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H I G H L I G H T G R A P H I C A L  A B S T R A C T

• Covalently patched the sulfur vacancies
of Transition Metal Dichalcogenides,
which decreased the density of surface
defect and improved its NO2 sensing
performance.

• The Fermi-level of 4-nitrothiophenol
healed MoS2 shift toward the valence
band demonstrate the n-doping process,
thereby increased the carriers of MoS2.

• 4-nitrothiophenol healed MoS2 per-
formed a higher NO2 response
(increased by 200 %) and lower limit of
detection (10 ppb).
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A B S T R A C T

Transition metal dichalcogenides (TMDCs) garner significant attention for their potential to create high- 
performance gas sensors. Despite their favorable properties such as tunable bandgap, high carrier mobility, 
and large surface-to-volume ratio, the performance of TMDCs devices is compromised by sulfur vacancies, which 
reduce carrier mobility. To mitigate this issue, we propose a simple and universal approach for patching sulfur 
vacancies, wherein thiol groups are inserted to repair sulfur vacancies. The sulfur vacancy patching (SVP) 
approach is applied to fabricate a MoS2-based gas sensor using mechanical exfoliation and all-dry transfer 
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methods, and the resulting 4-nitrothiophenol (4NTP) repaired molybdenum disulfide (4NTP-MoS2) is prepared 
via a sample solution process. Our results show that 4NTP-MoS2 exhibits higher response (increased by 200 %) to 
ppb-level NO2 with shorter response/recovery times (61/82 s) and better selectivity at 25 ◦C compared to 
pristine MoS2. Notably, the limit of detection (LOD) toward NO2 of 4NTP-MoS2 is 10 ppb. Kelvin probe force 
microscopy (KPFM) and density functional theory (DFT) reveal that the improved gas sensing performance is 
mainly attributed to the 4NTP-induced n-doping effect on MoS2 and the corresponding increment of surface 
absorption energy to NO2. Additionally, our 4NTP-induced SVP approach is universal for enhancing gas sensing 
properties of other TMDCs, such as MoSe2, WS2, and WSe2.   

1. Introduction 

Two-dimensional (2D) materials, especially transition metal chal-
cogenides (TMDCs), possess the characteristics of adjustable band gap, 
carrier mobility, large specific surface area, etc. [1,2], and have 
immense potential in the broad fields of optoelectronics [3–5], logic 
electronics [6], and sensors [7–9]. In recent years, researchers have 
found that the interaction between 2D materials and gas molecules can 
be significantly affected by the surface chemical state of 2D materials 
[10–13]. Therefore, their gas sensing performances could be modulated 
by modifying diverse organic molecules on the surface [14–17]. In 
general, the surface of TMDCs could be modified by organic molecules 
via covalent bonds [18,19] and non-covalent bonds [20,21]. Although 
non-covalent bond modification can promptly and non-destructively 
form a highly ordered molecular film on the surface of TMDCs, it is 
brittle to the change of external environments (such as humidity and 
stress), due to their weak binding strength between organic molecules 
and the surface of TMDCs [22]. The other approach is to modify TMDCs 
via covalently bonding. Recent research mainly used diazo compounds 
[23], olefins [24], and thiol sulfur compounds [25] to form C–S cova-
lent bonds on the surface of TMDCs. However, most of these methods 
have to suffer violent chemical reactions, which could easily lead to 
phase transition of TMDCs, causing the decline of their semiconductor 
performance and hindering their application in the field of gas sensors. 

