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Abstract 
The 3D point cloud representation of building holds significant importance in 

developing a comprehensive smart city model. However, due to the substantial volume 

of point cloud data and its inherently unstructured nature, accomplishing semantic 

segmentation of the point cloud poses a formidable challenge. Recent years have 

witnessed substantial advancements in employing deep learning techniques for point 

cloud segmentation. Both PointNet and PointNet++ have demonstrated their prowess 

in managing point cloud data. In the context of this study, we harness the potential of 

DGCNN for segmenting building point clouds. DGCNN plays a pivotal role in 

partitioning the input point cloud, thereby influencing the sensor domain's network 

range. Consequently, this research delves into the role of parameter k in K-NN (K-

Nearest Neighbors) and its implications. The findings illustrate that augmenting the 'k' 

value contributes to enhancing the overall precision of DGCNN. Nonetheless, complete 

precision in segmenting every module cannot be assured. The research objectives in the 

study is building façade, and the targets are windows, walls, balconies and doors. In 

this study, the key parameters are the values of 'k' and the 'block size.' Experiments were 

conducted by varying the values of these two parameters to obtain different 

segmentation results of building facade point clouds. Notably, setting k to 20, block 

size to 1m achieves an overall accuracy rate of 89.75%, a mean accuracy rate of 85.03%, 

an IoU of 76.24%, while elevating k to 30 and block size to 1m results in a heightened 

accuracy rate of 95.74%, a mean accuracy rate of 89.37%, an IoU of 81.52%. 
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1. Introduction 
In Section 1.1, current situation and difficulty of application of 3D point cloud is 

introduced. In Section 1.2 and 1.3, semantic segmentation and deep learning on 3D data 

are introduced. In Section 1.4, the main research question and related sub-questions are 

proposed. 

1.1  Overview 

In recent years, the creation and manipulation of three-dimensional (3D) urban building 

models have attracted considerable attention from a multitude of researchers. This surge 

in interest can be attributed to its relevance across diverse domains, including 

vegetation monitoring [1], aiding navigation for autonomous driving vehicles [2], 

constructing environmental models [3], facilitating the development and interaction 

within virtual reality environments [4], and numerous other applications. To tackle 

these challenges, point clouds have emerged as a pivotal data source. Over the past 

decade, Light Detection and Ranging (LiDAR), a prominent remote sensing technology, 

has gained prominence for capturing extensive volumes of 3D point clouds, which 

subsequently serve as fundamental input datasets for the aforementioned applications. 

However, the practical implementation of these endeavors encounters substantial 

computational overheads when processing such vast point cloud datasets for generating 

corresponding models or conducting associated computational analyses [5]. 

Concurrently, challenges persist in terms of managing building information during the 

modeling process [6]. This situation becomes particularly pronounced when the 

modeled buildings encompass an array of non-rectilinear elements (e.g., curved 

windows) and intricate geometric components. 

1.2  Semantic Segmentation 

However, unlike non-semantic segmentation, the concept of semantic segmentation 

involves the assignment of specific semantic information to each individual point. In 

the context of the previously mentioned applications, particularly in the reconstruction 

of three-dimensional urban area models, segmentation, especially in its semantic form, 

plays a crucial and indispensable role. In the field of computer vision terminology, 

segmentation entails the classification of point clouds into coherent regions 

characterized by shared properties [7]. In the context of semantic segmentation, this 

process goes further, partitioning the input point cloud into distinct sections, each with 

its unique semantic significance. Consequently, each section receives a label 

corresponding to one of the predefined semantic classes. Beyond its application in the 

creation of 3D urban models, semantic segmentation finds utility in various other 

domains. For example, in the realm of robotics, segmentation can be leveraged to 

categorize objects in a robot's immediate surroundings. This proves invaluable as these 

semantic labels enhance the robot's ability to distinguish individual objects within its 

environment, thereby enabling informed decision-making. 

 

Given the increasing demand for 3D building models in domains such as environmental 
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modeling and urban planning, the matter of semantic segmentation for building facades 

has gained heightened importance. This is especially relevant to the intricate 

segmentation of elements such as windows and doors within Level of Detail 3 (LoD3) 

building models in the CityGML format [8]. Current approaches to facade segmentation 

typically rely on grammatical rules or rudimentary computer vision techniques [9]. 

Although these methods produce reasonably satisfactory results, they still face several 

challenges. 

 

On one hand, these grammar-based rules are derived from architectural principles that 

often lack robustness [10]. Moreover, the architectural diversity worldwide means that 

the existing grammar rules inadequately cover the full range of facade styles and types 

[11]. Conversely, some basic computer vision methods, such as edge detection and 

region growing, depend on local gradients or variations in local average grayscale 

values [10]. Consequently, these methods may lack versatility and be susceptible to 

noise interference. In general, these conventional methodologies exhibit inherent 

limitations. 

 

1.3 Deep Learning 

Over the past decade, significant strides in comprehending 3D sensed data have been 

facilitated by the integration of deep learning methodologies. Due to their relevance 

across a wide spectrum of applications, spanning from indoor robotics navigation to 

nationwide remote sensing, there is a growing demand for algorithms capable of 

autonomously comprehending and categorizing 3D sensed data, including point clouds 

[12]. To tackle the complexities involved in processing 3D point clouds, numerous 

frameworks grounded in deep learning principles have emerged, notable among them 

being PointNet [13] and PointNet++ [14]. These frameworks exhibit substantial 

potential for enhancing performance across various domains, including classification, 

segmentation, and more. Consequently, deep learning, as a formidable approach, is 

poised to drive continued progress in 3D point cloud processing. 

 

Historically, traditional techniques for 3D point cloud tasks have often relied on 

meticulously engineered features, such as normals, in conjunction with specific 

classifiers. These methods have frequently yielded satisfactory results [15]. The 

foundation of these handcrafted features is often rooted in the geometric and frequency 

attributes of point clouds. However, extracting crucial handcrafted features requires a 

deep understanding of the domain and significant expertise [15]. In contrast, deep 

learning algorithms inherently possess the capability to autonomously learn what are 

referred to as computer-generated features. Nevertheless, this typically entails the use 

of intricate network architectures and a substantial computational investment [15]. 
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1.4 Research question and Sub-questions 

This research endeavor revolves around a central inquiry: How can a deep learning 

framework be effectively leveraged to achieve both high accuracy and efficiency 

in point cloud semantic segmentation for building facades? The research objectives 

in the study is building façade, and the targets are windows, walls, balconies and doors. 

Additionally, a set of subsidiary questions has been formulated: 

 

⚫ What is the data distribution of research objectives? 

⚫ What strategy is best suited for the training process of the deep learning 

framework? 

