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ABSTRACT

A complex network consists of the underlying topology, defined by a graph and the
dynamical processes taking place on a network, defined by a set of governing equations.
In this thesis, we deploy the discrete-time linear state-space (DLSS) model to identify
the dynamical processes taking place on a complex network. Unlike the black-box
identification approach, we split the network into dynamical units and identify the
dynamics of each dynamical unit independently. Next, we relate input/output vectors of
individual dynamical units, based on the underlying topology and provide the model for
the dynamics of the entire network. Because we use a linear model, by scaling the model
to the entire network, no information is lost about dynamical processes of individual
units. In this thesis, we apply this new networked system identification solution to
two real-world complex networks, water and road networks, and find this identification
approach to successfully improve the identification performance compared to the
common black-box identification approach.
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1
INTRODUCTION

Networks may be found everywhere. Electric power networks, transportation
networks, water networks, economic networks, the Internet, the World Wide Web,
social networks, and biological networks are some examples of networks. A network
is defined by its underlying topology as well as the dynamical processes taking place on
the network [1, 2]. The network topology has been deeply investigated in the past two
decades [3].

Dynamical processes on complex networks such as synchronization [4], diffusion
[5], epidemic spreading [6] and traffic [7] have been intensively researched in the past
two decades. Recently, scientific study has focused on the interaction between network
topology and dynamics [8]. While many actual networks have comparable (universal)
structural qualities, Barzel, Harush, and colleagues [9] demonstrated that there are
classes of dynamical processes that display fundamentally diverse flow patterns. The
network dynamics are determined by the structure of the network as well as the type of
dynamic interactions that exist between the nodes.

Recent research has focused on complex networks with linear dynamics [10], which
can be justified in a variety of ways. Firstly, non-linear dynamics on networks may
be approximated or bounded by linear dynamics in most circumstances, which can
be seen in a paper about epidemic models [6]. Secondly, the concept of controlling
complex networks has been intensively researched [11]. Non-linear system control is
a complex topic in system theory, and it is based on the well-known linear system
control theory [12]. In network control theory, there is a similar sequence of research
progress. In the literature, networks of agents (dynamical systems) [13], networked
multi-input-multi-output (MIMO) systems [14], and complex networked dynamical
systems [10] have all been used to describe complex networks with linear dynamics.
From the perspective of system/control theory, the above techniques create network
models with linear processes.

A new concept about the linear processes on complex networks has been proposed
by Jokić and Van Mieghem in 2020 [15]. In this new approach, we split a complex
network into dynamical units and identify their dynamics independently. In the next
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step, we relate their input/output vectors based on the underlying topology and provide
the model for the dynamics of the entire network.

In this thesis we apply this new approach to identify the dynamics of two real-world
networks, namely water networks and road networks, and we provide the estimation
accuracy analysis. We find that applying this new identification approach to real-world
networks can successfully improve the identification performance of the common
black-box identification approach. In other words, this thesis introduces and validates
a new identification method that can be successfully applied to analyse the dynamics
of real-world networks, and by analysing the estimation accuracy we find that it is more
accurate than the common black-box identification approach.

1.1. OBJECTIVES
Based on the background mentioned above, the objectives of our research are as

follows:

1. Select the appropriate model to analyse the dynamics.

2. Analyse the dynamics of the entire network by taking into account the dynamics
of individual systems and the underlying network topology.

3. Apply the theory to analyse the dynamics of two real-world networks (water
networks and road networks)

4. Summarize the identification results of two real-world networked systems and
analyse the estimation accuracy of the dynamics

1.2. CHALLENGES
There are several challenges when we focus on this research:

1. Identify the model parameters with the best descriptive/predictive power given
input and output measurements from a system.

2. Relate dynamic interactions between different individual systems, based on the
underlying topology

3. Given the linear model of a networked system, how to steer the dynamics on a
network towards some “desired” regime/state.

4. Select suitable real-world systems and explore the benefits of applying our
identification approach.

1.3. THESIS OUTLINE
The structure of this thesis is as follows; Chapter 2 presents an overview of the system

theory and system identification. In addition, we introduce the discrete-time linear
state-space model used to represent the dynamics of a system and several methods for
system identification. In Chapter 3, we introduce networked linear systems and explain
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the analytical approach for identifying the network dynamics by combining dynamics
of individual systems and taking into account the underlying topology. In Chapter
4, we apply the identification approach on two real-world networks and analyse the
estimation accuracy. Finally, we present our conclusions and discuss a possible scope
for future research in Chapter 5.





2
SYSTEM AND SYSTEM

IDENTIFICATION THEORY

In this chapter we present an overview of system theory. We introduce different
types of dynamical systems and their governing equations, which can help a reader to
understand the differences between them. Firstly, we introduce the general nonlinear
system and gradually introduce assumptions that allow us to define the discrete-time
linear state-space model, that is used to identify the dynamics of an individual system.
Further we introduce several methods for system identification.

2.1. BASICS OF SYSTEMS THEORY
In mathematics, a dynamical system is a system in which a function describes the

time dependence of a point in an ambient space. The swing of a pendulum, the flow
of water in a pipe, or the annual spring fish population in a lake are some examples of
dynamical systems.

2.1.1. DYNAMICAL SYSTEMS CLASSIFICATION
In real life, most systems perform nonlinear dynamics in time. Dynamical systems

can be divided into a number of categories based on how their dynamics depend on
time. A discrete dynamical system is a system whose state is only defined at a series of
discrete points in time. A continuous dynamical system is a system that defined at any
moment in time. Because most real world systems perform nonlinearly in time, we first
analyze general nonlinear systems.

General Nonlinear System The most general form of a dynamical system is
determined by the following governing equations

dx(t )

dt
= f (x(t ),u(t ), v(t ))

y(t ) = h(x(t ),u(t ), w(t ))
(2.1)

5
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where the n × 1 vector x(t ) ∈ Rn denotes the state-space variables, the p × 1 vector
u(t ) ∈Rp indicates the input vector, the p ×1 vector y(t ) ∈Rm defines the output vector,
while t denotes time. The vectors v(t ) and w(t ) indicate (possibly multidimensional)
noise. State variables contain the dynamics of the system.

Discrete Time Systems The classifications of dynamical systems described in this
section still apply if the time is discrete rather than continuous,

d xi (t )

d t
= lim∆t→0

xi (t+∆t )−xi (t )
∆t → xi (t +∆t )−xi (t )

∆t

∣∣∣∣
∆t=1

def= xi [k +1]−xi [k]

by explicitly replacing t ∈R by k ∈N and dx(t )
dt by x[k+1]. A general discrete nonlinear

dynamical system is given by

x[k +1] = f (x[k],u[k], v[k])

y[k] = h(x[k],u[k], w[k])
(2.2)

Above we have described the different ways in which the General Nonlinear System
can be presented. It will have different governing equations (Eq.(2.1) and Eq.(2.2))
depending on whether the time is continuous or not. Therefore we can choose the
corresponding governing equations when focusing on the dynamics of the real-world
networks.

We mentioned that non-linear dynamics on networks may be approximated or
bounded by linear dynamics in most circumstances in the introduction part. So next
we focus on linear dynamical systems.

Linear Parameter Varying (LPV) System The governing equation for a linear
state-space system with parameter fluctuations is

dx(t )

dt
= A(t )x(t )+B(t )u(t )+ v(t )

y(k) =C (t )x(t )+D(t )u(t )+w(t )
(2.3)

Linear Time-Invariant (LTI) System The system dynamics of a linear time-invariant
[state-space] system are given by

dx(t )

dt
= Ax(t )+Bu(t )+ v(t )

y(k) =C x(t )+Du(t )+w(t )
(2.4)

where the n ×n state matrix A defines how the n ×1 state vector x(t ) depends on its
previous value, while the n×m input matrix B determines the relation between the state
vector x(t ) and the previous value of the m ×1 input vector u(t ). The relation between
the p×1 output vector y(t ) and the state vector x(t ) is defined by the p×n output matrix
C . Finally, direct relation between the output vector y(t ) and the input vector u(t ) is
defined by the p ×m feedforward matrix D .
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Figure 2.1: Discrete-time linear state space (DLSS) model

If only the input-output relation of the system is of interest, the Eq(2.3) can be
transformed to the innovation form.

dx(t )

dt
= Ax(t )+Bu(t )+K e(t )

y(k) =C x(t )+Du(t )+e(t )
(2.5)

e(t ) is a white noise sequence and K is the Kalman gain [16].
In order to identify the dynamics of real-world networks, we need to understand

the different ways in which dynamics are represented. This allows us to choose the
appropriate governing equations to present the dynamics. This is the reason why we
first introduced the classification of dynamical systems.

