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Perspectives on Future Power System Control
Centers for Energy Transition

Antoine Marot, Adrian Kelly, Matija Naglic, Vincent Barbesant, Jochen Cremer,
Alexandru Stefanov, and Jan Viebahn

Abstract——Today’s power systems are seeing a paradigm shift
under the energy transition, sparkled by the electrification of
demand, digitalisation of systems, and an increasing share of de‐
carbonated power generation. Most of these changes have a di‐
rect impact on their control centers, forcing them to handle
weather-based energy resources, new interconnections with
neighbouring transmission networks, more markets, active dis‐
tribution networks, micro-grids, and greater amounts of avail‐
able data. Unfortunately, these changes have translated during
the past decade to small, incremental changes, mostly centered
on hardware, software, and human factors. We assert that more
transformative changes are needed, especially regarding human-
centered design approaches, to enable control room operators
to manage the future power system. This paper discusses the
evolution of operators towards continuous operation planners,
monitoring complex time horizons thanks to adequate real-time
automation. Reviewing upcoming challenges as well as emerg‐
ing technologies for power systems, we present our vision of a
new evolutionary architecture for control centers, both at back‐
end and frontend levels. We propose a unified hypervision
scheme based on structured decision-making concepts, provid‐
ing operators with proactive, collaborative, and effective deci‐
sion support.

Index Terms——Artificial intelligence, cyber-physical system, de‐
cision-making, digital architecture, digital twin, energy transi‐
tion, hypervision.

I. INTRODUCTION

POWER systems continue to evolve to accommodate
new demands and challenges, to support the energy tran‐

sition. Today’s power systems are more interconnected than
ever within the cyber and physical spaces. While their evolu‐
tion was mostly driven in the past by grid infrastructure and
capacity expansion, it now becomes a matter of greater grid
management and optimization over existing infrastructure.

As the central nerve of the power system, control centers
have always supported its evolution [1], [2], and will contin‐
ue to do so. Control centers [3] provide groups of human op‐
erators with the necessary working and decision-making en‐
vironment to remotely monitor the system and properly oper‐
ate it in real time.

Today, the energy transition is forcing radical changes on
the working environment of system operators, at an even
faster pace [4]. A rethinking of the architecture of the con‐
trol center and the role of the operator is now required. New
architecture should enable more evolutionary, standardized,
and modular integration. More importantly, as control cen‐
ters are primarily environments made for operators to regu‐
larly make decisions when operating the system, more hu‐
man and decision-centric design should also be considered.
In particular, it is now necessary to develop smart and uni‐
fied human-machine interfaces, referred to as “hypervision”,
leveraging advances in these fields for the last two decades.

This paper reviews why the underlying systems are chang‐
ing today and the consequences for operating the power sys‐
tem in Section II. It further develops a vision on what needs
to change in the control center. An holistic approach for re‐
thinking decision-making that enables operators become “hy‐
pervisors” of cyber-physical systems (CPSs) [5] is presented
in Section III. This approach is complemented with an en‐
abling digital platform architecture in Section IV. After re‐
viewing emerging technologies and functionalities that could
be integrated in the platform in Section V, operational per‐
spectives are shared in Section VI over proactive and assist‐
ed decision-support, risk-based security paradigm shift, as
well as continuous realistic testing and simulator training.
We conclude this paper in Section VII.

II. CHANGING ENVIRONMENT FOR CONTROL CENTERS

A. Redesigning System for Energy Transition

To address climate change, governments around the world
have set aggressive targets for carbon emission reductions in
the coming decades. The paths of the various sectors to‐
wards zero emissions are uncertain. There may be unavoid‐
able adaptation to some climate change level with rising tem‐
peratures and extreme weather events [6]. However, as of
2022 there is a noticeable trend towards electrification of
sectors, i. e., transport, agriculture, domestic heating [7] to
participate in decarbonisation. Hence, the power system will
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likely become an increasingly important part of all sectors of
society and the economy [8]. This increased reliance, will
likely mean that the transmission and distribution systems
will need to be ever more reliable and resilient. The system
may shift dynamically, which will increase uncertainty.

Driven by renewable resource integration, the operation
uncertainty of the power system will increase beyond what it
was designed for [9]. Transmission and distribution networks
were designed for transporting steady power flows from
large fossil-fueled generators to demand centers. Future sys‐
tems require redesigning to accommodate uncertainties in
power flows and in injections, as well as more distributed
energy resources (DERs) [10]. Uncertainties will further in‐
crease as the inverter-based resources (IBRs) add novel dy‐
namics to grid operation, lowering the inertia available to
balance autonomously grid stability with novel control com‐
plexities [11]. Unfortunately, the past design paradigms to

build stronger grids to ensure the security of supply while
transporting more electricity are not suitable anymore [12].
The increase in uncertainty with the same designed safety
margins would require unjustifiable grid investments as the
willingness of society to build new electricity infrastructure
decreases (due to visual and environmental impacts). The re‐
quired flexibility will hence come from smarter operations,
devices, and resources as it is likely that flexibility can not
come from new infrastructure. Operators will have to do
more with the existing grid as summarized in Fig. 1, and the
grid will be pushed closer to its limits [4]. It can be ob‐
serverd from Fig. 1 that given the energy transition and oth‐
er drivers, the grid is already changing from the outside and
the inside. This has operational impacts, leading to operation‐
al needs in terms of grid flexibility and decision-making ca‐
pability.

B. Changing Environment–from Outside

Control centers may be redesigned to consider several
changes to the power and market system that are being im‐
posed externally and are described below.

1) Micro-grids and local energy communities (LECs) are
small entities such as towns or villages that are aiming to
balance their own energy demands. Driven by the trend to‐
wards more DERs, LECs are rapidly increasing across the
world [13]. Smart meter technology allows end-users more

observability and control of their energy, hence their own lo‐
cal control becomes more autonomous and LECs are partici‐
pating in markets [14]. These micro-grids and LECs repre‐
sent challenges and opportunities for control centers, e. g.,
their uncontrollability, unobservability, and demand variabili‐
ty. The opportunity lies in using their flexibility for balanc‐
ing and congestion management on distribution and transmis‐
sion systems [15] through demand-side management
[4], [16].
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Fig. 1. New operational needs under energy transition that is impacting operations along different dimensions.
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2) Market participation and new mechanisms will in‐
crease, which require the interactions with a larger number
of market participants [17], [18], both via verbal communica‐
tion and electronic messaging. With most participants, these
interactions are expected to be autonomous, in real time, via
secure information and communication technology infrastruc‐
ture. There will be more widely shared generation capacity,
and shared operation flexibility which must be allocated be‐
tween neighbouring systems [19] will add new operation
constraints. These constraints and tasks must be added to cur‐
rent tasks of control center operators which will likely re‐
quire additional tools and software [4]. Power-to-gas and hy‐
drogen are likely to be key components of a future climate
neutral energy system, which brings consequent challenges
for electricity system control and new co-optimized multi-en‐
ergy markets [20].

3) Sharing of open data and information will likely in‐
crease as per current regulatory and policy directions for in‐
creased transparency, sensitivity, and privacy [21]. These reg‐
ulations aim at increasing market participation, reducing en‐
ergy prices and spurring innovations. For instance, in Eu‐
rope, ENTSO-E developed a transparency platform which is
tied to the European network codes which have articles relat‐
ed to data transparency [22]. While most of these platforms
are automatic data exchanges, there may be some manual
new reporting tasks for operators and transmission system
operators (TSOs) to report on events and disturbances soon
after an event. Through fast processing with application pro‐
gramming interface (API) and social media, consumers have
accurate access to near real-time information.