⚫ Which evaluation metrics should be carefully selected to comprehensively 

assess the performance of the framework? 

⚫ To what extent does the segmentation outcome align with the established 

ground truth? 

⚫ How does the performance of the applied deep learning framework compare 

to alternative deep or non-deep learning frameworks? 

⚫ What is the effect of having more classes, like four in the study, instead of two 

(like windows and walls)? 

 

These questions collectively form the core of this research, aiming to address critical 

aspects of point cloud semantic segmentation for building facades using deep learning 

techniques. 
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2. Related Work 
In this section, we will review previous deep learning methods for point cloud analysis 

briefly. Considering the procedure, point cloud semantic segmentation is quite similar 

to clustering-based point cloud segmentation. But different from non-semantic point 

cloud segmentation, point cloud semantic segmentation labels each semantic 

information for each point, which is more flexible compared to clustering-based method, 

[16]. 

 

2.1 PointNet and PointNet++ 

PointNet, [13], marked a pivotal moment by introducing a novel approach for 

processing point clouds directly. It employed shared multi-layer perceptrons (MLPs) to 

capture local patterns and symmetric functions to aggregate point-wise information. 

PointNet++, [14], an extension of PointNet, addressed the limitations of processing 

global and local features separately. It introduced a hierarchical network that 

hierarchically grouped points to capture both local and global context, significantly 

improving segmentation accuracy and robustness. 

 

2.2 Graph Convolutional Networks (GCNs) 

Graph Convolutional Networks (GCNs), [46], harnessed the inherent graph structure of 

point clouds for segmentation. GCNs captured both local and global information by 

aggregating features from neighboring points in the graph. This approach proved 

promising, particularly in capturing long-range dependencies within point clouds. 

 

2.3 Attention Mechanisms 

Attention mechanisms, inspired by their success in natural language processing, have 

found their way into point cloud segmentation. These mechanisms enable models to 

attend to informative points while filtering out noise. The integration of self-attention 

mechanisms, akin to Transformer architectures, [47], has notably enhanced 

segmentation accuracy and robustness, particularly in complex scenes. 

 

2.4 Weakly Supervised Learning 

In scenarios with limited labeled data, weakly supervised learning approaches have 

gained prominence. Methods like pseudo-labeling and self-training, [48], leverage 

unlabeled data to boost model performance, expanding the applicability of point cloud 

segmentation in practical, data-scarce environments. 

 

2.5 Transfer Learning and Pretrained Models 

Transfer learning has played a pivotal role in point cloud segmentation. Pretrained 
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models, initially trained on large-scale datasets such as ModelNet, [49], have been fine-

tuned for specific tasks. This approach reduces the demand for extensive labeled data 

and accelerates model convergence, making it highly practical for real-world 

applications. 

 

2.6 Point Cloud Augmentation 

Data augmentation techniques specific to point clouds have also emerged. These 

methods manipulate point cloud data by applying transformations like rotation, 

translation, and scaling. Augmentation techniques enhance model robustness by 

diversifying the training data, allowing models to generalize better across various point 

cloud scenarios. 

 

2.7 Multimodal Approaches 

Some recent efforts have explored the integration of multiple modalities, such as color 

and intensity data, with 3D point clouds, [14]. These multimodal approaches leverage 

complementary information to improve segmentation accuracy, especially in scenes 

with complex texture and color variations. 

 

In summary, deep learning has ushered in a new era for point cloud segmentation. 

Methods like PointNet, PointNet++, GCNs, attention mechanisms, weakly supervised 

learning, and transfer learning have significantly improved the accuracy and 

adaptability of segmentation models. As the field continues to evolve, future research 

is expected to address challenges related to noisy data, scalability, and real-time 

applications, pushing the boundaries of what is achievable in point cloud segmentation 

using deep learning methods. 
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3. Data Pre-processing 
In Section 3.1, the data used in the study is introduced. In Section 3.2, the denoising 

and labeling work are introduced. In the Section 3.3, the downsampling methods are 

introduced. 

3.1 Data Source 

The 3D point cloud dataset related to buildings has been sourced from Nanjing 

University of Information Science and Technology, encompassing instructional and 

dormitory structures. The data acquisition process involves the use of the RIEGL VZ 

2000i 3D laser scanner, which boasts an impressive scanning accuracy of 3mm and a 

maximum measurement range spanning 2500m. In conjunction with the Riegl system, 

a Nikon camera is employed to capture color information simultaneously with the point 

cloud data, proving particularly suitable for scenarios focused on building scanning. To 

comprehensively capture the structures of the buildings, 4 to 5 scanning stations are 

strategically positioned to ensure a comprehensive representation. Furthermore, 

multiple facades of buildings sharing the same architectural style are also subjected to 

scanning to provide a thorough dataset. 

 

The study focuses on 9 building facades, from which point cloud data is extracted and 

filtered. Among these, six facades are allocated for training, one for validation, and the 

remaining two for testing. 

 

The composition of the dataset utilized in this study is summarized in Table 1. This 

table presents an overview of the training, validation, and testing data, encapsulating 

the essential information for each category. 

Table 1: Overall introduction of data 

 Number of Points Appearance Tree Occlusions Role 

F1 1052303 

 

Yes Training 

F2 942594 

 

Yes Training 

F3 1064566 

 

Yes Training 

F4 640378 

 

Yes Training 

F5 751844 

 

Yes Training 
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F6 352646 

 

Yes Training 

F7 1200791 

 

No Validation 

F8 547167 

 

No Testing 

F9 1300333 

 

No Testing 

 

 

3.2 Denoising and labeling of point cloud data 

It is evident that the original building point cloud dataset contains a significant amount 

of extraneous points. Consequently, it becomes imperative to undergo a denoising 

process and extract the building's facades. Facade extraction can be achieved through 

either automated or manual methods. Given the abundance of redundant and 

interference-laden information within the experimental data, and considering the 

relatively manageable nature of extracting building facades, manual extraction is the 

preferred approach. 

 

During the building facade extraction process, the choice of software for visualizing the 

building point clouds holds significant importance. For this experiment, the primary 

software used for visualizing point cloud data is Cloud Compare. Furthermore, Cloud 

Compare also serves as the platform for subsequent point cloud calibration tasks. 

 

 

 

 
Fig 1: Manual denoising 

 

The architectural point cloud obtained through this experiment contains a plethora of 

intricate features, including walls, windows, air conditioners, doors, and various other 

building components. The research primarily concentrates on windows, the exterior 

walls, the balconies and the doors of the buildings. The extraction process entails 

manual delineation of targets and the identification of various attribute features present 
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on the building facades. Furthermore, during the processing phase, distinctive 

structures that require differentiation are singled out. The ultimate goal of this endeavor 

is to curate datasets that will serve as the basis for upcoming network training, 

validation, and testing procedures. 

