
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Constrained Error-Correcting Codes for
DNA-Based Storage Systems

(Dutch title: Beperkte foutcorrigerende codes voor
DNA-gebaseerde opslagsystemen)

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

F.J. Laseur

Delft, Nederland
December 2021

Copyright © 2021 by F.J. Laseur. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Constrained Error-Correcting Codes for DNA-Based Storage Systems”

(Dutch title: “Beperkte foutcorrigerende codes voor DNA-gebaseerde opslagsystemen)”

F.J. Laseur

Delft University of Technology

Thesis Committee

Dr.ir. J.H. Weber (supervisor)

Dr. J.A.M. de Groot (supervisor)

Dr. B. van den Dries

December, 2021 Delft

Preface

During my years at the TU Delft I have learned a lot about Mathematics. I feel a strong personal mo-
tivation on its applications in our future society. It drives me to involve the outside world in my field
of expertise, and not just limiting myself to discussing mathematical topics with peers. I am driven to
encourage people to understand and contribute to technical matters, to reduce the gap between science
and society. My final thesis in high school contained a comprehensible introduction to the theory of
relativity. Last year I designed, built and controlled a scalable Hyperloop system together with 35 stu-
dents. We organized and participated in a world wide competition that contributes to the sustainable
infrastructure of the future. Science should not be something exclusive or unmanageable. Once more
people start understanding, more people will be interested in science, instead of discouraged by it. I
consider our profession widely applicable. Mathematics determines our daily life in many respects. The
analytically based mindset we are taught is of great value in optimizing complex structures.
The courses Optimization and Decision Theory opened my eyes on the direct benefit we can enjoy of
mathematics. I wanted to solve a problem for my Final Thesis, that could bring our daily life to a next
level. The field of Coding Theory has great potential to achieve this goal. I soon got in touch with Dr.
Ir. Jos Weber. I find his broad knowledge of various fields impressive. His career at the TU Delft, at
several departments, starts and ends with Mathematics. I am very glad to contribute in his ongoing
research on efficient ways to store data as DNA, and will follow it closely in the future. Also Dr. Joost
de Groot was very much involved in the process. I enjoyed the aggregated resources of two of TU Delft’s
most professional and experienced teachers. I am very thankful and it was my pleasure to work on this
innovative research.

Florine Laseur,
November 2021

3

Abstract

Humanity is producing data at exponential rates. Solutions need to be found in order to accommodate the
bytes of today and the future in an efficient and environmentally friendly way. DeoxyriboNucleic Acid,
well-known as DNA, is a suitable destination for this major collection of data, as it is a high-density
storage medium with long storage endurance [1]. In the field of research about DNA-Based Data Storage
Systems, people examine quaternary codes. The considered DNA-codes consist of equi-length DNA-words
over the Alphabet {0, 1, 2, 3} representing the available DNA building blocks or nucleotides {A, T,C,G}
standing for Adenine, Thymine, Cytosine and Guanine respectively. Combinatorial constrained coding
is introduced to avoid DNA patterns prone to sequencing errors, that might occur when archival data
is read from DNA-blocks [2]. If an error occurs anyway, an imposed minimum Hamming distance d
that a DNA-code satisfies, enforces error correction and detection capabilities [3]. Methods are consid-
ered to optimize the number of DNA-words that can be stored in a DNA-code satisfying these restrictions.

This research explores DNA-codes of which the DNA-words adhere to a fixed GC content referred to
as the GC-weight w, as well as the no-runlength constraint r = 1 that will not allow adjacent symbol
repetition. By increasing distance d, we build on the findings of Van Leeuwen [4] and Vermeer [5], who
created DNA-codes satisfying d = 2 for r = 1 and r ≥ 1 respectively. The maximum size of a DNA-code
satisfying d = 3 among other constraints is proven to be 12. Furthermore, we cover the case d = n where
the length n of the DNA-words and the minimum distance d the DNA-code satisfies are equal. We derive
maximum sizes of these DNA-codes for all possible GC-weights w. Finally, we present algorithms that
create DNA-d codes satisfying d = 3 and d = 4 and succeed in improving sizes of the DNA-codes created
by the algorithms designed by Limbachiya et. al. [6] and Van Leeuwen [4].

4

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Thesis statement . 6
1.3 Organisation of the Thesis . 7

2 Prerequisites 8
2.1 What is DNA and how do we read and write it? . 8
2.2 Basic concepts of Coding . 8
2.3 A DNA-d code . 10

3 The impact of constraints 11
3.1 GC-weight w . 11
3.2 Maximum runlength r . 11
3.3 Minimum Hamming distance d . 12

3.3.1 Error detection and pitfalls . 12
3.3.2 Error correction and pitfalls . 13

4 The maximum size of a DNA-3 code 14

5 The maximum sizes of DNA-n codes 15

6 Algorithms generating DNA-d codes and improving existing DNA-d code sizes 20
6.1 Reference algorithms . 20

6.1.1 Reference Algorithm 1 . 21
6.1.2 Reference Algorithm 2 . 22
6.1.3 Reference Algorithm 3 . 23

6.2 Non beneficial approaches . 24
6.2.1 Clustering Neighbourhoods . 24
6.2.2 A special case . 25

6.3 The choice from Smin . 25
6.3.1 Algorithm 4 on lexicographical potential . 25
6.3.2 Algorithm 5 on Neighbourhoods of Neighbourhoods 27
6.3.3 Looking back Algorithm 6 . 29

6.4 Results . 31

7 Conclusions and Recommendations 32
7.1 Sizes of the largest DNA-d codes generated by the Algorithms 32
7.2 Continuation in analytical research . 33
7.3 Suggested improvements of the algorithms . 33

7.3.1 Profound choices in algorithms . 33
7.3.2 A special case for Algorithm 5 . 33

References 34

A Python codes 36
A.1 Reference algorithms . 36
A.2 Algorithm 4 . 38
A.3 Algorithm 5 . 39
A.4 Algorithm 6 . 41

5

1 Introduction

1.1 Motivation

DNA Based Data Storage is a promising technique that, if conducted correctly, could solve contemporary
issues in Data storage. Our digital universe contains around 44 zettabytes of data [7]. That is roughly 400
times more bytes than grains of sand on earth [8]. DNA is an attractive medium to densely archive this
digital information that continues to accumulate [9]. Writing and reading DNA is costly, but has great
potential for archival data storage, due to it’s high density [2] and longevity [6] compared to conventional
digital data storage. Erlich et. al.[10] explored an architecture which approaches a theoretical maximum
storage capacity of 215 petabyte per gram of DNA. Storing a single petabyte would take over 1.5 million
CD-ROM discs. Furthermore, we can recover DNA of extinct species: 300,000 year old mitochondrial
DNA from bears and humans has been recently decrypted [11]. DNA is suitable for non-volatile storage
of information.
An expert in the field of coding theory, Kees A. Schouhamer Immink, is involved in the journey of data
storage from the beginning: From the invention of the CD in 1982, to the introduction of DNA Based
Data Storage Systems. He states: “You can not only read but also synthesize DNA nowadays. No long
strands can be created, like in our genes, but pieces of at most 100 elements. If you utilize this technique
efficiently, you can store the entire content of the internet in a glass of water.”[12]
Research on constraints is being done in order to come up with efficient quaternary code designs to
optimize this promising technique.

1.2 Thesis statement

Clearly, DNA is a promising host for our major collection of data due to its extremely dense storage
capacity and outstanding integrity over long term storage. Techniques examine how to physically store
DNA and maintain its stability over time. This requires coding schemes that can avoid error-prone
patterns when writing and reading DNA-codes. We examine error sources and obtain that DNA-words
should maintain an imposed ratio of G and C nucleotides [13], referred to as the GC-weight w. The more
equal the distribution between A, T and G, C nucleotides within all DNA-words, the more balanced a
DNA-code. This comes down to a GC-weight as close to half the DNA-word length n as possible: w = n

2 .
Restricting the maximum homopolymer run r or adjacent repetition of symbols in the DNA-code also
affects the error probability [6]. DNA-codes that satisfy the no-runlength constraint r = 1, hence contain
no adjacent repeated nucleotides, are known to be less error prone. Another constraint to DNA-codes is
the Hamming distance d: the least number of positions in which all DNA-words in the code differ from
each other. The power of the Hamming distance d a DNA-code satisfies is that by improving it we can
not only detect, but also correct more errors in falsely received DNA-words.
This thesis contributes to the research to efficient quaternary DNA-code design by creating and analyz-
ing DNA-codes meeting given restrictions. Building on existing research [4] [5], we answer the research
question:

“Can we create DNA-codes and therefore determine upper bounds and lower bounds for the size of
DNA-codes satisfying d > 2?”.

We determine the maximum size of a DNA-code satisfying n = 4, w = 2, d = 3. We also completely cover
the case where we impose d = n and define the maximum size of DNA-codes satisfying this constraint for
all possible weights w. We obtain (lower bounds for) the maximum size of DNA-codes satisfying d = 3
and d = 4 by presenting algorithms generating valid DNA-codes. The higher purpose is to use DNA Data
Storage in the most efficient way. This translates to housing the largest possible number of DNA-words
satisfying specified constraints.

6

1.3 Organisation of the Thesis

We present an overview of the remaining content of this thesis by Chapter.

Chapter 2: Prerequisites: This chapter discusses an explanation of DNA and the basic concepts of
DNA Based Storage Systems. Furthermore, we present basic concepts of coding and provide definitions
for a DNA-code and a DNA-d code.

Chapter 3: The impact of constraints: In this Chapter, we elaborate on constraints and the
impact of changing them on restricted code generation. Also, we discuss two decoding mechanisms: error
detection and error correction.

Chapter 4: The maximum size of a DNA-3 code: This chapter provides a proof that the
maximum size of a DNA-code satisfying n = 4, w = 2 and d = 3 is 12. This result is invariant under
changing the runlength constraint, hence holds for each imposed r. We conclude Br(4, 2, 3) = 12.

Chapter 5: The maximum sizes of DNA-n codes: This chapter provides the determination
of the maximum size of DNA-codes satisfying d = n. This result is invariant under changing the run-
length constraint, hence holds for each imposed r. We determine Br(n,w, n) for every possible GC-weight
w: We find lower bounds for this value by creating valid DNA-codes satisfying the imposed constraints.
Subsequently we derive contradictions when trying to improve these lower bounds.

Chapter 6: Algorithms generating DNA-d codes improving existing DNA-d code sizes:
This chapter presents and discusses algorithms from existing research [4] [6]. Moreover, original algo-
rithms are presented that generate valid DNA-codes that adhere to a universal DNA-word length n, the
no-runlength constraint r = 1, a balanced GC-weight w = ⌊n

2 ⌋ and an imposed distance d = 3 and d = 4
respectively. The algorithms succeed in improving DNA-d code sizes of existing research.

Chapter 7: Conclusions and Recommendations : This chapter provides an overview of the re-
sults of this thesis. Furthermore, we pose suggestions for future contribution to the optimization of
DNA Based Data Storage. Recommended analytical research as well as suggested improvements of the
presented algorithms are described.

7

2 Prerequisites

DNA Based Storage Systems are suited for future accommodation of the ever accumulating collection of
data [9]. In order to archive information as DNA, we have to carry out quaternary code generation. This
chapter describes the basic concepts as well as the stages of DNA Based Data Storage.

