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Abstract

The escalating complexity of software systems in the digital age heavily relies
on reusable code collections(packages) for their development and operation. Despite
the numerous advantages of pre-existing libraries, managing dependencies can be in-
tricate and time-consuming. This thesis focuses on enhancing package management
tools through a decentralized, crowd-sourced approach to distribute the preprocessing
load more effectively across the software development ecosystem. We propose a novel
platform comprising a back-end server and a Maven plugin, fostering an efficient and
collaborative environment for developers to share computational results. This plat-
form not only alleviates server load but also allows for the storage and reuse of fre-
quently used artifacts, thereby avoiding redundant computations and reducing produc-
tion costs for users. This crowd-sourcing model empowers developers to seamlessly
request and contribute analysis results, saving time and resources while benefiting the
broader community.
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Chapter 1

Introduction

In the age of digitization, software systems have become the backbone of almost every in-
dustry, with the complexity of their structures escalating correspondingly [27]. These sys-
tems rely heavily on packages, which are collections of reusable code, for their development
and operation. Managing dependencies, however, can be complex and time-consuming de-
spite the various advantages of using pre-existing libraries.

In such cases, developers need to use a tool known as Package managers to assist them in
performing installation, upgrade, and removal of packages on the target machines[2]. Pack-
age managers like Maven play a critical role in modern software systems, allowing devel-
opers to incorporate and manage a myriad of packages seamlessly, thus reaping numerous
benefits [8]. Despite the seemingly low start-up costs provided by package managers, the
process of reuse is not free due to the intricacies of dependencies, requiring developers to
vigilantly track dependency updates, especially for multi-layer dependencies [4]. Develop-
ers often have a need to gain deeper insights into the dependencies they use in their projects,
going beyond just importing them. This is where software analysis tools come into play.
These tools provide developers with the ability to extract and analyze various aspects of
their dependencies, allowing them to understand their performance, security vulnerabilities,
and other relevant information.

The Fine-Grained Analysis of Software Ecosystems as Networks (FASTEN)[1] was
proposed in 2018 to make package management tools smarter. By combining vulnerability
information with call graphs, FASTEN introduced a fine-grained, method-level dependency
tracking system. The Fine-Grained Analysis of Software Ecosystems as Networks (FAS-
TEN) was proposed in 2018 to enhance the capabilities of package management tools. Un-
like traditional tools which analyze each dependency locally, FASTEN introduces a novel
approach where the server generates and stores the analytical results. It has a server that
continuously downloads new artifacts from the Maven central repository and analyzes them.
Whenever the developer needs to analyze the project’s vulnerability, the hash value of the
dependency package is sent to the server, which returns the required analysis result.

Despite its efficiency, this solution places a heavy burden on the server due to the high-
performance CPU and large storage space requirements. In particular, it often leads to
unnecessary computations for packages that are not frequently used by developers. If we
want to analyze software that uses different package managers, we would need to cover
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1. INTRODUCTION

multiple ecosystems, further increasing the server’s workload. As a result, due to the high
resource load, there may be delays or increased operating costs. The scalability of using a
central server to analyze all packages is relatively low.

The central motivation for this thesis is to distribute the pre-processing load more effec-
tively across the software development ecosystem. To this end, we propose a decentralized
solution based on the concept of crowd-sourcing. The term ”crowd-sourcing”, coined by
Jeff Howe in 2006, describes a process where tasks are outsourced to a network of people,
referred to as the ’crowd’[21]. This model encourages developers to share their compu-
tational results, which not only alleviates server load but also allows frequently used arti-
facts to be stored and reused, avoiding redundant computations [22]. In the crowd-sourcing
paradigm, tasks are distributed to networked people to complete such that a company’s
production cost can be greatly reduced.[35]

The focus of this thesis is to design an efficient and collaborative platform that enables
developers to leverage crowd-sourced analysis results for their software packages. This
platform consists of a back-end server and a Maven plugin. The back-end server serves as
the central repository, managing the collection and distribution of analysis tasks, as well as
storing the contributed results. The Maven plugin integrates with developers’ local develop-
ment environments, enabling them to request and contribute analysis results seamlessly. By
leveraging the collective efforts of the community, developers can save time and resources
by accessing pre-computed results and contributing their analysis results to benefit others.

1.1 Research Questions

Based on the analysis of the above information and our requirements, we propose to ad-
dress the following research questions in this paper to build a crowd-sourcing platform for
collecting and selecting pre-computation tasks:

RQ1: How can the server aggregate and validate submissions of arbitrary prepro-
cessing tasks?

In this thesis, the crowd-sourcing platform serves as the cornerstone. Therefore, the
first step is to establish a basic framework consisting of a back-end server and a client-side
Maven plugin to facilitate data exchange. Since the server does not generate the data itself
but rather distributes the data generated by the clients to other clients, the primary chal-
lenge is to ensure the correctness of the data. To address this challenge, the thesis proposes
the implementation of three different consensus mechanisms and two consensus integration
methods. These mechanisms and methods aim to aggregate and validate the submissions
of arbitrary preprocessing tasks, ensuring the accuracy and reliability of the collected re-
sults. By employing a combination of consensus mechanisms and integration methods, the
platform can effectively handle diverse preprocessing tasks and facilitate collaborative data
analysis.

RQ2: How many projects are needed to saturate the crowd-sourcing system?
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1.2. Contribution

As a crowd-sourcing system, the availability of content within the system increases with
the number of user interactions. However, due to variations in dependencies used across dif-
ferent projects and the constant updates to artifact versions, projects that have already been
analyzed may not necessarily provide assistance to future users, who may still need to com-
pute certain tasks locally. We would like to determine the percentage of task answers that
the next analyzed project can obtain when a sufficient number of projects have been ana-
lyzed.

RQ3: What is the overhead for a typical Maven run when the plugin is integrated
into the Maven build?

One of the motivations behind introducing this crowd-sourcing system was to reduce
the system overhead of software analysis. Therefore, it is crucial to evaluate the impact of
integrating the plugin into the Maven build process. The thesis aims to assess the overhead
experienced by users during a typical Maven run and determine the performance improve-
ments achieved under different hit rates.

RQ4: What is the trade-off of computation load for the server?
One of the objectives of our thesis is to alleviate the computation load on the server

and reduce the performance requirements placed on it. This is achieved by designating the
server as the central hub for data collection rather than result generation. However, the
comparison of different user-submitted results introduces additional overhead.

To evaluate the effectiveness of our system and determine a reasonable voting threshold,
we compare the time required to reach a consensus from different submitted results with the
time needed for the server to generate the results itself. This analysis allows us to assess
the trade-off between the computation load on the server and the efficiency of reaching a
consensus.

1.2 Contribution

This research has the following main contributions:

1. Specified the conceptual requirements for the crowd-sourcing Software Collection
and Analysis platform.

2. Formalized the communication protocols that would be necessary for the crowd-
sourcing Software Collection and Analysis platform.

3. Provision of multiple consensus strategies: Three consensus mechanisms and two
consensus integration methods specifically designed for analyzing and evaluating the
collected software package analysis results are introduced in the platform. Users can
select one consensus mechanism and one consensus integration method to form a
strategy. We conducted extensive evaluations across various strategies and provided
recommendations based on different usage scenarios.
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1. INTRODUCTION

4. Construction of a crowd-sourced platform for the collection of various analysis results
of software packages: A platform that enables users to contribute their analysis results
for software packages through a maven plugin is established. Users can also retrieve
existing pre-computed results from the platform.
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Chapter 2

Related Work

In this chapter, we delve into the technologies associated with the crowd-sourcing plat-
form. We begin by introducing the primary methods employed in achieving consensus
within the crowd-sourcing system. Subsequently, we delve into how crowd-sourcing plat-
forms incentivize individuals to complete tasks. Furthermore, we outline the applications
of crowd-sourcing systems as an effective means of data collection across various domains.
Lastly, we elucidate the concept of dependency identifier used in package managers, which
we leverage in this project to design a hierarchical file system.

2.1 Consensus in Crowd-sourcing

Geiger categorizes crowd-sourcing systems into two types: individual and collective ap-
proaches, based on whether they benefit from each contribution in isolation[13]. In indi-
vidual approaches, each worker’s contribution is treated independently, and the correctness
of the answer can be assessed in isolation. Criteria or verification rules for evaluating the
answer exist in advance. An example of this approach is eBird, a platform where citizens
contribute their observations for scientific research and bird population conservation[32].
In eBird, the reliability of submitted results is determined through automatic evaluation
using species count limits for specific dates and locations. On the other hand, collective
approaches require collecting a certain number of results before making a selection. The
focus is on aggregating multiple contributions to arrive at a consensus or a final decision.