In the future, the manual process of report generation in
control rooms should be more automated. This should free
up valuable operator cognitive load to analyze the risk in re‐
al time, by studying the system and applying their experi‐
ence and engineering knowledge. One slight drawback of an
open data policy is that the general public with little knowl‐
edge and experience of the actual system dynamics may
make incorrect interpretations of events, which may have to
be repudiated by the TSO in case it spreads as misinforma‐
tion. Open data should be accompanied [23] by a strong, au‐
thoritative voice of the TSO in the industry with a reactive
crisis communication team for emergency scenarios, possibly
taking inspiration from the COVID-19 worldwide crisis man‐
agement in media [24].

C. Changing Environment–from Inside

In parallel to externally forced changes, new technology
integration, asset management, or system interconnections
are also changing the power system from the inside.
1) New Technologies for Observability and Control

Technological advancements in sensor, information, and
communication technologies provide state-of-the-art ones for
power system monitoring. Power electronics in high-voltage
direct current (HVDC) [25], onshore and more and more off‐
shore [26] wind farms as well as photovoltaic panels is chal‐
lenging the way in which the grid is designed. Yet, power
electronics also allows the possibility of new rapid controls.
More and more rapid remote controllers and devices are also

making the system more complex to understand and manage
overall with current tools in the control center. Existing grid
flexibilities such as topological changes could also be ex‐
ploited with new advance controllers. At the same time, the
technology of phasor measurement units (PMUs) [27] can al‐
low system operators to monitor the dynamic performance
of the system. Beyond the development of the smart substa‐
tion, new light Internet of things (IOTs) [28] sensors in‐
stalled along power lines also give more fine-grained infor‐
mation and greater observability. This enables asset monitor‐
ing and allows for new predictive models used, for example,
in dynamic line rating (DLR) [29].

The digitisation of infrastructure has brought the power
grid into a new era, which creates many opportunities for
greater flexibility by allowing the collection of more data or
capability on the edge [30]. But it also makes the network
more vulnerable to cyber attacks [31], and the availability of
more data requires the new and improved software systems,
platforms, and hardware in the control center.
2) New Construction, Outages, and Asset Management

In most countries around the world, the power grid is well
established. Investing in the development of new power
lines in such grids is becoming increasingly difficult. The
historical approach to accompany system transitions is often
not viable anymore: existing structural grid topology will not
change much. However, most transmission systems around
the world are experiencing rapid growth in construction proj‐
ects to interconnect new renewable energies at the periphery
of grids (mountains and near coasts) while most of the exist‐
ing backbone infrastructure grid is aging. Each new project
requires outages of the existing grid, which can further
stress the grid. Outages require the coordination and consul‐
tation between the responsible TSOs and associated TSOs or
market operators [32]. Each outage requires more people to
work and track on site, involving more numerous interac‐
tions and greater risk of human error. When asset protection
and control upgrades are carried out on the network, this has
typically led to a vast increase in the number of alarms or
data points being sent back to the control center.

This development has led to alarm and information over‐
load, where operators are swamped by superfluous informa‐
tion. For the future control center, a streamlined and analyti‐
cal approach to outage management that optimises cost, dura‐
tion, and factors in variable resources will be required [30].
For situational awareness, a new approach to alarm manage‐
ment that requires intelligent decision support, improved in‐
formation visualization and analysis on asset data to indicate
stress points would be ideal.
3) Coordination and Interfaces

Control centers now have increased interactions with simi‐
lar system operators, market operators, or security and reli‐
ability coordinators. This trend is likely to continue in North
America with multi-state independent system operators
(ISOs), in Europe with regional coordination centers (RCCs)
[33] and in Australia and Asia. Country or regional states will
likely become more interconnected via HVDC links, offshore
grids, and market coupling which will require additional coor‐
dination over initially heterogeneous operation practices.
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Similarly, the interaction between TSOs and distribution
system operators (DSOs) is likely to intensify and some con‐
trol approaches for this interaction were proposed [34]. Con‐
ventionally, DSOs served customers vertically from the trans‐
mission system, while now distribution systems are active
networks, with DERs contributing to markets and congestion
issues on increasingly meshed distribution networks [35].
The issues around area of responsibility between balancing
the frequency with DER versus managing voltage and con‐
gestion on distribution networks are difficult to resolve and
will require standardized data exchange, improved data visu‐
alization, and social interaction with operators in distribution
control centers.

Control centers are likely to be more connected to collater‐
al aspects of the grid: telecommunication network, supervi‐
sion of information system or asset monitoring, market varia‐
tions or even social networks. Models and processes that as‐
sess the feasible operation domain should be commonly
shared online during real-time operations across all those in‐
terfaces. They could possibly be co-designed between stake‐
holders and regularly re-adapted offline ahead of operations.
This web of interactions constitutes an additional workload
for the operator. In Europe, ENTSO-E is working with TSOs
to achieve this vision for future control centers, enabled by
common grid models and data platforms [36].

D. Consequences of These Changes

Given this context, a number of consequences can be an‐
ticipated for the way in which electricity transmission sys‐
tems are operated as partly outlined in [37] and [38].

1) The dependence of DER on weather conditions, the de‐
commissioning of conventional generation and an aging
grid, and the electrification of sectors of society will lead to
higher operation uncertainty.

2) The decentralisation or market participants and lack of
new infrastructure will lead to a reduction in operating mar‐
gins of the power system, and the operation of the system
will be closer to its limits.

3) Increased interconnection between transmission systems
will require coordination and oversight. Increased interaction
between transmission and distribution systems will require
more active monitoring and control.

4) The dynamics of evolution (market rules, behaviours of
actors, technologies on the grid) in the power system will be
faster, requiring rapidly deployed new process, tools, and
monitoring capability.

5) The power system will become cyber-physical but less
predictable while relying on extended delegation or sharing
of aspects of control, the splitting of areas of responsibility
and functions.

6) Operations and decisions will become more complex
and require more anticipation, coordination, and automation
in real time.

Faced with these changes, the traditional decision-making
process, which is mostly based on the operators’ knowledge
and real-time awareness, will not be feasible anymore: it
will have to be adaptive and well-structured.

III. RETHINKING DECISION-MAKING IN CONTROL CENTERS

As operations and decisions become more complex, there
is now a requirement to rethink the operator’s decision-mak‐
ing environment through human-centered design through: ①
renewed definition of operator’s role, functions, processes,
and tasks; ② integrating structured decision-making frame‐
works; and ③ greater integration of the working environ‐
ment ecosystem with a simplified, adaptive, and modular
smart interface.

More consistent and structured decision-making processes
will allow for improved coordination and automation integra‐
tion.

A. Evolution in Operator Roles and Tasks

1) Increased Real-time Task Automation
Figure 2 shows the evolution of operator’s decision-mak‐

ing environment over decades with increasing number of
tasks. This was first compensated through tool development
and support, combined with the automation of some process‐
es. Nowadays, application ecosystem integration behind uni‐
fied interface and extended operator’s time horizon are fur‐
ther needed to continue taking proper decisions. Convention‐
ally, operators in a control room worked in real time. This
meant manually managing the dispatch of generation, manu‐
ally forecasting the demand, managing power flows on lines
and transformers, and planned and unplanned outages of
transmission equipment as they occurred in real time. Lines
always had to be manually reconnected to the system by op‐
erators. Other manual processes include reporting, logging,
and workforce management. These manual processes are gen‐
erally cognitively intensive and do not increase situational
awareness.

In recent decades, control centers have automated some of
these manual processes [39]. Automatic generation control
(AGC) and enhanced market systems manage the dispatch of
generation, reserves, and interconnector flows based on auto‐
mated demand and renewable forecasting. Auto-reclosing
and special protection schemes have proliferated, reducing
the manual interventions for unplanned outages. Security as‐
sessment is automated, and automatic voltage optimization
and control is now becoming part of normal system opera‐
tions.

