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Abstract. This study investigates the diagnostic capabilities of a Diagnostic Bayesian Network (DBN) for 

air handling unit (AHU) components, particularly focusing on the heat recovery wheel (HRW) and heating 

coil valve (HCV). Unlike data-driven methods relying heavily on high-quality labeled data, this knowledge-

based DBN is more suitable for real-world applications, where labeled faulty and normal data are hard to 

obtain. Notably, existing studies predominantly concentrate on developing DBN for AHU with recirculated 

air, neglecting thorough investigations into AHU with HRW, a prevalent system in North Europe and 

increasingly recommended post-COVID-19 for mitigating viral propagation. This paper presents a DBN 

setup with expert knowledge for an AHU with HRW, which is evaluated using experimental data from an 

office building in the Netherlands. The results show that the proposed DBN can successfully diagnose 

typical faults in HRW and HCV.  

1. Introduction 

In the European Union, the building sector accounts for 

roughly 36% of greenhouse gas emissions, and it is 

estimated that 75% of the building infrastructure is 

considered energy inefficient [1]. Heating, ventilation, 

and air conditioning (HVAC) systems are designed to 

regulate indoor temperature, maintain air quality, and 

control humidity for optimal occupant comfort in 

buildings. HVAC systems constitute a significant 

portion of energy use in both residential and commercial 

buildings, accounting for roughly half of the total energy 

consumption in these structures [2].  

The air handling unit (AHU), as a key subsystem of 

HVAC systems, is responsible for introducing fresh air 

and removing exhaust air. It is important for maintaining 

energy-efficient operations and ensuring a comfortable 

indoor environment to detect and diagnose faults in 

AHU promptly and precisely [3]. Lin et al. [4] found 

potential energy savings from fault detection and 

diagnosis (FDD) of 5-30% in building energy systems. 

FDD methods can be divided into two main categories 

[5], data-driven approaches and knowledge-based 

approaches. Data-driven approaches can automatically 

capture the underlying patterns of faults from sensor 

data in building management systems. Many studies 

have applied various algorithms for FDD in AHU [6, 7], 

such as support vector machines [8], convolutional 

neural networks [9], and clustering [10]. However, pure 

data-driven approaches require high quality labelled 

faulty data for model training, which is expensive and 

time-consuming to obtain in practice. Besides, data-
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driven approaches lack interpretability and might suffer 

from similar data patterns caused by different faults.  
Contrasting with pure data-driven approaches, 

knowledge-based approaches offer higher 

interpretability by relying on expert knowledge and 

diagnostic rules to discern faulty operations within 

systems [11]. Diagnostic Bayesian Network (DBN), as 

a knowledge-based approach, utilizing physical rules 

and probabilistic inference, offers interpretability and 

high accuracy for FDD in building energy systems, 

including AHU [12, 13], chillers [14], heat pumps [15], 

and so on. Notably, existing studies predominantly 

concentrate on developing DBN for AHU with 

recirculated air [13, 16]. There is a lack of investigations 

into developing DBN for AHU with heat recovery 

wheels (HRW), which is a prevalent system in North 

Europe and increasingly recommended post-COVID-19 

for mitigating viral propagation. 

To fill the research gap, this study proposes a 

knowledge-based DBN for FDD in heating components 

of AHU, especially focusing on the faults in HRW and 

heating coil valves (HCV). The proposed DBN follows 

the reference framework, four symptoms and three 

faults (4S3F) proposed by Taal and Itard [17]. The DBN 

is evaluated using experimental data from an office 

building in the Netherlands, one of the living 

laboratories within the Brain4Buildings project [18].  

In the following sections, this paper will introduce 

the methodology, including the theory of DBN, the 

4S3F framework and its implementation. Section 3 

describes the case study. Subsequently, the results and 

discussion will be presented in Section 4. Finally, 



 

 

Section 5 will provide the summary and conclusion of 

this work. 

2. Methodology 

2.1 The theory of DBN  

The DBN models relies on the Bayes theorem, which 

utilizes conditional probability to assess the likelihood 

of an event given the occurrence of another event. 

Within this framework, when considering event A, 

indicative of a fault, occurring in the context of event B, 

which represent a symptom, the probability of A given 

B is defined as follows: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
=

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (1) 

By applying Bayes theorem, posterior probabilities 

can be calculated from prior probabilities. The prior 

probability of the variable and the conditional 

probability B are obtained from the existing knowledge, 

which may include statistical data or expert knowledge. 

The posterior probability is calculated as follows. 

 

𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

∑ 𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)𝑛
𝑖=1

 (2) 

2.2 4S3F framework 

Fig. 1 presents the 4S3F framework, which is a two-

phase diagnostic framework, including symptom 

detection and fault diagnose [17, 19-21]. The initial 

phase utilizes data-driven analytics, expert knowledge 

and physical laws to identify and catalogue potential 

symptoms. The symptoms of the 4S3F framework in the 

building energy systems are divided into four types as 

follows. 

Fig. 1. The 4S3F framework for FDD in building energy 

systems 

• “Balance symptoms” arise from energy balance 

discrepancies, based on quantitative models 

grounded in system theory and 

thermodynamics. 

• “Energy Performance (EP) symptoms” are 

deviations in energy efficiency metrics. 

• “Operational State (OS) symptoms” reflect 

variations from normal operational parameters. 

• “Additional symptoms” are derived from 

supplementary historical and maintenance data 

or specific FDD processes. 

The second phase involves DBN models, employing 

probabilistic analysis to diagnose faults based on the 

symptoms detected previously. The DBN models excel 

in HVAC fault diagnosis by calculating the likelihood 

of faults based on symptom occurrence, mirroring 

HVAC experts' diagnostic techniques. In the 4S3F 

framework, faults are categorized into three main types 

as follows. 

• Component faults include malfunctions, sensor 

issues, or design/installation errors. 

• Control faults include improper setpoints or 

software errors.  

• Model faults include inaccurate calculations or 

assumptions, such as neglecting heat loss in 

ducts. 

2.3 Implementation of 4S3F framework  

Fig. 2. The implementation of 4S3F framework 

Fig. 2 depicts the implementation of 4S3F framework, 

which encompasses four steps, outlined as follows: 

Step 1: Diagram analysis. The piping and 

instrumentation diagram (P&ID) of the building energy 

systems needs to be analysed first, including sensors, 

components, and control strategies, to understand the 

physical process and internal relationship. 

Step 2: Identifying fault and symptom nodes. Based 

on expert knowledge and analysis, the faults and their 

associated symptoms need to be identified. The causal 

relationships between the faults and symptoms are 

established. 

Step 3: Determining prior and conditional 

probabilities. Prior probabilities are the occurrence 

likelihood of typical faults. Conditional probabilities are 

the probabilities when faults are inferred based on the 

presence of corresponding symptoms. These 

probabilities can be derived from expert knowledge, 

maintenance records, and BMS data.  

Step 4: Executing DBN Diagnosis. First, the 

presence of symptoms is analysed. If symptoms are 

present in the time series from BMS data, the ‘present’ 

state will be sent as a time series input into the DBN 

model. Based on this input, the DBN delivers probable 

faults along with their occurrence probabilities, thereby 

offering building manager or maintenance teams 

insights in the operational faults. Conversely, if no 

symptoms are present, the corresponding fault 

probabilities are zero.  
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2.4 Posterior probability calculation  
 
An arbitrary rule is applied for diagnosing faults based 

on their posterior probabilities: 

• No fault is detected if the probability is below 

50%. 

• A fault is diagnosed if the probability exceeds 

50%. 

The Fault Diagnosis Efficiency (FDE) index 

measures diagnosis performance, particularly useful for 

time series data in BMS, as seen in various studies [16, 

17, 19-21]. This index evaluates how often a fault is 

detected over a day. For instance, a single detection out 

of 144 ten-minute intervals suggests a random 

occurrence, whereas 80 detections indicate a consistent 

fault. The FDE index is calculated by dividing the 

number of detections over a severity threshold of 0.5 by 

the total number of checks in a day, reflecting the 

likelihood and assumption of a fault condition for a 

specific component, the index is expressed as:  

 

FDE𝑗 =
1

𝑁
∑ 𝐼(𝑓𝑖𝑗 > 0.5)

𝑁

𝑖=1

 (3) 

 

Where 𝐼 is an indicator function that evaluates to 1 

when the condition is true (i.e., the fault severity level 

𝑓𝑖𝑗 for the  𝑗𝑡ℎ component in the 𝑖𝑡ℎ sample is greater than 

0.5), and 𝑁 is the number of samples.   

 

3. Case study 

To demonstrate the fault diagnostic capabilities of the 

4S3F DBN, the experimental data from an office 

building (Kropman, Breda) in the Netherlands is used 

for evaluation. Specific faults were introduced at certain 

times, and the recorded BMS data was used to carry out 

the diagnostic. Fig. 3 shows the P&ID of the AHU with 

HRW in the building. 

 

 

Fig. 3. P&ID of the AHU in the office building 

The faulty data was collected during the period 12-

02-2023 to  09-11-2023 . Seven sensors, with a data 

collection interval of one minute are used in this 

research. This AHU consists of several components, two 

fans (supply and return), two filters (supply and return), 

two dampers, heat recovery wheel, heating coil system. 

Sensors used in this research are temperature sensors 

(1,2,3,4,6) ,valve positions of heating coil system (5), 

and return air temperature from the rooms (7). The DBN 

is created to detect faults relating to the heat recovery 

wheel and the heating coil system.  

3.1  Fault and symptom nodes 

Table 1. introduces two fault nodes. It is assumed that 

most time there are no faults: the prior probability of  

fault 𝐹1  not occurring is 0.9. For 𝐹2  is 0.80. For a 

discussion about the impact of the prior probabilities on 

the results, see [17, 19-21]. 

 
Table 1.  Fault nodes and prior probabilities 

# Fault State 
Prior 

Probability 

𝐹1 Heating Coil Valve 
Faulty 0.1 

Normal 0.9 

𝐹2 Heat recovery wheel 

Failure 0.05 

Stuck 0.15 

Normal 0.80 

 
Table 2. Variable abbreviations 

# Name of variable Abbreviation Unit 

1 Supply air temperature 𝑇𝑠𝑎 °𝐶 

2 
Temperature after 

HRW 
𝑇𝑎 °𝐶 

3 Return air temperature 𝑇𝑟𝑎 °𝐶 

4 
Outdoor air 

temperature 
𝑇𝑜𝑎 °𝐶 

5 Set point temperature 𝑇𝑠𝑒𝑡 °𝐶 

6 
Heating coil valve 

openness 
𝑈ℎ𝑐 % 

7 
Heat recovery wheel 

efficiency  
𝜂𝑠𝑢𝑝 % 

 
Table 3.  Symptoms rules and definitions 

# Symptom State Rule of state definition 

𝑆1 

Difference of 

HCV position 

prediction 

Present |𝑈ℎ𝑐  −  𝑈ℎ𝑐,    |  >  𝜀ℎ𝑐 

Normal |𝑈ℎ𝑐  −  𝑈ℎ𝑐,pred|  ≤  𝜀ℎ𝑐 

𝑆2 

Difference of 

setpoint & 

supply temp 

Present |𝑇𝑠𝑒𝑡 − 𝑇𝑠𝑎| > 𝜀𝑡𝑠 

Normal |𝑇𝑠𝑒𝑡 − 𝑇𝑠𝑎| ≤ 𝜀𝑡𝑠 

𝑆3 

HCV 

openness 

frozen 

Present |𝑈ℎ𝑐,𝑚𝑎𝑥 − 𝑈ℎ𝑐,𝑚𝑖𝑛| ≤ 𝜀𝑓 

Normal |𝑈ℎ𝑐,𝑚𝑎𝑥 − 𝑈ℎ𝑐,𝑚𝑖𝑛| > 𝜀𝑓 

𝑆4 
HRW 

efficiency 

Present |𝜂𝑠𝑢𝑝 − 𝜂𝑑𝑒𝑠𝑖𝑔𝑛| > 𝜀ℎ𝑟𝑤 

Normal |𝜂𝑠𝑢𝑝 − 𝜂𝑑𝑒𝑠𝑖𝑔𝑛| ≤ 𝜀ℎ𝑟𝑤 

𝑆5 

Difference 

between temp 

before HRW 

and after 

Present |𝑇𝑎 − 𝑇𝑜| ≤ 𝜀𝑡 

Normal |𝑇𝑎 − 𝑇𝑜| > 𝜀𝑡 

 

Fault Node 1 ( 𝐹1 ), heating coil valve position, 

represents a control fault indicating a malfunction 

within the control system that affects the heating coil 

valve's ability to open correctly, potentially impacting 

the heating system's overall performance. 

Fault Node 2 (𝐹2), heat recovery wheel, has three 

states which covers two fault types: 

• Failure ( 𝐹2 − 𝑆𝑇1 ): Represents a complete 

malfunction of the heat recovery wheel, where 

it ceases to rotate and to contribute to the heat 

exchange process. This is a component fault. 

 

 

 

  

  

  

  

  

  

   

   

 

 

 

 

 

 

  

   

        

        

  

    

 
 

 

 
 

  



 

 

• Stuck (𝐹2 − 𝑆𝑇2) : Indicates a scenario where 

the wheel is hindered from rotating at the right 

speed, potentially due to mechanical 

obstructions or system control faults, thus 

impairing its efficiency. This fault can be 

control or component. 

• Normal: Denotes the condition where the heat 

recovery wheel is operating within its designed 

parameters, effectively rotating at the 

prescribed speed without any mechanical or 

control system impediments.  

𝐹2 is designed to be a multi-state node, capable of 

discerning between a component failure, a control-

related stuck condition, and a normal operating state. 

Table 2. and Table 3. describes variables involved in the 

symptom calculation, 5 symptoms are used in this 

research.  

Fig. 4. DBN Structure 

 

Symptom 1 (𝑆1), discrepancy in heating coil valve 

position, measures the deviation (𝜀ℎ𝑐) of the actual valve 

position from the expected position as predicted by a AI 

algorithm called XGBoost (extreme gradient boosting)  

model, proposed by Chitakara [22]. This symptom is EP 

symptom and indicative of 𝐹1  and is also a common 

symptom affecting 𝐹2 in AHU with HRW since a stuck 

HRW result in higher openness of the valve. A labeled 

faulty and fault free data set is needed to use this 

symptom. The 𝜀ℎ𝑐  is set to 3% in this case and it is 

obtained from expert knowledge. 

Symptom 2 ( 𝑆2 ), difference in actual supply 

temperature (𝑇𝑠𝑎) and set point temperature (𝑇𝑠𝑒𝑡), is an 

OS symptom. The presence of this symptom can be 

because of a wrong heating coil valve position (𝐹1). It is 

excluded that it comes from 𝐹2, as the heating coil was 

designed to be able to deliver enough heat in Kropman 

office, even if the HRW is not working. The symptom 

present threshold  𝜀𝑡𝑠 is derived from BMS specification 

and set to 2 in this case. The condition for observation 

of a symptom is given in Table 3.  

Symptom 3 ( 𝑆3 ), heating coil valve openness 

frozen, presents itself when no variation(𝜀𝑓) is observed 

in the openness  which could fix its openness in certain 

percentage, this impacts directly 𝐹1  directly. This 

symptom is an OS symptom. The symptom detect 

threshold 𝜀𝑓  is set to 0.1 in this case and it is obtained 

from expert knowledge. The number of consecutive 

readings that must be frozen to trigger the valve frozen 

symptom is set to 5.  

Symptom 4 (𝑆4), heat recovery wheel efficiency, 

presents itself when the difference between operational 

efficiency and designed efficiency of HRW is lower 

than the expected threshold (𝜀ℎ𝑟𝑤). The presence of 𝑆4 

could be symptomatic of either a failure or a stuck 

condition, which corresponds to two different states of 

𝐹2 . This symptom is EP symptom. The symptom 

detection threshold 𝜀ℎ𝑟𝑤   is set to 0.72, which was 

obtained from the HRW specification document and 

data analysis. 

Symptom 5 (𝑆5): Temperature Difference Across 

Heat Recovery Wheel This symptom measures the 

temperature difference (𝜀𝑡) of supply air before and after 

the heat recovery wheel. Too low differences can be a 

failure or a stuck condition, linking to two different 

states of 𝐹1. This symptom falls under the category of an 

Energy Performance (EP) symptom. The threshold, 

denoted as 𝜀𝑡 has been established at a value of 2. This 

threshold value is derived from theoretical principles of 

system thermal dynamics in conjunction with expert 

knowledge in the field. 

Symptoms 𝑆1 , 𝑆4 , and 𝑆5  are therefore associated 

with 𝐹2providing a diagnostic indication of the wheel's 

operational status. Symptom 𝑆1 , despite its primary 

connection to the 𝐹1, serves as a shared symptom due to 

its relevance in detecting discrepancies in system 

control, which can affect both the HCV and the HRW 

(e.g. if the heat recovery is not working properly, this 

could lead to compensation by the heating coil). 

Symptoms 𝑆2  and 𝑆3  are exclusively connected to 𝐹1 , 

providing diagnostics for the HCV position issues. Fig. 

4. shows the structure of DBN with the above symptoms 

and faults. 

 

 
3.2.2 Probabilities  
In the DBN model, each fault node has several possible 

states. The occurrence of either of these states is an 

integral event, serving as critical evidence in the  

fault diagnosis process. Prior probabilities are assigned 

to each state. To further set up the DBN model, a CPT 

is used. This table articulates the probabilities of each 

state of a symptom node, considering all possible state 

combinations of its parent nodes. The CPT is vital in 

determining how fault node states affect the probability 

distribution of a symptoms node's states.  

However, given the limited availability of detailed 

survey data on prior and especially conditional 

probabilities of faults in AHU systems, the estimation of 

these parameters has been assumed by the authors. This 

estimation is based on the authors' expertise, literature 

study [12, 16, 17, 23], first principles and interviews. 

For example, Table 4. shows a CPT of HRW states and 

efficiency symptom. If the HRW efficiency drops below 

the threshold, it is reasonable to assume that the 

possibility of the stuck fault should be a little bit higher 

(0.7) than the completely failure fault (0.6), since the 

HRW may still working this situation. Conversely, if the 

HRW efficiency symptom is present, the probability of 

HRW working normally should be relatively low (0.3). 

For a discussion about the impact of the conditional 

probabilities on the diagnostic, see [17] 

 

 

 

          

    



 

 

Table 4. Conditional probability table of HRW 

HRW State P(Efficiency=0) P(Efficiency=1) 

Normal 0.9 0.1 

Stuck 0.3 0.7 

Failure  0.4 0.6 

3.2.3 Data collection  

The experimental phase involved the implementation of 

various fault conditions in the AHU system to assess the 

DBN's diagnostic proficiency. The Table 5. summarized 

the faults introduced during the experiments. Cases 1 

through 4 pertain to the same fault implemented at 

different severity levels and serve to analyse the model's 

sensitivity to the detection of a fault at various 'stuck 

levels'. 

4. Result and discussion 

This section begins with a description of the 

establishment of symptom thresholds and an analysis of 

their impact on the accuracy of the Diagnostic Bayesian 

Network (DBN) model. This is followed by an 

interpretation of the diagnostic results for full DBN.  
Table 5. Introduced faults 

Case Date Time Compon

ent 

Induced Fault 

1 08-03-

2023 
9:00-

16:00 

HRW Stuck at 80% 

(𝐹2 − ST2) 

2 27-02-

2023 
9:00-

16:00 

HRW Stuck at 50% 

(𝐹2 − ST2) 

3 09-11-

2023 
9:00-

16:00 

HRW Stuck at 30% 

(𝐹2 − ST2) 

4 08-11-

2023 
9:00-

16:00 

HRW Stuck at 10% 

(𝐹2 − ST2) 

5 22-03-

2023 
9:00-

16:00 

HRW Failure 

(𝐹2 − ST1) 

6 28-02-

2023 
9:00-

16:00 

HCV Stuck at 

10/40/100% 

(𝐹1) 
7 27-03-

2023 
9:00-

16:00 

HCV Stuck at 75% 

(𝐹1) 

8 02-02-

2023 
9:00-

16:00 

Normal None 

 

4.1 Analysis of symptoms and threshold 

The number and types of symptoms, and the values of 

thresholds impact decisively the diagnostic results 

decisively.  Fig. 5. illustrates the efficiency of the heat 

recovery wheel in case 1, 2 and 8. 𝜀ℎ𝑟𝑤  is also can 

obtained from HRW specifications when labelled data is 

unavailable. As described in the figure, the efficiency of 

the HRW on a normal day (Case 8) is around 0.73 and 

the efficiency of HRW stuck at 80% (Case 1) is between 

0.69 to 0.72. The efficiency of the HRW stuck at 50% 

(Case2) is around 0.625 most of the time. This figure 

underscores clear efficiency boundaries between levels 

of symptoms, showing that lower rotation speed means 

lower efficiency. Therefore, in order to precisely 

distinguish the symptoms of nearly normal scenario like 

80% rotation speed (Case1) from the normal scenario, 

the threshold should be set in between 0.72 to 0.73.      
Fig. 6. HCV prediction and actual position   

In the DBN (Fig. 4.) model, 𝑆1  is defined as a 

common symptom for 𝐹1and 𝐹2, while these two faults 

also have two other symptoms ( 𝑆2 , 𝑆3 and 𝑆4 , 𝑆5 

respectively). This means that this model does not rely 

on single symptom to isolate fault. Fig. 6. shows Case 

7’s prediction and actual valve position. In order to test 

the advantage of multiple symptoms, 𝑆1 has been 

manually removed from the measurement period. The 

result indicates that removing symptom 𝑆1  from the 

dataset did not affect FDD, as demonstrate in Fig. 7. 

Symptoms 𝑆1  and 𝑆2  still precisely identified the fault 

𝐹1 , confirming that multiple symptoms enhance FDD 

precision [17]. 

Fig. 5. HRW efficiency 



 

 

Among the five symptoms, the differential 

temperature before and after HRW denoted as 𝑆5 , 

specifically identifies HRW malfunctions or jams. Fig 

.8. showcases the impact of HRW speeds on temperature 

differences for cases 1, 2, 4, and 5, revealing that higher 

HRW speeds do not always lead to larger temperature 

changes; this may be due to varying outdoor 

temperatures or because HRW efficiency does not 

directly correspond to its speed. This symptom, an 

extension of 𝑆4, indicates that with HRW inoperative, its 

efficiency drops to zero, leading to negligible 

temperature variance. This diagnostic symptom 

effectively pinpoints HRW issues, as demonstrated in 

Table 6.     

  Fig. 7. Diagnosis result of case 7 

4.2 Analysis of diagnostic result 

Table 6. shows the diagnostic result for each fault. The 

FDE index was calculated specifically for the period 

between 9:00 and 16:00, aligning with the scheduled 

working hours of the office on the days when faults were 

implemented. This approach was adopted to ensure that 

the FDE index accurately reflects the system's 

diagnostic performance under typical operating 

conditions. In Case 1, with the HRW nearly fully 

functional, tested the model's ability to differentiate 

between normal and near-normal conditions was tested, 

resulting in a high fault probability of around 0.99 for 

HRW stuck fault. In Case 2 and 3, where the HRW 

functioned at 50% and 30% respectively, the DBN 

accurately identified faults. Similarly, in Case 4, with 

the HRW stuck at a minimal operating condition of 

10%, the FDE index consistently identified faults above 

a 0.5 probability threshold, highlighting the model's 

sensitivity to normal and nearly normal condition. In 

Case 5, a complete HRW failure was successfully 

diagnosed, underscoring the model's effectiveness in 

recognizing both control and component faults. Notably, 

in Case 5, the probability of 𝐹1exceeds the 0.5 threshold. 

This occurrence can be attributed to the HCV being 

nearly fully open (approximately 100% openness) as a 

compensatory mechanism for the heat that would 

typically be recovered by the Heat HRW. Despite this, 

it is observed that the failure of the HRW still registers 

the highest probability rate. Case 6 presented a more 

complex scenario with the HCV stuck at various 

positions (10%, 40%, 100%), where the DBN identified 

faults at each distinct position, exhibiting its capability 

to handle multifaceted fault conditions. Case 7, with the 

HCV at 0.67, posed a unique challenge due to its 

operation within a normal range but with performance 

deviations. Here, the FDD method accurately detected 

the nuanced fault condition. Finally, Case 8, 

representing a normal operation day without induced 

faults, served as a control scenario where the DBN 

maintained its diagnostic integrity by exhibiting 

probabilities below the fault threshold, thereby 

validating its accuracy and reliability in fault-free 

conditions. 

 

Table 6. DBN diagnostic results 

# Fault 𝑭𝟏  𝑭𝟐 Isola

ted 

fault 

(HCV 

stuck) 

𝐒𝐓𝟏 

(HRW 

failure) 

𝐒𝐓𝟐 

(HRW 

stuck) 

1 HRW80%  0.00 0.00 0.99 𝐹2

− 𝑆𝑇2 

2 HRW50% 0.00 0.00 0.89 𝐹2

− 𝑆𝑇2 

3 HRW30% 0.20 0.00 0.76 𝐹2

− 𝑆𝑇2 

4 HRW10% 0.00 0.00 0.67 𝐹2

− 𝑆𝑇2 

5 HRW0 0.51 0.65 0.00 𝐹2

− 𝑆𝑇1 

6 HCV 

10/45/100

%  

0.76 0.00 0.21 𝐹1 

7 HCV 75% 0.67 0.00 0.24 𝐹1 

8 Normal 0.00 0.00 0.00 none 

 

5. Conclusion and discussion 

This research has showcased the capability of DBN in 

accurately diagnosing faults in AHU components, 

specifically focusing on the HRW and HCV. 

Fig. 8. Temperature difference before and after HRW 



 

 

      The study underscored the importance of setting 

accurate symptom thresholds for diagnosis. For 

example, adjusting the threshold and bandwidth for the 

𝑆3 affects its detection and the duration it is considered 

present. Higher thresholds decrease sensitivity for 

detecting a frozen valve, while bandwidth adjustments 

alter the frequency of 𝑆3 present. These adjustments are 

crucial as they significantly influence the DBN's 

diagnostics, particularly for strongly correlated 

symptoms like 𝑆3. The research also showed that even 

without some symptoms, like 𝑆1 , the system could 

reliably isolate 𝐹1 , This successful isolation can be 

attributed to the rich sensor environment integrated into 

the AHU emphasizing the benefit of incorporating 

multiple symptoms to improve diagnostic accuracy.  

      Furthermore, the research brought into focus how 

environmental factors like outdoor temperature can 

influence the symptoms, necessitating adaptable 

threshold settings following the rules of control used in 

the AHU. 

In conclusion, this research establishes the DBN's 

ability to handle complex fault conditions and also 

contributes to increasing the knowledge on FDD of 

AHU heating systems' using HRW.  

Future research should aim at exploring the level of 

details needed (i.e. for which applications should the 

DBN be able to diagnose levels of fault, and for which 

could it be binary) and at expanding the DBN's 

applicability in diverse AHU systems configurations, 

exploring the integration of additional sensors or virtual 

sensors. Investigating the impact of external factors like 

environmental conditions on system performance and 

fault diagnosis could also yield further insights.  
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