Compare with the above methods, bonding organic molecules con-
taining sulfhydryl groups with the sulfur vacancies generated during the 
preparation of TMDCs would only affect the surface state of TMDCs and 
consequently maintain the semiconductor properties of TMDCs 
[18,26,27]. In 2012, Makarova et al. [28] employed two thiol-contained 
organic molecules (3-mercaptopropyl-trimethylsilane and dodeca-
nethiol) to modify MoS2 and found by scanning tunneling microscopy 
(STM) that chemical bonds rather than simple physical adsorption were 
formed between the thiol group and the sulfur vacancies on the surface 
of MoS2. Bertozzi et al. [29] treated MoS2 monolayer by vapor deposi-
tion method. Short-chain alkane thiols (butyl mercaptan) were evapo-
rated on the surface and bonded with the defects of MoS2. The repairing 
effect of thiol groups to the surface defects of TMDCs has been verified 
by fluorescence and Raman spectroscopy [30]. Meanwhile, by adjusting 
the species of organic molecules with thiol groups, the doping degree of 
organic molecules to TMDCs can also be effectively regulated [25,31]. 
With abundant alternative functional groups and π-conjugated electron 
transport channels, thiophenol derivatives have become a powerful 
candidate for covalently functionalized TMDCs. Paolo et al. utilized 
benzene 1,4-dithiol to bridge the adjacent MoS2 flakes through va-
cancies [32], which significantly promoted the interlayer charge trans-
port of MoS2, and dramatically improved the carrier mobility and Ion/Ioff 
ratio of MoS2, reaching 10− 2cm2V− 1s− 1, 104

, respectively. Sunkook et al. 
significantly improved the current and carrier concentration of MoS2 
through functionalizing MoS2 by sulfur vacancies using thiophenol de-
rivatives [25]. Besides, as for other 2D materials, Xu et al. fabricated 
chemiresistive gas sensors using thiophenol derivatives functionalized 
organic-metal chalcogenides, and realized an 852.6 % (Ig/Ia) response to 
10 ppm NO2 at room-temperature [33]. In summary, thiophenol de-
rivatives can be used to effectively modify the surface of TMDCs through 
repairing their sulfur vacancies with covalent bonds and their electrical 

properties could be regulated by altering the species of terminal groups 
in thiophenol derivatives [17,31]. Although a series of studies have 
devoted on SVP of TMDCs, most of them have only focused on the 
modification methodology and related physical properties [22]. As 
another important application, the effects of SVP on the gas sensing 
performance of TMDCs have not been studied so far. 

In this work, we repaired sulfur vacancies on mechanically exfoliated 
TMDCs including MoS2, MoSe2, WS2, and WSe2, and exceedingly 
improved their gas sensing properties with a new approach of SVP using 
π-conjugated p-nitrothiophenol (4NTP). Both experimental method 
analysis and theoretical calculations demonstrated that 4NTP success-
fully patched the sulfur vacancies of TMDCs, and the NO2 response 
enhancement of TMDCs is attributed to the n-type doping effect. The 
increasing number of carriers and the reduction of charge scattering 
centers ultimately enhance the gas sensing response of the TMDCs. The 
4NTP-MoS2 devices exhibited superior gas sensing performance toward 
NO2 (limit of detection is 10 ppb) among the reported TMDCs-based gas 
sensors so far. 

2. Experimental section 

2.1. Preparation of MoS2, MoSe2, WS2, and WSe2 nanosheets 

The mechanical exfoliation method was used to obtain MoS2 nano-
sheets from the bulk MoS2 crystals (SixCarbon Technology Shenzhen, 
China). To begin with, a piece of Nitto tape (Nitto Denko, Japan, SPV 
224P) was adhered to MoS2 crystal and gently peeled off. Then a 
translucent poly(dimethylsiloxane) (PDMS) stamp (Gel-Pak, USA, WF- 
30-X4) was covered tightly on the MoS2 sheets. By carefully removing 
the stamp, the MoS2 nanosheets could be stuck to the PDMS ultimately. 
The MoSe2, WS2, and WSe2 nanosheets were obtained by the same 
approach. 

2.2. Fabrication of gas sensors 

The inspection and selection of the MoS2 nanosheets were operated 
on a polarization microscope (Leica Microsystems, Germany, 
DM2700P). Then, by an all-dry transfer method, which transferred MoS2 
nanosheets from the PDMS stamp to the Cr (5 nm)/Au (60 nm) elec-
trodes pre-patterned on the SiO2 (280 nm)/Si wafer, the MoS2-based gas 
sensor was successfully fabricated. Other TMDCs-Based gas sensors were 
prepared similarly. 

2.3. Sulfur vacancy patching 

For thiophenol-based patching, 4NTP (96 %, Alfa Aesar) was dis-
solved in DMSO (99.9 %, Innochem) and ultrasonicated for 10 min. To 
repair sulfur vacancies of MoS2, 10 μL of 0.02 mol/L 4NTP, were lightly 
dropped onto the MoS2-based gas sensors. After being treated for 6 h, the 
MoS2-based gas sensors were washed by DMSO 3 times to rinse extra 
organic molecules. Then, eventually, they were dried in a vacuum oven 
for 2 h under 60 ◦C. 
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2.4. Characterization 

All the optical images were acquired by DM2700P polarization mi-
croscope under the reflection mode. AFM characterization was operated 
in ScanAsyst mode on an atomic force microscope (Bruker, USA, 
Multimode 8) using SCANASYST-AIR probes and KPFM characterization 
was conducted in the electronic and magnetic lift mode on the same 
apparatus using SCM-PIT-V2 probes. Confocal Raman and PL spectra 
were measured with the Raman microscope (RENISHAW, UK, inVia) 
under a 532 nm excitation wavelength before and after injecting the NO2 

gas in a quartz chamber. XPS measurements were performed in an ul-
travacuum vessel in a Thermo Fisher Scientific Escalab 250Xi using an Al 
Kα excitation source. 

2.5. Gas sensing properties tests 

All the gas sensing tests were carried out in the same environment at 
room temperature (25 ◦C) and a stabilized certain relative humidity 
range (25–30 %) using a home-built gas sensing system. Light-enhanced 
gas sensing method was used to acquire a swift response and recovery 

Fig. 1. (a) Schematic illustration of MoS2 after SVP. (b), (c) Optical images of the pristine MoS2 and 4NTP- MoS2 nanosheets. (d), (e) Corresponding AFM images of 
the pristine MoS2 and 4NTP-MoS2 nanosheets from (b) and (c), and the illustration of the line scan for specific data. 
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time using a light-emitting diode (LED) light source. The power density 
of LED was calibrated using a silicon photodiode sensor (Thorlabs, USA, 
S120VC). The relevant electrical measurements were performed utiliz-
ing Keithley 2450 source meter (Tektronix). 

2.6. Density functional theory calculation 

This work was performed using the Vienna Ab initio Simulation 
Package (VASP). We have employed first-principles to perform DFT 
calculations within the generalized gradient approximation using the 
Perdew–Burke–Ernzerhof formulation. To avoid interactions among 
layers, we built a vacuum space larger than 20 Å for the crystal structure. 
The cutoff energy was adopted as 400 eV, and the BZ was sampled with a 
Γ-centered k-point mesh of 5 × 3 × 1. The electronic energy was 
considered self-consistent when the energy change was smaller than 
10− 4 eV. In the calculation, the convergence criterion of the force is set 
to 0.01 eV Å− 1. The DFT-D2 method was used to consider the long-range 
van der Waals interactions. 

3. Results and discussion 

The TMDCs-Based gas sensors were fabricated from the bulk TMDCs 
crystals through mechanical exfoliation and all-dry transfer onto Cr/Au 
electrodes [34]. Unlike the ideal regular surface, a certain amount of 
sulfur vacancies are inevitably introduced on the surface and edge of 
TMDCs during exfoliation [31,35], which would reduce the carrier 
density and mobility of the material, thereby affecting device perfor-
mance. Through SVP engineering, the electronic and chemical proper-
ties of the material can be strategically altered or improved [36]. In this 
research, 4NTP, a typical thiophenol ramification, was selected as SVP 
candidate, whose nitro group has strong electron-withdrawing induc-
tion effect and electron-withdrawing conjugation effect. In dimethyl 
sulfoxide (DMSO) solution, the nitro group can delocalize the negative 
charge of the sulfhydryl anion to its oxygen atom which produces cor-
responding anion and then form the S–C bond with high-activity sulfur 
vacancies [25,37]. 

3.1. Morphology and spectroscopic characterization 

As shown in Fig. 1a, b and c, SVP was performed by dropping the 
4NTP onto the MoS2-based gas sensors (4NTP-MoS2), and the optical 
image of 4NTP treated MoS2 performed no obvious difference from 
pristine MoS2. Fig. 1d and e show atomic force microscopy (AFM) im-
ages of MoS2 before and after SVP in a 20 mM 4NTP solution for 6 h, 
respectively. It is noticed that the height of MoS2 nanosheet increases 
about 1.3 nm (from ~4.6 nm to ~5.9 nm), which is close to the size of 
4NTP molecular (9.75 Å [38]) and is consistent with the reports of the 
2D materials covalent functionalization [23,39,40]. 

To prove the thiophenol derivatives have successfully repaired the 

vacancies of TMDCs, we adopted a series of spectral characterizations to 
confirm the changes before and after SVP. As shown in Raman spectra 
(Fig. 2a), the in-plane A1g mode at 407.2 cm− 1 and the out-of-plane E1

2g 
mode at 382.2 cm− 1 of pristine MoS2 were measured. Compared to the 
pristine MoS2, the modification of 4NTP promoted redshift which cor-
responded to the improvement of the electron concentration owing to 
the increased electron–phonon scattering [41]. The 4NTP-MoS2 induced 
redshift of 0.318 and 0.627 cm− 1 respectively, indicating n-doping [23]. 
The obtained Raman test results keep in line with our following KPFM 
measurements and DFT calculation in the follow-up discussion, which 
provided a shred of explicit evidence that n-doping happened to 4NTP- 
MoS2. The PL spectra (Fig. 2b) of 4NTP-MoS2 showed an obvious 
redshift from 677.84 nm to 679.73 nm, which is generally ascribed to 
the n-doping from 4NTP or the elimination of p-type absorbates like O2 
or H2O [42–46]. Considering most of the O2 or H2O has been removed 
by our vacuum drying procedure, it is believed that the SVP predomi-
nated PL spectrum redshift. 

Micro-area X-ray photoelectron spectroscopy (XPS) was applied to 
characterize the chemical bond state of MoS2 and 4NTP-MoS2. The 
relevant 4NTP C 1 s XPS signal of the 4NTP-MoS2 (Fig. 2c) was con-
structed of C–NO2 bond and C–S bond, located at 288.5–289.5 and 
286–287.5 eV.[47] Compared to the pristine MoS2, the 4NTP-MoS2 after 
SVP possesses a distinct C-NO2 peak centered at 289.18 eV, which suc-
cessfully proved the existence of the C–N bond from 4NTP. Moreover, 
the presence of N–C and N–O verified the existence of 4NTP on MoS2 
(Fig. 4a, b). 

3.2. NO2 gas sensing properties 

The gas sensing experiments of pristine MoS2 and 4NTP-MoS2 were 
performed by a sophisticated home-built gas sensing system.[48] To 
minimize the baseline oscillation and accelerate the response/recovery 
speed (Figure S2), a 405 nm light source was applied to improve gas 
sensing performance. Fig. 3a shows the gas sensing performance of the 
pristine MoS2 and 4NTP-MoS2 with a NO2 concentration gradient under 
12 mW/cm2 405 nm light illumination. The gas sensing response of the 
sensors is defined as Equation (1): 

Response =

(
Rg − Ra

)