Today, operators in most control centers still manually
switch on the system, study the network for outages and do
planned switching and intervene for unplanned outages and
emergencies. They still manually perform ex-post reporting
and workforce management, but unplanned outages that do
not reclose (or transformer or cable outages) are likely to be‐
come the only process that is managed in real time. This can
be considered as very rare events and manual interventions
when automation fails– in a way similar to manually dis‐
patching generation if AGC fails.

In the future control center, the aim should be to continue
the trend of automation of manual processes that do not in‐
crease operators’ situational awareness, but are time-consum‐
ing, tedious, and repetitive tasks. This is especially relevant
when considering manual administrative processes such as
logging and reporting on incidents, logging and dispatching
asset health anomalies, and managing workforce.
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2) Towards Planners and Navigators
Due to the trend of automation, the operators’ time hori‐

zon can be considered to be moving further away from real
time, where they monitor the system and assess risks associ‐
ated with real-time market operations, system peaks, and re‐
newable energy ramps. This is because decisions are getting
more numerous, complex, and inter-dependant under greater
uncertainty [40], coordination, and reduced margins, as high‐
lighted in Section II-D. Because of this, operators no longer
have time to make the most optimal decisions in real time
and thus must rely on both the automation of the system in
real time and in the accuracy of forecasts and study tool opti‐
mization ahead of real time. As shown in Fig. 2, it may be
the case that the operator’s time horizon moves away from
real time to an operation role more defined as an operation
planner, eventually on the way towards a unified framework
in planning and operation [41]. With this longer horizon, op‐
erators can dynamically anticipate trajectories, strategize and
assess risks for upcoming forecasted system issues, ramps or
peaks and reconfigure the grid ahead of time and be pre‐
pared to do so when needed. Operators may only intervene
in real time if automation is not available or does not work
as expected.

As an inspirational analogy, aeroplane pilots moved away
from continuously steering the plane, based on real-time per‐
ception and indicators. They eventually became navigators
by planning most of the flight trajectory ahead of time with
forecasts, relying on an autopilot to follow this trajectory.
Occasionally they would adjust the trajectory in or close to
real time. Similarly, in the future, it can be expected that
grid operators become grid navigators, planning and defining
expected future trajectories supported by forecasts with an
assistant that assesses risks, makes recommendations, and
helps plan and execute tasks and reporting.

3) New Hierarchical Cyber Architecture for Autopilot
Within a range from a defined trajectory, an autopilot

could help handle local or global fast system dynamics with
proper reactivity. Large-scale automatic frequency regula‐
tions or local simple automatons are the examples of auto‐
matic control that have been deployed. However, to develop
a more integrated autopilot that operators can rely on, coordi‐
nate with, and reconfigure, a supporting and unified cyber ar‐
chitecture beyond individual task automaton needs to be de‐
ployed. This would come as hierarchical modular and config‐
urable cyber layers. At the top, the operators must manage
an “optimize” layer, from which they have a global view of
the system and can receive aggregated information and send
macro orders to the underlying layers (voltage setpoint, au‐
tomaton configuration, etc.). Zonal distributed “control” lay‐
ers, a new type of layer, would monitor local areas covering
several substations and provide advanced control with auto‐
matic remedial action schemes around configured setpoints
or delimited operational domains. The “protect” layer, locat‐
ed at the substation, eventually ensures that material limits
are respected at all times.
4) Structured Design for Automation of Processes

When thinking further about the process of automation in
decision-making, it is important to consider which processes
are carried out and in what time horizon, how much the pro‐
cess contributes to situational awareness of the operator [42],
and how manual the process is within the time horizon.

An automated process may still require manual confirma‐
tion by the operator, in particular to select or validate and
confirm non-trivial decision-making. Keeping the human in
the loop should increase situational awareness. However, the
operator confirmation might be omitted where fast response
is required, possibly during some emergencies, and when an
automated process continuously produces the expected out‐
come.
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Fig. 2. Evolution of operator’s decision-making environment over decades with increasing number of tasks.
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Ultimately, the level of process automation depends on the
process being automated. For example, some straightforward
processes can be fully automated and executed autonomous‐
ly, while some can be automated only in parts or not at all.
Nevertheless, the first step for any kind of process automa‐
tion is to standardize the execution sequence and associated
information exchange between the process steps. Moreover,
the application that executes the process should be able to
detect any inconsistencies in the process execution and pro‐
cess step failures with related reasons, and communicate to
operators.

B. Structured Decision-making

1) A New Approach for Decision-making of Transmission
Control Center

Transmission system operations have changed incremental‐
ly over the preceding decades and experienced operators
have ingrained mental models for operations. However, if
the system operating modes change, as predicted for the
coming decades, operators may not be able to rely on exist‐
ing mental models to solve new challenges. As an example,
contingencies are generally slow to emerge, which is predict‐
able, and thus operators typically have ready-made solutions.
But with changing resource and demand mix, newer contin‐
gencies will emerge faster and unpredictably, meaning solu‐
tions may be more complex.

A better approach may be to equip operators with tech‐
niques to adjust to new paradigms and operation modes, so
that they can think through problems and develop the opti‐
mal solution in a standardized manner. Structured decision-
making frameworks also have the added benefit of being
good proxies for task automation and artificial intelligence
(AI) [43].
2) Framework of Rasmussen’s Decision Ladder

The decision ladder was theorized and developed by Jens
Rasmussen [44] and reproduced in Fig. 3, which shows the
cognitive steps that operators require as they process infor‐
mation on the system.

It is a very effective model for how operators in high reli‐
ability control center make decisions in critical scenarios.
The decision ladder is not intended to describe how the
brain works to process information via human physiology,
which is a realm of complexity beyond the scope of this pa‐
per. It is intended to define the states of knowledge and pro‐
cess activities that occur while an operator is facing a sys‐
tem challenge. The decision ladder starts as a linear process
flow, starting with activation on the left and finishing with
execution on the right. The innovation with the decision lad‐
der comes with the “ending” of the process flow, to make
the process visually more intuitive and to enable leaps be‐
tween states, as can be observed in Fig. 3. Novice operators
can start at bottom left and work their way through each
state and process until they arrive at the execution action.
When applying it to transmission operations, it should be ob‐
vious that:

1) Not all processes or tasks will require all steps of the
ladder, hence there are in-built leaps from left to right.

2) Experienced operators generally do not move through
every stage of the ladder. Their inherent system knowledge
and experience allow them to leap between stages or across
the ladder, to fast track task execution.

3) The bottom level of the ladder represents “skill-based
behaviour”, or automatic response. The middle level of the
ladder represents the “rule-based behaviour” or operators fol‐
lowing procedures or checklists in response to an event. The
top level of the decision ladder is the “knowledge-based be‐
haviour”, which relies on high cognitive workload and expe‐
rience.

Ideally, operators should spend most of their time in the
knowledge-based behaviour loop, diagnosing problems, op‐
tioneering, testing hypothesis, and assessing risk. Similarly
in an automation scheme, this “simulation” and “validation”
part of the algorithm might be the most computationally ex‐
pensive.
3) Model Limitations

The decision ladder is serial in nature, thus it is a useful
proxy for a single and independent manual task decomposi‐
tion and automation such as voltage control. But in real-time
operations, tasks are highly interconnected, so voltage con‐
trol can be linked to asset monitoring, stability monitoring,
contingency management, and generator monitoring. As mul‐
tiple tasks also need to be completed in varying time peri‐
ods, task prioritization is not included. These can be im‐
proved by a move from a serial supervision structure to hy‐
pervision interface, as shown in Sections III-C and V-A. Hy‐
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pert operators and a refreshed feedback loop when adapting ladder to fore‐
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pervision would, in theory, takes the outputs of all serial pro‐
cesses in a control center and streamline decision-making
and relevant information into one interface. But the decision
support activity would be structured by the decision ladder.
The system state, target state, option nodes of the decision
ladder would take inputs from all processes, not just a single
process, and the task, procedure, and execution would be op‐
timized control actions for all the processes, not just a single
process.