 

Fig 2: labeled building point cloud 

 

3.3 Down-sampling 

Due to the voluminous and unordered nature of point clouds, direct processing involves 

significant computational overhead when seeking neighboring points. To address this 

challenge, a common approach is to down-sample the point cloud. This strategy 

involves converting the operations conducted on the entire point cloud into operations 

performed solely on the down-sampled points. This effectively reduces the 

computational workload significantly. 

 

In this study, voxel down-sampling is selected. Voxel down-sampling is a data reduction 

technique employed in 3D point cloud processing. It entails partitioning the point cloud 

into discrete, regularly sized cubic volumes known as "voxels." This process serves the 

purpose of decreasing the data resolution while retaining the inherent structural 

information within the point cloud. 

 

 

 

 

 

Fig 5: Comparison before and after voxel down-sampling 
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The original point cloud dataset, before the application of down-sampling, contains 

3,011,839 points. After the down-sampling process, the point cloud dataset has been 

reduced to 911,095 points. 
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4. Method 
In Section 4.1, the principle of DGCNN model is introduced with the loss function. In 

Section 4.2, the geometric method is introduced, which could also be used to complete 

the segmentation task on simple facades. 

 

4.1 Network Design 

4.1.1 DGCNN Network Architecture 

DGCNN (Dynamic Graph Convolutional Neural Network) [41] is primarily built upon 

the foundation of PointNet [13]. In this architecture, the entire point cloud dataset serves 

as input, and the model directly produces segmentation results. Both DGCNN and 

PointNet are end-to-end neural network structures designed to seamlessly process point 

cloud data from input to output. 

 

 

 

 

 

Fig 6: DGCNN Network Architecture 

 

The DGCNN (Dynamic Graph Convolutional Neural Network) architecture is 

specifically designed for semantic segmentation tasks on point clouds. Each input point 

in this architecture typically consists of three features representing coordinates such as 

x, y, and z. DGCNN extends the PointNet classification model by combining global 

feature vectors with local features generated using the EdgeConv operation [41]. 

 

In the segmentation model, a spatial transformation block is used to align the input point 

cloud by applying a 3x3 matrix. This matrix, expected to be orthogonal, is estimated 

during the training process. The EdgeConv operation plays a pivotal role in integrating 

local features. The dimension 'f' of edge features for each point is determined by 

applying a multi-layer perceptron (MLP), where the number of neurons in each layer 

of the MLP is denoted as {a_1, a_2, ...}. After pooling the edge features, a tensor of 
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shape (n × a_n) is generated. 

 

For the purpose of this study, DGCNN is employed for the semantic segmentation of 

point clouds, wherein the entire set of points is input into the network to produce a 

semantic label for each individual point. DGCNN builds upon a foundational version 

of PointNet by integrating local features using edge convolution operations (EdgeConv) 

instead of traditional MLPs. In constructing the architecture, DGCNN establishes a 

directed graph G = (V, E) that represents the internal local structure of the point cloud, 

where V = {1, ..., N} represents vertices, and E ∈ V × V represents edges. This graph 

can be as simple as a k-nearest neighbor (k-NN) adjacency graph. Rather than directly 

convoluting point features, DGCNN calculates K edge features related to the nearest 

neighboring points for each point. This process facilitates the extraction of local 

features from the point cloud, making it suitable for semantic segmentation tasks. 

 

4.1.2 Classification of Building Components Based on DGCNN 

The point cloud data is characterized by its massive and uneven nature, necessitating a 

process of division into blocks for efficient computation. Each block is designed to 

contain 4096 points to meet the neural network's parameter requirements. Blocks with 

fewer than 4096 points undergo upsampling and integration to reach this standard, 

while dense blocks are resampled to reduce point operations to 4096 points. 

 

Concerning feature dimensions, the coordinates of the original point cloud, post-

blocking, undergo centering and normalization. All information derived from original, 

centered, and normalized coordinates is merged and incorporated into the point cloud's 

attribute data, including semantic information. Point cloud blocks serve as processing 

units, with their centers established as origins for establishing a coordinate system. 

Centralization involves recalculating point cloud coordinates with respect to the new 

coordinate system. Meanwhile, normalization entails linearly transforming original 

coordinates to a range between 0 and 1. 

 

The point cloud's annotation information in this study encompasses four categories: 

windows, walls, balconies and doors. For each point cloud, probability values are 

computed for each of the three aforementioned types to facilitate predictions. The 

category with the highest probability value determines the point's classification. During 

neural network training, the maximum probability value and the annotation work 

together to calculate the loss, refining network parameters through backpropagation. To 

ensure the uniformity of contours within the same category, point cloud blocks are 

batched for each training round. 

 

To explore the viability of DGCNN with aerial point clouds and to assess the effects of 

different effective ranges, experiments were conducted using five block sizes (10m, 3m, 

1m, 0.5m, and 0.1m) and five k values (20, 25, 30, 35, and 40). After comparing the 
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performance of distinct configurations, the default neighborhood size k=30 was 

retained, while block sizes were altered. Subsequently, the block size that yielded the 

best segmentation results was used to investigate the influence of varying k values. 

 

4.1.3 Loss Function Design 

The loss function [42] serves as a metric to assess the performance of a model. A higher 

loss value indicates poorer model performance. In the context of neural networks, the 

primary objective is to optimize parameters to minimize the loss function, thereby 

identifying the optimal weight values that improve overall network performance. The 

loss layer is responsible for aligning predicted values with actual values within the loss 

function, resulting in the current loss value. This loss value is then propagated backward 

through the network layers for further training, ultimately leading to improved neural 

network performance and the pursuit of minimal loss. 

 

Both the classification and segmentation tasks in this study involve the classification of 

point clouds. In neural networks, the cross-entropy loss function is commonly used for 

classification tasks. This function accelerates model optimization and enhances 

efficiency, especially when the model's performance is suboptimal. By significantly 

adjusting parameters, the cross-entropy loss function expedites training and reduces 

training time. The essence of the cross-entropy function lies in assessing the 

discrepancy between actual values and predicted values, making it a suitable choice for 

classification tasks. 

 

The formula for the cross-entropy loss function is as follows: 

( ) ( )
1

ln 1 ln 1
x

C y a y a
n

= − + − −    

Among these metrics, C represents the loss value, n is the number of samples, x is the 

dimension of the prediction vector, y is the true value, and a is the predicted value. 

 

In addition, due to the uneven distribution of number of point cloud of four classes, 

relevant weight coefficients will be added to the loss function to try out the impact of 

data skew. 

