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Abstract
Change detection with remote sensing data highlights se-
mantic differences in an area between two or more time
intervals. It involves the comparison of aerial photographs
of the same location taken some time apart. This facil-
itates mass scale analysis of urban and rural data over
time, including population trends, city expansion trends
and illegal building detection. State-of-the-art methods
for the task are predominantly deep learning networks,
following an encoder-decoder architecture. These archi-
tectures all share the trait of having a ”fusion” point - a
location in the network where inputs transition from be-
ing processed independently to becoming correlated. Fu-
sions can be classified in three categories: early, mid-
dle and late, depending on how deep within the network
they occur. This study aims to show how changing the
fusion impacts the size, spread and number of changes
detected. It is motivated by how the receptive field of
feature maps in convolutional neural networks expands in
deeper layers, extracting features with different complex-
ities. For this, four fusion architectures on three different
datasets are compared: LEVIR-CD, HiUCD and a new,
fully-controled dataset, CSCD. In terms of test accuracy
and the changes’ size and spread, results are inconclusive.
Which fusion achieves the highest performance varies per
dataset. Possible reasons why include the complexity of
remote sensing data and general differences between ar-
eas, but this is a subject of further study. The only conclu-
sive category is the number of changes detected. On aver-
age, all architectures overestimate the number of changes
in a scene. When the accuracy of architectures is com-
parable, however, early fusion overestimates the number
of objects changed the most, while middle and late fusion
give more realistic estimates. The case study has room for
refinement in problem isolation, more data and extending
the problem towards more architectures, but is a promis-
ing step towards understanding fusion.

1 Introduction
Change detection in remote sensing is the procedure of automati-
cally detecting semantic, meaningful changes from a pair of images
of the same location, captured at different times. On a given in-
put, the goal is to predict which and where each object has changed.
Changes are defined as the emergence, removal or size change of
objects of interest - buildings, roads, green areas, etc. Having a cat-
alogue of such data on a mass scale is of interest, as it facilitates
the analysis of urban population trends [1], automatic updating of
cadastre maps [2], illegal building detection [3], and more.

Deep learning has become a widely-adopted tool for change de-
tection. This comes about by taking advantage of either (or both)
the temporal or spatial information that can be drawn out from the
pair of input images. Spatial information can be extracted through
the use of segmentation networks like FCN and U-Net [4], [5], [6],
while the temporal aspect has been previously tackled by recurrent
neural networks [7], and more recently transformers and their atten-
tion mechanisms [8], [9].

Despite the abundance of ways to tackle change detection, the
majority of deep learning methods share structural similarities. Ar-
chitectures are often a variation of an encoder-decoder, typically in

a Siamese configuration [9]. This goes for both supervised and un-
supervised variants [6], [10]. Unsupervised deep learning methods
often use autoencoders akin to anomaly detection, while supervised
methods with all of the mentioned internal networks have been iden-
tified [8], [9]. A trait shared between all of these encoder-decoder
architectures is the existence of a ”fusion” step [9], [10]. This refers
to the location in a network where the two input images are coupled
together, with there being multiple definitions of and types. There
has been no identified research of how different fusion modules im-
pact change detection results.

This paper is a systematic examination of the strengths and weak-
nesses of different fusion modules, with regards to general situa-
tions in remote sensing, such as object size or type. The key as-
sumption is that the point of entangling inputs together is a crucial
step for how semantic changes between images can be detected. In-
spiration stems from the hierarchical model of the brain, and the
increasing size of the receptive field at different cortex layers, sim-
ilarly to the neuroscience basis of convolutional neural networks
[11], [12]. Changing the location of the fusion module changes the
size of the receptive field at which inputs are entangled. A hypoth-
esis following is that the receptive field’s size impacts the types of
changes detected, particularly with regard to the changed objects’
size and spread. Were there to be a shared trend or systematic dif-
ference identified, the benefit would be a better understanding of
fusion, and in what change detection situation each architecture is
most applicable. Such a conclusion is important, as different fusion
configurations for change detection can all achieve decent perfor-
mance, but some use cases necessitate different strengths. In one
scenario, the changes of interest might be at a large-scale such as in
the case of agricultural fields, while in others they might be small
like houses.