Ra
(1) 

where Rg is the resistance of gas sensors exposed to the NO2 atmo-
sphere and Ra is the resistance around the baseline. Fig. 3a illustrates the 
dynamic response of the pristine MoS2 and 4NTP-MoS2, with the NO2 
concentration ranging from 10 to 2000 ppb at room temperature. The 
4NTP-MoS2 exhibits an outstanding positive linear relationship between 
the response tested from 0.247 to 7.548 and the NO2 concentration 
ranging from 10 to 2000 ppb (Figure S1), which is a much higher 
response than that of pristine MoS2 (Fig. 3a). Furthermore, compared 
with the reported NO2 gas sensors, the 4NTP-MoS2 under illumination 

Fig. 2. The (a) Raman spectra, (b) comparison of photoluminescence (PL) spectra and (c) micro-area XPS spectra of C 1 s for the pristine MoS2 (blue) and 4NTP- 
MoS2 (red). 

X. Liu et al.                                                                                                                                                                                                                                      



Journal of Colloid And Interface Science 649 (2023) 909–917

913

has an extremely low LOD of 10 ppb (50 ppb for pristine). In comparison 
with the pristine MoS2, 4NTP-MoS2 response increased by about 200 % 
and maintained quick response/recovery speed (Fig. 3b). The pristine 
MoS2 and 4NTP-MoS2 presented six successive response-recovery curves 
toward 2 ppm NO2 with an average response of 5.198 and 9.148 
(Fig. 3c), which performed good stability. Furthermore, the 4NTP 
healed devices inherit excellent selectivity of MoS2 toward NO2 among 
numerous gases including NO, NH3, and acetic acid as illustrated in 
Fig. 3d. As shown in Fig. 3e, 4NTP-MoS2 maintained 92.7 % of initial 
response after 45 days. Even after 60 days, an average response of 70.8 
% was obtained, indicating reliable long-term stability of 4NTP-MoS2. 
To explore the humidity effect on the gas sensing performance of pris-
tine MoS2 and 4NTP-MoS2, the aforementioned gas sensors were 
exposed to different relative humidity (RH) from 20 % to 60 % and the 
corresponding gas sensing response toward 2 ppm NO2 was recorded 
(Fig. 3f). We found that the 4NTP-MoS2 performed high reliability when 
the RH was under 50 %. With the increment of RH both the pristine 
MoS2 and 4NTP-MoS2 performance would be suppressed and the same 
phenomena have also been reported in other NO2 gas sensors.[49–51] 
Besides, to verify the impact of DMSO on MoS2 performance, DMSO 
treated MoS2 and pristine MoS2 were tested under the same condition. 
As shown in Figure S3, the DMSO treated MoS2 performed no difference 
from pristine MoS2, indicating solvent has been completely evaporated. 

3.3. Gas sensing mechanism 

The NO2 absorption mechanism of TMDCs has been systematically 
explored in our previous work.[48,52] It is noted that when NO2 adsorbs 
to n-type MoS2 the electrons correspondingly transfer from n-MoS2 to 
NO2, the reduction of majority carrier ultimately increased the resis-
tance of n-MoS2. To verify the adsorption capacity of TMDCs for NO2 is 

enhanced after SVP, we analyzed the XPS spectra of pristine MoS2 and 
4NTP-MoS2 (full spectral of XPS in Figure S4). As shown in Fig. 4a and 
b, SVP MoS2 shows a prominent NO2 absorption peak at 405–407 eV, 
[53,54] indicating that 4NTP-MoS2 has a higher absorption ability to 
NO2 than pristine MoS2. KPFM was also adopted in situ to investigate the 
mechanism of NO2 absorption and the gas sensing performance 
improvement of MoS2 after 4NTP treatment. The surface potential also 
known as contact potential difference (CPD) is determined by the work 
function difference between the sample (Wsample) and the AFM tip (Wtip) 
(Equation (2)): 

CPD = (Wsample − Wtip)/e (2) 

where e is the elementary charge [39]. Fig. 4c and d show the KPFM 
images of MoS2 nanosheets before and after the SVP respectively. 
Through semiquantitative analysis, the equivalent doping effect could 
help to understand the essence of SVP and NO2 absorption. Firstly, as 
shown in Fig. 4d and e, the relative surface potential of the 4NTP-MoS2 
raised from − 57.1 mV to –32.2 mV after NO2 exposure, which indicates 
the Fermi level of the MoS2 is shifted toward the valence band. From 
another aspect, when NO2 gas is supplied, the NO2 molecules will absorb 
on the surface of MoS2 and extract electrons from MoS2 [13,23] 
(Figure S6), indicating an n-doping effect on MoS2. Secondly, the 
electron-withdrawing effect of nitro group on 4NTP could promote the 
sulfhydryl group to dissociate protons and form the corresponding 4NTP 
anion. Comparatively, the electron-donating group like amino group 
and methoxyl group could not facilitate this dissociation. The precise 
CPD and work function analysis of SVP in Figure S5 is in line with our 
hypothesis. After MoS2 was healed by 4NTP, the MoS2 Fermi level 
shifted toward the conduction band, this phenomenon proved this SVP 
process is n-doping. 

Fig. 3. Gas sensing performance of the pristine MoS2 (blue) and 4NTP-MoS2 (red) under 405 nm light illumination with a power density of 12 mW/cm2. (a) Exposed 
to several NO2 concentrations raising from 10 to 2000 ppb. (b) Dynamic response under 2 ppm NO2 with a precise response/recovery time. (c) Six-cycle response 
curve exposed toward 2 ppm NO2. (d) Selectivity of pristine MoS2 and 4NTP-MoS2 toward different gases. (e) Long-term stability from 0 to 60 days. (f) Humidity 
resistance response with the relative humidity increases linearly from 20 % to 60 %. 
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The DFT models were calculated to elucidate the charge transfer 
among 4NTP, NO2, and MoS2. The MoS2 nanosheet structure was built as 
a predominant interface region to interact with NO2 molecules. The 
most quintessential four highly symmetric models were firstly consid-
ered (B for NO2 on Mo-S bond, Ts for sulfur atom, Tm for Mo atom and H 
for hexagonal plane center). The adsorption energies of these NO2 
adsorption sites were calculated to obtain a stable adsorption model 
(Table S1) which confirmed that the model of NO2 above the sulfur 
atom (Ts) possesses minimum energy (Fig. 4f). Another key factor for 
the adsorption model was the angle between MoS2 and 4NTP. The angle 
between MoS2 and 4NTP was adjusted to 30◦, 45◦, 60◦, 75◦, and 90◦

(NO2 is placed at Ts site), respectively (Fig. 4g). The total energy of the 
system (Etot) was calculated and 90◦ has the lowest Etot (Table S2). 
Herein, we established and optimized a relatively stable model with the 
lowest Etot when the NO2 adsorption site is Ts and the angle between 
4NTP and MoS2 is 90◦. As shown in Fig. 4h, the adsorption energy of 
MoS2 for NO2 increases from − 2.1144 eV to − 2.2273 eV after SVP, 
proving that the adsorption capacity of MoS2 for NO2 increased after 
vacancies repair. Besides, electrons tend to accumulate on NO2 for 4NTP 
repaired MoS2 according to the charge density difference diagram (the 
blue lobes represent charge depletion and yellow ones represent charge 
accumulation). In conclusion, the 4NTP-MoS2 shows ultrahigh sensi-
tivity toward NO2 under room temperature owing to the n-doping 4NTP 
healing process increased the carriers of MoS2 and promoted the elec-
tron transfer from MoS2 to NO2. 

3.4. Universality test of TMDCs 

To further prove the universality of the SVP method, we prepared 
4NTP-WS2, 4NTP-WSe2, and 4NTP-MoSe2 based gas sensors via the 
same preparation method of 4NTP-MoS2 and monitored the response of 
NO2 with concentration gradients of 0.5–10 ppm before and after sulfur 

vacancy patching. As shown in Fig. 5, the response of the above TMDCs- 
based gas sensors has been improved after vacancies repair using 4NTP. 
It is indicated that this vacancy repair method is also universal to other 
TMDCs and could be used to enhance the NO2 adsorption of TMDCs. 