2.1 What is DNA and how do we read and write it?

DeoxyriboNucleic Acid, known as DNA, hosts genetic information of cells. The structure of a DNA
molecule is a double-helix polymer[14]: two DNA-strands wound to a spiral. Each strand is a chain of
nucleotides. Each nucleotide partially consists of one of the four bases Adenine, Thymine, Cytosine and
Guanine, after which the nucleotides are named. We will use abbreviations A, T, C and G respectively.
The strands are held together in the spiral shape by hydrogen bonds between the bases: Adenine bonds
with Thymine only and likewise Cytosine only bonds with Guanine. Due to this strong connection
between strands, the configuration of a DNA molecule is very stable. This is beneficial for long term
storage in our application of DNA as a medium for Data Storage.
When a DNA Based Storage System is used, data cycles through the following stages [6]: data is encoded,
data is written on DNA and stored. Consequently, the data is read from DNA once required. Chemically
writing DNA is referred to as DNA synthesis. The polymerization process that controls the helical
conformation of synthetic DNA-strands is error prone [15]. Reading synthesized DNA is referred to as
DNA sequencing. This corresponds to identifying the order of nucleotides in a DNA-sequence. This
process is also known to be error prone, especially for DNA-sequences that contain adjacent repeating
bases [6]. Depending on the application, different DNA storage architectures adhere to different synthesis
and sequencing methods [16].

2.2 Basic concepts of Coding

We present basic properties of codes using sources of information [17] and [3]. Generated data is encoded
over the quaternary alphabet {0, 1, 2, 3} that represents the nucleotides as follows:

A ↔ 0, T ↔ 1, G ↔ 2, C ↔ 3. (1)

Definition 2.1. We define a DNA-word x of length n as

x = [x1, x2, ..., xn] (2)

where xi ∈ {0, 1, 2, 3} ∀i ∈ {1, ..., n}.

Definition 2.2. We define the set B(n) of all DNA-words of length n as

B(n) = {x : x is a DNA-word of length n} (3)

with cardinality
B(n) = |B(n)| = 4n. (4)

Example 2.1. We present an example of the set of all DNA-words of length 2 and observe this set indeed
has 42 = 16 elements:

B(2) = {[00], [01], [02], [03], [10], [11], [12], [13], [20], [21], [22], [23], [30], [31], [32], [33]}.

Next, in our application described in Section 1.2, the GC-content of the DNA-words is essential. This is
referred to as the weight w(x) of DNA-words. First consider DNA-word x of length n and define

wi =

{
0 xi ∈ {0, 1},
1 xi ∈ {2, 3},

(5)

∀i ∈ {1, ..., n}.

8

Definition 2.3. We define the weight w(x) of a DNA-word x of length n as

w(x) =

n∑
i=1

wi. (6)

Example 2.2. We present two examples x1 and x2 of DNA-words with weight w(xj) = 5 for j ∈ {1, 2}:

x1 = [3, 0, 0, 1, 3, 3, 0, 1, 2, 3]
x2 = [2, 2, 2, 2, 2].

Moreover, as discussed in Section 2.1, the number of adjacent symbols in DNA-words is crucial for the
erratic behaviour in the DNA sequencing process.

Definition 2.4. We define the runlength r(x) of a word x as

r(x) = max{r : ∃i such that xi = xi+1 = ... = xi+r−1}. (7)

Example 2.3. We present two examples x1 and x2 of DNA-words with runlength r(xj) = 5 for j ∈ {1, 2}:

x1 = [1, 0, 3, 3, 3, 2, 0, 0, 0, 0, 0, 1, 0]
x2 = [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3].

Now, we can select the DNA-words from the set B(n) that all adhere to an imposed weight w and
maximum runlength r.

Definition 2.5. We define the set Br(n, w) of all DNA-words x of length n that satisfy weight w and
maximum runlength r as

Br(n,w) = {x : w(x) = w ∧ r(x) ≤ r} (8)

with cardinality Br(n,w) = |Br(n,w)| for which a formula is presented in [3].

Example 2.4. We present

B1(3, 1) = {[0, 1, 2], [0, 1, 3], [0, 2, 0], [0, 2, 1], [0, 3, 0], [0, 3, 1], [1, 0, 2], [1, 0, 3],
[1, 2, 0], [1, 2, 1], [1, 3, 0], [1, 3, 1], [2, 0, 1], [2, 1, 0], [3, 0, 1], [3, 1, 0]}

(9)

with cardinality 16.

Example 2.5. We present two examples x1 and x2 of DNA-words in B3(5, 2):

x1 = [3, 3, 0, 0, 0]
x2 = [0, 1, 2, 3, 0].

Note that r(x2) = 1 and observe 1 ≤ r to conclude x2 ∈ B3(5, 2).

Example 2.6. We present an example x3 such that x3 ∈ B(5) but x3 /∈ B3(5, 2):

x3 = [2, 2, 3, 0, 1]

Note x3 /∈ B3(5, 2) since w(x3) ̸= 2.

Remark 1. From Example 2.6 we obtain the general result Br(n,w) ⊆ B(n).

Now we have defined and discussed sets in which all DNA-words satisfy several restricting properties
such as length n, weight w and maximum runlength r. From this set we can take subsets, referred to as
DNA-codes.

Definition 2.6. We define a DNA-code C as a set of DNA-words that all satisfy specified weight w,
length n and maximum runlength r.

Note C ⊆ Br(n,w).

9

2.3 A DNA-d code

In previous Section 2.2, we derived a definition of a DNA-code, that consists of DNA-words satisfying
universal properties. These properties are referred to as constraints. We introduce another constraint
that concerns the number of entries in which DNA-words differ: the Hamming distance.

Definition 2.7. Suppose x and y are DNA-words. We define the Hamming distance between DNA-
words as

H(x,y) = |{i : xi ̸= yi}|. (10)

Example 2.7. We present two examples x and y of DNA-words in B1(6, 3) that have Hamming distance
3 from each other:

x = [0, 2, 3, 1, 0, 3],
y = [1, 2, 1, 3, 0, 3].

Definition 2.8. Suppose C is a DNA-code. We define the Hamming distance d of C as

d = min{H(x,y) : x,y ∈ C,x ̸= y}. (11)

A DNA-code satisfies minimum Hamming distance d if all DNA-words in the DNA-code differ mutually
differ in at least d positions.

Definition 2.9. Suppose C is a DNA-code. We define a DNA-d code Cd as the subset of C that satisfies
a minimum Hamming distance d, hence H(x,y) ≥ d, ∀x,y ∈ C, x ̸= y.

Definition 2.10. We define the size |Cd| of a DNA-d code as the number of DNA-words it contains.

Definition 2.11. We define the size of the largest DNA-d code Br(n,w, d) as

Br(n,w, d) = max{|Cd| : Cd ⊆ Br(n,w)}. (12)

Up to now, there has not been found a general formula for the cardinality Br(n,w, d) of this largest
possible DNA-d code. For the case d = 2, a formula for B1(n,w, 2) is presented in [4].

Example 2.8. Building upon Example 2.4, we present a DNA-2 code C2 such that C2 ⊆ B1(3, 1)

C2 = {[0, 1, 2], [0, 2, 0], [0, 3, 1], [1, 0, 2], [1, 2, 1], [1, 3, 0], [2, 0, 1], [2, 1, 0]}. (13)

with cardinality 8.

From [3] and [4], conclude that the maximum size for DNA-2 codes with DNA-words satisfying n = 3,
w = 1, r = 1 is 8. Observe for C2 in Example 2.8 it holds that |C2| = B1(3, 1, 2).

10

3 The impact of constraints

Imposing constraints to DNA-codes reduces their potential size, as we have seen in Sections 2.2 and
2.3 respectively. This means less information can be stored in the DNA-codes. Yet we adhere to these
constraints for valid reasons, presented in this Chapter.

3.1 GC-weight w

A fixed GC-content or weight w that a DNA-code satisfies, determines the erratic behaviour of a DNA
Based Storage System to a large extent [6]. The weight of a DNA-word is defined to be the accumulated
number of G and C nucleotides it hosts. The DNA-code satisfies the universal weight w if all DNA-words
in it have an equal GC-content. As the number of G and C nucleotides is a determining factor for the
melting temperature of (synthesized) DNA, it is desirable in DNA Based Storage Systems that all DNA-
words in a DNA-code have the same GC-content [18].
Not only is it desirable that a DNA-code satisfies this universal weight, the percentage of G and C
nucleotides in DNA-words is preferred to be around half the word length n. If this rate exceeds 60%
for example, errors in the laboratory technique that amplifies DNA-sequences occur [19]. We conclude a
high weight makes DNA synthesizing error prone. It also leads to erratic behaviour in DNA sequencing
methods that are rather robust, such as Low Coverage sequencing.
High GC-content should be avoided and the desired biochemical properties for DNA synthesizing and
-reading are met at a rates between 45% and 55% [10]. A DNA-code is said to be balanced if the code
words satisfy w = ⌊n

2 ⌋ [13]. Throughout this research we mostly consider balanced codes.

3.2 Maximum runlength r

A DNA-code adheres to a maximum runlength r if the maximum number of adjacent identical symbols,
or homopolymer run, in all DNA-words is limited by r. Imposing a maximum runlength constraint
to a DNA-code is proven to be beneficial and we will elaborate on these so called Runlength-Limited
Sequences [20]. By limiting the repetition of symbols we can avoid the occurrence of destructive patterns.
A limited maximum runlength ensures adequate frequency for the synchronization of the DNA-sequencing
mechanism. For example, a long run of T ’s in AGCTTTTTAGCGC increases the loss rate of DNA
information as it can be read as a short run of T ’s [1].
Allowing repetitions by relaxing the runlength constraint gives larger possible DNA-code sizes. Upper-
and lower bounds for B2(n,w, 2) and B3(n,w, 2) are presented in [5]. Research [21] has indicated changes
in error rates in various DNA-sequencing methods at long homopolymer runs in DNA-strands.
Throughout this research we mostly adhere to the no-runlength constraint, corresponding to r = 1. This
limits the amount of information that can be stored in a DNA-d code, but increasing r makes the DNA-d
code more prone to sequencing errors [6].

11

3.3 Minimum Hamming distance d

From Section 2.3, we observe that adhering to a minimum Hamming distance d limits the number of
possible DNA-words a DNA-d can possibly host. But, the minimum Hamming distance of a code is an
important parameter of a DNA-code, since we can deduce the error protection capabilities of the DNA-
code from it [17]. Both error detection and error correction are discussed throughout this Section.

Recall DNA sequencing is the process of reading DNA-d codes after storage. Data stored as DNA is
clearly fragile. Consider a DNA-d code Cd:

Cd = {ci : i ∈ {1, ..., |Cd|}} (14)

In a DNA-Based Storage System, data appears in several forms from source to destination. At the
source, the raw data is forwarded as a message. Next, this information is encoded to a DNA-word from
Cd. After storage, a DNA-word x is received, possibly in an alternated form due to sequencing or storing
errors. Decoding mechanisms are explored to work around these errors. Depending on the purposes of
the information after decoding this received DNA-word, the receiver is faced with a choice for a decoding
mechanism. We consider both error detection and error correction.
An error detecting mechanism determines whether a received DNA-word corresponds with one of the
DNA-words in Cd. Applying a detection mechanism, the receiver can choose to interpolate and only
decode the received DNA-words x that correspond with some ci ∈ Cd.
An error correction mechanism decodes the received DNA-word x as y, corresponding to one of the
DNA-words ci from Cd with the smallest Hamming distance to x:

y ∈ {ci : H(x, ci) = min{H(x, ci)}, ci ∈ Cd} (15)

Depending on the imposed distance of the DNA-d code, a number of errors can surely be detected or
corrected. We introduce a binary compass to illustrate error detection and error correction. Although
in DNA Data Storage Systems we have more symbols at our disposal, binary codes suffice to clarify the
concepts.

Table 1: A binary compass, satisfying n = 5, d = 3

Direction Code
North 00000
East 01011
South 11110
West 10101

Note Table 1 can be interpreted as a DNA-3 code satisfying DNA-word length 5, weight w = 0, maximum
runlength r = 5:

C3 = {[0, 0, 0, 0, 0], [0, 1, 0, 1, 1], [1, 1, 1, 1, 0], [1, 0, 1, 0, 1]}. (16)

3.3.1 Error detection and pitfalls

Consider Table 1 and suppose the direction West is forwarded, hence c4 = [1, 0, 1, 0, 1] is encoded and
the received word is x = [1, 0, 0, 0, 0]. If an error detection mechanism is applied, it is detected that x
does not match one of the encoded directions in Table 1. Theoretically, it is possible c3 was encoded and
three errors occurred: in every position except the first and last one. The mechanism would still detect
x as erratic. As long as errors are detected, the mechanism prevents x from being decoded.
We consider another case where three errors occur, namely in all symbols except the second and fourth
one: the encoded c4 is received as x = [0, 0, 0, 0, 0]. No errors would be detected as x corresponds with
c1 ∈ C3. The detection mechanism failed in this case. We observe we can trust the mechanism without
hesitation up to two sequencing errors. To generalize this result, we refer to a result in code theory [22]:

Theorem 1. In a DNA-d code, up to d− 1 sequencing errors are guaranteed to be detected.