The proposed experiment is to train different architecture config-
urations on different datasets, and vary the placement of the fusion.
The locations tested are (1) - early fusion, prior to being input in
the network, (2) - middle fusion, combining inputs within the net-
work structure and (3) - late fusion, entangling the inputs as a post-
processing step. The remote sensing datasets used are LEVIR-CD
[8] due to its size and prominence for change detection and HiUCD
[13] for its categorically labeled data. Additionally, a fully con-
trolled synthetic dataset named CSCD has been generated to illus-
trate change, featuring varying object sizes and spreads.

The rest of the paper is structured as follows. Section 2 gives the
prerequisite knowledge for the rest of the study. Section 3 discusses
the experiment setup and the data used for it. Section 4 presents
the experiment results and analyzes them. Section 5 discusses the
scientific and ethical integrity of the study. Section 6 summarizes
the findings and comments on how the study could be continued
and improved upon.

2 Background
This section establishes the prerequisite knowledge required for un-
derstanding the experiment’s setup and consequently the obtained
results.

2.1 Encoder-Decoder Networks
Encoder-decoder networks (Autoencoders) are an artificial neural
network architecture that learns a parameterized encoding function
Eθ : X → Z , compressing the input X , to a latent feature represen-
tation Z and a parameterized decoding function Dθ′ : Z → Y that
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tries to reconstruct the original input. Its primary use cases are di-
mensionality reduction, noise removal, and anomaly detection [14],
but it can also be used to transform inputs to any domain output.
Backpropagation spans both the encoder and decoder. The feedfor-
ward process of the architecture is shown in Figure 1.

ZEθ(X ) Dθ′(Z) YX

Figure 1: A sample encoder-decoder structure. An input X gets fed into
the encoder, compressed to latent space representation Z , before being re-
constructed into Y from the decoder.

2.2 Semantic Segmentation and Fully Convolutional
Networks

Image segmentation is the task of grouping all different objects
in an image together. It consists of creating a function f :
XW×H×D → YW×H that takes an input image X of width W ,
height H and D channels. The output image Y contains pixel-wise
labels for k classes, and is once again with width and height W ,
H. Image segmentation in the context of deep learning makes the
neural network approximating f .

FCN [4] and U-Net [5] are foundational semantic segmentation
networks. FCN takes advantage of convolutional layers’ feature ex-
traction capabilities and the input size invariance they have. The
former allows it to differentiate objects’ features inside of the im-
age and accordingly classify them. The network is applicable on
any size input X , due to there being no dense layers inside it, and
the convolutional operation being size invariant. Consequently, the
architecture is referred to as a ”fully convolutional network”. U-
Net is a successor to FCN, extending it with skip connections and
a more robust upsampling, creating a symmetric, ”U-shaped”, layer
structure that requires less training and performs better.

Both FCN and U-Net are an example of an encoder-decoder ar-
chitecture due to their compression and reconstruction of the input.

2.3 Siamese Networks
Siamese networks are a neural network architecture used for mea-
suring input similarity. Introduced at first for signature fraud de-
tection [15], they compare two inputs, X , X̂ to get some output Y ,
which could be a decision or have its own semantic meaning. A
Siamese network consists of two identical multilayer perceptrons
with their own function fθ, typically with shared weights θ, and
a differentiation module Diff(fθ(X ), fθ(X̂ )) [16]. This differen-
tiation module can be as simple as a cosine distance function, or
its own classifier. If it is a classifier, the differention module is in-
cluded in the backpropagation of the network. The forward process
is illustrated in Figure 2.

2.4 Morphology
Mathematical morphology is the study of geometrically altering
spatial structures [17]. It is additionally a powerful image analy-
sis and processing technique. Uses include noise removal, object
extraction/grouping and blob removal.

Diff(fθ(X ), fθ(X̂ ))

fθ(X )

fθ(X̂ )

Y

X

X̂

Figure 2: Diagram of an arbitrary Siamese network. The two input net-
works are the blue boxes, and inside of them is a representation of a multi-
layer perceptron. Both X and X̂ get fed into their networks, which subse-
quently feed into the differentiation module to output Y .