 

In this experiment, the evaluation of all conducted experiments relies on several 

performance metrics. The overall accuracy is determined by dividing the count of 

correctly classified points across all categories by the total number of predictions. 

Additionally, due to the varying number of points within different categories (e.g., 

significantly fewer points from windows compared to walls), the average accuracy for 

each category is also computed. 

 

Furthermore, the evaluation includes the calculation of the average Intersection over 

Union (IoU) for each class. IoU is a widely used metric in semantic segmentation tasks. 
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For point cloud data, IoU for a particular class is determined through the following 

formula: 

 

𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠
 

 

In essence, IoU measures the overlap between the predicted and true class by 

considering the common points (intersection) and the total points (union) associated 

with that class. This metric provides insights into the segmentation accuracy for each 

class, serving as an important benchmark in evaluating the model's performance. 

TP
IoU

TP FP FN
=

+ +
 

In this paper, the following terms are of specific significance: 

 

- TP (True Positives) represents the count of correctly predicted window point clouds. 

- FP (False Positives) denotes the number of point clouds inaccurately predicted as 

windows. 

- FN (False Negatives) indicates the count of point clouds incorrectly predicted as non-

windows. 

- TN (True Negatives) pertains to the number of point clouds accurately predicted as 

non-windows. 

 

To comprehensively evaluate the model's performance, a confusion matrix is 

established. This matrix provides a detailed breakdown of information for all classes, 

including TP, FP, FN, and TN values. It serves as a valuable tool for assessing the 

model's predictive capabilities across various categories. 

 

4.2 Geometric Method 

In addition to the deep learning approach, another method could be employed to 

accomplish the segmentation task. 

 

In this study, a segmentation approach is proposed for point clouds representing 

building facades. The primary objective of our work is to categorize points into four 

classes: wall, door, window, and balcony. The method leverages two key features: the 

distance of each point to the best fitting plane and the number of connected points. 

 

The initial binary segmentation, which distinguishes between "wall" and "non-wall" 

points based on their distances to the best fitting plane, serves as the foundation of our 

approach. This binary categorization is particularly effective for simple facades, where 

a large distance corresponds to "non-wall" and a small distance corresponds to "wall." 

However, with the introduction of more complex building elements, such as doors and 

balconies, further refinement is necessary. 



15 

 

 

To address this challenge, a multi-step classification process is proposed. For points 

classified as "non-wall" due to their significant distances from the best fitting plane, we 

further classify them into "door," "window," or "balcony" based on the number of 

connected points and their respective distances to the facade. 

 

Large Number of Connected Points: 

When a specific point is surrounded by a substantial number of connected points, it 

typically indicates the presence of a large, contiguous structure in the vicinity. This 

configuration is often associated with balconies on building facades. Balconies are 

prominent architectural features protruding from the facade, and they are typically 

represented by multiple closely adjacent points. The abundance of connected points in 

this context can be attributed to the relatively extensive spatial extent of balconies, 

necessitating a multitude of points to accurately capture their geometric characteristics. 

 

Moderate Number of Connected Points: 

A moderate number of connected points suggests the presence of some adjacent points 

in the vicinity of a specific point, although not as numerous as observed for balconies. 

This configuration is commonly encountered in the context of doors. Doors on building 

facades typically represent relatively smaller openings, and the surrounding points are 

indicative of the door's boundary and shape. The intermediate quantity of connected 

points aligns with the characteristic geometric properties of doors. 

 

Few Connected Points: 

A small number of connected points indicates that only a limited subset of points in the 

vicinity is adjacent to a specific point, in contrast to the more extensive connectivity 

observed for balconies or doors. This scenario is often associated with windows. 

Windows on building facades typically manifest as smaller openings, and the relatively 

sparse distribution of connected points suffices to capture their geometric attributes 

accurately. The limited number of connected points corresponds with the characteristic 

features of windows. 

 

This categorization methodology, based on the quantity of connected points, serves as 

a rudimentary segmentation strategy, aimed at distinguishing different architectural 

elements such as balconies, doors, and windows based on point density. The 

effectiveness of this approach hinges on the density and quality of point cloud data, as 

well as the geometric characteristics of the architectural elements in question. Typically, 

balconies exhibit the highest number of connected points, followed by doors, while 

windows display the lowest connectivity. This represents a common geometric trait that 

can aid in the automated segmentation of various components of building facades. 
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5. Results 
In Section 5.1, training settings would be generally introduced, including training data, 

validation data and test data, plus other parameters such as batch_size and epoch. In 

Section 5.2, visualized predicted results would be shown and be compared with the 

ground truth, and some accuracy indices (Acc, mAcc, IoU) with different parameters 

settings would be displayed. In Section 5.3, results of geometric method are also shown. 

In Section 5.4, how different training settings lead to better / worse results would be 

discussed. In Section 5.5, the performance of deep learning model in this paper would 

be compared with the expected performance of other methods. 

5.1 Training Settings 

In order to assess the impact of different parameter configurations on point cloud 

segmentation accuracy, this study explores variations in block size and the number of 

nearby points, denoted as k. Specifically, block sizes of 1 and 10 are examined, and k 

values are set at 10, 20, and 30. 

 

For the training process, a NVIDIA GeForce RTX 3090 GPU with 24GB of graphics 

memory was used. During training, the batch size was set at 8, which means that the 

input point cloud data is divided into 8 segments for simultaneous training. The training 

process consists of 100 epochs, indicating a total of 100 iterations. Network 

optimization was performed using the Adam optimizer, with an initial learning rate set 

at 0.001. 

 

5.2 Results and analysis (deep learning method) 

Table 2 compiles the quantitative outcomes of point cloud semantic segmentation using 

distinct parameter configurations during testing. Notably, with a default k value of 20, 

employing a block size of 1 meter yields the highest segmentation accuracy: Accuracy 

(Acc) at 89.75%, Mean Accuracy (mAcc) at 85.03%, and Intersection over Union (IoU) 

at 76.24%. This result underscores that a smaller block size setting is more conducive 

to the extraction of window and door point clouds. A larger block size might lead the 

network to focus on the overall wall and balcony features while potentially disregarding 

intricate structural details. 

 

With the block size set to 1 meter, a k value of 30 attains the optimal segmentation 

accuracy: Acc of 95.74%, mAcc of 89.37%, and IoU of 81.52%. This observation 

indicates that greater k values correspond to heightened segmentation accuracy. Larger 

k values allow the edge convolution (EdgeConv) to capture a richer array of edge 

features, which in turn reflects an increased capacity to extract local features. However, 

excessively large k values may result in mixed features of different class, such as 

balconies and walls, undermining point cloud segmentation. Additionally, extremely 

large k values could impede program execution due to limitations in computer graphics 

card performance. 
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Table 2: Segmentation accuracy for different parameter settings 

Block_size(m) k Acc(%) mAcc(%) IoU(%) 

1 20 89.75 85.03 76.24 

10 20 82.14 77.62 70.23 

1 10 86.01 80.26 73.57 

1 30 95.74 89.37 81.52 

 

Table 3: Distribution of training data of four classes 

window wall balcony door 

0.11% 75.83% 22.55% 1.51% 

 

Figure 7 visually presents the segmentation results. 

 

 

            ground truth                        predicted 
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ground truth                        predicted 

                                          

 

Fig 7: Segmentation results of F8 (above) and F9 (bottom) 

 

Firstly, it is readily apparent from the highlighted regions in the figure 7, denoted by 

the red circles, that for other types of point clouds in proximity to the wall area, they 

are prone to being misclassified into the wall category. Whether it is a balcony, door, or 

window, the situation appears quite similar. One possible explanation is revealed 

through Table 3, where it is evident that the point cloud data for the wall category 

overwhelmingly dominates the data among the four categories. For these other 

categories of points in the vicinity of the wall area, when computing features, a 

significant portion of the points selected are likely to belong to the wall category, 
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resulting in them being erroneously assigned wall-like features. 

 

Furthermore, it is evident that points belonging to the "door" and "window" categories 

are prone to mutual misclassification. There are three potential reasons for this. Firstly, 

the data volume for these two categories of point clouds is relatively small, making it 

challenging for deep learning models to effectively generate meaningful semantic 

features from this limited data. Secondly, among all the training data, the relative 

positions of doors and windows on building facades are highly similar, which can easily 

lead to confusion. Lastly, it's important to note that among the selected facades for this 

experiment, there were no facades containing both "door" and "window" category 

points simultaneously. This absence of combined points from these two categories 

further complicates the deep learning model's ability to distinguish between them. 

 

5.3 Results and analysis (geometric method) 
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Fig 8: distances between points to best fitting plane of F8 (above) and F9 (bottom) 
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Fig 9: connected points of window(above), door(middle) and balcony(bottom) 

 

 

The analysis of the results reveals interesting findings that align with the theoretical 

framework discussed earlier. 

 

Distance Analysis: 

 

Figure 8 shows the distances between points to best fitting plane of F8 and F9. 

 

Balcony Points: The balcony points exhibit an average distance of approximately 0.1 

to 0.2 meter from the best fitting plane. This is consistent with the theoretical 

expectation, where balconies were hypothesized to have a relatively small distance 

from the plane, indicating they are positioned relatively close to the building facade. 

 

Window Points: Window points show an average distance of around -0.1 meter from 
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the best fitting plane. This negative distance suggests that window points are slightly 

recessed compared to the facade, which is in line with expectations. Windows are 

typically embedded within the building structure and would have a negative distance. 

 

Wall Points: Wall points demonstrate an average distance of approximately -0.1 to -

0.3 meter from the best fitting plane. This negative distance is consistent with walls 

being positioned behind the facade, further validating the theoretical framework. The 

variation in distance may be due to variations in wall thickness or surface irregularities. 

 

Door Points: Door points exhibit an average distance of around -0.3 to -0.4 meter from 

the best fitting plane. This considerable negative distance indicates that doors are 

typically set back significantly from the building facade, as expected. Doors are often 

deeply embedded within the building structure. 

 

Connected Points Analysis: 

 

Figure 9 shows the connected points of window, door and balcony. The window and the 

balcony come from F8, and the door comes from F9. For the distances between points 

to the best fitting plane and the size of them, figure 8 is a good reference. The analysis 

of connected points within equally sized regions for different architectural features 

provides additional insights: 

 

Window Points: The window point cloud has 2603 connected points within the defined 

region. This relatively lower number of connected points aligns with the theoretical 

framework, as windows are relatively small openings compared to doors and balconies. 

 

Door Points: Door point cloud exhibits a significantly higher count of 9105 connected 

points within the region. This is in line with the expectation that doors, being larger and 

more substantial architectural elements, would have a greater number of connected 

points. 

 

Balcony Points: The balcony point cloud shows the highest count of connected points, 

totaling 15086. This is consistent with the theoretical prediction that balconies, being 

larger and protruding structures, would have the most extensive set of connected points. 

 

The geometric method for architectural facade segmentation, although simple and 

interpretable, presents limitations when contrasted with deep learning techniques. It 

relies on manual feature engineering, making it less adaptable to complex architectural 

designs. Additionally, it may struggle with noisy or incomplete data and lacks the 

semantic understanding that deep learning models offer. While suitable for 

straightforward cases, this method falls short in handling the diversity, robustness, and 

scalability demands of more intricate architectural segmentation tasks, where deep 

learning-based approaches excel through data-driven feature learning and adaptability. 

The choice between these methods should consider the specific complexity and 
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requirements of the architectural analysis at hand. 

 

5.4 Settings discussion 

5.4.1 k 

a. Smoothness of Boundaries: 

Higher k-Value: Increasing the k-value tends to result in smoother boundaries between 

segmented regions. In the context of building facades, this means that the boundaries 

between different architectural elements (windows, walls, balconies, doors) are more 

likely to be less fragmented, leading to a cleaner segmentation output. 

Lower k-Value: Conversely, reducing the k-value can lead to sharper boundaries. 

While this might seem desirable for precisely separating different elements, it may also 

introduce noise and result in fragmented segments, potentially misclassifying small 

architectural features as separate entities. 

 

b. Over-Segmentation and Under-Segmentation: 

Higher k-Value: A high k-value can cause over-segmentation, where closely spaced 

elements (e.g., windows on a wall) are segmented as separate entities. In building 

facades, this might lead to an excessive number of segments, including sub-segments 

of windows or doors within walls. 

Lower k-Value: Conversely, a low k-value may lead to under-segmentation, where 

connected components are merged into a single segment. In this case, smaller 

architectural features like balconies or doors may be incorrectly merged with walls. 

 

c. Segmentation Accuracy: 

Optimal k-Value: Achieving optimal segmentation accuracy requires a balance 

between over-segmentation and under-segmentation. For building facade analysis, the 

optimal k-value should ensure that each class (windows, walls, balconies, doors) is 

well-distinguished while maintaining the coherence of architectural elements. 

 

d. Computational Efficiency 

Higher k-Value: A higher k-value can demand more computational resources, 

especially for large point clouds, as it involves processing a larger neighborhood for 

each point. However, it may lead to more efficient memory usage as fewer segments 

are generated. 

Lower k-Value: Lower k-values are computationally more efficient but might require 

post-processing steps to address over-segmentation issues, which can add complexity 

to the workflow. 