2.1.2. DISCRETE-TIME LINEAR STATE-SPACE MODEL
Discrete-time linear state space (DLSS) model can be used to define the dynamics

of linear time-invariant (LTI) systems. In addition, a non-linear system can be
approximated by a discrete-time linear state space (DLSS) model with sufficient number
of state variables. That is the reason why we use Discrete-time linear state space (DLSS)
model to represent the dynamics of the systems in our research.

The dynamics within the i−th node/system obey the DLSS governing equations:

xi [k +1] = Ai xi [k]+Bi ui [k]

yi [k] =Ci xi [k]+Di ui [k]
(2.6)

where the discrete time is modelled by k. The ni ×ni state matrix Ai defines how the
ni × 1 state vector xi depends on its previous value, while the ni ×mi input matrix Bi

determines the relation between the state vector xi and the previous value of the mi ×1
input vector ui . The relation between the pi × 1 output vector yi and the state vector
xi is defined by the pi ×ni output matrix Ci . Finally, direct relation between the output
vector yi and the input vector ui is defined by the pi ×mi feedforward matrix Di .

As shown in the Figure 2.1, a simple block diagram of a DLSS model is provided,
defining the relation between the input and output vector.

2.1.3. STABILITY OF DISCRETE-TIME LINEAR SYSTEMS
The n×n state space matrix A defines how the n×1 state space variables x[k] depend

on their values in the previous time instant x[k −1]. The eigenvalue decomposition of
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the n ×n state space matrix A is defined as follows

A = M ·Λ ·M T ,

where the n ×n eigenvector matrix M contains the n eigenvectors of A in its columns,
where the i -th column of M equals the n × 1 eigenvector mi , while the n ×n diagonal
matrix Λ = diag(λ) contains the eigenvalues λ1 ≤ λ2 ≤ ·· · ≤ λn of A. The eigenvalue
relation can be modified further as follows:

λi mi = Ami (2.7)

The corresponding column vectors m are defined as eigenvectors. Then Eq.(2.7) can be
rewritten as

(λi I − A)mi = 0 (2.8)

The condition of such a set of linear equations has a non-trivial solution is that

det (λi I − A) = 0 (2.9)

Then we can rewrite the Eq.(2.8) as

λn +an−1λ
n−1 + . . .+a1λ+a0 = 0 (2.10)

we can also factor it according to its roots λ1, · · · ,λn

(λ−λ1)(λ−λ2) · · · (λ−λn) = 0 (2.11)

We can define
M = [m1m2 · · ·mn] (2.12)

and

Λ=


λ1 0 · · · 0

0 λ2
...

...
. . .

0 · · · λn

 (2.13)

Then

Λk =


λk

1 0 · · · 0

0 λk
2

...
...

. . .

0 · · · λk
n

 (2.14)

and
Φ(k) = Ak = (

MΛM−1)k = MΛk M−1 (2.15)

The following is a summary of the prerequisites for system stability:
All eigenvalues must be smaller than one for a linear discrete-time system

described by the state equation to be asymptotically stable.
There are some additional independent conditions that should be taken into

account:
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1. When one or more eigenvalues, or a pair of conjugate eigenvalues, have
magnitudes greater than one, the notion of stability is broken since at least one
related modal component increases exponentially without bound from any initial
state.

2. If an eigenvalue λ = 1 , then it produces a model exponent λk = 1k = 1 that is a
constant. Again, the system is classified as being minimally stable because the
response to the system neither grows nor decays.

2.2. SYSTEM IDENTIFICATION
In this section, an overview of system identification approaches is provided, which

can help readers understand the meaning of system identification and how to identify
the dynamics of systems.

System identification aims at determining dynamical systems equations which
produce a similar output given the same input as the original system. We can broadly
divide the methods into two categories: parametric methods and subspace methods.
For parametric methods, we simply give definitions to help a reader to understand
some simple methods of system identification. We focus mainly on subspace methods
because we use this method in the application of the water network. A more detailed
description will be given in a subsequent section.

2.2.1. PARAMETRIC METHODS
The governing equations of a nonlinear discrete-time system are parametrized by the

parameter vector θ.

x[k +1] = f (x[k],u[k], v[k],θ)

y[k] = h(x[k],u[k], w[k],θ)
(2.16)

The unknowns of a system are captured by the parameter vector θ , as explained in [17].
Because v[k], w[k], x[k] and y[k] are all random processes, for given θ, the probability
density of x[k] and y[k] are determined as f (x[k]|θ) and f (y[k]|θ), respectively. The k×1
vectors U [k] = (u[1], · · · ,u[k]) and Y [k] = (y[1], · · · , y[k]) contain the input and output
values, until time moment k.

Various estimating techniques, including those listed in the following, can be used
to obtain an estimate θ̂ of the parameter vector (see e.g. [18] for a more detailed
discussion).

Maximum Likelihood Estimation Finding θ in such a way as to maximize the
likelihood of the output Y [n] given the input U [n] is a frequent strategy if previous
knowledge of the distribution of θ is unavailable.

θ̂ML = argmax
θ

f(Y[n]|U[n],θ) (2.17)



2

10 2. SYSTEM AND SYSTEM IDENTIFICATION THEORY

Maximum-A-Posteriori Estimation Maximizing the likelihood of θ given the input
and output is a simple strategy if, on the other hand, a priori knowledge of the
distribution of θ is known.

θ̂M AP = argmax
θ

f(θ|Y[n],U[n]) = argmax
θ

f(Y[n]|U[n],θ)f(θ) (2.18)

In comparison to maximum likelihood, the maximum-a-posteriori strategy is more
inclusive. In fact, only when one sets f (θ) = const , it holds that θ̂M AP = θ̂ML .

Bayesian Estimation In contrast to the first two methods, a cost criteria rather than
a likelihood term is used to assess the estimator’s goodness. When the true parameters
are stored in θ, the cost function C (θ̂,θ) determines how "expensive" or "poor" the
estimation output θ̂ is. After that, the Bayesian estimator minimizes the anticipated cost:

θ̂B AY ES = argmin
θ̂

Eθ[C(θ̂,θ)|U[n],Y[n]] (2.19)

A commonly used cost criterion is the Mean Square Error (MSE)

CMSE (θ̂,θ) = ∥θ̂−θ∥2
(2.20)

which leads in the Minimum Mean Square Error (MMSE) estimate

θ̂M MSE = argmin
θ̂

Eθ[CMSE(θ̂,θ)|U[n],Y[n]] (2.21)

It can be shown when weak regularity assumptions are used [19], that

θ̂M MSE = Eθ[θ|Y [n],U [n]] (2.22)

θ̂M MSE = θ̂M AP if p(θ|U [n],Y [n]) is unimodal and symmetric (such as Gaussian). For
Bayesian estimation, C = CMSE is typically assumed in the absence of a specifically
specified cost function.

2.2.2. SUBSPACE METHODS FOR LTI SYSTEMS
Subspace methods can be classified as "semi-parametric" methods, because only an

upper bound for the system order i in LT I systems needs to be chosen, but the system
matrices do not need to be parametrised by a vector θ as in the previous sections.

Basic Idea
We take into account a linear, discrete-time, multivariable, time-invariant system

with m inputs and l outputs, obeying the following governing equations:

x[k +1]n×1 = An×n x[k]n×1 +Bn×mu[k]m×1

y[k]l×1 =Cl×n x[k]n×1 +Dl×mu[k]m×1
(2.23)
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Furthermore, we will also frequently use the set of Markov paramaters Hi of the linear
system, defined by H0 = D Hi =C .Ai−1.B(i > 0) The idea is to stack shifted version of y ,
u and x into Hankel matrices. The following equation for the state space system can be
easily obtained by manipulating the description of the system in state space [20]:

Yh(k, i , j ) = Γ(i )X (k, j )+Ht l (i )Uh(k, i , j ) (2.24)

The subscript h indicates that the matrix has a block Hankel structure and the matrix
is structured as follows:

Yh(k, i , j ) =


y[k] y[k +1] · · · y[k + j −1]

y[k +1] y[k +2] · · · y[k + j ]
y[k +2] y[k +3] · · · y[k + j +1]

· · · · · · · · · · · ·
y[k + i −1] y[k + i ] · · · y[k + j + i −2]

 (2.25)

This matrix is a l i × j block Hanke lmatrix created from i + j −1 output vectors. The l i × j
matrix Uh(k, i , j ) has the same structure with input vectors. The l i ×mi lower triangular
block Toeplitz matrix Ht l (i ) consists of the i first markov parameters:

Ht l (i ) =



D 0 0 · · · 0
C B D 0 · · · 0

C AB C B D · · · 0
C A2B C AB C B · · · 0
· · · · · · · · · · · · · · ·

C Ai−2B C Ai−3B C Ai−4B · · · D

 (2.26)

while the i l ×n observability matrix Γ(i ) is defined as follow:

Γ(i ) =


C

C A
C A2

· · ·
C Ai−1

 (2.27)

The singular value decomposition (SVD) is the primary tool in the explicit numerical
solution of this identification scheme, even though the geometrical visualization is
crucial from a conceptual standpoint.