In Table 1, we summarized the representative research of TMDCs- 
based room temperature NO2 gas sensors in recent years. Compared 
with other types of TMDCs-based gas sensors, 4NTP-MoS2 has good 
performance in response, response/recovery time, long-term stability, 
and humidity stability. It is worth noting that the 4NTP-MoS2 has the 
lowest LOD among the reported TMDCs NO2 gas sensors, which could 
contribute to the 4NTP dominated MoS2 n-doping process. 

4. Conclusion 

In summary, we fabricated functionalized transition metal dichal-
cogenides through a sample solution process by 4-nitrothiophenol and 
systematically analyzed their gas sensing performance. Spectroscopic 
and surface analysis proved that 4-nitrothiophenol successfully healed 
MoS2 through the formation of covalent bonds. The MoS2 after sulfur 
vacancy patching showed higher gas sensing response (519 % to 914 %, 
2 ppm), and lower detect limitation to NO2 (50 ppb raise to 10 ppb). 
Through Kelvin probe force microscopy and density functional theory 
calculation, we attributed the phenomenon of enhanced gas response 
caused by sulfur vacancy patching to the enhancement of physical ab-
sorption of NO2 and carrier mobility (n-type doping) after vacancy 
repair, which would raise the number of electrons transferred to NO2. 
The sulfur vacancy patching approach we proposed offers a facile 
approach to modify the electrical property and improve gas sensing 
performance of transition metal dichalcogenides. 

Fig. 4. Micro-area N 1 s XPS spectra of the (a) pristine (blue) and (b) 4NTP-MoS2(red). KPFM images of the pristine MoS2 (c), 4NTP-MoS2 (d) and (e) 4NTP-MoS2 
exposed to NO2. (f) Top view of MoS2 model with 4 NO2 adsorption sites. (g) Lateral view of MoS2 model with 5 angles of 4NTP. (h) Charge density difference images 
of pristine and 4NTP-MoS2. 
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Table 1 
Gas sensing performance of room-temperature TMDCs based NO2 gas sensors.  

Materials Method pLODa) [ppb] Concentration [ppm] Response#) [%] τres/τrec 
b) [s] Wavelengthc) 

MoSe2 [55] Liquid Phase Exfoliation None 5 40 ~300/>1000 No 
MoTe2 [56] Mechanical 

exfoliation 
20 0.02 18 300/120 254 nm (2.5 mW/cm2) 

WS2 [57] Hydrothermal 100 0.1 9.3 ~120 > 360 No 
WSe2 [58] LPE 50 0.05 5 50/1050 No 
ReS2 [48] Mechanical 

exfoliation 
50 0.5 898 55/180 254 nm 

(2.5 mW/cm2) 
NbS2 [59] CVD 500 5 18 >2000 No 
WS2/PbS[60] LPE 20 1 200 ~300/~500 UV 
MoS2/WSe2 [61] Mechanical 

exfoliation 
None 10 180 >1000 Solar 

(10 W/m2) 
MoS2/SiO2 NRs [62] CVD 1000 50 400 ~1000/>2000 No 
MoS2@WS2 [63] Hydrothermal 10 50 26.12 1.6/27.7 No 
WS2@CNFs [64] Hydrothermal 31 10 250 54/305 No 
PtSe2/ML MOFs [65] Mechanical 

exfoliation 
None 5 45 >600 No 

MoS2-4NTP (This Work) Mechanical 
exfoliation 

10 2 900 61/82 405 nm 
(12 mW/cm2)  

a) pLOD for Practical limit of detection. 
b) τres for Response time, τrec for Recovery time. 
c) Wavelength refers to light wavelength illuminated on material. 
#) For convenience of comparison, the evaluation of the response is converted as Response =

|Ig − Ia|
Ia

× 100(%).  
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