 

In summary, the choice of the k-value in kNN for building facade point cloud 

segmentation should consider the specific characteristics of the dataset, such as point 

density, noise level, and the size of architectural elements. An optimal k-value aims to 

achieve accurate segmentation while maintaining computational efficiency. 
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Additionally, post-processing techniques can be employed to refine the segmentation 

results, ensuring that architectural elements like windows, walls, balconies, and doors 

are correctly identified and distinguished from each other, which is crucial for precise 

building facade analysis. 

 

5.4.2 Block size 

The parameter "block_size" in this paper pertains to the unit size of the training data. 

The impact of block size variation would be analyzed from the following aspects: 

 

a. Block Size and Local Context: 

Smaller Block Size: When using a smaller block size, the local context considered by 

the network is limited. This means that the network may have difficulty capturing long-

range dependencies between points. In the context of building facades, where 

architectural elements like windows, balconies, and doors can span multiple points, 

smaller block sizes might not adequately capture the entire structure. 

Larger Block Size: Conversely, a larger block size allows the network to capture a 

more extensive local context, potentially aiding in recognizing larger architectural 

features. However, excessively large block sizes can introduce computational overhead 

and increase the risk of over-smoothing, where fine details are lost. 

 

b. Detail Preservation: 

Smaller Block Size: A smaller block size is more likely to preserve fine details in the 

point cloud. In building facades, this might be beneficial for capturing intricate 

architectural features such as ornate window frames or decorative elements on doors 

and balconies. 

Larger Block Size: A larger block size may tend to over-smooth the data, potentially 

causing the loss of fine details and reducing the ability of the network to distinguish 

between different architectural elements. 

 

c. Computational Efficiency: 

Smaller Block Size: Smaller block sizes are computationally more efficient as they 

involve processing fewer points in each block. This can be advantageous when dealing 

with large-scale point cloud datasets, where processing speed is a concern. 

Larger Block Size: Larger block sizes require processing more points in each block, 

which can increase computational demands. However, they might reduce the need for 

extensive post-processing steps to refine segmentation results. 

 

d. Segmentation Accuracy: 

Optimal Block Size: The optimal block size strikes a balance between capturing local 

details and maintaining computational efficiency. For building facade point cloud 

segmentation, it should be chosen to ensure that architectural elements like windows, 

walls, balconies, and doors are accurately recognized and differentiated while avoiding 

over-smoothing or loss of fine features. 



25 

 

 

e. Application-Specific Considerations: 

The choice of block size should consider the specific goals of the analysis. For 

applications that require detailed modeling and preservation efforts, a smaller block size 

may be preferred. Conversely, when efficiency and processing speed are critical, a 

larger block size might be more suitable. 

 

In summary, the block size parameter in Dynamic Graph CNN (DGCNN) for building 

facade point cloud segmentation should be carefully selected based on the specific 

characteristics of the dataset, the size and complexity of architectural elements, and the 

desired level of detail in the segmentation results. An optimal block size balances detail 

preservation, segmentation accuracy, and computational efficiency. It ensures that 

architectural features such as windows, walls, balconies, and doors are accurately 

segmented, making it a critical parameter in building facade analysis. 

 

5.5 Discussion 

The performance of the deep learning model in this paper will be compared with the 

anticipated performance of other methods, as illustrated in Table 4. 

Table 4: Comparison of (expected) performance of different methods. 

 Input 

Features 

Pre-

processin

g 

Feature 

Generatio

n 

Trainin

g Effort 

Computationa

l Cost 

Accurac

y 

PointNet x, y, z 

coordinates 

Yes Automatic high medium medium 

PCNN x, y, z 

coordinates 

Yes Automatic high high high 

Random 

Forest 

x, y, z 

coordinates

, hand-

crafted 

features 

Yes Manual and 

Automatic 

medium low low 

Geometri

c Method 

x, y, z 

coordinates  

Yes Manual low low low 

Ours x, y, z 

coordinates 

Yes Automatic high medium high 

 

When it comes to input features, the only approach requiring additional handcrafted 

features is the random forest method. Nevertheless, all these methods entail 

preprocessing steps. Concerning feature generation, the random forest method 

necessitates manually computed input features, while the geometric method relies on 

manually calculated distances. Regarding training efforts, the random forest method 

often demands a substantial number of prepared input features. In terms of 

computational costs, deep learning methods typically incur higher expenses compared 
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to non-deep learning methods. Regarding accuracy, deep learning methods tend to 

achieve superior levels of accuracy. 
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6.  Conclusion and Recommendations 
In Section 6.1, the research question and corresponding sub-questions are answered in 

order. In Section 6.2, several advices are proposed to improve the performance of deep 

learning model in the study. 

6.1 Conclusion 

At the outset of this paper, the research question and its sub-questions are introduced, 

and now we'll address them comprehensively. 

 

How can a deep learning framework be effectively leveraged to achieve both high 

accuracy and efficiency in point cloud semantic segmentation for building facades? 

This paper primarily delves into assessing the efficacy of the DGCNN network for the 

segmentation of building facade point clouds, systematically exploring various 

parameter configurations to identify the optimal settings for achieving the highest 

segmentation accuracy. The empirical results substantiate the effectiveness of DGCNN 

in accurately segmenting building facade point clouds, showcasing promising outcomes. 

The investigation incorporates two block sizes (1 and 10) and three k values (10, 20, 

30). Notably, the most favorable segmentation accuracy surfaces when block_size is set 

to 1 and k is set to 30, yielding impressive results: Accuracy (Acc): 95.74%, mean 

accuracy (mAcc): 89.37%; Intersection over Union (IoU): 81.52%. It's observed that 

elevating the k value contributes positively to enhancing overall segmentation accuracy. 

However due to large skew of data distribution between four classes, some research 

objectives such as window and door are not recognized properly.  

 

The main outstanding part of DGCNN is the network module dubbed EdgeConv. Point 

clouds inherently lack topological information so designing a model to recover 

topology can enrich the representation power of point clouds. To this end, EdgeConv is 

proposed, and it’s suitable for CNN-based high-level tasks on point clouds including 

classification and segmentation. EdgeConv acts on graphs dynamically computed in 

each layer of the network. It is differentiable and can be plugged into existing 

architectures. Compared to existing modules operating in extrinsic space or treating 

each point independently, EdgeConv has several appealing properties: It incorporates 

local neighborhood information; it can be stacked applied to learn global shape 

properties; and in multi-layer systems affinity in feature space captures semantic 

characteristics over potentially long distances in the original embedding, [41]. 

 

What is the data distribution of research objectives? 

As described in table 3, the distribution of training data of four classes is 0.11% for 

window points, 75.83% for wall points, 22.55% for balcony points, 1.51% for door 

points. 

 

What strategy is best suited for the training process of the deep learning 

framework? 
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This paper employs a training strategy that involves varying the values of parameters 

such as k and block_size. The aim is to assess the segmentation accuracy across 

different parameter settings. 

 

Which evaluation metrics should be carefully selected to comprehensively assess 

the performance of the framework? 

This paper employs three evaluation metrics to assess the performance of the 

segmentation approach. The first metric is overall accuracy, which is calculated by 

dividing the number of correctly classified points across all categories by the total 

number of predictions, providing a comprehensive measure of accuracy. Given the 

uneven distribution of points among different categories, such as the prevalence of wall 

points compared to window points, the paper also calculates the average accuracy for 

each category to provide a more balanced assessment. 

 

Additionally, the paper utilizes the average of the intersection over union (IoU) metric 

for each class. IoU is a widely used indicator in semantic segmentation tasks. It 

quantifies the degree of overlap between predicted and ground truth segments, offering 

insights into the precision and recall of the segmentation model for each class. 

 

To what extent does the segmentation outcome align with the established ground 

truth? 

As outlined in the results chapter, the optimal segmentation accuracy is achieved when 

utilizing a block size of 1 meter and a k value of 30. In this configuration, the accuracy 

metrics are as follows: Overall Accuracy (Acc): 95.74%, Mean Class Accuracy (mAcc): 

89.37%, and Intersection over Union (IoU): 81.52%. This combination of parameters 

yields the highest level of accuracy in segmenting the building facade point clouds. 

 

How does the performance of the applied deep learning framework compare to 

alternative deep or non-deep learning frameworks? 

In the Section 5.5 of the paper, a comparison is presented between the method employed 

in this study and several other deep or non-deep learning methods. It is evident that the 

approach adopted in this study typically necessitates pre-processing steps, but it excels 

in automatically generating features with a moderate training effort and computational 

cost. Furthermore, the accuracy of segmentation achieved by this method is notably 

high in comparison to the alternative techniques evaluated. 

 

What is the effect of having more classes, like four in the study, instead of two (like 

windows and walls)? 

the performance of the two-class and four-class segmentation objectives in terms of the 

following aspects: 

 

a. Accuracy: The accuracy of segmenting windows and walls in the two-class objective 

is typically higher due to the simpler classification task. In contrast, the four-class 

objective may exhibit lower accuracy, as distinguishing between balconies and doors 
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can be challenging due to their similar geometries. 

 

b. Complexity: The four-class objective is more complex in terms of both algorithmic 

implementation and computational demands. It requires handling additional classes and 

dealing with intricate geometric features, which can be computationally intensive. 

 

c. Application Suitability: The choice between the two-class and four-class objectives 

depends on the specific application. For applications primarily concerned with window-

to-wall ratios or energy efficiency assessments, a two-class objective may suffice. 

However, tasks involving detailed building facade modeling, such as architectural 

design or heritage preservation, benefit from the granularity of a four-class objective. 

 

 

6.2 Recommendations 

The paper acknowledges certain limitations and suggests potential avenues for future 

research and improvements: 

 

1. Enhancing Segmentation Algorithm Accuracy: The current study identifies areas 

for improvement in the automatic point cloud semantic segmentation algorithm. For 

instance, the employed EdgeConv approach focuses on the distances between point 

coordinates and their neighbors but overlooks the directional information between 

adjacent points. This might lead to a loss of local geometric details. Addressing this by 

incorporating directional information and revising implementation details, such as 

utilizing fast data structures for k-nearest neighbor queries, could result in improved 

accuracy. Exploring higher-order relationships between larger sets of points, instead of 

pairwise considerations, could also lead to enhanced performance. Introducing non-

shared transformer networks that adapt to specific local patches could add further 

flexibility to the model. 

 

2. Data Collection and Diversity: To mitigate the limitations posed by a small training 

set, collecting data from various buildings, including those from different periods and 

architectural styles, could be pursued. Expanding the training dataset with diverse 

window types and other architectural elements like air conditioners could balance the 

dataset and improve overall segmentation performance. This comprehensive dataset 

could facilitate rapid and automatic 3D laser point cloud-based modeling for various 

structures. 

 

3. DGCNN Network Enhancements: Future research could involve refining the 

DGCNN network architecture. This might encompass experimenting with different 

numbers of EdgeConv layers, and incorporating concepts from residual networks 

(ResNets) to enhance the model's feature representation capabilities. Such adjustments 

could lead to improved segmentation results and more robust feature learning. 
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By addressing these avenues for improvement, future research could contribute to the 

refinement and advancement of automatic point cloud semantic segmentation 

techniques, fostering more accurate and efficient analysis of 3D point cloud data for 

various applications. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

References 
[1] Höfle B, Hollaus M, Hagenauer J. Urban vegetation detection using 

radiometrically calibrated small-footprint full-waveform airborne LiDAR data[J]. 

ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 134-147. 

[2] Wang L, Huang Y, Hou Y, et al. Graph attention convolution for point cloud 

semantic segmentation[C]//Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition. 2019: 10296-10305. 

[3] Singh M, Laefer D F. Recent trends and remaining limitations in urban 

microclimate models[J]. Open Urban Studies and Demography Journal, 2015, 1(1). 

[4] Bui G, Morago B, Le T, et al. Integrating videos with LIDAR scans for virtual 

reality[C]//2016 IEEE Virtual Reality (VR). IEEE, 2016: 161-162. 

[5] Lehmann R, Lösler M. Multiple outlier detection: hypothesis tests versus model 

selection by information criteria[J]. Journal of surveying engineering, 2016, 142(4): 

04016017. 

[6] Laefer D F, Truong-Hong L. Toward automatic generation of 3D steel structures 

for building information modelling[J]. Automation in Construction, 2017, 74: 66-

77. 

[7] Nguyen A, Le B. 3D point cloud segmentation: A survey[C]//2013 6th IEEE 

conference on robotics, automation and mechatronics (RAM). IEEE, 2013: 225-

230. 

[8] Gröger G, Plümer L. CityGML–Interoperable semantic 3D city models[J]. ISPRS 

Journal of Photogrammetry and Remote Sensing, 2012, 71: 12-33. 

[9] Gadde R, Marlet R, Paragios N. Learning grammars for architecture-specific 

facade parsing[J]. International Journal of Computer Vision, 2016, 117: 290-316. 

[10] Kong G, Fan H. Enhanced facade parsing for street-level images using 

convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote 

Sensing, 2020, 59(12): 10519-10531. 

[11] Fathalla R, Vogiatzis G. A deep learning pipeline for semantic facade 

segmentation[J]. 2017. 

[12] Griffiths D, Boehm J. A review on deep learning techniques for 3D sensed data 

classification[J]. Remote Sensing, 2019, 11(12): 1499. 

[13] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d 

classification and segmentation[C]//Proceedings of the IEEE conference on 

computer vision and pattern recognition. 2017: 652-660. 

[14] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point 

sets in a metric space[J]. Advances in neural information processing systems, 2017, 

30. 

[15] Hsu P H, Zhuang Z Y. Incorporating handcrafted features into deep learning for 

point cloud classification[J]. Remote Sensing, 2020, 12(22): 3713. 

[16] Wang L, Huang Y, Hou Y, et al. Graph attention convolution for point cloud 

semantic segmentation[C]//Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition. 2019: 10296-10305. 

[17] Boulch A, Le Saux B, Audebert N. Unstructured point cloud semantic labeling 



32 

 

using deep segmentation networks[J]. 3dor@ eurographics, 2017, 3: 17-24. 

[18] Lawin F J, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic 

segmentation[C]//Computer Analysis of Images and Patterns: 17th International 

Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part I 

17. Springer International Publishing, 2017: 95-107. 

[19] Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 

3d shape recognition[C]//Proceedings of the IEEE international conference on 

computer vision. 2015: 945-953. 

[20] Tatarchenko M, Park J, Koltun V, et al. Tangent convolutions for dense prediction 

in 3d[C]//Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2018: 3887-3896. 

[21] Ben-Shabat Y, Lindenbaum M, Fischer A. 3dmfv: Three-dimensional point cloud 

classification in real-time using convolutional neural networks[J]. IEEE Robotics 

and Automation Letters, 2018, 3(4): 3145-3152. 

[22] Maturana D, Scherer S. Voxnet: A 3d convolutional neural network for real-time 

object recognition[C]//2015 IEEE/RSJ international conference on intelligent 

robots and systems (IROS). IEEE, 2015: 922-928. 

[23] Roynard X, Deschaud J E, Goulette F. Classification of point cloud scenes with 

multiscale voxel deep network[J]. arXiv preprint arXiv:1804.03583, 2018. 

[24] Graham B, Engelcke M, Van Der Maaten L. 3d semantic segmentation with 

submanifold sparse convolutional networks[C]//Proceedings of the IEEE 

conference on computer vision and pattern recognition. 2018: 9224-9232. 

[25] Riegler G, Osman Ulusoy A, Geiger A. Octnet: Learning deep 3d representations 

at high resolutions[C]//Proceedings of the IEEE conference on computer vision 

and pattern recognition. 2017: 3577-3586. 

[26] Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond 

euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. 

[27] Masci J, Boscaini D, Bronstein M, et al. Geodesic convolutional neural networks 

on riemannian manifolds[C]//Proceedings of the IEEE international conference on 

computer vision workshops. 2015: 37-45. 

[28] Monti F, Boscaini D, Masci J, et al. Geometric deep learning on graphs and 

manifolds using mixture model cnns[C]//Proceedings of the IEEE conference on 

computer vision and pattern recognition. 2017: 5115-5124. 

[29] Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional 

neural networks on graphs[C]//Proceedings of the IEEE conference on computer 

vision and pattern recognition. 2017: 3693-3702. 

[30] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on 

graphs with fast localized spectral filtering[J]. Advances in neural information 

processing systems, 2016, 29. 

[31] Wang L, Huang Y, Hou Y, et al. Graph attention convolution for point cloud 

semantic segmentation[C]//Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition. 2019: 10296-10305. 

[32] Thomas H, Qi C R, Deschaud J E, et al. Kpconv: Flexible and deformable 

convolution for point clouds[C]//Proceedings of the IEEE/CVF international 



33 

 

conference on computer vision. 2019: 6411-6420. 

[33] LLC, W. (2020). Multilayer perceptron. Retrieved 2020-12-06, from 

https://en.wikipedia.org/wiki/Multilayer_percept 

[34] Li J, Chen B M, Lee G H. So-net: Self-organizing network for point cloud 

analysis[C]//Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2018: 9397-9406. 

[35] Liu X, Han Z, Liu Y S, et al. Point2sequence: Learning the shape representation of 

3d point clouds with an attention-based sequence to sequence 

network[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 

33(01): 8778-8785. 

[36] LLC, W. (2021). Convolutional neural network. Retrieved 2021-01-17, from 

https://en.wikipedia.org/wiki/Convolutional_neural_n 

[37] Hua B S, Tran M K, Yeung S K. Pointwise convolutional neural 

networks[C]//Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2018: 984-993. 

[38] Groh F, Wieschollek P, Lensch H P A. Flex-Convolution: Million-scale point-cloud 

learning beyond grid-worlds[C]//Asian Conference on Computer Vision. Cham: 

Springer International Publishing, 2018: 105-122. 

[39] Wang L, Huang Y, Hou Y, et al. Graph attention convolution for point cloud 

semantic segmentation[C]//Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition. 2019: 10296-10305. 

[40] Atzmon M, Maron H, Lipman Y. Point convolutional neural networks by extension 

operators[J]. arXiv preprint arXiv:1803.10091, 2018. 

[41] Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. 

ACM Transactions on Graphics (tog), 2019, 38(5): 1-12. 

[42] Christoffersen P, Jacobs K. The importance of the loss function in option 

valuation[J]. Journal of Financial Economics, 2004, 72(2): 291-318. 

[43] Van Dyk D A, Meng X L. The art of data augmentation[J]. Journal of 

Computational and Graphical Statistics, 2001, 10(1): 1-50. 

[44] Wang X, Zhang D, Niu H, et al. Segmentation Can Aid Detection: Segmentation-

Guided Single Stage Detection for 3D Point Cloud[J]. Electronics, 2023, 12(8): 

1783. 

[45] Ziwen C, Wu W, Qi Z, et al. Visualizing point cloud classifiers by curvature 

smoothing[J]. arXiv preprint arXiv:1911.10415, 2019. 

[46] Kipf T N, Welling M. Semi-supervised classification with graph convolutional 

networks[J]. arXiv preprint arXiv:1609.02907, 2016. 

[47] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in 

neural information processing systems, 2017, 30. 

[48] Oliver A, Odena A, Raffel C A, et al. Realistic evaluation of deep semi-supervised 

learning algorithms[J]. Advances in neural information processing systems, 2018, 

31. 

[49] Wu Z, Song S, Khosla A, et al. 3d shapenets: A deep representation for volumetric 

shapes[C]//Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2015: 1912-1920. 

https://en.wikipedia.org/wiki/Multilayer_percept
https://en.wikipedia.org/wiki/Convolutional_neural_n

	New_master_thesis_proposal_部分1
	Additional Thesis

