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SUMMARY

Characterization of an Electron Spin Qubit in a Si/SiGe Quantum Dot

In this thesis, we present experiments performed on electrons in quantum dots de-
fined by surface gates on top of a two-dimensional Si/SiGe electron gas towards the re-
alization of a large-scale quantum computer using single electron spin states as single
physical quantum bits (qubits). DiVincenzo introduced five criteria which should be
met by physical qubits: scalability, initialization, long coherence times, universal set of
quantum gates, and read-out. If the number of qubits, the initialization fidelity, the co-
herence time, the quantum gate fidelity, and the read-out fidelity do not reach certain
thresholds, a quantum computer will never outperform a classical computer.

Amongst many candidates of physical systems to realize physical qubits with, we
chose spin states of electrons confined in Si/SiGe quantum dots (Loss–DiVincenzo quan-
tum computer). Silicon offers a high potential for scalability as it is the most widely used
material for semiconductor devices and integrated circuits.

Experiments using single electron spins as qubits first progressed in GaAs/AlGaAs
quantum dots. Making “good” quantum dots in Si/SiGe has been difficult due to the
lattice mismatch between Si and SiGe and the higher effective mass of an electron con-
fined in Si. The high-quality heterostructure growth, the high-resolution lithography
techniques, and the use of undoped devices make it possible to overcome these prob-
lems. The merit of Si compared to GaAs is the lower natural abundance of nuclear spins
in the substrate, which leads to longer coherence times. In this thesis, we used natural
Si, whose abundance of nuclear spins is 4.67%, while the abundance of nuclear spins
in GaAs is 100%. Isotopic purification to Si atoms which have non-zero nuclear spins
would reduce this percentage further leading to even longer coherence times as already
reported by some other groups.

This thesis focuses on single-spin control and coherence, using an all electrical ap-
proach. Since spin-orbit coupling is relatively weak in Si, we need to introduce an artifi-
cial spin-orbit interaction, via local currents or micromagnets.

In the first part of this thesis, we performed preliminary measurements towards the
manipulation and the read-out of the spin state of an electron confined in a Si/SiGe
quantum dot. We prepared two different types of devices: one accommodated with an
on-chip antenna to generate a.c. and d.c. magnetic fields for ESR and the other one ac-
commodated with micromagnets to produce a local magnetic field gradient for EDSR.
The preliminary measurements showed that the device accommodated with the micro-
magnets was more promising to achieve single qubit manipulation because it suffers less
from heating and has a higher potential to achieve a coherent driving. Thus we decided
to perform the EDSR experiments using a similar sample with micromagnets to what we
used in the preliminary measurements. Surprisingly we have observed not only one but
5 resonance frequencies for a fixed magnetic field.

xiii
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The two resonances with the highest resonance frequencies can be attributed to
the conventional EDSR transitions, which are sometimes referred to fundamental res-
onances. Due to the small valley splitting, we initialize electrons to the valley-excited
state ∼ 30% of the time. One of the fundamental resonances is attributed to the spin-flip
transition of the ground valley state and the other one to the spin-flip transition of the ex-
cited valley state. The magnetic field gradients created by the micromagnets renormalize
the g -factors of two different valley states differently. Experimentally we measured the
g -factor difference between the two valley states to be ∼ 0.026%.

Using these fundamental resonances, we demonstrated the universal control of one
electron spin and measured the coherence time of an electron spin in a Si/SiGe quan-
tum dot. The highest measured Rabi frequency was ∼ 5 MHz. The dephasing time (driv-
ing free evolution) was measured to be ∼ 1 µs and the coherence time was extended to
∼ 40 µs using the Hahn echo technique. These experimental results are the very first
promising step towards the realization of a quantum computer using single electron
spins in Si/SiGe quantum dots as qubits. We were not able to extend the coherence time
by applying higher numbers of π pulses (dynamical decoupling) due to the switching of
the electron between the valley-excited state and the valley-ground state.

The resonance frequencies of the other two resonances were exactly half of the two
fundamental resonances, respectively, and arise from second harmonic driving. An asym-
metric confinement potential of a quantum dot leads to the second-harmonic genera-
tion of the a.c. magnetic field felt by the electron in the quantum dot. The highest Rabi
frequency measured for the second harmonic driving was ∼ 3 MHz, nearly as high as for
the fundamental resonances. The measured coherence times are also of the same order
as the fundamental resonances. We also observed some features that are typical of sec-
ond harmonic driving: quadratic dependence of the Rabi frequency on the microwave
amplitude and doubling of the qubit phase with respect to the phase of the applied mi-
crowave. These experimental results show the feasibility of using second harmonic driv-
ing for qubit manipulation. One advantage of using second harmonic driving is that a
qubit can be manipulated by microwaves with a frequency that is half the Larmor fre-
quency of the qubit, simplifying microwave engineering. We can also benefit from the
quadratic dependence of Rabi frequency for addressability, since it prevents unwanted
rotations of spin states more efficiently than with the fundamental resonances.

The resonance frequency of the 5th resonance is ∼ 7 GHz lower than that of the fun-
damental resonances. The linewidth of this resonance is ∼ 10 times wider than that of
the fundamental resonances and coherent oscillation was not observed for this transi-
tion. We attribute this resonance to the transition from the spin-down valley-excited
state to the spin-up valley-ground state. Thus we call this an inter-valley spin-flip reso-
nance. The difference of the resonance frequency between the fundamental resonances
and this resonance, 7 GHz, corresponds to the valley splitting. Due to the valley-orbit
interaction, the valley states have the features of charge states. The wider resonance
linewidth can be attributed to the transition between these charge-like states.

Although it allows us to observe very interesting physics, a small valley splitting causes
several problems for a quantum computer: low initialization fidelity, low control fidelity
and short coherence time. Thus we decided to retune the gate voltages hoping that
we will be able to obtain a higher valley splitting so that we only initialize electrons in
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the ground-valley state and the switching between the two valley states becomes slow
enough to be ignored. We achieved this purpose to some extent but not completely.
With a new gate configuration, the population of the excited-valley state was decreased
from 30% to 20%. The second-harmonic resonances and the inter-valley spin flip reso-
nance were not able to be observed with this gate configuration. The switching between
the ground-valley state and the excited-valley state became slower and we were able to
extend the coherence time further using dynamical decoupling. The longest coherence
time measured was 400 µs. We also characterized the single qubit gate fidelity using
randomized benchmarking and reached an average gate fidelity of ∼ 99%.

Based on the experimental results shown in this thesis, we revisit DiVincenzo’s five
criteria. All the five criteria are already satisfied to some extent but none of them com-
pletely. A single qubit is realized but scalability is yet to be demonstrated. We can ini-
tialize the qubit with 95% fidelity, which is still not high enough for quantum error cor-
rection. The coherence time of the qubit is much longer than in GaAs quantum dots but
can be further improved by isotopic purification of Si. We have demonstrated a universal
single qubit gate with a fidelity of ∼ 99% reaching the required threshold for a quantum
error correction. We still need to characterize a two-qubit gate fidelity. Finally, we can
read out with 95% fidelity, which is still not high enough for quantum error correction.

Just before this thesis went to print, a two-qubit operation was also experimentally
demonstrated in Si/SiGe quantum dots by our group. Elementary ingredients for single
electron spins being used as qubits have been completed. In order to realize a practical Si
quantum computer, we need to increase the number of qubits and improve the fidelities
of read-out, initialization, and the quantum gates.

Erika Kawakami
June 2016





SAMENVATTING

Karakterisatie van een Elektron Spin Qubit in een Si/SiGe Quantum Dot
In dit proefschrift demonstreren we experimenten uitgevoerd op elektronen in kwan-

tum dots, die gedefinieerd zijn met behulp van elektrodes boven op een elektronenzee
(2DEG) in Si/SiGe. Deze experimenten dragen bij aan het realiseren van een grootscha-
lige kwantum computer met enkele elektronspintoestanden als kwantum bits (qubits).

DiVicenzo introduceerde 5 criteria waaraan praktische qubits moeten voldoen: schaal-
baarheid, initialisatie in een qubittoestand, lange levensduur van een toestand, een uni-
versele set van kwantum operaties en de betrouwbaarheid van uitlezing van een qubit-
toestand. Als het aantal qubits, de betrouwbaarheid van initialisatie, de levensduur van
een toestand, de precisie van de operaties en van de uitlezing van de toestanden be-
paalde minimumeisen niet halen, zal een kwantum computer nooit krachtiger en effici-
ënter worden dan een klassieke computer.

Hoewel veel fysische systemen mogelijkheden bieden om qubits te realiseren, heb-
ben wij gekozen voor de spin van elektronen gevangen in Si/SiGe kwantum dots (Loss-
DiVicenzo kwantum computer). Silicium biedt de potentie om de qubits op te schalen,
aangezien Si het vaakst gebruikt wordt in de halfgeleider industrie voor geïntegreerde
schakelingen.

Experimenten met een enkele elektronspin als qubit werden van oudsher uitgevoerd
in GaAs/AlGaAs kwantum dots. De fabricatie van Si/SiGe kwantum dots van goede kwa-
liteit was aanvankelijk belemmerd door het verschil in kristalrooster tussen Si en SiGe
en door de hogere effectieve massa van elektronen gevangen in Si. Het groeien van hoge
kwaliteit heterostructuren, hoge resolutie lithografie technieken en de komst van onge-
doteerde hetero- structuren hielp deze problemen te overbruggen. Het voordeel van Si
ten opzichte van GaAs is een lager aantal kernspins in het substraat, hetgeen leidt tot
spins die langer coherent blijven. In dit proefschrift gebruikten we natuurlijk Si, waar-
van 4.67% kernspins bevat, terwijl dit in GaAs 100% bedraagt. Si kan verrijkt worden met
isotopen die geen kernspin bevatten, zodat dit percentage nog lager wordt en de levens-
duur van een superpositie toestand langer, zoals gerapporteerd door andere groepen.

Dit proefschrift richt zich op elektrische controle en op coherentie van één enkele
spin. Vanwege de zwakke spin-baan koppeling in silicium, moeten we daarvoor een
kunstmatige spin-baan wisselwerking creëren, via lokale stromen of micro-magneten.

Eerst zijn metingen uitgevoerd gericht op de manipulatie en de uitlezing van de spin-
toestand van een elektron gevangen in een Si/SiGe kwantum dot. De experimenten zijn
gedaan met 2 verschillende type samples: 1 sample genereert een a.c. magneetveld met
een op de chip geïntegreerde antenne voor ESR en het andere sample produceert een
magneetveld met een lokale gradiënt met behulp van micro-magneten. De metingen
laten zien dat het apparaat met de geïntegreerde micro-magneten een geschiktere kan-
didaat is voor qubit manipulatie. We hebben aldus besloten om EDSR experimenten te
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doen met micro-magneten. Onverwachts hebben we vijf resonantiefrequenties waarge-
nomen voor het magneetveld.

De twee hoogste frequenties kunnen worden verklaard als de conventionele EDSR
transities en soms refereren we naar deze twee frequenties als de fundamentele reso-
nanties. Vanwege een klein verschil in energie tussen de grond- en geëxciteerde vallei
toestand, initialiseren we elektronen in de geëxciteerde toestand voor ∼ 30%. Een van
de fundamentele resonanties kan worden verklaard als de spin-flip overgang van de val-
lei grondtoestand en de andere als de spin-flip overgang van de vallei geëxciteerde toe-
stand. De gradiënt in het magneetveld gecreëerd met de micro-magneten resulteert in
verschillende g-factoren voor de grond- en geëxciteerde toestand. We hebben een expe-
rimenteel verschil in g -factor tussen de 2 toestanden gevonden van ∼ 0.026%.

Gebruikmakend van deze fundamentele resonanties, hebben we universele controle
over 1 elektronspin aangetoond en de coherentietijd van een elektron spin in een Si/-
SiGe kwantum dot gemeten. De hoogst gemeten Rabi frequentie is ∼ 5 MHz. De geme-
ten coherentietijd was ∼ 1 µs tijdens vrije evolutie en de coherentietijd werd verlengd tot
∼ 40µs met de Hahn echo techniek. Deze experimentele resultaten zijn de eerste veelbe-
lovende stap naar de realisatie van een kwantum computer met enkele elektronspins in
Si/SiGe kwantum dots als qubits. We konden de coherentietijd niet verlengen door een
hoger aantal pi pulsen toe te passen (‘dynamische ontkoppeling) vanwege de overgang
van het elektron tussen de vallei geëxciteerde en de vallei grondtoestand.

De resonantiefrequenties van de andere twee resonanties waren precies de helft van
de twee fundamentele resonanties en we noemen deze resonanties tweede harmoni-
sche resonanties. Een asymmetrische opsluitingspotentiaal voor een kwantum dot leidt
tot het generen van tweede harmonischen in het a.c. magneetveld dat het elektron voelt
in de kwantum dot. De hoogste Rabi frequentie gemeten voor de tweede harmonische
resonanties is ∼ 3 MHz. Dit is bijna even hoog als in het geval van de fundamentele
resonanties. De gemeten coherentietijden zijn ook van dezelfde grootte als voor de fun-
damentele resonanties. We hebben ook een aantal eigenschappen waargenomen die
karakteristiek zijn voor tweede harmonische resonanties: kwadratische afhankelijkheid
van de Rabi frequentie van de microgolf en de verdubbeling van de qubit fase ten op-
zichte van de fase van de aangeboden microgolf. Deze experimentele resultaten laten
de haalbaarheid zien van het gebruik van tweede harmonische resonanties voor qubit
manipulatie. Eén voordeel hiervan is dat een qubit gemanipuleerd kan worden door
microgolven met een frequentie gelijk aan de helft van de Larmor frequentie van de qu-
bit. Dit zou microgolf engineering versimpelen. We kunnen ook profijt hebben van de
kwadratische afhankelijkheid van de Rabi frequentie wat betreft de adresseerbaarheid,
aangezien deze afhankelijkheid ongewenste rotaties van spintoestanden meer voorkomt
dan wanneer de fundamentele resonanties gebruikt zouden worden.

De resonantiefrequentie van de vijfde resonantie is ∼ 7 GHz lager dan die van de
fundamentele resonanties. De breedte van de resonantiepiek is ∼ 10 keer breder dan
die van de fundamentele resonanties. Eén coherente oscillatie was niet waargenomen
voor deze overgang. We verklaren deze resonantie als de overgang van de spin-neer,
aangeslagen vallei toestand naar de spin-op grondtoestand. We noemen deze resonantie
de inter-vallei spin-flip. Het verschil in resonantiefrequentie tussen de fundamentele
resonanties en deze resonantie, zeven GHz, is gelijk aan het verschil in vallei energie.
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Vanwege de vallei-orbitaal interactie hebben de vallei toestanden de eigenschappen van
ladingstoestanden. De bredere resonantiepiek van worden verklaard als de overgang
tussen deze ladingsachtige toestanden.

Hoewel dit ons toestaat om heel interessante fysica waar te nemen, veroorzaakt een
klein verschil in vallei energie verschillende problemen voor een kwantum computer:
lage initialisatie betrouwbaarheid, lage controle betrouwbaarheid en een korte coheren-
tietijd.

Aldus hebben we besloten om de elektrode voltages weer te tunen in de hoop dat
we een groter energieverschil tussen de vallei toestanden krijgen, zodat we elektronen
alleen initialiseren in de grondtoestand en de overgangen tussen de vallei toestanden
traag genoeg worden om te negeren. We hebben dit doel tot op zekere hoogte bereikt,
maar niet helemaal. Met een nieuwe elektrode configuratie, was de populatie van de
geëxciteerde vallei toestand afgenomen van 30% tot 20% maar niet tot 0%. De tweede
harmonische resonanties en de resonantie die correspondeert met de overgang tussen
vallei toestanden konden niet worden waargenomen met deze elektrode configuratie.
De overgang tussen de grond vallei toestand en de geëxciteerde vallei toestand werd
langzamer en we waren in staat om de coherentietijd verder te verlengen met dynami-
sche ontkoppeling. De langste coherentietijd gemeten is 400 µs. We hebben ook de
operatie betrouwbaarheid voor een enkele qubit gekarakteriseerd met een techniek die
gebaseerd is op het uitvoeren van een aantal gerandomiseerde standaardoperaties. De
hieruit volgende gemiddelde operatie betrouwbaarheid bedroeg ∼ 99%.

Gebaseerd op de experimentele resultaten uit dit proefschrift, komen we terug op
DiVicenzo’s vijf criteria. Aan alle vijf criteria is al voldaan tot op zekere hoogte, maar aan
geen enkele volledig. Er is maar één qubit gerealiseerd en opschalen moet nog aange-
toond worden. De initialisatie van een qubittoestand is gerealiseerd, maar de initialisatie
betrouwbaarheid is niet hoog genoeg. De coherentietijd is langer dan wat is aangetoond
in GaAs kwantum dots, maar zou nog meer moeten worden verlengd. Een universele set
operaties met één qubit is aangetoond en de gemiddelde operatie betrouwbaarheid vol-
doet aan de vereiste drempelwaarde voor kwantum fouten correctie, maar een 2-qubit
operatie is nog niet aangetoond. De uitlezing van een qubittoestand is gerealiseerd maar
de uitleesprecisie moet verbeterd worden.

Net voordat dit proefschrift uitgebracht wordt, is een 2-qubit operatie experimen-
teel aangetoond in Si/SiGe kwantum dots door onze groep. De elementaire ingrediën-
ten voor enkele elektron spins gebruikt als qubits zijn gemaakt. Om een praktische Si
kwantum computer te realiseren, moeten we het aantal qubits groter maken en de be-
trouwbaarheid van uitlezing, initialisatie en operaties verbeteren.

Erika Kawakami
Juni 2016





PREFACE

When I was a master student in Japan, I was working on the electron spin resonance
of the ensemble electrons trapped by phosphorus dopants in silicon towards the realiza-
tion of Kane’s quantum computer (Kane, 1998). When I asked a Ph.D. student what was
the best current experiment on quantum calculation. He showed me one of Dr. Vander-
sypen’s papers (Vandersypen et al., 2001), telling me that the Shor’s factoring algorithm
was already experimentally demonstrated.

Thereafter I remembered Dr. Vandersypen as the man who is in the best position
for the realization of the quantum computer. I found his Ph.D. thesis on arXiv (Vander-
sypen, 2001). I learned some basics of the quantum computation from there. I studied
Matlab codes in the Appendix of his thesis and adopted them to simulate the decoher-
ence mechanism in my own system.

One year later, even though the coherence time of electron spins is amazing in 28Si
(Tyryshkin et al., 2012), I realized that ensemble spins in Si have the problem for scal-
ability. I dreamed of controlling a single electron spin instead of the ensemble spins. I
learned that it is possible in GaAs gate-defined quantum dots.

I had been looking for a way to obtain a Ph.D. without paying a tuition fee (in Japan,
one should pay a tuition fee for Ph.D.). Luckily, I succeeded in winning a fellowship to
obtain a Ph.D. degree abroad from the Japanese research foundation (Nakajima foun-
dation). Based on my 2 years experience in France when I was a bachelor student, I
preferred Europe to the other countries. But I didn’t know where in Europe I want to
obtain a Ph.D. I searched on Google "UK quantum computation", "France quantum in-
formation", "Germany quantum computation" etc...

When I typed "Netherlands quantum computer", the Quantum Transport group (QT)
at TU Delft came to the first line. Then I found that Prof. Vandersypen is now in Delft
and working on the GaAs gate-defined quantum dots. Thanks to the announcement to
recruit a master student for Si/SiGe project which was on QT homepage, I understood
that he was starting a new project in Si. From that day, it took me 2 weeks to write an
email to ask for a Ph.D. position. I was doubtful if a professor would take seriously an
email from an unknown student in a far-away country. However, finally, I summoned all
my courage to write Prof. Vandersypen.

I visited Delft for the interview one week after the earthquake on the 11th of March
2011 in Japan. I was amazed by the kindness of people in QT, as well as the many dilution
refrigerators lined up in the lab (though the number of fridges in QT were less than half
or one third now in Qutech).

Through this thesis, I hope I can share my adventure in Delft partly with the readers.

xxi
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INTRODUCTION

1.1. CONCEPT OF A QUANTUM COMPUTER
A quantum computer is able to solve certain problems that cannot be solved by a clas-
sical computer within a reasonable computational time. The high speed of a quantum
computer relies on quantumness of quantum bits: parallelism and entanglement, which
are the characteristics that classical bits do not have. Quantum parallelism uses a super-
position of distinct quantum states, simply called a superposition state, and quantum
entanglement means inseparability of the state of more than two particles (Nielsen and
Chuang, 2011). The concept of a quantum computer was explored in 1980 when Benioff
(Benioff, 1980) presented a computation using the time evolution in quantum mechan-
ics. However, this computer does not make use of either parallelism or entanglement
and thus can be completely and effectively simulated by a classical computer. Thereafter
Feynman introduced his idea using the word "universal quantum simulator" in (Feyn-
man, 1982). Quantum phenomena of more than 3 particles are difficult to simulate with
classical computers. Instead, he suggested using a "universal quantum simulator" which
employs more easily controllable quantum particles to simulate other quantum systems.
The ideas of Benioff and Feynman were combined by Deutsch (Deutsch, 1985), where he
presented a universal quantum computer using quantum parallelism. Note that using
only the quantum parallelism does not directly speed up the computational time since
for one measurement of a quantum state we can just obtain one output. In (Deutsch and
Jozsa, 1992), Deutsch and Jozsa presented the first quantum algorithm which surpassed
a counterpart classical algorithm and included the use of entanglement. This algorithm
is now called Deutsch-Jozsa algorithm and inspired Shor’s factoring algorithm (Shor,
1997) and Grover’s searching algorithm (Grover, 2001). These two algorithms could have
a great impact on daily life. Shor’s algorithm could be used to break public-key cryptog-
raphy and Grover’s search algorithm speeds up attacks against symmetric cryptography.
Another example of a practical use for Grover’s search algorithm is to solve quadratically
faster a nondeterministic polynomial time (NP) problem such as the traveling salesman
problem.

1
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The above-presented quantum computer is more precisely called a universal digital
quantum computer. Alternatively, researchers also work on a counterpart of the con-
ventional analog computer, a so-called quantum simulator (Brumfiel, 2012). Just like an
analog computer, a quantum simulator can be tailored to a specific problem. In other
words, it is a way to realize Feynman’s idea without having a universal quantum com-
puter/simulator. Nowadays one of the difficulties of building a universal quantum com-
puter lies on having a large number of qubits (Di Vincenzo criteria (1), see the following
section) and the individual control and individual read-out of each qubit (Di Vincenzo
criteria (3) and (4)) at the same time, which is not necessarily required for a quantum
simulator. If one finds a good combination of an object to be simulated and a physical
system, a quantum simulator will become of practical use much earlier than a univer-
sal quantum computer. Analog quantum computing with optical lattices and cold atom
traps already made great progress (Bloch, 2005; Bloch, Dalibard, and Nascimbène, 2012).

In this thesis, we worked towards the realization of a universal digital quantum com-
puter. In the following sections, we discuss the physical implementation of qubits for
the universal digital quantum computer.

1.2. REQUIREMENTS FOR QUBITS
The building block of a quantum computer is called a quantum bit (qubit), the counter-
part of the conventional binary1 digit (bit). A qubit (or, more precisely, the embodiment
of a qubit) can be realized with a two-level quantum system. Two levels out of larger
than three-level systems can be used as well as generally done in superconducting qubits
(Devoret, Wallraff, and Martinis, 2004). DiVicenzo introduced five requirements which
should be met by physical qubits (DiVincenzo, 1997). Experimental research on quan-
tum computers has been a quest for physical qubits which satisfy all the requirements.
We will list them here, and review what is meant.

DIVINCENZO CRITERIA
Physical qubits with which quantum computer are realized need to meet the following
requirements:

(1) Scalable system with well-characterized qubits
A physical system containing a collection of qubits is needed. A qubit being “well"
characterized means that the internal Hamiltonian of the qubit, the presence of and
couplings to other states of the qubit, the interactions with other qubits, and the
couplings to external fields that might be used to manipulate the state of the qubit
are well known. Any lack of knowledge of these parameters leads to the decoherence
of the qubit and infidelity in the control gates. The degree of lack of this knowledge,
which appears as errors in a calculation, should be so small that it can be corrected
by quantum error correction (see Layer 3 of Sec. 1.4 for quantum error correction).

1There is no fundamental restriction to build up a quantum computer using quantum ternary digits or quan-
tum decimal digits (there is even an advantage of using multiple states for Grover’s search algorithm the ex-
perimental implementation of which is shown in (Ahn, Weinacht, and Bucksbaum, 2000)). However, the the-
oretical and experimental studies for a universal digital quantum computer are far behind that of quantum
binary bits.
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(2) Initialization to a pure state
In the same way as in classical computing, quantum computing requires that regis-
ters should be initialized to a known state before the start of computation. For quan-
tum computing, the initialization fidelity (i.e., purity of the initialized state (Nielsen
and Chuang, 2011; Sakurai, 1993), see also Sec. 4.2) is important. If the purity of the
initialized state is too low, we cannot benefit from the high-speed coming from the
quantumness as discussed in the case of bulk nuclear magnetic resonance (NMR)
quantum computing in the next section. Besides that there is another initialization
requirement: the speed of initialization. For quantum error correction, the measure-
ment qubits should be initialized every time before measuring the state of the data
qubits (Fowler et al., 2012; Kelly et al., 2015) in a quantum nondemolition manner
(see Layer 3 of Sec. 1.4 for quantum error correction). In order to meet those needs
of quantum error correction, we cannot use the natural relaxation to the ground state
(T1 relaxation) for the initialization of measurement qubits since the T1 time usually
does not become longer than the dephasing time (see the next part, T ∗

2 time) and
the initialization for the measurement qubits should be at least faster than theT ∗

2
time2. We should initialize measurement qubits fast enough to make quantum error
correction efficient.

(3) Long coherence times
Decoherence (the loss of quantumness) happens due to the dynamics of a physi-
cal qubit in contact with its environment (more discussed in Sec. 3.3). Usually, the
dephasing time (also known as the intrinsic coherence time) is the time for the quan-
tum state to be lost by 1/e without any correction and is denoted by T ∗

2 . Decoher-
ence degrades the control gate fidelity and memory time of qubits. The control fi-
delity and memory time define how much a qubit state is preserved/lost when a
qubit is subject to an operation and when it is not, respectively. The required T ∗

2 de-
pends on the feature of the noise causing the decoherence, the operation speed, and
the effectiveness of quantum error correction.

(4) Universal set of quantum gates
An operation on a quantum state is implemented by a sequence of quantum gates.
Quantum computation requires that any arbitrary unitary operator should be im-
plemented as a quantum gate. A set of universal quantum gates is such a set of gates
that any unitary operation can be expressed as a finite sequence of gates from the
set. The best known universal set of quantum gates consists of a set of one-qubit
quantum gates and a controlled-NOT (CNOT) gate. An example of a set of one-qubit
quantum gates consist of Hadamard, and π/8 gates (also known as a T gate)3.

(5) Read-out of each qubit state
The result of a computation must be read out requiring the ability to measure spe-
cific qubits. The read-out fidelity determines, using DiVincenzo’s words, quantum

2This may be not the case when the T1 time can be rapidly changed for instance using so-called hot-spot
(Srinivasa et al., 2013; Yang et al., 2013)

3For a universal set of fault-tolerant quantum gates, the phase gate should be added (Nielsen and Chuang,
2011).
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efficiency. If the quantum efficiency is 90%, then, in the absence of any other imper-
fections, a computation with a single-bit output will have 90% reliability. If 97% re-
liability is needed, this can be achieved by copying the measurement of qubit states
three times4. Thus there is a trade-off between the error rate permitted and the num-
ber of extra qubits required.

As is the case with the initialization, the read-out of measurement qubits is also nec-
essary for quantum error correction. According to some studies, read-out errors for
measurement qubits need to be below 10−3 (Knill, 2005; Steane, 2004).

For the same reason as the initialization speed, the read-out speed is also required
to be as fast as to make quantum error correction efficient.

Together these have become known as the “DiVincenzo criteria. In (DiVincenzo, 2000),
two more criteria were added for transmitting qubits from place to place in expecta-
tion of the need of quantum communication after the realization of quantum computer.
However, they fall outside the scope of this thesis, and will be discussed only in Ch. 11.

(6) Transfer of a quantum state between stationary and flying qubits

(7) Transmission of flying qubits between specified locations.

1.3. SEARCHING FOR A PHYSICAL QUBIT
In this section, we would like to present a very brief history of experimental implemen-
tation of qubits, selecting only few examples of the various technologies. For more infor-
mation, we recommend the review (Ladd et al., 2010).

The physical implementation of qubits started with trapped ions and bulk-NMR.
In ion-traps, a first controlled-NOT gate was experimentally realized in (Monroe et al.,
1995). In bulk-NMR, Deutsch–Jozsa algorithm was experimentally realized in (Chuang
et al., 1998), Grover’s search algorithm in (Jones, Mosca, and Hansen, 1998), and Shor’s
factoring algorithm in (Vandersypen et al., 2001).

The drawback of bulk NMR quantum computation stems from the low polarization
of room temperature nuclear spins. In this system, the difficulty in the initialization of
qubit state with high purity (Di Vincenzo criteria (2)) makes it impossible to have an
entangled state during the calculation and downgrades the speed of calculation to the
same level as a classical computer in most cases (Linden and Popescu, 2001). Another
concern of bulk NMR quantum computer is scalability (Di Vincenzo criteria (1)). In bulk
NMR quantum computer, nuclear spins of different atoms in a molecule are used as
qubits. If you find a suitable molecule, it is straightforward to scale up to a few dozen
qubits but it may be difficult to realize hundreds of qubits.

A trapped-ion quantum computer does not have the initialization problem but may
also face the scalability problem, since the number of ions which can be stored within a
single processing unit (trap) is limited. There are several approaches undertaken to over-
come this issue: shuttling ions through space between two units (Kielpinski, Monroe,
and Wineland, 2002) or a modular distributed quantum computer, where entanglement

4Of course, quantum cloning theorem forbids to copy of a quantum state but we can copy the QND measure-
ment, for example, by adding two more measurement qubits.
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of qubits in different modules make possible to perform a quantum gate with distant
modules (Brown, Kim, and Monroe, 2016; Kim et al., 2011) in the same way as quantum
teleportation.

Clearly, scaling of quantum computing has been a challenging task. If one consid-
ers the scalability of semiconductor chips used for a classical computer, it is natural to
think of a solid-state quantum computer, using some quantum objects defined on a chip
as qubits instead of using natural atoms. However, even if nano-fabrication techniques
have been well developed for classical use, it has long remained challenging to see quan-
tum effects on a chip. For superconducting qubits, quantum effects can be observed in a
relatively large object and thus fabrication techniques are less demanding than for other
systems. A first coherent oscillation on superconducting qubits (charge qubits) was ob-
served in (Nakamura, Pashkin, and Tsai, 1999). Since then, superconducting qubits have
been the leading system in solid state quantum computing (Clarke and Wilhelm, 2008)
(see also Ch. 1.4).

For quantum dots defined in two-dimensional electron gas (2DEG), even finer nanofab-
rication techniques are demanded than for superconducting qubits. In 1988, the ability
to grow a defect-free interface and fabricate gate electrodes in a fine structure attained
such a level that quantized conductance of point contacts was observed (van Wees et al.,
1988) in 2DEG. In the late 1990s, it became possible to make a quantum dot as small
as it showing atomic-like electronic states (Fujisawa et al., 1998; Tarucha et al., 1996).
A first coherent oscillation on quantum dots (charge qubits) was observed in (Hayashi
et al., 2003). Although it was an important step towards the implementation of a physi-
cal qubit in a semiconductor, using the magnetic moment, called spin, rather than elec-
tronic orbitals is more favorable because of its longer coherence time. In 1998, Loss and
DiVincenzo (Loss and DiVincenzo, 1998) proposed using single electron spins confined
in gate-defined 2DEG quantum dots as qubits. A large magnetic field is used to split the
spin states by the Zeeman energy forming a two-level quantum system.

In this thesis, we chose such spin states of electrons confined in gate-defined 2DEG
quantum dots to realize qubits with. In the next section, we explore more on spin qubits
in quantum dots.

SPIN QUBITS IN QUANTUM DOTS

Experiments using single electron spins as qubits had first progressed greatly in gate-
defined quantum dots in GaAs/AlGaAs heterostructure in the middle of 2000s. The ini-
tialization and the read-out of a spin state of an electron have been realized by a spin-
to-charge conversion, either by spin-selective tunneling between a dot and a reservoir
(Elzerman et al., 2004) or by Pauli Spin Blockade (Koppens et al., 2006, 2005). Coher-
ent control of an electron has been achieved by either magnetic control (Koppens et al.,
2006) or electrical control (Nowack et al., 2007). The initialization, read-out and coher-
ent control of two-spin states were also demonstrated (Johnson et al., 2005; Petta et al.,
2005).

In terms of using electrons spins confined in quantum dots for quantum computa-
tion, a Si/SiGe heterostructure is a more preferable material to host quantum dots. A
main benefit to move from GaAs to Si is the abundance of non-zero nuclear spins. All
the isotopes of Ga or As have non-zero nuclear spins, while in Si only one stable isotope
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(29Si), whose natural abundance is 4.67% has non-zero nuclear spin. The isotopic purifi-
cation to 28Si or 30Si reduces the abundance of non-zero nuclear spins further. Hyperfine
coupling between the electron spin and the nuclear spins in the substrate degrades the
quality of coherent control and the coherence time of a qubit (de Sousa and Das Sarma,
2003). By reducing the number of nuclear spins in the substrate, the hyperfine coupling
is reduced and the coherence time is made considerably longer.

Despite all the favorable conditions, Si/SiGe quantum dots had not been yet the
norm because nanofabrication techniques for Si/SiGe quantum dots were less devel-
oped and making “good” quantum dots had been more challenging with Si than with
GaAs. The advantage of using GaAs/AlGaAs stems from its high mobility due to its low
effective electron mass and its lattice-matched heterostructure resulting in a defect-free
interface. The in-plane effective mass of electrons in Si is 3 times larger than in GaAs.
Thus to compensate the dot size should be smaller for Si than in GaAs. The lattice mis-
match between Si and Si0.7Ge0.3 is ≈1.26%. In the late 2000s, Eriksson’s group at the Uni-
versity of Wisconsin overcame these problems with high-resolution lithography tech-
niques and high-quality heterostructure growth achieving a Si/SiGe quantum dot that
could be tuned to the few electron regime (Simmons et al., 2007).

In this thesis, we chose electron spin states in Si/SiGe quantum dots to realize qubits
with and all the experimental results shown in this thesis are done in collaboration with
Eriksson group at the University of Wisconsin. Even with the current situation of be-
ing behind other systems towards the realization of a quantum computer as a whole as
shown in the next section, using Si has a great advantage for the scalability of qubits, as
it is the most widely used material semiconductor devices for integrated circuits.

1.4. HOW FAR ARE WE FROM THE REALIZATION OF A UNIVERSAL

QUANTUM COMPUTER?
Here we introduce an example of microarchitecture of quantum computer. A layered
computer architecture for quantum computing consisting of five layers is presented in
(Jones, 2016; Jones et al., 2012) specifically for optically controlled spins in quantum dots
as a specific hardware. In this section, we review these five layers in the context of using
electron spins in Si/SiGe quantum dots as qubits.

FIVE-LAYERED ARCHITECTURE FOR A UNIVERSAL QUANTUM COMPUTER

• Layer 1: Physical
In the first layer, electron spins in each quantum dot are prepared as physical
qubits. All these physical qubits should meet the DiVincenzo criteria. In Ch. 7,
we show a first experimental demonstration of an electron spin in a Si/SiGe quan-
tum dot as a physical qubit. This qubit satisfies some of the DiVincenzo criteria
and is promising to meet all the DiVincenzo criteria in the near future.

• Layer 2: Virtual
In the second layer, systematic errors on quantum states are reduced before go-
ing to Layer 3 (quantum error correction). Contrary to the errors to be corrected
by quantum error correction, systematic errors, which have some memories, can
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be corrected without measuring the system states. As naively introduced in the
section of DiVincenzo criteria (3), the control gate fidelity and the memory time
are important indices for quantum computation. Systematic errors affecting the
control gate fidelity can be improved by composite pulses (Levitt, 1986; Vander-
sypen and Chuang, 2005) or dynamically corrected gates (Khodjasteh and Viola,
2009). Systematic errors affecting the memory time can be improved by dynam-
ical decoupling5. In Ch. 10, we experimentally demonstrate the improvement in
memory time of a SiGe spin qubit using dynamical decoupling. The techniques
used in this layer are faster and simpler than quantum error correction.

• Layer 3: Quantum error correction
On the next layer, fault-tolerant logical qubits are provided using quantum error
correction. In (Shor, 1995), Shor demonstrated that one logical qubit in 9 phys-
ical qubits can be corrected for arbitrary errors in a single qubit. The threshold
required for the error rate before starting this type of quantum error correction
(error rate of virtual qubits) is extremely low (10−4-10−6). With recently invented
topological quantum codes, the required threshold for the error rate is much im-
proved, as high as 1% per operation (Dennis et al., 2002; Wang, Fowler, and Hollen-
berg, 2011). Such types of quantum error corrections defined on two-dimensional
lattices are known as surface codes (Fowler et al., 2012). Differently from Layer 2,
errors of qubits should be measured and corrected in post-processing. The state
of qubits should be measured but it should be done in a quantum non-demolition
(QND) manner (Dehollain et al., 2015). Besides the data qubits which form logical
qubits, we prepared measurement qubits which are used just to read out the state
of data qubits in a QND manner.

• Layer 4: Logical
In the logical layer, logical qubits and logical gates needed for the quantum algo-
rithm in the Application layer are provided. If you choose the surface code for a
quantum error correction in Layer 3, since the surface code produces high-fidelity
logical quantum gates but these are not universal, you should make a universal set
of logical quantum gates at this layer. Using "magic states" of an ancillary logical
qubit is a way to make logical quantum gates universal (Bravyi and Kitaev, 2005).
However using magic states may become an overhead for the quantum calculation
and thus more efficient ways to make the logical gates universal after the surface
codes are expected to be developed.

• Layer 5: Application
Finally, we can execute a quantum algorithm on logical qubits provided by Layer
4. At the end of the calculations, the state of physical qubits are read out and given
to classical users.

In order to achieve a fault-tolerant universal quantum computer, before completing
the lower architectures, we cannot start implementing the higher architectures. In early
2016, the community of superconducting qubits and ion traps are working on the layer 3

5The improvement of the memory time can be regarded as the improvement of the fidelity of the identity gate.
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(quantum error correction) (Devoret and Schoelkopf, 2013; Kelly et al., 2015; Nigg et al.,
2014). We, the community of quantum dots, are working on Layers 1 and 2 (Veldhorst
et al., 2015b). In this thesis, we show some important achievements in Si/SiGe quantum
dots on the layer 1 and 2.

1.5. THESIS OVERVIEW
In this thesis, we present experiments performed on electrons in Si/SiGe quantum dots.
In particular, we achieved the experimental demonstration of the coherent control and
read-out of the spin-state of an electron spin confined in a Si/SiGe quantum dot. For
the manipulation of a spin-state, we employ electric dipole spin resonance (EDSR) using
a microwave excitation combined with a magnetic field gradient created by micromag-
nets. For the read-out of a spin-state, we employed the so-called Elzerman read-out
where spin-to-charge conversion is achieved by aligning Fermi level of the reservoir be-
tween two different spin states.

In Ch. 2, we review spin qubits in Si/SiGe quantum dots covering two aspects: the
history of spins in Si and the history of spins in quantum dots. We also briefly review
various methods to manipulate and read out spin states including the EDSR manipula-
tion and Elzerman read-out used in this thesis.

In the first part of Ch. 3, we present the physical implementation of EDSR where we
use a microwave excitation and a magnetic field gradient created by micromagnets. In
the second part, we explore theoretically the mechanisms that cause decoherence for an
electron in a Si quantum dot.

In Ch. 4, we give the mathematical descriptions of typical spin-qubit measurements
used for the characterization of the quality of spin-qubits, including Rabi oscillations,
Ramsey fringe, dynamical decoupling and randomized benchmarking.

In Ch. 5 we present the details of the three devices used for the experiments shown
in this thesis. The three devices are labeled as Device A, Device B, and Device C. We
also show the experimental setups, including the implementation of Elzerman read-out,
pulsed microwave bursts for EDSR, and signal processing.

In Ch. 6 we present the preliminary measurements towards the spin-state manipu-
lation and read-out using Device A and Device B. The difference between the Device A
and Device B is that the former is a doped sample with an on-chip antenna and the latter
is an undoped sample with the micromagnets. We measured photon-assisted tunneling
on a single quantum dot using Device A and on a double quantum dot using Device B.
Based on these experimental results, the potential of using Device A and B for the ma-
nipulation and read-out of an electron spin are also discussed, where we conclude that
the design of Device B is more promising than Device A for this purpose.

In response to this, we started the measurements on Device C, which is very similar
to Device B (an undoped sample with micromagnets). The series of main experimental
results using Device C are shown in Ch. 7-10. Fig. 1.1 shows 5 measured resonance fre-
quencies using Device C as a function of the externally applied magnetic field. Fig. 1.2
shows a schematic of energy levels as a function of external magnetic field. The blue
lines and the gray lines present two different valley states. The blue dashed line and light
blue dashed line in Fig. 1.2 are the EDSR transitions for the ground and the excited valley
states and correspond to resonances 1 and 2 (blue open circles and light blue diamonds)



1.5. THESIS OVERVIEW

1

9

in Fig. 1.1, respectively. The experimental results on fundamental resonances 1 and 2 are
presented in Ch. 7. Using these resonances, we perform Rabi oscillation, Ramsey fringe
and Hahn echo measurements on a single electron spin.

In Ch. 8, we explore resonances 3 and 4, which was exactly half of the resonance
frequency of 1 and 2, respectively (second harmonic resonance). The second harmonic
resonances also allow us to perform Rabi oscillation, Ramsey fringe and Hahn echo mea-
surements on a single electron spin.

In Ch. 9, we explore resonance 5 (black crosses in Fig. 1.1), which has a different
character from the other four resonances. No coherent oscillations were observed for
resonance 5. The dashed black line is the EDSR transition corresponding to this reso-
nance. In this transition, both valley states and spin states are flipped (inter-valley spin
flip).

The experiment shown in Ch. 10 is also on Device C but with a different gate config-
uration. With this gate configuration, we did not observe second harmonic resonances
or inter-valley spin flip but only two fundamental resonances. Using one of the funda-
mental resonances, we characterize the quality of an electron spin in a Si/SiGe quantum
as a qubit using randomized benchmarking and dynamical decoupling.

Concluding remarks, outlook and possible future directions are presented in Ch. 11.
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Figure 1.1: Measured 5 resonance frequencies of a single electron spin in Device C as a function of the exter-
nally applied magnetic field. These 5 resonances are explored in Ch. 7-9 .
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Figure 1.2: Schematic of the energy levels involved in the excitation process as a function of the total magnetic
field at the electron location. The dashed arrows correspond to the 3 transitions corresponding to resonances
1, 2 and 5 (blue, light blue and black dashed arrows, respectively). Ev is the valley splitting. Resonances 3 and
4 are also attributed to the transitions represented by the dashed blue and light blue arrows but are driven at
half the microwave frequency due to second harmonic process.
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SPINS IN SILICON QUANTUM DOTS

In this chapter, we discuss the benefits and downsides of Si/SiGe quantum dots com-
pared to similar systems (GaAs/AlGaAs quantum dots, SiMOS quantum dots, and phos-
phorus donor in Si) both in terms of making qubits and reviewing how we realize a qubit
physically.

2.1. OVERVIEW
In this thesis, we chose electrically controlled electron spins in Si/SiGe quantum dots
as qubits. Using Si has a great advantage for the scalability of qubits, as it is the most
widely used material semiconductor devices for integrated circuits. Nowadays, coherent
control of spin qubits in Si is realized in different ways, with single electrons confined
in Si/SiGe quantum dots as we show in the later chapters in this thesis, single electrons
confined in SiMOS quantum dots (Veldhorst et al., 2014, 2015b), an ensemble of or single
electrons bound to phosphorus dopants (Morello et al., 2010; Pla et al., 2012; Tyryshkin
et al., 2012), an ensemble of or single phosphorus dopant nuclear spins (Morton et al.,
2008; Muhonen et al., 2014; Pla et al., 2013; Simmons et al., 2011b) and an ensemble of
electrons trapped by surface defects (Akhtar et al., 2012; Lu et al., 2011).

2.2. HISTORY OF SPIN QUBITS IN SILICON

2.2.1. DOPANTS IN SILICON
Electron spin resonance experiments on electrons bound to donors in bulk Si date back
to 1950s. T ∗

2 and T2 of electrons bound to phosphorus donors in bulk Si were measured
(Gordon and Bowers, 1958) only 8 years after Hahn echo paper was published (Hahn,
1950). Surprisingly T ∗

2 and T2 measurements using isotopically enriched silicon 28 sam-
ples (28Si) already appear in (Gordon and Bowers, 1958). They found that T ∗

2 in 28Si is
14 times longer than in natural silicon (natSi)1, while T2 was extended only twice (the

1For bulk, T∗
2 was calculated from the linewidth of CW measurement: T∗

2 =
p

2ħ
gµBσB

= 1p
2πσ f

(Eq. 4.41) with

σ= FWHM
2
p

2ln2
.
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concentration of 29Si is not reported), claiming that “29Si nuclei are at least partly re-
sponsible for the loss of phase memory of the spins”. Note that the idea of quantum
computing comes into being there only in the 1980s.

Nuclear spin resonance experiments in Si are also explored in the same period. Di-
rect measurements of a nuclear spin state are difficult in Si because its magnetic moment
is much smaller than that of the electron (detection by conventional NMR setup can be
done only by high concentration of nuclear spins). Feher (Feher, 1956) pioneered a tech-
nique to measure the state of nuclear spins via transfer of nuclear spin magnetization to
electron spin magnetization and this technique is called ENDOR (electron nuclear dou-
ble resonance). In (Feher, 1959), he measured the hyperfine coupling constants between
an electron bound to a dopant and a Si nuclei at a specified lattice site respect to the elec-
tron for the case of phosphorus, arsenic, bismuth, and antimony as a dopant and showed
an excellent agreement with a theoretical calculation.

We needed to wait 50 years until the research on electrons bound to dopants in Si
started growing again. This time the researchers’ interest was the application to a quan-
tum computer. Meanwhile, human beings acquired more sophisticated techniques for
isotope purification out of necessity by nuclear development. The end of the cold war
made it possible to benefit from theses techniques for non military purposes (Banholzer
and Anthony, 1992; Itoh et al., 1993). The highest purity of 28Si is realized by the Inter-
national Avogadro Coordination (IAC) project, which is not only intended for a quantum
computer but also to define and realize the SI unit of mass by determining the Avogadro
constant with a small uncertainty (Becker et al., 2006; Itoh et al., 2003). Tyryshkin et al.,
(Tyryshkin et al., 2012) performed the electron spin resonance experiments using one
of the samples made by the IAC project (the concentration of 29Si is 50ppm) and mea-
sured an extrapolated Hahn echo time of electron spins bound to phosphorus dopants2

of T2 =10 s.

The ideas of Si based quantum computer introduced in late 1990 to early 2000 were
based on using nuclear spins (29Si nuclear spins (Itoh, 2005; Ladd et al., 2002) or dopant
phosphorus nuclear spins (Kane, 1998)) as qubits. Kane’s original idea was using phos-
phorus nuclear spins as qubits and making interaction between qubits and reading out
qubit states via electrons bound to phosphorus. Following this idea, the transfer of a
coherent state from an ensemble of electron spins to an ensemble of nuclear spins in
bulk 28Si and vice versa was experimentally demonstrated using ENDOR (Morton et al.,
2008). An entangled state between an ensemble of electron spins and an ensemble of
phosphorus nuclear spins was also demonstrated (Simmons et al., 2011b). The same
measurements were repeated using an single electron spin and an phosphorus nuclear
spin in (Dehollain et al., 2015; Muhonen et al., 2014), which is an important step towards
the realization of a Kane’s quantum computer in terms of scalability.

2The extrapolated Hahn echo time of an ensemble of electron spins bound to phosphorus dopants means the
Hahn echo time without the effect of dipolar interactions between electron spins, which is equal to the Hahn
echo time which would be measured for a single electron spin for the same 29Si concentration under the
condition that there is no other additional noise.
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2.2.2. SILICON QUANTUM DOTS

As seen in the previous section, spin qubits in Si are first realized using phosphorus
dopant nuclei and electrons bound to them. Instead of using atomic confinement, elec-
trons can be also confined at the interface of two different materials using the difference
of the level of the conduction band minima of two materials. Such confined electrons are
called a two-dimensional electron gas (2DEG) and such combinations of two materials
are called semiconductor heterostructures.

As partly discussed in Sec. 1.3, historically the research on 2DEG is enriched using a
heterostructure of GaAs and AlGaAs. The band structure of GaAs and AlGaAs is a good
combination in order for a quantum well for electrons to form at its interface. Most
importantly the lattice constants of the two materials are almost the same (lattice mis-
match ∼0.1%), which is important to realize a smooth interface avoiding having many
defects. By applying voltages to the surface gate electrodes, additional confinement po-
tential created along the x and y directions creates a circular isolated area where an elec-
tron/electrons can stay, which is called a quantum dot (see (Hanson et al., 2007; van der
Wiel et al., 2002) for more details of GaAs quantum dots). In the 2000s, electron spin
resonance experiments in GaAs quantum dots are first realized (in several ways see also
Sec. 2.4)(Koppens et al., 2006; Nowack et al., 2007; Pioro-Ladrière et al., 2008a). The ad-
vantage of using electron spins in quantum dots as qubits compared to using electrons
bound to dopants is the scalability. In principle, the number of qubits can be increased
on demand by changing the design of the surface gates.

The band structure of Si and SiGe is also a good combination to form 2DEG, however
making quantum dots using a heterostructure of Si and SiGe has been more challenging
due to the larger lattice constant mismatch between Si and SiGe as also discussed in
Sec. 1.3. At the same time, it had been expected to measure a longer dephasing time
T ∗

2 in Si quantum dots than in GaAs quantum dots as T ∗
2 ∼ 1 µs of an ensemble of free

electron spins in 2DEG was measured (Truitt et al., 2009; Tyryshkin et al., 2005).

One big breakthrough made was moving from doped heterostructure to undoped
heterostructure (Maune et al., 2012). Compared with conventional, doped heterostruc-
tures, this technology strongly improves charge stability. Maune et. al., reported the
electron spin T ∗

2 = 360 ns in Si/SiGe quantum dots for the first time, measured via two-
spin coherent exchange, ∼40 times longer in Si/SiGe quantum dots than in GaAs dots
(see Table 2.1). In (Kawakami et al., 2014) (Ch. 7), we measured T ∗

2 = 1 µs of an electron
spin state in a Si/SiGe quantum dots using electron spin resonance.

In (Veldhorst et al., 2014), a quantum dot was created at the interface of Si and Si
oxides. The main difference between Si/SiGe and SiMOS is the position of 2DEG with
respect to the surface. For SiMOS, the 2DEG is very close to the surface and therefore the
gates can more directly shape the potential landscape of electric fields. The downside of
this structure is that 2DEG is positioned just beneath the silicon oxide, which contains
defects and charge traps. Veldhorst et. al., used isotopically purified silicon (800ppm
29Si concentration) and measured T ∗

2 = 120 µs. In (Veldhorst et al., 2015b), they also
demonstrated a two-qubit operation.
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2.3. HOW TO REALIZE QUBITS USING QUANTUM DOTS
In this thesis, we chose and investigated the spin state of one electron confined in one
quantum dot to realize a qubit. Compared to the other types of qubits described in the
next paragraph, the advantage of using an electron spin as a qubit is a long coherence
time and the number of physical qubits per dot. The disadvantage is the requirement of
a high magnetic field and direct or indirect coupling to an oscillating magnetic field and
a relatively slow manipulation.

In Si or GaAs quantum dot systems, other qubits based on the spin degree of free-
dom have been realized such as a singlet-triplet qubit with two quantum dots with one
electron in each dot (Petta et al., 2005; Shulman et al., 2012), or hybrid-qubit with two
quantum dots with two electrons in one dot and one electron in another dot (Kim et al.,
2014; Koh et al., 2012). The advantage of these qubits is the non-requirement of high
magnetic field and fast manipulation, but the disadvantage is relatively short dephasing
time and leakage to other states.

In the following, we restrict ourselves to the discussion of the manipulation and read-
out of a single electron spin as a qubit.

2.4. HOW TO MANIPULATE AND READ OUT THE SPIN STATE OF

AN ELECTRON

ELECTRON SPIN MANIPULATION

Electron spin states can be manipulated by electron spin resonance (ESR) (Slichter, 1990).
The transition between two spin states (spin-up state and spin-down state) can be in-
duced by applying an oscillating magnetic field which has an orthogonal component to
the external magnetic field and whose energy is equal to the energy difference between
two spin states (Zeeman energy). Such an oscillating magnetic field can be generated
directly or indirectly.

The first ESR experiments in GaAs were realized by the direct way (Koppens et al.,
2006). The oscillating magnetic field was generated by applying microwave3 to an an-
tenna located next to the quantum dots. ESR experiments on an electron spin bound
to a phosphorus dopant in Si (Pla et al., 2012), and on single electron spins in SiMOS
quantum dots (Veldhorst et al., 2014, 2015a) were realized in the same way.

In the indirect way, microwave is applied to one of the gate electrodes, which is also
used to apply d.c. voltage to make a confinement potential, and a local oscillating elec-
tric field is induced at the open end of the transmission, which leads to the modulation
of the dot position. When there is some coupling to mix the spin and charge degrees of
freedom, an oscillating electric field works like an oscillating magnetic field on the elec-
tron in the dot. With the charge state being modulated by a local oscillating electric field,
a spin state is flipped. This method, operating electron spins by electric fields, is called
electric dipole spin resonance (EDSR; its mechanism is further discussed in Sec. 3.1) and
the first experimental realization on electrons in quantum dots was achieved by using
spin-orbit coupling in GaAs to mix the spin and charge degrees of freedom (Nowack

3in our research fields, electromagnetic radiation with frequencies between 1 and 100 GHz (300 and 3 mm in
wavelength) is called microwave
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et al., 2007), and later by using the magnetic field gradient created by the micromagnets
(Pioro-Ladrière et al., 2008a).

Exploiting spin-orbit coupling is experimentally the simplest approach as it does not
require any additional fabrication of a local micromagnet or an antenna. However, spin-
orbit coupling is too weak in Si/SiGe, and thus a local micromagnet or an antenna is
required. The downside of using an antenna over a micromagnet is the heating by the
current running through the antenna, while when using micromagnet, a spin qubit be-
comes subject to magnetic field noise converted from charge noise via the magnetic field
gradient.

In addition to the ingredients for the manipulation of one electron spin, we should
also consider the independent control of each electron spin in multiple quantum dots
(addressability), i.e., the Zeeman energy of each electron should differ. In order to sepa-
rate the Zeeman energies, the g-factor of each electron or the local magnetic field felt by
each electron should be different. The g-factor can be modulated by Stark-shift (Veld-
horst et al., 2014) but a huge electric field is required to achieve enough change to be
sufficient for addressability. The magnetic field gradient can be produced by the mi-
cromagnets (thus the magnetic field gradient created by the micromagnets can be used
both for the manipulation of one electron spin and the addressability) or d.c. current
running through the antenna.

In this thesis, we first chose to apply microwave to the antenna to generate an os-
cillating magnetic field directly and to apply d.c. current to generate a magnetic field
gradient. In the experiments presented in Ch. 6 we showed that the magnetic field gra-
dient created by d.c. current running through the antenna is limited to 1 µT/nm due to
Joule heating, which might be a problem for the addressability.

We secondly chose to apply microwave to one of the gate electrodes to generate
an oscillating magnetic field indirectly with the help of a magnetic field gradient cre-
ated by the micromagnet. The magnetic field gradient created by micromagnets can
reach 1 mT/nm (Appendix G), which is 1000 times larger than what is created with d.c.
current through the antenna and this gradient is large enough for addressability (Ap-
pendix E.1.2).

ELECTRON SPIN READ-OUT

To read out the electron spin state, two methods can be used. The spin state of an elec-
tron confined in a GaAs quantum dot is first detected in a double quantum dot tuned
to the so-called Pauli spin blockade (PSB) regime (Brunner et al., 2011; Koppens et al.,
2006; Nowack et al., 2007; Ono et al., 2002). In this regime, two-electron spin singlets can
be distinguished from spin triplets.

Another way to detect a spin state is using a spin to charge conversion by aligning
the Fermi level of the reservoir between the spin-ground state and the spin-excited state
(Elzerman et al., 2004). We employed this method and details are further discussed in
Sec. 5.3.2.
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2.5. COMPARISON BETWEEN GAAS QUBITS SI SPIN QUBITS
In this section, we compare electrons confined in Si/SiGe quantum dots, electrons con-
fined in GaAs/AlGaAs and in SiMOS quantum dots, and an ensemble of or single elec-
trons bound to phosphorus dopant.

2.5.1. NUCLEAR SPINS IN HOST MATERIAL
As discussed in Sec. 3.3, nuclear spins in the substrate induces the decoherence on an
electron spin. Thus the nuclear spins of the host material is a nuisance for the realization
of a quantum computer. Amongst three stable isotopes of silicon, 28Si, 29Si and 30Si, only
29Si has non-zero nuclear spin and the natural abundance of 29Si is 4.7%, while all the
isotopes of Ga or As have non-zero nuclear spins. The isotopic ratio of 29Si in Si substrate
can be further decreased. In the first row of Table 2.1, we compared the dephasing time
T ∗

2 of electrons confined in GaAs/AlGaAs quantum dots, in Si/SiGe quantum dots and
in SiMOS quantum dots and of an ensemble of or single electrons bound to phosphorus
dopants. As a whole, T ∗

2 in Si is longer than in GaAs and is further extended by isotopic
purification.

2.5.2. BAND STRUCTURE
Contrary to GaAs, the conduction band minima of Si are not at a symmetric point. Due
to this fact, Si shows rich valley physics but those may turn out to be obstacles for the
realization of a quantum computer.

ELECTRONS IN BULK SI

The conduction band minima of Si are along the ∆ directions, ∼85% of the way to the
X point, which results in 2 significant different characteristics in Si compared to GaAs:
indirect band gap and valley degeneracy.

Si has an indirect band gap, while GaAs has a direct band gap making it more efficient
to transfer spin state to photons for GaAs spin qubits (Fujita et al., 2015).

At the conduction band minima of Si, there are six ∆-directions and therefore six
equivalent energy minima (called valleys), while there is no degeneracy state at the con-
duction band minima of GaAs.

Fig. 2.1(b) shows that the constant energy surfaces at the conduction band minima
of Si are ellipsoidal due to a different effective mass along the longitudinal direction from
the transverse direction (mT ≈ 0.98m0 and mL ≈ 0.19m0) (Davies, 1998).

2DEG IN SI

By forming 2DEG, the 6-fold degenerate states are lifted as follows (see also Fig. 2.1(b)).

• strained Si Due to the lattice mismatch between Si and a SiGe alloy, a Si quantum well is
strained in the plane of the Si quantum well. This strain makes four of the six conduction
band valleys (±kx and ±ky ) lifting upward and two of them (±kz ) downward.
• quantum well (flat interface) The remaining two-fold degeneracy on the ground valley
state is also lifted due to the coupling between two valley states (±kz ) being caused by
the sharp potential difference between the conduction band minima of Si and a SiGe
alloy (Scarlino, 2016; Schäffler, 1997). The energy difference between two lowest valley
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states is called valley splitting EV . For the flat interfaces, the valley splitting is predicted
to be EV ∼0.1-0.3 meV.
• disordered interface This valley splitting at the previous point can be decreased by de-
fects or heterostructure interface disorder. In reality, the interface between Si and a SiGe
alloy is not completely flat as shown in Fig. 2.1(c) (Scarlino, 2016; Zwanenburg et al.,
2013). If the electron wave function is spread over more than one atomic step, the differ-
ent energy levels of the valley states which are defined at each atomic step are averaged
out, which results in a smaller valley splitting than without atomic steps. This coupling
between the z behavior and x, y behavior is called valley-orbit coupling.
• perpendicular electric field Finally perpendicular electric field E⊥ also couples two
valley states. It is experimentally demonstrated that the valley splitting is controlled (de-
creased and increased) by the perpendicular electric field E⊥ (Takeda, 2015; Yang et al.,
2013).

If the resulting valley splitting is small compared to the electron temperature, it leads
to the thermal occupation of the excited valley state, or leakage into the excited valley
state during qubit manipulation as discussed in Ch. 7.

ELECTRONS BOUND TO PHOSPHORUS DOPANT IN SI

For the electrons bound to phosphorus dopant in Si, the ground state has no valley de-
generacy but the 1st excited state has 3-fold degeneracy (Fig. 2.1(d)), which makes the
exchange interaction between 2 electrons nontrivial (Tosi et al., 2015; Zwanenburg et al.,
2013).

2.5.3. SPIN-ORBIT INTERACTION (SOI)
There are two types of SOI, Rashba-SOI and Dresselhaus-SOI. They change the direc-
tion of the spin operator differently depending on the crystallographic direction of the
electron momentum and their amplitudes are denoted byα and β, respectively (Hanson
et al., 2007; Nowack, 2009; Winkler, 2003). Both types of SOI are much smaller in Si than
GaAs. On the one hand this leads to much longer spin relaxation time T1 in Si than in
GaAs. The spin relaxation time of an electron spin in Si/SiGe quantum dot is measured
typical timescales upwards of 1 ms (Simmons et al., 2011b). On the other hand, SOI can
also be used to control the spin qubit through electric dipole spin resonance as discussed
in Sec. 2.4. In GaAs β = 103 −3∗103 m/s and α can be ≈ β or bigger depending on the
structure (Hanson et al., 2007). α in Si 2DEG is measured to be 6 m/s (Wilamowski et al.,
2002). Hao et al. (2014); Tahan and Joynt (2014); Yang et al. (2013) reported β−α∼15-60
m/s in Si quantum dots.

2.5.4. G-FACTOR
Si has a g-factor that is roughly 5 times larger than GaAs. Thus the magnetic field required
to obtain a given Zeeman splitting is 5 times smaller. Small magnetic fields require less
magnet engineering. In addition to that, with the same amplitude of an oscillating mag-
netic field felt by an electron, the Rabi oscillation is 5 times larger in Si. This statement
simply turns into a benefit of Si when a local antenna is used to generate an oscillating
magnetic field. However, when a micromagnet is employed, it is not that simple. The
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Figure 2.1: (a) Constant energy surfaces for the six equivalent valleys. The bulk dispersion relation around

minima can be described by ε(k) = Ec + ħ2

2

[
(kL−k0)2

mL
+ k2

T
mT

+ k2
T

mT

]
where Ec is a minimum conduction band

energy and k0 = 0.85 2π
a0

and thus the constant energy surfaces show ellipsoidal shapes. The electron confined

in a quantum dot stays in the ground valley state (kz direction) and thus the effective mass considered for an
electron in a quantum dot is mL . (b) Lifting of six-fold valley degeneracy electrons in Si 2DEG. See the text for
details. (c) Si sandwiched by relaxed Si0.3Ge0.7 alloys with atomic steps at the interface. The lattice constant
of bulk Si is 0.5431 nm and Si quantum well width is typically ∼10 nm. Here the atomic step size is drawn with
exaggeration. One can define each valley splitting for each atomic step. (d) Lifting of six-fold valley degeneracy
of electrons bound to phosphorus dopants. Due to the strong confinement by the phosphorus dopant, the
degeneracy is broken. The lowest-energy valley state is non-degenerate, which is 11.7 meV lower than the first
valley excited states.
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amplitude of an oscillating magnetic field is determined by how far one can modulate
the position of an electron by applying an oscillating electric field and it is harder to
move an electron in Si because of a larger effective mass (discussed below).

2.5.5. EFFECTIVE MASS/CONFINEMENT
The effective mass of electrons in Si is 3 times larger than in GaAs. The tunnel barriers
between dots are therefore more sensitive to small changes in the applied gate voltages,
which makes it harder to tune the dots to a few-electron regime keeping an appropri-
ate tunnel barrier. This problem may be overcome by making the dot size smaller. The
confinement of an electron to a small region also helps to have a large valley splitting
for Si based quantum dot. However, it demands more techniques on fabrication. So far
GaAs based structures have been able to create the largest number of dots due to its high
tunability. Progress in Si-fabrication will probably enable many dots in Si as well in the
near future.

property GaAs quantum dot Si quantum dot phosphorus donor in Si

T∗
2

30 ns (1e)
(Koppens et al., 2007)

10 ns (ST)
(Petta et al., 2005)

40 ns (ST)
(Bluhm et al., 2010b)

≈1 µs (1e 4.67% Si/SiGe)
(Kawakami et al., 2014) (Ch. 7)

120 µs (1e 800 ppm SiMOS)
(Veldhorst et al., 2014)

360 ns (ST 4.67% Si/SiGe)
(Maune et al., 2012)

55 ns (1e 4.67%)
(Pla et al., 2012)

268µs (1e 800ppm)
(Muhonen et al., 2014)
75 ns (ensemble 4.67%)
(Tyryshkin et al., 2003)

6µs (ensemble 50 ppm)
(Abe et al. 2010;

Tyryshkin et al. 2011)

SOI 103 −3 ·103 m/s ∼ 10 m/s

T1 ≈ 1-100 ms ≈ 1 s (at B=2T) ≈ 1 s (at B=2T)

g 0.2-0.4 ≈ 2 ≈ 2

m∗ 0.067 m0 0.19 m0 (in plane)

r ≈ 100 nm
≈ 50 nm for Si/SiGe
≈ 20 nm for SiMOS

2.5 nm

bandgap direct indirect indirect

valley
degeneracy

no degeneracy
there can be 2-fold valley degeneracy

states on the ground states
3-fold valley degeneracy states

on the 1st excited states

Table 2.1: Comparison of various properties of electron spins amongst GaAs quantum dots, Si quantum dots,
and phosphorus donors in Si. Typical or measured values of the intrinsic dephasing time T∗

2 , spin-orbit in-
teraction (SOI), the longitudinal relaxation time T1, g -factor and the effective mass m∗ for an electron/elec-
trons confined in GaAs quantum dots and Si quantum dots and bound to a phosphorus dopant/phosphorus
dopants. The typical diameter of GaAs and Si quantum dots and Bohr radius of phosphorus in silicon r . In
the row of T∗

2 , ...ppm or ...% indicates the concentration of 29Si. “1e” stands for an electron spin as a qubit.
“ST” stands for a singlet-triplet qubit. “ensemble” stands for an ensemble of electron spins as a qubit. r is the
diameter of dot or Bohr radius of phosphorus in silicon.





3
EDSR AND DECOHERENCE

In this chapter, we introduce the mechanism of electric dipole spin resonance (EDSR),
which we chose as a method to manipulate a quantum state of an electron spin confined
in a quantum dot as presented in Sec. 2.4. In order to perform EDSR, we make use of the
magnetic field gradient created by the micromagnets. In the second part of this chapter,
we present the numerically calculated stray magnetic field created by the micromagnets.
From this calculation, we estimate the stray magnetic field at the dot position for the
experiments in Ch. 7, Ch. 8 and Ch. 10. In the third part, we discuss the decoherence of
the electron spin induced by its coupling with the surrounding nuclear spins.

3.1. ELECTRIC DIPOLE SPIN RESONANCE

As presented in Sec. 2.4, electric dipole spin resonance (EDSR) is a method to manipulate
an electron spin state, which is mixed with a charge state due to some coupling between
the spin and charge degrees of freedom, by electrically driving the charge property of the
electron. The mechanism of EDSR with a micromagnet was first presented by (Tokura
et al., 2006) for a 1D quantum dot. The theory for a 2D quantum dot is essentially the
same and presented in (Pioro-Ladrière et al., 2008b) together with the experimental re-
views on GaAs quantum dots with micromagnets. In the next two sections, by revisiting
this mechanism, we derive the familiar Hamiltonian for ESR (Eq. 3.14).

21
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3.1.1. MIXING SPIN AND CHARGE STATES

(a) (b)

Figure 3.1: (a) Conceptual device image showing two micromagnets (blue rectangles) magnetized along the
same direction as the external magnetic field B0 (along the x axis). The black thick lines represent the gate elec-
trodes to which d.c. voltage and microwave can be applied. More details on the device are found in Sec. 5.3.
The green arrows represent the magnetic field gradient created by the micromagnets B⊥ along the z axis. The
magnetic field gradient is assumed to be created along the z axis and its amplitude varies along the x axis.
The green region in the middle of the figure represents the electron wavefunction spread, of which the size is
scaled around 100 times larger than the micromagnets and the gate electrodes. (b) A symmetric confinement
potential for a 2-dimensional quantum dot is approximated to be a harmonic potential. The electron wavefun-
tions of the first, second and third orbital states are illustrated along the x axis. Since we assume a symmetric
confinement, the expectation value of the position is 0: 〈n = 0|x |n = 0〉 = 〈n = 1|x |n = 1〉 = 0 and the transi-

tion dipole moment from the ground state (n = 0) to the first excited state (n = 1) is 〈n = 0|x |n = 1〉 = lor bp
2

where lor b is the typical dimension of the quantum dot and lor b = ħ
√

2
m∆or b

with ∆or b = ħωh the orbital

level spacing.

The static Hamiltonian, the Hamiltonian without applying an oscillating electric field
for an electron confined in a symmetric potential subjected to a magnetic field gradient
created by the micromagnets, is written as

H stat = 1

2m
(p2

x +p2
y )+ mω2

h

2
(x2 + y2)− 1

2
gµB B0σ

s
x −

1

2
gµB

dB⊥
d x

xσs
z , (3.1)

where px,y are the momentum operators, x, y are the position operators, m is the ef-
fective electron mass and ωh is the classical frequency of the harmonic potential. As
shown in Fig. 3.1(a), we assumed that an external magnetic field B0 is applied along
the x axis, the stray magnetic field created by the micromagnet has a component only
along the z axis of which amplitude is 0 at the dot position (B0 ∥ x, B⊥ ∥ z, B⊥(x = 0,
y = 0)=0, and B∥ = 0, where B⊥ and B∥ are the stray magnetic fields perpendicular and
parallel to the external magnetic field, respectively), and varies along the x axis for sim-
plicity (B⊥(x) = dB⊥

d x x~z). We also assumed that the position of the electron is mod-
ulated along the x axis. σs

i are the Pauli spin matrices and σs
x = |+〉〈+| − |−〉〈−| and

σs
z = |+〉〈−|+ |−〉〈+|, where |+〉 is the spin-up state and |−〉 is the spin-down state. The

first and second term of Eq. 3.1 represent the harmonic oscillator potential with ωh the
classical frequency (Fig. 3.1(b)). The third and fourth term are the Zeeman splitting due
to the external magnetic field and due to the stray field created by the micromagnets,
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respectively. In (Tokura et al., 2006) the approximated eigenstates of Eq. 3.1 are derived
with perturbation approach taking the last term of Eq. 3.1 as a small term. Here we take
a different path. We restrict ourselves to consider only the lowest two orbital states |0〉
and |1〉. In most cases of the experiments on electrons confined in Si quantum dots, the
valley splitting is relatively low compared to the orbital level spacing and the valley and
orbital degrees of freedom are mixed due to the valley-orbit coupling (and we call these
mixed states valley-orbit states). Thus, strictly speaking, we should consider valley, or-
bital, and spin states. Their Hamiltonian can be written down from first principles but
it is too complex to be treated here. For the experiments shown in this thesis, the valley
splitting (or the energy difference between the ground valley-orbit state and the first ex-
cited valley-orbit state) is lower than the Zeeman splitting and the energy levels of higher
valley-orbit states are high enough to make it possible to consider the lowest two valley-
orbit states (four lowest states as shown in Fig. 3.2 taking into account of a spin degree
of freedom) energetically isolated (see also Ch. 9). A similar approach is used in (Tokura,
Kubo, and Munro, 2013) for the case where there are two minima in a confinement po-
tential of a GaAs quantum dot.

Under these assumptions, Eq. 3.1 can be rewritten as

H stat = 1

2
∆cσ

c
z −

1

2
εz0σx

s − 1

2
Λσx

cσz
s , (3.2)

withσz
c = |1〉〈1|−|0〉〈0| andσx

c = |0〉〈1|+|1〉〈0|, where |0〉 represents the ground valley-
orbit state and |1〉 represents the first excited valley-orbit state and the splitting between
these two states is represented by ∆c . The index c stands for charge since both valley
and orbital states are related to the charge characteristic of an electron. Nevertheless, in
this section, we assume that |c = 0〉 and |c = 1〉 are pure orbital states and a symmetric
confinement (∆c =∆or b). In Sec. 3.1.3, an asymmetric confinement and mixing between
valley states and orbital states are introduced. εz0 = gµB B0 is the Zeeman splitting due
to the external magnetic field and

Λ= gµB
dB⊥
d x

〈c = 0|x |c = 1〉 = gµB
dB⊥
d x

lcp
2

, (3.3)

represents the strength of the mixing between a spin state and an orbital state. Here we
assume that |c = 0〉 and |c = 1〉 are pure orbital states and thus 〈c = 0|x |c = 1〉 = 〈n = 0|x |n = 1〉
and lc = lor b . Furthermore, due to the assumption of a symmetric confinement, the di-
agonal elements are 0:

〈c = 0|x |c = 0〉 = 〈n = 0|x |n = 0〉 = 0, 〈c = 1|x |c = 1〉 = 〈n = 1|x |n = 1〉 = 0. (3.4)

The eigenstates of the first and second term in Eq. 3.2 are |cs〉 = |0−〉, |0+〉, |1−〉, and |1+〉.
The third term mixes |0−〉 and |1+〉, and |0+〉 and |1−〉.

Differently from Eq. 3.1, we can obtain the exact eigenstates of Eq. 3.2, which we
denote by

∣∣0′−′〉,
∣∣0′+′〉,

∣∣1′−′〉, and
∣∣1′+′〉. Eq. 3.2 can be diagonalized by the unitary

transformation and the diagonalized Hamiltonian can be written as

H stat =−1

4

(√
(∆c +ε0z )2 +Λ2 −

√
(∆c −ε0z )2 +Λ2

)
σx

s′

− 1

4

(√
(∆c +ε0z )2 +Λ2 +

√
(∆c −ε0z )2 +Λ2

)
σz

c ′ , (3.5)
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where σs′
i is the Pauli matrix of spin-like state, σc ′

i is the Pauli matrix of orbit-like state,

σs′
x = ∣∣+′〉〈+′∣∣− ∣∣−′〉〈−′∣∣ and σc ′

z = ∣∣1′〉〈
1′

∣∣− ∣∣0′〉〈
0′

∣∣. The splitting between two spin-like
states (renormalized Zeeman energy) is

εz = 1

2

(√
(∆c +ε0z )2 +Λ2 −

√
(∆c −ε0z )2 +Λ2

)
. (3.6)

Under the assumption1 that∆c À ε0z ,Λ, Eq. 3.6 is approximated to be εz ≈ ε0z+∆εz with

∆εz =−1

4

2Λ2

∆2
c −ε2

0z

ε0z . (3.7)

The renormalization in Zeeman energy presented in Eq. 3.7 is the same as the renor-
malization in Zeeman energy to the second order being calculated, when taking the last
term of Eq. 3.1 as the perturbation term and considering all the orbital levels of harmonic
potential as presented in (Tokura et al., 2006).

Figure 3.2: Energy diagram of valley-orbit (c = 0,1) and spin (s =+,−) states in the case of ε0z <∆c showing the
four lowest-energy eigenstates without mixing due to the magnetic field gradient on the left and with mixing
on the right. See the text for more details.

3.1.2. MICROWAVE EXCITATION

The microwave excitation generates an a.c. electric field, and we assume that it makes
the electron oscillate back and forth along the x axis. The Hamiltonian of the microwave
excitation is written as

H(t ) = eE AC x cos(ωMWt +φ), (3.8)

1 In fact, the assumption ∆c À ε0z , Λ or ∆c À εz is not correct for the experiments shown in this thesis. In
Sec. 9.S1-9.S2, we treat the general case including when we cannot take this assumption.
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with E AC the amplitude of the electric field for an electron inside the dot, ωMW the mi-
crowave carrier frequency andφ the microwave phase. As in Eq. 3.2, we restrict ourselves
to consider only the lowest orbital states. Eq. 3.8 is rewritten as

H(t ) = eE AC lcp
2
σc

x cos(ωMWt +φ). (3.9)

Under the assumption1 that ∆c À εz , we can consider the lowest two states
∣∣0′−′〉 and∣∣0′+′〉 energetically isolated states and we can discard

∣∣1′−′〉 and
∣∣1′+′〉 at this point.

Thus Eq. 3.9 can be approximated to be

H(t ) = 1

2
ε̄1 cos(ωMWt +φ)σs′

z , (3.10)

with

ε̄1 = eE AC lcp
2

〈
0′+′∣∣σc

x

∣∣0′−′〉≈ eE AC 2Λ
lcp

2

∆c

∆2
c −ε2

0z

, (3.11)2

and Eq. 3.5 can be approximated to be

H stat =−1

2
εzσx

s′ . (3.12)

Then the total Hamiltonian becomes

H = H stat +H(t ) =−1

2
εzσ

s′
x + 1

2
ε1 cos(ωMWt )σs′

z

=−ω0Sz +2ω1 cos(ωMWt +φ)Sx , (3.13)3

with ω0 = εz /ħ and ω1 = ε̄1/2ħ. Here we take Sz = ħσs′
x

2 and Sx = ħσs′
z

2 without loss of
generality. The x axis and the z axis are swapped because in most literature on magnetic
resonance, the quantization axis is taken along the z axis (see also Eq. A.2).

The total Hamiltonian on the rotating frame with microwave frequency ωMW be-
comes

HR = (ωMW −ω0)Sz +ω1(Sx cosφ−Sy sinφ), (3.14)

with ω1 = gµB B AC

ħ , where B AC is the amplitude of an effective oscillating magnetic field:

B AC = 1

2
eE AC dB⊥

d x
l 2

c
∆c

2

∆c −ε0z
2 ∼ 1

2
eE AC dB⊥

d x

l 2
c

∆c
. (3.15)

We notice that the Rabi frequency ω1 is proportional to the magnitude of the magnetic
field gradient dB⊥

d x , to4 l 2
c /∆c and to the amplitude of the oscillating electric field E AC .

2The diagonal elements are 0:
〈

0′+′∣∣σc
x

∣∣0′+′〉= 〈
0′−′∣∣σc

x
∣∣0′−′〉= 0 since 〈+|−〉 = 0 and 〈0|σc

x |0〉 = 〈1|σc
x |1〉 =

0.
3The 2 in the denominator of ω1 = ε̄1/2ħ comes from the fact that a linearly polarized field can be considered

as a superposition of a right-hand and a left-hand rotating circularly polarized field and only the right-hand
polarized field get involved in the resonant interaction with the electron when the rotating wave approxima-
tion is valid (Schweiger and Jeschke, 2001). See also Appendix B.4 and Appendix B.5.

4Here we assume that |c = 0〉 and |c = 1〉 are pure orbital states and thus l 2
c /∆c = l 2

or b /∆or b ∝ 1
ω2

h
since∆or b =

ħωh and lor b =
√

2ħ
mωh

.
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The effective magnetic field presented in Eq. 3.15 is the same as the effective magnetic
field being calculated by taking the last term of Eq. 3.1 as the perturbation term and
considering all the orbital levels of harmonic potential as presented in (Tokura et al.,
2006).

3.1.3. NON-CONVENTIONAL ELECTRIC DIPOLE SPIN RESONANCE
In the previous section, we assume that the confinement potential is symmetric |c = 0〉
and |c = 1〉 are pure orbital states, and the magnetic field gradient which is parallel to
the external magnetic field is 0. In this case, according to Eq. 3.2 and Eq. 3.9, the full
Hamiltonian becomes

H stat +H(t ) = 1

2
∆cσ

c
z −

1

2
εz0σ

s
x −

1

2
Λσc

xσ
s
z +eE AC lcp

2
σc

x cos(ωMWt +φ). (3.16)

In this section, we introduce an asymmetric confinement, valley states, finite parallel
field gradients to Eq. 3.16, which allows non-conventional electric dipole spin resonance
such as a second harmonic electric dipole spin resonance (Ch. 8) and an inter-valley
spin-flip resonance (Ch. 9).

ASYMMETRIC CONFINEMENT

First, we assume that |c = 0〉 and |c = 1〉 are pure orbital states and the confinement po-
tential is asymmetric as shown in Fig. 3.3(a). In this case, the diagonal elements are
non-zero:

〈c = 1|x |c = 1〉 = 〈n = 1|x |n = 1〉 =−〈c = 0|x |c = 0〉 =−〈n = 0|x |n = 0〉 = δxp
2

, (3.17)

andΛσc
xσ

s
z in the third term and lcp

2
σc

x in the fourth term in Eq. 3.16 should be replaced
as

Λσc
xσ

s
z →

(
Λσc

x +Λ
δx

lc
σc

z

)
σs

z ≡Λ
√

l 2
c +δx2

lc
σ̃c

xσ
s
z , (3.18)

lcp
2
σc

x → lcp
2
σc

x +
δxp

2
σc

z ≡
√

l 2
c +δx2

p
2

σ̃c
x . (3.19)

Without loss of generality, we can rewrite Eq. 3.16 using new Pauli matrix basis in the
charge subspace: σ̃c

x and σ̃c
z , as

H stat+H(t ) = 1

2
∆σ̃c

z+
1

2
ε0σ̃

c
x−

1

2
εz0σx

s−1

2
Λ

√
l 2

c +δx2

lc
σ̃c

xσz
s+eE AC

√
l 2

c +δx2

p
2

σ̃c
x cos(ωMWt+φ),

(3.20)
with ∆=∆c

lcp
l 2

c +δx2
and ε0 =∆c

δxp
l 2

c +δx2
.

MIXING ORBITAL STATES AND VALLEY STATES

Secondly, we introduce valley states. As discussed in Sec. 2.5.2, the coupling between
the z degree of freedom and the x-y degree of freedom is called valley-orbit coupling
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(Friesen and Coppersmith, 2010; Zwanenburg et al., 2013) and causes non-zero dipole
matrix elements between two valley states (Yang et al., 2013):

〈ν+|x |ν+〉−〈ν−|x |ν−〉 6= 0, (3.21)

where we denote the ground valley-orbit state (|c = 0〉) and excited valley-orbit state
(|c = 1〉) by |ν−〉 and |ν+〉, respectively. Thus we can deduce the same Hamiltonian as
in the case of the asymmetric confinement (Eq. 3.20). The difference is that ∆ can be
larger than ε0 in the case of mixing orbital states and valley states, while, in order to have
a good confinement for an electron, δx cannot be so large (thus ∆¿ ε0) in the case of
the asymmetric confinement. When this simple model (Eq. 3.20) is applied to explain
the experimental results shown in Ch. 9, we extract ∆< ε0 and we interpret ∆ as the cou-
pling between the ground and the excited valley-orbit states and ε0 as the valley splitting
that can be modulated by the microwave excitation.

GENERATION OF HIGHER HARMONIC ELECTRIC DIPOLE SPIN RESONANCE AND INTER-VALLEY

SPIN-FLIP RESONANCE

Inside Eq. 3.20, one can find a well-known Hamiltonian for Landau-Zener-Stückelberg
(LZS) interferometry (Shevchenko, Ashhab, and Nori, 2010) :

1

2
∆σ̃c

z +
1

2
ε0σ̃

c
x +eE AC

√
l 2

c +δx2

p
2

σ̃c
x cos(ωMWt +φ). (3.22)

The two curves in Fig. 3.3(b) represent the adiabatic energy levels of the above equa-
tion. For pure charge states, these processes are known as photon-assisted tunneling in
quantum dots. The LZS process is responsible for the generation of the following exper-
imentally observed two resonances: a second harmonic electric dipole spin resonance
(Ch. 8) and an inter-valley spin-flip resonance (Ch. 9). The mechanisms of these two res-
onances are introduced in Sec. 9.S1-9.S2 in detail. In short, the second harmonic electric
dipole spin resonance is attributed to the charge-two photon transition induced by the
LZS process accompanied by the charge flip and the spin flip induced by the σc

xσ
s
z term

(see Eq. 3.20; called fx,x process in Sec. 9.S2; note that σs
z in this section corresponds to

τx in Ch. 9). The inter-valley spin-flip resonance is attributed to the charge-one photon
transition by the LZS process accompanied by the spin-flip induced by the σc

zσ
s
z term

(see the next paragraph for the generation for this term; called fz,x process in Sec. 9.S2).
σc

zσ
s
z , σc

zσ
s
x and σc

xσ
s
x terms appear if the field gradient of the stray magnetic field

parallel to the external magnetic field along the modulation direction (dB∥/d x here) is
nonzero. In Sec. 3.1.1, we assumed that the stray magnetic field parallel to the external
magnetic field is 0 everywhere (dB∥ = 0) for simplicity. However, in reality, it can be
nonzero and can vary along the x axis (dB∥/d x 6= 0) as seen in Appendix G. In this case,
Λσc

xσ
s
z in the third term in Eq. 3.16 is replaced by Λσc

xσ
s
z +Λ′σc

xσ
s
x . Together with the

asymmetric confinement or mixing between valley states and orbital states (Eq. 3.18),
σc

zσ
s
z and σc

zσ
s
x also appear.

The second or higher harmonic electron spin resonance can also be generated by a
magnetic field oscillating along the parallel axis to the spin quantization axis (x axis here)
as demonstrated in (Gromov and Schweiger, 2000) and in Appendix. C.1. In our system,
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this component can arise due to the σc
xσ

s
x term. The amplitude of the magnetic field os-

cillating along the parallel axis is expected to be smaller or the same order of magnitude
as the magnetic field oscillating along the perpendicular axis (ε̄1

′ ∼ ε̄1). The ratio in Rabi
frequency between the second harmonic resonance and fundamental resonance is

ω2

ω1
∼ ε̄1

′

ħω0
∼ ε̄1

ħω0
(3.23)

(Eq. C.7). Since ε̄1 ¿ħω0, ω2 is very small and we expect that the second or higher har-
monic electron spin resonance should be difficult to observe.

In the case of the electric dipole spin resonance via the LZS process accompanied
by the charge flip and the spin flip, the ratio in Rabi frequency between the second har-
monic resonance and fundamental resonance becomes

ω2

ω1
∼ ε1

ħω0
, (3.24)

(Eq. 9.S36), where ε1
e = E AC lcp

2
is the voltage amplitude for the electron inside the dot

induced by the microwave. Differently from ε̄1, ε1 can be the same order of magnitude as
ħω0 (according to Eq. 3.11, there is a relation: ε̄1/ε1 = 2Λ∆c /(∆2

c−ε2
0z )). Thus we conclude

that the measured second harmonic resonance (Ch. 8) is induced by this process.

Energy(a) (b)

Figure 3.3: (a) An asymmetric confinement potential for a 2-dimensional quantum dot. Contrary to the sym-
metric case, the expectation value of position is different between the ground state (n = 0) and the excited state

(n = 1) and we denote this difference by δx: 〈n = 1|x |n = 1〉 = −〈n = 0|x |n = 0〉 = δxp
2

. (b) Energy diagram of

the valley-orbit (c = 0,1) states of Eq. 3.22 as a function of ε0. In our model, the electron is modulated along

σ̃c
x . When ε0 ¿ ∆ (ε0 À ∆), the electron is modulated along the orthogonal (parallel) direction to the energy

axis of the valley-orbit states.

3.2. STRAY MAGNETIC FIELD CREATED BY MICROMAGNETS
Next, we would like to estimate the magnetic field gradient created by micromagnets
dB⊥
d x for the experiments in Ch. 7, Ch. 8 and Ch. 9. The stray magnetic field created by the

micromagnets at the position of a quantum dot depends on the direction and the am-
plitude of the external magnetic field, the shape of the micromagnets, and the relative
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location of the dot with respect to the micromagnets. We chose cobalt as a ferromag-
netic material for the convenience of the fabrication and its high enough maximum per-
meability to form micromagnets following (Pioro-Ladrière et al., 2008b, 2007; Takakura
et al., 2010; Yoneda et al., 2014, 2015).

NUMERICAL SIMULATION OF THE MAGNETIC FIELD CREATED BY THE MI-
CROMAGNETS

We calculated the local magnetic field created by the micromagnets for Device C, as-
suming that the micromagnets are fully magnetized. The shape of the micromagnets is
presented in Sec. 5.3.1 and are shown in Fig. 5.1(a) and its SEM image is in Fig. 5.1(b). As
shown in Fig. 5.1(c) the bottom of the micromagnets and the 2DEG is separated by 147
nm. For the experiments in Ch. 7 and Ch. 8 and most of the experiments in Ch. 9, the
external magnetic field is applied along the x axis as shown in Fig. 3.1(a).

We used Matlab codes which were initially written by (Keizer, 2007) based on (Gold-
man et al., 2000)5, where an analytic expression for the magnetic field created by a rect-
angular shape of the magnet is presented. The analytic expression was obtained by solv-
ing the integral of magnetic fields created by infinitely small magnets using the fact that
an infinitely small magnet can be regarded as a magnetic dipole.

In Fig. G.2, we show the result of a numerical calculation of the x, y , z compo-
nents of the magnetic field created by the micromagnets, and the magnetic field gra-
dient of the x, y and z components along the x and y directions in the cases where
the external magnetic field is applied along the x axis. The z axis is perpendicular to
the quantum well and the x and y axes are indicated in Fig. 3.1(a) or in Fig. 5.1(a).
The estimated dot position is indicated by the black rectangle in Fig. G.2. The calcu-
lated magnitudes of the stray magnetic field at the estimated position of the dot are

B∥ = Bx = −120 mT and |B⊥| =
√

B 2
y +B 2

z = 50 mT. The total magnetic field is calcu-

lated as Btot =
√

(Bext +B∥)2 +B 2
⊥. The top figures in Fig. 3.4 show the results of the nu-

merical calculation of the total magnetic field gradient when the external magnetic field
Bext = 800 mT is applied along the x axis.

The bottom figures in Fig. 3.4 show the gradient of the magnetic field component
perpendicular to the external magnetic field when the external magnetic field is applied
along the x axis. The gradient of the magnetic field component perpendicular to the

external magnetic field is calculated as
∣∣∣ dB⊥

d x,d y

∣∣∣=√(
dBy

d x,d y

)2 +
(

dBz
d x,d y

)2
, when the external

magnetic field is applied along the x axis. The position of the electron is modulated along

the x axis by the microwave excitation6. Thus
∣∣∣ dB⊥

d x

∣∣∣∼ 0.3 mT/nm is the amplitude of the

5The Mathematica package Radia based on a finite element method, available at http://www.esrf.fr, can be
also used (Pioro-Ladrière et al., 2008b). Further information on the micromagnet numerical simulation is
found in (Pioro-Ladrière et al., 2008b, 2007; Takakura et al., 2010; Walvoort, 2014; Yoneda et al., 2014, 2015).

6Using the same charge configuration as Ch. 10, we found that the Rabi frequency is almost the same when we
applied the magnetic field along the x axis or the y axis (data not reported here) and when microwave is sent
to gate 3 or 8. Together with the calculated field gradients shown in Appendix G, we concluded that the dot
modulation direction is closer to the x axis than the y axis when microwave is sent to either gate 3 or 8.
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Figure 3.4: Numerically computed magnetic field gradient induced by the micromagnets in the plane of the Si
quantum well, for fully magnetized micromagnets when the external magnetic field is applied along the x axis.
The top left and the top right figures show the gradient of the total magnetic field along the x axis and along
the y axis, respectively, with the external magnetic field at 800 mT. The bottom left and the bottom right figures
show the gradient of the magnetic field component perpendicular to the external field along the x axis and
along the y axis, respectively. The black rectangle shows the estimated position of the dot in the experiments
shown in Ch. 7, Ch. 8 and Ch. 9. The black solid lines indicate the edges of the micromagnets simulated. The
region shown is outlined with dotted lines in Fig. 5.1(a).
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magnetic field gradient which contributes to the Rabi frequency7. The Rabi frequency is
linear for the fundamental driving (Eq. 3.15, Ch. 7) or quadratic for the second-harmonic
driving (Ch. 8) to the amplitude of the microwave. In fact, the magnetic field gradient
would have been 4 times larger if the external magnetic field had been applied along
the y axis instead of the x axis and the dot position is in the middle of the edge of the
two micromagnets instead of the position of the black rectangle in Fig. 3.4 and thus the
Rabi frequency would have been 4 times higher for the fundamental driving and 16 times
higher for the second-harmonic driving. More discussions on the optimized condition
for the magnetic field gradient are found in Appendix G.

3.3. MECHANISMS OF DECOHERENCE
Any physically realized qubit unavoidably interacts with its environment, leading to the
eventual loss of the superposition state of a quantum state. This phenomenon is called
decoherence and in our system the environment is 29Si nuclear spins in the substrate.
The magnetic moment of 29Si nuclear spins creates local magnetic fields at the position
of electron and, contrary to the externally applied magnetic field or the stray magnetic
field introduced in the previous section, this magnetic field is changed when the direc-
tion of the magnetic moment (the spin state) of 29Si nucleus changes. Thus interaction
with nuclear spins induces the effective magnetic field on the electron and it fluctuates
over time as derived in Eq. 3.36 later and this fluctuation in the magnetic field induces
the decoherence.

3.3.1. INTERACTION WITH NUCLEAR SPINS

The full Hamiltonian for a single electron interacting with Nn
29Si nuclear spins is given

by (Schweiger and Jeschke, 2001; Slichter, 1990; de Sousa, 2009)

H = He Z +HnZ +Hen +Hnn . (3.25)

These four terms are:

• He Z is the Zeeman energy for the electron spin

He Z = H stat =−ω0Sz = γe BSz , (3.26)

where Sz = ħ
2σz is an electron spin operator and σz is a Pauli matrix as introduced

in Eq. A.1. γe =−gµB /ħ is the gyromagnetic ratio of the electron and B is the total
magnetic field of the external magnetic field and the stray magnetic field created
by the micromagnets at the center position of the electron.

• HnZ is the Zeeman energy for the nuclear spins

HnZ =
Nn∑

i
γnBiħIi z , (3.27)

7In (Kawakami et al., 2014), we used
d |B⊥|
d x,d y . Later we realized that we should have considered

∣∣∣ dB⊥
d x,d y

∣∣∣
instead of

d |B⊥|
d x,d y . At the estimated dot position,

d |B⊥|
d x ∼

∣∣∣ dB⊥
d x

∣∣∣ ∼0.3 mT/nm,
d |B⊥|

d y ∼0.04 mT/nm and∣∣∣ dB⊥
d y

∣∣∣∼0.2 mT/nm (see also Fig. 3.4). However, It does not alter any discussion in (Kawakami et al., 2014).
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where Ii z = 1
2σi z is a nuclear spin operator for a nucleus located at position Ri

and Bi is the magnetic field at position Ri . γn is the gyromagnetic ratio of the
29Si nucleus. We assume that the quantization axis of all the nuclear spins can be
approximated to be the same as the electron spin.

• Hen is the isotropic hyperfine interaction between the electron spin and the nu-
clear spins

Hen =
(

Nn∑
i

µ0

4π

8π

3
ħγeγn |Ψ(R i )|2I i

)
·S =

(
Nn∑

i
Ai I i

)
·S, (3.28)

where I i = 1
2σi and S = ħ

2σ, with the hyperfine coupling constant

Ai = µ0

4π

8π

3
ħγeγn |Ψ(R i )|2[rad ·Hz]. (3.29)

Ψ(Ri ) is the electron wave function of the electron spin at position Ri . µ0 is the
magnetic permeability of free space (i.e. vacuum) of 4π× 10−7 Wb/(A· m) in the
MKS-SI system and of 1 in the CGS.

We can further rewrite Eq. 3.28 as Hen = HO +H f f , the sum of the secular term

HO =
Nn∑

i
Ai Ii z Sz , (3.30)

and the non-secular term

H f f =
1

2

(
Nn∑

i
Ai (Ii−S++ Ii+S−)

)
, (3.31)

for the later discussions.

• Hnn is the dipolar interaction between the nuclear spins

Hnn = µ0

4π
ħ2γ2

n

∑
i< j

[
I i · I j

R3
i j

− 3(I i ·R i j )(I j ·R i j )

R5
i j

]
, (3.32)

where R i j = R i − R j is the distance between two nuclei. In the presence of an
external magnetic field, we can neglect the terms in Eq. 3.32 which do not conserve
nuclear spin Zeeman energy, and thus Eq. 3.32 is approximated to be (Slichter,
1990)

Hnn ≈ ∑
i< j

bi j (1−3cos2θi j )

(
Ii z I j z −

Ii+I j−+ Ii−I j+
4

)
, (3.33)

with
bi j

ħ = µ0

4π

ħγ2
n

R3
i j

[rad ·Hz]. (3.34)

θi j is the angle formed by the applied magnetic field and the vector Ri j linking the
two nuclear spins i , j . This approximation is called secular approximation and it

is valid under the condition
bi j

ħ À γnBi ,γnB j .
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When the coupling between the spin qubit and the environment is weak, we may
rewrite Eq. 3.25 in a linearized effective Hamiltonian of the form (de Sousa, 2009):

H = H stat +ηx (t )Sx +ηy (t )Sy +ηz (t )Sz , (3.35)

where ηx (t ), ηy (t ) and ηz (t ) are the noise amplitude of the effective magnetic field as
a function of time along the x, y and z axes, respectively. Since the spin states pre-
cesses about the z axis with the Larmor frequency γe B , and the energy along the z axis is
much larger than the noise amplitudes (γe B À ηx (t ),ηy (t ),ηz (t )), the noise terms ηx (t )
and ηy (t ) around the frequency γe B affect the z component of the spin state, while the
quasi-static noise term ηz (t ) affects the x and y components of the spin state. The effect
of ηx (t ) and ηy (t ) on the z component of the spin state is called a longitudinal relax-
ation or T1 relaxation and the effect of ηz (t ) on the x and y components of the spin state
is called a transverse relaxation or decoherence. As the nature of the noise, the low-
frequency noise is larger than the high-frequency noise and thus the z component of the
spin state survives longer than the x and y components of the spin state, i,e., T1 relax-
ation is slower than the decoherence. See (Clerk et al., 2010; Nowack, 2009; de Sousa,
2009) for more rigorous arguments. The mechanism of T1 relaxation of an electron or
an ensemble of electrons in Si are reported in (Tyryshkin et al., 2012; Yang et al., 2013;
Zwanenburg et al., 2013) and the decay time is typically ∼ seconds. In addition to that,
from our measurements (Sec. 7.S3), we concluded that the effect of T1 relaxation can be
ignored and thus Eq. 3.35 can be rewritten as

H = H stat +η(t )Sz , (3.36)

without loss of generality.
In the following subsections, we explore how HnZ , Hen and Hnn induce the fluctua-

tion of magnetic field η(t ), i.e., the decoherence.

3.3.2. DECOHERENCE DUE TO THE OVERHAUSER FIELD
The secular term of the isotropic hyperfine interaction, HO (Eq. 3.30), induces Over-
hauser field. This coupling between the electron spin and a nuclear spin at position
Ri , Ai Ii z Sz , shifts the Larmor frequency of the electron spin by ξi Ai , where ξi = 1

2 when
the nuclear spin is in a spin-up state and ξi =− 1

2 when the nuclear spin is in a spin-down
state. This shift is called Overhauser shift (Abe, Isoya, and Itoh, 2006; Slichter, 1990) and
the corresponding magnetic field is called Overhauser field. Thus the Larmor frequency
of the electron spin coupled with Nn nuclear spins is shifted by

∑Nn
i ξi Ai in total.

If the nuclear spin states are unchanged over time, Overhauser field is fixed and does
not lead the decoherence. However, the time evolution of Overhauser field is induced
by the dipolar interaction between the nuclear spins, Hnn (Eq. 3.33). The nuclear spin
states are flipped from spin-up state to spin-down state or vice versa due to the Ii+Ii−+
Ii−Ii+ term in Hnn (Eq. 3.33). The frequency of a flip-flop between two nuclear spins is
determined by the strength of the dipolar interaction and the energy cost for the flip-flop.
The strength of the dipolar interaction decreases cubically with the distance between
two nuclear spins and thus flip-flops happen mostly between neighbor nuclear spins
(see Fig. 3.5(a)). The energy cost for this process is the difference between two nuclear
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(a) (b)

Figure 3.5: Conceptual figures of flip-flops induced by the dipolar coupling between nuclear spins (indicated
by a green arrow) in (a) and induced by the electron spin-mediated coupling between nuclear spins (indicated
by a blue arrow) in (b). Blue shadowed circles represent the wavefunction of an electron spin. Black arrows
represent the 29Si nuclear spins. Gray arrows represent the flip-flop between nuclear spins. The hyperfine
coupling between an electron and nuclear spins are indicated by red lines. While the flip-flops mostly happen
between neighbored nuclear spins in (a), they can happen between distant nuclear spins in (b).

spins in the hyperfine constant and in the Zeeman energy, which is almost 0 (|Ai − A j | ∼
0, |B(xi )−B(x j )| ∼ 0) for nuclear spins which are located at a short distance.

Due to the flip-flop process, the Overhauser field evolves over time and so the shift
of the electron Larmor frequency does, which leads to the decoherence. In Sec. 10.S1,
the time evolution of the Overhauser field is numerically calculated using the coupled
cluster expansion (CCE) (Yang and Liu, 2009).

In the rest of this subsection, we analytically calculate the quasi-static Overhauser
field, which determines the intrinsic coherence time T ∗

2 (Hanson et al., 2007). The quasi-
static treatment is done by assuming that the nuclear spins do not evolve but by consid-
ering all the possible combination of spin states (quasi-static bath approximation).

The decay of a quantum superposition state ρ0 = 1
2 1l + Sx over time t due to HO
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(Eq. 3.30) is denoted by P (t ), which is introduced in Eq. 4.58:

P (t ) = Tr
(
σx exp(iH0t )ρ0 exp(−iH0t )

)= Tr

(
σx Sx cos

(∑
i

Ai Ii z t

))
(3.37)

=
Nn∏

i
cos

(
Ai

2
t

)
=

Nn∏
i

1

2

(
e

i
2 Ai t +e−

i
2 Ai t

)
(3.38)

= ∑
ξ1=±1,ξ2=±1,...,ξNn =±1

1

2
exp

(
i

2
t (ξ1 A1 +ξ2 A2 + ...+ξNn ANn )

)
(3.39)

= e−
1
8 z2t 2

. (3.40)

(de Sousa, 2009) with

σz =
√√√√Nn∑

i
A2

i , (3.41)

(see Appendix. D.1.1 for more detail). Here we assumed that the nuclear spins are unpo-
larized (finite temperature approximation) and thus all the combinations of (ξi , ξi ,...,ξNn )
happen with the same probability. From Eq. 3.39 to Eq. 3.40, the central limit theorem is
employed assuming that Nn →∞. We denote the time constant of the Gaussian decay
in Eq. 3.40 as the intrinsic decoherence time and use the notation T ∗

2 :

T ∗
2 = 2

p
2

σz
. (3.42)

From this, we can further infer that the quasi-static noise of η(t ) has a Gaussian dis-
tribution with the standard deviation σz

2 (=σω in Eq. 4.40). Next, we are interested in
evaluating T ∗

2 . σz in Eq. 3.41 can be written as (see Appendix. D.1.2 for more detail)

σz =
√√√√Nn∑

i
A2

i =
√√√√c

N∑
i

A2
i =

p
c

Asump
N

= Ap
Nn

. (3.43)

c is the nuclear spin concentration and thus A = c Asum and Nn = cN where N is the
number of overlapped Si atoms with the electron wavefunction and is proportional to
the size of the dot. Asum is the sum of hyperfine coupling constant between the electron
and each Si atom overlapped with the electron wavefunction: Asum = ∑N

i Ai , and de-
pends on the material. The way to make T ∗

2 longer is to make the dot size larger, change
the material for smaller Asum or do the isotope purification for smaller c (Abe et al., 2010).

3.3.3. DECOHERENCE DUE TO THE ELECTRON SPIN-MEDIATED COUPLING

BETWEEN THE NUCLEAR SPINS
The non-secular term of the isotropic hyperfine interaction, H f f (Eq. 3.31), induces de-
coherence due to the electron spin-mediated coupling between the nuclear spins (Cy-
winski, 2011; Cywinski, Witzel, and Das Sarma, 2009; de Sousa, 2009). At finite magnetic
field (|γe B +γnBi |À Ai ), due to the Zeeman energy mismatch between an electron spin
and a nuclear spin, a direct electron-nuclear flip-flop is forbidden. Thus we can ignore
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H f f to the first order. However, remembering that one electron spin couples to many
nuclear spins, the second-order process in which the electron spin flip-flops with the i -
th nuclear spin and then flip-flops back with the j -th nuclear can happen once a virtual
state which requires an energy difference (|γe B +γnBi | ∼ |γe B |) is accessed. The Hamil-
tonian for this indirect coupling between nuclear spins mediated by the electron spin is
written as

H (2)
f f =

∑
i< j

Ai A j

2γe B
(I+i I−j + I−i I+j )Sz . (3.44)

Since this coupling term contains both Sz and I+i I−j + I−i I+j , it contributes both to the

Larmor frequency shift and to its time evolution.
Now we consider the frequency of the flip-flops happening due to this coupling. The

coupling strength
Ai A j

2γe B does not contain any distance dependence. The energy cost of
the whole process is proportional to |Ai − A j | and thus the flip-flops due to the electron
spin-mediated coupling happen between nuclear spins which are located at the same
distance from the electron spin. Contrary to the flip-flops induced by the dipolar cou-
pling between nuclear spins, this process can happen between distant nuclear spins (see
Fig. 3.5(b)).

In GaAs quantum dots (Bluhm et al., 2010b), the decoherence due to the electron
spin-mediated coupling between the nuclear spins was significantly observed. However,

under our experimental conditions,
∑

i< j
Ai A j

2γe B in H (2)
f f (Eq. 3.44) is much smaller than∑Nn

i Ai in HO (Eq. 3.30) or
∑

i> j
bi j

4ħ in Hnn (Eq. 3.33). Thus the decoherence due to the
electron spin-mediated coupling between the nuclear spins is much smaller than the
decoherence due to the Overhauser field (see Sec. 10.S1 for more discussions).



4
SPIN PHYSICS FOR SI/SIGE

QUANTUM DOTS

In this chapter, we introduce analytic expressions for typical measurements used to char-
acterize the performance of the qubits presented in Ch. 7, Ch. 8 and Ch. 10: Rabi os-
cillation, Ramsey fringe, dynamical decoupling, and randomized benchmarking, in the
Schrödinger picture.

4.1. INTRODUCTION
If a Si-based quantum computer using single electron spins as physical qubits is realized,
then the operations on each of the physical qubits in the processor unit can be simplified
to the following 3 steps: (1) First a qubit is initialized to a known state. (2) Second the
qubit is subject to a calculation. The state of the qubit is changed by quantum gates
depending on the given calculations. (3) Finally, the result of the calculation is read out
with projective measurements. For all the spin-state measurements shown in the later
chapters of this thesis, we also used these 3 steps.

4.2. THREE-STEP SPIN-STATE MEASUREMENTS
Here we present how the 3 steps are described in quantum mechanics.

(1) Initialization of a quantum state
In all the spin-state measurements shown in the later chapters of this thesis, an electron
is always initialized to a spin-down state with an error represented by γ. This initial
quantum state can be written with

ρ0 = (1−γ) |↓〉〈↓|+γ |↑〉〈↑| , (4.1)

where |↓〉 and 〈↑| represent a spin-down state and a spin-up state, respectively, and γ

is the probability that an electron is prepared to a spin-up state instead of a spin-down

37
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state. Eq. 4.1 can be rewritten as

ρ0 = (1−2γ) |↓〉〈↓|+2γ
1l

2
, (4.2)

where the first term is a pure state and the second term is a maximally mixed state and
1l is the identity operator. The second term stays unchanged under any quantum opera-
tion during the second step.

(2) Evolution of a quantum state over time In the Schrödinger picture, a quantum
state evolves over time according to the Hamiltonian H . The quantum state after time t
is described as

U (ρ0) =Uρ0U †, (4.3)1

where U is a unitary propagator

U = T

[
exp

(
i
∫

H(t )d t

)]
. (4.4)

Here T is the Wick-Dyson operator, which denotes temporal ordering (see Eq. B.10) and
can be omitted when the Hamiltonian at a time commute with the Hamiltonian at any
different time. That is Eq. 4.4 can be rewritten as

U = exp

(
i
∫

H(t )d t

)
, (4.5)

when [H(t ), H(t ′)] = 0 for any combination of t and t ′.

Coherent manipulation
In order to manipulate the quantum state we engineer a certain Hamiltonian of the sys-
tem. In the experiments shown in this thesis, the engineering of the Hamiltonian is done
by Electron Dipole Spin Resonance (EDSR) using microwave excitation (see Sec. 3.1 for
more details).

In the rotating reference frame at the microwave carrier frequency ωMW, the Hamil-
tonian of the microwave excitation is written with Eq. 3.14. In this section we denote
Eq. 3.14 by HEDSR(t ):

HEDSR(t ) = (ωMW −ω0)Sz +ω1(t )(Sx cosφ(t )−Sy sinφ(t )), (4.6)

where ω0 is the center Larmor frequency, ω1(t ) is the Rabi frequency and φ1(t ) is the
phase of microwave. We take the Rabi frequency and the phase of the microwave to be a
function of time since we turn on and turn off the microwave excitation and change the
microwave phase differently depending on the measurements.

Decoherence
If the qubit-environment interaction is sufficiently weak, we can describe decoherence

1We denote U•ρU †• by U•(ρ) for any suffix •. Later in this chapter, we also denote a calligraphic style of unitary
operator in the same way: K (ρ) = KρK †, C (ρ) =CρC †.
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using classical environmental noise (η(t )) as in the second term of Eq. 3.36. This term
stays the same in the rotating reference frame at the microwave carrier frequency ωMW

and is denoted by Hη(t ):
Hη(t ) = η(t )Sz . (4.7)

Total Hamiltonian
We denote H(t ) as the sum of the microwave excitation Hamiltonian and the decoher-
ence Hamiltonian in the rotating reference frame at the microwave carrier frequency
ωMW:

H(t ) = HEDSR(t )+Hη(t ) (4.8)

=ω1(t )(Sx cosφ(t )−Sy sinφ(t ))+∆ωSz , (4.9)

with∆ω= η(t )+(ωMW−ω0). Unless otherwise stated, in the rest of this thesis, any Hamil-
tonian is described in the rotating reference frame at the microwave carrier frequency
ωMW.

(3) Measurement of a quantum state.
Finally, we measure a quantum state by projecting it onto a quantization axis. In our ex-
periments, the measurement is done by spin to charge conversion and the measurement
axis is parallel to the quantization axis. The measurement outcome is 1 (current running
through a charge sensor exceeds a threshold value, i.e., spin-up state (Elzerman et al.,
2004)) or 0 (the current does not exceed a threshold value, i.e., spin-down state).

The projection of a quantum state to the quantization axis with read-out errors is
described by a positive operator valued measure (POVM) which represents a generalized
quantum observable (Takahashi, Bartlett, and Doherty, 2013). The operator,

E = (1−β) |↑〉〈↑|+α |↓〉〈↓| , (4.10)

describes the measurement outcome 1 (the operator 1l−E describes the measurement
outcome 0). Here, α is the probability that the measurement gives outcome 1 when an
electron was in the spin-down state and β is the probability that the measurement gives
outcome 0 when an electron was in the spin-up state (Elzerman et al., 2004). The prob-
ability that the outcome is 1 (0) is given by Tr

[
EU (ρ0)

]
( Tr

[
(1l−E)U (ρ0)

]
).

Repeating (1), (2) and (3) and averaging the outcomes.
We are interested in the spin-up probability Tr

[
EU (ρ0)

]
to obtain the information on

the final quantum state U (ρ0). In order to measure the spin-up probability, we repeat
the sequence of 3 steps and average the outcomes. The average of the outcomes is

1×Tr
[
EU (ρ0)

]+0×Tr
[
(1l−E)U (ρ0)

]= Tr
[
EU (ρ0)

]≡ p↑. (4.11)

Thus the average of the measurement outcomes is equal to the spin-up probability if
there is no read-out error, i.e., α = β = 0. We denote p↑0 as the average of the measure-
ment outcomes in the case of a perfect initialization and a read-out, i.e., α = β = γ = 0,
E = |↑〉〈↑| = 1+σz

2 and ρ0 = |↓〉〈↓| = 1−σz
2 ,

p↑0 = Tr[|↑〉〈↑|U (|↓〉〈↓|)] . (4.12)
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Since the repetition of the sequence of 3 steps takes non-negligible time, by averaging
the final outcomes we need to consider the time evolution of the noise η(t ). We name
the average of the measurement outcomes including this effect as the measured spin-up
probability and denote it by P↑ =

〈
p↑

〉
, where 〈•〉 is the average over all possible realiza-

tion2 of η(t ). We denote the measured spin-up probability for a perfect initialization and
a read-out to be P↑0 =

〈
p↑0

〉
.

There is a simple relation between P↑0 and P↑:

P↑ = A

(
P↑0 −

1

2

)
+B , (4.13)

with A = (1−2γ)(1−β−α) and B = 1−β+α
2 . This equation is easily derived if one focuses

attention on the fact that the initial state is written as Eq. 4.2 and the POVM operator

Eq. 4.10 can be rewritten as E = (1−β−α) |↑〉〈↑|+2α1l
2 . As seen in Eq. 4.13, the visibility

loss is caused by both the read-out and initialization infidelities.

4.3. RABI OSCILLATION

INTRODUCTION
Rabi oscillations are the oscillations in probability that a quantum state is found between
two levels (spin-up state and spin-down state). In order to observe a Rabi oscillation, we
apply microwave of high-enough power and vary its burst time (We may observe a Rabi
oscillation by applying a fixed burst time of microwave and varying its output power. We
vary microwave burst time here as we have done experimentally.)

HAMILTONIAN AND GENERAL EXPRESSION
For the measurement of a Rabi oscillation, the microwave with fixed phase and fixed
amplitude is applied for a time tp . By setting ω1(t ) = ω1 and φ(t ) = 0 for 0 < t < tp in
Eq. 4.9, the Hamiltonian for a Rabi oscillation for the time 0 < t < tp can be written as

HRabi =ω1Sx +∆ωSz , (4.14)

with ∆ω= η(t )+ (ωMW −ω0). In Fig. 4.1, the microwave burst used for the measurement
of Rabi oscillations is described with a blue rectangle. We do not need to consider the
Hamiltonian before and after the microwave burst for a Rabi measurement (before the
first microwave burst and after the microwave burst for Ramsey, dynamical decoupling
and randomized benchmarking measurements) since it does not influence the mea-
sured spin-up probability. We note that T1 relaxation, which might affect the measured
spin-up probability, is ignored since T1 is much longer than the measurement time (the
time for one repetition of the 3 steps) in our system (Sec. 7.S3). In the Bloch sphere in
Fig. 4.2, this Hamiltonian is shown by using the red arrow for the term ∆ωSz and the or-
ange arrow forω1Sx . The combination of these two terms is described by the blue arrow,

which is the vector sum of the red and orange arrows and its length is ωeff =
√
ω2

1 +∆ω2.

2In quantum mechanics, the expectation value of an observable A in the state ρ is denoted as 〈A〉ρ as shown in
Appendix A.3 but in the main texts we use 〈•〉 for statistical average but not for quantum mechanical average.
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Figure 4.1: Microwave pulse sequence for a Rabi measurement. The microwave pulse is approximated to be
perfect square pulse and is represented by the blue rectangle. The Hamiltonian during the microwave burst is
expressed by HRabi (Eq. 4.14).

Figure 4.2: Rabi oscillations. Bloch sphere on the right and spin-up probability p↑ on the left for ∆ω
ω1

= 0

(black line), ∆ωω1
= 1 (black dashed line) ∆ωω1

= 2.93 (blue line). The red arrow and orange arrow in the Bloch

sphere represent ∆ωSz and ω1Sx in Eq. 4.14, respectively, and the blue arrow represents the combination of
two terms. The blue arrow is tilted by θ(= arctan(ω1/∆ω)). The blue ellipsoidal curve in the Bloch sphere is the
trajectory of the spin state in the case of ∆ωω1

= 2.93. The highest spin-up probability p↑ for a given ∆ω and ω1

is sin2 θ = ω2
1

ω2
1+∆ω2 .

For Rabi oscillations, we only consider the quasi-static noise of η(t ), i.e., η(t ) can be
regarded as constant during one run of the measurement but varies between different
measurement runs since the evolution of the noise is slow compared to the microwave
burst time for the measurement of Rabi oscillations tp . In most cases, this is a good
approximation3. We model the distribution of η over different measurement runs with a

3If we consider the time evolution of η(t ) during the microwave burst time of a Rabi oscillation measurement,
the Hamiltonian for ωMW =ω0 is approximated as

HRabi(t ) =ω1Sx +η(t )Sz . (4.15)

≈ω′
1Sx . (4.16)

with ω′
1 =ω1 + η(t )2

2ω1
, which is valid for ω1 À η(t ) (Dobrovitski et al., 2009). The average of the measurement

outcome is

p↑0 = Tr

[
1l

4
−cosω′

1
1l

4

]
= 1−cosω′

1

2
, (4.17)
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Gaussian,

G(η) = 1p
2πσω

exp

(
− η2

2σ2
ω

)
, (4.19)

where σω is the standard deviation of η, which corresponds to the standard deviation

of the Larmor frequency and can be written as σω =
√∑Nn

i

(
Ai
2

)2
using the hyperfine

coupling constant Ai (Eq. 3.29) and the total number of nuclear spins overlapped with
the electron wave function Nn (Abe, Isoya, and Itoh, 2006; Abe et al., 2010)4.

Following Eq. 4.12, the spin-up probability for a specific noise η is written as

p↑0 = Tr[|↑〉〈↑|URabi(|↓〉〈↓|)] . (4.20)

= sin2θ sin2
(

tp

2

√
ω2

1 +∆ω2

)
, (4.21)

where URabi = exp(−HRabit )5 and sinθ = ω1/
√
ω2

1 +∆ω2, and it is shown in Fig. 4.2 for

different ratio of ω1 and ∆ω. The average of spin-up probability over different measure-
ment runs is calculated by averaging p↑0 (Eq. 4.21) over the Gaussian distribution of η
(Eq. 4.19):

P↑0 =
〈
p↑0

〉
η =

∫ ∞

−∞
G(η)p↑0dη (4.23)

= (G ∗LT )(ωMW −ω0) (4.24)

=
∫ ∞

−∞
1p

2πσω
exp

(
−

(
η+ (ωMW −ω0)

)2

2σ2
ω

)
ω2

1

ω2
1 +η2

sin2
(

tp

2

√
ω2

1 +η2

)
dη,

(4.25)

with L(η) = ω2
1

ω2
1+η2 and T (η) = sin2

(
tp

2

√
ω2

1 +η2
)
. There is no general analytic solution

to the integral of Eq. 4.25. In the following sections, we investigate analytic solutions
to this integral in two extreme cases where the Rabi frequency is much larger than the
broadening of the Larmor frequency (ω1 À σω) and where the Rabi frequency is much
smaller than the broadening of the Larmor frequency (ω1 ¿σω).

and thus the measurement outcome considering the time evolution of η(t ) can be written as

P↑0 = 〈
p↑0

〉= 1−〈
cosω′

1

〉
2

= 1−Re
〈
expiω′

1

〉
2

. (4.18)

The analytic expression of Eq. 4.18 under the assumption that the time evolution of η(t ) is Ornstein-
Uhlenbeck process is derived in (Dobrovitski et al., 2009).

4σω = σz
2 and T∗

2 = 2
p

2
σz

=
p

2
σω

according to Eq. 3.41 and Eq. 3.42.
5 Following Eq. A.19, URabi is found to be

URabi = exp(−iHRabitp ) = cos

(
ωefftp

2

)
1l− isin

(
ωefftp

2

)(
∆ω

ωeff
σz + ω1

ωeff
σx

)
, (4.22)

with ωeff =
√
ω2

1 +∆ω2.
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ANALYTIC EXPRESSION FOR STRONG DRIVING ω1 Àσω
First, we consider the case where the Rabi frequency is much larger than the broadening
of the Larmor frequency.

Under the assumptionω1 Àσω and restricting ourselves to |ωMW−ω0|¿ω1, we can
take T (ωMW −ω0)L(ωMW −ω0) out of the integral (see Appendix E for more detail). Thus
Eq. 4.25 can be rewritten as

P↑0 ≈ T (ωMW −ω0)L(ωMW −ω0)
∫ ∞

−∞
G(η)η (4.26)

= sin2
(

tp

2

√
ω2

1 + (ωMW −ω0)2
)

ω2
1

ω2
1 + (ωMW −ω0)2 . (4.27)

This equation shows that the spin-up probability along the microwave frequency ex-
hibits a Lorentzian shape and the linewidth is determined by the Rabi frequency ω1, not
by the broadening of the Larmor frequency σω. The spin state oscillates over the mi-

crowave burst time tp at the effective Rabi frequency ωeff =
√
ω2

1 + (ωMW −ω0)2.

ANALYTIC EXPRESSION FOR WEAK DRIVING ω1 ¿σω
Secondly, we consider the case where the Rabi frequency is much smaller than the broad-
ening of the Larmor frequency. Under the assumptionω1 ¿σω, we can take G(ωMW−ω0)
out of the integral. Thus Eq. 4.25 can be rewritten as (see Appendix E for more detail)

P↑0 ≈G(ωMW −ω0)
∫ ∞

−∞
L(η)T (η)dη (4.28)

≈ 1p
2πσω

exp

(
− (ωMW −ω0)2

2σ2
ω

)
πω1

2

(
1−exp(−ω1tp )

)
(4.29)

= 1p
2πσω

exp

(
− (ωMW −ω0)2

2σ2
ω

)
πω1

2

(
ω1tp − (ω1tp )2

2
+ ...

)
. (4.30)

This equation shows that the spin-up probability along the microwave frequency ex-
hibits a Gaussian shape and the linewidth is determined by the broadening of the Lar-
mor frequency σω. The spin states do not oscillate coherently over the microwave burst
time t . When ω1t ¿ 1 the spin-up probability at ωMW =ω0 is proportional to the square
of the Rabi frequency P↑0 ∝ ω2

1. This relation is used to determine the population ratio
of two valley states in Ch. 7.

ANALYTIC EXPRESSION FOR THE INTERMEDIATE CASES
In (Koppens et al., 2007), the analytic solution at ωMW =ω0 in the case where ω1 <σω is
shown as

P↑0 ≈
1

2
− 1

2
cos

[
ω1tp + arctan(tp /γ)

2

]
4
√

1+ (
tp /τ

)2, (4.31)

where γ = ω1/σ2
ω. This approximation holds for6 tp À max

(
1
σω

, 1
ω1

,γ
)
. This equations

shows a damped oscillation with a phase shift (π/4 in the limit tp /τ→∞). The envelope

6Eq. 4.31 holds for all the time t in the limit ω1 Àσω.
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decay is a quadratic (Gaussian) decay for a short time tp and a 1/
√

tp decay for a long
time tp .

In the case ofω1 ≥σω (, which is the case for most of the experiments presented in the
thesis), we cannot write a Rabi oscillation with any simple analytic formula as described
above. Thus we fitted the numerical integration of Eq. 4.25 to the experimental data in
Ch. 7, Ch. 8 and Ch. 10.

4.4. RAMSEY FRINGE

INTRODUCTION
A Ramsey fringe experiment is a way to measure decoherence since its envelope decay
shows the decoherence during the free evolution. Terminologically it is called Ramsey
“fringe" since the fringe appears along the detuning of microwave frequency as shown
in Fig. 8.4(c-e). This experiment corresponds to the Free Induction Decay (FID) in NMR
and it is also called Ramsey interferometry in atomic physics. The experiment consists
of applying two microwave pulses and varying the time interval between two pulses τ.

HAMILTONIAN AND GENERAL EXPRESSION

Figure 4.3: Microwave pulse sequence for a Ramsey fringe measurement. Microwave pulses are approximated
to be perfect square pulses and are represented by blue rectangles. Two pulses are separated by the interval
time τ and the Hamiltonian during the microwave burst is expressed with HRabi and the Hamiltonian during
the free evolution time with HF .

The Hamiltonian during the microwave burst (0 < t < tp , tp +τ < t < 2tp +τ) is the
same as HRabi (Eq. 4.14) and the Hamiltonian during the free evolution (tp < t < tp +τ)
is written as

HF =∆ωSz , (4.32)

with∆ω= η(t )+(ωMW−ω0). The microwave pulse sequence for Ramsey fringe measure-
ments and the corresponding Hamiltonians are shown in Fig. 4.3. The spin-up probabil-
ity for a specific noise η is

p↑0 = Tr[|↑〉〈↑|URabiUFURabi(|↓〉〈↓|] (4.33)

= 4sin2θ sin2
(

tp

2

√
ω2

1 +∆ω2

)
×

[
cos

(τ
2
∆ω

)
cos

(
tp

2

√
ω2

1 +∆ω2

)
−cosθ sin

(τ
2
∆ω

)
sin

(
tp

2

√
ω2

1 +∆ω2

)]2

, (4.34)

where URabi = exp(−HRabit ), UF = exp(−HFt ), and sinθ = ω1/
√
ω2

1 +∆ω2. In the same

way as for the Rabi oscillation, we only consider the quasi-static noise, i.e., η(t ) and we
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model the distribution of η as a Gaussian (Eq. 4.19). This is a good approximation when
the evolution of the noise is dominated by quasi-static noise during the free evolution
time τ and the microwave burst time 2tp , which is usually the case. The average of spin-
up probability over different measurement runs is calculated by averaging p↑0 over the
Gaussian distribution of η,

P↑0 =
〈
p↑0

〉
η =

∫ ∞

−∞
G(η)p↑0dη, (4.35)

where p↑0 is given by Eq. 4.34. There is no general analytic solution to this integral. In
the following sections, we investigate the analytic solution in the case of strong driving
(ω1 Àσω) and moderate driving (ω1 ∼σω) during the two pulses.

ANALYTIC EXPRESSION FOR STRONG DRIVING ω1 Àσω
First, we consider the case where the Rabi frequency is much larger than the broadening
of Larmor frequency: ω1 Àσω. By restricting ourselves to the case where |ωMW −ω0| ¿
ω1 in the same way as done in the Rabi oscillation section, we can take the second term
of Eq. 4.34 as 0. The spin-up probability for a specific noise η becomes

p↑0 =
ω2

1

ω2
1 +∆ω2

sin2
(

tp

√
ω2

1 +∆ω2

)
cos2

(τ
2
∆ω

)
, (4.36)

and Eq. 4.35 becomes

P↑0 = (G ∗LT ′R)(ωMW −ω0), (4.37)

with T ′(η) = sin2
(
tp

√
ω2

1 +η2
)

and R(η) = cos2
(
τ
2η

)
. As done in the Rabi section, we can

take T (ωMW −ω0)L′(ωMW −ω0) out of the integral (see Appendix E for more detail):

P↑0 = T ′(ωMW −ω0)L(ωMW −ω0)
∫ ∞

−∞
G(η)R(η)dη (4.38)

= ω2
1

ω2
1 + (ωMW −ω0)2 sin2

(
tp

√
ω2

1 + (ωMW −ω0)2
)

1+e−
σ2
ωτ

2

2

2
. (4.39)

The time constant of the Gaussian decay is

T ∗
2 =

p
2

σω
. (4.40)7

7Under the assumption that T∗
2 is determined by static noise, there is the following relation between T∗

2 and
the linewidth of the resonance line:

T∗
2 =

p
2

σω
=

p
2ħ

gµBσB
= 1p

2πσ f
= 2

p
ln(2)

πδ fFW H M
, (4.41)8

(Hanson et al., 2007).
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ANALYTIC EXPRESSION FOR ω1 ∼σω
Secondly, we consider the case where the Rabi frequency is comparable to the broad-
ening of Larmor frequency: ω1 ∼ σω and we further restrict ourselves to the case where
ωMW ∼ ω0 and ω1tp = π

2 . Usually, tp is chosen so that the two microwave pulses are
π/2 pulses to obtain the highest visibility. We can take η¿ ω1 again and the spin-up
probability for a specific noise η can be written with Eq. 4.36 as in the case for ω1 Àσω.
Eq. 4.35 becomes (see Appendix E for more detail)

P↑0 = (G ∗LT ′R)(ωMW −ω0) (4.42)

≈
∫ ∞

−∞
1p

2πσω
exp

(
−

(
η+ (ωMW −ω0)

)2

2σ2
ω

)
exp

(
− η

2

ω2
1

)
cos2

(τ
2
η
)

dη (4.43)

= 1

2

e
−

(
(ωMW−ω0)2

2σ2
ω

+ (ωMW−ω0)2

2(σ2
ω+ω̃1

2)

)
√

1+
(
σ2
ω

ω̃1
2

)
[

1+exp

(
−1

2

σ2
ωω̃1

2

σ2
ω+ ω̃1

2
τ2

)
cos

(
ω̃1

2

σ2
ω+ ω̃1

2
(ωMW −ω0)

)
τ

]
,

(4.44)

with ω̃1 =ω1/
p

2. The time constant of the Gaussian decay is

T ∗
2 =

p
2

σω

√
1+ σ2

ω

ω̃1
2 . (4.45)

This equation shows that a small Rabi frequency induces an artificial extension on the
decay time. As the driving of the spin by microwave excitation becomes slower, the off-
resonant spins (large η) contribute less to the signal. This effect was observed in the
Ramsey decay measurement of a single spin in a GaAs quantum dot (Koppens, Nowack,
and Vandersypen, 2008).

In order to determine T ∗
2 , we fitted Eq. 4.44 to the experimental data in Ch. 7, Ch. 8

and Ch. 10. For the numerical simulation shown in Fig. 7.S5, we used the numerical
integration of Eq. 4.35 for Sec. 7.S8 because Fig. 7.S5 also covers the region |ωMW −ω0| >
ω1.

4.5. DYNAMICAL DECOUPLING

INTRODUCTION
Decoherence is one of the most fundamental obstacles to be overcome for the realization
of a quantum computer. In most of the cases, how the quantum coherence of a qubit is
lost depends on the strength and the type of the interaction between the qubit and the
environment (Sec. 3.3). Dynamical decoupling is a simple and widely used strategy to
decouple the qubit-environment interaction and thus to extend the coherence time.

If the qubit-environment interaction is weak enough, decoherence can be approx-
imated by classical environmental noise as HF = η(t )Sz (Eq. 4.7). Assuming that the
statistic of the fluctuation of the noise η(t ) is Gaussian, the noise affecting the decoher-
ence is completely defined by the two-point correlation function of η(t )

C (t − t ′) = 〈
η(t )η(t ′)

〉
. (4.46)
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as demonstrated below (Eq. 4.60) and in several papers (Cywinski et al., 2008; de Sousa,
2009)9. This fact enables us to use dynamical decoupling pulse schemes as filter func-
tions on the noise η(t ) as demonstrated below. Thus dynamical decoupling can be used
to characterize the nature of the noise.

The most simple form of dynamical decoupling is Hahn echo (Hahn, 1950). A va-
riety of spin echo sequences was first developed in the field of nuclear magnetic reso-
nance (NMR) spectroscopy (and electron paramagnetic resonance spectroscopy) used
for the structural determination of molecules. The sequences were developed to decou-
ple the ensemble of spins of a targeted nuclear spin species from the environment or
the interaction between the targeted nuclear spins in order to resolve its signal better
(Slichter, 1990). Dynamical decoupling is the term introduced later for such pulse se-
quences when used for the purpose of extending the coherence time in terms of quan-
tum information. The direct use of an NMR echo sequence as a dynamical decoupling
pulse sequence is not always appropriate. One should be careful not to overestimate
the coherence time just looking at one component of the quantum state without con-
sidering the possibility that other components are not protected as well as the observed
component. In (de Lange et al., 2010), the extension of the coherence time using the dy-
namical decoupling is demonstrated in the most proper way, i.e., for any initial quantum
state using quantum process tomography. If one only wants to demonstrate that the ex-
tension of the coherence time is possible with dynamical decoupling, choosing an initial
quantum state which gives the worst coherence time also suffices. In most of the cases,
the quantum state is the most preserved when it points along the quantization axes and
is the most vulnerable when it points along an orthogonal direction to the quantization
axis. Thus it is wise to think of the pulse sequences to preserve the quantum state when
it points along orthogonal directions to the quantization axis. By doing so, at the same
time, it is important to preserve the quantum state along all the orthogonal directions to
the quantization axis.

HAMILTONIAN AND GENERAL EXPRESSION
We only consider the case where the microwave carrier frequency matches the Larmor
frequency: ωMW =ω0 for simplicity. For dynamical decoupling, differently from for Rabi
oscillation and Ramsey fringe, we do not approximate η(t ) as the quasi-static noise, since
the free evolution time for the dynamical decoupling is usually long enough to see the
time evolution of the noise η(t ). The first and last pulses are set so that these act as π/2
pulses and the others are set as π pulses.

The first line of Fig. 4.4 shows how the microwave pulses are applied for the dy-
namical decoupling pulse sequence. As with the Ramsey fringe, Hamiltonian during
the microwave burst is HRabi (Eq. 4.14) and Hamiltonian during the free evolution is HF

(Eq. 4.32).
If we focus only on how the dynamical decoupling works on the noise and when the

free evolution time is much longer than the microwave burst, we can approximate that
the pulses are realized instantly and thus are not affected by the noise (η→ 0) as shown

9Even if the noise is non-Gaussian, for example, a random telegraph noise, the noise affecting the decoher-
ence can be still defined by Eq. 4.46 in the motional narrowing regime (Bergli, Galperin, and Altshuler, 2009;
Cywinski et al., 2008).
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in the second line of Fig. 4.4. The unitary operator for π pulses can be written as

URabi =−i(cosφσx + sinφσy ), (4.47)

by setting ∆ω = 0 and ω1tp = π in Eq. A.19. The unitary operator for π/2 pulses can be
written as

URabi =
1p
2

1l− ip
2

(cosφσx + sinφσy ), (4.48)

by setting ∆ω= 0 and ω1tp =π/2 in Eq. A.19.
For dynamical decoupling, we apply the microwave pulses along x̂, −x̂, ŷ , and −ŷ ,

which correspond to φ= 0, π2 , π, and 3π
2 , respectively. Using the rotation operators pre-

sented in Eq. A.21 and Eq. A.22, the π pulses are rewritten as

Rx,y (±π) ≈∓iσx ,σy ≡ Pk , (4.49)

and the π/2 pulses are rewritten as Rx,y (±π/2). We denote the unitary operator for k−th
pulses (k = 1, 2, ... n) by Pk .

As a result of the above discussions, the unitary operator for the dynamical decou-
pling becomes

UDD = Rx,y (π/2)exp

(∫ tn+1

tn

−iη(t )Sz d t

)[
n∏

k=1
Pk exp

(∫ tk

tk−1

−iη(t )Sz d t

)]
Rx,y (π/2) (4.50)

= Rx,y (π/2)exp

(∫ ∞

−∞
−i f (t )η(t )Sz d t

)[
n∏

k=1
Pk

]
Rx,y (π/2), (4.51)

with

f (t ) =
n∑

k=0
(−1)kΘ(tk+1 − t )Θ(t − tk ), (4.52)

where Θ(t ) is the Heaviside step function. This function switches between 1 and -1 at
the times tk (k = 1,2, ...,n), when the kth π pulse is applied, and 0 for t < t0 and tn+1 < t
(tn+1−t0 = twait). Examples of f (t ) are plotted with gray lines in Fig. 4.5(a). From Eq. 4.50
to Eq. 4.51, the relation

Rx,y (±π)Rz (θ) = Rz (−θ)Rx,y (±π), (4.53)

where Rz is given by Eq. A.23, is used (see also the caption of Fig. 4.4).
The spin-up probability for a specific noise η is

p↑0 = Tr
[
EUDD(ρ0)

]
(4.54)

= Tr

[
1l+σz

2
Pn+1 ◦Udephasing ◦On

i=1P i ◦P0

(
1l−σz

2

)]
(4.55)

= Tr

[
1l+σx,y

2
Udephasing

(
1l±σx,y

2

)]
(4.56)

= 1±cos
(∫ ∞

−∞−i f (t )η(t )d t
)

2
= 1±Re[exp

(∫ ∞
−∞−i f (t )η(t )d t

)
]

2
, (4.57)

with Udephasing = exp
(∫ ∞

−∞−i f (t )η(t )d tSz
)
.
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Figure 4.4: The first line shows how we experimentally apply a dynamical decoupling pulse sequence. Mi-
crowave pulses are approximated to be a perfect square pulses and shown by blue rectangles. The first and
last pulses are applied during the time t π

2
and the other pulses during the time tπ. The timings when the k−th

pulse is applied are denoted by tk . The Hamiltonian during the microwave burst is expressed with HRabi and
the Hamiltonian during the free evolution time with HF = η(t )Sz . In the second line, the thin pulse widths
represent that the pulse length can be ignored i.e., π/2 and π pulses are considered to be perfect and they are
applied instantly. The second line represents Eq. 4.50. In the third line, all the π pulses are shifted to t < t0
and the signs of HF are changed depending on the number of π pulses applied later. The third line represents
Eq. 4.51. By moving theπ pulses forward in time, using the relation Eq. 4.53, the sign of the Hamiltonian during
the free evolution time for tk < t < tk+1 (k: even) is flipped and is denoted by H̄F =−η(t )Sz .

By introducing P f ,η(twait) = Re
[〈

exp
(−∫ ∞

−∞−i f (t )η(t )d t
)〉]

, the spin-up probability
considering the time evolution of η(t ) can be written as

P↑0 =
1±P f ,η(twait)

2
, (4.58)

where P f ,η(twait) represents the decay of a quantum state over waiting time twait and is
sometimes idiomatically called echo decay .

FILTER FUNCTION REPRESENTATION
The indexes f and η of P f ,η(twait) indicate that the echo decay is as a function of the π
pulse timings and the feature of the noise, respectively. P f ,η(twait) is analytically calcu-
lated using Gaussian functional integral as shown in the following. The average over all
possible η(t ) of exp

(∫ −i f (t )η(t )d t
)

can be rewritten as

P f ,η(twait) = Re

[〈
exp

(
−

∫ ∞

−∞
−i f (t )η(t )d t

)〉]
(4.59)

= Re

[∫
D[η]exp

(
−1

2

∫
d t

∫
d t ′η(t )C−1(t − t ′)η(t ′)+

∫
d t (−i f (t ))η(t )

)]
(4.60)

= exp

(
−1

2

∫
d t

∫
d t ′ f (t )C (t − t ′) f (t ′)

)
, (4.61)

where D represents the functional integral measure and C−1(t − t ′) is defined by∫
d tC−1(t ′− t )C (t − t ′′) = δ(t ′− t ′′). (4.62)

Eq. 4.46 shows that C (t ) is the auto-correlation function of η(t ). From Eq. 4.61 P f ,η(twait)
can be written as

P f ,η(twait) = exp(−W f ,η(twait)). (4.63)
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with

W f ,η(twait) = 1

2

∫
d t

∫
d t ′ f (t )C (t − t ′) f (t ′) (4.64)

= 1

2

∫
d t

∫
d t ′ f (t ) f (t ′)

∫ Sη(ω)

2π
e−iω(t−t ′)dω (4.65)

=
∫ [

1

2

∫
d t

∫
d t ′ f (t ) f (t ′)e−iω(t−t ′)

]
Sη(ω)

2π
dω (4.66)

=
∫

1

2

F f (ω)

ω2

Sη(ω)

2π
dω. (4.67)

The noise spectral density Sη(ω) is the Fourier transform of the auto-correlation func-
tion:

Sη(ω) =
∫ ∞

−∞
C (t )e iωt d t . (4.68)10

The filter functions that depends on the π pulse timings of the dynamical decoupling
sequences are defined as

F f (ω) =ω2
∫

d t
∫

d t ′ f (t ) f (t ′)e iω(t−t ′) =ω2
∣∣∣∣∫ d t f (t )e iωt

∣∣∣∣2

=
∣∣∣∣∣ Nπ∑
k=0

(−1)k (
exp(iωtk+1)−exp(iωtk )

)∣∣∣∣∣
2

. (4.70)11

ANALYTIC EXPRESSION OF THE FILTER FUNCTIONS FOR SYMMETRIC AND

FIXED TIMING PULSE SEQUENCES
In this section, we introduce a dynamical decoupling pulse sequence where the time
separation between π pulses is fixed and symmetric i.e., the timing of k−th π pulse is
tk = twait

Nπ

(
k − 1

2

)
. The filter function for this pulse sequence is shown in Fig. 4.5 for Nπ = 0,

1, 4 and 8. Suchπ pulse timings are used for the first developed multiple pulse sequence,
Carl-Purcell (CP) sequence (Carr and Purcell, 1954). Later new pulse sequences which
have the same π pulse timings but with different phases of π pulses such as CPMG (Carr-
Purcell-Meiboom-Gill) (Meiboom and Gill, 1958), XY4, XY8, XY16 (Gullion, Baker, and
Conradi, 1990) and (XY4)n (vCDD) (Álvarez, Souza, and Suter, 2012) were discovered.
The XY4, XY8 and (XY4)n (vCDD) sequences are described further in Ch. 10. For a de-
scriptive purpose, we label the dynamical decoupling pulse sequences which have such

10The auto-correlation function is the inverse Fourier transform of the spectral density,

C (t ) = 1

2π

∫ ∞
−∞

Sη(ω)e−iωt dω. (4.69)

11 The filter function with finite π pulse length tπ, in general, can be written as

F f (ω) =
∣∣∣∣∣−1+ (−1)Nπ exp(iωt )−2

Nπ∑
k=1

(−1)k exp(iωtk )cos

(
ωtπ

2

)∣∣∣∣∣
2

, (4.71)

(Biercuk et al., 2009). We did not see a significant difference on the extracted power spectrum using Eq. 4.70
or Eq. 4.71 in Ch. 10. Therefore in this thesis, we assumed that tπ can be regarded as 0 for the filter function.
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Figure 4.5: (a) CPMG-timing dynamical decoupling pulse sequences for Nπ = 0, 1, 4, 8 and (b) their filter
functions for Nπ = 0 (blue), 1 (orange), 4 (light blue), 8 (pink), 16 (green) with twait = 1 (solid line) and twait = 2
(dashed line). In (a) the switching function f (t ) (Eq. 4.52) is shown with gray solid lines.

π pulse timings as CPMG (In certain papers (Cywinski et al., 2008; Wang et al., 2012),
these π pulse timings are called CPMG timing.). For such π pulse timings, the filter func-
tion Eq. 4.70 is simplified to

FCPMG(ω) = 4sin4
(
ωtwait

4Nπ

)
sin2

(ωtwait
2

)
cos2

(
ωtwait
2Nπ

) . (4.72)

for an even number of π pulses Nπ,

FHahn(ω) = 4sin4
(
ωtwait

4

)
. (4.73)

for Nπ = 1 (Hahn echo), and

FRamsey(ω) = sin2
(
ωtwait

2

)
. (4.74)

for Nπ = 0 (Ramsey decay or free induction decay).
The dynamical decoupling pulse sequences which have different π pulse timings

such as UDD (Uhrig, 2007), CDD (Khodjasteh and Lidar, 2005) and PDD (Viola, Lloyd,
and Knill, 1999) (in analogy with these sequences, the symmetric and fixed timing pulse
sequences are sometimes called SDD) have different filter functions. Depending on the
characteristic of the noise, different pulse sequences work the best. In (Soare et al., 2014),
they show a way to determine the best pulse sequence for a system suffering from an un-
known characteristic noise experimentally.

EXTRACTION OF THE NOISE SPECTRAL DENSITY
It is important to understand and quantify the noise which qubits suffer from and one
way to describe the noise η(t ) is the noise spectral density S(ω). In this section, we
demonstrate how the noise spectral density S(ω) is extracted from the echo decay P (twait)
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using dynamical decoupling as a filter on the noise η(t ). The key point is that the filter
function FCPMG(ω) peaks at ω0 = 2π

4τ with τ= twait
2Nπ

as shown in Fig. 4.5(b) and the peaked
point moves to higher frequency with a higher number of π pulses for a fixed twait. For
a large enough number of Nπ (The large enough number depends on the characteris-
tic of the noise, i.e., the shape of Sη(ω). If Sη(ω) changes abruptly inside the bandwidth
of the filter function, we cannot capture the characteristic of Sη(ω).), the filter function
FCPMG(ω) is sufficiently narrow aroundω0. We can treat the noise as constant within the
bandwidth of the filter function and then Eq. 4.67 is reduced to

WlargeN ,η(twait) ≈ Sη(ω0)
∫ ∞

−∞
1

2π

Fany(ω)

ω2 dω= Sη(ω0)

2
twait, (4.75)

(Bylander et al., 2011)12. From the Eq. 4.75 and Eq. 4.63, S f (ω0) is determined by the
echo decay as

Sη

(
ω0 = Nππ

twait

)
≈ −2logP f ,η(twait)

twait
. (4.77)

ANALYTIC EXPRESSION FOR THE ECHO DECAYS
In the previous section, we demonstrate how to extract the noise spectrum from the echo
decay. In this section, we present the shape of the echo decay for some specific noise. If
such characteristic shapes of the echo decay as shown below are measured, we already
have a good guess on the noise spectrum.

• White noise
First, we consider the echo decay in the case of a white noise. The spectrum of the
white noise has equal power at any frequency and thus can be written as S(ω) = A.
By inserting this relation to Eq. 4.67, we obtain12

Wany,white(twait) = A

2

∫
d t | f (t )|2 = A

2

∫ twait

0
1d t = A

2
twait. (4.78)

Eq. 4.78 is true for any F f (ω), i.e., the echo decay is exponential with the same

decay time constant T2 = T ∗
2 = A

2 .

In conclusion, the dynamical decoupling is ineffective against the white noise.
Due to the absence of the correlation over time, a dephased state cannot be refo-
cused by a π pulse or any sequence of π pulses. In the end, the echo decay always
shows an exponential curve with the same time constant T2 = T ∗

2 for any type of
dynamical decoupling pulse sequence.

• Quasi-static noise
Second, we consider the case of a quasi-static noise. The quasi-static noise here

12 The integral definition of a delta function δ(t ) = ∫ ∞
−∞ eiωt

2π d t is used. We also note that Parseval’s theorem
can be applied to the filter functions as∫ ∞

−∞
1

2π

F (ω)

ω2
dω=

∫ ∞
−∞

f 2(t )d t =
∫ twait

0
1d t = twait, (4.76)

(Cywinski et al., 2008).
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means that the noise can be considered as constant during one cycle of the step
(2) but it changes over the repetitions of all the 3 steps. Its spectrum can be written
as S(ω) = Aδ(ω) and by inserting it into Eq. 4.67, we obtain

W f ,quasi−static(twait) =
∫

1

2

∫
d t

∫
d t ′ f (t ) f (t ′)e iω(t−t ′) Aδ(ω)

2π
dω= A

2π

F f (ω)

ω2

∣∣∣∣
ω=0

.

(4.79)
For Ramsey fringe, the decay shape is Gaussian

WRamsey,quasi−static(twait) =
At 2

wait

2 ·2π
, (4.80)

with a decay time constant T ∗
2 = 2

p
πp

A
. When a Gaussian distribution of the quasi-

static noise is written with Eq. 4.19, its noise spectrum is S(ω) = Aδ(ω) with A =
2πσ2

ω and thus T ∗
2 =

p
2

σω
. This result is consistent with Eq. 4.40. For the cases where

Nπ ≥ 1, the decay shape becomes

WNπ≥1,quasi−static(twait) = 0, (4.81)

which shows the dephasing due to the quasi-static noise can be refocused com-
pletely by one π pulse.

• Monotone noise
Third, we consider the case of a colored noise especially when the noise power
decreases monotonically. The noise spectrum can be written as

Smonotone(ω) = A

ωα−1 . (4.82)

By inserting this relation to Eq. 4.75,

WlargeN,monotone(twait) = Smonotone(ω0)

2
twait (4.83)

= A

2ωα−1
0

twait (4.84)

= A

2
(
πNπ
twait

)α−1 twait (4.85)

=
(

twait

T2

)α
, (4.86)

with T2 =
( 2

A

) 1
α π

α−1
α N

α−1
α

π . Eq. 4.86 is valid only when N is large enough to take the
approximation in Eq. 4.75.

4.6. RANDOMIZED BENCHMARKING
While dynamical decoupling is a way to characterize the quality of a quantum bit as a
quantum memory, randomized benchmarking is a way to characterize it as a quantum
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processor. In the previous sections, we assumed that the system’s Hamiltonian can be
approximated to be Eq. 4.9. By using dynamical decoupling, the spectrum of the noise
η(t ) can be determined under the assumption that the noise can be described as simply
as by only one parameter and the statistics of its fluctuation is Gaussian. In this sec-
tion, we present a way to characterize how the noise affects the gate control without any
assumption of the system’s Hamiltonian. In Ch. 10, we compare the noise spectrum ex-
tracted by the dynamical decoupling measurement with how the noise affects the gate
control by the randomized benchmarking, and we find that these two results are consis-
tent.

Quantum process tomography allows us to completely characterize an experimental
implementation of a unitary operation (Chuang and Nielsen, 1997). However, there are
two drawbacks to using quantum process tomography. First, complete process tomog-
raphy is infeasible for a large number of qubit systems due to a huge number of experi-
ments required. Second, the process error (control-gate infidelity) and the state prepara-
tion and measurement (SPAM) errors (initialization infidelities and read-out infidelities)
cannot be completely separated, which leads to the underestimation of the process fi-
delity. Randomized benchmarking is a way to partially characterize the noise affecting a
quantum system overcoming these drawbacks. The number of experiments required for
randomized benchmarking scales efficiently with the number of qubits and this method
is insensitive to SPAM errors. Another advantage of randomized benchmarking is that it
can estimate the process error (control-gate infidelity) influenced by all the error sources
which qubits suffer from in the course a real quantum calculation (decoherence, imper-
fect pulse shapes, and unknown error sources) since the measurement of randomized
benchmarking uses long microwave pulse sequences, which is similar to the case for a
real quantum calculation.

The concept of randomized benchmarking was first introduced in (Emerson, Alicki,
and Zyczkowski, 2005). By applying a motion reversal sequence, the error on the control
gate fidelity can be transformed into the state fidelity between the initial state and the
final state. By measuring the residual population of the initial state, the fidelity of the
motion reversal sequence is interpreted as shown in Fig. 4.6. In (Emerson, Alicki, and
Zyczkowski, 2005), it is also shown that by varying the length of the motion reversal se-
quence, the SPAM errors are separated from the error on the control gate. In (Knill et al.,
2008), the protocol is given the name “randomized benchmarking". In this paper, the se-
quence of the motion reversals is replaced by a sequence of random gates (π pulse and
π/2 pulse along two axes). In (Emerson, 2008; Emerson et al., 2007; Magesan, Gambetta,
and Emerson, 2011, 2012), it is demonstrated that choosing a set of random gates out of
the Clifford group (In short, the n-qubit Clifford group is the normalizer of the n-qubit
Pauli group. See also Eq. 4.101.) is an efficient way to realize randomized gates. In
(Magesan et al., 2012), the fidelity of a specific gate can be also measured by interleaving
it between randomized gates.

DEFINITION OF GATE FIDELITY

To measure how well a quantum operation E approximates a quantum gate U (a unitary
operation) acting on a specific pure state ρ, the state fidelity for comparing E (ρ) and
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Figure 4.6: Principle of randomized benchmarking describing the spin state on the Bloch sphere. On the left,
it is shown that the quantum state is prepared to be |0〉. In the middle, two examples of motion reversal are
shown. Due to the errors in the motion, the quantum state does not come back to the initial state. The average
of the final states after applying randomized motion reversals is shown on the right. Averaging over random-
ized motion reversals acts as a depolarizing channel (see Eq. 4.98 and Eq. 4.108) The residual population of the
initial state p is relevant to the average fidelity of the motion reversals.

U (ρ) is commonly used:

F (E (ρ),U (ρ)) = Tr
[
E (ρ)U (ρ)

]
. (4.87)13

We define a noisy quantum channel ΛU associated with a unitary operation U and
represents how much E deviates from U . The state fidelity becomes

F (E (ρ),U (ρ)) = Tr
[
ΛU (ρ)ρ

]= F (ΛU (ρ), I (ρ)). (4.89)

ΛU is a noisy quantum channel associated with a unitary operation U and represents
how much E deviates from U . The state fidelity between the actual and ideal gate out-
puts for an aimed quantum gate U in Eq. 4.89 is an initial-state-dependent value, i,e., the
gate fidelity for a specific initial state. Thus we define the gate fidelity14 as that averaged

13The state fidelity for comparing E1(ρ) and E2(ρ) is

F (E1(ρ)),E2(ρ)) =
(
Tr

[√√
E1(ρ)E2(ρ)

√
E1(ρ)

])2
, (4.88)

for any quantum operation E1 and E2 and for any quantum state ρ. Although Jozsa’s original convention of
the state fidelity (Jozsa, 1994) is as described here,

p
F is more commonly used as a state fidelity in recent

literatures. Eq. 4.88 can be rewritten as Eq. 4.89 when ρ is a pure state and one of the quantum operations is
a unitary operator.

14In most of the literature, it is called "average gate fidelity" but here we call it simply "gate fidelity" in order to
avoid confusion with "average gate fidelity over all the Clifford gates", which is introduced later.
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over all input pure states

FE ,U =FΛU ,I =
∫

dρF (ΛU (ρ),I (ρ)) =
∫

dρTr
[
ΛU (ρ)ρ

]
. (4.90)15

Here the integral uses the uniform unitary invariant measure ρ on the pure state
space, normalized as

∫
dρ = 1. Hence the gate fidelity provides an indicator that is

independent of the choice of initial state. Since dρ is the unitary invariant measure,∫
dρTr

[
ΛU (ρ)ρ

]= ∫
dρTr

[
ΛU (U ′(ρ))U ′(ρ)

]
(Emerson, Alicki, and Zyczkowski, 2005; Horodecki,

Horodecki, and Horodecki, 1999; Nielsen, 2002).

TWIRLED OPERATION OF A QUANTUM CHANNEL = DEPOLARIZING CHANNEL
Furthermore, we average the gate fidelity FE ,U over all unitaries uniformly with a nor-
malized unitary invariant Haar measure dU ′. Since FE ,U is not a function of U ′ and∫

dU ′ = 1. We can write

FE ,U =FΛU ,I (4.94)

=
∫

dU ′
∫

dρTr
[
ΛU (ρ)ρ

]
(4.95)

=
∫

dρTr

[∫
dU ′U ′† (

ΛU (U ′(ρ))
)]

(4.96)

=
∫

dρTr
[
ΛT

U (ρ)ρ
]=FΛT

U ,I , (4.97)

where

ΛT
U (ρ) =

∫
dU ′U ′† (

ΛU (U ′(ρ))
)

, (4.98)

is a twirled operation of a quantum channel Λ, which is the uniform average of a quan-
tum channel sandwiched by a unitary operation and its inverse over all unitaries. The

15 There is a simple relationship between the process fidelity and the average fidelity for any process:

FE ,U =FΛU ,I =
dFp +1

d +1
, (4.91)

(Bowdrey et al., 2002; Chow et al., 2009). A quantum channelΛ can be represented as

Λ(ρ) =∑
k

AkρA†
k
=∑

i , j
χi , jσiρσ j . (4.92)

The process fidelity is defined as Fp = Tr
(
χrealχidea

)
(Chow et al., 2009) and Fp = Tr

(
χIχΛ

)=χΛ00 when the

ideal process is an identity. From Eq. 4.92, Tr
(
Λ̂

)=∑
k

(
Tr(Ak )

)2 =χΛ00d2. From Eq. 4.98, Tr
(
Λ̂T

)
= Tr

(
Λ̂

)
.

From Eq. 4.99, pU = Tr
(
Λ̂T

)
−1

d2−1
.

By substituting this relation into Eq. 4.105,

FE ,U =FΛU ,I =F
ΛT

U ,I =
∑

k
(
Tr(Ak )

)2 /d +1

d +1
. (4.93)
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twirled operation of any quantum channel is a depolarizing channel:

ΛT
U (ρ) = pUρ+ (1−pU )

1l

d
, (4.99)

where d = 2n is the dimension of Hilbert space with the number of qubits n, as intuitively
understood since Eq. 4.98 gives the same value for any input pure state ρ as rigorously
demonstrated in (Nielsen, 2002). By substituting Eq. 4.99 into Eq. 4.97, the gate fidelity
is obtained as

FE ,U =FΛU ,I =FΛT
U ,I = F (ΛT

U (ρ),ρ) = pU + 1−pU

d
. (4.100)

APPROXIMATION OF THE AVERAGE OVER ALL UNITARIES TO THE AVERAGE

OVER ALL THE CLIFFORD GATES

According to (Dankert et al., 2009), Eq. 4.98 can be approximated to

∫
dU ′U ′† (

ΛU (U ′(ρ))
)∼ 1

K

K∑
j=1

C †
j

(
ΛU (C j (ρ))

)
. (4.101)

where C j is an element of the Clifford group, which is the subgroup of the unitary group

for which the relation C j PkC †
j = Pi holds for any Pk ,Pi ∈ {P \{1l× {±1,±i}}}, where P =

{σ0,σx ,σy ,σz }⊗n × {±1,±i} is the Pauli group. K is the number of gates in the Clifford
group. The number of gates in the 1-qubit (n = 1) Clifford group is 24 (K = 24). From
Eq. 4.99 and Eq. 4.101, twirling a quantum operation over the Clifford group produces a
depolarizing channel:

1

K

K∑
j=1

C †
j

(
ΛU (C j (ρ))

)≈ΛT
U (ρ) = pUρ+ (1−pU )

1l

d
. (4.102)

We define the average error operator affecting different Clifford gates as

ΛC̄ = 1

K

K∑
j=1
Λ j , (4.103)

where Λ j is the error associated with a specific Clifford gate C j . By substituting ΛU by
ΛC̄ , Eq. 4.102 becomes

1

K

K∑
j=1

C †
j

(
ΛC̄ (C j (ρ))

)≈ΛT
C̄

(ρ) = pC̄ρ+ (1−pC̄ )
1l

d
. (4.104)

According to Eq. 4.105, the average gate fidelity over all the Clifford gates is given by

FΛC̄ ,I = pC̄ + 1−pC̄

d
. (4.105)
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EXPERIMENTAL IMPLEMENTATION
We now consider the experimental implementation for the measurement of the average
gate fidelity over all the Clifford gates. We denote an experimentally realized Clifford gate
by C real

j (=Λ j ◦C j ). By applying the motion reversals of all the Clifford gates to an initial

quantum state ρ0, the averaged final state is

ρ = 1

K

K∑
j=1

C real
j

† ◦C real
j (ρ0) = 1

K

K∑
j=1

C j
† ◦Λ′

j ◦C j (ρ0) (4.106)

∼ 1

K

K∑
j=1

C j
†
(
Λ′

C̄
(C j (ρ0))

)
(4.107)

≈Λ′T
C̄ (ρ) = p ′

C̄
(ρ0)+ (1−p ′

C̄
)

1l

d
, (4.108)

whereΛ′
j denotes the cumulative noise from the motion reversal of C j andΛ′

C̄
= 1

K

∑K
j=1Λ

′
j .

The approximation in Eq. 4.107 is valid when the gate-dependent error δΛ′
j =Λ′

C̄
−Λ′

j is

small.
By taking the initial quantum state as ρ0 and the POVM operator as E , the measured

spin-up probability of the final state is

P↑ = Tr
[
Eρ

]= Tr

[
E

(
ρ0 − 1l

d

)]
p ′

C̄
+Tr

[
E

(
1l

d

)]
. (4.109)

Eq. 4.109 shows that the initialization and read-out error also affect the measured spin-
up probability of the final state. We overcome this problem by repeating the motion
reversals. The key point is that by doing so the gate error is accumulated as the number
of repetitions is increased while the initialization error and read-out error stay the same.

If we repeat the motion reversals m times, there are K m different Clifford gates se-
quences over all the possible combinations of ( j1, ..., jm). The averaged final state be-
comes

ρ = 1

K m

∑
( j1,... jm )

Om
i=1C

real
ji

† ◦C real
ji

(ρ0) (4.110)

= p ′
C̄

m
ρ0 + (1−p ′

C̄
m)

1l

d
, (4.111)

and the measured spin-up probability becomes

P↑ = Tr
[
Eρ

]= Tr

[
E

(
ρ0 − 1l

d

)]
p ′

C̄
m +Tr

[
E

(
1l

d

)]
. (4.112)

By measuring the decay curve of P↑ as function of m, we can determine p ′
C̄

allowing us to
calculate for the average gate fidelity over all the motion reversals of Clifford gates using
Eq. 4.105. This method to measure the gate fidelity by repeating the motion reversals is
similar to the method presented in the original paper (Emerson, Alicki, and Zyczkowski,
2005). Later it is presented that the sequence of the motion reversals can be replaced by a
sequence of gates which acts as an identity gate (or a known gate) as a whole (Emerson,
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2008; Emerson et al., 2007; Knill et al., 2008; Magesan, Gambetta, and Emerson, 2011,
2012). We denote such a sequence by

S jm =C real
jm+1

◦C real
jm

◦ ...C real
j1

(4.113)

=Λ jm+1 ◦C jm+1 ◦Λ jm ◦C jm ◦ ...Λ j1 ◦C j1 (4.114)

∼ΛC̄ ◦C jm+1 ◦ΛC̄ ◦C jm ◦ ...ΛC̄ ◦C j1 . (4.115)

We choose C jm+1 so that
C jm+1C jn ...C j1 = K , (4.116)

where K is 1l (or another known gate).
We define a new Clifford gates sequence by (D j1 , ...D jm ) and D ji is uniquely created

from (C j1 , ...C jm ) by the equation C ji+1 = D ji+1 ◦D ji , i.e.,

D ji+1 =C ji+1C ji ...C j1 . (4.117)

From Eq. (4.116) and Eq. (4.117), D jm+1 = K and so D jm+1 is independent of j .
By replacing C ji with D ji ◦D ji−1 , Eq. (4.115) is rewritten as

S jm ≈ΛC̄ ◦K ◦D†
jm

◦ΛC̄ ◦D jm ◦ ...◦D†
j1
◦ΛC̄ ◦D j1 (4.118)

=ΛC̄ ◦K ◦ (Om
i=1(D†

ji
◦ΛC̄ ◦D ji )), (4.119)

where jm is defined as the m-tuple ( j1, ..., jm).
After applying this sequence, the averaged final state becomes

ρ = 1

K m

∑
( j1,... jm )

S jm (ρ0) (4.120)

=ΛC̄ ◦K

(
pC̄

mρ0 −pC̄
m 1l

d

)
, (4.121)

and the measured spin-up probability becomes

P↑ = Tr
[
Eρ

]= Tr

[
E

(
ΛC̄ ◦K

(
ρ0 − 1l

d

))]
pC̄

m +Tr

[
EΛC̄

(
1l

d

)]
. (4.122)16

In the same way as for the motion reversals, we can determine pC̄ by varying m experi-
mentally allowing us to calculate the average gate fidelity over all the Clifford gates.

We can further remove the term Tr
[

EΛC̄

(
1l
d

)]
in Eq. 4.122 by looking at the difference

in the measured spin-up probability between different choices of K . Following (Muho-
nen et al., 2015; Veldhorst et al., 2014), for the experiments in Ch. 10, we take the differ-
ence of the measured spin-up probability between |↑〉 as the target state and |↓〉 as the
target state. The difference of the measured spin-up probability can be written as

P |↑〉
↑ −P |↓〉

↑ = Tr
[
EΛ◦K|↑〉

(
ρ0

)]
pC̄

m −Tr
[
EΛ◦K|↓〉

(
ρ0

)]
pC̄

m , (4.123)

where |.〉 in the suffix of K is the target state. K|↓〉 = 1l and K|↑〉 is randomly chosen out of
X , X̄ , Y or Ȳ . Eq. 4.123 is reduced to

P |↑〉
↑ −P |↓〉

↑ = apC̄
m , (4.124)

where a = Tr
[
(1−2γ)EΛ (|↑〉〈↑|− |↓〉〈↓|)] does not depend on either pC̄

m or m.

16K (1l) = 1l because K is a perfect quantum gate and thus unitary operator.





5
DEVICE AND MEASUREMENT

SETUP

In this chapter, we first introduce 3 different devices used in the experiments presented
in this thesis: Device A, Device B and Device C. Device A is based on a doped Si/SiGe
heterostructure accommodated with a microwave stripline. Device B and Device C are
based on an accumulation mode undoped Si/SiGe heterostructure accommodated with
one and two micromagnet(s), respectively. The experiments using Device A and Device B
are presented in Ch. 6 and the experiments using Device C are presented in Ch. 7, Ch. 8,
Ch. 9 and Ch. 10. Secondly, we present the measurement setup used in the electrical
measurements of these devices including the DC wirings, high frequency coaxial lines,
and the spin-state detection scheme.

As discussed in Sec. 2.4, a local micromagnet or a microwave antenna is required
for the manipulation of a spin state of a single electron spin in Si. For Device A, we
choose an on-chip antenna, adjacent to a Si/SiGe quantum dot, to produce microwave
excitation and static magnetic field gradients, by driving with both DC and AC currents.
For Device B and Device C, micromagnets are fabricated on top of the devices to form a
local magnetic field gradient.

5.1. HETEROSTRUCTURE GROWTH
As presented in Sec. 2.2.2, a quantum well for electrons is formed at the interface of Si
and SiGe. In order to obtain a heterojunction, a layer control with an atomic precision is
required. Generally molecular beam epitaxy (MBE) or chemical vapor deposition (CVD)
technologies are used. In MBE, the atoms or molecules for the new layer are injected into
a ultrahigh vacuum chamber until they reach the substrate. Depending on the tempera-
ture of the substrate, layers of different material can be grown on top of each other. CVD
is based on chemical reactions that transform gaseous molecules into a thin film on the
surface of a substrate. Si/SiGe heterostructures used for all the 3 devices: Device A, De-
vice B and Device C were grown by Don Savage in Prof. Max Laggaly group at Wisconsin
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University with CVD (Schäffler, 1997).

5.2. DEVICE A
Device A was fabricated by Jonathan Prance in Prof. Mark Eriksson’s group at Wisconsin
University. The device is fabricated on a phosphorus-doped Si/Si0.7Ge0.3 heterostructure
with a strained Si quantum well approximately 75 nm below the surface. The phosphorus-
doping layer is covered by a Si0.7Ge0.3 upper spacer of 45 nm and a Si cap of 7 nm to
minimize leakage from the gates to the quantum well. Palladium surface gates are fabri-
cated to form a single dot or a double dot and an on-chip antenna (Ti/Au, 5 nm/305 nm)
is fabricated close to these dot gates. (SEM picture shown in Fig. 6.1(a))

5.2.1. MEASUREMENT SETUP FOR DEVICE A
The sample was glued on a printed circuit board (PCB) and the PCB was attached to
the mixing chamber (MC) of a dilution refrigerator (Oxford Kelvinox 300) with base tem-
perature ∼25 mK. DC and AC currents through the antenna (stripline) were combined
via a bias-T (Anritsu K251 (Hendrichs, 2011)) placed at the 1 K stage of the refrigerator
as shown in Fig. 5.4. Both ends of the antenna are connected to high-frequency lines.
Another high-frequency line was connected to gate 2 labeled in Fig. 6.1(a). The high-
frequency signal was combined on the PCB with a DC voltage line by a homemade resis-
tive bias tee (R=10 MΩ, C= 47 nF; 1/RC∼2 Hz) to allow fast pulsing of the gate voltages or
microwave excitation while also maintaining a DC bias on the gates. The details of the
materials used for the DC lines and high-frequency coaxial cables for the measurements
of Device A are found in (Hendrichs, 2011). Electronics used for transport measurements
and filtering used for DC voltage lines are similar to what are shown in Sec. 5.3.2.

5.3. DEVICE B AND C
Device B and C are based on an undoped Si/SiGe heterostructure with two layers of
electrostatic gates (Fig. 5.1(a,c)). Compared to conventional, doped heterostructures,
this technology strongly improves charge stability (Maune et al., 2012). First, accumu-
lation gates are used to induce a two-dimensional electron gas (2DEG) in a 12 nm wide
Si quantum well 37 nm below the surface. Second, a set of depletion gates, shown with
gray regions in Fig. 5.1(a), is used to form a single or double quantum dot in the 2DEG,
flanked by a quantum point contact and another dot intended as charge sensors. Two 1
µm-wide, 200 nm-thick, and 1.5 µm-long Co magnets are placed on top of the accumu-
lation gates (Fig. 5.1(a)), providing a stray magnetic field with components B‖ and B⊥,
parallel and perpendicular to the external magnetic field, respectively (Sec. 3.1.1).

5.3.1. SAMPLE FABRICATION FOR DEVICE B AND C
Device B and Device C were fabricated by Dan Ward in Prof. Mark Eriksson’s group at
Wisconsin University. A SEM image of Device C is shown in Fig. 5.1(b). Device B is the
same as Device C, except for the absence of the top micromagnet due to incomplete
lift-off during fabrication. The epitaxial structure, shown in (Fig. 5.1(c)), is grown by
CVD. An 800 nm Si0.7Ge0.3 buffer is deposited on a substrate, followed by a 12 nm thick
strained Si well. A 32 nm Si0.7Ge0.3 layer is then deposited, followed by a 1 nm thick Si
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cap layer. The sample is undoped; charge carriers are induced in the Si quantum well
by application of positive voltages to the accumulation gates, forming a 2DEG (Borselli
et al., 2011; Ward et al., 2013). To minimize unwanted accumulation and charge leakage,
most of the substrate is etched to below the Si quantum well using reactive ion etching,
leaving active material for the dot structures only in small 100 µm × 100 µm mesas. All
exposed surfaces are then uniformly coated with 10 nm of Al2O3 via atomic layer depo-
sition (ALD). Ohmic contacts to the 2DEG are created by 20 kV phosphorus implantation
activated with a 15 s, 700 ◦C anneal. Two layers of gates, separated by an isolating layer of
80 nm of Al2O3 deposited by ALD, are defined by a combination of photo- and electron-
beam lithography and deposited by electron-beam evaporation of 1.7 nm Ti/40 nm Au.
Two Co micromagnets are defined on top of the upper layer of gates by electron-beam
lithography and deposited by electron-beam evaporation of 5 nm Ti/ 200 nm Co / 20 nm
Au. The top Au layer minimizes oxidation of the Co material.

800 nm

1500 nm

1500 nm

(a) (b)

Si(1-x)Gex Spacer 
(35nm)

Si Cap (2 nm)

Si(1-x)Gex Spacer (35 nm)

Si Oxide (~1 nm)

Si Well (12 nm)

Au (25nm)

Aluminum Oxide (~100 nm)

Co 
(200nm)

accumulation gate

Phosphorus 
ion implantation

depletion gate

magnet

Au (120 nm)
evaporated

(c)

320 nm

Figure 5.1: Device C (a) False color device image showing a fabricated pattern of split gates (gray regions). The
blue semitransparent rectangles show the position of two Co 200 nm thick micromagnets. The top edge of the
bottom micromagnet is partially cut in order to avoid the electrical short between two accumulation gates.
The yellow shaded pieces show the location of two accumulation gates, one for the reservoirs and another for
the double quantum dot region. (b) Scanning electron micrograph of the sample. The white regions around
the area of the micromagnets are thin pieces of metal that were bent upwards during lift-off. (c) Schematic
cross-section of the device.
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5.3.2. MEASUREMENT SETUP FOR DEVICE B AND C

The sample is attached to the MC stage in the same way as for Device A in the same
dilution refrigerator.

EXTERNAL MAGNETIC FIELD

The strength and the direction of the external magnetic field is set by the currents run-
ning through two-vector (7 T along the horizontal axis (denoted as the y axis in this the-
sis) and 3 T along one of the vertical axes (denoted as the x axis)) superconducting mag-
nets which are equipped on the Helium Dewar. The sample is mounted so that the exter-
nal magnetic field is applied in the plane of 2DEG. The out-of-plane component of the
magnetic field due to the misalignment between the surface of the sample board and the
vertical axis of the superconducting magnet was found to be less than 5 degrees and us-
ing Shubnikov–de Haas effect on a GaAs sample (Scarlino et al., 2014). This should have
a negligible effect on the spin-qubit measurements because the cyclotron frequency due
to this out-of-plane magnetic field is small compared to other energy scales for the spin-
qubit measurement.

LOW-FREQUENCY LINES

We have 4 times 12 twisted pairs of wires running from room temperature down to the
plate at MC of the dilution refrigerator. We use manganese as the material of wires which
go to the ohmics or gates on the sample from room temperature to MC plate. We chose
manganese, which has a small enough resistance in order to reduce the Johnson noise
in the wires and a high enough thermal conductivity for thermal anchoring. Below MC
plate to the sample, copper wires, which have very high thermal conductivity, are chosen
in order to suppress the temperature gradient between the MC plate and the sample as
much as possible. All the wires are thermally anchored to the fridge by wrapping them
around copper posts at several temperature stages. This anchoring causes a parasitic
capacitance to the ground of about 0.5 nF (Fig. 5.2). All gates are connected to room
temperature voltage sources via RC and copper powder filters (parasitic capacitance to
ground ∼0.4 nF) mounted below the MC as depicted in Fig. 5.2 and some of them have
room temperature pi filters. We have such 3 different filters (RC, copper, and pi filters) in
order to have a good filtering over broad frequency ranges. More discussions are found
in Sec. 3.3.1 of (Shafiei, 2013). RC-filters have different cut-off frequencies of 20 Hz (sec-
ond order filter) 1, 150 kHz (second order filter), and 1.5MHz (first order filter) for wires
connecting to the gates, slow ohmics and fast ohmics, respectively. Slow ohmics are
meant to be for the average current measurement and fast ohmics are meant to be for
single-shot read out measurements.

1We realized that the distortion of the voltage pulses (Scarlino et al., 2014) is caused not only by the bias-
tee on the PCB but also by the RC filters on the DC wires for the gates. A cut of frequency of 20Hz is lower
than what is required. By increasing the cut-off frequency, we can reduce the pulse distortion caused by RC
filters. Alternatively we also started working on room-temperature analog circuits which compensate pulse
distortion caused by bias-tee or RC filters.
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Figure 5.2: Schematic overview of DC wirings to apply voltages to the gates and the ohmics. A commercial
bias-tee (Anritsu K251) is placed at 1K plate for the measurement of Device A and it is removed for the mea-
surement of Device B and Device C. 780 nm wavelength LED is placed at the same level as the sample for the
measurement of Device B and Device C.
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LED

For the measurements of Device B and C, which are undoped Si/SiGe heterostructures,
we implement a laser diode in the face of the sample (Scarlino, 2016). By shining light
with an energy larger than the energy gap of Si before tuning the gate voltages of the
device, charges, which otherwise make unwanted electrical potential in 2DEG, are re-
leased from traps. We used copper wires to connect a commercial current source (aim-
tti EL301R) at room temperature to the LED at the base temperature. These lines are
filtered by copper powder but not by RC filters. We do not use RC filters in order to avoid
heating the dilution fridge while sending high current. The laser diode used in this ex-
periment has a wavelength of 780 nm, a maximum optical output of 5 mW (US-lasers,
D780-5). More information for the use of this LED at cryogenic temperature is found in
(Hendrichs, 2011). The current through the LED was limited to ∼10 mA so that the heat-
ing due to LED does not exceed the cooling power of the dilution fridge. The LED does
not reach the lasing regime but still works to release the charges from traps.

HIGH-FREQUENCY LINES

We have four coax lines, Line 1, 2, 3, and 4; two with 2.4 mm connectors (V-connectors)
and two with 2.9 mm connectors (K-connectors or SMA connectors). The coax lines with
V connectors are specified up to 50 GHz, the lines with K connectors are up to 40 GHz
and the lines with SMA are up to 18 GHz . Line 1 and 2 are connected via a V-connector
feedthrough and line 3 and 4 via SMA at room temperature. Each line consists of three
segments all of which are produced by Keycom: (i) From room temperature to 1 Kelvin
we use Keycom ULT-05 cables (outer diameter 2.2 mm; inner conductor: silver-plated
brass; outer conductor: stainless steel (SUS304) with a 5 µm layer of copper). (ii) From 1
K to the mixing chamber, we use Keycom 085 semi-rigid coax lines with both inner and
the outer conductor made of NbTi. (iii) From the mixing chamber to the sample holder,
we use tin plated Cu coaxial cables which are flexible and therefore convenient to use.
The outer conductors of the coaxial lines are thermally anchored to the dilution unit at
4 K, 1 K, ∼800 mK and ∼40 mK (Pictures are shown in Fig. 2.7 of (Scarlino, 2016)). In order
to anchor the inner conductor of the coaxial lines as well, we use cryogenic attenuators
which are anchored at 1 K (all -20 dB; INMET V-connector attenuators for the 2.4 mm
lines; unknown brands, presumably XMA corporation, SMA attenuators for the 2.9 mm
lines) and at the MC (-6dB Weinschel V-connector attenuators for the 2.4 mm lines; -
10dB unknown brands, presumably XMA corporation, SMA attenuators for the 2.9 mm
lines). The material for the coaxes is chosen according to the discussion in Sec. 3.6 of
(Shafiei, 2013). The summary of coaxes and attenuators is shown in Fig. 5.3. We tested
the transmission of the whole microwave line with a spectrum analyzer at room temper-
ature and we found that the attenuation is ∼ 5dB + 0.8dB×(carrier frequency in GHz) in
addition to the attenuation from the attenuators. Below the MC, the easily formable ca-
bles of lines 1, 2, and 3 are connected to K connectors on the PCB which are connected to
the gates 11, 9 and 8, respectively and that of line 4 is connected to SMA connector on the
PCB which is connected to the gate 3. On the PCB, the 4 lines are fitted with homemade
resistive bias tees (R=10 MΩ, C= 47 nF; 1/RC∼2 Hz).



5.3. DEVICE B AND C

5

67

feed  through

20 dB attenuator

10 dB attenuator

easily formable coax
Keycom EF085D

semi-rigid coax
Keycom ULT-05

SMAf

SMAf

SMKm

SMKf

SMAm

SMAf
SMKm

SMKf

SMKm
SMAf

SMAm

SMKm

feed  through

20 dB attenuator
INMET 50EH-20

6 dB attenuator
Aeroflex/Weinshel 84-6

2.4f

2.4f

2.4m

2.4f

2.4m

2.4f
2.4m

2.4f

2.4m
2.4f

2.4m

SMKm

1K plate

MC plate

RT plate

line 1 & 2 line 3 & 4

semi-rigid coax
Keycom NbTi-NbTi085

Figure 5.3: Cryogenic high-frequency coaxial lines: The lines 1 and 2 are not used in the experiments shown
in this thesis. 2.4f (2.4m) stands for female (male) V-connectors, SMAf (SMAm) stands for female (male) SMA-
connectors and SMKf (SMKm) stands for female (male) K-connectors.
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VOLTAGE PULSE AND PHASE-CONTROLLED MICROWAVE

A voltage pulse is generated by an arbitrary waveform generator (Tektronix AWG 5014C).
Phase-controlled microwave bursts are generated by an Agilent microwave vector source
E8267D with the I (in-phase) and Q (out-of-phase, quadrature) components controlled
by two channels of the AWG. More explicitly, φ in Eq. 4.6 is set by exp(iφ) = VI + iVQ .
The on/off ratio of the I/Q modulation is 40 dB. If the microwave power arriving at the
sample is not sufficiently suppressed in the “off” state, the control fidelity is reduced and
the effective electron temperature increases, which in turn will result in a lower read-
out and initialization fidelities. Reduced fidelities were indeed observed when applying
high power microwave excitation (> 15 dBm at the source) using I/Q modulation only.
As a solution, we use digital pulse modulation (PM) in series with the I/Q modulation,
which gives a total on/off ratio of ≈ 120 dB. A drawback of PM is that the switching rate is
lower. Therefore, the PM is turned on 200 ns before the I/Q modulation is turned on (see
Fig. 5.5(b)). Light blue lines in Fig. 5.5(b) show input voltages to I/Q modulation for π/2
rotation about x̂ followed by π/2 rotation about ŷ and π/2 rotation about −ŷ for Rabi
frequency f1 =1 MHz with the time interval between gates 5 ns, where x̂ and ŷ are two
axes which are orthogonal to the quantization axis on the rotating reference frame, as
an example. We also observe that the total microwave burst time applied to the sample
per cycle affects the read-out and initialization fidelities (Sec. 10.S2. For the experiments
shown in Ch. 10, in order to keep the read-out and initialization fidelities constant we
apply an off-resonance microwave burst (with microwave frequency detuned by 30 MHz
from the resonance frequency) 2 µs after the on-resonance microwave burst, so that the
combined duration of the two bursts is fixed. To achieve this rapid shift of the microwave
frequency, we used Frequency Modulation (FM) controlled by another channel of the
AWG. FM is turned on 1 µs after the on-resonance burst is turned off. The MW burst of
duration ends about 100 ns − 500 ns before the detection stage.

For the measurements shown in Ch. 7, Ch. 8 and Ch. 9, we apply a voltage pulse to
gate 3 and microwave excitation to gate 8. For the measurements shown in Ch. 10, we
apply a voltage pulse to gate 8 and microwave excitation to gate 3.

MEASUREMENT SCHEME

We use 4-stage voltage pulses: (1) initialization to spin-down [4 -5 ms], (2) spin manip-
ulation through microwave excitation of gate 8 or 3 [1-1.5 ms], (3) detection/single-shot
spin read-out [4-5 ms] and (4) a compensation/empty stage [1 - 1.5 ms]. In Fig. 5.5(a), a
voltage pulse and recorded current traces for the initialization and detection time 5 ms
and the manipulation and empty time 1 ms. Due to the very long spin relaxation time,
we cannot initialize by equilibration, as was commonly done in previous work (Elzer-
man et al., 2004; Nowack et al., 2011), since this would take 100 ms or more. Therefore
we pulse so that only the lowest energy spin level (spin down) is below the Fermi level
of the reservoir during the initialization stage. The presence of the bias tee is the reason
why we use four stage pulses (Scarlino et al., 2014) while we could have used two stage
pulses (Pla et al., 2012). The extra two stages make the voltage level during the initializa-
tion and detection stages much less variable. At the read-out stage, an electron can leave
the dot when it is projected to a spin-down state. The dot-reservoir tunnel events can
be monitored in real time by collecting the charge sensor current (current running next
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to the dot, depicted as a white arrow and I in the inset of Fig. 5.4), read through a room
temperature I-V converter, after a low-pass-filter with a corner frequency of 30 kHz. The
charge sensor current level is changed by typically 400 pA depending on the number of
electrons in the dot. Thus an electron spin state is converted to a charge sensor current
level and the current level is monitored on a single-shot mode (Elzerman et al., 2004).
By taking the measurement outcome as 1 when the sensor current surpasses the thresh-
old and the measurement outcome as 0 when the sensor current does not surpass the
threshold, the average measurement outcomes (typically we average over 150-1000 mea-
surements) gives a measurement of the spin-up probability with some errors. The anal-
ysis of the real-time traces and the statistical analysis of the read-out events are done
on-the-fly using a field-programmable gate array (FPGA) as depicted in Fig. 5.4. This
allows us to measure faster without waiting for the transfer of real-time traces to a com-
puter. For the experiments shown in Ch. 10, data points were taken by cycling through
the various burst times, spin echo waiting times, or randomized gate sequences, and re-
peating these entire cycles 150 - 1000 times. This order of the measurements helps to
suppress artifacts in the data caused by slow drift in the set-up or sample.
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temperature behind the microwave source to reduce low frequency noise. The 30 dB attenuation at low tem-
perature is divided over a 20 dB attenuator at the 1 K plate and a 10 dB attenuator at the MC stage for each of
two high frequency lines, connected to gate 3 and gate 8. One of the two ohmic contacts of the sensing dot is
connected to a room-temperature voltage source and the other is connected to the input of a homemade JFET
current-to-voltage (IV) converter via RC and copper powder filters mounted at the MC stage and pi-filters at
room temperature (not shown in the figure). The output voltage signal of the IV converter is digitized and pro-
cessed by an FPGA. A gating pulse sent to the FPGA defines the segment of the signal that is to be analyzed.
An additional trigger pulse is applied to the FPGA before the entire sequence starts for the measurements in
Ch. 10. The bottom right inset shows false color device schematics of the dotted region of Fig. 5.1(a). We create
a single quantum dot (QD) on Device C, its estimated location for the measurements presented in Ch. 7, Ch. 8,
and Ch. 9 is presented by the red circle.
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Figure 5.5: (a) Measurement scheme consisting of 4 stages (see main text) along with an example trace of
recorded during the pulse cycle (blue line) and cartoons illustrating the dot alignment and tunnel events, volt-
age pulse (purple line), the pulse used for PM (green line), and gating the FPGA (orange line). During stages
(1) and (3), the Fermi level in the reservoir is set in between the spin-down and spin-up energy levels so that
only a spin-down electron can tunnel into the dot and only a spin up electron can tunnel out. During stage
(2), the dot is pulsed deep into Coulomb blockade, in order to minimize photon-assisted tunneling. When a
step is observed during stage (3), see the spike inside the dotted circle, we count the electron as spin-up. Stage
(4) serves to keep the DC component of the pulse zero and to symmetrize pulse distortions from the bias tee.
In the process, the QD is emptied. The spike during the manipulation stage is due to the influence of the mi-
crowave burst (here 700 µs) on the detector. The gating of the FPGA opens 50 µs after the voltage pulse is set
for the stage (3) considering the time needed for the voltage pulse reaching the sample and the signal from the
sample reaching the detector. (b) Voltage pulse (purple line), the pulses used for PM (green line, the same as
in (a)), for I/Q modulation (light blue lines), and FM (red line) during the stage (2). See the text for details.





6
PHOTON-ASSISTED TUNNELING ON

A SINGLE AND A DOUBLE QUANTUM

DOT

In this chapter, we show preliminary measurements towards electron spin resonance
in Si/SiGe quantum dots. Contrary to GaAs, spin-orbit interaction is weak in Si and so an
antenna or micromagnets is required for the qubit manipulation as discussed in Sec. 2.4.

For Device A, we choose an on-chip antenna, adjacent to a Si/SiGe quantum dot, to
produce microwave excitation and static magnetic field gradients, by driving with both
d.c. and a.c. currents. For Device B, we use a local magnetic field gradient from a micro-
magnet for spin manipulation.

In the first part of this chapter (Sec. 6.1-6.4), we perform transport measurements
on a single quantum dot using Device A. The response with a microwave excitation via
an on-chip antenna shows signatures of photon-assisted tunneling on a single quantum
dot while only having a small effect on charge stability. We also study the heating effects
by sending d.c. current to the antenna on the transport characteristics of a single quan-
tum dot and evaluate the potential of using such an antenna to perform single-spin ESR
experiments in Si/SiGe devices.

In the second part of this chapter (Sec. 6.5-6.6), we performed charge sensing mea-
surements on a double quantum dot using Device B. The response with a microwave
excitation via one of the gate electrodes shows signatures of photon-assisted tunneling
on a double quantum dot. We also discuss the potential of using a micromagnet field
gradient for ESR experiments.

The part of work shown in this chapter has been published as: E. Kawakami, P. Scarlino, L. R. Schreiber, J. R.
Prance, D. E. Savage, M. G. Lagally, M. A. Eriksson, and L. M. K. Vandersypen, App. Phys. Lett. 103, 132410
(2013).
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6.1. CHARGE STABILITY OF DEVICE A
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Figure 6.1: (a) Scanning electron micrograph of a device with identical design to the one we used. The quan-
tum dot is formed at the locations of the left or right circle, depending on the measurement. Transport mea-
surements are performed by applying a voltage between the source and drain reservoirs (S and D) and moni-
toring the current Idot through the dot. The microwave antenna, on the right of the image, consists of a short
wire connecting the two arms of a coplanar stripline. (b) Measured current through the left dot as a function
of the voltage on gate 4, under microwave irradiation via the on-chip antenna at f = 20 GHz (red lines; the
microwave source emits +10 dBm, there is a -10 dB attenuator at room temperature, and a -20 dB attenuator
at 1 K) and in the absence of the microwave radiation (blue lines). VSD = −50 µeV in both cases (all VSD in-
clude thermal voltages). (c) Histogram of the charge noise expressed in units of gate voltage with microwave
excitation (red) and without microwave excitation (blue).

Device A is based on a phosphorus-doped Si/SiGe heterostructure with a strained
Si quantum well approximately 75 nm below the surface. A thick rf antenna (Ti=Au, 5
nm=305 nm) was fabricated near the dot gates aiming for producing AC magnetic field
to achieve ESR and field gradient to mix the m = 0 triplet T0 with the singlet S for the
detection. Palladium surface gates labeled 1-9 in Fig. 6.1(a) can be used to form a single
dot or a double dot. The experiments shown here use a single dot. An on-chip antenna
(Ti/Au, 5 nm/305 nm) is fabricated close to the dot gates, as shown in Fig. 6.1(a).

First, we test whether the charge stability of the Si/SiGe quantum dot in the few-
electron regime is affected by microwave excitation of the antenna. The electric field
component of the excitation may perturb and rearrange charges trapped in the sub-
strate, thereby generating electrical noise. An AC excitation of f =20 GHz is applied
to both ends of the antenna. The ratio of the microwave electric versus magnetic field
strength at the dot depends on the relative phase of the excitation at the two ends of the
antenna. (See Fig. 6.S1(a) in the supplementary section of this chapter.) In the mea-
surements reported here, the relative phase is arbitrary. To probe charge stability, we
repeatedly measure the current through the left quantum dot, by sweeping the voltage
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Figure 6.2: (a) Measured current through the right dot as a function of the voltage on gate 2 for different
microwave powers and frequencies applied to the antenna. VSD =−58 µV (the lines are offset for clarity). The
10 mV shift in the Coulomb peak position between 16.5 GHz and 20 GHz is due to a background charge switch,
which occasionally occurs in this sample, both with and without microwave excitation. (b–e) Schematics of the
energy diagram of the quantum dot for VSD < 0. (b) and (c) show PAT through the right barrier at two different
gate voltages. (d) and (e) show PAT through the left barrier at two different gate voltage. The net electron flow
is from the drain to the source in (b, e) and from the source to the drain in (c, d).

on gate 4 with and without microwave radiation applied to the antenna. The measured
Coulomb peaks from 29 repetitions are plotted on the top of each other in Fig. 6.1(b).
The microwave excitation broadens the Coulomb peaks to the point where they begin
to overlap. The broadening is due to heating and photon-assisted tunneling, which
is discussed further below. We evaluate charge stability in units of gate voltage σVgate4

(σVgate4 =σIdot /(d Idot/dVgate4), as charge noise in the substrate affects the dot in a similar
way as gate voltage noise. We calculate σVgate4 over −483 mV<Vgate4 <−300 mV, restrict-
ing ourselves to current levels Idot <−2 pA, where σVgate4 is σIdot , the standard deviation
of the current level over 29 repetitions, divided by d Idot/dVgate4, the numerical deriva-
tive of the current with respect to the gate voltage. The histogram of σVgate4 is shown in
Fig. 6.1(c).

We see that microwave excitation produces only a small shift in the distribution of
σVgate4 , i.e., there is only a small increase in charge noise, even with a high power applied
to the antenna. We measured the GaAs sample in the same setup and the charge stability
was better than the SiGe sample used in this work, telling us that the observed noise re-
sults from the sample and not from the set-up. The two traces in Fig. 6.1(b) are recorded
under identical conditions. Dot currents were measured using a low bandwidth (200 Hz)
I-V converter with a noise floor of 5 fA/

p
H z.
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6.2. PHOTON-ASSISTED TUNNELING ON A SINGLE QUANTUM

DOT
We now analyze the Coulomb peak shape in the presence of microwave excitation. We
show the response for different excitation frequencies and microwave powers in Fig. 6.2(a).
We interpret the microwave response in terms of photon-assisted tunneling (PAT) in a
single quantum dot, which gives a net contribution to current when the microwave field
couples asymmetrically to the device(Braun and Burkard, 2008; Dovinos and Williams,
2005; Oosterkamp et al., 1997; Prati, Latempa, and Fanciulli, 2009). Specifically, the mi-
crowaves can couple differently to the dot, to the source, and to the drain, as discussed
in (Oosterkamp et al., 1997). This results in unequal voltage drops at the left and right
tunnel barriers due to the a.c. excitation. Figs. 6.2(b-e) depict the extreme cases, where
there is an a.c. voltage drop only across the right and left barrier, respectively. When the
dot level is above the Fermi level of a reservoir by exactly the microwave energy, tunnel-
ing from the reservoir into the dot across this barrier is made possible through PAT, as
depicted by the long red arrows in Figs. 6.2(c,e). Similarly, the dot can be depopulated by
PAT if it is below the Fermi level of a reservoir by exactly the microwave energy, as shown
in Figs. 6.2(b,d). Once the dot is populated (depopulated) through PAT, it can depopulate
(populate) by tunneling through either barrier, as represented by the short gray arrows
in Figs. 6.2(b-e). The sequence of population and depopulation induces a non-zero net
electron flow as indicated by the blue arrows at the bottom of Figs. 6.2(b-e), which would
be present even without a voltage bias across the dot(Kouwenhoven et al., 1994a,b).
The pumping contribution, which is asymmetric, adds to the gate-voltage symmetric
contribution from the bias. A further asymmetric contribution to net current can arise
from tunnel-barrier modulation as discussed in (Braun and Burkard, 2008; Bruder and
Schoeller, 1994; Kouwenhoven et al., 1991).

The asymmetry of the Coulomb peaks for f =13.5 GHz and 16.5 GHz in Fig. 6.2(a)
indicates that the left barrier has the larger a.c. voltage drop, corresponding to the situ-
ation of Figs. 6.2(d,e). On the right side of the peaks (shown in Fig. 6.2(d)), PAT leads to
extra negative current and on the left side (the case of Fig. 6.2(e)) to extra positive cur-
rent. Thus, the single dot operates as an electron pump under microwave irradiation.
As expected, the pumping current becomes more pronounced with stronger microwave
power(Braun and Burkard, 2008; Oosterkamp et al., 1997), and eventually it can domi-
nate transport through the dot. The asymmetry of the peaks is reversed for f =20 GHz,
indicating that here the right barrier has the larger a.c. voltage drop, corresponding to
the situation of Figs. 6.2(b,c) A qualitatively similar frequency and power dependence
of the Coulomb peak shape was observed when applying microwave excitation to gate
2, indicating that these observations are not specific to excitation of the antenna. (See
Fig. 6.S1(b) in the supplementary section of this chapter.)

6.3. HEATING EFFECT DUE TO D.C. CURRENT
Next, we turn to applying a d.c. current to the antenna, creating a local static magnetic
field gradient at the position of the dots. To detect ESR using transport measurements
in the spin blockade regime (often the method of choice (Brunner et al., 2011; Koppens
et al., 2006; Ono et al., 2002)), S-T0 mixing, which lifts spin blockade, should be faster
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Figure 6.3: (a) Measured current through the right dot as a function of the voltage on gate 2 with different
d.c. currents through the antenna (see symbols in the legend). The voltage difference between the source
and drain is VSD = −58 µV, −8 µV and 42 µV (the lines are offset for clarity). The solid lines are fits to Eq. 6.4
with the temperatures in the source TS and in the drain TD as fitting parameters. Insets show schematics of
the energy levels for the corresponding VSD , and for the case where the temperature is higher in the source
reservoir than in the drain. (b) Temperatures in the source and drain reservoir as a function of d.c. current
through the antenna extracted from the fits in panels (a). The error bars indicate 95% confidence intervals for
the fitting parameters TS and TD .

than 1 MHz. This gives current levels ∼160 fA, which is a good target value to give an ob-
servable contrast between parallel and anti-parallel spins(Koppens et al., 2006). Based
on numerical simulations of the magnetic field profile generated by the antenna, we es-
timate that a 4 mA d.c. current produces a ∼40 µT field difference between two dots
that are 30 nm apart and separated from the antenna by 200 nm (the lateral distance
between the center of the two dots and the end of the on-chip antenna). A ∼40 µT field
difference is ∼3 times higher than the intrinsic nuclear field difference in Si/SiGe(Maune
et al., 2012), and would give a 1.1 MHz S-T0 mixing rate for a g -factor of 2. A further con-
tribution to singlet-triplet mixing arises when the microwave field amplitude is different
in the two dots (with this sample, we expect 10% of amplitude difference), causing the
spins to rotate at different Rabi frequencies(Koppens et al., 2006).

The d.c. current that can be applied is ultimately limited by Joule heating. This in-
creases the temperature of the reservoirs and broadens the Coulomb blockade peaks.
We have determined the heating of the electron reservoirs by the d.c. biased antenna.
Fig. 6.3(a) show a Coulomb peak measured while applying d.c. currents up to 6 mA for
three different source-drain voltages VSD = −58 µV, −8 µV, and +42 µV. The horizontal
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axis of Fig. 6.3(a) is the electrochemical potential of the dot, converted from Vgate2 using
the conversion factor 50 µeV/mV (extracted from Coulomb diamonds). According to the
Landauer formula(Datta, 1997; Hoffmann and Linke, 2009; Mani et al., 2011), the current
through a single quantum dot as a function of energy ε0 is given by

I (ε0) =−2eh
∫ ∞

−∞
( fS(ε) − fD(ε))τ(ε−ε0)dε, (6.1)

where τ(ε) is the transmission coefficient of the quantum dot as a function of energy ε,

τ(ε) = (Γ/2)π

(Γ/2)2 +ε2 , (6.2)

and fS (ε) ( fD (ε)) is the Fermi distribution of the source (drain),

fi (ε) = exp

(
ε−µi

kTi

)
+1, (6.3)

with i = S, D ,µS−µD =VSD , k Boltzmann’s constant and T the temperature. If the tunnel
coupling Γ between the dot and the reservoir is much less than kT , the transmission
coefficient is well approximated by a delta function:(Foxman et al., 1993) τ(ε−ε0) ≈ δ(ε−
ε0). Fitting the Coulomb peak for VSD =−8µV, without any d.c. current or a.c. excitation,
(∗ symbols in Fig. 6.3(a)) with Eq. 6.1 gives Γ∼0.9 µeV (∼10 mK). Therefore, we can apply
the delta function approximation and the current can be rewritten as

I (ε0) =−2eh
(

fS (ε0)− fD (ε0)
)

. (6.4)

The Coulomb peaks of the right dot with IDC =0 mA, 1 mA, 2 mA, and 3 mA and for
VSD =−58 µV, -8 µV and 42 µV are fitted to Eq. 6.4 (solid lines in Fig. 6.3(a)). This expres-
sion applies as long as transport occurs via a single quantum dot level only, i.e., when
the energy level spacing is larger than the temperature of the reservoirs. The smallest
energy splitting in Si/SiGe quantum dots is usually the valley-orbit splitting, which is
typically of the order of 100 µeV (Borselli et al., 2011; Simmons et al., 2010). Thus, we
assume that Eq. 6.4 is a good fitting model below 1.2 K (∼100 µeV). Fig. 6.3(b) shows
the temperatures in the source and drain reservoirs (TS and TD ) obtained from the fits.
As expected, both temperatures increase with the applied d.c. current, and the temper-
ature in the source reservoir, which is closest to the on-chip antenna, is higher in all
cases. The arrows in Fig. 6.3(a) show the direction of the electron flow at different gate
voltages. At certain points, the difference of the temperatures in the two reservoirs can
induce electron flow in the opposite direction of the applied bias. This looks superfi-
cially similar to the pumping currents due to PAT. We can directly compare the Coulomb
peaks in Fig. 6.3(a) with the Coulomb peak at Vg ate2 =−355 mV in Fig. 6.2(a), since they
are measured at the same gate voltage settings and for the same charge configuration.
We see that at high microwave power, the Coulomb peak shape in Fig. 6.2(a) for the
case of 13.5 GHz and 16.5 GHz has an opposite asymmetry to the Coulomb peak seen in
Fig. 6.3(a), which is caused by heating below the antenna. We take this as evidence that
at high power, photon-assisted tunneling effects are dominant over heating via phonons.
On the other hand, the Coulomb peak shape in Fig. 6.2(a) for the case of 20 GHz is simi-
lar to the Coulomb peak seen in Fig. 6.3(a). However, we can conclude that the pumping
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current observed in Fig. 6.2(a) cannot be explained by heating because of the following
reasoning. There is a -10 dB attenuator at room temperature, and a -20 dB attenuator
at 1 K. The additional frequency dependent attenuation in the high-frequency lines is
measured to be about 0.75 dB/GHz, bringing the total attenuation at 20 GHz to -45 dB.
The largest power emitted by the source in Fig. 6.2(a) is 5dBm, so the power arriving at
the sample is about -40 dBm. Going into 50 Ω, this power would result in 2.25 mV and
45 µA rms amplitudes. This is 20–100 times smaller than the DC currents applied in
Fig. 6.3(a), dissipating 400–10000 times less power. Since the microwave antenna has an
impedance different from 50 Ω, some of the incident power is reflected and the power
dissipated locally is even smaller. We note that an asymmetric Coulomb peak is observed
for VSD = 0 V even without d.c. or a.c. current (see Fig. 6.3(a)). From fits to Eq. 6.4, we
find that the temperature difference between the two reservoirs is around 100 mK even
for IDC = 0 as shown in Fig. 6.3(b). The d.c. line connected to the on-chip antenna goes
to the room temperature current source without filtering. Thus Johnson–Nyquist noise
coming from the room temperature may cause heating beneath the antenna, giving a
temperature difference between two reservoirs. Similar asymmetric heating of the reser-
voirs was found when measuring the left dot, and when the constriction between gates
1 and 9 was pinched off.

6.4. POTENTIAL FOR USING THE ANTENNA TO PERFORM SINGLE-
SPIN ESR EXPERIMENTS

In spin qubit measurements, the temperature should be smaller than the energy scale
that is important for initialization and single-shot read-out:(Elzerman et al., 2004; Nowack
et al., 2011) the Zeeman energy, which is ∼100 µeV/T in silicon. Another relevant energy
scale is the lowest orbital splitting, or the valley-orbit splitting, typically at least 100 µeV
for PSB read-out. Other energy scales such as the charging energy are significantly larger.
The temperature should therefore remain well below ∼1 K, and from the results shown
in Fig. 6.3(b), this implies that we should limit the d.c. current to 2 mA. This is about two
times less than the 4 mA needed for efficient detection of ESR-induced Rabi oscillations,
as discussed above (We note that an oscillation can be detected even without a gradient
if the magnetic excitation differs in strength between the two dots, but with a frequency
given by the difference between the respective Rabi frequencies, or a much lower fre-
quency than with field gradient.). Alternative approaches that could be used to produce
a local static magnetic field gradient without Joule heating are a micromagnet (Brunner
et al., 2011; Pioro-Ladrière et al., 2008b) or a superconducting on-chip antenna.

6.5. CHARGE STABILITY OF DEVICE B AND PHOTON-ASSISTED

TUNNELING ON A DOUBLE QUANTUM DOT
In the previous sections, we presented the photon-assisted-tunneling of an electron be-
tween a dot and a reservoir. In this section, we demonstrate photon-assisted-tunneling
of an electron from one dot to another dot (Oosterkamp et al., 1998; Shevchenko, Ash-
hab, and Nori, 2010; Stehlik et al., 2012) using Device B (Sec. 5.3).

The device schematic around the position of the double dot is presented with false
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color in Fig. 6.4(a). A double quantum dot is formed around the position indicated by a
green circle and a blue circle. Fig. 6.4(b) shows the differential conductance d I

dVgate11
as a

function of the voltage on gate 11 and gate 9. Tentative absolute electron numbers of the
left dot and the right dot are shown in Fig. 6.4(b). The inter-dot charge transition has a
negative slope because both gate 11 and 9 are more strongly coupled to the left dot than
to the right dot.
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Figure 6.4: Device schematic and charge stability diagram (a) False color device image showing the fabricated
pattern of split gates, labeled 1-12. For this experiment, we created a double quantum dot, withe the estimated
location shown by the blue and green circles. A QPC charge sensor is created between the gate 2 and gate 12.
The blue semi-transparent rectangle shows the position of a 200 nm thick Co micromagnet. Microwaves are
applied to gate 11 for the measurements shown in Fig. 6.5(b) and Fig. 6.6. (b) Charge stability diagram of the
double dot system, measured via the differential transconductance of the QPC created between the gate 2 and
gate 12. The tentative absolute electron numbers for the left dot (L) and the right dot (R) are shown by (L,R).
The dotted rectangle shows the region of the stability diagram measured in Fig. 6.5(a,b).

Fig. 6.5(a,b) show the measured charge stability diagram around the (0,2) − (1,1)
charge transition without microwave excitation for (a) and with microwave excitation for
(b). Microwaves can induce an electron to tunnel from the right to left dot or from the
left to the right dot when the microwave photon frequency is equal to the energy sepa-
ration between the (0,2) and (1,1) charge state (Brune, Bruder, and Schoeller, 1997; Petta
et al., 2004; Stafford and Wingreen, 1996; Stoof and Nazarov, 1996). This photon-assisted
tunneling tunneling event can be measured by charge sensing shown in Fig. 6.5(b). Four
satellite peaks appear in the presence of microwave excitation. The first (second) satel-
lite peaks on both sides of the inter-dot transition are attributed to one-photon (two-
photon) process and these are ∼ ħω (∼ 2ħω ) further away from the inter-dot charge
transition.

Although we did not study the charge stability of Device B systematically, comparing
Fig. 6.5(a) and Fig. 6.5(b), we suggest that we did not observe any significant effect on
the charge stability diagram by microwave excitation to gate 11.

In Fig. 6.6(a), we plot the derivative of the QPC current measured through a lock-in
amplifier as a function of detuning and applied microwave power at a fixed microwave
frequency of 35 GHz. The derivative of the QPC current represents the probability of the
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Figure 6.5: (a) Derivative of the QPC current without microwave excitation. (b) Derivative of the QPC cur-
rent measured through a lock-in amplifier with 14dBm, 35 GHz microwave excitation. The microwaves were
chopped at the reference frequency of the lock-in amplifier (2.015 kHz). 2 parallel lines (single and two-photon
process) appear on each side of the inter-dot transition. (c,d) Energy level diagram as a function of detuning
between (0,2) and (1,1) without microwave excitation for (c) and with microwave excitation for (d). The black
curves represent the adiabatic energy levels with an avoided crossing. The black (dotted red) line shows the
diabatic energy level of (0,2) state ((1,1) state) . The red circles indicate the detuning position where the tun-
neling of an electron between (0,2) and (1,1) states occurs. In (d), when microwaves are applied, virtual (1,1)
states whose energy levels are lower or higher by the integer multiple of ħω with microwave frequency ω ap-
pear. It leads to the inter-dot tunneling at the detuning position nħω, where n is an integer, further away from
the inter-dot charge transition as indicated by red circles.

electron tunneling from the left to the right dot or vice versa. The probability oscillates
as a function of the detuning due to multi-photon processes and as a function of the mi-
crowave power due to the Stückelberg phase (Oosterkamp et al., 1998, 1997; Shevchenko,
Ashhab, and Nori, 2010; Stehlik et al., 2012; van der Wiel et al., 1999).

As discussed above, the satellite peaks appear nħω further away from the inter-dot
charge transition. However, when the microwave frequency is comparable to the tunnel
coupling, the distance between the satellite peaks and the inter-dot charge transition is

corrected to
√

(nħω)2 − (2t )2. When the microwave frequency is lower than the tunnel
coupling, the first satellite peaks cannot be observed. Fig. 6.6(b) shows the experimental
data for the distance between the first (second) satellite peaks and the inter-dot charge
transition as a function of the microwave frequency with blue (red) points. The experi-
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mental data have been fit using (Shang et al., 2013; van der Wiel et al., 1999)

αδVgate11 =
√

(nħω)2 − (2t )2, (6.5)

for the n−th photon process, where n is an integer, f is the microwave frequency, and
t is the inter-dot tunnel coupling. From this fit, we obtained a tunnel coupling of t ∼
7.5 GHz.
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Figure 6.6: (a) Derivative of the QPC current measured through a lock-in amplifier with 35 GHz microwave ex-
citation as a function of the microwave power on the microwave source and detuning (ε in Fig. 6.5, represented
by the voltage on gate 11). The reference frequency of the lock-in amplifier is 3.832 kHz. (b) Distance between
the main resonance and the first two satellites as a function of the applied microwave frequency fMW from 22
to 50 GHz. Solid lines are best fit theory curves. The inter-dot tunnel coupling t results in a splitting of 2t at 0
detuning (δVgate11 = 0).

6.6. POTENTIAL FOR USING THE MICROMAGNET TO PERFORM

SINGLE-SPIN ESR EXPERIMENTS
In Sec. 6.4, we discussed the potential for using an antenna for ESR experiments, where
we concluded that we cannot run a high enough d.c. current through the antenna to
perform the spin state detection in PSB regime due to the Joule heating. As implicitly
already discussed in Sec. 2.4, we do not have such a concern for Device B. With the mi-
cromagnets fabricated on top of Device B, we can reach the magnetic field gradient re-
quired for the addressability (1 mT/nm, see also Appendix E.1.2), which is higher than
that required for the spin state detection in the PSB regime. In this section, we discuss
whether the amplitude of the electric field created on the device with microwave excita-
tion is high enough to achieve electron spin resonance in future experiments, following
(Nowack, 2009; Nowack et al., 2007).

The inter-dot tunnel barrier with microwave excitation is proportional to the square

of the n−th order Bessel function J 2
n(α) with α= eV AC

interdot
h fMW

, where h is Plank constant, e is

the elementary charge, and V AC
interdot is the voltage amplitude across the left dot and the
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right dot created by a microwave excitation. As shown in Fig. 6.6, we observed the first
and second photon process of the photon-assisted tunneling. Thus the maximum volt-
age amplitude created at the dot position in this experiment is estimated to be V AC

interdot ∼
αh fMW/e ∼ 0.33 mV with fMW = 40 GHz and α= 2. Assuming that the voltage drops lin-
early over the left dot and the right dot, the amplitude of the oscillating electric field at
the double dot position is calculated to be E AC = V AC

interdot/linterdot, where linterdot is the
distance between the two dot centers. In order to estimate the Rabi frequency which we
can obtain with this amplitude of the electric field E AC , we rewrite Eq. 3.15 as

B AC ∼ 1

2
eV AC

interdot

dB⊥
d x

l 2
or b

linterdot∆or b
. (6.6)

For a rough estimation, by taking linterdot = 200 nm, the dot diameter lor b = 50 nm, the
field gradient created by the micromagnets dB⊥

d x = 1 mT/nm (Appendix G) and the or-
bital splitting ∆or b = 1 meV, the amplitude of an effective oscillating magnetic field is
calculated to be B AC = 2 mT. This magnetic field amplitude corresponds to 54 MHz Rabi
frequency for an electron spin in Si and is high enough to achieve coherent driving of an
electron spin considering the expected dephasing time for electron spins in Si quantum
dots (Assali et al., 2011).

6.7. CONCLUSIONS
In conclusion, we have demonstrated photon-assisted tunneling in a single Si/SiGe quan-
tum dot on Device A and a double Si/SiGe quantum dot on Device B using a microwave
excitation. In Device A, microwaves were applied to an antenna, which had a small effect
on charge stability. In Device B, microwaves were applied to one of the surface gates,
which did not have any observable effect on charge stability. On Device A, we explore
the use of a d.c. current applied to the antenna for generating local, tunable magnetic
field gradients. A field gradient around 1 µT/nm is achievable with a 2 mA d.c. cur-
rent through the antenna, limited by Joule heating. On Device B, we measured that the
maximum voltage amplitude across two dots that we created is 0.33 mV, which is high
enough to perform ESR experiments when combined with the magnetic field gradient
(1 mT/nm) created by the micromagnets.

SUPPLEMENTARY SECTION
In this supplementary section, we present the supplementary information for the photon-
assisted tunneling measurement for one dot using Device A.

The pumping direction is determined by both the settings of the voltages on the
gates and the applied microwave frequency (Braun and Burkard, 2008; Oosterkamp et al.,
1997). In Fig. 6.2(a), we show that the pumping direction is changed depending on the
microwave frequency keeping the same gate voltage settings. The comparison between
Fig. 6.2(a) and Fig. 6.S1(a) shows that the pumping direction can also be reversed by
changing the gate voltages, keeping the same microwave frequency. (Note that Fig. 6.2(a)
shows the measurement on the right dot while Fig. 6.S1(a) is taken on the left dot.).
The reversal of the pumping current occurs when the change in gate voltages reverses
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the asymmetry in the coupling of the microwaves to the corresponding barriers, as ex-
plained in (Oosterkamp et al., 1997). For the case of Joule heating induced by a DC cur-
rent throught the antenna, in contrast, we did not observe any change in the pumping
direction when changing the gate voltages, as expected.

Fig. 6.S1(a) also shows the effect of changing the relative phase of the excitation at
the two ends of the antenna. In the experiment, the relative phase was varied via an un-
calibrated phase shifter in the line between one end of the antenna and the microwave
source. The figure clearly shows that the relative phase strongly affects the strength of
the microwave response, without changing the pumping direction. This strong depen-
dence is expected, since the relative phase of the microwaves applied to the two ends
of the antenna sets the voltage amplitude at the antenna, and hence the electric field
amplitude at the dot (the AC voltage is at a maximum when the AC current is at a mini-
mum and vice versa). Also as expected, the change in the phase shifter setting required
to return to the same response is approximately 1/3 smaller for 30 GHz than for 20 GHz
(the phase shifter works by effectively increasing the length of the coax line). Finally, we
note that asymmetric pumping was also observed when applying microwave excitation
to gate 2, indicating that these observations are not specific to excitation of the antenna.
(Fig. 6.S1(b))

(a) (b)

(mV)(mV)

(p
A

)

(p
A

)

Figure 6.S1: (a) Measured current through the left dot as a function of the voltage on gate 4 with the excitation
of 20 GHz 0 dBm microwave applied to the antenna by changing the relative phase of the excitation at the
two ends of the antenna. The phase (uncalibrated) is incremented from phase0 (green open circles) to phase1
(black triangles), phase2 (pink asterisks), phase3 (red crosses), and phase4 (yellow filled circles). VSD =−35 µV
(b) Measured current through the right dot as a function of the voltage on gate 2 for different microwave fre-
quencies (here the microwaves are applied to gate 2 instead of the antenna). The current in the absence of
microwaves (blue dotted line) is shown for comparison. VSD = 25 µV
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SI/SIGE QUANTUM DOT

Nanofabricated quantum bits permit large-scale integration but usually suffer from short
coherence times due to interactions with their solid-state environment (Eckstein and
Levy, 2013). The outstanding challenge is to engineer the environment so that it min-
imally affects the qubit, but still allows qubit control and scalability. Here we demon-
strate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical
two-axis control. The spin is driven by resonant microwave electric fields in a transverse
magnetic field gradient from a local micromagnet (Tokura et al., 2006), and the spin state
is read out in single-shot mode (Elzerman et al., 2004). Electron spin resonance occurs
at two closely spaced frequencies, which we attribute to two valley states. Thanks to the
weak hyperfine coupling in silicon, a Ramsey decay timescale of 900 ns is observed, al-
most two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots
(Chekhovich et al., 2013; Petta et al., 2005), while gate operation times are comparable
to those reported in GaAs (Hanson et al., 2007; Koppens et al., 2006; Obata et al., 2010).
The spin echo decay time is around 40 µs both with one and with four echo pulses, pos-
sibly limited by inter-valley scattering. These advances strongly improve the prospects
for quantum information processing based on quantum dots.

The work in this chapter has been published as: E. Kawakami∗, P. Scarlino∗, D. R. Ward, F. R. Braakman, D. E.
Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson and L. M. K. Vandersypen, Nature
Nanotech. 9, 666 (2014).
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7.1. INTRODUCTION
The proposal by Loss and DiVincenzo (Loss and DiVincenzo, 1998) to define quantum
bits by the state of a single electron spin in a gate-defined semiconductor quantum
dot has guided research for the past 15 years (Hanson et al., 2007). Most progress was
made in well-controlled III-V quantum dots, where spin manipulation with two (Nowack
et al., 2011; Petta et al., 2005), three (Medford et al., 2013) and four (Shulman et al.,
2012) dots has been realized, but gate fidelities and spin coherence times are limited
by the unavoidable interaction with the fluctuating nuclear spins in the host substrate
(Chekhovich et al., 2013; Petta et al., 2005). While the randomness of the nuclear spin
bath could be mitigated to some extent by feedback techniques (Bluhm et al., 2010a),
eliminating the nuclear spins by using group IV host materials offers the potential for
extremely long electron spin coherence times. For instance, a dynamical decoupling de-
cay time of half a second was observed for an electron bound to a P impurity in 28Si
(Muhonen et al., 2014).

Much effort has been made to develop stable spin qubits in quantum dots defined
in carbon nanotubes (Churchill et al., 2009; Laird, Pei, and Kouwenhoven, 2013), Ge/Si
core/shell nanowires (Higginbotham et al., 2014), Si MOSFETs (Hao et al., 2014; Yang
et al., 2013) and Si/SiGe 2D electron gases (Maune et al., 2012; Prance et al., 2012; Zwa-
nenburg et al., 2013). However, coherent control in these group IV quantum dots is so
far limited to a Si/SiGe singlet-triplet qubit with a spin dephasing time of 360 ns but
single-axis control only (Maune et al., 2012) and a carbon nanotube single-electron spin
qubit, with two-axis control but a Hahn echo decay time of only 65 ns (Laird, Pei, and
Kouwenhoven, 2013).

7.2. DEVICE AND QUANTUM DOT CHARACTERIZATION
The device schematic around the position of the dot is presented with false color in
Fig. 7.1(a). This device is based on an undoped Si/SiGe heterostructure with two layers
of electrostatic gates: a set of accumulation gates and a set of depletion gates, accommo-
dated with two Co micromagnets. Compared to conventional, doped heterostructures,
this technology strongly improves charge stability (Maune et al., 2012). The design of
the fine gates is meant to be used for the creation of a double quantum dot but in the
experiments shown here we created only one dot.

By applying ∼+150 mV on two accumulation gates, we induce a two-dimensional
electron gas (2DEG) in a Si quantum well. The right dot is tuned to the few-electron
regime by adjusting the voltages on depletion gates 3, 4, 5, 8, 9 and 10. Fig. 7.1(b) shows
the differential transconductance d I

dVg ate3
as a function of the voltages on gates 3 and 5.

No other charge transitions are observed when pushing the voltage of gate 3 down to
-375 mV with the other gate voltages kept at the same values as used in Fig. 7.1(b), which
permits us to assign tentative absolute electron numbers as shown in Fig. 7.1(b). The
experiment is done at the 0-1 charge transition. This quantum dot presents an addition
energy of 9 meV and an orbital level spacing of 450 µeV, estimated by pulse spectroscopy
measurements. From the addition energies we extract a dot radius r ∼21 nm (in the
approximation of a circular QD); from the orbital level spacing we deduce r ∼28 nm
assuming a harmonic confining potential and again a circular dot. Pulse spectroscopy
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Figure 7.1: Device schematic and charge stability diagram (a) False color device image showing a fabricated
pattern of split gates, labeled 1-12. The region shown is outlined with dotted lines in Fig. 5.1. For the experi-
ments in Ch. 7-9, we create a single quantum dot (QD), estimated location at the red circle, and a sensing dot
(SD). The current I is measured as a function of time for a fixed voltage bias of -600 µeV. The voltage pulses
are applied to gate 3 and the microwaves are applied to gate 8. The blue semi-transparent rectangles show the
position of two Co 200 nm thick micromagnets. The yellow shaded pieces show the location of two accumula-
tion gates, one for the reservoirs and another for the double quantum dot region. (b) Charge stability diagram
of the single dot system, measured via the sensing quantum dot differential transconductance as a function
of Vgate3 and Vgate5. The sharp nearly vertical lines correspond to changes in the dot occupation. The broad
diagonal blue line corresponds to a Coulomb peak in the sensing dot. The tentative absolute electron numbers
0-3 are shown.

measurements (not reported here) also show the linear dependence of the Zeeman split-
ting of the lowest orbital state as a function of external magnetic field, allowing us to cali-
brate the conversion factor between pulse amplitude and energy. The left dot is not used
in the experiment and the constrictions between gates 4 and 8 and between 3 and 10 are
pinched off. The tunnel rate between the dot and the reservoir is adjusted to ∼1 kHz,
so that dot-reservoir tunnel events can be monitored in real time using the sensing dot
(Fig. 7.1(b)). The electron temperature estimated from transport measurements is ∼150
mK (not applying microwaves).

Thanks to the capacitive coupling between the dot and the sensing QD, the current
level of the sensing QD is decreased (increased) by ∼400 pA when an electron jumps
from the dot to the reservoir (from the reservoir to the dot). We use a room temperature
IV converter to record the sensing dot current, I , using a low-pass filter with ∼20 kHz
cut-off to obtain a sufficient signal-to-noise ratio.

7.3. ELECTRON SPIN RESONANCE SPECTROSCOPY
For all measurements shown here, we use 4-stage voltage pulses applied to gate 3 and
microwave excitation to gate 8 (Fig. 7.1(b)). The initialization and read-out stages take
4 ms and the manipulation and emptying stages take 1 ms. Both the initialization fidelity
and the read-out fidelities were measured to be ∼ 0.95 (Sec. 7.S7). The cycle was typically
repeated 150-1000 times, unless otherwise stated, to measure the spin-up probability
P↑. The external magnetic field was applied along the x axis in Fig. 5.1(a). As discussed
in Sec. 3.1.1, we applied the magnetic field along this direction to maximize the field
gradient for EDSR at the position of the dot.

The measured spin resonance frequency as a function of applied magnetic field is
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Figure 7.2: : Qubit spectroscopy a, Measured microwave frequency that matches the electric dipole spin res-

onance (EDSR) condition f (2)
0 (dark blue and light blue circles) and the difference between the two resonance

frequencies f (1)
0 − f (2)

0 (green triangles) as a function of externally applied magnetic field. The 6 points where
fM W > 6GHz are measured by two-photon transitions (Ch. 8). The microwave burst time tp = 700µs À T∗

2 ,
effectively corresponding to continuous wave (CW) excitation (here we used low power excitation, P = -33 dBm
to -10 dBm at the source, decreasing with lower microwave frequency). The upper of the two resonances in
panel (b) is shown. The blue solid curve is a fit to the dark blue circles using equation (1). The light blue circles
are excluded from the fit; presumably the micromagnet begins to demagnetize here. The green line is a linear
fit to the green triangles. b, Measured spin-up probability P↑ as a function of applied microwave frequency
fMW for Bext = 560.782 mT (P = -33 dBm), averaged over 200 minutes, i.e. 1200000 single-shot measurements.

shown in Fig. 7.2(a). We can extract the electron g -factor using the relation:

h f0 = gµB Blocal, (7.1)

where Blocal =
√

(Bext +B∥)2 +B 2
⊥, h is Planck constant and µB is the Bohr magnetron.

From fits to Eq. 7.1 (blue curve in Fig. 7.2(a)), we find g = 1.998±0.002, where we used
B∥ =−120 mT and B⊥+50 mT, based on numerical simulation of the stray magnetic field
from the micromagnet at the estimated dot location (Sec. 3.2).

Surprisingly, when measuring the EDSR peak at a sufficiently low power to avoid
power broadening, we resolve two lines, separated by 2-4 MHz in the range Bext =0.55-
1.2 T (Fig. 7.2(b)). We return to the origin of this splitting in Sec. 7.6.
Fitting each resonance peak with a Gaussian function (Eq. 4.30) yields δ f (1)

FWHM = 0.63±
0.06 MHz for the higher-energy transition at frequency f (1)

0 and δ f (2)
FWHM = 0.59± 0.56

for the lower-energy transition at frequency f (2)
0 . From this line width, we extract a de-

phasing time T ∗
2 = 2

p
ln(2)

πδ fFW H M
= 840±70 ns (Eq. 4.41), 30-100 times longer than T ∗

2 in III-V
dots (Chekhovich et al., 2013; Hanson et al., 2007; Koppens et al., 2006; Petta et al., 2005).
This dephasing timescale can be attributed to the random nuclear field from the 0.05%
29Si atoms in the substrate with standard deviation σB = 9.6 µT, consistent with theory
(Assali et al., 2011). Previous T ∗

2 measurements in Si/SiGe dots (Maune et al., 2012; Wu
et al., 2014) gave somewhat shorter values of 220 ns to 360 ns. T ∗

2 is expected to scale with
the square root of the number of nuclear spins the electron wavefunction overlaps with
(Eq. 3.43). Considering these other measurements were done on double dots, this would
imply variations in the volume per dot up to a factor of 7, if nuclear spins were domi-
nating the decay. Given the presence of a magnetic field gradient dB∥/d x ∼ 0.2 mT/nm
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(Sec. 3.2), the line width also gives an upper bound on the electron micromotion induced
by low-frequency charge noise of ∼50 pm (rms).

7.4. COHERENT CONTROL OF ELECTRON SPIN
Coherent control of the electron spin is achieved by applying short high-power microwave
bursts of duration tp . Fig. 7.3(a) shows the measured spin-up probability, P↑, as a func-
tion of fMW and burst time tp , which exhibits the chevron pattern that is characteris-
tic of high-quality oscillations (here two partly overlapping patterns). On resonance,
the spin rotates at the bare Rabi frequency, f1. When detuned away from resonance by
∆ f = fMW − f0, the spin rotates about a tilted axis, the oscillation frequency increases as√
∆ f 2 + f 2

1 , and the visibility is reduced. The fast Fourier transform over the microwave

burst time of the data in Fig. 7.3(a) is shown in Fig. 7.3(c) and exhibits the expected
hyperbolic dependence as a function of ∆ f for both transitions, f (1)

0 and f (2)
0 . We fit

both hyperbola with one free parameter f1 each (black rectangles and red circles), giving
f (2)

1 = 5.0±0.6 MHz (B1 ∼ 0.18 mT) and f (1)
1 = 3.1±0.6 MHz (errors arise from the finite

number of points in the FFT) for the respective transitions. These single-spin Rabi fre-
quencies are comparable to those observed in GaAs (Koppens et al., 2006; Obata et al.,
2010). The relative amplitude of the oscillations at f (2)

0 and f (1)
0 is about 30/70; note that

despite its lower weight, the peak at f (2)
0 is tallest in Fig. 7.2(b), since its Rabi frequency is

a factor of 1.5±0.2 higher than that of the other peak (Sec. 7.S5). The extracted Rabi fre-
quencies of both transitions are proportional to the microwave amplitude, as expected
(Sec. 7.S9).

The observed decay of the Rabi oscillations cannot be explained only by the spread
in the Larmor frequency, σB . Numerical simulations of the Rabi oscillations give good
agreement with the measurements of Fig. 7.3(a) when including a variation in the Rabi
frequency, σ f1 ∼ 0.25 MHz (Sec. 7.S4). The fluctuations in the transverse nuclear field
(Laird et al., 2009) are too small to explain this spread. Instead, instrumentation noise
could be responsible. Modeling the gate operation taking into account f1, σB , and σ f1 ,
we estimate that the fidelity for flipping a spin from down to up is 0.99 (0.97) for an
electron spin resonant at f (2)

1 ( f (1)
1 ). For an electron in a 30/70 statistical mixture of the

two resonance conditions, the fidelity is ∼0.80 (Sec. 7.S6).

Two-axis control of the spin is demonstrated by varying the relative phase φ of two
π/2 microwave bursts resonant with f (1)

1 separated by a fixed waiting time τ= 40ns ¿ T ∗
2

(Fig. 7.3(f), black trace). As expected, the signal oscillates sinusoidally in φ with period
2π. For τ = 2 µs À T ∗

2 , the contrast has vanished, indicating that all phase information
is lost during the waiting time (Fig. 7.3(f), red trace). Similar measurements with the
pulses applied off-resonance by an amount ∆ f with φ = 0, are expected to show an os-
cillation with frequency ∆ f and an envelope that decays on the timescale T ∗

2 . Because
of the presence of two resonance lines just 2.1 MHz apart, the measurement of P↑ ver-
sus fMW and τ (Fig. 7.3(b)) shows a superposition of two such patterns. This becomes
clear from taking the Fourier transform over the waiting time τ (Fig. 7.3(d)) which shows
2 linear patterns superimposed, with vertices at f (1)

0 and f (2)
0 . The stability of the mea-

surement can be appreciated from Fig. 3e, which shows P↑ versus fMW and the relative
phase between the two bursts at τ= 400 ns.
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Figure 7.3: : Universal qubit control (a) Measured spin-up probability, P↑, as a function of fMW and burst time
tp (Bext = 560.782 mT, P=16.4 dBm). (b) Measured spin-up probability, P↑, as a function of fMW and waiting
time τ (Bext = 560.782 mT, P=16.4 dBm) between two π/2 (75 ns) pulses with equal phase, showing Ramsey
interference (Color map as in (a)). (c) Fourier transform over the microwave burst time tp of Fig. 3A showing

a hyperbolic dependence (black rectangles and red circles) as a function of fMW for each transition, f (1)
0 and

f (2)
0 . Inset: microwave pulse scheme used in (a). (d) Fourier transform over the waiting time τ of Fig. 3b

showing two linear patterns superimposed, with vertices at f (1)
0 and f (2)

0 . Inset: microwave pulse scheme used
in (b,d,e,f). (Color map as in (c)) (e) Measured spin-up probability, P↑, as a function of fMW and the relative
phase φ between two microwave pulses for τ= 400 ns (Bext = 763.287 mT, P=18.8 dBm). (Color map as in (a))
(f) Ramsey signal as a function of the relative phase φ between the two microwave pulses for τ= 400 ns (black

curves) and τ= 2 µs (red curves) (Bext = 763.287 mT, P=18.8 dBm, fMW = f (1)
0 = 18.41608 GHz).
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Figure 7.4: : Qubit coherence (Here, Bext = 747.710 mT, P=18.4 dBm, fMW = f (1)
0 = 17.695 GHz, f (1)

1 = 2.7
MHz.) (a) Measured spin-up probability, P↑, as a function of the total free evolution time τ in a Hahn echo
experiment (pulse scheme in inset). We did not see a significant difference in the decay when changing the
relative phase between the first pulse (77 ns) and the π pulse (150 ns) from φ = 0 to φ = 90. The decay curve
is fit well to a single exponential decay. (b) Measured spin-up probability, P↑, as a function of the total free
evolution time τwhen using four decoupling pulses. (c) Measured spin-up probability, P↑, as a function of the
position of the third pulse in the Hahn echo experiment. The free evolution time between the first and second
pulse is fixed at 5 µs and that between the second and third pulse is varied from 3 to 7 µs.
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7.5. SPIN ECHO

Spin coherence can be extended by spin echo techniques, provided the source of de-
phasing fluctuates slowly on the timescale of the electron spin dynamics. We perform a
Hahn echo experiment, consisting of π/2, π and π/2 pulses separated by waiting times
τ/2 (Hanson et al., 2007; Zwanenburg et al., 2013), and record P↑ as a function of the to-
tal free evolution time τ (Fig. 7.4(a). A fit to a single exponential yields a time constant
T2 = 37± 3 µs, almost 50 times longer than T ∗

2 . While this is encouraging, we had ex-
pected an even longer T2 based on the 200 µs Hahn echo decay observed for an electron
spin bound to a P-impurity in natural Si (Pla et al., 2012). Furthermore, contrary to our
expectations for an echo decay dominated by slowly fluctuating nuclear spins, the decay
is well-described by a single exponential, with no signatures of a flat top. One possible
explanation is that the fluctuations that dominate the echo decay are fast compared to
the few µs timescale of the first few data points (Cywinski et al., 2008). Another possi-
ble explanation is that the observed decoherence rate reflects the valley switching rate;
as soon as the valley switches, the spin resonance frequency jumps by about 2 MHz,
and the phase of the spin is randomized (cannot be recovered anymore). Both explana-
tions are consistent with the fact that a four-pulse decoupling pulse sequence does not
further extend the decay time (Fig. 7.4(b)). Either way, this implies that the slowly fluctu-
ating nuclear field does not yet limit T2 (Witzel and Das Sarma, 2006). Finally, when we
shift the position of the third pulse, the time intervals before and after the echo pulse are
no longer equal and coherence is lost, as expected (Fig. 7.4(c)). A fit of this decay with
a Gaussian function, gives measured in the time domain, consistent with T ∗

2 extracted
from the line width.

7.6. ELECTRON SPIN RESONANCE AND VALLEY STATES IN SI

We now return to the origin of the two resonance lines that are visible in all the mea-
surements. From the individual measurements, we deduce that the higher (lower) fre-
quency resonance contributes to the signal 0.7 (0.3) of the time, indicating that the sys-
tem does not simply exhibit two resonances but instead switches between two condi-
tions (Sec. 7.S13). The splitting between the two lines varies linearly with Bext, corre-
sponding to a difference in g-factors of about 0.015 percent, and an offset in Blocal be-
tween the two resonances of 65±138 mT (Fig. 7.2(a), green triangles). Finally, as men-
tioned before, the higher-frequency resonance exhibits ∼1.5 times slower Rabi oscilla-
tions than the lower-frequency resonance.

We propose that the two lines correspond to EDSR with the electron in one or the
other of the two lowest valley states, with a 30/70 occupation ratio. This ratio is set either
by the injection probabilities into the respective valley states, or by thermal equilibra-
tion, depending on whether the valley lifetime is shorter than the few ms delay between
injection and manipulation. We note that either way, initialization to a single valley can
be achieved when the valley splitting is several times larger than the electron temper-
ature. Initial reports of electric-field controlled valley splittings in Si dots may point to
a way of achieving such control (Yang et al., 2013). A valley-dependent spin splitting
can arise from several sources. Intrinsic spin-orbit coupling is weak in silicon, but the
field gradient from the micromagnet admixes spin and orbitals, leading to a renormal-
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ization of the g-factor by an amount that depends on the orbital level spacing (Tokura
et al., 2006). Due to valley-orbit coupling, the orbital level spacing in turn depends on
the valley. We estimate that this can result in observed valley-dependent g -factor shifts
of 0.015% (Sec. 7.S10). The difference in Rabi frequencies can be understood from a
valley-dependent orbital level spacing as well. Another mechanism that can account
for the observed g -factor shifts is valley-dependent penetration of the Bloch wave func-
tion into the SiGe barrier region (Sec. 7.S12). Other explanations we considered include
switching between two separate dot locations, a double dot, and transitions in a two-
electron manifold, but these are not consistent with the above observations; see also the
supplementary information.

7.7. CONCLUSIONS
The demonstration of all-electrical single-spin control with coherence times orders of
magnitude longer than intrinsic coherence timescales in III-V hosts greatly enhances
the promise of quantum dot based quantum computation. The presence of two closely
spaced resonances that we attribute to occupation of two different valleys shows the ne-
cessity for valley splitting control (Yang et al., 2013) not only for exchange-based quan-
tum gates (Zwanenburg et al., 2013) but also for single-spin manipulation. The use of a
micromagnet facilitates selective addressing of neighbouring spins and provides a cou-
pling mechanism of quantum dot spins to stripline resonators that can form the basis
for two-qubit gates and a scalable architecture (Xiang et al., 2013).
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SUPPLEMENTARY SECTIONS

7.S1. HEATING EFFECTS FROM THE MICROWAVE BURSTS
The application of high power microwave bursts affects the response of the sensing dot,
presumably due to heating, and this effect increases with burst time. In order to keep the
response constant and get better uniformity in the visibility of the spin oscillations as we
vary the burst time during the manipulation stage, we include a second microwave burst
at the end of the read-out stage such that the total microwave burst duration over a full
cycle is kept constant at 2 µs.

7.S2. FINDING THE SPIN RESONANCE CONDITION
Before performing the experiment, the electron spin g -factor is not precisely known. The
presence of the micromagnet creates further uncertainty in the spin resonance condi-
tion. The continuous wave low power EDSR response exhibits very narrow lines, making
it easy to miss the resonance when scanning the magnetic field or frequency for the first
time. At higher power, the line is power broadened, so larger steps in field or frequency
can be taken, accelerating the scan. We used an even more efficient technique, adiabatic
rapid passage. This technique was successfully used in quantum dots before (Shafiei
et al., 2013) and allows one to step the frequency in increments corresponding to the
frequency chirp range used for the adiabatic inversion (40-60 MHz in our experiments).

7.S3. SPIN RELAXATION TIME T1
We did not observe any change in the measured spin-up probability when changing the
timing of the microwave burst during the manipulation stage by up to 2 ms. Thus we
conclude that the spin relaxation time T1 is much longer than the ms timescale of our
pulse cycle and that the measurements shown here are not affected by T1 decay, consis-
tent with the long T1 times seen in earlier measurements on Si or Si/SiGe dots and donor
(Morello et al., 2010; Simmons et al., 2011b; Yang et al., 2013).
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7.S4. RABI OSCILLATION CONTRIBUTED FROM TWO VALLEY STATES
We calculate the measured spin up probability of the Rabi oscillation considering the
contribution from both two valley states. As discussed in Sec. 4.3, we cannot use any
analytical expression in the case of f1 ∼ σ f and thus we perform a numerical integral
of Eq. 4.25 with σω = 2πσ f . The standard deviation of the Larmor frequency is ex-

tracted from the line width in Fig. 7.2 σ f = δ fFWHM

2
p

2ln(2)
=0.268 MHz. Here we rewrite the

average of the measurement outcome (Eq. 4.25) for the valley state (n) (n = 1 or 2) as〈
p(n)
↑0

〉
(ωMW,ω(n)

0 ,ω(n)
1 , t ) in order to explicitly show that it is a function of the applied

microwave frequency ωMW, the center Larmor frequency for each valley state ω(n)
0 , and

the Rabi frequency for each valley state ω(n)
1 for each valley state and the microwave

burst time t . Here we assume that the populations in resonances (1) and (2) are ε(1), and
ε(2), respectively. If in addition we assume that not only the Larmor frequency but the
Rabi frequency also follows a Gaussian distribution, the measured spin-up probability
for perfect initialization and read-out is given by

P↑0( fMW, tp ) = ∑
n=1,2

ε(n)P (n)
↑0 ( fMW, tp ), (7.S1)

where P (n)
↑0 ( fMW, tp ) = ∫

dω1g (n)(ω1)
〈

p(n)
↑0

〉(
2π fMW,2π f (n)

0 ,ω1, tp

)
,

with g (n)(ω1) = 1p
2πσω1

exp

(
−

(
ω1−ω(n)

1

)2

2σ2
2πσ f1

)
, and ω(n)

1 = 2π f (n)
1 . The standard deviation of

the Larmor frequencyσ f =0.268 MHz is extracted directly from the line width (Fig. 7.2(b)).
In order to estimate the standard deviation of the Rabi frequency,σ f1 , and the ratio of the
two populations ε(2)/ε(1) that applies in the experiment, we compare the measurement
results of Fig. 7.3(a) with results from numerical simulations for P↑0( fMW, tp ) shown in
Fig. 7.S1(a) for a range of values for both the ratio ε(2)/ε(1) and σ f1 . Based on this rough
comparison, we consider the agreement the best for ε(2)/ε(1) ∼ 0.3± 0.1/0.7± 0.1 and
σ f1 ∼ 0.25±0.05 MHz. As a further consistency check, we plot the same simulation re-
sults again in Fig. 7.S1(b), but now re-scaled according to Eq. 4.13

P↑( fMW, tp ) = A

(
P↑0( fMW, tp )− 1

2

)
+B , (7.S2)

for the read-out and initialization fidelities estimated in Sec. 7.S7. The same values
ε(2)/ε(1) ∼ 0.3± 0.1/0.7± 0.1 and σ f1 ∼ 0.25± 0.05 MHz give good agreement with the
data of Fig. 7.3(a).
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Figure 7.S1: Simulation for Rabi oscillations (a) Numerically simulated spin flip probability for perfect ini-
tialization and read-out P↑0( fMW, tp ) for population ratios ε(2)/ε(1) =0.5:0.5, 0.4:0.6, 0.3:0.7, 0.2:0.8, 0.1:0.9
and spread in Rabi frequencies σ f1

=0, 0.2 MHz, 0.25 MHz, 0.3 MHz, 0.4 MHz, as a function of driving du-

ration tp and frequency detuning fMW − f (1)
0 . From comparison with the data of Fig. 3a, we conclude that

ε(2)/ε(1) ∼ 0.3± 0.1/0.7± 0.1 and σ f1
∼ 0.25± 0.05 MHz are reasonable. (b) The same simulation results as

in panel (a), but taking into account the initialization and read-out fidelities estimated in Sec. 7.S7. Again
ε(2)/ε(1) ