝑛𝑡𝑝 /𝑛𝑡𝑓 is the total number of passes/fails.

rJaccard
𝑛𝑒

𝑓

𝑛𝑒
𝑓
+𝑛𝑡

𝑓
+𝑛𝑒𝑝

rHamming 𝑛𝑒
𝑓
+𝑛𝑡𝑝

rOptimal
{

−1 𝑖𝑓 𝑛𝑡
𝑓
> 0

𝑛𝑡𝑝
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

rOptimalP 𝑛𝑒
𝑓
−

𝑛𝑒𝑝

𝑛𝑒𝑝
+𝑛𝑡𝑝

+1

rTarantula

𝑛𝑒
𝑓

𝑛𝑒
𝑓
+𝑛𝑡

𝑓

𝑛𝑒
𝑓

𝑛𝑒
𝑓
+𝑛𝑡

𝑓

+

𝑛𝑒𝑝

𝑛𝑒𝑝
+𝑛𝑡𝑝

rOchiai
𝑛𝑒

𝑓
√

(𝑛𝑒
𝑓
+𝑛𝑡

𝑓
)(𝑛𝑒

𝑓
+𝑛𝑒𝑝

)

rDStar 2 & rDStar 3
(𝑛𝑒

𝑓
)
2

𝑛𝑡
𝑓
+𝑛𝑒𝑝

rRogot1 1

2
(

𝑛𝑒
𝑓

2𝑛𝑒
𝑓
+𝑛𝑡

𝑓
+𝑛𝑒𝑝

+

𝑛𝑡𝑝

2𝑛𝑡𝑝
+𝑛𝑡

𝑓
+𝑛𝑒𝑝

)

AST structure-based based rules

rASTLeaf Counts the distance of this node to the nearest leaf

rFailUniqueBranch How many times this location is involved in a failure
that none of its sibling expressions is involved in.

rFailFreqDiffParent Checks how many times this statement is evaluated
compared to how many times its parent is evaluated.

Sums up the ratios for the total.

rDistToFailure How far this location is from a location involved in a
failing test, counted by the sum of the number of links

to a common parent.

Type-based formula rules See table 7.5

7.3 Implementation & Experiment Setup

7

135

With rDistToFailure we hope to produce a taint that accumulates over test
failures, and failing expressions raise suspicion of nearby code.

With the group of type rules in table 7.5, we aim to proxy the complexity of an expression
and its context. We expect longer types to indicate a more complex process; especially
higher-order functions are a unique case of complexity that is well represented at the type
level. Other attributes, such as rTypeContraints, can indicate a stricter environment
that limits possible faults, since the types are more restrictive. rNumSubTypeFails
aims to connect types seen in failing locations with seemingly un-connected locations —
the rationale being that concepts in the program are expressed as types, and there can
be a failure in the concept. Some of the rules have a different character: rTypeArity
and rTypePrimitives allow us to identify correlations of faults with parts of a type
and form more basis of analysis than direct, actionable suspiciousness. Nevertheless, it
can be worth seeing for programs and bugs if faults occur in basic elements or complex
compositions.

Unlike SBFL formulas, our novel rules are not meant to be finished ranking algorithms.
Instead, our objective is to capture information and suspicious elements to combine it in
later processing and analysis, mainly to allow tie-breaking, as seen in table 7.2.

Table 7.5: Rules based on the type of the expression at the given location.

Type-based formula rules

rTypeArity & rTypeConstraints Number of arguments
and the number of constraints the function has.

rTypeArrows Number of arrows (->) in the type
rTypeFunArgs Numbers of parentheses in the type to quantify

how many function arguments there are, and in
turn whether it is a higher-order function or not.

rTypeOrder Counts the number of type applications in the type,
such as Maybe a or [[a]]

rTypePrimitives Number of primitives, i.e. String or Int.
rTypeSubTypes Counts the number of types in the type,

i.e., unfolds all constructors and applications.
rTypeLength Number of Characters of the Type,

when represented as String.
rNumSubTypeFails Number of times types which appear in this type are

involved in a location involved in a failing test.

7.3.3 Data
A challenge in bringing SBFL to a Haskell setting has been the lack of available datasets for
evaluation. The data source for this article comes from two recently published Haskell fault
datasets, HasBugs [228] and HaFla [291]. Both datasets provide a similar granularity

7

136 7 Functional Spectra for Fault Localization

of faults originating from projects with known faults (based on issues and PRs) whose
fault-fixing commits include a test. These tests were extracted to produce a faulty but tested
version with a failing test suite. The faulty locations are extracted from the git-difference
of the source files. We determine faulty expressions as all expressions that are completely
within faulty lines.

A subset of the data was chosen to produce the spectra that met the required versions
of Cabal, Tasty (>v1.0), and GHC (>= 8.6). Some other limitations excluded projects like
Purescript (many of the tests run against compiled Javascript code) or Cabal (all bug-
asserting tests are package-level tests outside the Tasty test suite). This results in a total of
11 programs3 from 3 projects - Pandoc, Duckling and anHLS-plugin. An overview of
the data points used is presented in table 7.6.

Pandoc is a document converter and, outside of language-specific tooling (GHC, Cabal,
HLS, etc.), the biggest open-source Haskell project with over 50k lines of code. The general
flow of conversion consists of three steps: a reader, an internal representation, and a writer.
Most bug reports and issues are based on user-perceived misbehavior, which is commonly
captured with a unit or golden test.

HLS is a joint community effort of Haskellers to provide the backbone of a modern
Haskell IDE. Most of it is centered on providing a language server in typescript style for the
popular Visual Studio Code. Apart from a base framework, many functions are provided as
plugins to cover linting, type suggestions, suggested imports, and other features.

Duckling is an open-source Facebook project that extracts structured entities (times,
dates, weights, etc.) from texts. The general business logic consists of regex-based rules that
are applied in a fine-to-coarse fashion (more specific Australian-English rules supersede
generic English rules). The test suite consists of a domain-specific corpus with examples
and broad tests that run all examples within a corpus. Generally, the corpus is structured
per module, which is why the duckling data points only show one test failure, despite
multiple examples being added to a corpus. Duckling has more LOC than Pandoc (180k),
but much of the code is template Haskell generated.

Comparison with Defects4J - Comparing the spectra between paradigms is chal-
lenging, but to approximate, we consult some data from Defects4J [58]. Although other
benchmarks exist (e.g., the Siemens Dataset[315], NoFib-Buggy [70] or BugBench [316]),
Defects4J matches the character of our dataset the most. Both datasets are drawn from
public open-source repositories, and their faults and tests are extracted from commits.
This makes for a natural state of the projects. Siemens data, for example, has (unrealistic)
test coverage of 100%, while NoFib-Buggy has artificially introduced bugs. We draw our
data from a public repository shared by René Just4 that provides statistics from applying
GZoltar [79] to a subset of 395 bugs from Defects4J.

The Defects4J bugs inspected have a mean SLOC[317] of 57.7k and a median of 62.5k.
The mean number of tests in Defects4J is 1439, with a median of 202. Both the mean and
median of failing tests per bug is two. Under the assumption that most of the SLOCs
represent line-level statements, the resulting spectra will have a comparable number of
elements. As the size of bugs (Faulty LOC) is not reported in Defects4J, we estimate it
by inspecting the patches and counting the removed lines. We filter the removals for
35 from HasBugs, two from HaFla, and four more data points sourced by the authors
4https://bitbucket.org/rjust/fault-localization-data/src/master/

7.3 Implementation & Experiment Setup

7

137

lines consisting only of whitespace or only containing opening or closing brackets. The
approximate faulty LOC for Defects4J is, on average, 2.56. In conclusion, the programs and
bugs used in this work are comparable in size to Defects4J.

7.3.4 Experimental Setup
Within the experiments, we first set up all the programs in the same manner. Based on the
fault fixing commits of a data point, we revert the source code patch while keeping the
changes to the test code, observing a test failure during cabal test. At this stage, we
also distinguish noisy test failures as presented in table 7.6. Noisy test failures are failures
of tests that are unrelated to the patch, i.e., tests that fail due to some circumstance of the
environment rather than the code. As the next step, the cabal file is altered to include
spectrum generation and coverage, following the description in section 7.3.1 These result
files form the basis of a data analysis, done in Python.

RQ1 is answered by investigating the results of their triggered rules. Many of the
spectrum attributes are directly captured in rules (e.g., rTFail corresponds towas touched
by a failing test), and thus facilitate the analysis of distributions and proportions.

The primary metric considered for ranking the expressions is the Top-X-metric [318],
This originated from recommendation system research and was widely adopted for fault
localization. Within TopX, the recommended elements are sorted by their suspiciousness,
and the correct classifications (truly faulty expressions) within the first X are counted. This
metric makes it easier to determine how well the rankings perform, and a reasonable X is
an acceptable number of locations for developers to inspect. For this work, we considered
the Top10, Top50 and Top100, following previous literature.

Another common metric is EXAM [319], assuming that the user follows every recom-
mendation in order until the real fault(s) are fixed. The index of the first correct fault is
used to calculate the ratio of the inspected (total) program, with the exam score expressing
how many locations can be skipped when following the recommendations? The EXAM score
is proportional to the mean reciprocal rank, another metric commonly reported for FL. For
this work, we discarded MRR and EXAM, as we work with different granularity due to
our expression level spectrum: when introduced in 2003, EXAM was targeting block-level
spectra, but the sheer difference in the quantity of mostly (benign) expressions would draw
a highly beneficial picture of our approach. Therefore, for ranking evaluations, we focus
on the TopX metrics [76].

RQ2 is investigated by training classifiers and regressors on the result files.
Namely we implemented decision trees, random forests, linear- &
logistic regression and Multilayer Regressors from SciKit [320]. At
last, we considered a genetic algorithm using Pymoo [321] for an evolutionary search of
regressor weights.

To separate the effects of the new rules from existing rules, we assert a total of four
configurations:

1. all - all existing rules

2. classic - only pre-existing SBFL formulas

3. original - only the novel rules of this work

7

138 7 Functional Spectra for Fault Localization

Table 7.6: Overview of the used data points

Data
Point

Issue Faulty
LOC

Faulty
Expres-
sions

Total
Expres-
sions

Failing
Tests

Noisy
Test-
Failures

Total Tests

pandoc-
3be256efb

Wrongful application
for ’Big Note’ high-
lighting when convert-
ing to LaTeX. Reorder-
ing is necessary.

1 6 88k 6 0 3254

pandoc-4 Failure in converting
combined code and
bold highlighted text
to latex.

3 12 91k 1 1 3056

pandoc-5 Miss-interpretation of
code blocks when con-
verting to ROFF MS.
Requires escaping.

1 8 61k 2 6 2400

pandoc-6 Miss-converting code
blocks starting with (1)
into enumerations.

5 39 59k 10 13 2365

pandoc-7 Failure picking up
empty cells in multi-
cells when reading
latex.

27 72 61k 3 7 2415

hls-2 Issue accounting for
relative location "./" in-
stead of expected "."

2 15 269 1 0 6

hls-
afac9b18

HLS-Plugins can re-
format code, Stylish
Haskell was removing
the last line of files
regardless of whether
they had content.

1 17 122 2 0 13

duckling -
ea8a4f6d

Wrong pronomina for
German million. Ad-
justment of Regex.

1 5 288k 1 0 364

duckling -
4cfe88ea

missing cases for com-
bined durations such
as "2 hours and 20 min-
utes".

18 4 260k 1 1 342

duckling -
28ddc3bf

Wrong parsing of
1.000,00 for
dutch.

1 5 299k 1 0 346

duckling -
328e59eb

Missing cases for
weights (and their
combinators) in
Portuguese language.

19 26 277k 1 1 360

7.4 Results

7

139

4. cherries - handpicked subset of rules

To account for different value ranges, we re-run all experiments with
min-max-scaling, mapping all column values between 0 and 1.

Fitting the binary classifiers (decision tree, random forest, logistic regression) targets
locations to be faulty or not faulty. Regressors are trained to assign faulty locations with a
suspiciousness of 1 while other locations have a suspiciousness of 0.

GA-based regression . GAs utilize a custom fitness function to optimize the ranking
of the first reported faulty locations, effectively optimizing on TopX. For GAs, we set
the population to 200 individuals and use Latin Hypercube Sampling [322] to generate
the initial population. The population is then evolved trough subsequent generations, by
using binary tournament selection [323], for selecting the solutions (regression weights)
for reproduction based on their fitness. Simulated Binary Crossover [324] SBX is used to
recombine the selected solutions, and polynomial mutation [325] (PM) is used to introduce
diversity to the population. We opt for these genetic operators and their recommended
parameters values (i.e., SBX with index 𝜂𝑐 = 30, PM with index 𝜂𝑚 = 20 and probability
𝑝𝑚 = 1/𝑛, with 𝑛 being the number of regression weights), as they are known to be effective
in solving continuous optimization problems [325]. GAs are set to run for 2000 generations
or terminate early if no improvement in the fitness function is observed for 100 generations.
The solution (vector of weights) in the final population with the best value of the fitness
function is used as the final GA-based regression.

Regressors are evaluated on the resulting TopX, while for classifiers, true and false
positives are evaluated. A global seed was used to account for inherent randomness.

7.4 Results
7.4.1 Attributes of Spectra
The created spectra range in size from 25Kb (HLS), 200 MB (duckling) to up to 500 MB
(Pandoc). Spectrum generation is not a costly addition to the runtime of the test suite,
but we emphasize that the compilation time of some projects is longer as the -fhpc flag
for coverage is required. Upon code changes, e.g. during debugging, a recompilation is
necessary to realign the .mix-entries.

The first important view of the data points is presented in table 7.7. The table groups the
expressions into those touched by failing tests and those that are not, a common approach to
reduce spectrum sizes. The rationale is that statements without failing tests are innocent, un-
der the preposition that a correct test was written. When organized in this way, we see that
duckling-4cfe88ea, duckling-ea8a4f6d, duckling-1dac46a8 and
pandoc-4 do not have faults covered by the tests.

The authors double-checked the test suite, and for duckling, the correct (and expected)
corpus tests were failing. On inspection, we suspect that the tests do not run against
the original source, but against the generated code. The generated code is also faulty
but is not the origin of the issue, as fixed in the commit. Some of the duckling data-
points, e.g. duckling-328e59eb have faults covered by failing tests. The fix for
duckling-328e59eb is more than the adjustment of a regex, and the changes to the
structure are successfully tested and represented in the spectrum.

7

140 7 Functional Spectra for Fault Localization

Table 7.7: Test-coverage within gathered spectra

Program Expressions
covered by
failing Tests

Expressions
untouched by
failing tests

Faulty Expres-
sions not cov-
ered by failing
tests

Faulty Expres-
sions covered
by failing tests

hls-2 205 64 1 14

hls-afac 35 87 0 17

duckling-
4cfe88ea

1791 297705 4 0

duckling-
328e59eb

1165 275942 0 26

duckling-
ea8a4f6d

2541 286195 5 0

duckling-
28ddc3bf

2256 260307 0 5

pandoc-4 419 90669 12 0

pandoc-5 238 60410 0 8
pandoc-6 2175 57203 34 5
pandoc-7 2235 58839 34 38
pandoc-
3be256efb

623 88149 0 6

We have different suspicions for pandoc-4 as there are faulty locations on a reader
that need changes in the data format. The relevant test is a golden test that runs
with a compiled binary of pandoc (unlike the other pandoc data points) that is invoked
by Tasty. Still, their coverage is not collected in the project coverage. Thus, we have a
failing test suite, but the touched expressions originate only from noisy test failures.

The existence of faults that are not directly covered poses a challenge for this work
and a novel aspect of fault localization. Our results come from real projects, and it would
be common to adjust duckling tests only by providing more examples in the corpus.
Although this test covers the bugs semantically, it does not cover the faulty code and
may require new spectrum techniques. To some extent, these tests are juxtaposed to
automatically generated tests, which cover code behavior without necessarily capturing
the semantics of faults [326–328]. Due to the common usage of Haskell for domain-specific
languages, parsers, and code generation tooling, we expect these types of faults to be more
common in functional paradigms than in other languages. They also justify our motivation
to implement rules that utilize more information outside the test status and coverage.

Other relevant attributes are that, on average, 63.7% of faults are in AST leaves, while
50.5% of expressions are leaves. For duckling, most changes were adjustments to a regex
(AST-Leaf) and their wrappers (non-leaf) or required the introduction of a new rule (rule-
invocation is an AST leaf, adjustments to the list of rules are non-leaves). This means
mainly an even distribution of faults in leaves and non-leaves for duckling. Within Pandoc,

7.4 Results

7

141

many faults revolved around combinators and parsers, which involve many higher-order
functions. In particular, the program flow in a parser monad produces many non-leaf faulty
locations. The combinators (<$>, <|>, etc.) and the patterns (many1Char, noneOf,
etc.) are all non-leaf nodes as they require arguments. Due to this structure, the faults in
the pandoc programs are proportionally more in non-leaves than leaves, as most faulty
primitives are applied multiple times and structured in a monad.

Initially, we considered that reducing the spectrum to only leaves could efficiently
support algorithms without requiring an oracle. The reduction does not directly help
differentiate faulty and non-faulty expressions, but it can significantly help performance by
halving the size of the spectra. We did not filter leaves for further experiments to exploit
the rASTLeaf-rule, which we considered a promising candidate justifying the extended
runtime.

Most faulty expressions are typed. Usually, one or two faulty locations are untyped,
which is a special case of ambiguity that occurs in typing: these are not expressions, but
rather bindings, e.g. x = a. Here, x and a will have the same type, but the binding x =
a does not have a type.

We see no striking trends in the types of faulty expressions: The most common types
are primitives such as Text or UInt, which are also common in non-faulty expressions.
The only exceptional types are monadic parsers in pandoc-6 and pandoc-7. The use
of monads and the higher-order operators involved is also a reason for the high number of
faulty expressions for these data points, as they imply an increased number of function
applications per line of code.

Although most expressions are typed, only a few represent an identifier. Less than half
of the faulty expressions correspond to an identifier, and 4 data points do not have any
faulty expressions that correspond to an identifier. The identifiers encountered match the
project vocabulary (e.g., parseMultiCell in pandoc-7) and there are no trends of
shorter identifiers being more faulty. In general, this was a bit unexpected since much of
the existing research focuses on off-by-one errors [194] or issues in predicates [329], which
also focus on elements with identifiers.

RQ1.A: Attributes of Spectra
Three data points (pandoc-4,duckling-4cfe88ea &
duckling-ea8a4f6d) do not have faulty expressions covered by a failing
test, despite semantically correct failing tests. This is due to projects that make use
of code-generation (duckling) and the test suite running binaries (pandoc).
Two-thirds of expressions are AST-leaves, whereas about half of the faults are
AST-leaves. Almost all faulty expressions have a type, but identifiers are rare.

7.4.2 Existing SBFL-Formulas
Figure 7.5 shows the Top50 results when applying existing formulas and sorting the
statements by their resulting score. Although Top10 metrics are sometimes presented in
the literature, most formulas seem to struggle with expression-level granularity to produce
a meaningful ranking for our programs. The Top100 produces better results, but the
trends remain the same, which is why we opted to focus on the Top50 for this section.

As seen in figure 7.5, Ochiai is the formula that performs best with our data, followed

7

142 7 Functional Spectra for Fault Localization

by DStar. A critical point to note is that Ochiai is the only formula with a median Top50
above zero, implying that the other formulas have not found faults for more than half of
the data points. The details of the best formulas are presented in table 7.8.

We expect that Ochiai is the best performing metric as it applies the square root in
its denominator, which scales better for large numbers. As we face a high number of
expressions and tests, this scaling is more applicable than other formulas (DStar, Tarantula).
Ochiai, DStar, and Optimal also do not use 𝑛𝑡𝑝 (number of total passing tests), which is
relatively high for most programs and disproportionate to the number of failing tests.

When inspecting table 7.8, it becomes clear that the best average scores are achieved
by the strong performance of some formulas on pandoc-6 and HLS-afac9b18. Our
educated guess is that pandoc-6 has a large number of failing tests that exactly distin-
guish the faulty from the correct cases. HLS-afac9b18 has a much more favorable
ratio of faulty expressions to expressions, and the newly added tests primarily invoke the
affected faulty statements. Thus, these two data points play into the strengths of formulas
due to their test quality (with respect to the project size).

The data points duckling-4cfe88ea, duckling-ea8a4f6d, pandoc-4
and pandoc-3be256efb did not result in Top50 for any of the existing formulas.
Again, we suggest that this is mostly due to the test suite and its attributes highlighted in
the previous subsection. Without faulty expressions that are covered by failing tests, most
formulas result in a suspiciousness of 0. Furthermore, formulas that include passing tests
also struggle with the duckling data point, since most expressions are covered by only one
or a few passing tests. These few tests are rich as they contain multiple examples, but do
not take advantage of the strengths of the considered formulas.

Before closing the analysis of existing SBFL formulas, we emphasize that the overall
quality of the formulas is quite high. The small data points of HLS are especially well
predictable with formulas, motivating applications for script-sized programs. For the
versions considered of duckling, folding tests into a corpus in combination with code
generation makes formulas inapplicable.

RQ1.B: Existing SBFL Formulas
Ochiai and DStar produce the best Top50 results with an average of 4.5 and 4.1
errors correctly reported in the first 50 expressions. The Top10 metric seems to be too
hard for the expression-level granularity. All formulas struggle with duckling and
pandoc-4, due to the faulty expressions not being touched by failing tests. This is a
challenge to all spectrum-based methods, and not specific to the functional context.

7.4.3 Applicability of Rules and Correlations
Correlation to investigate the correlation, we applied the Pearson correlation coefficient
after combining the spectra across projects. Total correlations are shown in figure 7.6 and
a summary of the significant rules in figure 7.7. The purple connections in figure 7.7 are
significant in both total and faulty-only data while the yellow connections are significant
among the faulty data points. We also calculated the Spearman correlation and observed
the same trends, with more individual correlations being significant.

Some correlations verify our assumptions that we considered trivial, e.g. that type

7.4 Results

7

143

Figure 7.5: Top50 Results of SBFL Formulas

Table 7.8: Formula Top50 Results

Program Faults Tarantula Ochiai DStar 3 OptimalP
hls-2 15 2 2 2 2
hls-afac9b18 17 17 17 17 17
duckling-4cfe88ea 4 0 0 0 0
duckling-328e59eb 26 1 1 4 0
duckling-ea8a4f6d 5 0 0 0 0
duckling-28ddc3bf 5 0 0 0 0
pandoc-4 12 0 0 0 0
pandoc-5 8 8 8 0 0
pandoc-6 39 0 21 21 25
pandoc-7 72 3 3 3 0
pandoc-3be256efb 6 0 0 0 0

7

144 7 Functional Spectra for Fault Localization

Figure 7.6: Pearson Correlation Matrix

Figure 7.7: Significant Pearson Rule Correlations

7.4 Results

7

145

lengths correlate with the number of subtypes. In general, type rules form a block in
figure 7.6, since more complex types are longer, have a higher arity and order, and have
more function applications. For most type-based rules, this relation is not statistically
significantly correlated. The second block we see is the SBFT formulas from literature
with Ochiai, Tarantula, DStar, and OptimalP. This is mathematically plausible, as they
are proportional to 𝑛𝑒

𝑓
, the number of failing tests for this expression, in their formulas

(see table 7.4). This is also expressed by the correlation with rTFail. OptimalP and
Jaccard similarly correlate with rTFail and rTPass due to their definitions.

Most rules do not have a significant correlation with each other, and, except for the two
blocks, there are no other visible trends. Although this may initially seem underwhelming,
we want to stress that most rules do not correlate.

For example, rTFail and rTFailFreq do not correlate significantly within our
data, implying that the execution frequency is not directly related to the number of tests.
In the same way, rTPass and rTPassFreq are not correlated. This finding motivates
us to investigate formulas focusing on evaluation frequency, as they seem more distinct
from test failures than expected.

In general, the lack of correlation can be interpreted as a chance. The rules introduce
information that is not directly correlated with existing measures, This means that they
cover new aspects of complexity or unique spectrum attributes. We expect imperative pro-
grams to have similar patterns, but they can only be found as clear in functional programs.
Inferred type information at the expression level is uncommon in other paradigms, and
investigating correlations between types, constraints, arity and faults is out of reach for
most imperative languages.

RQ1.C: Rule Correlations
Most rules do not correlate according to the Pearson coefficient. Type rules and popular
SBFL formulas form (mostly non-significant) trends within the correlations. The lack of
correlation implies that different rules cover different aspects of a program.

7.4.4 Attributes of SBFL Models
Logistic & Linear Regression In both logistic and linear regression for both scaled and
unscaled data, the resulting weights result in significant variance, indicating overfitting.
For example, many type rules differ in their polarity for logistic regression despite the rules
correlating (see RQ1.C).

Decision Trees Decision trees required a class-balanced fitting using an entropy measure
to produce sufficient results. A visible trend is the reproduction of the SBFL formula
rankings as in figure 7.8. Given the effectiveness of Ochiai, as observed in RQ1.B, this is an
understandable result.

For the larger programs (pandoc-6 & pandoc-7), the trees often resulted in con-
figurations that lean left or right with single expression branches. Tree pruning could not
address this form of overfitting, as the resulting pruned trees remain with a high entropy.

Explainable conditions, such as if it is a leaf, use Ochiai. Otherwise Tarantula, were
unfortunately not observed. The combinations that were striking to the authors are those
that use one of the well-performing metrics (e.g., DStar), as root of the tree, and then use

7

146 7 Functional Spectra for Fault Localization

Figure 7.8: Decision Tree for Pandoc-5 (scaled data, classic-rules)

a more exotic rule such as rHamming, rRogot1 or rNumGoldFails, which apply
to very few locations.

The prominence of overfitting makes us wonder if decision trees can be successful
for the task without combining programs. There may be too little information (persisting
entropy) or an algorithmically determined overfitting. This shortcoming of decision trees
is known and motivates the use of a random forest ensemble.

Genetic Algorithms A key observation is that genetic algorithms (GAs) faced con-
vergence challenges with specific programs: pandoc-4, duckling-4cfe88ea,
duckling-ea8a4f6d, and duckling-28ddc3bf, notably exhausting the max-
imum number of generations allocated without achieving early termination. The non-
convergence co-occurs with the absence of touched faults. Our educated guess is that a⃝ it is
hard for randomly generated weights (that is, the initial population) to produce any correct
ranking, and b⃝ for the untouched faults the individuals who classify faults are uniquely
picking single attributes and the combination skews the weights again. Individuals that
rank faults are fragile, and mutation and combination lose beneficial attributes, stopping
the genetic search to stagnation.

Random Forests & Multilayer Perceptrons The previously investigated simple algo-
rithms lead to two orthogonal problems: on the one hand, models overfit the data, while,
on the other hand, less detailed parameters and pruned trees could not reduce entropy.

This motivated the use of models that allow for ensembles (random forests) and multi-
dimensional interpretation of the data (MLPs).

RQ2.A: Development of SBFL Models
Most models struggled with forms of overfitting. Especially linear and logistic regression,
as well as decision trees, struggled with the sparse data. Genetic algorithms face issues
converging for programs with untouched faults.

7.4 Results

7

147

7.4.5 Generalizability of SBFL Models
Classifiers When investigating the classifiers (decision trees, random forests, and logistic
regression), an early finding was that all three generalize better on scaled data. An overview
of the transfer performance of the classifiers is shown in figure 7.9.

In figure 7.9, we see the trends in which classifiers are grouped according to their false
and true positives. Logistic regression produces many true positives and false positives
(≈90% false positives). Put in perspective, for many data points, a logistic regressor will give
100 faulty candidates, of which nine will be true faults. Although this is likely frustrating
for developers, it can be suitable for tooling (see section 7.5.4).

The best performance with good precision was achieved by random forests using only
SBFL formulas. On average, an ensemble of formula-based decision trees reports five faults,
of which ≈2.5 will be true faults. This is a convincing rate for actual usage, given that the
reported numbers are averages. For many programs, random forests (and decision trees)
were not reporting faults as they were not certain enough. This leads to a low number
of true positives, but upon author inspection, most of the actually suggested faults were
either true faults or reasonably close.

Throughout the configurations, the classic SBFL formulas performed best in all classi-
fiers. This is due to their good performance on data points with high faults for which the
original formulas also performed well (pandoc-7). The all-rules and cherries
find fewer faults and produce more false positives, but are better at predicting faults of our
most troublesome data points pandoc-4, duckling-4cfe88ea and
duckling-ea8a4f6d. Depending on the goals, the logistic regression with cherry-
configuration is able to predict faults that were not touched by failing tests, especially at
the cost of a high noise ratio.

Regressors Across the board, the regressors performed better on the unscaled data and
primarily produced good Top50-scores on the data points with faults covered by failing
tests. Due to poor performance, we present only examples of regressors when compared
to data points that have locations touched by failing tests. Most regressors performed
worse than existing formulas, with the exception of genetic algorithms. An overview of
the averaged search results for Top10 and Top50 is given in figure 7.11 and figure 7.10.

We see that especially for the Top10 genetic search produces much better averages
than the formulas. This is only true for the mean, the absence of the median for most
elements indicates thatmore than half of the data points did not produce any correctTop10
suggestion. Only the original and cherries found a median of 0.5 Top10.

In general, we consider median results to be more relevant since the data points
are unbalanced in the number of faults. A data point that performs well on the many
pandoc-7 faults will have a decent average but will not produce good results for most
data points. Therefore, the median is a more reliable metric to judge the performance of
fault localization, given our fault distribution.

We must stress that the averaged results only indicate the most fruitful configuration
- the results varied greatly from regressor to regressor and per target data point. Thus,
we want to highlight two types of well-formed searches in figure 7.13 and figure 7.12.
The orange bars indicate the achieved Top50-score, while the blue frame indicates the
maximum possible faults.

7

148 7 Functional Spectra for Fault Localization

Figure 7.9: Transfer Performance of Classifiers

7.4 Results

7

149

Figure 7.10: Averaged Top50-score for genetic search

7

150 7 Functional Spectra for Fault Localization

Figure 7.11: Averaged Top10-score for genetic search

7.4 Results

7

151

Figure 7.12 shows the results when using the weights originating from the genetic
search over HLS-2 using classic formulas. We observe that this configuration is well
suited for a few programs and poor for others, but beats the individual formulas in mean-
Top50. In general, we noticed that the small programs from HLS produced some of the
best regressors, probably because the smaller number of entries resulted in smaller weights
and less prone to overfitting.

Figure 7.13 are the results retrieved from fitting original rules (i.e., only rules novel
from this work) on duckling-28ddc3bf. The resulting weights produce Top50
suggestions for almost all data points except pandoc-6. This model has broad gener-
alizability across the investigated programs and is one of the drivers of the good median
metrics of search-based Top50 results.

When looking for such individual results, we saw similar trends (uneven and even
distributions of predictions) across all regressors, with genetic search producing the most
visible trends due to the best predictions. We did not observe a specific trend for pandoc
to infer better for pandoc, as most of the data points also did not share similar weights.

The best results were achieved for data points without faults executed by failing tests
in which three configurations with a Top50 of 1, when fitting MLPs on pandoc-4,
pandoc-5 and pandoc-3be256efb with the original rules. Such small variations
are in the realm of expected randomness and might not be worth further investigation.

RQ2.B: Applicability of Models
Classifiers performed better for scaled rules, whereas regressors had difficulties with
unscaled data. Logistic regression produces high recall, while suffering from many false
positives. Random forests produced a good ratio of true to false positives, but did not
have a high recall. Of the regressors, only the genetic search beat the original formulas
in average and median, especially performing better in Top10.

7

152 7 Functional Spectra for Fault Localization

Figure 7.12: Predicting Top50 from HLS-2
with original rules

7.4 Results

7

153

Figure 7.13: Predicting Top50 from duckling-28ddc3bf
with original rules

7

154 7 Functional Spectra for Fault Localization

7.5 Discussion
7.5.1Quality of formulas
In general, the existing SBFL formulas performed well to the point that they might be used
in development. The achieved rankings beat some of the existing research in Java, when
the difference in granularity is taken into account: most research focuses on statements
or blocks, but even the expression level seems reasonable. As formulas do not require
training data and are easily applicable, they form attractive targets for Haskell tooling, e.g.,
suggesting points of interest on a failing PR or highlighting code of failing test runs. It
might be possible to adapt existing formulas to Haskell by introducing the frequency of
executions instead of binary coverage through tests. Another way to get a better result is
the reduction of a spectrum, which might be achieved through filtering for AST properties
or types.

However, the results of this work also show that there are unique problems with
programs whose faults are not (directly) executed by failing tests. For such programs
and maybe other tasks (defect prediction, test generation), novel rules based on types or
AST structure can prove successful. With functional programming often used for domain-
specific languages or code generation, we expect faults of this kind to be more prominent
than in imperative programs.

7.5.2 Project & Test Structure
One recurring consideration throughout all results was the strong dependency on the
project structure and especially on the tests.

Duckling’s approach of unifying tests into a corpus of examples makes it easy for
contributors and allows for a smoother execution against the generated code, while posing
significant challenges for fault localization. Similarly, many contributors (or users) to
Pandoc report bugs by providing examples of failing documents that are translated into a
system-level regression test. This is very economical for the maintainers, but our results
show that pandoc programs with unit-level tests (pandoc-6 & pandoc-7) were the
most approachable for all algorithms and formulas.

On the other hand, the HLS data points make use of a great degree of modularity.
This is already visible, with both data points being plugins to larger systems. This sep-
aration already leads to drastically smaller spectra, and even more complicated issues
(hls-afac9b18 deleting lines on usage with other plugins) were translatable into side-
effect-free unit tests. We understand that not every project can be modular to this extent,
but, especially given the size, number of contributors, and changes in Pandoc and Duckling,
fault localization can pay off [330].

Closing our thoughts, we would like to stress that functional programming is precisely
the domain where excellent modularity can be achieved. The greater the modularity, the
greater the applicability of tooling such as SBFL. For projects that have a suitable test suite,
even simple SBFL formulas have immediate payoff.

7.5.3 Moving Forward on SBFL Models
The models investigated in the experiments had a variety of interesting properties, par-
ticularly their ability to produce results for data points that were not touched by failing

7.5 Discussion

7

155

tests. This is a unique quality and may be worth advancing in light of the fact that such
faults have not been dominant throughout the fault localization literature. In most pre-
vious research, the existence of failing tests for a faulty statement has been a part of the
hypothesis. Common meta-studies on errors do not mention faults of this kind [331, 332],
the closest work stems from Lucia et al. [333] "Are Faults Localizable?", which investigates
that faults might be fixed at many places, and thus previous localizations based on patched
locations might need to be revised.

From the experiments, the most promising approach is ensemble-style classifiers. Es-
pecially random forests and genetic search were able to combine the benefits of formulas
while considering types and other novel rules. Given the single program fit, there is much
room for improvement by combining the spectra of multiple programs to fit an ensemble.

As there is no clear trend for pandoc models to generalize better for pandoc, we
think the most important attributes are determined per fault, and a training set should
consist of various unique faults. A handcrafted a rule system might also be possible, as the
handpicked rule-set emerged as a good candidate during the experiments.

7.5.4 Future Work
IDE integration We have already mentioned HLS and, in fact, used it as one of our
data points. One future path would be to look at the integration of spectrum-based fault
localization into IDE tools such as HLS, enabling users to get more out of their test suite
than just a pass/fail. This would have to be balanced out with time constraints, since
some test suites take a long time to run. However, this could be overcome by running the
test suite in the background if the developer has the resources to spare. An experiment
could show user needs when engaging with such tooling and measure effectivity (e.g., time
improvement when using the tool to solve a set of tasks).

Innocence One way to extend this work is to introduce the notion of innocence. Here, we
focus on the suspiciousness of a given statement, but in a typed setting, we can verify certain
functions. This could involve functions that are verified using tools such as SmallCheck,
where we test every possible invocation of a function of type, e.g. Bool -> a by applying
it to both True and False and checking that the output is correct. These functions and
their locations could be marked as innocent where we say that we trust this function and
its associated locations.

Innocence can also span other concepts of the program, e.g., users can provide types
they consider innocent (if they stem from a library), or whole modules can be declared
innocent.

Automatic Program Repair One of the main challenges in automatic program repair is
to locate faults to determine where to repair the program [334, 335]. In PropR, the authors
use a naive fault localization algorithm that does not rank the locations, only filtering
out those locations that were not involved in a failing test [335]. With a spectrum-based
algorithm, repair efforts can focus on the expressions considered most suspicious, which
will speed up repair/search for patches.

7

156 7 Functional Spectra for Fault Localization

Error-based Fault Localization UsingHPC instrumentation, we count howmany times
a location started being evaluated. However, in the presence of errors, not all evaluations
will succeed. In a recent paper [336], it was shown that HPC can be extended to also record
when a location finished being evaluated. By augmenting the spectra with this information,
we could add a rule that tracks the difference between how often a location started being
evaluated and how often it finished being evaluated. This could help localize error-based
faults.

7.6 Conclusion
This paper aims to extend spectrum-based fault localization for Haskell and evaluate its
applicability to real-world faults. To achieve this, we implemented a Tasty ingredient that
allows the generation of spectra with expression-level granularity, including additional
information on types and identifiers. Making use of the richer information, we implemented
rules that capture the complexity of types, AST structure, or identifiers and applied them
to a total of 11 real-world programs. We used the rules to investigate the attributes of
spectra and to fit classifiers and regressors. Our exploration uncovered unique kinds
of failures: faults that were not covered by failing tests. These failures structured the
results into two groups: for most programs, the faults were covered by tests, and existing
SBFL formulas performed well and were only outperformed by regression models that
also make use of formulas as features. For the faults not touched by failing tests, models
based on additional information (e.g., types or identifiers) were necessary to produce any
correct prediction. However, these faults remain a challenging case and require further
investigation. The contributions of this work hopefully open up a broader discussion of the
applicability of SBFL for Haskell. The easy adoption through a plugin allows developers
and researchers to experiment and provide information on user needs alongside a greater
variety of projects. Further insights in addition to our initial investigation might also form
a solid basis for new Haskell-specialized formulas. Especially, the novel type of failures
requires an approximation that is not directly based on test failures, but exploits the project
structure and types.

Why you should care about SBFL One of the big selling point of Haskell is the strong
type systems and the resulting compiler feedback. But even with strong types, errors
can occur (see figure 7.1) and require testing. While the compiler assists the program,
tools assist the programmer. Especially within the boundaries of a strong type system
in a lazy language, the rich information of types and the lack of side effects allow for
better localization than imperative languages could dream of. All efforts, whether from
developers, fault-localization tools, tests, or compilers, can go hand in hand to provide the
best program quality with the least effort. Thanks to the ongoing efforts of the Haskell
Language Server project, it is high time to introduce new software tooling for Haskell. We
hope that the insights provided by our work will provide guidance when designing these
tools.

8

157

8
Conclusion

This dissertation can be roughly divided in two parts. The first is testing large language
models for their use in software engineering, Both will be granted a short resume and
outlook, followed by a sketch how they can grow closer together.

On the robustness of code models The first topic this thesis studies in Chapter 2 is
investigating the robustness of machine learning models trained for software engineering
tasks. For that purpose, various models were investigated for their behavior with noisy
data, and the deltas in their prediction-metric were compared. Chapter 3 improved the
test-data generation, to make the process smoother, and bring it closer to existing work
on adversarial example generation. In general, the goals were achieved, but it opened a
discussion on realism of the transformation and the resulting files. It is debatable, but
to me test-data does not need to be realistic - quite the opposite. Tests often explore the
limitations of a tool and so does research. This year, a TU Delft colleague hosts a research
project on Efficiency in Compiler Architecture

1, which investigates performance behavior
of compilers. One of the target research questions is to measure the compilers runtime
when facing ever larger tokens which become obviously unrealistic. This type of research
helps to formulate good tests, because for a good test we also have to consider the worst
case and sometimes nonsense.

Apart from these fundamental debates, CodeBERT has already been surpassed by
general purpose language models. It is very likely that the next generation of tools will
utilize models other than single-target models, and thus evaluating against a single metric
might be incompatible. Looking back, the research around Lampion still holds some value,
as it approached models as a blackbox (so the change of model is possible) and the produced
artifacts form test-data, which is reusable. Thus, while the results might not be directly
applicable, many of the concepts in the approach remain valuable. In fact, some ideas have
been picked up by later research, as shown by Yang et al. [337] in a meta study as Semantic

Preserving Transformations.
There is a solid amount of future research to do, but in my opinion the most valuable for

better LLMs is an adaptation of the approach for training-data generation. Generating se-
1https://projectforum.tudelft.nl/course_editions/102/generic_projects/5152

https://projectforum.tudelft.nl/course_editions/102/generic_projects/5152

8

158 8 Conclusion

mantically identical, but noisy data can help to address overfitting and account for (slightly)
noisy input. Its not unreasonable that many people come up with very different variable
names, and models should be indifferent to naming for the sake of their performance
anyway. Also, semantically correct derivatives could help to bridge many issues around
mining licensed code from open source repositories: There have been many (ethical) issues
raised with the use of code without permission in models of profit-driven companies, but
derived code could form an acceptable middle ground and provide anonymity.

Another relevant piece of work is the orchestration and testing of large language
models. With the rapid progress of ChatGPT and the like, we can expect that the task of
code generation will progress as well. To borrow an example from other domains, speech
recognition is considered a relatively solved problem (at least for English), yet how to
use it and how to make a good user experience is a completely different story. We might
face similar problems in the near future, that generative models produce sufficient code,
but only when they are fed with precise prompts for well-defined requirements. This is
something that we can only fix with users - as we need to accommodate for their needs,
skills and interests. I opened this dissertation by stating that I like programming, so I would
not like an AI to take the fun parts away. It’s up to us - software engineering researchers -
to preserve the creative elements and automate the more mechanical parts.

Tools in Haskell, Haskell in Tools The second part of this work centered around
Haskell and the possibilities to make tools utilizing types and other unique language
features. In Germany we have a derogatory saying "Alter Wein in neuen Schläuchen" (old
wine in new hoses), but contrary to proverbial wisdom many of the existing software
engineering approaches were readily transferable. In Chapter 6 we re-implemented genetic
program repair in the fashion of GenProg [85], with the big adaptation that our code-
replacements were sourced from the compiler using typed holes [61]. Chapter 5 shows
a way to enrich HPC and capture recent evaluations, which can help to reproduce and
understand behavior before a crash. In Chapter 7 we transfer a best-off of existing spectrum
based fault localization approaches and add some type-specific metrics, that enabled us to
crack some of the toughest nuts we found in Chapter 4.

When using similar metrics, the Haskell tools are roughly on-par with their Java
counterparts in performance. Thus, they can form a helpful addition for Haskell developers,
at least if they are willing to implement the tooling. We have also demonstrated that using
the strong compiler does not only open up unique solutions, but benefits the existing
approaches as well: Within PropR, the typed holes automatically excluded any fix that
would not compile, which results in a drastic reduction in search space. Basing the work
around the compiler and core libraries also allows for a clear compatibility - if your code
compiles with a (tool-supported) GHC version, the tool is also applicable.

With the initial success of software engineering approaches from Java in Haskell, a
simple re-implementation and adjustment of existing approaches forms fruitful future
work. I’d like to challenge this approach: Despite their academic success, program repair
is not widely adopted, and neither are software spectra. Yes, they are applicable to real
world programs (i.e. Defects4J), but they were not applied by the original developers. The
interest remains mostly academic, and is applied to programs years after the bugs were
solved. There are some applications, e.g. Metas SapFix [338], but such tailored solutions

8

159

are un-achievable for most companies and users. My suggestion for future work on tooling
in Haskell should focus on the users and what they want solved. To elaborate, we can look
back at the work with evaluation from Chapter 5: The presented extended error message
were one example, showing an offset in evaluation and call stack. Such an offset is common
for lazy evaluation and might be a problem for real-world engineers. But it could be that
this is not an actual problem for the developers, or that existing stack traces are sufficient.
As we laid out in the future work section, there are multiple avenues where this can be
useful: Either some of the existing error messages can be enhanced, but maybe it serves
best in a classroom to explain laziness to students. The tools and their output should be
adjusted to its final audience - anything else might remain as unused as automatic program
repair. I am certain that any success with actual Haskell users will also lead to academic
success.

Hand in Hand - NewWorld Tools Both streams of research feed into improving and
testing the tools available to developers, especially in the face of errors and hardship.
The progress in LLMs allows creativity to consider a new generation of programming
languages that for example utilize prompting, while being otherwise not human readable.
Despite being an appealing futurism, this is likely not the next generation of tools. But it
is not impossible that modern tools will change the field as much as calculators changed
mathematics. If that is the case, we have to change how we engage with our tools:

In a mathematics class, we still learn the basics, even if we use calculators and solvers for
real applications and problems. A key element in applied mathematics is now to understand
the issue at hand, find the right model and determine correct variables. A powerful large
language model, that is able to generate code and tests alike, might reduce many tasks in
programming to requirements engineering and verifying tests.

We should also consider how we shape the process of building our models. There are
indications that ever larger corpora improve code-generation, yet they also need more
energy, more space and of course more data. Here we should keep in mind a center-piece
of programming: Code is more than just text. Even if we want to build a novel AI tool, we
already have very mature tools at our disposal (compilers, fault localization, versioning
control, and many more) that can help us get where we want to go quicker.

It is concerning that in the AI rush we left many best-practices behind, and even derailed
to producing a lot of code that could never compile nor run. The research community
should reflect deeply about how this could happen, to not regress in other fields too.

With joined efforts, we can build mature tools that hone already available approaches.
Steps towards this are done in this work by utilizing properties for a stronger test suite
and compiler-provided (and thus valid) changes in PropR. Other emerging research also
follow this venue, e.g. Ye et. al. [37] who utilize the compiler-feedback as a post-condition
in program repair, or Zhang et al. [339] who connect LLMs with information retrieval and
static code analysis. Such pre- and post-conditions around LLMs are a promising way to
utilize the generative capacities in a more ordered fashion, yet there is still a lot of work
to be done. Not only are there technical questions surrounding these tools (as touched in
the work with Lampion), but we also have to introduce expertise from other fields like
requirements engineering, security and ethics. The best time for this would have been
yesterday - the second best is now.

8

161

Acknowledgments

I came across many people that I am grateful for, that changed me and hopefully I was able
to change them. I have yet to see if my PhD is a change for the better, or just a change.

Some people stood out as examples - of a life full of (successful) competition and a strive
for greatness. I hope that one day you meet someone that shows you your worth without
comparison, and that you come to peace with who you are. I am sorry for my shortcoming
to not be this person for you.

Apart from being dramatic, I also want to thank some of my friends individually:
I thank Alireza for being a great friend and I am very grateful for the time we spent biking,
thinking about our futures - hopefully we meet again to bike and talk about our past.
I have to thank Hanifa for her splendid chatter, banter and the constant drama that she
amused me with. I have not met many people whose live is like a movie, but I am happy to
be a sidekick in the soap-opera of your life.
A special thank goes to Matthí. He is mentioned a bit in this work, but he has been more
than just a co-author. Without him, most of my PhD would have been a very lonely journey,
but thanks to him I always had a great partner in crime. In Germany we joke TEAM is an
acronym: "Toll, ein anderer machts".
Of course also Benny, who is not a certified psychologist yet, but I am looking forward to
see how much you can help people, given how much help you were to me already. Your
perspective on my daily affairs was invaluable, and I hope I can return the favor.
For Annibale, I wish you the very best. I have made many of the steps thanks to you,
from the first research questions to the defense. It would have not been the same with any
other supervisor. I hope you see the difficulties we had like your weights in the gym - as
an opportunity to grow.
I need to thank the people at the pottery studio for making one of my favorite past-time a
welcome place that I will remember for the rest of my life. Ellen for being a (sometimes)
rough, but infinitely wise teacher, Liz & Lisanne for being always at my side at the wheel
and Sara for cheering me up among the many mistakes it takes. Oh, and Tessa. I don’t
know what you are doing exactly, but I like it.

Lastly, I want to thank Palina for her love, compassion and the home she made for
me in the last year. I am looking forward for the time to come with you.

Yours sincerely

Titles in the IPA Dissertation Series since 2021

D. Frumin. Concurrent Separation Logics

for Safety, Refinement, and Security. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2021-01

A. Bentkamp. Superposition for Higher-

Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VU. 2021-02

P. Derakhshanfar. Carving Information

Sources to Drive Search-based Crash Repro-

duction and Test Case Generation. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Specifi-

cations of Industrial Software Components.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2021-04

W. Silva Torres. Supporting Multi-Domain

Model Management. Faculty of Mathemat-
ics and Computer Science, TU/e. 2021-05

A. Fedotov. Verification Techniques for

xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Automated

Reasoning. Faculty of Mathematics and
Computer Science, TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-

grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering

Language-Parametric End-User Program-

ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security Moni-

toring in Environments where Digital and

Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain

Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2022-06

P. Vukmirović. Implementation of Higher-

Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. 2022-07

J. Wagemaker. Extensions of (Concurrent)
Kleene Algebra. Faculty of Science, Mathe-
matics and Computer Science, RU. 2022-08

R. Janssen. Refinement and Partiality

for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verification of

Concurrent Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2022-10

S. Kochanthara. A Changing Landscape:

On Safety & Open Source in Automated and

Connected Driving. Faculty of Mathematics
and Computer Science, TU/e. 2023-01

L.M. Ochoa Venegas. Break the Code?

Breaking Changes and Their Impact on Soft-

ware Evolution. Faculty ofMathematics and
Computer Science, TU/e. 2023-02

N. Yang. Logs and models in engineering

complex embedded production software sys-

tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis for

Credit-Based Shaping in Ethernet TSN. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-

ming. Faculty of Mathematics and Natural
Sciences, UL. 2023-05

J. Smits. Strategic LanguageWorkbench Im-

provements. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2023-06

A. Arslanagić. Minimal Structures for Pro-

gram Analysis and Verification. Faculty of
Science and Engineering, RUG. 2023-07

M.S. Bouwman. Supporting Railway Stan-

dardisation with Formal Verification. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-

tions for Deductive Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight

Specification and Verification Techniques for

Enterprise Software. Faculty of Mathemat-
ics and Computer Science, TU/e. 2023-10

D.M. Groenewegen. WebDSL: Linguistic

Abstractions for Web Programming. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2023-11

D.R. do Vale. On Semantical Methods for

Higher-Order Complexity Analysis. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test Case

Generation with Multiple Tribes of AI. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2024-02

B. van den Heuvel. Correctly Communi-

cating Software: Distributed, Asynchronous,

and Beyond. Faculty of Science and Engi-
neering, RUG. 2024-03

H.A. Hiep. New Foundations for Separation

Logic. Faculty of Mathematics and Natural
Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For and

With Developers. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2024-05

J.I. Hejderup. Fine-Grained Analysis of

Software Supply Chains. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2024-06

J. Jacobs. Guarantees by construction. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2024-07

O. Bunte. Cracking OIL: A Formal Perspec-

tive on an Industrial DSL for Modelling Con-

trol Software. Faculty of Mathematics and
Computer Science, TU/e. 2024-08

R.J.A. Erkens. Automaton-based Tech-

niques for Optimized Term Rewriting. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2024-09

J.J.M. Martens. The Complexity of Bisim-

ilarity by Partition Refinement. Faculty
of Mathematics and Computer Science,
TU/e. 2024-10

L.J. Edixhoven. Expressive Specification

and Verification of Choreographies. Faculty
of Science, OU. 2024-11

J.W.N. Paulus. On the Expressivity of Typed
Concurrent Calculi. Faculty of Science and
Engineering, RUG. 2024-12

J. Denkers. Domain-Specific Languages for

Digital Printing Systems. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2024-13

L.H. Applis. Tool-Driven Quality Assur-

ance for Functional Programming and Ma-

chine Learning. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2024-14

165

Bibliography

References
[1] Zhenjiang Hu, John Hughes, and Meng Wang. How functional Programming mat-

tered. National Science Review, 2(3):349–370, 2015.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. Evaluating large Language Models trained on Code. arXiv preprint

arXiv:2107.03374, 2021.

[3] JohnMcCarthy. History of LISP. InHistory of programming languages, pages 173–185.
1978.

[4] Alonzo Church. A Set of Postulates for the Foundation of Logic. Annals of mathe-

matics, 33(2):346–366, 1932.

[5] Paul Hudak. Conception, Evolution, and Application of functional Programming
Languages. ACM Computing Surveys (CSUR), 21(3):359–411, 1989.

[6] Ana Bove, Peter Dybjer, and Ulf Norell. A brief Overview of Agda–a functional
Language with dependent Types. In Theorem Proving in Higher Order Logics: 22nd

International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Pro-

ceedings 22, pages 73–78. Springer, 2009.

[7] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assistant:
A Tutorial. Rapport Technique, 178, 1997.

[8] Nicholas D Matsakis and Felix S Klock. The rust Language. ACM SIGAda Ada Letters,
34(3):103–104, 2014.

[9] Eduardo Rosales, Andrea Rosà, Matteo Basso, Alex Villazón, Adriana Orellana, Ángel
Zenteno, Jhon Rivero, and Walter Binder. Characterizing Java Streams in the Wild.
In 2022 26th International Conference on Engineering of Complex Computer Systems

(ICECCS), pages 143–152. IEEE, 2022.

[10] Erik Meijer, Brian Beckman, and Gavin Bierman. Linq: Reconciling Object, Relations
and XML in the .net Framework. In Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pages 706–706, 2006.

[11] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib:
Machine Learning in Apache Spark. Journal of Machine Learning Research, 17(34):1–
7, 2016.

[12] John Hughes. Why functional Programming matters. The computer journal, 32(2):98–
107, 1989.

[13] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An Overview of the Scala Programming Language. 2004.

[14] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc,
2008.

[15] Peter Sestoft. Programming Language Concepts. Springer, 2017.

[16] Victor Pankratius, Felix Schmidt, and Gilda Garretón. Combining functional and
imperative Programming for multicore Software: An empirical Study evaluating
Scala and Java. In 2012 34th International Conference on Software Engineering (ICSE),
pages 123–133. IEEE, 2012.

[17] Christof Ebert and Panos Louridas. Generative AI for Software Practitioners. IEEE
Software, 40(4):30–38, 2023.

[18] Michel Wermelinger. Using GitHub Copilot to solve simple Programming Problems.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Education

V. 1, pages 172–178, 2023.

[19] Nhan Nguyen and Sarah Nadi. An empirical Evaluation of GitHub Copilot’s Code
Suggestions. In Proceedings of the 19th International Conference on Mining Software

Repositories, pages 1–5, 2022.

[20] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang,
and Meng Yan. Improving ChatGPT Prompt for Code Generation. arXiv preprint
arXiv:2305.08360, 2023.

[21] Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM Karim. Extending the Frontier of
ChatGPT: Code Generation and Debugging. arXiv preprint arXiv:2307.08260, 2023.

[22] Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu,
Xin Cong, Yankai Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source
Framework for Repository-level Code Documentation Generation. arXiv preprint
arXiv:2402.16667, 2024.

[23] Robert W McGee. ChatGPT and Copyright Infringement: An Exploratory Study.
Available at SSRN 4578430, 2023.

[24] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your Code
generated by ChatGPT really correct? Rigorous Evaluation of large Language Models
for Code Generation. Advances in Neural Information Processing Systems, 36, 2024.

[25] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
How Secure is Code Generated by ChatGPT? In 2023 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), pages 2445–2451. IEEE, 2023.

[26] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Si-
mone Scalabrino, Rocco Oliveto, and Gabriele Bavota. On the Robustness of Code
Generation Techniques: An empirical Study on Github Copilot. In 2023 IEEE/ACM

45th International Conference on Software Engineering (ICSE), pages 2149–2160. IEEE,
2023.

[27] David Lo. Trustworthy and Synergistic Artificial Intelligence for Software Engineer-
ing: Vision and Roadmaps. arXiv preprint arXiv:2309.04142, 2023.

[28] Min Zhang, Tracy Hall, and Nathan Baddoo. Code bad Smells: A Review of current
Knowledge. Journal of Software Maintenance and Evolution: research and practice,
23(3):179–202, 2011.

[29] Kamil Jezek and Richard Lipka. Antipatterns causing Memory Bloat: A Case Study.
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 306–315. IEEE, 2017.

[30] Philip Wadler. The Essence of functional Programming. In Proceedings of the 19th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
1–14, 1992.

[31] Philip Wadler. Monads for functional Programming. In Advanced Functional Pro-

gramming: First International Spring School on Advanced Functional Programming

Techniques Båstad, Sweden, May 24–30, 1995 Tutorial Text 1, pages 24–52. Springer,
1995.

[32] Simon Marlow et al. Haskell 2010 Language Report. 2010.

[33] Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler.
Type Classes in Haskell. ACM Transactions on Programming Languages and Systems

(TOPLAS), 18(2):109–138, 1996.

[34] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History of
Haskell: Being lazy with Class. In Proceedings of the third ACM SIGPLAN conference

on History of programming languages, pages 12–1, 2007.

[35] Jeremy Gibbons, David Lester, and Richard Bird. Functional Pearl: Enumerating the
Rationals. Journal of Functional Programming, 16(3):281–291, 2006.

[36] Martin Hofmann and Martin Hofmann. Syntax and Semantics of dependent Types.
Extensional Constructs in Intensional Type Theory, pages 13–54, 1997.

[37] He Ye, Matias Martinez, and Martin Monperrus. Neural Program Repair with
execution-based Backpropagation. In Proceedings of the 44th international conference

on software engineering, pages 1506–1518, 2022.

[38] Jack Herrington. Code Generation in Action. Manning Publications Co., 2003.

[39] Ivan Perez and Henrik Nilsson. Testing and Debugging functional reactive Program-
ming. Proceedings of the ACM on Programming Languages, 1(ICFP):1–27, 2017.

[40] John Hughes. QuickCheck Testing for Fun and Profit. In International Symposium

on Practical Aspects of Declarative Languages, pages 1–32. Springer, 2007.

[41] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy
Smallcheck: Automatic exhaustive Testing for small Values. Acm sigplan notices,
44(2):37–48, 2008.

[42] Volker Stolz and Frank Huch. Runtime Verification of concurrent Haskell Programs.
Electronic Notes in Theoretical Computer Science, 113:201–216, 2005.

[43] Simon Thompson. Haskell: The Craft of functional Programming. Addison-Wesley,
2011.

[44] Zhanyong Wan and Paul Hudak. Functional reactive Programming from first Princi-
ples. In Proceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, pages 242–252, 2000.

[45] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. A Survey on reactive Programming. ACM
Computing Surveys (CSUR), 45(4):1–34, 2013.

[46] Artemij Fedosejev. React.js Essentials. Packt Publishing Ltd, 2015.

[47] Tomasz Nurkiewicz and Ben Christensen. Reactive Programming with RxJava: Creat-

ing asynchronous, event-based Applications. " O’Reilly Media, Inc.", 2016.

[48] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. Evaluating the Code
Quality of AI-assisted Code Generation Tools: An empirical Study on Github Copilot,
Amazon CodeWhisperer, and ChatGPT. arXiv preprint arXiv:2304.10778, 2023.

[49] Oscar Oviedo-Trespalacios, Amy E Peden, Thomas Cole-Hunter, Arianna Costantini,
Milad Haghani, JE Rod, Sage Kelly, Helma Torkamaan, Amina Tariq, James David Al-
bert Newton, et al. The Risks of using ChatGPT to obtain common safety-related
Information and Advice. Safety science, 167:106244, 2023.

[50] Florian Arendt, Benedikt Till, Martin Voracek, Stefanie Kirchner, Gernot Sonneck,
Brigitte Naderer, Paul Pürcher, and Thomas Niederkrotenthaler. ChatGPT, Artificial
Intelligence, and Suicide Prevention, 2023.

[51] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "Do
anything now": Characterizing and Evaluating in-the-Wild Jailbreak Prompts on
large Language Models. arXiv preprint arXiv:2308.03825, 2023.

[52] Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie,
and Fangzhao Wu. Defending ChatGPT against Jailbreak Attack via Self-Reminders.
Nature Machine Intelligence, 5(12):1486–1496, 2023.

[53] Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao,
Tianwei Zhang, and Yang Liu. Jailbreaking ChatGPT via Prompt Engineering: An
empirical Study. arXiv preprint arXiv:2305.13860, 2023.

[54] Kiho Lee. ChatGPT_DAN, February 2023.

[55] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large
Scale Study of Programming Languages and Code Quality in Github. In Proceed-

ings of the 22nd ACM SIGSOFT international symposium on foundations of software

engineering, pages 155–165, 2014.

[56] Diomidis Spinellis. Code Quality: The Open Source Perspective. Adobe Press, 2006.

[57] Takaeshi Chusho. Coverage Measure for Path Testing based on the Concept of
essential Branches. Journal of Information Processing, 6(4):199–205, 1983.

[58] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A Database of existing
Faults to enable controlled Testing Studies for Java Programs. In Proceedings of the

2014 International Symposium on Software Testing and Analysis, pages 437–440, 2014.

[59] June Sallou, Thomas Durieux, and Annibale Panichella. Breaking the Silence: The
Threats of Using LLMs in Software Engineering. In Proceedings of the 2024 ACM/IEEE

44th International Conference on Software Engineering: New Ideas and Emerging

Results, ICSE-NIER’24, page 102–106, New York, NY, USA, 2024. Association for
Computing Machinery.

[60] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor
Leahy. The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv
preprint arXiv:2101.00027, 2020.

[61] Matthías Páll Gissurarson. Suggesting Valid Hole Fits for Typed-Holes (Experience
Report). In Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,
Haskell 2018, page 179–185, New York, NY, USA, 2018. Association for Computing
Machinery.

[62] Matias Martinez and Martin Monperrus. ASTOR: A Program Repair Library for Java.
In Proceedings of ISSTA, 2016.

[63] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The Use of Program
Profiling for Software Maintenance with Applications to the Year 2000 Problem. In
Proceedings of the 6th European SOFTWARE ENGINEERING conference held jointly with

the 5th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 432–449, 1997.

[64] Jelber Sayyad Shirabad, Timothy C Lethbridge, and Stan Matwin. Mining the
Maintenance History of a legacy Software System. In International Conference on

Software Maintenance, 2003. ICSM 2003. Proceedings., pages 95–104. IEEE, 2003.

[65] Ahmed E Hassan. The Road ahead for Mining Software Repositories. In 2008 frontiers
of software maintenance, pages 48–57. IEEE, 2008.

[66] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. Pydriller: Python Frame-
work for Mining Software Repositories. In Proceedings of the 2018 26th ACM Joint

meeting on european software engineering conference and symposium on the founda-

tions of software engineering, pages 908–911, 2018.

[67] CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence. 2020.

[68] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet Challenge: Evaluating the State of semantic Code
Search. arXiv preprint arXiv:1909.09436, 2019.

[69] Will Partain. The NoFib Benchmark Suite of Haskell Programs. In Functional

Programming, Glasgow 1992: Proceedings of the 1992 Glasgow Workshop on Functional

Programming, Ayr, Scotland, 6–8 July 1992, pages 195–202, Ayr, Scotland, 1993.
Springer, Springer.

[70] Josep Silva. The Buggy Benchmarks Collection. 2007. Josep Silva self-published on
his website / university.

[71] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS quarterly, pages 75–105, 2004.

[72] Samuel Sanford Shapiro and Martin B Wilk. An Analysis of Variance Test for
Normality (Complete Samples). Biometrika, 52(3/4):591–611, 1965.

[73] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
On the Naturalness of Software. Communications of the ACM, 59(5):122–131, 2016.

[74] Frank Wilcoxon. Individual Comparisons by ranking Methods. In Breakthroughs in

statistics, pages 196–202. Springer, 1992.

[75] Fortunato Pesarin and Luigi Salmaso. Permutation Tests for complex Data: Theory,

Applications and Software. John Wiley & Sons, 2010.

[76] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A Survey on
Software Fault Localization. IEEE Transactions on Software Engineering, 42(8):707–740,
2016.

[77] Romi Satria Wahono. A systematic Literature Review of Software Defect Prediction.
Journal of software engineering, 1(1):1–16, 2015.

[78] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. Progress on Approaches to Software
Defect Prediction. Iet Software, 12(3):161–175, 2018.

[79] André Riboira and Rui Abreu. The GZoltar Project: A graphical Debugger Inter-
face. In International Academic and Industrial Conference on Practice and Research

Techniques, pages 215–218. Springer, 2010.

[80] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method
for automatic Evaluation of Machine Translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[81] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan,
Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: A Method for automatic
Evaluation of Code Synthesis. arXiv preprint arXiv:2009.10297, 2020.

[82] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the Role of
BLEU in Machine Translation Research. In 11th conference of the european chapter of

the association for computational linguistics, pages 249–256, 2006.

[83] Ehud Reiter. A structured Review of the Validity of BLEU. Computational Linguistics,
44(3):393–401, 2018.

[84] Matt Post. A Call for Clarity in Reporting BLEU Scores. arXiv preprint

arXiv:1804.08771, 2018.

[85] Claire Le Goues, ThanhVuNguyen, Stephanie Forrest, andWestleyWeimer. Genprog:
A generic Method for automatic Software Repair. Ieee transactions on software

engineering, 38(1):54–72, 2011.

[86] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
Systematic Study of automated Program Repair: Fixing 55 out of 105 Bugs for 8
Dollar each. In 2012 34th international conference on software engineering (ICSE),
pages 3–13. IEEE, 2012.

[87] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo de Almeida Maia. Dissection of a Bug Dataset: Anatomy of 395 Patches
from Defects4J. In 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 130–140, 2018.

[88] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis of Patch Plau-
sibility and Correctness for generate-and-validate Patch Generation Systems. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 24–36, 2015.

[89] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. Automatic Repair of real Bugs in Java: A large-scale Experiment on the
Defects4J Dataset. Empirical Software Engineering, 22(4):1936–1964, 2017.

[90] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating multiple Fault
Diagnosis Dimensions for Deep Fault Localization. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 169–180,
2019.

[91] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, et al. An orchestrated Survey of Methodologies for automated Software
Test Case Generation. Journal of Systems and Software, 86(8):1978–2001, 2013.

[92] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: A Survey. Cybersecurity, 1(1):1–13,
2018.

[93] Saad Shafiq, Atif Mashkoor, Christoph Mayr-Dorn, and Alexander Egyed. Ma-
chine Learning for Software Engineering: A Systematic Mapping. arXiv preprint
arXiv:2005.13299, 2020.

[94] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained Model
for Programming and natural Languages. arXiv preprint arXiv:2002.08155, 2020.

[95] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing
Source Code using a neural Attention Model. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2073–2083, 2016.

[96] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. DeepCommenter: A Deep

Code Comment Generation Tool with Hybrid Lexical and Syntactical Information, page
1571–1575. Association for Computing Machinery, New York, NY, USA, 2020.

[97] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine Learning Testing: Survey,
Landscapes and Horizons. IEEE Transactions on Software Engineering, 2020.

[98] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle Problem in
Software Testing: A Survey. IEEE Transactions on Software Engineering, 41(5):507–525,
2015.

[99] Christian Murphy, Gail Kaiser, Lifeng Hu, and Leon Wu. Properties of machine
learning applications for use in metamorphic testing. 20th International Conference

on Software Engineering and Knowledge Engineering, SEKE 2008, pages 867–872, 2008.

[100] Xiaoyuan Xie, Joshua W.K. Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. Testing and validating Machine Learning Classifiers by Meta-
morphic Testing. Journal of Systems and Software, 84(4):544 – 558, 2011. The Ninth
International Conference on Quality Software.

[101] Muhammad Sharif, Sajjad Mohsin, Muhammad Younas Javed, and Muhammad Atif
Ali. Single Image Face Recognition Using Laplacian of Gaussian and Discrete Cosine
Transforms. Int. Arab J. Inf. Technol., 9(6):562–570, 2012.

[102] Leonhard Applis, Annibale Panichella, and Arie van Deursen. Assessing Robustness
of ML-Based Program Analysis Tools using Metamorphic Program Transformations.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 1377–1381. IEEE, 2021.

[103] Ehsan Mashhadi and Hadi Hemmati. Applying CodeBERT for Automated Program
Repair of Java Simple Bugs. arXiv preprint arXiv:2103.11626, 2021.

[104] Cong Pan, Minyan Lu, and Biao Xu. An Empirical Study on Software Defect Predic-
tion Using CodeBERT Model. Applied Sciences, 11(11):4793, 2021.

[105] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical Investigation into learning Bug-fixing
Patches in the Wild via Neural Machine Translation. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, pages 832–
837, 2018.

[106] Tae-Hwan Jung. CommitBERT: Commit Message Generation Using Pre-Trained
Programming Language Model. arXiv preprint arXiv:2105.14242, 2021.

[107] Rafael Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea
Janes. Big Code != Big Vocabulary: Open-Vocabulary Models for Source code. In
Proceedings of the 42nd International Conference on Software Engineering, ICSE ’20.
ACM, 2020.

[108] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic Testing: A new
Approach for generating next Test Cases. Technical Report Tech. Rep. HKUST-CS98-
01, 1998.

[109] Wing Kwong Chan, Shing Chi Cheung, and Karl RPH Leung. Towards a meta-
morphic Testing Methodology for service-oriented Software Applications. In Fifth

International Conference on Quality Software (QSIC’05), pages 470–476. IEEE, 2005.

[110] Johannes Mayer and Ralph Guderlei. On random Testing of Image Processing
Applications. In 2006 Sixth International Conference on Quality Software (QSIC’06),
pages 85–92. IEEE, 2006.

[111] Ralph Guderlei and Johannes Mayer. Towards automatic Testing of imaging Software
by Means of random and metamorphic Testing. International Journal of Software
Engineering and Knowledge Engineering, 17(06):757–781, 2007.

[112] TH Tse and Stephen S Yau. Testing context-sensitive middleware-based Software
Applications. In Proceedings of the 28th Annual International Computer Software and

Applications Conference, 2004. COMPSAC 2004., pages 458–466. IEEE, 2004.

[113] KY Sim, WKS Pao, and C Lin. Metamorphic Testing using geometric Interrogation
Technique and its Application. ECTI Transactions on Computer and Information

Technology (ECTI-CIT), 1(2):91–95, 2005.

[114] Junhua Ding, Tong Wu, Dianxiang Wu, Jun Q Lu, and Xin-Hua Hu. Metamorphic
Testing of a Monte Carlo modeling Program. In Proceedings of the 6th international

workshop on automation of software test, pages 1–7, 2011.

[115] Tsong Yueh Chen, Joshua WK Ho, Huai Liu, and Xiaoyuan Xie. An innovative
Approach for testing Bioinformatics Programs using metamorphic Testing. BMC

bioinformatics, 10(1):1–12, 2009.

[116] Qiuming Tao, WeiWu, Chen Zhao, andWuwei Shen. An automatic Testing Approach
for Compilers based on metamorphic Testing Technique. In 2010 Asia Pacific Software
Engineering Conference, pages 270–279. IEEE, 2010.

[117] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler Validation via Equivalence
Modulo Inputs. ACM SIGPLAN Notices, 49(6):216–226, 2014.

[118] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. A Survey
on metamorphic Testing. IEEE Transactions on software engineering, 42(9):805–824,
2016.

[119] Keith Cooper and Linda Torczon. Engineering a Compiler. Elsevier, 2011.

[120] C. N. Vasconcelos, A. Paes, and A. Montenegro. Towards Deep Learning Invariant
Pedestrian Detection by Data Enrichment. In 2016 15th IEEE International Conference

on Machine Learning and Applications (ICMLA), pages 837–841, 2016.

[121] Md Rafiqul Islam Rabin, Ke Wang, and Mohammad Amin Alipour. Testing Neural
Programs. CoRR, 2019.

[122] Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and
Mohammad Amin Alipour. On the Generalizability of Neural Program Models with
Respect to semantic-preserving Program Transformations. Information and Software

Technology, 135:106552, 2021.

[123] Karl Popper. The Logic of scientific Discovery. Routledge, 2005.

[124] Peter Achinstein. The Book of Evidence. Oxford University Press, 2001.

[125] Noam Yefet, Uri Alon, and Eran Yahav. Adversarial Examples for Models of Code.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

[126] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. Embedding Java Classes
with Code2vec. Proceedings of the 17th International Conference on Mining Software

Repositories, Jun 2020.

[127] A. Van Deursen and T. Kuipers. Building Documentation Generators. In Proceedings

IEEE International Conference on Software Maintenance - 1999 (ICSM’99). ’Software

Maintenance for Business Change’ (Cat. No.99CB36360), pages 40–49, 1999.

[128] Paul W. McBurney and Collin McMillan. Automatic Documentation Generation
via Source Code Summarization of Method Context. In Proceedings of the 22nd

International Conference on Program Comprehension, ICPC 2014, page 279–290, New
York, NY, USA, 2014. Association for Computing Machinery.

[129] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pundefined-
sundefinedreanu. Differential Symbolic Execution. In Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT
’08/FSE-16, page 226–237, New York, NY, USA, 2008. Association for Computing
Machinery.

[130] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. Code2seq: Generating Se-
quences from structured Representations of Code. arXiv preprint arXiv:1808.01400,
2018.

[131] Lionel C Briand. Software Documentation: How much is enough? In Seventh

European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings.,
pages 13–15. IEEE, 2003.

[132] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. Software Documentation Issues
unveiled. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 1199–1210. IEEE, 2019.

[133] Horacio Saggion, Dragomir Radev, Simone Teufel, and Wai Lam. Meta-Evaluation of
Summaries in a cross-lingual Environment using content-based Metrics. In COLING

2002: The 19th International Conference on Computational Linguistics, 2002.

[134] Chin-Yew Lin. Rouge: A Package for automatic Evaluation of Summaries. In Text

Summarization Branches out, pages 74–81, 2004.

[135] Vincent J. Hellendoorn and Premkumar Devanbu. Are Deep Neural Networks the
Best Choice for Modeling Source Code? In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2017, page 763–773, New York,
NY, USA, 2017. Association for Computing Machinery.

[136] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A Survey
of Machine Learning for Big Code and Naturalness. ACM Computing Surveys (CSUR),
51(4):1–37, 2018.

[137] Veselin Raychev, Martin Vechev, and Eran Yahav. Code Completion with statis-
tical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 419–428, 2014.

[138] Sebastian Proksch, Johannes Lerch, and Mira Mezini. Intelligent Code Completion
with Bayesian Networks. ACM Trans. Softw. Eng. Methodol., 25(1), dec 2015.

[139] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from Examples to
improve Code Completion Systems. In Proceedings of the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on the

foundations of software engineering, pages 213–222, 2009.

[140] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Graph-based pattern-
oriented, context-sensitive Source Code Completion. In 2012 34th International

Conference on Software Engineering (ICSE), pages 69–79. IEEE, 2012.

[141] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: AI-
assisted Code Completion System. In Proceedings of the 25th ACM SIGKDD In-

ternational Conference on Knowledge Discovery & Data Mining, pages 2727–2735,
2019.

[142] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-token Code
Completion by jointly learning from Structure and Naming Sequences. In Proceedings
of the 44th International Conference on Software Engineering, pages 401–412, 2022.

[143] Milton Friedman. The Use of Ranks to avoid the Assumption of Normality implicit in
the Analysis of Variance. Journal of the american statistical association, 32(200):675–
701, 1937.

[144] Peter Nemenyi. Distribution-free mulitple Comparisons, PhD thesis Princeton
University Princeton, 1963.

[145] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic Model for Code with
Decision Trees. ACM SIGPLAN Notices, 51(10):731–747, 2016.

[146] Zhenpeng Chen, Jie M Zhang, Max Hort, Federica Sarro, and Mark Harman. Fair-
ness Testing: A Comprehensive Survey and Analysis of Trends. arXiv preprint

arXiv:2207.10223, 2022.

[147] Giles Hooker. Diagnostics and Extrapolation in Machine Learning. stanford university,
2004.

[148] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An
empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 129–140,
2018.

[149] James Zou and Londa Schiebinger. AI can be sexist and racist — it’s Time to make it
Fair, 2018.

[150] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. Embedding Java Classes
with Code2vec: Improvements from Variable Obfuscation. In Proceedings of the 17th

International Conference on Mining Software Repositories, pages 243–253, 2020.

[151] Khlood Ahmad, Muneera Bano, Mohamed Abdelrazek, Chetan Arora, and John
Grundy. What’s up with Requirements Engineering for Artificial Intelligence Sys-
tems? In 2021 IEEE 29th International Requirements Engineering Conference (RE),
pages 1–12. IEEE, 2021.

[152] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning dis-
tributed Representations of Code. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[153] Karl Meinke and Amel Bennaceur. Machine Learning for Software Engineering:
Models, Methods, and Applications. In 2018 IEEE/ACM 40th International Conference

on Software Engineering: Companion (ICSE-Companion), pages 548–549, 2018.

[154] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. Counterfactual
Explanations for Models of Code. In Proceedings of the 44th International Conference

on Software Engineering: Software Engineering in Practice, pages 125–134, 2022.

[155] Phil McMinn. Search-based Software Test Data Generation: A Survey. Software
testing, Verification and reliability, 14(2):105–156, 2004.

[156] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic Test Suite Generation for
object-oriented Software. In Proceedings of the 19th ACM SIGSOFT symposium and

the 13th European conference on Foundations of software engineering, pages 416–419,
2011.

[157] Paolo Tonella. Evolutionary Testing of Classes. ACM SIGSOFT Software Engineering

Notes, 29(4):119–128, 2004.

[158] Shin Yoo and Mark Harman. Regression Testing Minimization, Selection and Pri-
oritization: A Survey. Software testing, verification and reliability, 22(2):67–120,
2012.

[159] Shin Yoo and Mark Harman. Pareto efficient multi-objective Test Case Selection.
In Proceedings of the 2007 international symposium on Software testing and analysis,
pages 140–150, 2007.

[160] Rodolfo Adamshuk Silva, Simone do Rocio Senger de Souza, and Paulo Sérgio Lopes
de Souza. A systematic Review on search based Mutation Testing. Information and

Software Technology, 81:19–35, 2017.

[161] Hélène Waeselynck, Pascale Thévenod-Fosse, and Olfa Abdellatif-Kaddour. Simu-
lated Annealing applied to Test Generation: Landscape Characterization and Stop-
ping Criteria. Empirical Software Engineering, 12(1):35–63, 2007.

[162] Matias Martinez and Martin Monperrus. Astor: A Program Repair Library for Java.
In Proceedings of the 25th International Symposium on Software Testing and Analysis,
pages 441–444, 2016.

[163] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. An empirical Evaluation of evolutionary Algorithms for Unit Test Suite
Generation. Information and Software Technology, 104:207–235, 2018.

[164] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. A large scale
empirical Comparison of State-of-the-Art search-based Test Case Generators. Infor-
mation and Software Technology, 104:236–256, 2018.

[165] Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano Panichella, and
Annibale Panichella. Single and Multi-objective Test Cases Prioritization for Self-
driving Cars in Virtual Environments. Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 2022.

[166] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio. SBST
Tool Competition 2021. In 2021 IEEE/ACM 14th International Workshop on Search-

Based Software Testing (SBST), pages 20–27. IEEE, 2021.

[167] John HHolland. Adaptation in natural and artificial Systems: An introductory Analysis

with Applications to Biology, Control, and artificial Intelligence. MIT press, 1992.

[168] Stefan Sette and Luc Boullart. Genetic Programming: Principles and Applications.
Engineering applications of artificial intelligence, 14(6):727–736, 2001.

[169] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
Branch Coverage as a many-objective Optimization Problem. In 2015 IEEE 8th

international conference on software testing, verification and validation (ICST), pages
1–10. IEEE, 2015.

[170] Gordon Fraser and Andrea Arcuri. Evosuite: On the Challenges of Test Case Genera-
tion in the real World. In 2013 IEEE sixth international conference on software testing,

verification and validation, pages 362–369. IEEE, 2013.

[171] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated Test
Case Generation as a many-objective Optimisation Problem with dynamic Selection
of the Targets. IEEE Transactions on Software Engineering, 44(2):122–158, 2017.

[172] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The Strength
of random Search on automated Program Repair. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, pages 254–265, 2014.

[173] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimiza-
tion. Journal of machine learning research, 13(2), 2012.

[174] Andrea Arcuri and Lionel Briand. A Practical Guide for using statistical Tests to
assess randomized Algorithms in Software Engineering. In Proceedings of the 33rd

international conference on software engineering, pages 1–10, 2011.

[175] Andrea Arcuri and Lionel Briand. A Hitchhiker’s Guide to statistical Tests for assess-
ing randomized Algorithms in Software Engineering. Software Testing, Verification
and Reliability, 24(3):219–250, 2014.

[176] William Jay Conover. Practical nonparametric Statistics, volume 350. john wiley &
sons, 1999.

[177] András Vargha and Harold D Delaney. A Critique and Improvement of the CL
common language effect size statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[178] Mark D Smucker, James Allan, and Ben Carterette. A Comparison of statistical
Significance Tests for Information Retrieval Evaluation. In Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management, pages
623–632, 2007.

[179] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. Automated Repair of Feature Interaction Failures in Automated
Driving Systems. In Proceedings of the 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA 2020, page 88–100, New York, NY, USA, 2020.
Association for Computing Machinery.

[180] Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. A Survey on
Handling computationally expensive multiobjective Optimization Problems with
evolutionary Algorithms. Soft Computing, 23, 2019.

[181] Helen G Cobb and John J Grefenstette. Genetic Algorithms for Tracking changing
Environments. Technical report, Naval Research Lab Washington DC, 1993.

[182] Sungmin Kang, Gabin An, and Shin Yoo. A quantitative and qualitative evaluation
of LLM-based explainable fault localization. Proceedings of the ACM on Software

Engineering, 1(FSE):1424–1446, 2024.

[183] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. Multiple Fault Localization of Software Programs:
A Systematic Literature Review. Information and Software Technology, 124:106312,
2020.

[184] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. Empirical
Review of Java Program Repair Tools: A large-scale Experiment on 2,141 Bugs
and 23,551 Repair Attempts. In Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 302–313, 2019.

[185] Gabin An, Juyeon Yoon, and Shin Yoo. Searching for Multi-fault Programs in
Defects4J. In Una-May O’Reilly and Xavier Devroey, editors, Search-Based Software
Engineering, pages 153–158, Cham, 2021. Springer International Publishing.

[186] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu,
Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. Bugswarm:
Mining and continuously growing a Dataset of reproducible Failures and Fixes. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
339–349. IEEE, 2019.

[187] Rafael-Michael Karampatsis and Charles Sutton. How Often Do Single-Statement
Bugs Occur? The ManySStuBs4J Dataset. In Proceedings of the 17th International

Conference on Mining Software Repositories, MSR ’20, page 573–577, New York, NY,
USA, 2020. Association for Computing Machinery.

[188] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do Changes
induce Fixes? ACM sigsoft software engineering notes, 30(4):1–5, 2005.

[189] Gema Rodríguez-Pérez, Gregorio Robles, and Jesús M González-Barahona. Repro-
ducibility and Credibility in empirical Software Engineering: A Case Study based on
a Systematic Literature Review of the Use of the SZZ Algorithm. Information and

Software Technology, 99:164–176, 2018.

[190] Steffen Herbold, Alexander Trautsch, Fabian Trautsch, and Benjamin Ledel. Prob-
lems with SZZ and Features: An empirical Study of the State of Practice of Defect
Prediction Data Collection. Empirical Software Engineering, 27(2):1–49, 2022.

[191] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Benefelds.
An industrial Evaluation of Unit Test Generation: Finding real Faults in a financial
Application. In 2017 IEEE/ACM 39th International Conference on Software Engineering:

Software Engineering in Practice Track (ICSE-SEIP), pages 263–272. IEEE, 2017.

[192] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Mon-
perrus, and Benoit Baudry. A snowballing Literature Study on Test Amplification.
Journal of Systems and Software, 157:110398, 2019.

[193] Sebastian Elbaum, Hui Nee Chin, Matthew B Dwyer, and Jonathan Dokulil. Carving
differential Unit Test Cases from System Test Cases. In Proceedings of the 14th

ACM SIGSOFT international symposium on Foundations of software engineering, pages
253–264, 2006.

[194] Balázs Mosolygó, Norbert Vándor, Gábor Antal, and Péter Hegedűs. On the Rise
and Fall of simple Stupid Bugs: A Life-Cycle Analysis of SSTUBS. In 2021 IEEE/ACM

18th International Conference on Mining Software Repositories (MSR), pages 495–499.
IEEE, 2021.

[195] Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. A lightweight interactive
Debugger for Haskell. In Proceedings of the ACM SIGPLAN workshop on Haskell

workshop, pages 13–24, 2007.

[196] Andy Gill and Colin Runciman. Haskell Program Coverage. In Proceedings of the

ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, page 1–12, New York,
NY, USA, 2007. Association for Computing Machinery.

[197] GHC Contributors. GHC 8.10.4 users guide, 2021.

[198] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. What Makes a Good Bug Report? In Proceedings of the

16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, page 308–318, New York, NY, USA, 2008. Association for
Computing Machinery.

[199] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael Osera,
Janice L. Pearce, and James Prather. Compiler Error Messages Considered Unhelpful:
The Landscape of Text-Based Programming Error Message Research. In Proceedings

of the Working Group Reports on Innovation and Technology in Computer Science

Education, ITiCSE-WGR ’19, page 177–210, New York, NY, USA, 2019. Association
for Computing Machinery.

[200] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. Do Developers read Compiler Error Messages? In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
575–585, Buenos Aires, Argentina, 2017. IEEE, IEEE/ACM.

[201] Peter C. Rigby and Suzanne Thompson. Study of Novice Programmers Using Eclipse
andGild. In Proceedings of the 2005 OOPSLAWorkshop on Eclipse Technology EXchange,
eclipse ’05, page 105–109, New York, NY, USA, 2005. Association for Computing
Machinery.

[202] John Wrenn and Shriram Krishnamurthi. Error Messages Are Classifiers: A Process
to Design and Evaluate Error Messages. In Proceedings of the 2017 ACM SIGPLAN In-

ternational Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software, Onward! 2017, page 134–147, New York, NY, USA, 2017. Association
for Computing Machinery.

[203] V. Javier Traver. On Compiler Error Messages: What They Say and What They Mean.
Adv. in Hum.-Comp. Int., 2010, jan 2010.

[204] Dale Shaffer, Wendy Doube, and Juhani Tuovinen. Applying Cognitive Load Theory
to Computer Science Education. In PPIG, volume 1, pages 333–346, Keele, UK, 2003.
Citeseer, M. Petre & D. Budgen (Eds.).

[205] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. Metacognitive Difficulties faced by vovice Programmers in automated
Assessment Tools. In Proceedings of the 2018 ACM Conference on International

Computing Education Research, pages 41–50, Espoo, Finland, 2018. ACM.

[206] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer,
Nevan Simone, and Maxine Cohen. On Novices’ Interaction with Compiler Error
Messages: A Human Factors Approach. In Proceedings of the 2017 ACM Conference on

International Computing Education Research, pages 74–82, Tacoma, WA, USA, 2017.
ACM.

[207] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. Do Stack Traces help
Developers fix Bugs? In 2010 7th IEEE working conference on mining software

repositories (MSR 2010), pages 118–121, Cape Town, South Africa, 2010. IEEE, IEEE.

[208] Tristan O.R. Allwood, Simon Peyton Jones, and Susan Eisenbach. Finding the Needle:
Stack Traces for GHC. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell,
Haskell ’09, page 129–140, New York, NY, USA, 2009. Association for Computing
Machinery.

[209] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-View
Tracing for Haskell: a New Hat. In Ralf Hinze, editor, 2001 ACM SIGPLAN Haskell

Workshop, Firenze, Italy, September 2001. Universiteit Utrecht UU-CS-2001-23. Final
proceedings to appear in ENTCS 59(2).

[210] Olaf Chitil, Colin Runciman, andMalcolmWallace. Transforming Haskell for Tracing.
In Symposium on Implementation and Application of Functional Languages, pages
165–181, Madrid, Spain, 2002. Springer, Springer.

[211] Andy Gill. Debugging Haskell by Observing Intermediate Data Structures. Electron.
Notes Theor. Comput. Sci., 41(1):1, 2000.

[212] Henrik Nilsson and Jan Sparud. The Evaluation Dependence Tree as a Basis for lazy
functional Debugging. Automated software engineering, 4:121–150, 1997.

[213] Lee Naish and Tim Barbour. Towards a portable lazy functional declarative Debugger.
Australian Computer Science Communications, 18:401–408, 1996.

[214] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement Types for Haskell. In Proceedings of the 19th ACM SIGPLAN international

conference on Functional programming, pages 269–282, 2014.

[215] Ranjit Jhala. LiquidHaskell is a GHC Plugin, 2020.

[216] William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac.
Lazy Counterfactual Symbolic Execution. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2019, page
411–424, New York, NY, USA, 2019. Association for Computing Machinery.

[217] Maarten Faddegon and Olaf Chitil. Algorithmic Debugging of real-world Haskell
Programs: Deriving Dependencies from the Cost Centre Stack. ACM SIGPLAN

Notices, 50(6):33–42, 2015.

[218] John Launchbury. A natural Semantics for lazy Evaluation. In Proceedings of the 20th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
144–154, Charleston, SC, USA, 1993. ACM.

[219] Peter Sestoft. Deriving a lazy abstract Machine. Journal of Functional Programming,
7(3):231–264, 1997.

[220] Paul Anderson, Łucja Kot, Neil Gilmore, and David Vitek. SARIF-Enabled Tooling
to Encourage Gradual Technical Debt Reduction. In 2019 IEEE/ACM International

Conference on Technical Debt (TechDebt), pages 71–72, Montreal, QC, Canada, 2019.
IEEE/ACM.

[221] A. Hamou-Lhadj and T. Lethbridge. Summarizing the Content of Large Traces
to Facilitate the Understanding of the Behaviour of a Software System. In 14th

IEEE International Conference on Program Comprehension (ICPC’06), pages 181–190,
Athens, Greece, 2006. IEEE.

[222] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi. Identify-
ing Core Objects for Trace Summarization Using Reference Relations and Access
Analysis. In 2017 IEEE 41st Annual Computer Software and Applications Conference

(COMPSAC), volume 1, pages 13–22, Turin, Italy, 2017. IEEE.

[223] Yen-Chi Chen. A Tutorial on Kernel Density Estimation and recent Advances.
Biostatistics & Epidemiology, 1(1):161–187, 2017.

[224] Zhenyu Zhang, W. K. Chan, T. H. Tse, Bo Jiang, and Xinming Wang. Capturing
Propagation of Infected Program States. ESEC/FSE ’09, page 43–52, New York, NY,
USA, 2009. Association for Computing Machinery.

[225] Marco Vassena, Joachim Breitner, and Alejandro Russo. Securing Concurrent Lazy
Programs Against Information Leakage. In 2017 IEEE 30th Computer Security Foun-

dations Symposium (CSF), pages 37–52, Santa Barbara, CA, USA, 2017. IEEE.

[226] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K. Roy. Towards a
context-aware IDE-based meta search Engine for Recommendation about Program-
ming Errors and Exceptions. In 2014 Software Evolution Week - IEEE Conference on

Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pages
194–203, Antwerp, Belgium, 2014. IEEE.

[227] Kasra Ferdowsi. Towards Human-Centered Types & Type Debugging. Plateau
Workshop.

[228] Leonhard Applis and Annibale Panichella. HasBugs - Handpicked Haskell Bugs. In
2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR),
pages 223–227, Melbourne, Australia, 2023. IEEE/ACM.

[229] Mark Weiser. Program Slicing. IEEE Transactions on software engineering, 1(4):352–
357, 1984.

[230] Rui Abreu, Peter Zoeteweij, and Arjan JC VanGemund. On the Accuracy of Spectrum-
based Fault Localization. In Testing: Academic and industrial conference practice and

research techniques-MUTATION (TAICPART-MUTATION 2007), pages 89–98, Windsor,
UK, 2007. IEEE, IEEE.

[231] Tom Janssen, Rui Abreu, and Arjan JC Van Gemund. Zoltar: A Toolset for automatic
Fault Localization. In 2009 IEEE/ACM International Conference on Automated Software

Engineering, pages 662–664, Auckland, New Zealand, 2009. IEEE, IEEE.

[232] Yuhua Qi, XiaoguangMao, and Yan Lei. Efficient Automated Program Repair through
Fault-Recorded Testing Prioritization. In 2013 IEEE International Conference on

Software Maintenance, pages 180–189, 2013.

[233] Qi Xin. Towards Addressing the Patch Overfitting Problem. In 2017 IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C), pages 489–490,
2017.

[234] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. An Investigation of Com-
pression Techniques to speed up Mutation Testing. In 2018 IEEE 11th International

Conference on Software Testing, Verification and Validation (ICST), pages 274–284.
IEEE, 2018.

[235] Zhen Yu Ding. Patch Quality and Diversity of Invariant-Guided Search-Based
Program Repair. arXiv preprint arXiv:2003.11667, 2020.

[236] Matias Martinez, Westley Weimer, and Martin Monperrus. Do the Fix Ingredients
Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program
Repair Approaches. In Companion Proceedings of the 36th International Conference

on Software Engineering, ICSE Companion 2014, page 492–495, New York, NY, USA,
2014. Association for Computing Machinery.

[237] Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. Experience Report:
How do Techniques, Programs, and Tests impact automated Program Repair? In

2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),
pages 194–204. IEEE, 2015.

[238] Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic Neural Program Embedding
for Program Repair. arXiv preprint arXiv:1711.07163, 2017.

[239] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin
Tan. Coconut: Combining context-aware neural translation Models using Ensemble
for Program Repair. In Proceedings of the 29th ACM SIGSOFT international symposium

on software testing and analysis, pages 101–114, 2020.

[240] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati. On
the Use of Dependabot Security Pull Requests. In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR), pages 254–265. IEEE, 2021.

[241] Khashayar Etemadi, Nicolas Harrand, Simon Larsen, Haris Adzemovic, Henry Luong
Phu, Ashutosh Verma, Fernanda Madeiral, Douglas Wikstrom, and Martin Monper-
rus. Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Violations.
arXiv preprint arXiv:2103.12033, 2021.

[242] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis of Patch Plau-
sibility and Correctness for Generate-and-Validate Patch Generation Systems. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, page 24–36, New York, NY, USA, 2015. Association for Computing
Machinery.

[243] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. Test Case Generation for Program Repair: A Study of Feasibility and
Effectiveness. arXiv preprint arXiv:1703.00198, 2017.

[244] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,
page 416–419, New York, NY, USA, 2011. Association for Computing Machinery.

[245] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN International

Conference on Functional Programming, ICFP ’00, page 268–279, New York, NY, USA,
2000. Association for Computing Machinery.

[246] Richard Hamlet. Random Testing. Encyclopedia of software Engineering, 2:971–978,
1994.

[247] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current Challenges in
automatic Software Repair. Software Quality Journal, 21(3):421–443, 2013.

[248] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. Empirical
Review of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and
23,551 Repair Attempts. In Proceedings of the 27th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’19), 2019.

[249] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. A comprehensive
Study of automatic Program Repair on the QuixBugs Benchmark. Journal of Systems

and Software, 171:110825, 2021.

[250] Chadi Trad, Rawad Abou Assi, Wes Masri, and Fadi Zaraket. CFAAR: Control
Flow Alteration to Assist Repair. In 2018 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW), pages 208–215. IEEE, 2018.

[251] MingWen, Junjie Chen, RongxinWu, Dan Hao, and Shing-Chi Cheung. An empirical
Analysis of the Influence of Fault Space on search-based automated Program Repair.
arXiv preprint arXiv:1707.05172, 2017.

[252] Qi Xin and Steven P Reiss. Leveraging syntax-related Code for automated Program
Repair. In 2017 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 660–670. IEEE, 2017.

[253] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. How to design
a Program Repair Bot? Insights from the Repairnator Project. In 2018 IEEE/ACM 40th

International Conference on Software Engineering: Software Engineering in Practice

Track (ICSE-SEIP), pages 95–104. IEEE, 2018.

[254] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. Elixir: Effective
object-oriented Program Repair. In 2017 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 648–659. IEEE, 2017.

[255] Christoph Kern and Mark R. Greenstreet. Formal Verification in Hardware Design:
A Survey. ACM Trans. Des. Autom. Electron. Syst., 4(2):123–193, apr 1999.

[256] Catherine A Meadows. Formal Verification of cryptographic Protocols: A Survey. In
International Conference on the Theory and Application of Cryptology, pages 133–150.
Springer, 1994.

[257] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Golla-
mudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas
Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. Formal Verification
of Smart Contracts: Short Paper. PLAS ’16, page 91–96, New York, NY, USA, 2016.
Association for Computing Machinery.

[258] Christoph Kreitz. Program Synthesis. In Automated Deduction—A Basis for Applica-

tions, pages 105–134. Springer, 1998.

[259] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From Program Verification
to Program Synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’10, page 313–326, New
York, NY, USA, 2010. Association for Computing Machinery.

[260] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-
Based Program Repair Using SAT. In Parosh Aziz Abdulla and K. Rustan M. Leino,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
173–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[261] Ricardo Peña. An Introduction to Liquid Haskell. arXiv preprint arXiv:1701.03320,
2017.

[262] Patrick Redmond, Gan Shen, and Lindsey Kuper. Toward Hole-Driven Development
with Liquid Haskell. arXiv preprint arXiv:2110.04461, 2021.

[263] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. A Tale of Two Provers:
Verifying Monoidal String Matching in Liquid Haskell and Coq. 52(10):63–74, sep
2017.

[264] Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid Types. In Proceed-

ings of the 29th ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 159–169, 2008.

[265] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala,
and Nadia Polikarpova. Program Synthesis by Type-Guided Abstraction Refinement.
Proc. ACM Program. Lang., 4(POPL), dec 2019.

[266] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program Synthesis from
Polymorphic Refinement Types. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’16, page 522–538, New
York, NY, USA, 2016. Association for Computing Machinery.

[267] Susumu Katayama. MagicHaskeller: System Demonstration. In Proceedings of

AAIP 2011 4th International Workshop on Approaches and Applications of Inductive

Programming, page 63, 2011.

[268] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and
Armando Solar-Lezama. Liquid Information Flow Control. Proc. ACM Program.

Lang., 4(ICFP), aug 2020.

[269] Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala,
and Nadia Polikarpova. Digging for Fold: Synthesis-Aided API Discovery for Haskell.
Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[270] Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. Automatic Diagnosis and
Correction of Logical Errors for Functional Programming Assignments. Proc. ACM
Program. Lang., 2(OOPSLA), oct 2018.

[271] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis. In Proceedings of the 38th Interna-

tional Conference on Software Engineering, ICSE ’16, page 691–701, New York, NY,
USA, 2016. Association for Computing Machinery.

[272] Edward Kmett. The lens Library, 2021.

[273] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid Mining:
Helping to Navigate the API Jungle. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’05, page
48–61, New York, NY, USA, 2005. Association for Computing Machinery.

[274] Chang Wook Ahn and R.S. Ramakrishna. Elitism-based compact genetic algorithms.
IEEE Transactions on Evolutionary Computation, 7(4):367–385, 2003.

[275] Geoffrey Neumann, Mark Harman, and Simon Poulding. Transformed Vargha-
Delaney Effect Size. In Márcio Barros and Yvan Labiche, editors, Search-Based
Software Engineering, pages 318–324, Cham, 2015. Springer International Publishing.

[276] Rainer Koschke. Survey of Research on Software Clones. In Rainer Koschke, Ettore
Merlo, and Andrew Walenstein, editors, Duplication, Redundancy, and Similarity in

Software, number 06301 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

[277] Michel Raymond and Francois Rousset. An Exact Test for Population Differentiation.
Evolution, 49(6):1280–1283, 1995.

[278] Thorsten Pohlert. The pairwise multiple Comparison of mean Ranks Package (PM-
CMR). R package, 27(2019):9, 2014.

[279] Qi Xin and Steven P. Reiss. Identifying Test-Suite-overfitted Patches through Test
Case Generation. ISSTA 2017 - Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 226–236, 2017.

[280] Amirfarhad Nilizadeh, Gary T. Leavens, Xuan-Bach D. Le, Corina S. Păsăreanu, and
David R. Cok. Exploring True Test Overfitting in Dynamic Automated Program
Repair using Formal Methods. In 2021 14th IEEE Conference on Software Testing,

Verification and Validation (ICST), pages 229–240, 2021.

[281] Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated Repair of Java Programs via
multi-objective genetic Programming. arXiv, 46(10):1040–1067, 2017.

[282] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code. Software: Practice and Experience, 46:1155–1179, 2015.

[283] Ali Ghanbari and Lingming Zhang. PraPR: Practical Program Repair via Bytecode
Mutation. In 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 1118–1121, 2019.

[284] Thomas Durieux and Martin Monperrus. DynaMoth: Dynamic Code Synthesis
for Automatic Program Repair. In Proceedings of the 11th International Workshop

on Automation of Software Test, AST ’16, page 85–91, New York, NY, USA, 2016.
Association for Computing Machinery.

[285] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified
Pre-training for Program Understanding and Generation, 2021.

[286] Andrea Arcuri and Gordon Fraser. On Parameter Tuning in Search Based Software
Engineering. In International Symposium on Search Based Software Engineering, pages
33–47. Springer, 2011.

[287] Thomas Durieux and Martin Monperrus. IntroClassJava: A Benchmark of 297 Small
and Buggy Java Programs. Technical report, Universite Lille 1, 2016.

[288] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar De-
vanbu, Stephanie Forrest, and Westley Weimer. The ManyBugs and IntroClass
Benchmarks for automated Repair of C Programs. IEEE Transactions on Software

Engineering, 41(12):1236–1256, 2015.

[289] Claire Le Goues, Yuriy Brun, Stephanie Forrest, and Westley Weimer. Clarifications
on the Construction and Use of the ManyBugs Benchmark. IEEE Transactions on

Software Engineering, 43(11):1089–1090, 2017.

[290] Massimiliano Dominici. An Overview of Pandoc. TUGboat, 35(1):44–50, 2014.

[291] Feng Li, Meng Wang, and Dan Hao. Bridging the Gap between Different Program-
ming Paradigms in Coverage-based Fault Localization. In Proceedings of the 13th

Asia-Pacific Symposium on Internetware, pages 75–84, 2022.

[292] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen.
Reversible Debugging Software. Judge Bus. School, Univ. Cambridge, Cambridge, UK,

Tech. Rep, 229, 2013.

[293] Ruanqianqian Lisa Huang, Elizaveta Pertseva, Michael Coblenz, and Sorin Lerner.
How do Haskell Programmers debug? Plateau Workshop.

[294] Justin Lubin and Sarah E Chasins. How statically-typed functional Programmers
write Code. Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–30,
2021.

[295] James A Jones and Mary Jean Harrold. Empirical Evaluation of the Tarantula auto-
matic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, pages 273–282, 2005.

[296] Chris Parnin and Alessandro Orso. Are automated Debugging Techniques actually
helping Programmers? In Proceedings of the 2011 international symposium on software

testing and analysis, pages 199–209, 2011.

[297] Qusay Idrees Sarhan and Árpád Beszédes. A Survey of Challenges in Spectrum-Based
Software Fault Localization. IEEE Access, 10:10618–10639, 2022.

[298] James A. Jones, Mary JeanHarrold, and John Stasko. Visualization of Test Information
to Assist Fault Localization. In Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, page 467–477, New York, NY, USA, 2002. Association
for Computing Machinery.

[299] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The DStar Method for
effective Software Fault Localization. IEEE Transactions on Reliability, 63(1):290–308,
2013.

[300] David Lo, Lingxiao Jiang, Aditya Budi, et al. Comprehensive Evaluation of Asso-
ciation Measures for Fault Localization. In 2010 IEEE International Conference on

Software Maintenance, pages 1–10. IEEE, 2010.

[301] Zhenyu Zhang, Wing Kwong Chan, TH Tse, Bo Jiang, and XinmingWang. Capturing
Propagation of infected Program States. In Proceedings of the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pages 43–52, 2009.

[302] Mike Papadakis and Yves Le Traon. Effective Fault Localization viaMutationAnalysis:
A selective Mutation Approach. In Proceedings of the 29th annual ACM symposium

on applied computing, pages 1293–1300, 2014.

[303] Mike Papadakis and Yves Le Traon. Metallaxis-FL: Mutation-based Fault Localization.
Software Testing, Verification and Reliability, 25(5-7):605–628, 2015.

[304] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the Mutants:
Mutating faulty Programs for Fault Localization. In 2014 IEEE Seventh International

Conference on Software Testing, Verification and Validation, pages 153–162. IEEE, 2014.

[305] Luciano C Ascari, Lucilia Y Araki, Aurora RT Pozo, and Silvia R Vergilio. Exploring
Machine Learning Techniques for Fault Localization. In 2009 10th Latin American

Test Workshop, pages 1–6. IEEE, 2009.

[306] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D Ernst,
Deric Pang, and Benjamin Keller. Evaluating and improving Fault Localization. In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
609–620. IEEE, 2017.

[307] Meng Gao, Pengyu Li, Congcong Chen, and Yunsong Jiang. Research on Software
multiple Fault Localization Method based on Machine Learning. In MATEC web of

conferences, volume 232, page 01060. EDP Sciences, 2018.

[308] Alberto Gonzalez-Sanchez, Eric Piel, Hans-Gerhard Gross, and Arjan JC van Gemund.
Prioritizing Tests for Software Fault Localization. In 2010 10th International Confer-

ence on Quality Software, pages 42–51. IEEE, 2010.

[309] Gong Dandan, Wang Tiantian, Su Xiaohong, and Ma Peijun. A Test-suite Reduc-
tion Approach to improving Fault-Localization Effectiveness. Computer Languages,

Systems & Structures, 39(3):95–108, 2013.

[310] László Vidács, Árpád Beszédes, Dávid Tengeri, István Siket, and Tibor Gyimóthy. Test
Suite Reduction for Fault Detection and Localization: A combined Approach. In 2014

Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,

and Reverse Engineering (CSMR-WCRE), pages 204–213. IEEE, 2014.

[311] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A Model for Spectra-based
Software Diagnosis. ACM Transactions on software engineering and methodology

(TOSEM), 20(3):1–32, 2011.

[312] Anish Tondwalkar, Rolph Recto, Westley Weimer, and Ranjit Jhala. Finding and
Fixing Bugs in Liquid Haskell. 2016.

[313] Vanessa Vasconcelos and Mariza AS Bigonha. HaskellFL: A Tool for Detecting
Logical Errors in Haskell. International Journal of Computer and Systems Engineering,
15(8):479–493, 2021.

[314] Rafael Caballero, Adrián Riesco, and Josep Silva. A Survey of algorithmic Debugging.
ACM Computing Surveys (CSUR), 50(4):1–35, 2017.

[315] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the Effectiveness
of Dataflow- and Control-flow-based Test Adequacy Criteria. In Proceedings of 16th

International Conference on Software Engineering, pages 191–200, 1994.

[316] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. Bugbench:
Benchmarks for evaluating Bug Detection Tools. InWorkshop on the evaluation of

software defect detection tools, volume 5. Chicago, Illinois, 2005.

[317] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC Counting
Standard. In Cocomo ii forum, volume 2007, pages 1–16. Citeseer, 2007.

[318] Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. Comparing top k Lists.
SIAM Journal on discrete mathematics, 17(1):134–160, 2003.

[319] Manos Renieres and Steven P Reiss. Fault Localization with nearest Neighbor
Queries. In 18th IEEE International Conference on Automated Software Engineering,

2003. Proceedings., pages 30–39. IEEE, 2003.

[320] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[321] J. Blank and K. Deb. pymoo: Multi-Objective Optimization in Python. IEEE Access,
8:89497–89509, 2020.

[322] Michael D McKay, Richard J Beckman, and William J Conover. A Comparison of
three Methods for selecting Values of Input Variables in the Analysis of Output from
a Computer Code. Technometrics, 42(1):55–61, 2000.

[323] Brad L Miller, David E Goldberg, et al. Genetic Algorithms, Tournament Selection,
and the Effects of Noise. Complex systems, 9(3):193–212, 1995.

[324] K Deb and RB Agrawal. Simulated binary Crossover for continuous Search Space.
Complex systems, 9(2):115–148, 1995.

[325] Kalyanmoy Deb. Multi-objective Optimization using evolutionary Algorithms, vol-
ume 16. John Wiley & Sons, 2001.

[326] Gordon Fraser and Andrea Arcuri. A large-scale Evaluation of automated Unit
Test Generation using Evosuite. ACM Transactions on Software Engineering and

Methodology (TOSEM), 24(2):1–42, 2014.

[327] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does
automated Unit Test Generation really help Software Testers? A controlled empirical
Study. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(4):1–
49, 2015.

[328] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. Do automatically generated Unit Tests find real Faults? An empir-
ical Study of Effectiveness and Challenges. In 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 201–211. IEEE, 2015.

[329] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P Midkiff. SOBER: Statistical
model-based Bug Localization. ACM SIGSOFT Software Engineering Notes, 30(5):286–
295, 2005.

[330] Tung Dao, Na Meng, and ThanhVu Nguyen. Triggering Modes in Spectrum-Based
Multi-location Fault Localization. In Proceedings of the 31st ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2023, page 1774–1785, New York, NY, USA, 2023. Association
for Computing Machinery.

[331] Dewayne E Perry and Carol S Stieg. Software Faults in Evolving a large, real-time
System: A Case Study. In European software engineering conference, pages 48–67.
Springer, 1993.

[332] Kai Pan, Sunghun Kim, and E James Whitehead. Toward an Understanding of Bug
Fix Patterns. Empirical Software Engineering, 14:286–315, 2009.

[333] Lucia LUCIA, Ferdian Thung, David Lo, and Lingxiao Jiang. Are Faults Localizable?
2012.

[334] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated Program
Repair. Communications of the ACM, 62(12):56–65, 2019.

[335] Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen,
and David Sands. PropR: Property-Based Automatic Program Repair. In The 44th

IEEE/ACM In-ternational Conference on Software Engineering (ICSE), Pittsburgh, PA,
USA, 2022. IEEE/ACM, IEEE/ACM.

[336] Matthías Páll Gissurarson and Leonhard Applis. CSI: Haskell - Tracing Lazy Evalua-
tions in a Functional Language. In Proceedings of the 35th Symposium on Implemen-

tation and Application of Functional Languages (IFL ’23). ACM New York, NY, USA,
2023.

[337] Zhou Yang, Zhensu Sun, Terry Zhuo Yue, Premkumar Devanbu, and David Lo. Ro-
bustness, Security, Privacy, Explainability, Efficiency, and Usability of large Language
Models for Code. arXiv preprint arXiv:2403.07506, 2024.

[338] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. Sapfix: Automated end-to-end Repair
at Scale. In 2019 IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 269–278. IEEE, 2019.

[339] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Au-
toCodeRover: Autonomous Program Improvement. arXiv preprint arXiv:2404.05427,
2024.