Every real m×n matrix A can be decomposed in three real matrices according to the
Autonne-Ectart-Young theorem [21]:

Am×n =Um×mΣm×nV t
n×n (2.28)

Matrices U and V are orthogonal, while Σ is real, pseudo-diagonal with non-negative
diagonal elements:

Σ=
[
Σ1 0
0 0

]
(2.29)

with Σ1 = di ag (σi ), σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, and r is the algebraic rank of the matrix
A. The elements σi are the singular values of the matrix A, the columns of U (V ) are
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the left (right) singular vectors, respectively. They generate an orthonormal basis for the
columnspace (rowspace) of the matrix A.

The most accurate method for estimating the rank of a matrix is the singular value
decomposition. It is extremely resilient to disturbances, and the majority of software
packages nowadays include numerically dependable algorithms and effective software.

Identification Algorithm
If U is a m ×n matrix, by leaving out the last(first) blockrow, we can create matrix

U (U ) from U with fewer rows. The context will make clear how many rows specifically
need to be skipped. The projection of the row space of Yh onto the orthogonal
complement of the row space of Uh is generally a space that possesses the shift
property of the observability matrix, as can be seen from the input-output matrix
equation.Starting with the input-output matrix Eq.(2.23), this observation is used in the
construction of the matrices A and C:

1. If i is an overestimation of i0, the observability index of the system to be identified,
and ( j −mi ) > n, then choose the number of columns j of Yh and Uh bigger than
max(mi , l i ).

2. Denoted by U⊥
h the orthonormal matrix whose columnspace is the orthogonal

rowcomplement of Uh

YhU⊥
h (U⊥

h )t = Γ(i )X (k, j )U⊥
h (U⊥

h )t (2.30)

The rank of YhU⊥
h (U⊥

h )t can be computed from the singular value decomposition:

YhU⊥
h (U⊥

h )t = [
P1 P2

][
S1 0
0 0

][
Q t

1
Q t

2

]
(2.31)

where P1 is l i ×n, P2 is l i × (l i −n), S1n ×n, Q1 j ×n and Q2 j × ( j −n). Then we can
compute matrices A and C of the model from the SVD equation. For At and Ct , they
satisfy P1 At = P1 and Ct = first l ×n blockrow of P1.

We define the pseudo-inverse U+ of Uh , it can be computed from the second
input-outputrelation that

P t
2YhU+ = P t

2 Ht l (2.32)

Then define K = P t
2 Ht l , and K can be computed form i blocks of dimension (l i −n)×m:

[
K1 · · · Ki

]= [
P1 · · · Pi

]


D 0 0 · · · 0
C B D 0 · · · 0

C A2B C AB D · · · 0
· · · · · · · · · · · · · · ·

C Ai−2B C Ai−3B C Ai−4B · · · D

 (2.33)

where Pk are the (l i −n)× (l i ) subblocks of P t
2. Then we can rewrite the equation :

K1

K2

K3
...

Ki

=


P1 P2 P3 · · · Pi

P2 P3 P4 · · · 0
P3 P4 P5 · · · 0
· · · · · · · · · · · · · · ·
Pi 0 0 · · · 0


[

I 0
0 Γ(i −1)

][
D
B

]
(2.34)
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Finally, we can compute the n×m matrix B and l ×m matrix D . Thus, we can identify all
matrices in state space representation, which means we successfully identity the system.
The code for this algorithm is provided in appendix A.





3
NETWORKED LINEAR SYSTEM

3.1. COMPLEX NETWORK
A complex network consists of the underlying topology, defined by the graph, and

the process taking place on the network, defined by a set of governing equations. From
Table 3.1, we can see the topology and dynamics of some simple real- world networks.

Network Topology Dynamic process

Water network

Road network

Table 3.1: Examples of complex networks

In this chapter, we mainly focus on the theory about network topology and the
process taking place on the network. In addition, we introduce a new approach unlike
the black-box identification approach and present how it can help with identifying the
dynamics of a networked system.

15
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3.1.1. NETWORK TOPOLOGY
The underlying structure (topology) of a network is assumed to be time-invariant

and is represented by a graph G(N ,L), which means the graph G have N nodes and L
links. The N ×N matrix W defines how nodes are connected in the graph G . If wi j = 1,
there exists a link between node i and node j , otherwise wi j = 0.

There will be some external nodes connected to the graph. We divide these nodes
into two categories : input nodes and output nodes. The input nodes point to the nodes
of graph G , while the output nodes are pointed out from the nodes of graph G .

There are r input nodes, and we use the r ×N matrix Φ to define how input nodes
are connected to the nodes in graph G

Φ=


φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N
...

...
...

...
φr 1 φr 2 . . . φr N

 (3.1)

If φi j = 1, there exists an input link between input node i and internal node j ,
otherwise φi j = 0.

There are q output nodes, and we use the N ×q matrixΨ to show how they connect
to the graph G through output links.

Ψ=


ψ11 ψ12 . . . ψ1q

ψ21 ψ22 . . . ψ2q
...

...
...

...
ψN 1 ψN 2 . . . ψN q

 (3.2)

If ψi j = 1, there exists an output link between internal node i and output node j ,
otherwise ψi j = 0.

There may also exist external links between input nodes and output nodes. And we
use the r ×q matrix Z to represent this kind of links.

Z =


z11 z12 · · · z1q

z21 z22 · · · z2q
...

...
...

...
zr 1 zr 2 · · · zr q

 (3.3)

If zi j = 1, there exists an external link between input node i and output node j ,
otherwise zi j = 0.

Figure 3.1 illustrates a network graph G of 10 nodes, with additional r = 5 and q = 4.

3.1.2. PROCESS ON THE NETWORK
Every node in the network represents a linear time-invariant (LTI) system (defined in

Eq.(2.26)), whose dynamics is captured by the discrete-time linear state space (DLSS)
model [22]. The model and the meaning of each variable are explained in section
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Figure 3.1: a network of 10 nodes [15]

2.1.2. The dynamics within the i − th node/system is determined by DLSS governing
equations: {

xi [k +1] = Ai · xi [k]+Bi ·ui [k]

yi [k] =Ci · xi [k]+Di ·ui [k]
(3.4)

For example, Figure 3.2 shows the topology (lower part) and the dynamics (block
diagram in the upper part) of an interconnected networked system, composed of three
nodes/systems.

We define the N ×1 vector n to represent the number of states for each node/system
of the network:

n = [
n1 n2 . . . ni . . . nN

]T
(3.5)

We also define the N ×1 vector m to represent the dimension of the input vector ui

for each system.

m = [
m1 m2 . . . mi . . . mN

]T
(3.6)

Similarly, the N ×1 vector p represent the dimension of the output vector yi for each
system.

p = [
p1 p2 . . . pi . . . pN

]T
(3.7)

We also use the r × 1 vector µ defined in Eq.(3.8) to present the dimension of each
external input vector, while the M×1 vector η defined in equation Eq.(3.9) concatenating
r external input vectors, where

M =
r∑

j=1
µ j

µ= [
µ1 µ2 . . . µi . . . µr

]T
(3.8)

η= [
η1 η2 . . . ηi . . . ηr

]T
(3.9)

Similarly, we use the q ×1 vector ρ defined in Eq.(3.10) to store the dimension of each
external output vector ξi , while the P × 1 vector ξ defined in Eq.(3.11) concatenates q
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Figure 3.2: DLSS dynamics of a simple network with N = 3 nodes/systems [15]

external input vectors, where

P =
q∑

j=1
ρ j

ρ = [
ρ1 ρ2 . . . ρi . . . ρq

]T
(3.10)

ξ= [
ξ1 ξ2 . . . ξi . . . ξq

]T
(3.11)

The dimension of input vectors stored in the N ×1 vector m and dimensions of the
external output vectors stored in the q ×1 vector ρ must obey [15][

mN×1

ρq×1

]
=

[
W T

N×N ΦT
N×r

ΨT
q×N Z T

q×r

]
·
[

pN×1

µr×1

]
(3.12)

because the input vector ui of the i -th system consists of the output vectors of those
systems connected to the system i and the external input vectors connected to the
system, stored in the N ×N adjacency matrix W and the N × r matrix Φ. An equivalent
reasoning holds for the dimension of each external input vector, stored in the q×1 vector
ρ.