12

3.3.2 Error correction and pitfalls

We present a similar example as in Chapter 3.3.1 as well as an intuitive result to elaborate on error
correction mechanisms.
Consider Table 1 and suppose the direction North is forwarded, hence c1 = [0, 0, 0, 0, 0] is encoded and the
received word is x = [0, 1, 0, 0, 0]. An error correction mechanism would decode this as y = [0, 0, 0, 0, 0]
according to equation 15 and correct the error. Theoretically, it is possible c2 was encoded and two errors
occurred: in the fourth and fifth symbol. The mechanism would fail in this case as it would still decode
y = [0, 0, 0, 0, 0] according to equation 15. This points out that applying an error correction mechanism
in decoding involves risks as the decoded y from the received DNA-word x does not always correspond
to encoded ci ∈ Cd. To generalize this result, we refer to a result in code theory [22]:

Theorem 2. In a DNA-d code with d > 2, up to d−1
2 sequencing errors are guaranteed to be corrected.

To elaborate on this result, we consider an intuitive example. Imagine a person would live in house A in
a village C7. We obtain that all houses in the village are at least 7 miles apart. The inhabitant starts
walking from home in stages of one mile, or, as the metaphor would imply, deviating from the encoded
DNA-word A. An error has occurred. Up to 3 miles away, A is still the closest house, no matter in what
direction he/she deviates: 3 errors are guaranteed to be corrected.

From Theorems 1 and 2 respectively, we conclude the accuracy level of data transfer through error
detection or -correction mechanisms depend on the imposed minimum Hamming distance d of the DNA-
d code. This constraint makes decoding DNA-words through error detection and -correction mechanisms
more reliable. But in order to satisfy a higher distance, more symbols in each DNA-word are required to
encode the same messages, which impacts the information density of DNA-d codes.

We conclude working with DNA-Based Storage System involves finding a balance between efficient DNA-d
code generation and the level of accuracy of your decoding mechanisms.

13

4 The maximum size of a DNA-3 code

In order to optimize the usage of DNA-Based Storage Systems, we aspire to create DNA-codes that
satisfy high distances for accuracy and host as much DNA-words as possible for a high information
density. As discussed in Section 2.3, a formula for Br(n,w, d) has not yet been found. We estimate the
size of the largest DNA-d code by determining lower bounds counting the DNA-words in a valid DNA-d
code. Previous research [4], [3] derived a formula for B1(n,w, 2). We improve the distance and present
an analytical proof on the maximum size of a DNA-3 code satisfying n = 4, w = 2 and r = 1.

Theorem 3. B1(4, 2, 3) = 12.

Proof. Throughout this proof DNA-d codes are presented in matrix format in which the rows represent the
DNA-words. The elements ci,j of the matrices are displayed as follows: ci,j : i ∈ {1, ..|Cd|}, j ∈ {1, ..., 4}.

Consider a valid DNA-3 code C3 ⊆ B1(4, 2),

Table 2: C3 ⊆ B1(4, 2)

0 1 2 3
0 2 3 1
0 3 1 2
1 0 3 2
1 2 0 3
1 3 2 0
2 0 1 3
2 1 3 0
2 3 0 1
3 0 2 1
3 1 0 2
3 2 1 0

From Table 2, we conclude the size of C3 is 12. This is a lower bound for the size of the largest DNA-3
code in B1(4, 2), so B1(4, 2, 3) ≥ 12.

In Table 2, we obtain 3 DNA-words start with the symbol 0. We suppose there are 4 DNA-words
satisfying the same constraints. We obtain:

Table 3: A potential DNA-3 code

0 1
0 2
0 3
0 c4,2

In case c4,2 = 2, c4,2 = 3 or c4,2 = 1, d = 3 would no longer be satisfied. In case c4,2 = 0, the no-runlength
constraint would no longer be satisfied. Hence not for any symbol c4,2 ∈ {0, 1, 2, 3}, the DNA-d code in
Table 3 would be a DNA-3 code in B1(4, 2). Interchanging rows in the format of Table 3 implies the same
result. Choosing an element from {1, 2, 3} as a first symbol of all the DNA-words in the format of Table
3 also gives an upper bound of 3 valid DNA-words. Hence B1(4, 2, 3) ≤ 12.

14

5 The maximum sizes of DNA-n codes

In the search for the largest DNA-d code satisfying a minimum Hamming distance d > 2, we consider
an extreme constraint, that forces a DNA-d code to satisfy a minimum Hamming distance equal to the
length n of the DNA-words: d = n. We will determine Br(n,w, n) in this Chapter. Before we do so, we
introduce a concept that is used throughout the proofs in this Chapter.

Definition 5.1. We define cascading as placing matrices after each other, so that we obtain a new,
larger matrix.

We illustrate the concept with an example.

Example 5.1. Define A =

[
1 2
3 4

]
and B =

[
0 0
0 0

]
.

Cascading A a number of 3 times gives a new matrix A defined as

A =

[
1 2 1 2 1 2
3 4 3 4 3 4

]
. (17)

Cascading A with B that is cascaded a number of 2 times gives a new matrix A2 defined as

A2 =

[
1 2 0 0 0 0
3 4 0 0 0 0

]
. (18)

Throughout this Chapter, we present DNA-n codes in matrix format in which the rows represent the
DNA-words. The elements ci,j of the matrices are displayed as follows: ci,j : i ∈ {1, ...|Cn|}, j ∈ {1, ..., n}.

We obtain that each element ci,j ∈ {0, 1, 2, 3} can appear at most once in every column. Consider a
potential DNA-n code:

Table 4: A potential DNA-n code

0 ... c1,n
1 ... c2,n
2 ... c3,n
3 ... c4,n
c5,1 c5,n

We define the number of rows or the size of the DNA-n code as s = |Cn|. From equation (10), we observe
the constraint d = n requires

c1,j ̸= c2,j ̸= ... ̸= cs,j ∀j ∈ {1, ..., n}. (19)

Implement any element c5,1 ∈ {0, 1, 2, 3} in Table 4 and observe ∃i ∈ {1, 2, 3, 4} : c5,1 = ci,1. This
contradicts equation (19) for j = 1. We observe d = n can not be satisfied and conclude s ≤ 4 for each
valid Cn. We observe that allowing repetition of adjacent symbols in DNA-words by setting r > 1 or
assigning a specific weight w to the DNA-n code would not improve the maximum size of Cn. In other
words:

Br(n,w, n) ≤ 4 ∀n,w, r. (20)

Can we create a valid DNA-n code with 4 DNA-words satisfying all imposed constraints and conclude
Br(n,w, n) ≥ 4? We observe from equation (8) that DNA-n codes satisfying r = 1 satisfy all r > 1 as
well. We will determine Br(n,w, n) for all possible weights w.

We first consider even lengths n and define w = n
2 , as this is considered to be beneficial for the ac-

curacy of the DNA-Based Storage System in Section 3.1.

15

Theorem 4. For n an even number, Br(n,
n
2 , n) = 4 ∀r ≥ 1.

Proof. Define a building block for a DNA-n code, displayed in matrix format:

Table 5: Building block C2 ⊆ B1(2, 1) for a DNA-n code

0 2
1 3
2 0
3 1

For all even n, cascading the building block from Table 5 a number of n
2 times represents a valid code

DNA-n code Cn ⊆ B1(n,
n
2). We conclude Br(n,

n
2 , n) ≥ 4 ∀r ≥ 1 and in combination with equation (20)

this concludes the proof.

Theorem 5. For ⌈n
3 ⌉ ≤ w ≤ ⌊ 2n

3 ⌋, w ̸= n
2 , Br(n,w, n) = 3 ∀r ≥ 1.

Proof. Define 3 building blocks for a DNA-n code, displayed in matrix format:

Table 6: Building block C2 ⊆ B1(2, 1) for a DNA-n code

0 3
1 2
2 1

Table 7: Building block C3 ⊆ B1(3, 1) for a DNA-n code

0 2 1
1 0 3
2 1 0

Table 8: Building block C3 ⊆ B1(3, 2) for a DNA-n code

2 0 3
0 3 2
3 2 1

16

Let a ∈ N satisfy 0 ≤ a < ⌈n
3 ⌉ and let w⋆ = ⌈n

3 ⌉+ a, w⋆ ̸= n
2 . We consider all possible lengths n of the

DNA-words.

• n = 0 mod 3, hence ⌈n
3 ⌉ =

n
3 .

Cascading the building block C3 ⊆ B1(3, 1) from Table 7 a number of 2n
3 − w⋆ = n

3 − a times
gives a valid DNA-(n− 3a) code:

Cn−3a ⊆ B1

(
n− 3a,

n

3
+ a

)
. (21)

Cascading the obtained Cn−3a with the building block C3 ⊆ B1(3, 2) from Table 8 that is cascaded
a number of w⋆ − n

3 = a times gives a valid DNA-n code:

Cn ⊆ B1

(
n,

n

3
+ a

)
= B1 (n,w

⋆) . (22)

• n = 1 mod 3, hence ⌈n
3 ⌉ =

n−1
3 + 1.

Cascading the building block C2 ⊆ B1(2, 1) from Table 6 a number of 2 times gives a valid DNA-4
code:

C4 ⊆ B1 (4, 2) . (23)

Cascading the obtained C4 with the building block C3 ⊆ B1(3, 1) from Table 7 that is cascaded a
number of 2n−2

3 − w⋆ = n−1
3 − 1− a times gives a valid DNA-(n− 3a) code:

Cn−3a ⊆ B1

(
n− 3a,

(n− 1)

3
+ 1− a

)
. (24)

Cascading the obtained Cn−3a with the building block C3 ⊆ B1(3, 2) from Table 8 that is cascaded
a number of w⋆ − n+2

3 = a times gives a valid DNA-n code:

Cn ⊆ B1

(
n,

n− 1

3
+ 1 + a

)
= B1 (n,w

⋆) . (25)

• n = 2 mod 3, hence ⌈n
3 ⌉ =

n−2
3 + 1.

Cascading the building block C2 ⊆ B1(2, 1) from Table 6 with the building block C3 ⊆ B1(3, 1)
from Table 7 that is cascaded a number of 2n−1

3 − w⋆ = n+1
3 − 1 − a times gives a valid DNA-

(n− 3a) code:

Cn−3a ⊆ B1

(
n− 3a,

n+ 1

3
− a

)
. (26)

Cascading the obtained Cn−3a with the building block C3 ⊆ B1(3, 2) from Table 8 that is cascaded
a number of w⋆ − n+1

3 = a times gives a valid DNA-n code:

Cn ⊆ B1

(
n,

n+ 1

3
+ a

)
= B1

(
n,

n− 2

3
+ 1 + a

)
= B1(n,w

⋆). (27)

We obtain DNA-n codes in equations (22) , (25) and (27) respectively. For every possible DNA-word
length n, we observe that for all a ∈ N satisfying 0 ≤ a < ⌈n

3 ⌉ hence for all w⋆ ∈ {⌈n
3 ⌉, ..., ⌊

2n
3 ⌋},

w⋆ ̸= n
2 , we can find a cascading scheme such that we can obtain DNA-n codes of size 3. We conclude

B1(n,w
⋆, n) ≥ 3 ∀r ≥ 1.

Suppose we can create a DNA-n code Cn such that |Cn| = B1(n,w
⋆, n) = 4. From (the text before)

equation (19) we obtain each column of Cn in matrix format has exactly 2 elements from {2, 3}. This
implies Cn contains exactly 2n elements from {2, 3}. We know each row of Cn in matrix format has w⋆

elements from {2, 3} by definition of the weight w⋆. Hence Cn contains exactly 4w⋆ elements from {2, 3}
in total. These observations yield 2n = 4w⋆, so w⋆ = n

2 . This contradicts the assumption w⋆ ̸= n
2 and

we conclude Br(n,w
⋆, n) ≤ 3 ∀r ≥ 1.

17

Theorem 6. For 0 ≤ w < ⌈n
3 ⌉ or ⌊ 2n

3 ⌋ < w ≤ n, Br(n,w, n) = 2.

Proof. Define 5 building blocks for a DNA-n code, displayed in matrix format:

Table 9: Building block C1 ⊆ B1(1, 0) for a DNA-n code

0
1

Table 10: Building block C1 ⊆ B1(1, 1) for a DNA-n code

3
2

Table 11: Building block C2 ⊆ B1(2, 0) for a DNA-n code

1 0
0 1

Table 12: Building block C2 ⊆ B1(2, 2) for a DNA-n code

2 3
3 2

Table 13: Building block C2 ⊆ B1(2, 1) for a DNA-n code

1 2
3 0

Let w⋆ ∈ N satisfy 0 ≤ w⋆ < ⌈n
3 ⌉. We consider all possible lengths n of the DNA-words.

• n even.

Cascading the building block C2 ⊆ B1(2, 0) from Table 11 a number of n
2 − w⋆ times gives a

valid DNA-(n− 2w⋆) code:
Cn−2w⋆ ⊆ B1(n− 2w⋆, 0). (28)

• n odd, hence ⌊n
2 ⌋ =

n+1
2 − 1.

Cascading the building block C1 ⊆ B1(1, 0) from Table 9 with the building block C2 ⊆ B1(2, 0)
from Table 11 that is cascaded a number of ⌊n

2 ⌋ − w⋆ times gives a valid DNA-(n− 2w⋆) code:

Cn−2w⋆ ⊆ B1(n− 2w⋆, 0). (29)

Cascading the obtained Cn−2w⋆ in equations (28) and (29) separately with the building block C2 ⊆ B1(2, 1)
from Table 13 that is cascaded a number of w⋆ times gives valid DNA-n codes:

Cn ⊆ B1(n,w
⋆). (30)

18

Let w = n− w⋆ and observe ⌊ 2n
3 ⌋ < w ≤ n.

• n even.

Cascading the building block C2 ⊆ B1(2, 2) from Table 12 a number of w − n
2 times gives a valid

DNA-(2w − 2) code:
C2w−n ⊆ B1(2w − n, 2w − n). (31)

• n is odd, hence ⌈n
2 ⌉ =

n+1
2 .

Cascading the building block C1 ⊆ B1(1, 1) from Table 10 with the building block C2 ⊆ B1(2, 2)
from Table 12 that is cascaded a number of w − ⌈n

2 ⌉ times gives a valid DNA-(2w − n) code:

C2w−n ⊆ B1(2w − n, 2w − n). (32)

Cascading the obtained C2w−n in equations (31) and (32) separately with the building block C2 ⊆ B1(2, 1)
from Table 13 that is cascaded a number of n− w times gives valid DNA-n codes:

Cn ⊆ B1(n,w). (33)

We obtain two DNA-n codes represented in equation (30) and two DNA-n codes represented in equation
(33). For every possible DNA-word length n, we observe that for all w⋆ such that 0 ≤ w⋆ < ⌈n

3 ⌉ and for
all w such that ⌊ 2n

3 ⌋ < w ≤ n, we can find a cascading scheme such that we obtain DNA-n codes of size
2. We conclude B1(n,w, n) ≥ 2 ∀r ≥ 1, w = w⋆ or w = w.

Suppose we can create a DNA-n code Cn such that |Cn| = B1(n,w, n) = 3 for w = w⋆ or w = w.
From (the text before) equation (19) we obtain each column of Cn in matrix format has exactly one or
exactly two elements from {2, 3}. This implies Cn contains a minimum of n elements from {2, 3} and a
maximum of 2n elements from {2, 3}. We know each row of Cn in matrix format has w elements from
{2, 3} by definition of the weight w. Hence Cn contains exactly 3w elements from {2, 3} in total. These
observations yield n ≤ 3w ≤ 2n, so ⌈n

3 ⌉ ≤ w ≤ ⌊ 2n
3 ⌋. This constradicts the assumption w = w⋆ or w = w

and we conclude Br(n,w, n) ≤ 2 ∀r ≥ 1, w = w⋆ or w = w.

In conclusion, theorems 4, 5 and 6 show:

∀r, n ≥ 1, Br(n,w, n) =



4 w = n
2 for n even, n ̸= n

2 ,

3 w ∈ {⌈n
3 ⌉, ..., ⌊

2n
3 ⌋}, w ̸= n

2 ,

2 0 ≤ w < ⌈n
3 ⌉ or ⌊ 2n

3 ⌋ < w ≤ n.

(34)

It is obtained that the closer to n
2 the imposed weight w of a DNA-d code is restricted, the more DNA-

words the DNA-d code can theoretically host. So a balanced DNA-d code is not only desirable for thermal
and biochemical purposes as stated in Section 3.1, it is also beneficial for the information storage density
of a DNA Based Storage System.

19

6 Algorithms generating DNA-d codes and improving existing
DNA-d code sizes

Note:

• The results of the algorithms that will be explained are presented in Table 14 and Table 15.

• The Pyhthon codes of the algorithms are attached in Appendix A

In Chapters 4 and 5, we presented analytical derivations of the maximum sizes of DNA-d codes satisfying
d = 3 and d = n respectively. We consider cases where d > 2. In the search for the largest possible DNA-d
codes satisfying a specific minimum Hamming distance d among other imposed constrained, we design
algorithms that generate valid DNA-d codes and return the size of these codes. Throughout this Chapter
we impose the no-runlength constraint r = 1 and w = ⌊n

2 ⌋. We obtain lower bounds for B1(n, ⌊n
2 ⌋, d)

considering the cases d = 3 and d = 4. We clarify recurring terms first.

Definition 6.1. We define the j-Neighbourhood Nj(x) or set of j -Neighbours of a DNA-word
x as:

Nj(x) = {y : H(x,y) ≤ j, x ̸= y}. (35)

Where H(x,y) is the Hamming distance between DNA-words as defined in definition 2.7. We denote the
size of the j-Neighbourhood as |Nj(x)|.

Definition 6.2. For DNA-words x and y of length n, x is of higher lexicographical order than y if
for min{i ∈ {1, ..., n} : xi ̸= yi} it holds that xi > yi.

We present two examples to clarify the concept.

Example 6.1. Consider the DNA-3 code C3 = {[0, 0, 3, 1, 2], [0, 1, 0, 3, 2]} ⊆ B2(5, 2). Presented like this,
the DNA-words in C3 are lexicographically ordered as c1 is of lower lexicographical order than c2.

Definition 6.3. We define D⋆ as the set of keys of a dictionary D.

Example 6.2. Consider a lexicographically ordered dictionary:

D = {[0, 1, 2] : [[0, 1, 3]], [1, 0, 3] : [[1, 0, 2]], [1, 2, 0] : [[0, 2, 0], [1, 2, 1], [1, 3, 0]]}. (36)

It is concluded that the lexicographical order is restricted by the order of the keys of D. The size of D is
determined by the number of keys and denoted as |D| = |D⋆| = 3.

6.1 Reference algorithms

We present and analyze three reference Algorithms from [4]. The first algorithm that we present creates
a DNA-d code through deleting DNA-words x ∈ D⋆ from a lexicographically ordered dictionary D in
which x is a key and Nd−1(x) is its value. The second algorithm that we present creates a DNA-d code
C⋆ through selecting DNA-words x ∈ D⋆ from a lexicographically ordered dictionary D in which x is
a key and Nd−1(x) is its value. The third algorithm we present creates a DNA-d code C⋆ by picking
DNA-words y from a lexicographically ordered DNA-code C that satisfy H(x,y) ≥ d. Before the first
iteration, C = B1(n, ⌊n

2 ⌋).

20

6.1.1 Reference Algorithm 1

In the first algorithm we present, in each iteration, one of the DNA-words with the most d−1-Neighbours
is deleted from a lexicographically ordered dictionary D. In other words: the DNA-word x ∈ D⋆ of lowest
lexicographical order in D satisfying |Nd−1(x)| = max{|Nd−1(x)| : x ∈ D⋆} is deleted from D. Before
the first iteration, D = {{x : Nd−1(x)} : x ∈ B1(n, ⌊n

2 ⌋)}. The algorithm iterates until all DNA-words
x that are keys of D have no more d − 1-Neighbours: |Nd−1(xi)| = 0 ∀i ∈ {1, ..., |D|}. Then the set of
keys of D represents a valid DNA-d code generated by the algorithm. The algorithm returns |D|: a lower
bound for the maximum size B1(n, ⌊n

2 ⌋, d).

Algorithm 1 Creating a DNA-d code by deleting DNA-words with the most d−1-Neighbours. Returning
a lower bound for B1(n, ⌊n

2 ⌋, d).
Input: Cosntraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered dictionary words in sphere: D1 = {{xi : Nd−1(xi)} : i ∈
{1, ..., B1(n, ⌊n

2 ⌋)}};

• A lexicographically ordered dictionary distances: D2 = {{xi : |Nd−1(xi)|} : i ∈ {1, ..., B1(n, ⌊n
2 ⌋)}}.

1 Function Iteration(distances, words in sphere):
2 word = first key with maximum value in distances D2; ▷ See comment 1 below

word is deleted from both dictionaries D1 and D2;
Both dictionaries D1 and D2 are updated; ▷ See comment 2 below
return words in sphere D1, distances D2.

3

4 Function Algorithm:
5 While the maximum value in distances is greater than 0: Iteration;

return |D1|: a lower bound for B1(n, ⌊n
2 ⌋, d). ▷ See comment 3 below

Comments

1. The algorithm automatically selects the DNA-word x of lowest lexicographical order in D2 satisfying
|Nd−1(x)| = max{|Nd−1(x)| : x ∈ D⋆

2}. This is discussed in detail in Section 6.3.

2. If word was a d − 1 Neighbour of one of the keys that is still left in the dictionaries, the value of
this key should be subtracted.

3. In the Python code in Appendix A this is referred to as the length of words in sphere.

21

6.1.2 Reference Algorithm 2

In the second algorithm, an empty list C is created, which will eventually represent a valid DNA-d code.
In each iteration, a DNA-word with the least d−1 Neighbours is appended to this list. In other words: the
DNA-word x ∈ D⋆ of lowest lexicographical order in D satisfying |Nd−1(x)| = min{(|Nd−1(x)| : x ∈ D⋆}
is appended to C and deleted from D. Afterwards, x and the set {y : y ∈ Nd−1(x)} are deleted from
D such that these cannot end up in C. The algorithm iterates until |D| = 0. Then C represents a valid
DNA-d code generated by the algorithm. The algorithm returns |C|: a lower bound for the maximum
size B1(n, ⌊n

2 ⌋, d).

Algorithm 2 Creating a DNA-d code by selecting DNA-words with the least d−1-Neighbours. Returning
a lower bound for B1(n, ⌊n

2 ⌋, d).
Input: Cosntraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered dictionary words in sphere D1 = {{xi : Nd−1(xi)} : i ∈
{1, ..., B1(n, ⌊n

2 ⌋)}};

• A lexicographically ordered dictionary distances D2 = {{xi : |Nd−1(xi)|} : i ∈ {1, ..., B1(n, ⌊n
2 ⌋)}};

• An empty list newcode C. ▷ See comment 1 below

6 Function Iteration(distances, words in sphere, newcode):
7 word = first key with minimum value in distances D2; ▷ See comment 2 below

word is appended to newcode C;
word and the set {word : word ∈ N(word)} are deleted from dictionaries D1 and D2;
Both dictionaries D1 and D2 are updated; ▷ See comment 3 below
return distances D2, words in sphere D1,newcode C.

8

9 Function Algorithm:
10 While |D1| > 0: Iteration;
11 return |C|: a lower bound for B1(n, ⌊n

2 ⌋, d). ▷ See comment 4 below

Comments

1. This will eventually represent the generated DNA-d code.

2. The algorithm automatically selects the DNA-word x of lowest lexicographical order in D2 satisfying
|Nd−1(x)| = min{(|Nd−1(x)| : x ∈ D⋆

2}. This is discussed in detail in Section 6.3.

3. If word or word was a d − 1-Neighbour of one of the keys that is still left in the dictionaries, the
value of this key should be subtracted.

4. In the Python code in Appendix A this is referred to as the length of newcode.

22

6.1.3 Reference Algorithm 3

We present a third algorithm that creates a DNA-d code C⋆ by selecting DNA-words from a lexicograph-
ically ordered DNA-code C. Before the first iteration, C = B1(n, ⌊n

2 ⌋). In each iteration, the DNA-word
y from {y ∈ C : H(x,y) ≥ d ∀x ∈ C⋆} of lowest lexicographical order in C, will be appended to C⋆ and
deleted from C. The algorithm iterates until |C| = 0. Then C⋆ represents a valid DNA-d code generated
by the algorithm. The algorithm returns |C⋆|: a lower bound for the maximum size B1(n, ⌊n

2 ⌋, d).

Algorithm 3 Creating a DNA-d code C⋆ by selecting DNA-words from DNA-code C such that the
minimum Hamming distance of C⋆ is maintained.

Input: Cosntraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered DNA-code finalwords: C = B1(n, ⌊n
2 ⌋);

• An empty list newcode: C⋆. ▷ See comment 1 below

12 Function Iteration(finalwords, newcode, d):
13 word = the first element of finalwords C;

If word satisfies H(word,word) ≥ d ∀word ∈ newcode C⋆: word is appended to newcode C⋆;
word is deleted from finalwords C;
return finalwords C, newcode C⋆

14

15 Function Algorithm:
16 While |C| > 0: Iteration;
17 return |C⋆|: a lower bound for B1(n, ⌊n

2 ⌋, d) ▷ See comment 2 below

Comments

1. This will eventually represent the generated DNA-d code.

2. In the Python code in Appendix A this is referred to as the length of newcode.

23

6.2 Non beneficial approaches

We critically analyze the defining properties of the presented reference Algorithms in Section 6.1 to
see whether adaptations could improve the lower bounds for B1(n, ⌊n

2 ⌋, d). The reference Algorithm 1,
presented in Subsection 6.1.1 deletes the DNA-word x of lowest lexicographical order in a dictionary
D2 that satisfies |Nd−1(x)| = max{(|Nd−1(x)| : x ∈ D⋆

2} in each iteration. The reference Algorithm
2, presented in Subsection 6.1.2 selects the DNA-word x of lowest lexicographical order in a dictionary
D2 that satisfies |Nd−1(x)| = min{(|Nd−1(x)| : x ∈ D⋆

2} in each iteration. The dictionary D2 in both
Algorithm 1 and Algorithm 2 theoretically contains multiple keys x ∈ D⋆

2 that satisfy |Nd−1(x)| =
max{(|Nd−1(x)| : x ∈ D⋆

2} or |Nd−1(x)| = min{(|Nd−1(x)| : x ∈ D⋆
2} respectively. We present sets that

represent these keys.

Definition 6.4. We define the set Smax of keys x of a dictionary D with the most d− 1-Neighbours as:

Smax = {x ∈ D⋆ : |Nd−1(x)| = max{(|Nd−1(x)|}}. (37)

Definition 6.5. We define the set Smin of keys x of a dictionary D with the least d− 1-Neighbours as:

Smin = {x ∈ D⋆ : |Nd−1(x)| = min{(|Nd−1(x)|}}. (38)

6.2.1 Clustering Neighbourhoods

We observe the set of d− 1-Neighbours of x ∈ D⋆ is structured as follows:

Nd−1(x) =

d−1⋃
j=1

{Nj(x)}, x ∈ D⋆. (39)

The reference Algorithm 1 selects the element x ∈ D⋆ of lowest lexicographical order from Smax and
deletes it from D in each iteration. This selection of x will be adapted in the first iteration. We compare
sizes of the subsets Nj(x) ⊆ Nd−1(x), structured in equation (39). We examine if it has potential to select
keys x ∈ D⋆ that have large j-Neighbourhoods Nj(x) ⊆ Nd−1(x) for some j ∈ {1, ..., (d− 1)} instead of
selecting x ∈ D⋆ from Smax, that has a large |Nd−1(x)| in total.
We examine if it is beneficial to select x ∈ D⋆ that has most 1-Neighbours in the first iteration. In other
words, in the first iteration we select x ∈ D⋆ such that |N1(x)| = max{|N1(x)| : x ∈ D⋆}.
From the second iteration onwards, the key x ∈ D⋆ of lowest lexicographical order from Smax is selected
as in reference Algorithm 1.

A similar adaptation was made to the first iteration of reference Algorithm 2: The reference Algorithm
2 deletes the element x ∈ D⋆ of lowest lexicographical order from Smin from D and appends it to C in
each iteration. This selection of x will be adapted in the first iteration. We compare sizes of the subsets
Nj(x) ⊆ Nd−1(x), structured in equation (39). We examine if it has potential to select keys x ∈ D⋆ that
have small j-Neighbourhoods Nj(x) ⊆ Nd−1(x) for some j ∈ {1, ..., (d− 1)} instead of selecting x ∈ D⋆

from Smin, that has a small |Nd−1(x)| in total.
We examine if it is beneficial to select x ∈ D⋆ that has least 1-Neighbours in the first iteration. In other
words, in the first iteration we select x ∈ D⋆ such that |N1(x)| = min{|N1(x)| : x ∈ D⋆}.
From the second iteration onwards, the key x ∈ D⋆ of lowest lexicographical order from Smin is selected
as in reference Algorithm 2.

These adaptations did not provide larger DNA-d codes than the ones that are generated by reference
Algorithms 1 and 2, of which the sizes are represented in the first two columns of Tables 14 and 15. So
we conclude the considered approach that selects keys x ∈ D⋆ with large / small j-Neighbourhoods for
some j ∈ {1, ..., (d− 1)} is not promising for finding larger lower bounds for B1(n, ⌊n

2 ⌋, d).

24

6.2.2 A special case

It is obtained from Table 15 that there is one of the examined cases where reference Algorithm 3 gives a
higher lower bound for B1(n, ⌊n

2 ⌋, d) than reference Algorithm 2: the case where n = 6 and d = 4. The
case is marked red in Table 15.

We studied the iterations of the reference Algorithms 2 and 3 closely for this combination of constraints.
Large differences in lexicographical order between adjacent DNA-words in DNA-d code C generated by
reference Algorithm 2 might explain a disadvantage compared to reference Algorithm 3, as the latter
creates a DNA-d code in lexicographical order. It turned out the biggest difference in lexicographical
order between adjacent DNA-words in newcode C, generated by reference Algorithm 2, was between the
first and the second DNA-word of C.
Also, the first words of the DNA-d codes generated by reference Algorithms 2 and 3 respectively, are
identical. This implies the first DNA-word of B1(n, ⌊n

2 ⌋), that is always the first element of a DNA-d
code generated by reference Algorithm 3, also has the least d− 1-Neighbours in the case n = 6, d = 4.

We examined whether the combination of these phenomena or something similar appeared more of-
ten. For these cases, we focused on a consistent possible positive effect for the sizes of DNA-d codes
generated by reference Algorithm 3. No such effect in case of appearance of the described phenomena
was found. We concluded the large code size of the DNA-d code generated by reference Algorithm 3
in the case n = 6, d = 4 is due to other reasons. Now that we know from reference Algorithm 3 that
B1(6, 3, 4) ≥ 21, as obtained in Table 15, we consider adaptations to reference Algorithm 2 to obtain a
DNA-d code of this size or larger.

6.3 The choice from Smin

From Subsection 6.2.1, we conclude selecting DNA-words x with large / small 1-Neighbourhoods in
the first iteration is not promising. From Subsection 6.2.2, we conclude looking at the difference in
lexicographical order of adjacent DNA-words in the DNA-d code generated by reference Algorithm 2 is
not defining for the performance of the algorithm. As obtained from the first three columns of Tables 14
and 15, reference Algorithm 2 mostly generates the largest DNA-d codes.
If we look into the structure and principles of this algorithm, the attention is drawn to the choice of
x ∈ D⋆ in the first step of the iteration. This is the element of lowest lexicographical order in Smin,
referring to Definition 6.5. We consider choosing the DNA-word x from Smin, if |Smin| > 1, differently in
this step of the iteration.

6.3.1 Algorithm 4 on lexicographical potential

Throughout this Subsection, we consider Smin, as defined in Definition 6.5, with its elements represented
in lexicographical order. In reference Algorithm 2, the first element of Smin ⊆ D⋆

2 is selected in each
iteration.
We examine the potential of a certain lexicographic balance: we design an Algorithm in which we select
the DNA-word halfway Smin, defined as sh:

Definition 6.6. Consider Smin = {s1, s2, ...s|S|} where |S| = |Smin| as defined in Definition 6.5. We
define sh as:

sh ∈ Smin, h =

⌊
|S|
2

⌋
. (40)

Mind that this DNA-word still has the least d − 1 Neighbours, so we adhere to compliance with the
principles of reference Algorithm 2. We obtain in Table 14 and Table 15, if we compare the column
of Algorithm 4 with the previous ones, that larger DNA-d codes are generated, hence this approach is
beneficial in many cases. We also considered taking the last element of Smin, but no improved lower
bound for B1(n, ⌊n

2 ⌋, d) was found from sizes of the generated DNA-d codes, compared with the results
in Tables 14 and 15.

25

Algorithm 4 Creating a DNA-d code by selecting DNA-words halfway Smin. Returning a lower bound
for B1(n, ⌊n

2 ⌋, d).
Input: Constraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered dictionary words in sphere D1 = {{xi : Nd−1(xi)} : i ∈
{1, ..., B1(n, ⌊n

2 ⌋)}};

• A lexicographically ordered dictionary distances D2 = {{xi : |Nd−1(xi)|} : i ∈ {1, ..., B1(n, ⌊n
2 ⌋)}};

• An empty list newcode C. ▷ See comment 1 below

18 Function Iteration(distances, words in sphere, newcode):
19 word = sh; ▷ See comment 2 below

word is appended to newcode C;
word and the set {word : word ∈ N(word)} are deleted from dictionaries D1 and D2;
Both dictionaries D1 and D2 are updated; ▷ See comment 3 below
return distances D2, words in sphere D1,newcode C.

20

21 Function Algorithm:
22 While |D1| > 0: Iteration;
23 return |C|: a lower bound for B1(n, ⌊n

2 ⌋, d). ▷ See comment 4 below

Comments

1. This will eventually reperesent the generated code.

2. sh ∈ Smin ⊆ D⋆
2 As defined in Definitions 6.5 and 6.6.

3. If word or word was a d − 1-Neighbour of one of the keys that is still left in the dictionaries, the
value of this key should be subtracted.

4. In the Python code in Appendix A this is referred to as the length of newcode.

26

6.3.2 Algorithm 5 on Neighbourhoods of Neighbourhoods

We discover the consequences of working with other properties than the lexicographical order of DNA-
words in Smin. We present an Algorithm that rests on the same principle as Algorithms 2 and 4, presented
in Subsections 6.1.2 and 6.3.1 respectively, but selects from Smin in a more detailed way.
For each DNA-word s ∈ Smin, we know it has the same, minimal number of d − 1-Neighbours. The
d − 1-Neighbourhoods Nd−1(s) are equally large but not identical! We distinguish them as follows: we
consider the sizes of the d− 1-Neighbourhoods of the elements y ∈ Nd−1(s) and add them up:

Definition 6.7. We define the size of the extended d− 1-Neighbourhood of s ∈ Smin denoted as
|N(s)|, as:

|N(s)| =
|Nd−1(s)|∑

i=1

|Nd−1(yi
)|, y

i
∈ Nd−1(s). (41)

Note that we allow double counting when DNA-words appear in multiple d−1-Neighbourhoods Nd−1(y),
where y ∈ Nd−1(s) and s ∈ Smin.

The Algorithm selects the DNA-word s ∈ Smin with the largest extended d − 1-Neighbourhood, defined
as se:

se = se ∈ Smin : |N(se)| = max{|N(s)| : s ∈ Smin}. (42)

Where |N(se)| is defined according to Definition 6.7.

It is obtained from the fifth column of Tables 14 and 15 respectively, that almost all lower bounds
for B1(n, ⌊n

2 ⌋, d) returned by this Algorithm, are equal to or higher than the ones from Algorithms 1 up
to and including 4. This holds for all examined cases but n = 7 in Table 14, where Algorithm 4 generates
a larger DNA-3 code.

27

Algorithm 5 Creating a DNA-d code by selecting DNA-words s ∈ Smin with the largest extended
d− 1-Neighbourhood. Returning a lower bound for B1(n, ⌊n

2 ⌋, d).
Input: Constraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered dictionary words in sphere D1 = {{xi : Nd−1(xi)} : i ∈
{1, ..., B1(n, ⌊n

2 ⌋)}};

• A lexicographically ordered dictionary distances D2 = {{xi : |Nd−1(xi)|} : i ∈ {1, ..., B1(n, ⌊n
2 ⌋)}};

• An empty list newcode C. ▷ See comment 1 below

24 Function Iteration(distances, words in sphere, newcode):
25 word = se ▷ See comment 2 below;

word is appended to newcode C;
word and the set {word : word ∈ N(word)} are deleted from dictionaries D1 and D2;
Both dictionaries D1 and D2 are updated; ▷ See comment 3 below
return distances D2, words in sphere D1,newcode C.

26

27 Function Algorithm:
28 While |D1| > 0: Iteration;
29 return |C|: a lower bound for B1(n, ⌊n

2 ⌋, d). ▷ See comment 4 below

Comments

1. This will eventually represent the generated code.

2. se ∈ Smin as defined in equation (42). The algorithm automatically selects the DNA-word se of
lowest lexicographical order in Smin satisfying |Nd−1(se)| = max{(|Nd−1(s)| : x ∈ Smin}.

3. If word or word was a d − 1-Neighbour of one of the keys that is still left in the dictionaries, the
value of this key should be subtracted.

4. In the Python code in Appendix A this is referred to as the length of newcode.

28

6.3.3 Looking back Algorithm 6

We obtain the outcomes of Algorithms 4 and 5 in the fourth and fifth columns of Tables 14 and 15
respectively. In order to improve the obtained lower bounds for B1(n, ⌊n

2 ⌋, d) we present a self-critical
Algorithm that selects DNA-words from Smin based on the previous iteration. This is possible in every
iteration except in the first iteration. For the first iteration, every possible s ∈ Smin is considered as the
first DNA-word of C and the optimal outcomes are presented in the sixth column of Tables 14 and 15.
From the second iteration onwards, we select the DNA-word from Smin that has the largest Hamming
distance to reference DNA-word cref:

Definition 6.8. Consider newcode C after iteration i: C = {c1, c2, ..., ci}. We define the reference
DNA-word cref as cref = ci.

Definition 6.9. In iteration i+ 1, we define the choice sc as:

sc = sc ∈ Smin : H(sc, cref) = max{H(s, cref) : s ∈ Smin}. (43)

From the sixth column of Tables 14 and 15 it can be observed that for all examined cases except for the
case n = 8, d = 3, Algorithm 6 generates DNA-d codes of sizes that achieve or surpass the sizes of the
DNA-d codes generated by Algorithms 1 up to and including Algorithm 5.

29

Algorithm 6 Creating a DNA-d code by selecting DNA-words s ∈ Smin in each iteration with maxi-
mum Hamming distance to the selected DNA-word in previous iteration. Returning a lower bound for
B1(n, ⌊n

2 ⌋, d).
Input: Constraints:

• maximum runlength r = 1;

• DNA-word length n;

• weight w = ⌊n
2 ⌋;

• minimum Hamming distance d.

Output: A lower bound for B1(n, ⌊n
2 ⌋, d).

Data:

• A lexicographically ordered dictionary words in sphere D1 = {{xi : Nd−1(xi)} : i ∈
{1, ..., B1(n, ⌊n

2 ⌋)}};

• A lexicographically ordered dictionary distances D2 = {{xi : |Nd−1(xi)|} : i ∈ {1, ..., B1(n, ⌊n
2 ⌋)}};

• An empty list newcode C. ▷ See comment 1 below

30 Function Iteration(distances, words in sphere, newcode):
31 word = sc ▷ See comment 2 below;

word is appended to newcode C;
word and the set {word : word ∈ N(word)} are deleted from dictionaries D1 and D2;
Both dictionaries D1 and D2 are updated; ▷ See comment 3 below
return distances D2, words in sphere D1,newcode C.

32

33 Function Algorithm:
34 While |D1| > 0: Iteration;
35 return |C|: a lower bound for B1(n, ⌊n

2 ⌋, d). ▷ See comment 4 below

Comments for Algorithm 6

1. This will eventually represent the generated code.

2. sc ∈ Smin as defined in equation (43). The algorithm automatically selects the DNA-word sc of
lowest lexicographical order in Smin satisfying H(sc, cref) = max{H(s, cref) : s ∈ Smin}.

3. If word or word was a d − 1-Neighbour of one of the keys that is still left in the dictionaries, the
value of this key should be subtracted.

4. In the Python code in Appendix A this is referred to as the length of newcode.

30

6.4 Results

We present the outcomes of the Algorithms described in previous Subsections 6.1 up to 6.3.3. The highest
lower bounds for B1(n, ⌊n

2 ⌋, d) for the examined cases are underlined.

Table 14: Lower bounds for B1(n, ⌊n
2 ⌋, 3) from Algorithms

Algorithm 1 2 3 4 5 6, outcome and first iteration

n |C3|
3 2 3 2 3 3 3
4 11 12 7 9 12 12, s1
5 17 18 18 18 18 18, s1
6 44 53 45 52 53 53, s3
7 110 119 101 124 123 127, s4
8 289 326 286 330 347 341, s1
9 662 762 687 760 767 783, s4

Table 15: Lower bounds for B1(n, ⌊n
2 ⌋, 4) from Algorithms

Algorithm 1 2 3 4 5 6, outcome and first iteration

n |C4|
4 4 4 4 4 4 4
5 7 7 7 7 7 7, s1
6 16 20 21 19 22 22, s1
7 36 44 37 40 42 44, s11
8 86 127 97 128 128 128, s2
9 199 227 216 231 235 235, s2

31

7 Conclusions and Recommendations

As stated in Subsection 1.2, this research is performed to answer the question:

“Can we create DNA-codes and therefore determine upper bounds and lower bounds for the size of
DNA-codes satisfying d > 2?”

Recall from Chapter 4 that B1(4, 2, 3) = 12. We conclude from the fifth and sixth columns from Table
14 that Algorithm 5 and Algorithm 6 create the largest possible DNA-3 codes.

Recall from Chapter 5 that

∀r, n ≥ 1, Br(n,w, n) =



4 w = n
2 for n even, n ̸= n

2 ,

3 w ∈ {⌈n
3 ⌉, ..., ⌊

2n
3 ⌋}, w ̸= n

2 ,

2 0 ≤ w < ⌈n
3 ⌉ or ⌊ 2n

3 ⌋ < w ≤ n.

(44)

From Table 14 it is concluded that only Algorithm 1 and Algorithm 3 do not generate the largest possible
DNA-3 codes. From Table 15 it is concluded that Algorithms 1 up to and including Algorithm 6 create
the largest possible DNA-4 codes.

We analyze the other outcomes as well and present suggestions for future research on analytical re-
sults as well as improvements of the Algorithms in the search for DNA-d codes of the largest possible
size.

7.1 Sizes of the largest DNA-d codes generated by the Algorithms

We present the highest lower bounds for B1(n, ⌊n
2 ⌋, d) obtained from the six algorithms presented in

Chapters 6.1 up to 6.3.3.

Table 16: Highest obtained lower bounds for B1(n, ⌊n
2 ⌋, d) from presented Algorithms

n |C3| |C4|
3 3
4 12 4
5 18 7 .
6 53 22
7 127 44
8 347 128
9 783 235

32

7.2 Continuation in analytical research

As described in Chapter 2, DNA-d codes that satisfy a high imposed minimum Hamming distance d
are less error prone when applying error detection or -correction decoding mechanisms. The higher the
imposed d, the more potential sequencing errors can be guaranteed to be detected / corrected. To keep
DNA-d codes information dense, we search for the largest possible DNA-d codes satisfying this high
imposed d.
Analytical proofs like in Chapter 5 contribute in the determination of DNA-d code sizes significantly. The
analytical results provide upper bounds as well as lower bounds, hence indisputable code sizes. Continuing
analytical research up to high lengths n of DNA-words and high imposed minimum Hamming distances
d of DNA-d codes improve the level of analysis we can apply to the outcome of algorithms. Also, the
research would substantiate the reasoning behind the principles these algorithms adhere to. A suggestion
would be building on Chapter 5 and consider the case d = n− 1.

7.3 Suggested improvements of the algorithms

We suggest improvements of the Algorithms presented in Subsections 6.1 up to and including 6.3.3.

7.3.1 Profound choices in algorithms

In each iteration of the presented algorithms various choices are made. These choices can be made more
profound: an example of this is specifying the choice from Smin, like we did in Subsections 6.3.1 up to
and including 6.3.3.
Consider the choices of se and sc in Algorithms 5 and 6: the algorithms automatically select these DNA-
words of lowest lexicographical order in Smin satisfying the desired properties. Algorithms that adhere
to various ways of choosing from Smin can be discussed.

7.3.2 A special case for Algorithm 5

The underlined green outcomes in Tables 14 and 16 show an exceptionally high outcome of the size of
the DNA-3 codes C3 ⊆ B1(8, 4) generated by Algorithm 5. It is recommended to look into this case in a
similar way as we did in Subsection 6.2.2. Note that it will be hard to manually compare the generated
DNA-3 codes as a whole, as they host over 300 DNA-words.
At first view, the outcomes of Algorithm 6 based on different choices from Smin in the first iteration are
remarkably structured compared to the other examined cases:

Table 17: The choice from Smin in the first iteration and the corresponding outcome of Algorithm 6

sc |C3|
s1 341
s2 341
s3 341
s4 341
s5 330
s6 330
s7 330
s8 330

.
If the algorithm is applied for higher n for example and this structure of Smin in the first iteration
appears more often, it can be checked if Algorithm 5 is beneficial over Algorithm 6 in these cases as well.
Consistencies and new thoughts on algorithm designs can arise from analysis of similar cases in the search
for the largest possible DNA-d codes.

33

References

[1] X. Li B. Cao, S. Zhao and B. Wang. K-means Multi-Verse Optimizer (KMVO) Algorithm to
Construct DNA Storage Codes. IEEE Access, vol. 8, pp. 29547-29556, 2020.

[2] Eva Garcia-Ruiz Jian Ma Huimin Zhao S. M. Hossein Tabatabaei Yazdi, Han Mao Kiah and Olgica
Milenkovic. DNA Based Storage: Trends and Methods. IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, 1(3), 2015.

[3] Jos H. Weber. On Single-Error-Detecting Codes for DNA-Based Data Storage. IEEE Communication
Letters, 25(1), 2021.

[4] C.J. (Lot) van Leeuwen. Constrained Codes for DNA-Based Storage Systems, 2020.

[5] H. Vermeer. Constrained Single-Error-Detecting codes for DNA-based Storage Systems, 2021.

[6] Vaneet Aggarwal Dixita Limbachiya, Manish K. Gupta. Family of Constrained Codes for Archival
DNA Data Storage. IEEE Communications Letters, 22(10), 2018.

[7] Jeff Desjardins. How much Data is generated each day? https://www.weforum.org/agenda/2019/

04/how-much-data-is-generated-each-day-cf4bddf29f/, 2019.

[8] Zijn er meer sterren in het heelal dan zandkorrels op aarde? https://www.astronomie.nl/

veelgestelde-vragen/zijn-er-meer-sterren-in-het-heelal-dan-zandkorrels-op-aarde-20?

category=Vragen+over+sterren+en+sterrenstelsels, date of consult: december 2021.

[9] E. M. Rubin an S. Kosuri G. M. Church. Next-Generation Digital Information Storage in DNA.
Science (New York, N. Y.), 337(6102, p. 1628), 2021.

[10] Y. Erlich and D. Zielinski. DNA Fountain enables a robust and efficient storage architecture. Science,
355, 2016.

[11] M. Puddu D. Paunescu R. N. Grass, R. Heckel and W. J. Stark. Robust Chemical Preservation
of Digital Information on DNA in Silica with Error-Correcting Codes. Angewandte Chemie, 54(8,
p.2552-2555), 2015.

[12] Bas van Rijzewijk. Interview with Kees Schouhamer Immink. De
Zaak, september 2020. https://www.dezaak.nl/magazine/pioniers/

het-draaide-meer-om-de-wedstrijd-die-ik-meemaakte/, translated.

[13] Kui Cai Kees A. Schouhamer Immink. Efficient Balanced and Maximum Homopolymer-Run Re-
stricted Block Codes for DNA-Based Data Storage. IEEE Communications Letters, 23(10), 2019.

[14] The Editors of Encyclopaedia Britannica. DNA. 2020. Accessed December 2021.

[15] K. Maeda E. Yashima and Y. Furusho. Single- and Double-Stranded Helical Polymers: Synthesis,
Structures, and Functions. Accounts of chemical research, 41(9), 2008.

[16] T. Chauhan. DNA Sequencing: History, Steps, Methods, Applications and Limitations. 2019.
Accessed December 2021.

[17] J.H. Weber. Lecture Notes: Error-Correcting Codes, April 2019.

[18] Oliver D. King. Bounds for DNA Codes with Constant CG-content. The electronic journal of
Combinatorics, 10, 2003.

[19] A. E. CONDON A. MARATHE and R. M. CORN. On Combinatorial DNA Word Design. Journal
of Computational Biology, 8(3), 2001.

[20] K. A. Schouhamer Immink. Runlength-limited sequences. Proceedings of the IEEE, 78(11, pp.
1745–1759), Nov 1990.

34

https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.astronomie.nl/veelgestelde-vragen/zijn-er-meer-sterren-in-het-heelal-dan-zandkorrels-op-aarde-20?category=Vragen+over+sterren+en+sterrenstelsels
https://www.astronomie.nl/veelgestelde-vragen/zijn-er-meer-sterren-in-het-heelal-dan-zandkorrels-op-aarde-20?category=Vragen+over+sterren+en+sterrenstelsels
https://www.astronomie.nl/veelgestelde-vragen/zijn-er-meer-sterren-in-het-heelal-dan-zandkorrels-op-aarde-20?category=Vragen+over+sterren+en+sterrenstelsels
https://www.dezaak.nl/magazine/pioniers/het-draaide-meer-om-de-wedstrijd-die-ik-meemaakte/
https://www.dezaak.nl/magazine/pioniers/het-draaide-meer-om-de-wedstrijd-die-ik-meemaakte/

[21] M. Costello et al. M.G. Ross, C. Russ. Characterizing and Measuring Bias in Sequence Data. Genome
Biology, 14(R51), 2013.

[22] Márquez-Corbella. Code-based Cryptography: Error-Correcting Codes and Cryptography. Institut
national de recherche en informatique et en automatique (INRIA), 2016.

35

A Python codes

A.1 Reference algorithms

1 import i t e r t o o l s as i t
2

3 l ength = in t (input (’ wordlength=’))
4 symbols = ’ 0123 ’
5 weight = in t (l ength /2)
6 runlength = 1
7

8 de f l i s t w o r d s (length , symbols) :
9 r e turn [’ ’ . j o i n (x) f o r x in i t . product (symbols , r epeat=length)]

10

11

12 a l lwords = l i s t w o r d s (length , symbols)
13

14 weighted words = []
15 f o r word in a l lwords :
16 w = word . count (’ 2 ’) + word . count (’ 3 ’)
17 i f w == weight :
18 weighted words . append (word)
19

20 runlength words = []
21

22 f o r word in weighted words :
23 r epea t counte r = 1
24 i l l e g a l w o r d = False
25 f o r i in range (1 , l ength) :
26 i f word [i] == word [i − 1] :
27 r epea t counte r += 1
28 e l s e :
29 r epea t counte r = 1
30

31 i f r epea t count e r > runlength :
32 i l l e g a l w o r d = True
33 break
34

35 i f not i l l e g a l w o r d :
36 runlength words . append (word)
37

38 l ength words = []
39

40 f o r word in runlength words :
41 i f l en (word) == length :
42 l ength words . append (word)
43

44

45 f i na lwo rd s=length words
46

47 pr in t (’ l ength f i n a l words i s ’ , l en (f i na lwo rd s))
48

49 de f g e t d i s t an c e (word1 , word2) :
50 #determine the d i s t anc e between two words
51 r e turn l en ([i f o r i in range (l en (word1)) i f
52 i n t (word1 [i])− i n t (word2 [i]) != 0])
53

54

55 de f g e t wo rd s i n sphe r e (code , codeword , d) :
56 #get a l l the (d−1)−neighbours o f a codeword
57 r e turn [w f o r w in code i f 0<g e t d i s t an c e (codeword ,w)<d]
58

59 d=in t (input (” d i s t ance=”))
60 code=f ina lwo rd s
61

62 de f dictionaryNBH (code , d) :
63 words in sphere={codeword : g e t wo rd s i n sphe r e (code , codeword , d)
64 f o r codeword in code}
65 r e turn words in sphe re

36

66

67 words in sphe re=dictionaryNBH (code , d)
68

69 de f d i c t i o n a r y d i s t (words in sphe re) :
70 d i s t a n c e s i n s ph e r e={key : l en (va lue) f o r key , va lue in words in sphe re . i tems () }
71 r e turn d i s t a n c e s i n s ph e r e
72

73 d i s t an c e s=d i c t i o n a r y d i s t (words in sphe re)
74

75 #s t a r t i t e r a t i o n
76 #ALG 1
77 de f i t e r a t i o n 1 (d i s tance s , words in sphe re) :
78 #words with most d−1 NBs
79 maximum = max(d i s tance s , key=d i s t an c e s . get)
80 de l d i s t an c e s [maximum]
81 f o r va lue in words in sphe re [maximum] :
82 d i s t an c e s [va lue]−=1
83 words in sphe re [va lue] . remove (maximum)
84 de l words in sphe re [maximum]
85

86 de f a lg1 (d i s tance s , words in sphere) :
87 whi le max(d i s t an c e s . va lue s ())>0:
88 i t e r a t i o n 1 (d i s tance s , words in sphe re)
89 r e turn l en (words in sphe re)
90

91 a lg1=alg1 (d i s tance s , words in sphere)
92 pr in t (’ Lowerbound o f s i z e with a lgor i thm 1 and d i s t anc e ’ , d , ’ i s ’ , a lg1)
93

94 words in sphe re=dictionaryNBH (code , d)
95 d i s t an c e s=d i c t i o n a r y d i s t (words in sphe re)
96

97 #ALG 2
98 newcode=[]
99 de f i t e r a t i o n 2 (d i s tance s , words in sphere , newcode) :

100 minimum = min(d i s tance s , key=d i s t an c e s . get)
101 newcode . append (minimum)
102 de l d i s t an c e s [minimum]
103 f o r va lue in words in sphe re [minimum] :
104 de l d i s t an c e s [va lue]
105 f o r va l in words in sphe re [va lue] :
106 i f va l in d i s t an c e s :
107 words in sphe re [va l] . remove (va lue)
108 d i s t an c e s [va l]−=1
109 de l words in sphe re [va lue]
110 de l words in sphe re [minimum]
111 r e turn newcode
112

113 de f a lg2 (d i s tance s , words in sphere , newcode) :
114 whi le words in sphe re :
115 i t e r a t i o n 2 (d i s tance s , words in sphere , newcode)
116 r e turn l en (newcode)
117

118 a lg2=alg2 (d i s tance s , words in sphere , newcode)
119 pr in t (”\nLowerbound o f s i z e with a lgor i thm 2 and d i s t ance ” , d , ’ i s ’ , a lg2)
120

121 #ALG 3
122 DNAcode=f ina lwo rd s
123 a lg3code =[]
124 de f i t e r a t i o n 3 (alg3code , DNAcode , d) :
125 word=DNAcode [0]
126 i f a l l (g e t d i s t an c e (word , codeword)>=d f o r codeword in a lg3code) :
127 a lg3code . append (word)
128 DNAcode . remove (word)
129 r e turn alg3code , DNAcode
130

131 de f a lg3 (alg3code , DNAcode , d) :
132 whi le DNAcode :
133 i t e r a t i o n 3 (alg3code , DNAcode , d)
134 r e turn l en (a lg3code)

37

135 a lg3=alg3 (alg3code , DNAcode , d)
136 pr in t (’ \nLowerbound o f s i z e with a lgor i thm 3 and d i s t ance ’ , d , ’ i s ’ , a lg3)

A.2 Algorithm 4

1 import i t e r t o o l s as i t
2

3 l ength = in t (input (’ wordlength=’))
4 symbols = ’ 0123 ’
5 weight = in t (l ength /2)
6 runlength = 1
7

8 de f l i s t w o r d s (length , symbols) :
9 r e turn [’ ’ . j o i n (x) f o r x in i t . product (symbols , r epeat=length)]

10

11

12 a l lwords = l i s t w o r d s (length , symbols)
13

14 weighted words = []
15 f o r word in a l lwords :
16 w = word . count (’ 2 ’) + word . count (’ 3 ’)
17 i f w == weight :
18 weighted words . append (word)
19

20 runlength words = []
21

22 f o r word in weighted words :
23 r epea t counte r = 1
24 i l l e g a l w o r d = False
25 f o r i in range (1 , l ength) :
26 i f word [i] == word [i − 1] :
27 r epea t counte r += 1
28 e l s e :
29 r epea t counte r = 1
30

31 i f r epea t count e r > runlength :
32 i l l e g a l w o r d = True
33 break
34

35 i f not i l l e g a l w o r d :
36 runlength words . append (word)
37

38 l ength words = []
39

40 f o r word in runlength words :
41 i f l en (word) == length :
42 l ength words . append (word)
43

44

45 f i na lwo rd s=length words
46

47 pr in t (’ l ength f i n a l words i s ’ , l en (f i na lwo rd s))
48

49 de f g e t d i s t an c e (word1 , word2) :
50 #determine the d i s t anc e between two words
51 r e turn l en ([i f o r i in range (l en (word1)) i f
52 i n t (word1 [i])− i n t (word2 [i]) != 0])
53

54

55 de f g e t wo rd s i n sphe r e (code , codeword , d) :
56 #get a l l the (d−1)−neighbours o f a codeword
57 r e turn [w f o r w in code i f 0<g e t d i s t an c e (codeword ,w)<d]
58

59 d=in t (input (” d i s t ance=”))
60 code=f ina lwo rd s
61

62 de f dictionaryNBH (code , d) :
63 words in sphere={codeword : g e t wo rd s i n sphe r e (code , codeword , d)
64 f o r codeword in code}

38

65 r e turn words in sphe re
66

67 words in sphe re=dictionaryNBH (code , d)
68

69 de f d i c t i o n a r y d i s t (words in sphe re) :
70 d i s t a n c e s i n s ph e r e={key : l en (va lue) f o r key , va lue in words in sphe re . i tems () }
71 r e turn d i s t a n c e s i n s ph e r e
72

73 d i s t an c e s=d i c t i o n a r y d i s t (words in sphe re) #d i c t i ona ry ; woorden : aanta l d−1 buren
74

75 #ALG
76

77 newcode=[]
78 de f i t e r a t i o n 2 (d i s tance s , words in sphere , newcode) :
79 minl s t = []
80 minimum = min(d i s tance s , key=d i s t an c e s . get)
81 f o r e l t in d i s t an c e s :
82 i f d i s t an c e s [e l t]==d i s t an c e s [minimum] :
83 minl s t . append (e l t)
84 minimum=min l s t [i n t (l en (min l s t) /2)]
85 newcode . append (minimum)
86 de l d i s t an c e s [minimum]
87 f o r va lue in words in sphe re [minimum] :
88 de l d i s t an c e s [va lue]
89 f o r va l in words in sphe re [va lue] :
90 i f va l in d i s t an c e s :
91 words in sphe re [va l] . remove (va lue)
92 d i s t an c e s [va l]−=1
93 de l words in sphe re [va lue]
94 de l words in sphe re [minimum]
95 r e turn newcode
96

97 de f a lg2 (d i s tance s , words in sphere , newcode) :
98 whi le words in sphe re :
99 i t e r a t i o n 2 (d i s tance s , words in sphere , newcode)

100 r e turn l en (newcode)
101

102 a lg2=alg2 (d i s tance s , words in sphere , newcode)
103 pr in t (”\nLowerbound o f s i z e with the a lgor i thm and d i s t anc e ” , d , ’ i s ’ , a lg2)

A.3 Algorithm 5

1 import i t e r t o o l s as i t
2

3 l ength = in t (input (’ wordlength=’))
4 symbols = ’ 0123 ’
5 weight = in t (l ength /2)
6 runlength = 1
7

8 de f l i s t w o r d s (length , symbols) :
9 r e turn [’ ’ . j o i n (x) f o r x in i t . product (symbols , r epeat=length)]

10

11

12 a l lwords = l i s t w o r d s (length , symbols)
13

14 weighted words = []
15 f o r word in a l lwords :
16 w = word . count (’ 2 ’) + word . count (’ 3 ’)
17 i f w == weight :
18 weighted words . append (word)
19

20 runlength words = []
21

22 f o r word in weighted words :
23 r epea t counte r = 1
24 i l l e g a l w o r d = False
25 f o r i in range (1 , l ength) :
26 i f word [i] == word [i − 1] :
27 r epea t counte r += 1

39

28 e l s e :
29 r epea t counte r = 1
30

31 i f r epea t count e r > runlength :
32 i l l e g a l w o r d = True
33 break
34

35 i f not i l l e g a l w o r d :
36 runlength words . append (word)
37

38 l ength words = []
39

40 f o r word in runlength words :
41 i f l en (word) == length :
42 l ength words . append (word)
43

44

45 f i na lwo rd s=length words
46

47 pr in t (’ l ength f i n a l words i s ’ , l en (f i na lwo rd s))
48

49 de f g e t d i s t an c e (word1 , word2) :
50 #determine the d i s t anc e between two words
51 r e turn l en ([i f o r i in range (l en (word1)) i f
52 i n t (word1 [i])− i n t (word2 [i]) != 0])
53

54

55 de f g e t wo rd s i n sphe r e (code , codeword , d) :
56 #get a l l the (d−1)−neighbours o f a codeword
57 r e turn [w f o r w in code i f 0<g e t d i s t an c e (codeword ,w)<d]
58

59 d=in t (input (” d i s t ance=”))
60 code=f ina lwo rd s
61

62 de f dictionaryNBH (code , d) :
63 words in sphere={codeword : g e t wo rd s i n sphe r e (code , codeword , d)
64 f o r codeword in code}
65 r e turn words in sphe re
66

67 words in sphe re=dictionaryNBH (code , d) #d i c t i ona ry ; woorden : d−1 buren
68

69 de f d i c t i o n a r y d i s t (words in sphe re) :
70 d i s t a n c e s i n s ph e r e={key : l en (va lue) f o r key , va lue in words in sphe re . i tems () }
71 r e turn d i s t a n c e s i n s ph e r e
72

73 d i s t an c e s=d i c t i o n a r y d i s t (words in sphe re) #d i c t i ona ry ; woorden : aanta l d−1 buren
74

75 ##pr in t (” d i s t an c e s = ” , d i s t an c e s)
76

77 #ALG
78 newcode=[]
79 de f i t e r a t i o n 2 (d i s tance s , words in sphere , newcode) :
80 minl s t = []
81 minimum = min(d i s tance s , key=d i s t an c e s . get)
82 f o r e l t in d i s t an c e s :
83 i f d i s t an c e s [e l t]==d i s t an c e s [minimum] :
84 minl s t . append (e l t)
85 Nbs=[]
86 f o r w in min l s t :
87 d l s t =[]
88 f o r w2 in words in sphe re [w] :
89 d l s t . append (d i s t an c e s [w2])
90 Nbs . append (d l s t)
91 num=max(sum(x) f o r x in Nbs)
92 f o r l s t in Nbs :
93 i f sum(l s t)==num:
94 index=Nbs . index (l s t)
95 minimum = min l s t [index]
96 newcode . append (minimum)

40

97 de l d i s t an c e s [minimum]
98 f o r va lue in words in sphe re [minimum] :
99 de l d i s t an c e s [va lue]

100 f o r va l in words in sphe re [va lue] :
101 i f va l in d i s t an c e s :
102 words in sphe re [va l] . remove (va lue)
103 d i s t an c e s [va l]−=1
104 de l words in sphe re [va lue]
105 de l words in sphe re [minimum]
106 r e turn newcode
107

108

109 de f a lg2 (d i s tance s , words in sphere , newcode) :
110 whi le words in sphe re :
111 i t e r a t i o n 2 (d i s tance s , words in sphere , newcode)
112 r e turn l en (newcode)
113

114 a lg2=alg2 (d i s tance s , words in sphere , newcode)
115 pr in t (”\nLowerbound o f s i z e with the a lgor i thm and d i s t anc e ” , d , ’ i s ’ , a lg2)

A.4 Algorithm 6

1 import i t e r t o o l s as i t
2

3 l ength = in t (input (’ wordlength=’))
4 symbols = ’ 0123 ’
5 weight = in t (l ength /2)
6 runlength = 1
7

8 de f l i s t w o r d s (length , symbols) :
9 r e turn [’ ’ . j o i n (x) f o r x in i t . product (symbols , r epeat=length)]

10

11

12 a l lwords = l i s t w o r d s (length , symbols)
13

14 weighted words = []
15 f o r word in a l lwords :
16 w = word . count (’ 2 ’) + word . count (’ 3 ’)
17 i f w == weight :
18 weighted words . append (word)
19

20 runlength words = []
21

22 f o r word in weighted words :
23 r epea t counte r = 1
24 i l l e g a l w o r d = False
25 f o r i in range (1 , l ength) :
26 i f word [i] == word [i − 1] :
27 r epea t counte r += 1
28 e l s e :
29 r epea t counte r = 1
30

31 i f r epea t count e r > runlength :
32 i l l e g a l w o r d = True
33 break
34

35 i f not i l l e g a l w o r d :
36 runlength words . append (word)
37

38 l ength words = []
39

40 f o r word in runlength words :
41 i f l en (word) == length :
42 l ength words . append (word)
43

44

45 f i na lwo rd s=length words
46

47 pr in t (’ l ength f i n a l words i s ’ , l en (f i na lwo rd s))

41

48

49 de f g e t d i s t an c e (word1 , word2) :
50 #determine the d i s t anc e between two words
51 r e turn l en ([i f o r i in range (l en (word1)) i f
52 i n t (word1 [i])− i n t (word2 [i]) != 0])
53

54

55 de f g e t wo rd s i n sphe r e (code , codeword , d) :
56 #get a l l the (d−1)−neighbours o f a codeword
57 r e turn [w f o r w in code i f 0<g e t d i s t an c e (codeword ,w)<d]
58

59 d=in t (input (” d i s t ance=”))
60 code=f ina lwo rd s
61

62 de f dictionaryNBH (code , d) :
63 words in sphere={codeword : g e t wo rd s i n sphe r e (code , codeword , d)
64 f o r codeword in code}
65 r e turn words in sphe re
66

67 words in sphe re=dictionaryNBH (code , d)
68

69 de f d i c t i o n a r y d i s t (words in sphe re) :
70 d i s t a n c e s i n s ph e r e={key : l en (va lue) f o r key , va lue in words in sphe re . i tems () }
71 r e turn d i s t a n c e s i n s ph e r e
72

73 d i s t an c e s=d i c t i o n a r y d i s t (words in sphe re) #d i c t i ona ry ; woorden : aanta l d−1 buren
74

75 #ALG
76 newcode=[]
77 de f i t e r a t i o n 2 (d i s tance s , words in sphere , newcode) :
78 minl s t = []
79 minimum = min(d i s tance s , key=d i s t an c e s . get)
80 f o r e l t in d i s t an c e s :
81 i f d i s t an c e s [e l t]==d i s t an c e s [minimum] :
82 minl s t . append (e l t)
83 i f newcode == [] :
84 minimum = min l s t [6] #the index a l t e r s f o r d i f f e r e n t i nd i v i dua l ca s e s
85 e l s e :
86 d l s t =[]
87 f o r opt ion in min l s t :
88 d = ge t d i s t an c e (newcode [−1] , opt ion)
89 d l s t . append (d)
90 maxd = max(d l s t)
91 index=d l s t . index (maxd)
92 minimum=min l s t [index]
93 newcode . append (minimum)
94 de l d i s t an c e s [minimum]
95 f o r va lue in words in sphe re [minimum] :
96 de l d i s t an c e s [va lue]
97 f o r va l in words in sphe re [va lue] :
98 i f va l in d i s t an c e s :
99 words in sphe re [va l] . remove (va lue)

100 d i s t an c e s [va l]−=1
101 de l words in sphe re [va lue]
102 de l words in sphe re [minimum]
103 r e turn newcode
104

105 de f a lg2 (d i s tance s , words in sphere , newcode) :
106 whi le words in sphe re :
107 i t e r a t i o n 2 (d i s tance s , words in sphere , newcode)
108 r e turn l en (newcode)
109

110 a lg2=alg2 (d i s tance s , words in sphere , newcode)
111 pr in t (”\nLowerbound o f s i z e with a lgor i thm and d i s t ance ” , d , ’ i s ’ , a lg2)

42

	Introduction
	Motivation
	Thesis statement
	Organisation of the Thesis

	Prerequisites
	What is DNA and how do we read and write it?
	Basic concepts of Coding
	A DNA-d code

	The impact of constraints
	GC-weight w
	Maximum runlength r
	Minimum Hamming distance d
	Error detection and pitfalls
	Error correction and pitfalls

	The maximum size of a DNA-3 code
	The maximum sizes of DNA-n codes
	Algorithms generating DNA-d codes and improving existing DNA-d code sizes
	Reference algorithms
	Reference Algorithm 1
	Reference Algorithm 2
	Reference Algorithm 3

	Non beneficial approaches
	Clustering Neighbourhoods
	A special case

	The choice from Smin
	Algorithm 4 on lexicographical potential
	Algorithm 5 on Neighbourhoods of Neighbourhoods
	Looking back Algorithm 6

	Results

	Conclusions and Recommendations
	Sizes of the largest DNA-d codes generated by the Algorithms
	Continuation in analytical research
	Suggested improvements of the algorithms
	Profound choices in algorithms
	A special case for Algorithm 5

	References
	Python codes
	Reference algorithms
	Algorithm 4
	Algorithm 5
	Algorithm 6