The original version of the decision ladder does not have
a loop, review, or check stage (a review stage is added in
the modified version in Fig. 3) to loop back in the ladder if
needed or if there is still time before executing the decision.
In the orginal ladder, when operators execute the task, it is
expected for instance that the correct course of action was
taken, and if there is an anomaly, the process starts again at
the bottom left of the ladder. With a hypervision ladder rep‐
resentation and step-by-step progress logging and tracking,
more incremental backward steps in the decision-making pro‐
cess could be more efficiently achieved without restarting
the decision-making process from scratch.

C. Hypervision as a Unified and Simplified Smart Interface

Today’s supervision over many screens and applications
leaves the user the cognitive load to prioritize, organize, and
link disparate displayed information and alarms before con‐
sidering any decision or action. It can be regarded as a frag‐
mented ecosystem from an operator’s viewpoint. While it
has been manageable for up to ten applications, it becomes
impractical with more information to process and non-inte‐
grated applications under heterogeneous formats. It contrib‐
utes to the problem of information overload and does not
add context to system problems that need to be managed.
This fragmented system dilutes the operator’s attention
while making tasks often not explicit, eventually leaving the
operator connecting the dots. Human-machine interfaces and
interactions were mostly disregarded in the past in the con‐
trol centers, but they now need to be considered more care‐
fully. Sub-optimal design of human-machine interfaces and
interactions has been identified as a risk factor to human er‐
ror in operations [45].

A single and unified interface should support the decision-
making process, and prioritisation of tasks for the operator.
A new “hypervision” scheme will likely be required for the
future control center, which will define and represent individ‐
ual tasks with their context providing: ① relevant context
and the problem diagnosis associated with the left part of
the decision ladder; ② possible recommended decisions asso‐
ciated with the top of the ladder; and ③ related plans, proce‐
dures, and execution means to apply the decision associated
with the right of the ladder.

All applications would still be running in the background
while the hypervision will aggregate information to be repre‐
sented in a meaningful way for operators to take decisions.
It will also prioritize tasks based on the urgency and the
time horizon, not just real-time tasks. This will allow the def‐
inition of an expected operation trajectory monitored by the
hypervision core. If it goes as expected, the operator can

continue planning its future trajectories without worrying
about real time. Otherwise, if some refreshed information re‐
quires adaptation of the defined trajectory, it will ask the op‐
erator for reconfiguration and suggest solutions. Finally, the
hypervision core is one system for all operators through
which tasks can be shared, coordinated, and tracked without
any loss of information.

IV. ENABLING DIGITAL PLATFORM ARCHITECTURE

Typical control center systems, used nowadays to operate
the power system, were initially designed to meet the system
operation and control requirements defined in the late 1960s.
The design practices of the first system were based on the
available technology of that time. Nevertheless, the legacy
of typical all-encompassing and centralised software solu‐
tions is often still present today in a form of a monolithic en‐
ergy management system (EMS) or data management system
(DMS), provided by one vendor. As the system outdates and
expires, it gets typically completely replaced by a newer ver‐
sion, also bringing long-enduring and costly impacts on the
organisation. Such customer specific maintenance is consum‐
ing a great deal of time and resources to adapt, integrate,
and interconnect the new system with the existing processes
and vice versa. Yet, that still leads to limitations due to ven‐
dor lock-in, in particular, with respect to the ability to contin‐
uously and simply adjust and extend the system functionality
according to user needs.

However, as elaborated in Section II, the power system op‐
eration challenges and requirements have changed signifi‐
cantly and are expected to change even further, mainly as a
result of the ever-evolving grids and energy markets, and
wide-spread digitisation among others. Additionally, the ne‐
cessity for system-wide security coordination and market
transparency drives the need for more and more data and in‐
formation exchange between stakeholders and market partici‐
pants, respectively. In order to provide reliable, safe, and ec‐
onomically efficient energy supply today and in the future,
and comply with regulation in all times, there is a need for
continuous advancement and adaptation of control center
functionalities and applications. To timely meet the increas‐
ingly complex requirements, there is a pressing need for a
paradigm shift in the design of control center systems from
typical monolithic, all-encompassing, and closed vendor solu‐
tions towards modular, decentralized, distributed, vendor-neu‐
tral, and open systems.

As discussed in [1], the future control center is character‐
ised by the distributed, decentralized, integrated, flexible,
and open-service-oriented information and communication
technology architecture, ranging from dynamic provisioning
of computation and communication resources, serving of da‐
ta, event data processing, up to applications delivering vari‐
ous functionalities as services. Moreover, [2] outlines a
smart transmission framework, spanning from substation
over transmission system to control center, which delivers
digitisation, flexibility, intelligence, resilience, sustainability,
and customisation. Inspired by industry-leading implementa‐
tion of modular control center system [46] by 50Hertz TSO,
we build on top of [1], [2], [46], and present the concept of

334



MAROT et al.: PERSPECTIVES ON FUTURE POWER SYSTEM CONTROL CENTERS FOR ENERGY TRANSITION

data and application integration and modular platform for fu‐
ture control centers.

The main aim of the presented modular architecture is to
provide high-level design directions of the digital platform
with a goal to unlock: ① the potential of ever increasing op‐
erational and non-operational data; ② use of event-driven
technologies for design of new applications; ③ seamless in‐
formation exchange between modules via standardized inter‐
faces; and ④ unbound flexibility with respect to maintain‐
ability of modules. Another benefit is the possibility to reuse
the modules by other stakeholders, which also facilitates
stakeholder collaboration and speeds up the innovation. Nota‐
bly, the proposed platform can at first run in parallel to the
existing legacy EMS or supervisory control and data acquisi‐
tion (SCADA) system to complement the functionality, and
over time in steps takes over the remaining legacy system
functionality.

As visualized on Fig. 3, the proposed platform architec‐
ture consists of four layers, which are explained below. It is
important to note that the layers also include modules of
some key services/applications for example purposes only.
Also, the platform is not limited to specific services/applica‐
tions of control centers, but can be also used, for example,
to host asset management and cyber-resilience related func‐
tionalities. Different instances of the platform can be used
by different stakeholders, e.g., operator’s training, as shown
in Section VI-C. The platform modularity is particular suit‐
able for the development of hypervision interface, as shown
in Section V-A, including proactive decision support shown
in Section VI-A) in the underlying modules with AI and oth‐
er technologies shown in Section V.

A. Enabling Platform and Data Management Solutions

The first layer acts as a platform foundation spanning
from the central location all to the edge (substations) and en‐
abling ① data ingress and storage, ② real-time data analytic
on the edge or central location to extract business value, ③
distributed applications, and ④ remote management of the
platform components. One of the most promising platform
implementation includes hybrid cloud, which is partly re‐
alised using on-premise and public cloud infrastructure offer‐
ing additional gains in terms of resource flexibility and secu‐
rity, in particular, for disaster recovery. The on-premise part
of the cloud infrastructure is used to host internal applica‐
tions, spanning from the central location all to the edge in
substations. Besides, the public part of the cloud infrastruc‐
ture is used to accommodate energy market related services
and data exchange gateways between stakeholders for grid
security coordination and market transparency as examples.
Then, a container management system can be used to ease
and automate continuous integration, development, and scal‐
ing of various container-based applications anywhere in the
hybrid cloud. On top of it, an event streaming platform en‐
ables high-performance data pipelining, real-time event and
batch stream processing, and high availability of hosted (dis‐
tributed) applications. This layer is particularly important for
efficient design of data-driven online and offline event-based

applications [47], where data are often first enriched, curat‐
ed, stored, and reused in multiple end-user applications. Fi‐
nally, a data storage and versioning solution in combination
with master and meta data management is added, for exam‐
ple, using cutting-edge data mesh principles [48] to store,
catalogue, and provide all operational and non-operational
data for various applications. An interesting and matured ex‐
ample of such data platform is the open source available OS‐
DU data platform [49], which is tailored to the needs of oil
and gas industry.