Morphological operations assume a binary image as a matrix
A ∈ {0, 1}W×H for some width and height W,H, and an exist-
ing structuring element (kernel) B with an origin o . There are four
main morphological operations listed below, and how each opera-
tion works visually is provided in Figure 3.:

• Erosion: A destructive morphological operation E(A,B).
Removes all pixels where the white pixels do not fully inter-
sect the structuring element. See Equation 1.

• Dilation: An expanding morphological operation D(A,B).
Adds white pixels at all locations the origin of the structuring
element intersects the white pixels in the image. See Equa-
tion 2.

• Opening: An opening consists of a number of erosions
E(A,B) followed by the same number of dilations D(A,B).
Intuitively, it is used for creating small openings in the input
image.

• Closing: A closing consists of a number of dilations D(A,B)
followed by the same number of erosions E(A,B). Intuitively,
it is used for closing small gap artifacts in the input image.

E(A,B) = AΘB = {o | (B̂o) ⊆ A} (1)

D(A,B) = A⊕B = {o | (B̂o) ∩A ̸= ∅} (2)

where
A = Input image of some width W and height H
B = Structuring element
B̂ = reflected B - {w|w = −b,∀b ∈ B}
Bo = translation of B by o - {c|c = b+ o∀b ∈ B}
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(a) Erosion (b) Dilation (c) Opening (d) Closing

Figure 3: An overview of the primary morphological operations. For all
operations, the base image A is on the left, and the output of the operation
is on the right. The structuring element B is a 5 × 5 rectangle. Examples
sourced from [18].

These morphological techniques are used for the automatic cre-
ation of the images in the CSCD dataset, proposed and used in this
study.

2.5 Remote Sensing Considerations
This study examines change detection in the context of remote sens-
ing. All data used is either from remote sensing datasets, or is trying
to emulate such. This data differs from standard images, and must
be accordingly treated as such. The following should be taken into
account:

• All images used are in the orthogonal perspective.

• Spatial resolution refers to the amount of area interpolated into
a single pixel from the satellite image. For example, a spatial
resolution of 0.1m means that there are 0.1m2 of information
per pixel.

2.6 Cognitive Inspirations
The experiment motivation is the intuitive importance of the fu-
sion’s location. It has a neuroscience basis, similar to the one of the
original convolutional neural networks. The biological inspirations
of CNNs stem from the hierarchical model of the visual system [11].
It talks about how the visual cortices are structured in a sequence,
such that initial layers are easily excited and extract simple features
(points, lines), while deeper layers inhibit these stimuli and extract
more complex features. This is also referred to as having an increas-
ing receptive field [12]. An illustration of this hierarchical structure
of the cortices from V1 to IT, along with the corresponding change
in the receptive field’s size per layer is given in Figure 4.

Relating it back to the experiment, changing the position of
fusion changes the size of the receptive field at which the two
images stop being compared independently and become entan-
gled/correlated (either through concatenation or skip connections).
This ranges from no independent feature extraction (early fusion) to
an intermediate (middle fusion) and fully independent (late fusion).

Figure 4: An overview of the hierarchical model of the brain (left) and
how the receptive field expands with regards to the features detected (right).
Figure borrowed from [12].

3 Methodology
This section presents an explanation and justification of the method-
ology of the study. It describes the experiment setup, datasets used,
and how they were evaluated.

3.1 Experiment
The experiment consists of varying the location of different fusion
modules along multiple architectures, and evaluating each model on
the same datasets.

Fusion in change detection is something different studies define
inconsistently, seen by definitions in [9] and [10]. To ensure a re-
producible and transparent experiment, this study relies on the defi-
nition proposed in [9]. It consists of three different parts:

• Early Fusion: Any image correlation prior to input in the
change detection network.

• Middle Fusion: Any entanglement of the inputs inside of the
neural network. This could be some concatenation of inputs in-
side of different layers, prior to the final layer, could be residual
connections within the network.

• Late Fusion: Any form of image correlation done as a post-
processing step. This could be a simple pixel difference
from two object detection networks or a secondary classifica-
tion/segmentation network.

How the three different fusion points of fusion look, abstracted
from the encoder-decoder implementations of the networks is
shown in Figure 5.