3.1.3. NETWORK DYNAMICS
A complex network G(N ,L) is shown in Figure 3.3. The internal dynamics of each

individual system is captured by the DLSS governing equations provided in Eq.(3.4). We
construct a DLSS model that captures the dynamics between the P ×1 external output
vector ξ shown in Eq.(3.11) and the q × 1 external input vector ρ defined in Eq.(3.10) ,
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Figure 3.3: Underlying topology vs linear processes on the complex network [15]

without loosing any information from individual system level, as is shown in Eq.(3.15).
The dynamics of the entire network obey the following governing equations

{
xe [k +1] = Ae · xe [k]+Be ·η[k]

ξ[k] =Ce · xe [k]+De ·η[k]
(3.13)

where the
∑N

j=1 n j ×1 xe state vector xe stores state variables of each individual system in

the network The vector
∑N

j=1 n j ×1 xe represent the states of each system in the network:

xe [k] =


x1[k]
x2[k]

...
xN [k]

 (3.14)

We obtain the matrices Ae , Be , Ce and De according to the network topology and the
dynamics of individual nodes/systems. Here we only show the final results and the
details can be found in Chapter 4 in [15].


Ae = (Bd ·Fw ) · (I −Dd ·Fw )−1 ·Cd + Ad

Be = (Bd ·Fw ) · (I −Dd ·Fw )−1 · (Dd ·Fφ
)+Bd ·Fφ

Ce = Fψ · (I −Dd ·Fw )−1 ·Cd

De = Fψ · (I −Dd ·Fw )−1 · (Dd ·Fφ
)+Fz

(3.15)
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When there is no direct interaction between the input vector ui and the output vector yi

of each system in the network, the results are:
Ae = Bd ·Fw ·Cd + Ad

Be = Bd ·Fφ
Ce = Fψ ·Cd

De = Fz

(3.16)

The meaning of variables can be seen in Table B.1 and Table B.2.

3.2. IDENTIFYING DYNAMICS OF A NETWORKED SYSTEM
In this part, we introduce how to identify the dynamics of a networked system using

the model introduced in the previous subsection.
In addition, we present a simple example to help the reader to understand this new

approach.

3.2.1. ANALYTICAL APPROACH
We divided how to identity dynamics of a networked system into the following steps:

1. Split the network into a set of inter-connected systems.

The first step is to recognize dynamical units of a network that are interconnected.
For example, in a road network different road segments can be defined as
dynamical units, while the intersections reveal interdependence between traffic
flows of different road segments.

2. Define the input vector u[k] and the output vector y[k] of each individual
system.

In this step, we examine available measurements of the process taking place in
each dynamical unit. Following the direction of the flow, we determine the input
vector u[k] and the output vector y[k], as a subset of the measured variables that
sufficiently capture the dynamical process. The dimension of the input and the
output vector depend on available measurements. For example, in a road network,
traffic flow and speed at the beginning of a road segment compose the input vector
u[k]. Similarly, the output vector y[k] consists of the traffic flow and the speed at
the end of a road segment. In general, it is important that vectors u[k] and y[k]
define variables of the same type because the input vector u[k] of one system may
also be the output vector y[k] of an adjacent dynamical unit, see Eq.(3.12).

3. Identify the dynamics with the discrete-time linear state space model (DLSS).

Since we have defined the input vector u[k] and the output vector y[k] in the
previous step, the dynamics of each individual system are obtained through the
discrete-time linear state space model (DLSS) defined in Eq.(2.6).

4. Create a networked system based on the underling topology

In this step, we create a networked system, which consists of different
interconnected dynamical units defined in the previous steps. Depending on how
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the different dynamical units are connected, we distinguish internal links, external
input links and external output links to present a diagram of the networked system.
For example, in a road network, a networked system consists of different road
segments and junctions.

Based on the diagram of the networked system, we define the number of
nodes/systems in the network N , number of external inputs r and number of
external outputs q . Also the N × N adjacency matrix W is defined to illustrate
how nodes are connected in the networked system. Similarly, we obtain the
r × N matrix Φ (Eq.(3.1)) and the N × q matrix Ψ (Eq.(3.2)) to present how the
external input nodes and external output nodes connect to the networked system
respectively. Finally, we define the r × q matrix Z (equation 3.3) to illustrate the
external links between input nodes and output nodes.

According to the input vector u[k] and the output vector y[k] of different
dynamical units in the networked system, we obtain the N ×1 vector n (Eq.(3.5))
to represent the number of states for each node/system of the networked system.
Similarly, we define the N × 1 vector m (Eq.(3.6)) and N × 1 vector p (Eq.(3.7))
to represent the dimension of the input vector ui and the output vector yi for
each system. For example, since we choose traffic flow and speed to capture the
dynamical process, the dimension of them are all 2. We also define the r ×1 vector
µ (Eq.(3.8)) and the q×1 vectorρ (Eq.(3.10)) to store the dimension of each external
input vector and output vector respectively.

5. Relate the input vector u[k] and the output vector y[k] of each individual system,
based on network topology.

According to the diagram of the networked system defined in the previous step, we
relate the input vector u[k] and the output vector y[k] of each individual system.
The input vector u[k] of one dynamical unit may be the output vector y[k] of
another units.

6. Combine the inter-connected DLSS models into a single DLSS model.

In this step, since we have identified the DLSS models of individual dynamical
units and created the networked system in the previous steps, the single DLSS
model of the networked system is obtained from the Eq.(3.15) and Eq.(3.16). And
the code for this part is provided in Appendix C.

7. Analyze the estimation accuracy of the obtained single DLSS model.

In this step, we obtain the mean squared error to illustrate the estimation
accuracy of the identification approach. Compared with the common black-box
identification approach, this new identification approach improves the estimation
accuracy because it consider the interconnected dynamical units.

3.2.2. SIMPLE TOY EXAMPLE
In order to help the reader to understand how to apply this new identification

approach, we present a simple example, see Figure 3.4.
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Figure 3.4: A toy example with two internal nodes

This network consist of N = 2 nodes/systems, r = 1 external input and q = 1 external
output. Then we define the following information:
2×1 vector n to represent the number of states for each node/system of the network

n =
[

3
3

]
(3.17)

2×1 vector m to represent the dimension of the input vector ui for each system

m =
[

2
2

]
(3.18)

2×1 vector p represent the dimension of the output vector yi for each system

p =
[

2
2

]
(3.19)

1×1 vector µ represent the dimension of each external input vector

µ= [
2

]
(3.20)

1×1 vector ρ represent the dimension of each external output vector

ρ = [
2

]
(3.21)

(N ×N ) Adjacency matrix of the network W

W =
[

0 1
0 0

]
(3.22)

(r ×N ) Topology matrix of how external input nodes are connected to internal nodesΦ

Φ= [
1 0

]
(3.23)
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(N ×q) Topology matrix of how internal nodes are connected to external input nodesΨ

Ψ=
[

0
1

]
(3.24)

Because no links between external input node and external input node , so Z are all
zeros.

First we can identify the two internal DLSS dynamics. Then we can use the theory
in section 3.1.3 to get the the matrices Ae , Be , Ce and De . The code can be found in the
Appendix C.

Ae =



0.0243 0.06076 −0.6214 0 0 0
0.0257 −0.3672 −0.6372 0 0 0
0.8687 0.1935 0.1142 0 0 0
−0.7219 0.1378 0.2239 0.7650 0.0965 0.0534
0.0156 −0.5714 0 0.0965 0.5147 −0.1154
0.0116 −0.4249 0 0.0534 −0.1154 0.7397

 (3.25)

Be =



0.3919 −0.7411
0 −0.5078

−0.9480 −0.3206
0 −0.3752
0 0
0 0

 (3.26)

Ce =
[

7.5314 −3.0891 −2.3215 1.1921 −0.0245 0
−0.0009 0.0324 0 −1.6118 −1.9488 0.8617

]
(3.27)

De =
[

0 3.8912
0 0

]
(3.28)





4
APPLICATIONS AND RESULTS

In this chapter, we apply our new approach to identify the dynamics of two
real-world networks and analyse the estimation accuracy. First we split the real-world
network into a set of inter-connected systems and identify the dynamics of each
individual system. Then we combine the inter-connected DLSS models based on the
underlying connections of individual systems into a single DLSS model capturing the
dynamics of the entire network.

4.1. WATER NETWORKS
Cities and towns receive their water from distribution networks. Water is first

drawn from natural sources (such as lakes, rivers, aquifers, etc.), and it is sent to
water-treatment plants to be purified. Then, it is distributed to the population [23].
Therefore, it is of great practical importance to study the dynamics of water networks.
The analysis is performed with time series of a water network, simulated by the software
EPANET [24].

4.1.1. BASIC INFORMATION ABOUT THE NETWORK
EPANET models a water distribution system as a collection of links connecting

nodes. The links represent pipes, pumps, and control valves. The nodes represent
junctions, tanks, and reservoirs. Figure 4.1 below illustrates how these objects can be
connected to one another to form a network. Then we will briefly define each of the
mentioned elements.

Junctions
Junctions are points in the network where links join together and where water enters

or leaves the network. The basic input data requirements for junctions are:

1. Elevation above some reference (usually mean sea level)

2. Water demand (rate of withdrawal from the network)

3. Initial water quality

25
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Figure 4.1: Underlying topology of water network

The output results computed for junctions at all time periods of a simulation are:

1. Hydraulic head (internal energy per unit weight of fluid)

2. Pressure

3. Water quality

Reservoirs
Reservoirs are modeled as nodes in the water network and represent an endless

external source or drain of water. Lakes, rivers, groundwater aquifers, and connections
to other systems can be modelled as reservoirs in the EPANET. Water quality source sites
can also be reservoirs.

The hydraulic head of a reservoir, which is equivalent to the water surface elevation
if the reservoir is not under pressure, and its starting quality for water quality analysis
are the two main input properties.

A reservoir’s head and water quality cannot be impacted by network activity since it
serves as a network’s boundary point. It lacks computed output attributes as a result.
However, by giving it a time pattern, its head may be made to change over time.
Tanks

Tanks are nodes with storage capacity, and throughout a simulation, the amount
of water they can hold can change over time. The following are the main tank input
properties:

1. Bottom elevation (where water level is zero)

2. Diameter (or shape if non-cylindrical )

3. Initial, minimum and maximum water levels

4. Initial water quality

Pipes
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Water is transported by pipes from one point in the network to another. According to
EPANET, all pipelines are always filled. The direction of flow is from the end with higher
internal hydraulic head (energy per weight of water) to that with lower internal hydraulic
head. The following are the main hydraulic input parameters for pipes:

1. Start and end nodes

2. Diameter

3. Length

4. Roughness coefficient (for determining headloss)

5. Status (open, closed, or contains a check valve)

Computed outputs for pipes include:

1. Flow rate

2. Velocity

3. Headloss

4. Darcy-Weisbach friction factor

5. Average reaction rate (over the pipe length)

6. Average water quality (over the pipe length)

Pumps
Pumps are components that generate a fluid energy, increasing its hydraulic head.

The start and end nodes as well as the pump curve are the main input parameters for
a pump (the combination of heads and flows that the pump can produce). Instead of a
pump curve, a constant energy device that provides the fluid with a constant quantity of
energy (horsepower or kilowatts) for all combinations of flow and head might be used to
depict the pump.
Simulations

We can obtain the simulation data of some variables over time such as flow and
velocity for pipes, pressure, demand and head for junctions. We can export them to
construct the data set to analyze the dynamics of the water network based the underlying
topology. For example Figure 4.2 illustrates simulation data for flow of one pipe over one
day and Figure 4.3 provides the simulation data for pressure of one junction over one
day.

4.1.2. IDENTIFICATION APPROACHES AND RESULTS
Firstly, we split the water network into a set of inter-connected systems and focus on

the identification approach of each individual system.
Identification approach 1
In this identification approach, we model the flow of each pipe as a DLSS model.

Figure 4.4 illustrates the underlying topology formed by three pipes. The flow of a pipe
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Figure 4.2: Flow simulation over one day

Figure 4.3: Pressure simulation over one day

is denoted as f [k], while the pressure inside a junction is denoted as p[k]. We define the
flow fi [k] out of pipe i as the output vector yi [k] of the i -th system. From Figure 4.4, we
conclude that the flow f1[k] of pipe 1 and flow f2[k] of pipe 2 together compose the flow
f3[k] of pipe 3. In addition, we define the pressure p1[k] of junction 1 and the pressure
p2[k] of junction 2 as the external input vector for system i . Therefore, the input vector
u3[k] is defined as follows

u3[k] = [
p1[k] p2[k] f1[1] f2[k]

]T

Then we can construct a DLSS model to estimate the flow of pipe 3 as output vector y[k]
like Figure 4.5.

Figure 4.4: Identification approach 1 of water
network

Figure 4.5: DLSS model of identification approach 1

We compare the estimated flow f̂3[k] of the identified DLSS model with the measured
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Figure 4.6: Estimation accuracy of approach 1

flow f3[k] and provide results in Figure 4.6. The estimated accuracy is surprisingly low.
Therefore, in the following part we considered adding additional variables to the DLSS
model, in order to improve estimated accuracy.

Identification approach 2

Figure 4.7: Identification approach 2 of water
network

Figure 4.8: DLSS model of identification approach 2

In this identification approach, we model the pipe as a node, while the water flow
within the pipe we model as a DLSS model like figure 4.7. We conclude that the flow
f1[k] of pipe 1 and flow f2[k] of pipe 2 together compose the flow f3[k] of pipe 3. But we
redefine the external input vector η[k], by adding the following variables:

1. d [k] : Water demand (rate of withdrawal from the network)

2. h[k] : Hydraulic head (internal energy per unit weight of fluid)

Therefore, the input vector u3[k] is defined as follows

u3[k] = [
p1[k] p2[k] d1[k] d2[k] h1[k] h2[k] f1[1] f2[k]

]T

Then we can construct a DLSS model to estimate the flow of pipe 3 as output vector
y[k] like Figure 4.8. Then we use the identification algorithm talked in Section 2.2.2 to
compare the estimated flow result of pipe 3 with the measured flow from EPANET.
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Figure 4.9: Estimation accuracy of approach 2

Figure 4.10: Flow simulation reducing time interval

From figure 4.9, we can see the estimation accuracy of second approach is very high.
But the values of the pi ×mi feed-forward matrix Di inform us that the flow y3[k] = f3[k]
is estimated as the linear combination of the flows f1[k] and f2[k] of two adjacent pipes.
In other words, no internal linear dynamics are captured by the DLSS model.

D = [
0.004 −0.003 0.001 0.000 0.067 0.0970 0.5159 0.4841

]
(4.1)

Conclusion

Figure 4.10 illustrates the flow simulation from EPANET when reducing the time
interval to 1 minute. The flow change is immediate, which means there are no transient
processes in the time series. In other words, EPANET at each time step k provides the
estimated steady state as the current state of the water network. Consequently, transient
processes are not present. Therefore, the identification approach is not able to capture
internal dynamics of individual systems.
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Figure 4.11: Caltrans Performance Measurement System

4.2. ROAD NETWORKS
An urban road network consists of a variety of different functions within the

jurisdiction of the town and regional roads, which form the skeleton of the overall
urban planning layout and can provide safe, rapid, economic, and comfortable driving
conditions for all kinds of transportation. The development of urban road networks
around the world is related to the development of industry, the concentration of the
urban population, traffic and transport development.

Nowadays congestion problems caused by cars in urban areas have made life
uncomfortable and inconvenient. A traffic congestion deteriorates life quality. In more
detail, a traffic congestion causes travel delays, increased fuel consumption and overall
costs [25]. There was a 17% increase in the volume of traffic jams on Dutch roads in
2020, according to the annual summary by motoring organisation ANWB [26]. So it is
important to explore and analyze the dynamics of the road network.

4.2.1. BASIC INFORMATION ABOUT THE NETWORK

In this thesis, we use the data set from Caltrans Performance Measurement System
(PeMS). The traffic data displayed on the map depicted in Figure 4.11 is collected in
real-time from over 39,000 individual detectors. From different sensors(red points in
Figure 4.12 ), we obtain the measurements of the traffic flow, speed, both per each lane
and in total. An example of measured flow over a road segment composed of four lanes,
during a period of 7 days is presented in Figure 4.13.

We consider a road segment as a dynamical unit. By defining relations between
different road segments, we model the entire road network as a networked system. For
an individual road segment, we collect the time series of the flow and speed from the
beginning of the segment and at the end of it. These time series are considered as the
input and output vectors. We identify the dynamics between the input and the output
vector as the discrete-time linear state-space model.

In our research, we adopt the smallest available time step T = 5 minutes. Therefore,
the flow f [k] is described in units [Veh/5min], while the speed v[k] is measured in [mph].
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Figure 4.12: Sensors in the road network Figure 4.13: Simulation from the road map

Figure 4.14: Modeling a single road segment as a dynamical unit.

Figure 4.15: Block-diagram of a single road segment.

4.2.2. IDENTIFICATION APPROACHES AND RESULTS
In this subsection, we develop the identification approach that combines the

dynamics of individual road segments and the underlying topology of the road network,
to provide a model for the dynamics of the entire network.

Identification approach 1
In the first approach, we analyse the dynamics of a single road segment. We model

a single road segment as a dynamical unit, as depicted in Figure 4.14. In the measured
part, vehicles enter from point 1, then exit from point 2, and we measure the flow at this
two points as f1[k] and f2[k], also the speed at the two points as v1[k] and v2[k]. The
measured vehicle flow f1[k] and speed v1[k] at the beginning of the segment compose

the 2×1 input vector u[k] = [
f1[k], v1[k]

]T , while the measured variables f2[k] and v2[k]

from the end of the segment constitute the 2 × 1 output vector y[k] = [
f2[k], v2[k]

]T .
Next, we identify the dynamics between the input vector u[k] and the output vector
y[k] with the DLSS model in Eq.(3.4). The output of the DLSS model, denoted as

ˆy[k] = [
f̂2[k], v̂2[k]

]T
, provides an estimation of the flow f2[k] and the speed v2[k] at

the end of the road segment. The block diagram of a single road segment is provided in
Figure 4.15.

We present the identification results for this single road segment mode in Figure 4.16.
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Figure 4.16: Vehicle flow and speed in a road segment

The estimation accuracy is high, informing us that a DLSS model succesfully captures
the dynamics of vehicles propagating over a road segment in time.

In Figure 4.17 and Figure 4.18, we depict the estimation error separately for the
vehicle speed f2[k] and speed v2[k], respectively. Both the flow f2[k] and the speed
v2[k] are estimated with comparable accuracy. From the estimation error of speed, a
larger negative error indicates a possible congestion. It is useful for us to monitor road
conditions for a single road segment.

Figure 4.17: Flow estimated error Figure 4.18: Speed estimated error

Identification approach 2
For the second approach, we model a road junction with m road segments with m

different DLSS models, as depicted in Figure 4.20. Vehicles arrive at a junction from
different road segments, turn in different directions and leave the junction.

When we focus on the dynamics of the junction, we analyze multiple road segments
as a whole system, unlike in identification approach 1. The vehicle flow and speed of
the incoming traffic from all road segments of the junction constitute the 2m ×1 input
vector u[k] for each DLSS model, while each DLSS model estimates the flow and speed
of the outgoing traffic flow per each road segment.

Vector gm[k] and wm[k] present the measurements of vehicle flow and speed
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Figure 4.19: Road junction DLSS model

that enter into the junction from road segment m respectively. Similarly, the
measurements of traffic flow and speed that drive out from road segment m are
obtained as fm[k] and vm[k]. The vehicle flow and speed of the incoming traffic
from this four road segments of the junction constitute the 8 × 1 input vector u[k] =[
g1[k], w1[k], g2[k], w2[k], g3[k], w3[k], g4[k], w4[k]

]T for this junction DLSS model,
while this DLSS model estimates the flow and speed of the outgoing traffic flow per each

road segment as output vector y[k] = [
f1[k], v1[k], f2[k], v2[k], f3[k], v3[k], f4[k], v4[k]

]T ,
as depicted in Figure 4.19.

Figure 4.20: A road junction Figure 4.21: A real junction in the road map

Then we apply this model to a real junction in the map which consists of three road
segments illustrated as Figure 4.21. In order to present the estimation results clearly, we
represent three different road segments separately in Figure 4.22, Figure 4.23 and Figure
4.24. The three road segments all present reasonable estimated result, which means we
successfully model the junction as a single DLSS model to identify the dynamics of this
three road segments.

From analysing the dynamics of the junction as a single DLSS model, we summarise
the following conclusions:

1. Analyze the dynamics in the intersection for different road segments. For example
we monitor the road conditions by analyzing the estimated error of speed of
different road segments.

2. If we only obtain incoming flows of one road segment, it is impossible to predict
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Figure 4.22: Vehicle flow and speed in road segment 1

Figure 4.23: Vehicle flow and speed in road segment 2

Figure 4.24: Vehicle flow and speed in road segment 3
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the outgoing flow of that segment, by analyzing single road segment. Using the
second approach, we can do this, by taking into account each road segment of a
junction.

Hierarchical Structuring of the California road network
The entire California road network represents an interconnected network of systems

of different junctions and road segments. So this two introduced identification
approaches of dynamical units allow us to scale the model.

We present a networked road system like Figure 4.25, which consists of one junction
and three different road segments. Depending on how this dynamical units are
connected, we distinguish internal links, external input links and external output links
to present a diagram of this networked road system as Figure 4.26.

Figure 4.25: A networked road system Figure 4.26: block diagram for this networked road
system

We divide this networked system to 9 interconnected systems and they are presented
as follows. The flow and speed of link m in the networked road system are defined as
fm[k] and vm[k]. The junction 1 is divided to system 1, system 2 and system 3. The road
segment 2 is divided to system 4 and system 5. The road segment 3 is divided to system
6 and system 7. Finally road segment 4 is divided to system 8 and system 9.

(a) System 1 of junction (b) System 2 of junction (c) System 3 of junction

Firstly, we construct 9 DLSS models to analyze the dynamics for these 9
interconnected dynamical units individually according to the two identification
approaches presented before.

Based on the diagram of the networked road system, we define the relate matrices
and vectors, which are illustrated in step 4 of our identification approach. Next, we relate
the input vector u[k] and the output vector y[k] of each individual system, based on
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Figure 4.27: System 4 of road segment 2 Figure 4.28: System 5 of road segment 2

Figure 4.29: System 6 of road segment 3 Figure 4.30: System 7 of road segment 3

Figure 4.31: System 8 of road segment 4 Figure 4.32: System 9 of road segment 4

Figure 4.33: Interconnected 9 systems
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Figure 4.34: Combined DLSS model for the networked road system

Figure 4.35: External output 1

topology of this networked road network, so that we construct a diagram to illustrate
this 9 interconnected systems in Figure 4.33.

Then we combine this 9 DLSS models into a single DLSS model according to the step
6 of our identification approach. The vehicle flow and speed of the external input links

constitute the 6×1 input vector u[k] = [
f7[k], v7[k], f9[k], v9[k], f11[k], v11[k]

]T , and this
single DLSS model estimates the flow and speed of external output links as 6×1 output

vector y[k] = [
f8[k], v8[k], f10[k], v10[k], f12[k], v12[k]

]T , as depicted in Figure 4.34.
In order to illustrate the estimated results clearly, we divided the external outputs

as three individual Figures depicted as 4.35, 4.36 and 4.37. From this Figures we
successfully combined the nine interconnected DLSS models to a single DLSS model
to present the dynamics of the external output vectors of this networked road system
within an acceptable error.

Error comparison
In order to compare the performance with the common black-box identification

approach , we present the mean squared error (MSE). In common black-box
identification approach, we ignore the internal topology and the different individual
dynamical unit of the networked system, as depicted in Figure 4.25. From the
table 4.1, the MSE reduce if using the combined DLSS model. Therefore using our
new identification approach in the real- world road network improves the estimation
performance. That means we provides a more efficient way to analyze the dynamics of
linear real-world complex networks

Limitations of the dataset
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Figure 4.36: External output 2

Figure 4.37: External output 3
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Model

MSE 438.8 64.21

Table 4.1: MSE Comparison

Figure 4.38: Limitations of the dataset

In this part we present limitations of the road data set in our model, which cause
the estimated error in the combined systems. When we construct the data set for
the interconnected systems, there are many small road crossings (red circles showed
in Figure 4.38), which have no sensors to indicates vehicle data but there must be a
small number of vehicles passing. Though the dataset contains these small limitations,
the results of applying our linear combined theory perform a reasonable estimation
accuracy, which further demonstrates the implementation ability of our identification
method.

A future study for road network
A region of California Road Network can be divided into a set of interconnected

dynamical units. For example, the area in Figure 4.39 is divided into four interconnected
systems.

Figure 4.39: Area with multiple combined systems
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Since we have successfully constructed a single DLSS model to analyze the dynamics
of each networked systems, we easily analyse the dynamics of a bigger networked road
system illustrated in Figure 4.39.





5
CONCLUSIONS AND FUTURE

RESEARCH

This chapter is the last chapter summarizing our findings and proposing some
suggestions for future research.

5.1. CONCLUSIONS
In this thesis, we apply a new networked system identification approach to

real-world networks. Unlike common approach, we split the real-world network into
small units and identify the dynamics of them first, then relate their real input/output
vectors to identify the dynamics of the entire network. In chapter 4, we apply this new
approach to two real-world networks, water networks and road networks.

For water networks, we model each pipe in the water network as a small dynamical
unit, then we identify the dynamics of the individual units independently through the
DLSS model. Though the estimation accuracy of this small unit is high, the pipe flow is
only estimated as a linear combination of the flow in adjacent pipes from examining the
the values of the pi ×mi feed-forward matrix Di . EPANET at each time step k provides
the estimated steady state as the current state of the water network. Consequently,
transient processes are not present. Therefore, the identification approach is not able
to capture internal dynamics of individual systems.

For road networks, we first analyze the dynamics of two dynamical units, a single
road segment and a junction. The dynamics of these two small units of the California
road network are illustrated in reasonable error. Next we create a networked road
system which consists of these two small units. Depending on how this dynamical units
are connected, we distinguish internal links, external input links and external output
links to present a diagram of this networked road system. Next we relate their real
input and output vectors according to the structure of the networked road system and
provide a single DLSS model to identify the dynamics of the entire networked system. In
addition, we found that applying this new approach to road networks greatly increases
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the estimation accuracy compared with the black-box identification approach.
Overall, in this thesis, we successfully apply this new identification method to real

road networks in California and prove that it greatly increase the estimation accuracy,
which not only validates the implementability of this method, but more importantly,
provides a more efficient way to analyze the dynamics of linear real-world complex
networks.

5.2. FUTURE RESEARCH
In this section, we propose some directions for future research.

1. Find a suitable data set of real water networks in order to see the results of applying
this new identification approach.

2. In road networks, the estimation accuracy of speed is not perfect when focusing
on the dynamics of the combined system. Explore the causes and solve them.
Perhaps include feedback vectors in various parts of the combined system.

3. We only illustrate the estimation accuracy of our identification approach, so
explore whether our approach can predict the dynamics is also a future study.

4. This identification approach works better only when the dynamics of the network
is close to linear, so how to deal with the dynamic analysis of nonlinear complex
networks is also a future research direction.
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1 function [A,B,C,D,n_estim,x_0] = C20220308_SubspIdent_v1(input,output,max_order,i)
2
3 clc
4 %% ~~~~~~STEP 1~~~~~~~~
5 %Input sequence
6 u = input;
7 %Output sequence
8 y = output;
9

10 %% ~~~~~STEP 2~~~~~~~~
11 % Check and compare dimensions of the measurements
12
13 % m - number of input signals
14 % l - number of output signals
15 [ m, nu ] = size(u);
16 [ l, ny ] = size(y);
17
18 % First check: if the length of measurements are the same
19 if nu ~= ny
20 error('Number␣of␣samples␣of␣input␣and␣output␣variable␣differs!!!')
21 end
22
23 %% ~~~~~~STEP 3~~~~~~~
24 % Determine two ceofficients that define dimensions of block Hankel
25
26 j = nu - i + 1;
27
28 %% ~~~~~~STEPS 4 & 5~~~~~~~
29 % Create the Hankel matrices from input/output data
30
31 U_H = blockHankel(u, i, j);
32

47
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33 Y_H = blockHankel(y, i, j);
34
35 %% ~~~~~~STEP 6~~~~~~
36 % Perform the SVD over matrices [Yh*Uhoc*Uhoc']
37
38 [~,S,V] = svd( U_H );
39 r = sum(sum( S>(max(size(S)) * eps(norm(S)))));
40 disp(r)
41 U_Hoc = V( :, r+1:j);
42
43
44 [P,S,~] = svd( Y_H*(U_Hoc*U_Hoc') );
45
46 n_estim = min([sum(sum( S>(max(size(S)) * eps(norm(S) )))), i, max_order ] );
47 disp(sum(sum( S>(max(size(S)) * eps(norm(S) )))))
48
49
50 %% ~~~~~STEP 7~~~~~~
51 % Estimate matrices A and C
52 P1 = P( :, 1:n_estim );
53 P2 = P(:, n_estim+1:end);
54 C = P1( 1:l, : );
55
56 U1 = P1( 1:(i-1)*l, : );
57 U2 = P1( l+1:i*l, : );
58
59 A = U1\U2;
60
61
62 %% ~~~~~~STEP 8~~~~~~
63 % Estimate B and D matrices
64 K = P2'*Y_H*pinv(U_H);
65
66 [D B]=compute_D_B(K,P2',i,j,l,m,n_estim,A,C);
67
68 %% ~~~~~~STEP 9~~~~~~
69 clc
70 disp('Order␣of␣system:')
71 disp(n_estim)
72 disp('Matrix␣A:')
73 disp(A)
74
75 disp('Matrix␣B:')
76 disp(B)
77
78 disp('Matrix␣C:')
79 disp(C)
80
81 disp('Matrix␣D:')
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82 disp(D)
83
84 figure
85 subplot(2,1,1)
86 plot(real(eig(A)),imag(eig(A)),'*')
87 subplot(2,1,2)
88 plot(abs(eig(A)))
89
90 Y_est = dlsim(A,B,C,D,u);
91 figure
92 plot(y)
93 hold on
94 plot(Y_est)
95 disp('Press␣Enter␣to␣continue')
96 pause()
97 clc
98 close all
99

100 end
101
102 %% Used functions
103 function H = blockHankel(y,i,j)
104
105 % Make a (block)-row vector out of y
106 [l,nd] = size(y);
107 if nd < l
108 y = y';
109 [l,nd] = size(y);
110 end
111
112 % Check dimensions
113 if i < 0
114 error('blkHank:␣i␣should␣be␣positive');
115 end
116 if j < 0
117 error('blkHank:␣j␣should␣be␣positive');
118 end
119 if j > nd-i+1
120 error('blkHank:␣j␣too␣big');
121 end
122
123 H=zeros(l*i,j);
124 for k=1:i
125 H((k-1)*l+1:k*l,:)=y(:,k:k+j-1);
126 end
127 end
128
129 function [D, B] = compute_D_B(K,P2t,i,j,l,m,n,A,C)
130 % First check the dimensions
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131 if (size(K)~=[l*i-n m*i])
132 error('Dimensions␣of␣K␣are␣not␣correct');
133 end
134
135 if (size(P2t)~=[l*i-n l*i])
136 error('Dimensions␣of␣P2t␣are␣not␣correct');
137 end
138
139 % Building matrix Km
140 Km=zeros(i*(l*i-n),m);
141 % Km=zeros(i*(l*i-n),m*i);
142 for p=1:i
143 Km((l*i-n)*(p-1)+1:(l*i-n)*p,:)=K(:,m*(p-1)+1:m*p);
144 end
145 % Now matrix Pm
146 Pm=zeros(i*(l*i-n),l*i);
147 Pm1=zeros(i*(l*i-n),l);
148 for p=1:i
149 Pm1((l*i-n)*(p-1)+1:(l*i-n)*p,:)=P2t(:,l*(p-1)+1:l*p);
150 end
151
152 for q=1:i
153 Pm(:,l*(q-1)+1:l*q)=[Pm1((l*i-n)*(q-1)+1:end,:);zeros((q-1)*(l*i-n),l)];
154 end
155 % Building matriz Gm
156 G=[];
157 for p=1:i-1
158 G=[G;C*A^(p-1)];
159 end
160 Gm = [[eye(l) zeros(l,n)];[zeros(l*(i-1),l) G]];
161
162 %Preparing the matrix relation
163 Rl=Km;
164 Rr=Pm*Gm;
165 Un=Rr\Rl;
166 D=Un(1:l,:);
167 B=Un(l+1:end,:);
168 end
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Notation Explanation
G Graph
N Number of nodes in graph G
L Number of links in graph G

W Adjacency matrix of graph G
Ai State matrix of a DLSS model of node/system i
Bi Input matrix of a DLSS model of node/system i
Ci Output matrix of a DLSS model of node/system i
Di Feedforward matrix of a DLSS model of node/system i
Ad Diagonal block matrix composed of Ai matrices,
Bd Diagonal block matrix composed of Bi matrices,
Cd Diagonal block matrix composed of Ci matrices,
Dd Diagonal block matrix composed of Di matrices,
Ae State matrix of a DLSS model of the network
Be Input matrix of a DLSS model of the network
Ce Output matrix of a DLSS model of the network
De Feedforward matrix of a DLSS model of the network

Table B.1: Notations for the graph G and DLSS models
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Notation Explanation

Ge Extended graph
ee Set of Ne nodes of extended graph Ge

Le Set of Le links of extended graph Ge

Ne Number of nodes in extended graph Ge

Le Number of links in extended graph Ge

We Adjacency matrix of extended graph Ge

Λ Incidence matrix of extended graph Ge

Γ Transposed incidence matrixΛwith all negative entries set to 0
Γw Internal sub-matrix of Γ
Γφ Input sub-matrix of Γ
Γψ Output sub-matrix of Γ
Γz External sub-matrix of Γ
Φ Matrix that defines the input links existence
Ψ Matrix that defines the output links existence
Z Matrix that defines the external links existence
F Extension of the matrix Γ for higher-dimensional vectors in Ge

Fw Internal topology matrix, defined upon Γw

Fφ Input topology matrix, defined upon Γφ
Fψ Output topology matrix, defined upon Γψ
Fz External topology matrix, defined upon Γz

Table B.2: Notations for the extended graph Ge

Notation Explanation

f [k] flow of a pipe

p[k] pressure of a junction

d [k] water demand

h[k] hydraulic head

f [k] traffic flow [Veh/5min]

v[k] traffic speed[mph]

Table B.3: Notations for the water network and road network
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1 clc
2 clear
3 close all
4
5 %% Create a networked system
6 % We use below a toy example, of the DLSS systems, forming a path network
7 G{2,1}.N = 2;
8 G{2,1}.r = 1;
9 G{2,1}.q = 1;

10 G{2,1}.n = [3;3];
11 G{2,1}.m = [2;2];
12 G{2,1}.p = [2;2];
13 G{2,1}.mu = 2;
14 G{2,1}.rho = 2;
15 G{2,1}.W = [0 1; 0 0];
16 G{2,1}.Phi = [1 0];
17 G{2,1}.Ksi = [0; 1];
18 G{2,1}.Z = zeros(G{2,1}.r,G{2,1}.q);
19
20
21 for counter = 1 : G{2,1}.N
22 Model = drss(G{2,1}.n(counter),G{2,1}.p(counter),G{2,1}.m(counter));
23 G{1,counter}.A = Model.A;
24 G{1,counter}.B = Model.B;
25 G{1,counter}.C = Model.C;
26 G{1,counter}.D = Model.D;
27 end
28
29 % Compute the DLSS of the entire network
30 [A_e,B_e,C_e,D_e] = compute_scaled_DLSS(G)
31
32
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33 %% Used functions
34 function [A_e,B_e,C_e,D_e] = compute_scaled_DLSS(G)
35 [G_w,G_phi,G_ksi,G_z] = compute_G_matrices(G);
36 [F_w,F_phi,F_ksi,F_z] = compute_F_matrices(G,G_w,G_phi,G_ksi,G_z);
37 [A_d,B_d,C_d,D_d] = compose_diagonal_ABCD(G);
38 [A_e,B_e,C_e,D_e] = compute_DLSS(A_d,B_d,C_d,D_d,F_w,F_phi,F_ksi,F_z);
39 end
40
41 function [G_w,G_phi,G_ksi,G_z] = compute_G_matrices(G)
42 N = G{2,1}.N;
43 r = G{2,1}.r;
44 q = G{2,1}.q;
45
46 W = G{2,1}.W;
47 Phi = G{2,1}.Phi;
48 Ksi = G{2,1}.Ksi;
49 Z = G{2,1}.Z;
50
51 W_e = [zeros(r) Phi Z;...
52 zeros(N,r) W Ksi;...
53 zeros(q,r + N + q)];
54
55 % Define number of internal, input, output and external links
56 L_w = nnz(W);
57 L_phi = nnz(Phi);
58 L_ksi = nnz(Ksi);
59 L_z = nnz(Z);
60
61 % Construct modified incidence matrix L
62 L = zeros(r + N + q, L_w + L_phi + L_ksi + L_z);
63 ind_count = 1;
64 for counter_f_1 = 1 : r + N + q
65 for counter_f_2 = 1 : r + N + q
66 if(W_e(counter_f_2,counter_f_1))
67 L(counter_f_1,ind_count) = -1;
68 L(counter_f_2,ind_count) = 1;
69 ind_count = ind_count + 1;
70 end
71 end
72 end
73 Gamma = 0.5*(L' + abs(L'));
74 % Define Gamma matrices
75 G_w = Gamma(1 : L_w + L_phi, r + 1 : r + N);
76 G_phi = Gamma(1 : L_w + L_phi, 1 : r);
77 G_ksi = Gamma(L_w + L_phi + 1 : end, r + 1 : r + N);
78 G_z = Gamma(L_w + L_phi + 1 : end, 1 : r);
79 end
80
81 function [F_w,F_phi,F_ksi,F_z] = compute_F_matrices(G,G_w,G_phi,G_ksi,G_z)
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82 % Store the parameters
83 n = G{2,1}.n;
84 p = G{2,1}.p;
85 m = G{2,1}.m;
86 mu = G{2,1}.mu;
87 rho = G{2,1}.rho;
88 N = length(n);
89 r = length(mu);
90 % q = length(rho);
91
92 L_w = nnz(G{2,1}.W);
93 L_phi = nnz(G{2,1}.Phi);
94 L_ksi = nnz(G{2,1}.Ksi);
95 L_z = nnz(G{2,1}.Z);
96
97 S_temp = [G_phi G_w; G_z G_ksi]*[mu zeros(r,1);zeros(N,1) p];
98
99 s_w = S_temp(1:L_w+L_phi,2);

100 s_phi = S_temp(1:L_w+L_phi,1);
101 s_ksi = S_temp(L_w+L_phi+1:L_w+L_phi+L_ksi+L_z,2);
102 s_z = S_temp(L_w+L_phi+1:L_w+L_phi+L_ksi+L_z,1);
103
104 s_w_phi = s_w + s_phi;
105 s_ksi_z = s_ksi + s_z;
106
107 % Initialise the matrices
108 F_w = zeros(sum(m) , sum(p)); % F_w
109 F_phi = zeros(sum(m) , sum(mu)); % F_phi
110 F_ksi = zeros(sum(rho), sum(p)); % F_ksi
111 F_z = zeros(sum(rho), sum(mu)); % F_z
112
113 % Construct the matrices F_w, F_phi, F_ksi and F_z, as in relation (4.14)
114 for counter_f_1 = 1 : L_w + L_phi
115 for counter_f_2 = 1 : N
116 if(G_w(counter_f_1,counter_f_2) == 1)
117 F_w(sum(s_w_phi(1 : counter_f_1 - 1)) + ...
118 1: sum(s_w_phi(1 : counter_f_1)) , sum(p(1 : counter_f_2 - 1))...
119 + 1: sum(p(1 : counter_f_2))) = eye(p(counter_f_2));
120 end
121 end
122 for counter_f_3 = 1 : r
123 if(G_phi(counter_f_1,counter_f_3) == 1)
124 F_phi(sum(s_w_phi(1 : counter_f_1 - 1)) +...
125 1: sum(s_w_phi(1 : counter_f_1)), sum(mu(1 : counter_f_3 - 1))...
126 + 1: sum(mu(1 : counter_f_3))) = eye(mu(counter_f_3));
127 end
128 end
129 end
130
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131 for counter_f_1 = 1 : L_ksi + L_z
132 for counter_f_2 = 1 : N
133 if(G_ksi(counter_f_1,counter_f_2) == 1)
134 F_ksi(sum(s_ksi_z(1 : counter_f_1 - 1)) +...
135 1: sum(s_ksi_z(1 : counter_f_1)), sum(p(1 : counter_f_2 - 1))...
136 + 1: sum(p(1 : counter_f_2))) = eye(p(counter_f_2));
137 end
138 end
139 for counter_f_3 = 1 : r
140 if(G_z(counter_f_1,counter_f_3) == 1)
141 F_z(sum(s_ksi_z(1 : counter_f_1 - 1)) + ...
142 1: sum(s_ksi_z(1 : counter_f_1)), sum(mu(1 : counter_f_3 - 1))...
143 + 1: sum(mu(1 : counter_f_3))) = eye(mu(counter_f_3));
144 end
145 end
146 end
147
148 end
149
150 function [A_d,B_d,C_d,D_d] = compose_diagonal_ABCD(G)
151 n = G{2,1}.n;
152 m = G{2,1}.m;
153 p = G{2,1}.p;
154
155 % Initialise block diagonal matrices A_d, B_d, C_d and D_d
156 A_d = zeros(sum(n));
157 B_d = zeros(sum(n),sum(m));
158 C_d = zeros(sum(p),sum(n));
159 D_d = zeros(sum(p),sum(m));
160
161 % Apply relation (4.10)
162 for counter_1 = 1 : length(n)
163 A_d((sum(n(1 : counter_1 - 1 )) + 1) : sum(n(1:counter_1)),...
164 (sum(n(1 : counter_1 - 1)) + 1) : sum(n(1:counter_1))) = G{1,counter_1}.A;
165 B_d((sum(n(1 : counter_1 - 1)) + 1) : sum(n(1:counter_1))...
166 ,sum(m(1 : counter_1 - 1)) + 1 : sum(m(1:counter_1))) = G{1,counter_1}.B;
167 C_d((sum(p(1 : counter_1 - 1)) + 1) : sum(p(1:counter_1)),...
168 (sum(n(1 : counter_1 - 1)) + 1) : sum(n(1:counter_1))) = G{1,counter_1}.C;
169 D_d(sum(p(1 : counter_1 - 1)) + 1 : sum(p(1:counter_1)),...
170 (sum(m(1 : counter_1 - 1)) + 1) : sum(m(1:counter_1))) = G{1,counter_1}.D;
171 end
172 end
173
174 function [A_e,B_e,C_e,D_e] = compute_DLSS(A_d,B_d,C_d,D_d,F_w,F_phi,F_ksi,F_z)
175 p = size(D_d,1);
176 % Compute the DLSS matrices of the entire network, as in relation (5.1)
177 Inv_M = (eye(p) - D_d*F_w)^-1;
178 A_e = B_d*F_w* Inv_M*C_d + A_d;
179 B_e = B_d*F_w* Inv_M*D_d*F_phi + B_d*F_phi;
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180 C_e = F_ksi*Inv_M*C_d;
181 D_e = F_ksi*Inv_M*D_d*F_phi + F_z;
182 end
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