B. Decentralized Business Supporting Services

The second layer includes various distributed yet centrally
located business functions as services that are shared and
fundamental for operation of multiple end-user applications.
Examples include but are not limited to (static/hybrid) state
estimation, operational and non-operational data storage,
alarm management, and data exchange gateways for inter-
TSO/DSO security coordination, energy market and transpar‐
ency purposes. Next, it also includes decentralised functions
that run on the cloud edge in substations, such as asset con‐
dition monitoring, asset data acquisition, distributed (dynam‐
ic) state estimation, and vitalized protection and control
schemes. The crucial parts of this layer are open software de‐
velopment kit (SDK) and API, which enable simple applica‐
tion design and seamless data exchange for application inte‐
gration and visualisation purposes, respectively.

C. Decentralized Intelligence

The third layer includes advanced applications for im‐
proved situational awareness and decision support, power
system optimization and control, and energy market partici‐
pation. Examples include but are not limited to (dynamic) se‐
curity assessment and optimization, congestion management,
event detection and analysis, load frequency controller, and
optimal power flow. The hosted applications are residual any‐
where in the cloud, typically near data sources, and make
use of the various shared functions and services that are re‐
sidual in the lower layer through using the shared API.

D. Smart Human-machine Interface

Finally, the top user engagement layer consists of a state‐
less intuitive front-end or cockpit, which is used to connect
users and applications, allowing funneling of information
and immersive performance overview of the whole power
system down to the level of individual power system compo‐
nents, as well as effective decision-making as emphasized in
Section III. The cockpit interface is stateless, meaning that it
can be dynamically and automatically adapted to meet the
user needs for optimal user experience and performance. A
brain-computer interface or simpler bio-sensors could possi‐
bly be used to monitor workload and stress of a user and dy‐
namically adapt the level of decision support offered by ap‐
plications. Besides, the human-machine interfaces and inter‐
actions also support voice control or other advance interac‐
tion modalities for simple confirmation of actions and record‐
ing of user actions for logging purpose.
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V. EMERGING TECHNOLOGIES AND FUNCTIONALITIES

A. Hypervision Interfaces

Hypervision interface, as a part of one cockpit module in
Fig. 4, allows for centralizing real-time business events into
a single place to avoid having multiple screens or softwares
and offer the operator one single coherent interface. It en‐
ables structured decision-making by representing each deci‐

sion-making process (or simply regarded as a task) as a digi‐
tal card. An hypervision interface further displays such a
feed of ordered cards to represent multiple tasks ordered by
priority. When a card is selected in the feed, the details of
the card are displayed: information about the state of the pro‐
cess instance in the third-party application that published it,
available actions, etc. A card with versioning eventually rep‐
resents the full life cycle of the decision ladder through
which we can proceed step-by-step or backward.

A card can first be automatically created and notified to
the operator ahead of time based on forecasted alerts and
contextual information, with a preliminary diagnosis. This
can be refined and refreshed as refreshed forecasts or new in‐
formation that comes in. Then recommendations for actions
can be made available within the card or the operator can
propose another one. The operator can further tag the card
as representing a certain problem and objective. The opera‐
tor can preferably select one option that will be considered
as active. The card can eventually come with a procedure
and configuration choices for execution. The card can then
be send for automatic action execution on the grid once
needed. A card can also be manually edited from scratch by
the operator for more unusual situations. The card finally is
shared across operators allowing for effective coordination.

As structured decision-making is applied to any field, hy‐
pervision interface frameworks in the end are applied to any
industrial domain, only the underlying information manage‐
ment remains domain-specific. OperatorFabric [50] as shown
in Appendix A Fig. A1 is such an example of a modular, ex‐

tensible, and industrial-strength framework and interface de‐
veloped on top of modern web technologies for use in elec‐
tricity, water, and other utility operations. OperatorFabric em‐
beds a routing mechanism to dispatch cards on a user basis
(based on groups, organizational entities, processes, etc.).
The cards can also translate as events are displayed on a
timeline view or an agenda view. These views complement
the card feed by allowing the operator to see at a glance the
status of processes for a given period.

This solution facilitates the interactions between operation
control centers, who can share information in real time, as
pre-formatted cards that can be sent either manually by oper‐
ators or automatically by external solutions.

B. AI

The goal of AI is to turn machines into intelligent agents
that are able to learn from experience in order to optimally
perform complex tasks [51]. AI can enhance the speed, preci‐
sion, and effectiveness of human efforts by enabling deci‐
sion support systems that complement and augment human
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Decentralized intelligence

Smart human-machine interfaces
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Fig. 4. Proposed enabling digital platform architecture featuring modular design and standardised API.
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abilities. Moreover, human-centered AI that effectively coop‐
erates and collaborates with people is increasingly needed,
as shown in Section VI-A, instead of AI operating in isola‐
tion.

The most promising applications for using AI outside of
the power system are within the domains of autonomous
driving systems [52], [53], medical diagnosis and targeted
treatment [54], [55], autonomous planning and scheduling
[56], and climate science [57]. Some initial applications in
these domains are already applied in the real world .

In the domain of power systems, the emerging AI meth‐
ods are promising for future software tools to make stability
analysis and control in smart grids tractable [58]. Within
power systems, the key advancement is to unpack the com‐
plexity and uncertainty of the (real-time) operation and plan‐
ning tasks as AI can process quickly large amounts of data.
Driven by the much-needed energy transition (see e.g., Sec‐
tion II), power grid operation and planning are heavily shift‐
ed towards higher complexity and uncertainty as well as
drastically increased state spaces and action spaces. In the
energy transition, these spaces involve multiple scenarios
and multiple time intervals (e.g., through the introduction of
energy storage, electric vehicles, etc.), which increases the
complexity of the operation and planning tasks. This in‐
creased complexity makes conventional stability analysis and
control approaches too limited in terms of speed and effec‐
tiveness.

AI applications deliver initial but promising results that in‐
clude online security assessment in multiple renewable ener‐
gy scenarios, fault location identification under different op‐
erating conditions, stability control, or others [59]-[61]. Addi‐
tional applications support building advanced knowledge
graphs [62] to provide overall an augmented understanding
of the system and its operations. The enabling digital plat‐
form architecture in Fig. 4 would allow the integration of AI
capabilities within many of the highlighted functions thanks
to APIs and modularity. Additionally, AI development would
largely benefit from accessing multi-source data from all
APIs.

However, AI applications still face several challenges in
practice that are currently actively studied and developed,
which relate to the methods or applications. The methodolog‐
ical challenges are, for instance, related to learning from im‐
balanced data, difficulties in transfer learning, or robustness
against attack or adversarial examples. The application-spe‐
cific challenges include high requirements on data (both
quantity and quality), platform design for efficient and effec‐
tive development and deployment in production, as shown in
Section IV, a collaboration between the power systems and
AI communities, and generally accepted and shared bench‐
marks. One specific challenge to use AI for critical tasks
such as operation or planning of power systems relates to
the trust required by operators before using tools with AI.
Making AI trustworthy in a systematic way is highly impor‐
tant in critical infrastructure workflows. This means that on
top of satisfying basic performance measures, AI needs to
satisfy requirements related to reliability, human interaction,
interpretability, and bias, and eventually offer explanations.

Implementing a common language between human experts
and machines such as ontologies [63] that describe the con‐
cepts over a knowledge graph could be one practical founda‐
tion to improve trust in AI.