Fusion

(a) Early Fusion

Fusion

(b) Middle Fusion

Fusion

(c) Late Fusion

Figure 5: Diagram of an arbitrary Siamese network with different fusion
strategies. The blue boxes are encoder-decoder networks. The point of
fusion may or may not be a part of them, depending on implementation.

The experiments have been standardized on three Siamese fully
convolutional architectures proposed and tested in [6]: one using
early fusion and two different takes on middle fusion. All of them
follow a Siamese encoder-decoder structure, using U-Net as its
backbone, and have been standardized to receive two input images
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T1, T2, outputting a two-channel image Y , where its channel dif-
ference is the binary change mask desired. To compare all fusion
types, this study adds a fourth configuration, following the same
backbone, but using a late fusion. All architectures are described as
follows, and illustration is provided in Figure 6.

1. FC-EF: Early Fusion. X1,X2 are fused by concatenating their
channels together along the same axis, prior to any processing
by the network. See Figure 6 a).

2. FC-Siam-Conc: Middle Fusion. There are separate encoder
streams for both X1,X2. The fusion is done by combining the
U-Net skip connections at all layers of the architecture, essen-
tially letting the network do a concatenation over the feature
maps’ channels at any intermediate step. See Figure 6 b).

3. FC-Siam-Diff: Middle Fusion. Similar to FC-Siam-Conc, this
configuration once again concatenates the results from the in-
put streams. However, the value concatenated is the absolute
value of the image difference. See Figure 6 c).

4. FC-LF: Late Fusion. Both images are processed and seg-
mented separately by a U-Net encoder-decoder. These seg-
mentations are then concatenated together and input into FC-
EF. See Figure 6 d).

3.1.1 Training
All models have been trained on the same datasets, using the fol-
lowing setup. The loss function is PyTorch’s negative log likelihood
(NLL) - see Equation 3, that assumes a logarithm softmax final layer
[19]. The optimization method used is Adam along with an expo-
nential learning rate scheduler with γ = 0.95. To calculate the class
weights, it is desirable that the black pixels (no change) have a lower
priority. The reason is that white pixels (change labels) are sparser.
As such, a balancing term FP Modifier is used for both classes,
based on the amount of white and black pixels in the labels of the
dataset.

l(ŷ, y) =

N∑
n=1

1∑N
n=1 wyn

· ln (3)

where ŷ = predicted image
y = ground truth image
ln = −wyn

· ŷn,yn
= pixel prediction, weighed by class

wc := weight of class c ∈ {0, 1}
w0 = 2×FP MODIFIER×(total pixels−1 pixels)

total pixels
,

w1 = 2×1 pixels
total pixels

N = number of samples in the dataset
FP Modifier - false positve modifer - parameter to

adjust black pixel weight
total pixels - sum of pixels in dataset
1 pixels - sum of pixels with value 1 in dataset

For LEVIR-CD and HiUCD, an FP Modifier = 1 was used,
while for CSCD, it was set to 10. Batch sizes for LEVIR-CD and
HiUCD were 4, while for CSCD it was 64, due to GPU memory
constraints.

All of the models configurations are trained until the validation
loss was keeping pace with the training loss to avoid overfitting.
This is achieved through the implementation of an early stopping
criterion. After the 10th epoch, there was a patience criterion of
5 epochs, necessitating an increase in the best validation loss. The
best validation set parameters are restored after training finishes. All

architectures and dataset combinations were trained for a maximum
of 100 epochs.

This setup is almost identical to the one in [6], with the differ-
ences that images are not dynamically cut up into patches to create
extra data.

All training has been performed on Google Colab using the Tesla
T4 GPU configuration.

3.2 Datasets
The study uses three datasets, two of which come from remote sens-
ing areas, the third one is synthetically generated. Two of them,
HiUCD and CSCD, are categorical to test the the hypothesis of the
impact of fusion on the size and spread of changes detected.

3.2.1 LEVIR-CD Dataset
The dataset consists of 637 Very-High-Resolution (VHR) 0.5m im-
ages of 1024 × 1024 pixels each. Their time differences vary be-
tween 5 and 14 years. Introduced in [8], it has since been used as a
benchmark dataset for change detection due to its quality labels and
large size. The changes in it are predominantly urban: apartment
buildings, garages, etc.

3.2.2 HiUCD (Mini) dataset
A VHR (0.1 m) dataset of Tallinn contains including both binary
masks and semantic, categorical maps [13]. There are 745 samples
total. The type of data annotated are of refined urban changes. The
categorical labels are on a pixel-level, and can be seen in Table 1. It
should be mentioned that HiUCD as a dataset is still being refined,
and what was used in this study was a smaller version, provided
upon request.

ID Description
0 Water
1 Grass
2 Building
3 Greenhouse
4 Road
5 Bridge
6 Bare land
7 Woodland
8 Others
9 Unlabeled

Table 1: HiUCD Dataset Classes.
The ID column represents what
pixel value the category is stored
under.

3.2.3 CSCD - Custom Semantic Change Detection
CSCD is meant to facilitate training and change analysis with re-
gards to the hypothesis on the impact of fusion on changes of dif-
ferent sizes and spreads. It has been created specifically for the
study through an automatic, morphological procedure. It has the
advantage of its samples belonging to categories exactly per their
definition.

The dataset used in the fusion architectures’ training consists of
6144 pairs of 128×128 images, combined with a categorical and bi-
nary mask label. The images are two-colored, but with an arbitrary
RGB color for both the foreground and background in every pair.
The aim of this data augmentation is to make the dataset robust, so
the model does not learn a plain XOR function during training.

There are four cases (categories) considered in generation of the
CSCD:
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Figure 6: A showcase of all four of the architectures compared: (a) FC-EF; (b) FC-Siam-Conc; (c) FC-Siam-Diff; (d) FC-LF. Pooling layers are omitted.
Figure adapted from [6].

• LCU: Large Changes - Uniform
• SCU: Small Changes - Uniform
• LCNU: Large Changes - Nonuniform
• SCNU: Small Changes - Nonuniform
Additional metadata is added related to number of buildings per

image, used to draw better conclusions on how each fusion per-
forms. The differences in the spread of the buildings and their sizes
is provided in Figure 7.

(a) (b) (c) (d)

Figure 7: How the change labels in CSCD look. (a) - LCU: Large Changes
- Uniform; (b) - LCNU: Large Changes - Nonuniform; (c) SCU: Small
Changes - Uniform; (d) - SCNU: Small Changes - Nonuniform

3.2.4 CSCD Generation Procedure
The dataset generation is based on morphology, comprising of the
following four steps:

1. Creation of base image - T1. A black image with custom width
and height W ×H is generated. Then N ∈ [0, 12] rectangles
are spread uniformly within T1. The rectangles have a mini-
mum width and height of 1

20 of W and H, and a maximum of
1
2 .

2. Creation of binary changes on base image - T2. Depending
on the category specified, N ′ rectangles are once again spread
around with constraints with regards to size and distribution.

• Large changes are N ′ ∈ [0, 5], while small ones are N ′′ ∈
[5, 25].

• Uniform changes are spread at random image coordinates,
while non-uniform changes have the image divided in a
3× 3 grid and spread randomly within k ∈ [1, 3] of those
grids.

To mimic changes of buildings growing in size and being re-
moved, morphological operations are applied to each image,
varying per category as follows:

• LCU, LCNU: Opening → Closing → Erosion using a
B = 7× 7 ellipse-shaped structuring element.

• SCU, SCNU: Opening with a B = 5 × 5 ellipse-shaped
structuring element

3. Creation of change label Y between T1 and T2. An XOR is
performed between the two images to obtain a binary mask.
Due to the random spread of the rectangles, shapes end up un-
natural. To make the changes more similar to remote sensing
datasets, an opening operation is performed with a B ∈ (5, 5)
ellipse structuring element.

4. Post-Processing. The T1, T2 images get a random RGB color
assigned for foreground and background. The number of
changes within Y is calculated by contour counting for meta-
data. Gaussian blur is applied to T1 and T2.

All of the numbers listed in the procedure are currently arbitrary,
and are meant to bring the data closer to remote sensing images.