Inferring the correct answer from the answers submitted by multiple workers is a critical
challenge in crowd-sourcing. As with other areas of disagreement, the most straightforward
solution is Majority Voting. According to a study by Neto et al[28], Majority Voting is
the most commonly used method for selecting the correct answer. Out of the 57 surveyed
projects, 41 of them opted for Majority Voting as the approach for determining the correct
answer.

However, Majority Voting also has a significant drawback when workers have different
levels of qualities as it regards all workers as equal[36]. Castano et al. proposed a framework
called LiquidCrowd, which leverages consensus and trustworthiness techniques to manage
the execution of collective tasks[5]. Unlike majority voting, LiquidCrowd introduces a
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differentiated approach toward the results submitted by workers. Recognizing that workers
vary in their expertise and reliability, LiquidCrowd assigns a Trustworthiness value to each
worker. This value is dynamically updated based on whether their submitted answers are
selected as ground truth. By considering the Trustworthiness values, LiquidCrowd is able to
identify and prioritize reliable and expert workers, thereby mitigating the potential negative
impact of novice or untrustworthy workers.

In our system, the task results are automatically generated by the client-side code, elim-
inating the need for users to make judgments based on their expertise. Therefore, we have
chosen the commonly used method in crowdsourcing systems, Majority Voting, as one of
the consensus mechanisms. However, considering the potential for computational errors (al-
though unlikely) and the presence of malicious users, we also intend to provide a method for
identifying reliable users. Inspired by the principles of LiquidCrowd, we have incorporated
a weight-based consensus mechanism in our crowdsourcing system.

However, this is not the sole method to estimate worker performance and identify un-
qualified workers. Gold standards are commonly employed in crowdsourcing systems to
identify malicious workers[29]. They consist of questions with known answers that are
provided to workers alongside regular questions[12]. If a worker fails to provide the cor-
rect answer for a gold standard question, they are flagged as untrustworthy. Ordinarily, gold
standards are subtly incorporated into tasks alongside regular questions, making it challeng-
ing for workers to foresee or identify these gold questions[18]. In addition, having a gold
standard set with only a small number of questions is not beneficial. On the other hand, set-
ting a large number of gold-standard questions would increase the server load and deviate
from the purpose of our crowdsourcing system design. Therefore, we have decided not to
adopt gold standards in our system. Instead, we have been inspired by this approach and
have designed a consensus integration method called Challenge and Response. By distribut-
ing unpredictable tasks to clients, we aim to enhance the reliability of the system without
relying solely on gold standards.

2.2 Incentives

The incentives behind crowd participation play a pivotal role in the realm of crowdsourcing.
Given the broad spectrum of applications ranging from rudimentary to intricate tasks, the
motivations fueling the crowd vary extensively, contingent upon the specific characteristics
of the task[19].

Designing appropriate reward strategies can significantly influence the productivity of
the contributors and results produced by crowdsourcing systems[3]. According to Hos-
seini et al., incentives in crowd-sourcing can be categorized into two types: intrinsic and
extrinsic[20]. Intrinsic incentives are inherent within the crowd, while extrinsic incentives
are provided by the crowdsourcer in the form of financial rewards or other external motiva-
tions.

Not all individuals are motivated solely by monetary rewards when completing tasks.
Ryan and Deci [30] define intrinsic incentives as ”doing an activity for its inherent satis-
factions rather than for some separable consequence.” Sometimes people engage in tasks
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for entertainment purposes. von Ahn and Dabbish introduced the concept of Games-With-
a-Purpose (GWAP)[34], where games are developed to collect human intelligence through
tasks that entertain the players. This allows individuals to derive pleasure while the crowd-
sourcing platform obtains the desired results. For example, Foldit[6] is an online game from
the University of Washington that allows players to solve puzzles related to protein folding.
By leveraging human problem-solving and pattern recognition skills, it has made significant
contributions to modeling proteins that have long puzzled the scientific community. People
also engage in crowd-sourcing tasks for the purpose of learning and acquiring knowledge.
For instance, through platforms like Duolingo, individuals learn new languages while also
contributing to the translation of web content[3].

In the case of complex tasks, extrinsic incentives, particularly financial incentives, tend
to be more dominant than intrinsic motivations[19]. Silberman et al. [31] emphasize the
significance of financial incentives over other motivations, noting that the majority of par-
ticipants do not engage in tasks solely for entertainment or leisure purposes. This is further
supported by the findings of Neto et al. [28], who observed the predominance of monetary
incentives in the surveyed crowdsourcing platforms. Clearly, monetary rewards strongly
appeal to the crowd, motivating them to actively participate and complete tasks. Harris [17]
observes that appropriate financial incentives play a crucial role in motivating participants to
provide more accurate judgments in tasks such as resume review. However, it is important
to note that financial incentives can also have unintended consequences. Kim et al. [25]
highlight that from a worker’s perspective, it may not be economically sensible to spend
more time selecting a superior option when the potential gain is not significant. Workers
may prioritize completing tasks quickly to maximize their earnings, especially when the
potential reward is low. This behavior can lead to the presence of malicious users or a lack
of attention to task quality. To address this, requesters need to design systematic approaches
to encourage workers to perform tasks properly and discourage suboptimal behaviors.

Our crowdsourcing platform utilizes external incentives but does not provide monetary
rewards. In our platform, completing precomputation tasks and accessing precomputed
results from the server are considered necessary and sufficient conditions. Users gain the
privilege of using the platform by completing a set of dependency analysis tasks. As more
projects are analyzed, users gain access to a greater number of precomputed answers from
the system, reducing the amount of work they need to perform themselves. This enhances
the user experience and creates a positive feedback loop, as users benefit from the increasing
availability of answers.

2.3 Crowd-Sourcing Systems in Different Fields

Crowd-sourcing has found applications in a multitude of fields, from knowledge gathering
and software development to health sciences and astronomy.

In the realm of knowledge gathering, Wikipedia, one of the largest online encyclope-
dias, exemplifies the application of crowd-sourcing, harnessing the collective intelligence of
countless individuals across the globe [14]. Similarly, OpenStreetMap has utilized crowd-
sourcing to great effect in the field of mapping and cartography, creating a free and editable
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map of the world [15].
The field of health sciences has also seen significant benefits from crowd-sourcing.

Crowd-sourcing tasks in medical image analysis are diverse, ranging from classification,
where the crowd assigns a label to an entire image or a part of the image, to localization or
segmentation, where the crowd delineates the boundary of an entire healthy structure or an
abnormality such as a lesion. Some studies also involve the crowd in less standard tasks,
such as determining correspondence between pairs of images or deciding which image is
more similar to a reference image[37]. Irshad [23] concludes that crowdsourced image
annotation is a highly-scalable and effective method for obtaining nuclear annotations for
large-scale projects in computational pathology.

In the realm of astronomy, the Galaxy Zoo project has enabled the classification of
galaxies by harnessing the collective efforts of volunteers[26]. This crowd-sourcing project
has led to several significant discoveries and has made valuable contributions to our under-
standing of the universe.

In the field of software development and analysis, crowd-sourcing has been leveraged
to improve the efficiency and effectiveness of various tasks. Bug reporting, fixing, and
testing are areas where crowd-sourcing has shown significant promise. Platforms like
Bugcrowd and HackerOne have utilized crowd-sourcing for vulnerability identification,
providing bounties for reported issues [11]. Similarly, Topcoder and GitHub have harnessed
crowd-sourcing for software development and collaborative coding, respectively [7].

These examples demonstrate the power and potential of crowd-sourcing across various
domains. They highlight the ability of crowd-sourcing to harness collective intelligence and
scale up efforts, enabling large volumes of tasks to be accomplished efficiently.

2.4 Dependency Identifier

In the realm of open-source software (OSS), the need for a coherent system to mark distinct
versions of a package is paramount due to the constant updates by maintainers.

Semantic Versioning is a method that assigns meaningful version numbers to distinct
software releases[16]. It has gained popularity as a strategic approach for managing pack-
age evolution, employing a structured format, namely ”major.minor.micro”, to denote dif-
ferent versions of a package[9]. Package users can determine certain compatibility guaran-
tees through the structure of version numbers in packages. Semantic Versioning stipulates
an increment in the major version for incompatible API changes, the minor version for
the addition of backward-compatible functionalities, and the micro version for backward-
compatible bug fixes[33].