C. CPSs and Cyber Security

Digitalization paves the way for energy transition towards
carbon neutrality and energy system integration. The physi‐
cal energy infrastructure, e.g., power plants, substations, and
power lines, is increasingly dependent on operation technolo‐
gy (OT) systems and industrial IoT for real-time monitoring
and control of the physical facilities. Utilities, aggregators,
and service providers use high-speed information technology
(IT) networks for business operations. It can be imagined
that on top of the power infrastructure reside IT-OT network
layers. Together they form a complex and interdependent
CPS for the power system. CPS combines the cyber system
comprising of communication, control, and computation
functionalities with the physical world, which typically con‐
sists of a natural and/or man-made system governed by the
laws of physics. Modern CPS involves multiple and com‐
plex physical subsystems with varying degrees of interac‐
tions via communication networks. Hence, their holistic anal‐
ysis is a challenge that needs to be addressed, as comprehen‐
sively posited in [5]. New foreseen advanced control and au‐
tomation schemes as proposed in parts 3 and 4 of Section
III-A increase the cyber dimension of the system. Further‐
more, it is increasingly difficult to keep the utility private
communication networks isolated from the public communi‐
cation networks. At the edge of grid, industrial IoT is de‐
ployed for data connectivity and easy market participation
for all energy system participants. Opening the system to ev‐
eryone by means of information and communication technol‐
ogies requires careful considerations with regard to informa‐
tion security. The cyber security and resilience requirements
of the power system become even more critical.

It is well recognized that information and communication
technologies are vulnerable to cyber attacks. Examples of cy‐
ber security incidents related to power systems already exist
around the world. On December 23, 2015, cyber attacks
were conducted on the power grid in Ukraine. Hackers in‐
truded into IT-OT systems of the control center of three
DSOs. Attackers took control of the SCADA systems and
disconnected seven 110 kV and twenty-three 35 kV substa‐
tions from the grid for hours. The cyber attacks in Ukraine
resulted in power outages, which affected 225000 customers
[64]. More sophisticated cyber attacks on the Ukrainian pow‐
er grid followed on December 17, 2016, which resulted in a
power outage in the distribution network where the total un‐
supplied load was 200 MW. Such laborious cyber attacks
conducted by powerful adversaries on control centers, substa‐
tions, and edge of grid are a real threat to the security of
power systems. They can initiate cascading failures and re‐
sult in a blackout. With respect to security of supply and reli‐
ability of the future power system provision, special atten‐
tion is needed for new cyber threats and vulnerabilities that
come with the rapid digitalization of the power system. Ac‐
cordingly, without consideration of cyber security and resil‐
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iency to cyber attacks, a further digitalization of the power
system may be difficult. Cyber resilience is thus emerging as
a key topic to ensure the security of supply and stable opera‐
tion of the CPS. It is the ability of the power system to with‐
stand and reduce the magnitude or duration of cyber attacks,
which includes the capability to anticipate, absorb the shock,
adapt, and rapidly recover.

Utilities play a central role in grid digitalization, spear‐
heading the energy transition and energy system integration.
They invest in cyber security solutions to secure the control
centers from cybercrime and hacktivism. However, they are
also the main targets of state-sponsored cyber attacks. Video
evidence of the 2015 cyber attack in Ukraine shows an engi‐
neering workforce not adequately responding to attackers tak‐
ing remote control of the power grid OT system and not
knowing if it is a cyber attack or their own IT department is
controlling the SCADA system. The kill chain of cyber at‐
tacks on power system operators typically starts by exploit‐
ing vulnerabilities in the utility IT system through phishing
emails and similar methods. Malware is installed to open
gateways and facilitate remote access for system reconnais‐
sance, weaponization, and OT targeting. Attackers can in‐
trude from the IT system into the OT system by stealing log‐
in credentials, escalating access privileges, and discovering
networked OT systems and hosts. In the OT system, they
can take control and tamper with the SCADA system, dis‐
connect power plants and entire substations, and cause physi‐
cal damage to power equipment by interfering with their con‐
trol systems.

Segregating the IT-OT systems of control centers by using
firewalls is not enough for the cyber security of power sys‐
tems. Advanced mathematical and computational founda‐
tions, methods, and technologies are needed for incident re‐
sponse to protect utilities from state-sponsored cyber attacks
to ensure cyber security of the future control room. Opera‐
tion resilience of power systems to such cyber threats is
achieved by combining innovative technologies, incident re‐
sponse strategies, and human factors. Furthermore, it is im‐
perative to build trained human capital for grid operators to
deal with the ever-growing cyber threats. Threat intelligence
plays an important role in preventive and reactive cyber se‐
curity. Utilities share knowledge among a network of trust
via information sharing and analysis centers (ISACs). Cyber
threat management is emerging as the best practice for man‐
aging threats beyond the basic risk assessment found in secu‐
rity information and event management systems.

D. Digital Twin (DT)

Dynamic analysis of a very large, fast, interconnected, and
complex power system is currently only possible with numer‐
ical models. Despite calibration efforts, widely used physical-
based models fail to be general and accurate enough for de‐
scribing the system in any state of functioning, not captur‐
ing, for instance, system uncertainties, asset health status
and life-cycle effects, cyber-interactions, or usual operation
schemes. As defined in [65] and [66], the DT bridges the
gap between physical-based design simulation of an asset or
system and its exploitation during operation. DT is a virtual

representation of a system (here the power system) and its
physical assets supported by a combination of numerical
models and powerful simulation hardware, representing cy‐
ber interactions and operations in addition to the physical as‐
sets. Depending on decision and on data available, physical-
based models can be reduced for the real-time application
and enriched with data by various machine learning (ML)
techniques to capture life-cycle evolution [67]. Physics mod‐
eling is in some sense hybridized and augmented by data
modeling.

DTs hence offer the possibility to connect and tune the
digital models with measurements of the real assets to mim‐
ic the reality. A detailed and virtual replica of the power grid
provides system operators with the enhanced capabilities for
real-time prediction and fast and reliable decision support. It
is foreseen in the next decade that DTs will be widely de‐
ployed for various industrial applications due to recent ad‐
vances in parallel computing, solvers, data processing and
management tools, big data, and AI [68], [69]. For example,
[70] presents an application of real-time and high-fidelity
DTs of physical components to develop, train, and validate
ML models to secure critical infrastructures.

The wide-area monitoring system (WAMS), in addition to
the conventional SCADA systems, greatly enhances the situa‐
tional awareness since it provides information on the essen‐
tial variables for system operation with a high resolution.
This enables the near real-time monitoring of the dynamic
power system phenomena and facilitates a dynamic security
assessment (DSA). A DT mirrors the system state in real
time and consolidates the control center system architecture.
It improves the model accuracy by combining WAMS and
DSA. The DT facilitates an operator assistant system for fast
and reliable decision support [71].

DT may be part of the enabling digital platform given in
Section IV as the modules used for cyber resilience analysis,
planning, and operation of integrated CPS. They comprise of
detailed discrete-time models of OT networks for substation
automation and continuous-time models of the power sys‐
tem. The discrete-time systems are used to model and simu‐
late the substation communication networks and processes.
Therefore, DTs extend the current modeling, simulation, and
analysis capabilities of power system planners from only a
physical domain to the integrated cyber-physical domains.
DTs allow the real-time simulation of cyber attacks at the cy‐
ber system layer and the impact analysis at the physical lay‐
er in an integrated co-simulation environment. Power system
operators can assess and improve the grid operation resil‐
ience to cyber attacks and plan the cyber security operation
of the integrated CPS. Cyber resilience should be an integral
part of control center systems and should be taken into ac‐
count when designing new EMS applications.