3.3 Evaluation

All fusion architectures are evaluated in terms of accuracy. For
LEVIR-CD, HiUCD and CSCD, the change detection predictions
have been evaluated in overall accuracy, while HiUCD and CSCD
have additionally been evaluated categorically. The predictions get
labeled as a True Positive (TP), False Positive (FP), True Nega-
tive (TN) and False Negative (FN), based on their intersection over
union (IoU) with the ground truth labels. For all the mentioned
formulas, see Equation 4. The IoU threshold chosen to classify a
prediction as a TP, FP, TN or FN is a standard 0.5.

On all training data, this allows the measurement of the metrics
precision, recall, F-1, and accuracy.

5



Precision = TP
TP+FP Recall = TP

TP+FN

F1 = 2·Precision·Recall
Precision+Recall Accuracy = TP+TN

TP+TN+FP+FN

IoU = TP
TP+FP+FN

(4)
An additional metric used is the ground truth number of changes

|Y| vs. the number of changes predicted |Ŷ|, as well as their mean
difference µdiff for N samples - see Equation 5.

µdiff =
1

N

N∑
i=1

∣∣∣|Yi| − |Ŷi|
∣∣∣ (5)

The way the predicted number is estimated is via counting the
connected components of the output of OpenCV’s contour algo-
rithm [20], [21]. The procedure was selected due to it being an
automatic way to measure the number of changes in the labels. It
is, however, imperfect and produces outliers, such as in situations
where single pixels were predicted. To maintain an accurate rea-
soning on the number of changes, outliers have been floored to 0
via Median Average Deviation (MAD) from all predictions for the
given fusion architecture.

4 Results and Discussion
This section presents the qualitative and quantitative differences be-
tween the different fusion architectures. All evaluation metrics can
be seen in Figure 8.

Complex datasets like LEVIR-CD show variability in perfor-
mance between fusion architectures. As seen in Table 2, in terms
of accuracy FC-Siam-Conc. (82.03) and FC-LF (81.24) highly out-
perform the early fusion and the other middle fusion architecture.
While FC-EF is comparable (70.31), FC-Siam-Diff’s accuracy is
twice as low (39.06). Analyzing the difference between the number
of predicted changes and the ground truth ones, shown in Figure 8d,
all architectures tend to overestimate the amount in a given image,
also evident in their lower precision metrics. The best performers
are FC-LF with µdiff = 53.6 and FC-Siam-Conc with µdiff = 80.21.
This contradicts how one outperforms the other in accuracy, with
a possible explanation being FC-Siam-Conc segmenting its output
into more connected components than FC-LF for the same ground
truth object - this may still achieve a higher IoU, while being inac-
curate.

Both in the categorical and performance evaluations, HiUCD’s
results are inconclusive due to the complexity of the data. All archi-
tectures struggle with a dominant amount of FPs, as is visible by the
low precision in Table 3. This aligns with results, obtained on the
original HiUCD paper with the early and middle fusions [13], where
they claimed an average IoU of below 40%, where the criterion for
a true positive in this study is 50%. This also impacts the categorical
evaluation in Figure 8h, where all histograms are very comparable
to each other. There are small differences when evaluating smaller
object like buildings or grasslands, but nothing conclusive. Due to
the discrepancy between performance on HiUCD and the remain-
ing different datasets, it can only be concluded, that adjustment to
the general model architecture and optimization is needed, both for
overall and categorical performance.

The results on CSCD show differences in fusion modules for per-
formance, but are inconclusive on a categorical basis. Accuracy-
wise on the test sets in Table 4, FC-EF (98.97) and FC-LF (97.31)
outperform both FC-Siam-Conc (91.79) and FC-Siam-Diff (97.31).
No fusion module showed a predisposition towards any CSCD cat-
egory that did not coincide with their overall performance - see
Figure 8g. A trend was observed when examining the number of
buildings per fusion architecture - see Figure 8f. FC-EF, while
achieving the best IoU classification results, was also the one to
overestimate the total amount of objects the most. The middle ar-
chitectures fusion, while less accurate, did best on estimating the
number of objects. FL-LF achieved a balance between its accu-
racy and estimating the number of objects. These results should be
taken with the simplicity of CSCD into account. Despite the data
augmentations from the Gaussian blurring, re-coloring and the post-
processing morphology, early and late fusion achieved near-perfect
results, suggesting it is still not robust enough. Especially in the
case of FC-LF, the pre-segmentation via U-Net may be making late
fusion particularly suitable to a simple change detection scenario,
denoising the image beforehand.

Results differed per dataset in terms of training stability and train-
ing time. It cannot be said which fusion converges in the least
epochs. For LEVIR-CD, as seen in Figure 8a late fusion converges
the fastest, followed by FC-Siam-Diff and with the remaining archi-
tectures similarly converging around 60 epochs. For HiUCD’s train-
ing - see Figure 8b - all architectures converged early. On CSCD -
Figure 8c, FC-EF and FC-LF converge the fastest, with the latter
having periodic negative spikes in performance. Both middle fu-
sion architectures converged with more epochs and were unstable
as doing so. FC-Siam-Conc was even trained up to the 100th epoch,
suggesting more training is possible for it. As far as training stabil-
ity, LEVIR-CD and CSCD had a smooth training process compared
to HiUCD, backing up the data complexity claims. The actual loss
values achieved are not comparable due to the pixel class imbal-
ances in each dataset, and their different sizes.

Analyzing the results, it can be stated that which fusion performs
best depends on the dataset’s complexity. In terms of general per-
formance, either FC-EF, FC-Siam-Conc and FC-LF could perform
best, as seen by the discrepancies between LEVIR-CD and CSCD.
For change counting purposes, a middle or late fusion method seems
to stick closest to the ground truth data, with the least overestima-
tion. For general recognition, having pixel subtraction as a differ-
entiation metric seems to confuse the network, achieving lower per-
formance, as seen by the less stable and lower performance of FC-
Siam-Diff.

5 Responsible Research
In addition to the practical results obtained, concerns are raised in
relation to reproducibility of the study and its ethical implications.

To ensure authenticity and verifiability, all details about the ex-
periment are public, both in the paper and in an online GitHub
repository1. Replication studies are recommended on different
datasets (due to the specificity nature of satellite images), and with
different training configurations, to ensure both the validity and cor-
rectness of the chosen methods.

Some of the remote sensing data used for categorical evaluation is
not in the public domain (HiUCD), and has to be requested from its

1https://github.com/vdakov/encoder-decoder-change-detection
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Architecture Acc. Prec. Rec. F-1 µdiff

FC-EF 70.31 0.70 0.96 0.81 97.55
FC-Siam-Conc 82.03 0.83 0.96 0.89 80.21
FC-Siam-Diff 39.06 0.36 0.87 0.51 276.5

FC-LF 81.24 0.81 0.99 0.89 53.6

Table 2: Evaluation on LEVIR-CD per architec-
ture.

Architecture Acc. Prec. Rec. F-1 µdiff

FC-EF 4.92 0.04 1 0.09 726
FC-Siam-Conc 7.51 0.07 1 0.13 776.9
FC-Siam-Diff 15.54 0.15 0.96 0.26 1336.6

FC-LF 17.09 0.17 0.85 0.29 975.5

Table 3: Evaluation on HiUCD per architecture.

Architecture Acc. Prec. Rec. F-1 µdiff

FC-EF 98.97 0.98 1 0.99 10.08
FC-Siam-Conc 91.79 0.91 0.99 0.95 3.7
FC-Siam-Diff 67.91 0.76 0.80 0.78 5.34

FC-LF 97.31 0.97 0.99 0.98 6.71

Table 4: Evaluation on CSCD per architecture.

Legend

(a) Training/Validation Loss - LEVIR-CD

(b) Training/Validation Loss - HiUCD

(c) Training/Validation Loss - CSCD

(d) LEVIR: Number of actual vs. predicted changes

(e) HiUCD: number of actual vs. predicted changes

(f) CSCD: number of actual vs. predicted changes

(g) CSCD: Categorical Evaluation. From top left to bottom right - LCU,
LCNU, SCNU, SCU.

(h) HiUCD: Categorical Evaluation. From top left to bottom right - Un-
labeled, Water, Grass, Building, Green house, Road, Bridge, Others,
Bare land, Woodland.

Figure 8: Aggregated results from all three datasets: CSCD, HiUCD, LEVIR-CD. On the top left are tables with results on the test sets after training.
Abbreviations are for accuracy, precision, recall, F-1 and µdiff is the mean absolute difference between the number of buildings predicted and ground truth.
In the middle are the training and validation losses (using the early stopping criterion). Right side showcases each dataset’s predicted number of buildings
vs. the ground truth. The bottom of the figures shows accuracy histograms per category. A legend with consistent labels per plot is on the left.
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corresponding authors. Concerning CSCD, the procedure is trans-
parent and descriptive, and the data used for training is also pub-
lished.

Change detection analyses are usually performed for predicting
urban trends, or making economic decisions. That is why making
wrong conclusions or letting inaccuracies into the studies can cause
financial consequences on economic development of the cities and
communities. It is why this study outlines all known issues with the
results presented, and is conservative in its conclusions.

To the best knowledge of the authors of the study, all work pre-
sented here is as described.

6 Conclusions and Future Work
Changing the fusion configuration for change detection impacts re-
sults from a performance standpoint, but the only category con-
clusively impacted is the number of changes detected. Moreover,
different dataset complexities impact which fusion is best, and can
vary.

The study can be expanded upon with replication studies on dif-
ferent datasets, more architectures and different loss functions.

All architectures tested have the same U-Net backbone. This does
not fully reflect the current state of change detection. Recent meth-
ods are based on transformers, due to the images and tasks’ temporal
nature. It is worth seeing if extending them to different types of fu-
sion keeps the trends identified with U-Net. RNN variants, or even
unsupervised approaches with autoencoders, should also be exam-
ined.

Negative log likelihood is imperfect as a loss function, due to
the class imbalance between black and white pixels. The current
method of introducing a balancing term leads to changes in results
between hyperparameter values and datasets. More modern object
detection losses like focal loss [22] are made to deal with sparser
objects, like the ones in change detection. It was not tested in the
study due to time constraints, and discovery late into experiments.

The categorical evaluation on real remote sensing datasets is lim-
ited. High-quality remote sensing data for change detection is hard
to collect. High-quality and quantity datasets like LEVIR-CD are
few and far between. This is even more the case for categorical
data. HiUCD as a dataset is still being created and was provided
for this study upon request. Its ground truth images are harder to
interpret by the network, due to the challenges of labeling. Out-
lining which object has changed by hand is difficult, and labeling
a site as water, green area or similar is even harder, so it is prone
to errors. Even if there were more categorical data, remote sensing
images come from inherently different locations (e.g. one is more
urban, while the other rural). If areas with similar characteristics
could be identified, and have their ground truth categories standard-
ized, this would give more credit to any future replication studies.
Consequently, transfer learning is an area, where future studies can
expand on to ensure model robustness.

Intersection over union and the parameter chosen for it could be
refined. The reason a high threshold of 0.5 was chosen was to ensure
an acceptable accuracy. However, not all change detection datasets
are large enough to allow such accuracy, as seen in HiUCD. Addi-
tionally, the discrepancy between early fusion’s overestimation and
its high accuracy mean this evaluation metric could be expanded.

The custom dataset, CSCD, is limited in both its generation pro-
cedure and semantics. This procedure must be better formalized,
since the method outlined is partially based on intuition to bring the
data close to other remote sensing datasets. It needs to be specified

what all objects of interests are geometrically, how this may change
over time, and not limit the definition to rectangles and modifying
sizes with morphology. One possible direction is utilizing data from
cadastre maps, bringing the image closer to real remote sensing ob-
jects. Next, the current implementation maps the base images to
random foreground and background colours. While this, in com-
bination with the data augmentation, does prevent the models from
learning a simple XOR function, it also may make them more biased
towards certain colors per dataset generation due to the randomness
of the process. Extensions, such as dynamic brightness adjustments,
a more equalized color distribution, and possibly more noising op-
erations should be applied.

These problems come from problem isolation - a constraint to a
specific deep learning architecture, a dataset, a loss function. To bet-
ter understand how fusion works, a standardized procedure needs to
be created, which is abstracted from the neural network specifics,
and be on an equalized dataset. If one were to solve this, change de-
tection architectures would be better defined moving forward, and
the decision of where to employ what system could be better de-
fended.
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