Building on the concept of Semantic Versioning, package managers adopt this version-
ing scheme as a part of their package identifiers. For some package managers, like npm, a
package is identified by its name and version. For instance, lodash@4.17.21 refers to the lo-
dash library’s version 4.17.21. While in Maven, packages are uniquely identified by a triplet
consisting of ”groupId:artifactId:version”[24]. In this work, as a crowd-sourcing platform
developed for Maven users, we use the same version number structure to label a package’s
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unique release. Additionally, when storing the computation results of various tasks in the
file system, we have designed a hierarchical structure based on this naming convention.
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Chapter 3

Design and Implementation

To build a crowd-sourcing platform for software package analysis, it is essential to estab-
lish a clear understanding of the platform’s workflow. Figure 3.1 illustrates the two main
components of the platform: the Maven plugin running on the client side and the back-end
server facilitating information exchange. When a client wishes to obtain the analysis results
for a particular package, they send a request to the platform, and the server responds by
providing the results. However, if the results are not yet available, the client is required
to perform the package analysis themselves and then upload the results to the server. This
completes a basic pre-computation task request. Additionally, we plan to implement the
functionality for the server to allocate pre-computation tasks, initiating requests to clients
who will then perform the calculations and upload the results.

Figure 3.1: Work Flow of the Crowd-sourcing Software Analysis Platform

To realize these functionalities, it is crucial to design a system that effectively coordi-
nates the interactions and decisions made by the server among the various data sources.
In this chapter, we will provide a detailed explanation of the system design, including the
domain model (3.1), the design model (3.2), consensus integration (3.3), and consensus
mechanisms (3.4).

3.1 Domain Model

As shown in Figure 3.2, our system domain model is structured around four key entities:
the Client, Server, Task, and Consensus Strategy.
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Figure 3.2: Domain Model

Client The individual or team using our platform to analyze their software packages.
Clients request analysis results for their packages and contribute their results to the platform
via the Maven Plugin.

Server The core of our platform, which serves as the central hub for data collection
and distribution in our platform. It manages the task types provided by the platform, user
information, and the correspondence between users and their contributed analysis results.
The server handles the aggregation and selection of results using various consensus mecha-
nisms. When a trigger condition is met, it employs the consensus mechanism to choose the
correct result from the pool of contributed results. This selected result is then stored and can
be directly returned when the server receives a subsequent request for the same task from a
client.

Task Task is used to label different types of pre-computation workloads, such as ”size”
for debugging purposes and ”call graph” for experimental analysis. The Task together with
the specific package name forms the basis of a pre-computation workload. It serves as the
main body of the client’s request to the server and is an important identifier for sharing
analysis results. The server also categorizes and stores submitted results based on the Task
name, enabling efficient management and retrieval of different types of analysis results.

Strategy The Strategy describes how the server’s decision-making system operates. It
consists of two consensus integration methods and three consensus mechanisms. The for-
mer influences the communication protocol between the plugin and the server, determining
whether the analysis results submitted by clients are generated by the clients themselves
as pre-computation workloads or allocated by the server as pre-computation workloads.
The latter determines how the server selects the most appropriate result among the various
results contributed by different clients for the same pre-computation workload.
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3.2. Design Model

Figure 3.3: Design Model

3.2 Design Model

A design model serves as a graphical or conceptual representation of a system’s structure
and behavior, guiding the development process. It helps developers and stakeholders visu-
alize the architecture, functionality, and interaction of system components, ensuring a clear
understanding and facilitating collaboration throughout the project lifecycle. As shown in
Figure 3.3, our system can be divided into two main components: the Client-side Plugin
and the Server-side. Here’s an introduction to their specific components and their intercon-
nections:

Client In our design model, the client-side program starts with the MainMojo, which is
a crucial component of the custom Maven plugin. Each Mojo represents an execution goal
in Maven and serves as the entry point of our program. When the plugin starts running,
the first task is to analyze the project’s configuration file, the pom.xml, to retrieve the list
of dependencies. Then, combining each dependency with the corresponding task name, a
RequestTask is formed. The RequestResponseProtocol module is used to facilitate commu-
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nication with the server by exchanging information.
Once a response is received from the server, it is parsed and if it contains valid results,

they are stored in the local file system. If the response is empty, it means that the requested
results are not available, and the client needs to perform the specified analysis locally. The
obtained results are then shared with the server using the RequestResponseProtocol module.
This completes one cycle of the task request for a particular dependency. The process is
repeated for all the dependencies that require analysis, following this workflow.

Server Within the server, there are two modules responsible for communication with the
plugin. The ElectionResult module handles the requests received from the clients, queries
the database, and returns available analysis results to the users. If no results are currently
available, it returns an empty response. On the other hand, the Result module is responsible
for receiving the analysis results submitted by the clients. It stores the results in the data
system based on the task type and package name and also records each submission as a
contribution along with its corresponding contributor.

When the Result module receives a new submission, it checks the Strategy to determine
whether it needs to update the ElectionResult. The Strategy plays a crucial role in decid-
ing how the server selects and updates the available results. This ensures that the server
maintains an up-to-date and accurate pool of analysis results for the clients to access.

3.3 Consensus Integration

Effective communication protocols are crucial for facilitating efficient and reliable interac-
tion between the back-end server and the client-side Maven plugin in the context of crowd-
sourced collection and analysis of software packages. These protocols define the rules and
procedures for data exchange, command execution, and response handling, ensuring coordi-
nation and collaboration between the different components of the crowd-sourced platform.

In this study, two consensus integration that represents two communication protocols
have been designed: In Process integration and Challenge and Response integration. These
protocols offer different approaches to communication and have unique features tailored to
specific objectives. As their names imply, these two communication protocols represent two
different mechanisms for task distribution and result collection in the back-end server. In
the following sections, we will introduce each of them in detail.

3.3.1 In Process

From the perspective of the server, the In Process integration is a passive approach where
the server receives the results without actively selecting tasks to send to the client plugin.
The server acts as a recipient, collecting all the results uploaded by the client. As depicted
in Figure 3.4, the detailed workflow is as follows:

1. Artifacts List Generation: The plugin generates a list of artifacts based on the project’s
configuration file (pom.xml).
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Figure 3.4: In Process Protocol

2. Task Upload: The client plugin initiates communication with the server and combines
each artifact and task name from the list then send it to the server.

3. Result Retrieval: The server responds to the plugin by providing the pre-computed
results for the uploaded tasks. If the server already possesses the result for a particular
task, it directly returns the corresponding result to the client. However, if the server
does not have the result, it returns an empty result to the client.

4. Result Parsing: The plugin parses the received results from the server. If a valid
result is received, the plugin will store it for future use. However, if an empty result
is received, the client needs to compute the result for that task locally and upload it to
the server.

5. Result Storaging and Comparison: The server receives the results uploaded by the
clients and stores them using a hierarchical structure and maintains a database to keep
track of the uploaded results and their uploader. The server periodically compares the
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Figure 3.5: Challenge and Response Protocol

uploaded results for each dependency and task and selects the correct answer based
on the chosen consensus method.

3.3.2 Challenge and Response

Unlike the In Process integration, Challenge and Response, from the server’s perspective,
is considered an active approach as it proactively assigns a task to the user before the user
formally initiates the task request. The user is required to complete the computation and
upload the answer before proceeding with subsequent task requests. As depicted in Figure
3.5, the detailed workflow is as follows:

1. Initial Stage: The client plugin sends a message indicating its intention to establish a
connection with the server using the Challenge and Response Protocol.

2. Random Task Assignment: The server randomly selects a task from the list of pending
tasks and sends it to the client. The client performs the computation as required and
returns the result to the server.
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3. Artifacts List Generation: The plugin generates a list of artifacts based on the project’s
configuration file (pom.xml).

4. Task Upload: The client plugin initiates communication with the server and combines
each artifact and task name from the list then send it to the server.

5. Result Retrieval: The server responds to the plugin by providing the pre-computed
results for the uploaded tasks. If the server already possesses the result for a particular
task, it directly returns the corresponding result to the client. However, if the server
does not have the result, it returns an empty result to the client. And adds this task to
the list of pending tasks.

6. Result Parsing: The plugin parses the received results from the server. If a valid
result is received, the plugin will store it for future use. However, if an empty result is
received, the client needs to compute the result for that task locally. However, unlike
in the In Process Protocol, there is no need to upload this result to the server in the
Challenge and Response Protocol.

7. Pending Tasks Updating: The server maintains a pending task list that includes all the
requests that have not yet been answered. This list serves as a reference for selecting
random tasks to assign to clients in the second step of the process. If the server does
not have the computed result for a specific request (request X) and it is not present
in the pending task list (indicating that the question is being asked for the first time),
request X is inserted into the pending task list.

3.3.3 Comparison

Under the In Process integration, whenever a user utilizes the plugin, each task can fall
into one of two scenarios: obtaining the answer directly or computing the answer locally
and subsequently uploading it. This means that every task a user performs using the plugin
involves interaction with the server’s database. The advantage of this approach is that it ex-
pedites the growth of content in the server’s data, as each task that is requested but currently
lacks a result will obtain a result during that particular user interaction. However, this also
creates an opportunity for malicious users to exploit the system. They can selectively attack
specific tasks associated with an artifact, repeatedly requesting those tasks to upload their
own answers to the server, thereby potentially influencing the results following the execu-
tion of the consensus algorithm. To mitigate this issue, we have proposed the Challenge and
Response integration as an alternative solution.

In short, the advantage of In Process integration is its faster saturation speed, while
Challenge and Response integration offers higher security.

3.4 Consensus Mechanisms

Once the platform collects the results uploaded by users, the next challenge is to select re-
liable answers from them. In our system, we offer three Consensus Mechanisms, namely:
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First-come, first-served Consensus, Majority Voting, and Trust-based Voting. In the fol-
lowing subsection, we will introduce their concepts and principles, explain how they are
implemented in the system, and qualitatively analyze their advantages and disadvantages.

To provide background knowledge for the upcoming explanations, let’s first introduce
the components related to the implementation of these mechanisms in the system:

• Result Controller: Responsible for receiving the computation results uploaded by
clients via the plugin and determining the subsequent processing flow based on the
current consensus mechanism.

• Election Result: Stores the computed results that have been selected through a spe-
cific consensus mechanism for a particular task of a package.

• Contributor: Records user names and other relevant information.

• Contribution: Records the file names and the information of the contributors for each
uploaded record.

3.4.1 First-come, First-served Consensus

The First-come, first-served (FCFS) Consensus method operates by accepting the answer
provided by the first user who submits a response to a given task. The process is illustrated
in Figure 3.6. Subsequent submissions from other users are not considered for consensus in
this approach, as the accepted answer is determined solely based on the initial submission.

Implementation The implementation of the FCFS consensus mechanism is straightfor-
ward. In the proposed system, when the Result Controller receives a new Computation
Result from the client, it consists of three parts: the Task name, the specified Package name,
and the computation result itself. The server’s tasks can be divided into two parts: storage
and consensus status updates.

First, upon receiving the new computation result, the Result Controller checks the Con-
tributor table in the database to see if the user is uploading for the first time. If the user is
new, their information is inserted into the Contributor table. Although the Contributor table
is not directly involved in the execution process of the FCFS consensus mechanism, main-
taining this table ensures consistency in handling potential user management needs and the
overall execution flow of various consensus mechanisms.

Next, the Task type and specified Package name, along with the uploader’s ID, are stored
in the Contribution table, where the first two serve as a unique identifier for the computation
result. Then, based on this newly inserted identifier, the computation result is stored in the
file system’s hierarchical structure as a JSON format.

With the storage task completed, the next step is to check if the consensus mechanism
needs to be executed. Since the FCFS mechanism is currently used, each new computation
result received corresponds to a unique Question composed of the Task and Package name.
This implies that the Election Result table needs to be updated by inserting the identifier
of this computation result as a new entry. This way, when future requests with the same
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Client ResultController Database ConsensusController

Computation Result

Response

update Contributor

update Contribution

save Result File

Task and Package Name

update Election Result

success

success

Figure 3.6: Illustration of the First Come First Serve Mechanism

Question arise, the corresponding result identifier can be directly retrieved from the Election
Result table, facilitating the return of the result to the client.

Advantages

• Simplicity: This method is straightforward to implement, as it does not require com-
plex algorithms or calculations.

• Speed: As the first submitted answer is considered correct, the consensus can be
reached quickly, reducing the time it takes to complete tasks and make decisions.

• Low computational overhead: This method has minimal computational requirements
since it does not involve processing or comparing multiple submissions.

Disadvantages

• Accuracy concerns: The accuracy of this method relies heavily on the first user’s
knowledge and judgment, which may not always be reliable. As a result, this consen-
sus method can be prone to errors if the first user submits an incorrect answer.
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• Limited user involvement: This method does not take into account the input of multi-
ple users, which might lead to missing out on valuable insights and potentially more
accurate answers from other participants.

• Vulnerability to gaming and malicious behavior: Since the first submitted answer is
accepted as correct, the system may be susceptible to manipulation by users who
intentionally submit incorrect answers or spam.

3.4.2 Majority Voting

The Majority Voting consensus method operates by collecting answers submitted by mul-
tiple users for a given task. Each user’s submission is considered a vote for a particular
response. After collecting the votes from all participating users, the system calculates the
frequency of each submitted answer. The answer that receives the highest number of votes is
considered the correct response. In cases of a tie, additional measures can be implemented,
such as selecting a random answer among the tied options.

Implementation In contrast to FCFS, the decision-making process in Majority Voting
is more complex. The process is illustrated in Figure 3.7. When the Result Controller
receives a new computation result from the client, it follows a similar procedure as FCFS to
determine if it needs to insert a new entry in the Contributor table and add the information
of the task type and package name to the Contribution table. However, in Majority Voting,
the process of updating the Election Result table does not happen immediately.

Upon inserting the computation result into the Contribution table, the Result Controller
scans all the submitted results for the current Question to provide a new unique result ID
(by incrementing the previous maximum result ID) for the new result, creating its identifier.
Subsequently, the computation result is stored in the hierarchical file system based on this
identifier.

However, in Majority Voting, the decision-making is delayed until a certain number
of computation results (voting threshold) have been collected. After saving each uploaded
result, the Result Controller queries the Contribution table again. If the number of results
for the current Question reaches the voting threshold, the Consensus Controller module
is triggered. The Consensus Controller reads all the submitted results stored under the
directory composed of the task name and package name. It then compares all the results
to identify the differing computations and tallies the frequency of each unique result. The
computation result with the highest frequency is selected as the consensus answer and is
updated in the Election Result table.

Advantages

• Improved accuracy: By considering the input of multiple users, this method can po-
tentially lead to more accurate results, as it relies on the collective wisdom of the
crowd rather than a single user’s judgment.
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Figure 3.7: Illustration of the Majority Voting Mechanism

• Enhanced user involvement: Majority Voting encourages participation from a larger
number of users, which can lead to a more diverse range of perspectives and insights.

• Resilience to manipulation: This method is less susceptible to gaming and malicious
behavior, as any single user’s submission has less influence on the consensus outcome
compared to the First-come, First-served method.

Disadvantages

• Increased complexity: Implementing Majority Voting requires more complex algo-
rithms and calculations compared to the First-come, First-served method, as it in-
volves processing and comparing multiple submissions.

• Slower decision-making: This method can take longer to reach a consensus, as it
requires collecting and analyzing multiple submissions before determining the correct
answer.
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Figure 3.8: Illustration of the Trust-based Voting Mechanism

3.4.3 Trust-based Voting

The Trust-based Voting consensus method operates by collecting answers submitted by
multiple users for a given task, similar to the Majority Voting method. However, in Trust-
based Voting, each user’s submission is assigned a weight based on their reputation within
the platform. This weight reflects the level of trust or credibility assigned to the user’s input.
After collecting the weighted votes from all participating users, the system calculates the
total score for each submitted answer. The answer with the highest accumulated score is
considered the correct response.

Implementation Trust-based Voting, as an evolved algorithm of Majority Voting, shares
a close resemblance in its processing flow. The process is illustrated in Figure 3.8. Similar
to Majority Voting, it involves updating the Contributor table and Contribution table when
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new computation results are uploaded by clients. Upon reaching the voting threshold, the
Consensus Controller is activated to make a selection from all submitted answers for a
particular question. However, Trust-based Voting introduces a differentiation in the weight
each user’s submission carries, termed as the Trust Value. In Majority Voting, all users’
Trust Values can be considered as 1, simplifying the comparison and statistical process. In
Trust-based Voting, the impact of each user submitting the result needs to be considered.
This necessitates an additional step in the Consensus decision-making process where the
Trust Value of the user submitting each result is obtained and used to calculate a score for
each submission. The computation result with the highest score is selected as the consensus
answer and is updated in the Election Result table.

However, the role of the Consensus Controller doesn’t conclude here. It further in-
volves updating the Trust Value of each participant based on their selection results. Users
who provide correct answers are deemed relatively trustworthy and have their Trust Value
increased, while those providing incorrect answers see their Trust Value decrease. For this
system, we draw inspiration from the Trustworthiness update method in LiquidCrowd[5].
Initially, during the onset of crowdsourcing activities, the worker’s Trust Value τ is set to an
initial value of τ = 1. Upon each task commitment (time t +1), the Trust Value of a worker
W is updated according to the following scheme:

τ
t+1
W =

{
h∗ τt

W +(1−h)∗a, i fW ∈ SC

h∗ τt
W , i fW /∈ SC

(3.1)

In this context, τt
W refers to the Trust Value of worker W before task execution at time

t, while h symbolizes the weight assigned to historical records. Moreover, a signifies the
reward of providing a correct answer, and SC represents the collection of workers who have
accurately answered. For a worker, the computation of τW

t+1 considers a fusion of two vital
factors: the accumulated trustworthiness built over the course of all previously executed
tasks and the award earned from the last task. This dynamic process blends historical per-
formance with immediate achievement to determine the Trust Value at time t +1.

Advantages

• Enhanced accuracy: By taking into account the expertise or reputation of users, Trust-
based Voting can potentially lead to more accurate results, as it gives more weight to
the opinions of more knowledgeable or experienced users.

• Resilience to manipulation: Trust-based Voting is less susceptible to gaming and
malicious behavior, as it reduces the influence of inexperienced users or users with
low reputation scores.

Disadvantages

• Increased complexity: Implementing Trust-based Voting requires more complex al-
gorithms and calculations compared to the Majority Voting and First-come, First-
served methods, as it involves processing and comparing weighted submissions.
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Table 3.1: Mix Strategies

Consensus Integration

Consensus Mechanism In Process Challenge and Response

FCFS Combination 1 Combination 4
Majority Voting Combination 2 Combination 5
Trust-based Voting Combination 3 Combination 6

• Slower decision-making: Similar to Majority Voting, this method can take longer to
reach a consensus, as it requires collecting and analyzing multiple weighted submis-
sions before determining the correct answer.

• Challenges in determining weights: Assigning appropriate weights to users can be
challenging, as it may require a robust mechanism to evaluate expertise or reputation
accurately and fairly.

3.4.4 Comparison

The advantages of the three Consensus Mechanisms are evident, and they each have differ-
ent use cases. The FCFS approach has a notable advantage in rapidly growing the answer
repository of the system. However, it also compromises security since the first submitter
holds significant weight, making the back-end database vulnerable to potential attacks if
the system’s user credibility is not high enough. Thus, FCFS is suitable for small-scale set-
tings where all users are trusted. However, for a platform targeting the general public, the
latter two voting mechanisms are preferred.

With Majority Voting, a simpler approach is employed as it only requires comparing
all the submitted results without considering the attributes of each user who submitted the
answer. On the other hand, Trust-based Voting involves calculating the score for each result
based on the different weights of users, which extends the computation time for the system
to reach a consensus. Additionally, designing an appropriate weight updating formula is
crucial for Trust-based Voting, as a well-designed formula can lead to more reliable sys-
tem answers, while an ill-designed one may waste execution time without improving the
system’s reliability.

3.5 Compose Strategies

The two consensus integration methods and three consensus mechanisms mentioned earlier
have their respective advantages and disadvantages. By combining them, it is possible to
complement each other’s shortcomings. By combining any consensus mechanism with a
consensus integration method, we can have six different scenarios as shown in Table 3.1.

The In Process Integration approach maximizes resource utilization but becomes vul-
nerable to attacks from malicious users who can disrupt the final results by repeatedly re-
questing tasks to upload their own answers. Hence, unless the platform users seek extreme
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data growth and rapid consensus achievement, Combination 1 is not recommended, as com-
bining two vulnerable methods would make the system fragile. However, if the platform is
used on a very small scale where each user can be ensured not to be malicious, Combination
1 will leverage its highly efficient advantage.

In general, the combination of In Process Integration approach and Voting mechanisms,
i.e., Combinations 2 and 3, is a more suitable choice due to the Voting mechanisms’ re-
silience to malicious behavior. Comparing these two combinations, Combination 2 has the
apparent advantage of a low time complexity in the consensus algorithm execution. When
there are many results to be analyzed or the server’s performance is limited, Combination 2
can select the final result more quickly from the numerous answers submitted by users. If
you desire a system that can effectively identify and mitigate the impact of malicious users,
Combination 3 is a better choice.

As for the combinations involving the Challenge and Response Integration approach, it
enhances the reliability of decision-making through the server’s proactive task assignment.
However, this may result in a slower saturation rate of the database. In Combination 4,
when integrating the Challenge and Response with the FCFS approach, we can benefit from
both methods. The Challenge and Response ensure proactive task assignment, maintain-
ing accuracy and reliability in decision-making, while the FCFS approach ensures quick
decision-making.

In Combinations 5 and 6, we integrate the Voting methods into the strategy. Before
the number of participants for a particular task reaches a threshold, the task remains on
the pending list and can still be assigned to future users for computation. However, our
current Challenge and Response task assignment strategy assigns each client only one pre-
computation task in each request. This leads to slow database growth in Combinations 5
and 6, making them ineffective in providing efficient services. Therefore, unless platform
users can propose alternative task assignment strategies that strike a balance between the
additional computation time caused by users completing assigned tasks and the time for
consensus achievement in the system, we do not recommend using these two combinations.
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Chapter 4

Evaluation

In the previous chapter, we introduced the design of our crowd-sourcing platform. We hope
that users can reduce duplicate calculations on the same task through this platform, thereby
improving development efficiency. To investigate the impact of this platform on develop-
ment efficiency, we will evaluate the performance of the platform with different consensus
approaches from both qualitative and quantitative perspectives. In Section 4.1, we investi-
gate the following question: How many projects are needed to saturate the crowd-sourcing
system? Based on this, in Section 4.2, we analyze the improvement of development effi-
ciency for the platform at different hit rates by investigating the following question: What
is the performance gain for the pre-computation task at different hit rates? In Section 4.3,
we conducted an analysis of the server-side performance and addressed the question: What
is the trade-off of computation load for the server?

4.1 How many projects are needed to saturate the
crowd-sourcing system?

In the initial stages of our crowd-sourcing platform, the server-side database is empty, with
no pre-existing data available for users to access. As the platform gains traction and users
begin to submit their answers for various tasks, the database accumulates more solutions,
which can then be shared among other users. A crucial aspect of the platform’s success
and effectiveness lies in understanding the saturation point, where a sufficient number of
projects have contributed answers, ensuring the database is well-populated and able to pro-
vide useful solutions for future users. To that end, we aim to investigate the following
research question: ”How many projects are needed to saturate the crowd-sourcing system?”
By exploring this question, we seek to determine the critical mass of projects required to es-
tablish a comprehensive and efficient crowd-sourcing platform that maximizes its potential
benefits for all users.

This question can be divided into two dimensions: horizontal and vertical analyses. The
horizontal analysis focuses on examining the relationships between dependencies across
different Maven projects and the vertical analysis investigates the differences in dependen-
cies within the same project across various versions.
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4.1.1 Data set

To answer the research question, we first need to prepare the data set. Our goal is to gather
a comprehensive and representative sample of Maven projects to ensure that our research
findings are robust and generalizable.

Due to the rapid development of open-source software, new libraries continue to emerge
and gain popularity. Therefore, analyzing projects from a long time ago holds little signif-
icance in evaluating our system, as the dependencies they used may no longer be in use or
have updated versions. The core principle of our project is to reuse computations for tasks
that users repeatedly need, in order to minimize wastage of computational resources and
time. It is advisable to analyze recently active projects to obtain overlapping relationships
between their dependencies.

As we cannot directly obtain Maven projects through GitHub search, we need to filter
the projects ourselves. First, we will use the GitHub API to retrieve Java projects since 2021
and gather their names and URLs. Then, we will visit the project repositories to check if
there is a Maven project configuration file in the root directory for further evaluation. If the
criteria are met, the project will be added to the data set.

Due to limitations on GitHub’s search, a maximum of 100 pages of results can be re-
turned for each search. Therefore, we need to divide the time period into smaller segments
instead of directly searching from January 1, 2021. We grouped the projects into two-month
intervals and filtered those with more than 10 stars. As a result, we obtained a total of 2144
projects.

4.1.2 Horizontal Analyses

In the horizontal analysis section, we will investigate the relationships between dependen-
cies across different Maven projects, focusing on the overlap and differences in their depen-
dencies. As the number of analyzed projects increases, the server-side database accumulates
more answers, allowing subsequent users to reduce the number of tasks they need to com-
pute locally and instead retrieve answers directly from the server. However, the degree of
dependency overlap between projects varies, meaning that analyzing a new project may
or may not increase the number of answers stored in the server (e.g. if the new project’s
dependencies are a subset of tasks already in the server).

Our goal in this section is to identify a saturation point where the majority of tasks can
find answers, and further increasing the number of analyzed projects does not significantly
improve the task hit rate. This is because different projects may have unique dependencies
that are not used by other projects, which will not contribute to the saturation of the crowd-
sourcing system. By understanding the relationships between different Maven projects and
their dependency overlaps, we can make informed decisions when designing and imple-
menting our crowd-sourcing platform. This analysis will ultimately help us determine the
most effective consensus approach for different project quantities.
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Methodology

We analyzed 2144 projects and collected statistics on the package names, version numbers,
and occurrence frequencies. We proceed by sequentially downloading the projects using
the URLs from the dataset and reading their Pom.xml files to extract the corresponding
dependency information. Following the statistical approach of Maven, we consider pack-
age names and version numbers together as identifiers for each dependency package. We
maintain a table to record all encountered dependency packages along with their occurrence
count. Upon analyzing a new project, the following steps are executed:

1. Traverse through all dependencies of the project.

2. If the dependency is present in the table, mark it as a ”Hit” and increment the occur-
rence count in the table.

3. If the dependency is not present in the table, mark it as ”Not Hit” and add the infor-
mation of this new dependency to the table.

4. Once the traversal is complete, divide the number of ”Hit” dependencies by the total
number of dependencies to obtain the hit rate for that particular project.

The analysis revealed that 10,191 different dependencies were used across these projects.
The number of these artifacts may sound substantial, but it’s important to note that the
Maven Central Repository added 2,251,027 artifacts in 2022 alone[10]. Therefore, when
compared to the total number of artifacts in the Maven Central Repository, the quantity we
have collected is still relatively small. Additionally, based on other statistical data, we have
created the following plots.

Results

Figure 4.1 illustrates the variation in the number of unique artifacts as the number of ana-
lyzed projects increases. As expected, it can be observed that the count of artifacts contin-
ues to rise as more projects are analyzed, but the rate of increase gradually slows down. To
highlight this relationship more clearly, the change in curve slope is depicted in Figure 4.2.
Overall, the slope of the curve consistently decreases, indicating a diminishing rate of new
artifact additions and a trend toward saturation in the database.

For users, the hit rate is an important metric as it represents the proportion of pre-
computed results they can obtain from the server. A higher hit rate indicates more compu-
tational savings for users. Therefore, we also calculated the hit rate for each project during
the analysis process. The results showed significant fluctuations in this metric. This varia-
tion is due to the different numbers of dependencies in each project. For example, a project
with only one dependency may have a hit rate of 1 if the pre-computed result for that task
is available in the database. On the other hand, a project with 100 dependencies and 50
available pre-computed results would have a hit rate of only 0.5. However, as shown in
Figure 4.3 after smoothing, we can still observe an increasing trend in the hit rate as the
number of analyzed projects increases. As expected, this indicates that our crowd-sourcing
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4. EVALUATION

Figure 4.1: The Variation of Artifact Count with Increasing Number of Analyzed Projects

platform can provide better services with an increasing number of analyzed projects. How-
ever, due to version updates of artifacts, even if two projects use the same dependency, the
subsequent project may use an updated version of the same named dependency. Therefore,
the improvement in the hit rate is not linear.

So, what hit rate can users expect? To answer this question, we created a box plot 4.4
based on intervals of 300 data points. We divided the total of 2144 projects into eight groups,
each containing 300 projects. Within these groups, we performed average value statistics
to observe the trend of hit rates. We also notice that in each group, there are occurrences
of both the maximum value 1 and the minimum value 0. Upon observing these data, we
have realized that such extreme cases are typically caused by projects with a very limited
number of dependencies. For instance, if a project has only one dependency and the analysis
result for that dependency is present on the server, the hit rate becomes 1. Conversely, if a
project has three dependencies and, unfortunately, none of them match, the hit rate becomes
0. Hence, to achieve a more accurate result, we performed average value statistics across
a large number of projects. From the plot, we can observe that after the system analyzes a
sufficient number of projects, the average hit rate for users tends to stabilize around 0.5.

The data presented above demonstrate that applying a crowd-sourcing platform can help
users avoid redundant computations. However, the specific number of artifacts for which
computation results can be obtained depends on the consensus method used. Therefore, we
also conducted a frequency analysis of artifact occurrences, resulting in Figure 4.5.
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From Figure 4.5, it can be observed that the majority of artifacts appear only once in
the analyzed projects. This implies that only in cases where subsequent projects encounter
these repeated artifacts, and when using the First-come, First-served Consensus, the calcu-
lation results for relevant tasks can be directly obtained from the server side. This result
suggests that when users are reliable, the First-come, First-served Consensus offers signifi-
cant performance advantages over the Voting Consensus. However, as a platform targeting
the entire society, the reliability of users cannot be guaranteed. Therefore, the Voting Con-
sensus becomes a safer option. If we set the minimum user requirement for voting to 5
individuals, only 4.67% of calculation results in the database can be utilized. If we relax
this criterion to 3 individuals, then 11% of calculation results can be reused.

In addition, different consensus integration methods also have an impact on the satura-
tion rate. When using the In Process Integration method, the server collects answers for all
unresolved tasks each time. As a result, the saturation rate is generally higher compared to
the Challenge and Response Integration method. Typically, we only assign a small number
of tasks to each user or a number proportional to the total number of requests. However,
this number should not exceed the total number of user requests and should ideally be much
lower. Otherwise, users may lose motivation to participate. Therefore, while Challenge and
Response Integration enhances system security, it also reduces the saturation rate.

4.1.3 Vertical Analyses

In the vertical analysis section, we will investigate the differences in dependencies within
the same project across various versions. As projects evolve over time, their dependencies
may change due to factors such as updates, new features, or optimizations. These changes
can lead to variations in the tasks that users need to compute for different versions of the
same project, affecting the efficiency and effectiveness of the crowd-sourcing platform.

Our goal in this section is to understand how dependency changes across different ver-
sions of the same project impact the saturation of the crowd-sourcing system under different
consensus approaches. Through this experiment, we can observe whether software devel-
opers can significantly improve their efficiency by avoiding a large number of redundant
computations when developing a project using our crowd-sourcing platform.

In this experiment, the analysis procedure remains the same as Horizontal Analyses,
with the only difference being that we are now analyzing different versions of the same
project.

Results

We randomly selected 10 open-source projects and conducted dependency statistics across
all of their released versions, as depicted in Figure 4.6. From the graph, we can observe
the overlap of dependency packages between different versions of the same project. It’s
evident that the average hit rate of these projects is considerably higher than the data shown
in Figure 4.4. In fact, for some projects, the average value is close to 1. From Figure 4.6,
it’s evident that substantial overlap exists in dependencies between successive versions and
their previous counterparts. In fact, the average overlap rate for certain projects between
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Figure 4.6: Box plot of Vertical Analysis

different versions reaches 100%. This trend enables users to substantially cut down on
computation time by reutilizing the previously computed results.

4.2 What is the performance gain for the pre-computation task
at different hit rates?

We know that in actual use, whenever a user needs an answer to a pre-computed task, they
will first send a request for the specified task to the server. If the server has the answer to
this task, it will be returned directly to the user. However, sometimes, due to changes in the
user’s project dependencies or the choice of the consensus approach, there may not be an
available answer temporarily. In this case, the user needs to compute the task themselves
and return the result. We define the hit rate as the ratio of the number of answers available
in the server to the total number of requests for a project.

HitRate =
numretrieved

numrequests
(4.1)

Obviously, the higher the hit rate, the smaller the amount of local computation the user
needs to complete, which helps improve development efficiency. When the crowd-sourcing

34



4.2. What is the performance gain for the pre-computation task at different hit rates?

system’s database is saturated, the database in the server is already near completeness,
which should be the time when the hit rate is the highest.

The establishment of the database is a process, and during this process, the hit rate will
affect the user experience. Therefore, in this part, we want to study the improvement of
project analysis speed by the crowd-sourcing platform under different hit rate conditions.

4.2.1 Methodology

For users, the time taken to fetch from the server using the plugin is considered the Response
Time (tresponse) of the REST API, while the time taken for local computation is considered
as the Computation Time (tcomputation).

The Response Time is determined by several factors including the time trequest for the
client to send a request to the server and receive a response, the time tdownload to download
the analysis results from the server, the time tgenerate for local analysis of the dependency
packages, and the time tupload for uploading the analysis results. We assume a project has
a total of n dependencies, among which m dependencies don’t have available results on
the server and require local analysis by the user, while the remaining n−m dependencies’
analysis results can be directly retrieved from the server. For the crowd-sourcing platform
to be effective, these factors need to meet the following conditions:

tresponse = n× trequest +m× (tgenerate + tupload)+(n−m)tdownload (4.2)

tcomputation = n× tgenerate (4.3)

tresponse < tcomputation (4.4)

This implies that a computationally intensive task is required. Therefore, in this experi-
ment, we have chosen to use the call graph as the task.

We plan to study the differences in analysis time for projects with hit rates of 0%, 50%,
and 100%. Since the size of each pre-computed task may vary, we will analyze and compare
multiple projects to obtain a more comprehensive understanding of the relationship between
hit rates and analysis time.

In the experiment, we will manually set the answers stored in the server according to the
hit rates. We start with a project where no pre-computed results are available on the server.
We run the plugin in this scenario, where it won’t obtain any useful information from the
server and will need to compute all call graphs locally. We record the overall execution time
of this process as the baseline.

Next, we retrieve the dependency list from the project’s configuration file and randomly
select 50% of the dependencies to store their call graphs on the server. We then run the
plugin again on the project, which should reduce the local computation by 50%, but may
introduce additional time due to network transfer. Again, we record the overall execution
time.

Finally, we store the call graphs of all dependencies on the server and run the plugin on
the project once more, recording the time. This way, we obtain the time required to obtain
call graphs using the plugin under three different hit rate scenarios. We repeat this process
for 5 different projects.
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Figure 4.7: Performance at Different Hit Rates

Results

We have obtained results as depicted in Figure 4.7. In the graph, bars of three different
colors represent the baseline generate time, execution time at a 50% hit rate, and execution
time at a 100% hit rate, respectively. As illustrated in Figure 4.7, with the increase in hit rate,
the required execution time significantly decreases. This implies that users will experience
noteworthy performance improvements by employing this crowd-sourcing platform. Due
to variations in the number of dependencies used in different projects, the time required
for generating call graphs varies among them. Additionally, different dependencies may
have different call graph generation times, which introduces some variations in the results.
However, overall, with a hit rate of 50%, the average reduction in analysis time is 37.7%.
This means that for a project that has not been analyzed using this crowd-sourcing platform,
using the platform for software analysis only requires about 60% of the time it would take
for local analysis. For projects that have been analyzed multiple times using this platform,
up to 99% of computation time can be saved.

4.3 What is the trade-off of computation load for the server?

The objective is to compare the time required for completing computation tasks individually
and the time taken to compare multiple results through voting. A practical concern arises
when the time required for the server to compute a task’s result is shorter than the time taken
to compare and vote on the results submitted by users. In such cases, there may be no need
for consensus mechanisms. Therefore, through this experiment, we aim to find a balance

36



4.3. What is the trade-off of computation load for the server?

between the server’s computation time and the time required to compare user-submitted
results. This will help us determine a reasonable voting threshold.

4.3.1 Methodology

We define the time it takes for the server to generate an analysis result for a dependency
package as tgenerate. It consists of two parts: the time tcomputation for the server to perform the
pre-computation task and the time tserializationcompute to store the computed result into a file.
Additionally, the time it takes to select the final result using the Consensus Mechanism is
denoted as tconsensus. This involves reading and writing files to load the candidate results into
memory, noted as tconsensus and tserializationcompare respectively, and the time to compare these
results, denoted as tcomparison. The objective is to ensure that tconsensus is less than tgenerate.

In mathematical terms:

tgenerate = tcomputation + tserializationcompute (4.5)

tconsensus = tdeserialization + tcomparison + tserializationcompare (4.6)

tgenerate ≥ tconsensus (4.7)

From this analysis, we can observe that the execution time is primarily influenced by the
computation intensity and serialization intensity. Larger files not only present challenges in
serialization but also increase the comparison time. Consequently, we can categorize tasks
into four types based on their computation intensity and serialization intensity:

1. Low Computation Intensity and Low Serialization Intensity: Tasks in this category
involve simple computations and small files that can be easily serialized. These tasks
generally have shorter execution times due to the low computational and serialization
complexity.

2. Low Computation Intensity and High Serialization Intensity: Tasks in this category
have simple computations but involve large files that are challenging to serialize. The
execution time is primarily influenced by the serialization process.

3. High Computation Intensity and Low Serialization Intensity: Tasks in this category
involve complex computations but have relatively small files that can be easily serial-
ized. The execution time is primarily determined by the computational complexity.

4. High Computation Intensity and High Serialization Intensity: Tasks in this category
involve complex computations and large files that are difficult to serialize. These
tasks require significant processing power and may result in longer execution times.

For the first two types of tasks, ”Low Computation Intensity and Low Serialization
Intensity” and ”Low Computation Intensity and High Serialization Intensity,” the voting
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algorithm may not provide any significant advantage due to their inherently small compu-
tational requirements. The server can quickly compute reliable answers and return them to
users. Users may even perform the calculations locally without the need to use our system.

However, for tasks with ”High Computation Intensity,” our consensus platform becomes
valuable. It saves computational time and reduces the demand for computer resources by
avoiding redundant computations. In this experiment, we choose to compute the call graph
of an artifact as an example of a task with high computational intensity. Our goal is to find
a balance between computation and comparison time.

The experimental setup is as follows:
1. Select the 20 packages from the Maven repository and generate their call graphs.

Record the execution time.
2. Create multiple replicas of results and measure the time required for comparing

results among different replicas. The comparison process continues until the time exceeds
the average time calculated in the first step. Record the number of replicas involved at that
point and calculate the average number of replicas required for each task intensity.

Through this experiment, we aim to determine the threshold for selecting the number
of participants in the voting process based on the task intensity. Below this threshold, the
time required for comparison is lower, while above this threshold, the server’s individual
completion time is lower. To strike a balance between answer accuracy and server load, the
actual setup should not exceed this threshold.

By analyzing the trade-off between computation load and task intensity, we can opti-
mize the crowd-sourced collection and analysis of software packages to achieve efficient
and accurate results while minimizing the burden on the server.

Results

We have obtained results as shown in Figure 4.8. From the graph, it’s evident that the
baseline tgenerate (represented by the blue line) is significantly higher than the tcomparison time
obtained by using the consensus mechanism from varying numbers of results (represented
by the other three lines). In fact, the difference is so pronounced that we had to use a
logarithmic scale to visualize the data, otherwise, the three lines’ shorter durations would
be barely visible. Based on the experimental results shown in Figure 4.8, it is clear that
the time required for generating the call graph is significantly higher than the time spent
on comparing different analysis results. Except for the Clojure package, the comparison
time for other packages is almost negligible. This can be attributed to the larger size of the
call graph in the Clojure package compared to the others. However, even in this case, the
comparison time is still shorter.

In conclusion, the results demonstrate that the voting approach is more efficient in terms
of time consumption when compared to the generation approach. This indicates that lever-
aging the consensus mechanisms and integration methods in the platform can effectively
reduce the computational load on the server, allowing for faster and more efficient analysis
of software packages.
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Chapter 5

Discussion

In this thesis, we have designed a decentralized software analysis platform with the aim of
alleviating the workload of the central server. Leveraging the concept of crowd-sourcing,
we have distributed the analysis tasks of each software package to individual users. In
this chapter, we provide a reflection on our work. We first discuss the implications of
our findings and highlight the potential areas for future improvements. Additionally, we
examine the threats to the validity of our research.

5.1 Discussion and Future Works

Consensus Strategies In the crowd-sourcing platform, we offer two different consensus
integration methods, namely In Process and Challenge and Response, which represent two
different communication protocols. The main difference lies in whether the server proac-
tively requests the results of a pre-computation task from the clients. The advantage of In
Process integration is its faster saturation speed, while Challenge and Response integration
offers higher security. Once the platform collects the results uploaded by users, the next
challenge is to select reliable answers from them. Our platform provides three consen-
sus mechanisms: FCFS Consensus, Majority Voting, and Trust-based Voting. If the FCFS
approach is chosen, the answer repository of the system will grow rapidly, but it also com-
promises security as the first submitter holds significant weight. To enhance the system’s
reliability, we offer two voting-based consensus mechanisms.

As discussed in Section 3.5, the combination of these two consensus integration meth-
ods and three consensus mechanisms can form six different strategies to suit various usage
scenarios. During usage, platform administrators can freely combine consensus integration
methods and consensus mechanisms based on their specific needs, achieving a complemen-
tary balance between their advantages and disadvantages.

Unlike traditional crowd-sourcing platforms with subjective tasks, our platform only re-
quires users to execute specified software analysis code and upload the results. The absence
of subjective questions allows us to overlook the expertise of different users and focus on
analyzing the presence of malicious users. When the user group is small and trustworthy,
such as within a company or research group, choosing strategies based on FCFS can utilize
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the high trustworthiness of users and alleviate the slow growth of analysis results in the
database due to the small number of users. For platforms targeting the general public, we
recommend the combination of In Process integration approach and Voting mechanisms.
The difference between the two Voting mechanisms lies in whether all users are treated
equally. Trust-based Voting assigns a separate weight value to each user, which may in-
crease the time required to achieve consensus but further enhances the credibility of the
results, especially when the voting threshold is set low. Platform developers can choose
between these two voting strategies based on the specific performance requirements of the
platform.

Considering practical feasibility, we do not recommend the combination of the Chal-
lenge and Response integration approach and Voting mechanisms. From the saturation
experiment, we observed that even after analyzing over two thousand projects, the num-
ber of unique dependencies continues to grow. This implies that whenever a new project
is analyzed, although most analysis results can be directly obtained from the server, new
results to be analyzed will inevitably be introduced. Currently, we only require clients to
complete a specified analysis task each time they access the service. This is not a significant
issue when using the FCFS consensus mechanism, but when using Voting mechanisms, to
achieve consensus on a pre-computation task, multiple analysis results need to be collected,
which may lead to the number of tasks required to reach consensus growing slower than the
number of new tasks to be solved, resulting in an ever-increasing pending list that can never
be completed. Increasing the number of analysis tasks assigned to clients each time they
access the service comes at the cost of extending the clients’ execution time because of the
additional tasks. This requires platform designers to find a balance between clients’ extra
execution time and the speed of achieving consensus, which poses an interesting research
problem.

While the establishment of our crowd-sourcing platform allows users to share a vari-
ety of software package analysis results, reducing redundant work and saving development
time, there is still room for further advancements to make the platform more intelligent and
effective.

Decentralized Storage One major improvement we have achieved is the decentralization
of computation tasks, effectively alleviating the burden on the central server. By distributing
the computation tasks to users’ computers, the server’s role is reduced to result collection
and comparison. However, while this achieves decentralization in terms of computation, the
platform still relies on a central server for result collection and comparison. Future work can
focus on exploring how to coordinate multiple servers to create a fully distributed system,
where result collection and comparison are also distributed across different machines. This
would involve developing mechanisms for data exchange and result synchronization among
the distributed servers.

Dynamic Task Allocation Another aspect to consider is that the platform currently sup-
ports different task types, but these are hard-coded, requiring both the client and server to
have prior knowledge of the specific tasks and how to execute them. This lack of flexibility
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results in poor compatibility when expanding the range of task types. To address this issue
and enable smarter load distribution, it would be beneficial to explore a system where task
instructions are distributed directly by the server. This would allow for more dynamic and
adaptable task allocation, reducing the need for frequent updates to the Maven plugin on
the client side.

Platform start-up As a platform that employs the concept of crowd-sourcing, it’s evident
that with an increasing number of users joining, more and more analysis results are con-
tributed. Consequently, the users of the platform ultimately benefit from having access to a
wider array of computed results. However, this characteristic also implies that the platform
may not perform optimally in its initial stages, as there would be minimal results available
in the database. Therefore, we seek to determine the point at which the platform becomes
reasonably stable and functional after analyzing a certain number of projects. First, we
analyzed the dependency overlap in different open-source projects to explore how many
projects the system needs to analyze to achieve a relatively stable hit rate, known as satu-
ration. We found that after analyzing around 1000 projects, the hit rate tends to stabilize.
While some variations exist among different projects, a new project can expect a hit rate of
around 50%. This means that a new user can reduce their computation workload by half
upon their first usage, which is highly appealing. In practical usage, developers typically
analyze projects multiple times, especially with each new version release. Therefore, we
also examined the dependency overlap between different versions of the same project. The
results showed that the vast majority of dependencies remain consistent across versions,
indicating that long-term usage of this crowd-sourcing platform can save significant com-
putation time, leading to improved user retention.

Platform effectiveness In addition, we also evaluated the system from the perspective of
platform users. We believe that as users of the platform, clients are not concerned about
the server’s workload or the process of obtaining analysis results. Their primary goal is
to obtain the analysis results for specific dependencies as quickly as possible. Therefore,
we conducted an experiment to test the performance improvement achieved by using the
crowd-sourcing platform. With three different hit rates, the experiment demonstrated that
users can save a significant amount of computation time by using our Maven plugin. The
focus of the experiments was on a computationally intensive task, call graph generation, and
it was found that the time required for transmitting the results can be negligible compared
to the time required for performing the actual call graph computation. In other words,
users can expect nearly linear performance improvement, indicating that the more local
computation time is saved, the more overall cost is reduced. Exploring and testing different
levels of software analysis tasks in terms of their performance on the platform would be an
interesting avenue for future work. By varying the complexity and intensity of the tasks, we
can better understand the platform’s efficiency and effectiveness in handling different types
of analyses. This research can help identify the optimal use cases and potential limitations
of the crowd-sourcing platform, providing valuable insights for platform developers and
users.
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Finally, our experiments have shown that comparing different analysis results submitted
by users places lower demands on performance compared to generating the call graph on the
server. The most significant difference between our crowd-sourcing platform and FASTEN
is that our server does not perform package analysis itself; it only serves as a collection
and integration platform for analysis results. During the process of obtaining consensus
through voting mechanisms, there is a step involving the deserialization, comparison, and
serialization of all analysis results. We aimed to find a balance between the time required
for comparing a limited number of results, where voting mechanisms perform better, and
the time required for the server to analyze dependencies, where it might perform better
when dealing with a larger number of results. Thus, we selected the time required for the
server-generated call graph as the baseline and compared it with the time for choosing the
best answer from different result quantities. Surprisingly, in our experiments, even when
comparing 100 results, it only took roughly one-tenth of the baseline time. Considering that
repeating a single package more than 100 times in practice is almost impossible, setting
the voting threshold to 100 is excessive and not reasonable. Our evaluation demonstrated
that for computationally intensive tasks, using a voting-based consensus mechanism sig-
nificantly reduces the computational overhead compared to generating the results on the
server.

5.2 Threats to Validity

While the experiments described in this thesis yield promising results, demonstrating that
using a crowd-sourcing platform for software analysis can alleviate server workload and en-
hance user experience, there are some limitations that may affect the experimental outcomes
and real-world scenarios.

Firstly, our platform is currently designed for limited use cases, specifically Java and
Maven ecosystems. The collected dataset consists of projects developed using Maven,
and the analysis results are tailored to this context. Therefore, when extending the crowd-
sourcing platform to other ecosystems, the saturation rate of the system database and client-
side performance improvements may vary. However, we still believe that introducing a
crowd-sourcing platform would yield positive results.

In the experiments evaluating system database saturation rates, we analyzed the overlap
of dependencies in different projects on GitHub. The conclusions drawn were based on the
FCFS consensus mechanism. However, if voting-based consensus mechanisms are chosen
in real-world usage, the saturation rate may significantly decrease. Nonetheless, this does
not necessarily mean that users’ experiences will be significantly worse than expected. In
the development process, developers often analyze their projects multiple times, falling
into our vertically analyzed region, meaning they can save analysis time by reusing their
submitted results.

In our experiments, we chose to use call graph generation as the workload, which is
an effective method for providing fine-grained software analysis. However, as a crowd-
sourcing platform aimed at different types of tasks, the actual workload in real-world usage
may vary, leading to potential deviations from the experimental results. We believe that
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computationally intensive tasks are more likely to benefit from using this platform. For
tasks that only require milliseconds or seconds of analysis, the benefits may be minimal or
even negative due to the presence of network latency.

During the experiments, we used a single computer (my PC) for analysis. However, in
practical usage, different users have different computer performances, which could lead to
variations in user experience. Clearly, the performance gains will be more significant on
computers with lower performance, as they can avoid local analysis. Additionally, users’
network conditions are also an important variable. While analyzing the performance im-
provement in RQ3, we did not consider the impact of network speed on users. Nonetheless,
since the size of the call graph files used in the experiments was relatively small compared
to the generation time, we believe that the effect of network speed on the overall results
is negligible. Therefore, users can expect substantial performance improvements using the
crowd-sourcing platform, regardless of network speed, unless the network conditions are
exceptionally poor.
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Chapter 6

Summary

Software analysis is a fundamental aspect of software development and maintenance, in-
volving a systematic examination of code to identify errors, assess quality, and enhance
performance. It empowers developers with insights into software’s underlying structure
and behavior, aiding in the detection of vulnerabilities and inefficiencies. However, soft-
ware analysis encounters challenges due to the intricacies of modern software systems,
which often result in time-consuming analysis due to intricate dependencies.

In this study, we integrate the concept of crowd-sourcing into the design of a software
package collection and analysis platform. Our objective is to distribute analysis tasks, orig-
inally conducted solely on servers, among diverse users to alleviate server load. We create
a crowd-sourcing Software Collection and Analysis system consisting of a Maven plugin
for users and a back-end server. We define two consensus integration methods and three
consensus mechanisms to adapt to diverse application scenarios.

To validate the efficacy of this crowd-sourcing approach, we perform an array of eval-
uations. First, we analyze dependency overlaps among open-source Maven projects on
GitHub over the past three years. The results reveal significant dependency overlaps among
distinct projects, suggesting that newcomers can reuse previously uploaded analysis results.
Even projects analyzed for the first time on this platform can save approximately half of
the local analysis task time. Moreover, we analyze the performance impact of introducing
this crowd-sourcing platform from the perspectives of both platform users and providers.
Evaluating client-side plugin execution times at different hit rates demonstrates that the
platform expedites users’ access to analysis results. Additionally, experiments involving
server-side call graph generation and selection of answers by comparing call graphs with a
specific count indicate that employing Voting mechanisms effectively reduces the server’s
workload.

Our research underscores that constructing a software analysis platform via crowd-
sourcing is advantageous for both platform providers and users.
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