E. Real-time DSA

New operating tools for advanced monitoring in support
of managing the operational reliability are needed in order to
improve the situational awareness in a system growing in
complexity, decentralization, and uncertainty [9]. Reliability
management fulfills two functions of adequacy and security.
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Planning for adequacy is to ensure that the probability is
high enough to supply electricity which is evaluated over
months and years. Security refers to the imminent and real-
time operation risk to survive imminent disturbances without
service interruptions, and involves the assessment of security
and real-time control actions.

When assessing the dynamic security, a model that consid‐
ers equipment failures such as the failure of a generator or a
transmission line is simulated by current tools. While DTs
consider rather active type of simulations and have a broad
capability supporting active decision-making including mod‐
eling the entire intelligence of system operations, the simula‐
tions for security assessments are rather passive. An analysis
of the post-fault simulation results provides the security in‐
formation. Unfortunately, with current tools, the computation‐
al time is too long to analyze many faults (combinations) for
possible operating conditions in real time. Hence, the tools
limit the DSA to offline studies, which makes the simulation
results inaccurate and unsuitable for real-time DSA. The rea‐
son for such long computational time is that the methods
that underlie the current tools rely on numerical integration
that solves the dynamical model described by ordinary differ‐
ential equations (ODEs) in the time domain [72]. Several al‐
ternative methods aim at reducing the computational time.
The Kron method [73] and the single-machine equivalent
method [74] reduce the dynamical model which is then simu‐
lated. The energy function method theoretically analyzes the
stability [75]. Special hardware can further reduce the com‐
putational time [76]. These aforementioned methods simplify
the power networks and in some cases can be useful; howev‐
er, they have respective limitations, mostly in their applica‐
bility to larger interconnected systems which can have novel
equipment integrated.

New promising AI and ML methods for real-time assess‐
ment of security and control (preventive and corrective) of
reliability are emerging [77], [78]. The approach is to train
an ML model offline when the computational time for simu‐
lations is abundant, and use the trained model to predict se‐
curity and control actions in real time immediately before a
fault or in response to it. Such methods are promising for re‐
al-time operation [79], [80] as their prediction requires mini‐
mal computational time, but have challenges related to the
generation of training data [81], the interpretability of the
prediction [82], their risks and probabilities of success [83],
and their usability to other operating conditions and topolo‐
gies [84], etc. Recently promising methods use the known
dynamical model, i.e., the ODEs, to inform directly the ML
training which can reduce the demands for training data
[85], [86]. Real-time DSA could soon become a reality and
upgrade the security assessment module of Fig. 4.

VI. NEW OPERATION PERSPECTIVES

A. Proactive and Assisted Decision Support for Operations

Operators will get assisted through an hypervision inter‐
face with smart recommendations, continuous situational
awareness of projected operational trajectories augmented by
AI, as shown in Section V-B, and in the end more automatic

execution functions when actions get implemented. Opera‐
tors can choose when to delegate further a task to the hyper‐
vision assistant at any step of the decision ladder if appropri‐
ate. This goes in the direction of semi-automation as de‐
scribed by [71]. But how much operators will remain in the
loop?

A usual trend when going through more automation while
not considering the demands for human decision-making is
to see operators slowly going towards on-the-loop mere veri‐
fication of recommendation (much like security scanner air‐
port operators), hence moving from strong human operation
intelligence to strong machine intelligence. Not to mention
an unrealistic target of eventually getting them out of the
loop of a fully autonomous grid. While on the loop, an oper‐
ator will be prone to anchoring bias (i.e., over-relying on the
first piece of given information) and automation bias (i. e.,
accepting without thinking the single recommendation dis‐
played) [87]. This brings the risks of deskilling, perverse in‐
stantiation [88], and fast crashes because of misunderstand‐
ings, misalignment, or relevant information not yet consid‐
ered by the machine.

An assistant [89] should be able to dialog consistently
with an operator over iterative interactions and refinements,
through queries, explanations, and context considerations, go‐
ing beyond single-shot interactions. How humans perceive
machines should also be considered [90] for appropriate de‐
sign. Fluid, well-conceived, and more transparent interac‐
tions [91] will build up necessary trust between operators
and assistant [92].

Resulting hybrid intelligence [93] would eventually be a
more desirable path by developing true human-machine part‐
nerships [94] with synergetic interactions, where the human
and the machine would continuously learn from one another,
sharing knowledge and representations. In that prospect, it
will be essential to regularly think of the role and task dy‐
namics of the grid operator in her environment [95] to allow
for the proper interactions to drive her decision-making.

More specifically, Fig. 5 summarizes three relevant dimen‐
sions that need to be taken into account when developing hy‐
brid intelligence. The first dimension is concerned with
“knowledge and information support” which in a rudimenta‐
ry form is already present in current control rooms. For ex‐
ample, operators are currently provided with basic summa‐
ries of the real-time and near-future situations. However, the
related functionalities can still greatly be enhanced by, for in‐
stance, offering apprehension of complex and atypical situa‐
tions or by more targeted syntheses of events. The other two
dimensions, which are unprecedented in current control
rooms and will greatly enhance decision support, are focused
on fine-tuned “interactions with the operators” (operator in-
the-loop) and “assisted decision-making” (decision) via situ‐
ated explanations and action recommendations. Overall, it
would enable shared knowledge representations and situation‐
al awareness over relevant time-horizon, to allow for contex‐
tual collaborative decision-makings through adapted interac‐
tions. Practically speaking, we think that there is no neces‐
sary development sequence of these dimensions, but ele‐
ments of each dimension can be developed directly with the
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advice to include (feedback by) the operators early in the de‐
velopment process. DT availability shown in Section V-D

could accelerate its development.

In summary, hybrid intelligence essentially represents a
form of human-in-the-loop decision-making in which assess‐
ing the operator’s situation and vivid human-machine inter‐
actions are key. For instance, different underlying strategies
for human-machine interface design, annotation, and data
sampling continuously need to be aligned [96]. Consequent‐
ly, a human-centered approach requires iterative and interac‐
tive development, as developed in Section IV, such that the
hybrid intelligence can constantly adapt to new demands of
operators. This is also key for establishing trust of the opera‐
tors in the decision support system.

B. Risk-based Security Paradigm Shift for Operator Planners

The current operating paradigm is to assess the steady-
state security of power system operation with N - 1 security,
meaning to study when single fault occurs at maximal at the
same time. The assumptions of this paradigm are no longer
suitable [97] as it does not take into account the increasing
dynamics of the probability of faults, nor the increasing
probability of cascading faults [98]. Also, implementing re‐
newables with power electronic converters results in lowered
inertia and shorter time intervals for escalating dynamics
[99]. As mentioned in Section III, operators become planners
over extended time horizon in real-time anticipation. In this

challenging future, probabilistic paradigms are suitable to re‐
place the N - 1 based security criterion which might not be
realistically met anymore under all possible uncertainties
making this criterion outdated. But this requires computing
accurately the operation risks [83], [100], [101] over this
time horizon. Current state-of-the-art tools show limited suit‐
ability to efficiently support a probabilistic operation para‐
digm; however, several promising methods are emerging for
DSA, as explored in Section V-D. Automation may also in‐
troduce different types of risks that operators have to follow
up. In the past, errors have been made in modeling and deci‐
sion-making, and the assumptions for operating tools for spe‐
cific tasks had inaccuracies, resulting in risks. Hence, opera‐
tors includes safety margins to ensure a secure operation.
When moving towards more automation of control centers,
new risks arise from that automation and coordination. As
shown through the GARPUR European project [102], prox‐
ies of the tasks and automated parts of the system allow for
a probabilistic quantification of the automation.

The new probabilistic paradigm for security assessment
can be used to quantify risks [103], allowing operators for a
higher level of automation and integration. The probabilistic
paradigm is to consider uncertainties and analyze a large set

Hypervison
core

Describe and
explicit knowledge

Annotate and
log information

Encode – ontologies

Display meaningfully

Retrieve online for
decision support

Curate knowledge

Assist
decision-making

Prioritize tasks based on
risk assessment and
coordination needs

Intelligibly represent situation
risk and diagnosis given

operator’s profile and
cognitive load

Make recommendations and
co-design responses

and strategies

Provide situated
explanations or answers

Provide procedures
for manual execution

Interact with
operator

Notify operator for new
task, task progress or

task completion

Define interaction verbosity
given operator’s expertise

and situation

Enable proper filtering
on request to provide
relevant information

Get aposteriori operator’s
feedback on recommendations

Apprehend a complex,
forecasted or atypical

situation

Provide contextual
information

Assess situation
complexity

Assess situation
atypicity

Predict emergence of 
atypical or complex

situations

Synthetize
events

Summarize real-time
and projected situation

Provide information
to take over/recover
complex situation

Replay and explain
past situations or
overall scenarios

Manage operator’s
comfort

Configure hypervision to
operator preferences

Manage control
room ergonomics

Assess operator’s situational
awareness and atten and
measure cognitive load

Knowledge
and

information
support

Operator
in-the-loop

Decision

Fig. 5. Desired functionalities for an operator when designing proactive decision support through hypervision.

340



MAROT et al.: PERSPECTIVES ON FUTURE POWER SYSTEM CONTROL CENTERS FOR ENERGY TRANSITION

of possible contingencies considering their probabilities, in‐
stead of analyzing a limited set of “credible” contingencies
securing determinacy against them [104]. The contingencies
with the highest risks are flagged to the human operator
[83]. In this paradigm the risk becomes quantifiable by the
severity of contingency and the probability of contingency.
The objective of the paradigm is then to minimize the residu‐
al risk by making risk-aware decisions. The risks take into
account physical [105], socio-economic [101], end-consumer
[106], or directly system-security [105] dimensions. While
the paradigm shift from deterministic operating paradigm to
probabilistic paradigm is demonstrated to provide significant
benefits, such a shift would nonetheless require profound
changes in operation practices, which should be supported
by new training programs, revised testing procedures, and
changes to technical operation data collection such as esti‐
mating accurately the likelihood of contingencies where
some approaches exist to address this challenge as it de‐
pends on weather and asset health [107].

C. Realistic Testing and Training Simulator

As the system becomes more complex, especially consid‐
ering the current numerous cyber and multi-agent interac‐
tions, as well as rapidly evolving technologies and applica‐
tions, comprehensive and continuous testing and training be‐
come of utmost importance. Continuous testing of new func‐
tionalities also helps speed up acceptance and improve the
users’ satisfaction. As a healthy check, a process which we
cannot be tested on demand is probably too complex to man‐
age and should probably not be eligible for deployment. Test‐
ing should support proper design of application ecosystem
development and ensure that this still make the system pre‐
dictable and controllable enough to be run under various op‐
erating conditions (normal, emergency, cyber attack) or in
degraded modes. Continuous training should be offered to
operators to learn how to best use evolving applications, re‐
vise their intuitions and understanding of changing system
behavior, and best coordinate with various operators under
different configurations.

Several testing layers discussed are needed: in-silico, in-vi‐
tro, and in-vivo. Lots of physical testing processes and hard‐
ware have already existed for years for in-vitro lab testing
over small-scale systems or replica as in RTDS or OPAL-
RT. Parallel runs have also been done punctually in control
rooms when bringing in some new applications to be validat‐
ed by operators. This often requires lots of preparation, and
yet only covers a reduced set of system conditions: the ones
encountered during this operation testing period. More sys‐
tematic and continuous in-vitro lab testing is therefore need‐
ed, especially through comprehensive “shadow control
room”, as a replica of real control room (EMS/IT, audio/vid‐
eo/human ergonomics), with added grid simulation capabili‐
ties that can be reconfigured very quickly for tests and exper‐
iments only. Evaluations of ergonomics and decision support
tools and processes could be more rigorously tested in re‐
gard to their impact on operator’s decision-making.

In-vivo lab testing also becomes more necessary to regu‐
larly assess the proper configuration of different control lay‐

ers, as well as underlying asset reliability and health. As the
power system needs to run continuously without interrup‐
tion, invasive in-vivo lab testing have been regarded as risky
and not considered extensively. Nonetheless, the open-and-
close reliability testing of breakers through periodic maneu‐
vers, power system stabilizer (PSS) power plant controller
testing, as well as primary reserve frequency control verifica‐
tion are examples of existing in-vivo lab testing. New and
more numerous in-vivo testing could be implemented to test
cyber system behavior over different scales possibly in the
form of frequently planned on-off asset maneuvers under dif‐
ferent but secure system conditions. These controlled inter‐
ventions should also help test the accuracy of predictive
models and grid models at the core of decision support tools.

Finally, in-silico testing also comes as a new opportunity
thanks to the developments of virtualisation and DTs shown
in Section V-D to replay real environments, much like flight
or car simulators. In particular, collections of real edge cases
when captured can be simulated to be systematically tested
over and over as done for autonomous vehicle development.
Combined with comprehensive knowledge bases and artifi‐
cial agent allowing one to virtually run operation scenarios
realistically and automatically, it can test the potential of
new designs or functionalities for cheap. This also limits
more demanding in-vitro or in-vivo testing.

Such in-silico environments can also form the basis of ad‐
vance operator’s training simulator (OTS). Instead of artifi‐
cial agents virtually running power system operation scenari‐
os, human operator could just simply run these on their own
with the available decision support tool to test their deci‐
sions and learn about the behavior of contextual systems.
This goes beyond today’s existing OTS limited to single ca‐
nonical snapshots and low-level actions (without use of sup‐
port decision tool) instead of full contextual scenarios over
time with possible high-level strategies. Human operators
would also learn and train themselves by watching “games”
from others, either human or artificial agents. Depending on
their level of expertise, specific play or games could be rec‐
ommended to them. OTS should quantify and compare the
operators’ performance, assessing their strength and making
recommendations for improvements. Finally, it should have
future operators trained in multi-domain and in coordination
with other agents, either other human operators or artificial
assistants.

VII. CONCLUSION

In this paper, we present the transformative perspectives
of future control centers to handle the operation consequenc‐
es of ongoing and upcoming changes in the power system
through the energy transition. Control centers will have to
evolve continuously to adapt. Consequently, we propose an
enabling digital platform architecture to unlock the potential
of data, the integration of emerging technologies, and the de‐
sign of new applications and their flexible integration in an
always extending ecosystem. We also highlight the evolving
roles of the operators as planners and coordinators. It is sup‐
ported by additional automation, but also importantly by a
new approach for decision-making. We indeed propose the
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integration of hypervision, a simplified and unified interface
for all operators that instantiates structured decision-making
framework based on the Rasmussen’s decision ladder. Some
hypervision frameworks already exist and could be deployed
in a very near future. Complemented with upcoming technol‐
ogies such as AI and DTs, one perspective is to develop a
comprehensive and collaborative artificial assistant for the
operators within the next decade while relying on advance
probabilistic security assessment. This security paradigm
shift may require a profound cultural change for operators
and within the company at the same time, which should be
conducted as early as possible. Retraining the operators will
be needed. More generally, continuous training and learning
should become necessary to keep operating an always evolv‐
ing system. New advance training simulator integrating all
discussed dimensions should be developed. It could be fur‐
ther used as a testbed for experimenting the effectiveness of
the new design, and hence be a fruitful intermediate mile‐
stone. In parallel, extending the testing capabilities of the
system, applications, and processes before integrating this
new level of complexity is as usual mandatory. The culture
of testing should be enlarged and reinforced within the com‐
panies. Testing should eventually be run continuously. In the
end, succeeding at the proposed control center transforma‐
tion will depend on the close collaboration between stake‐
holders, research institutions, vendors, and possibly open
communities.
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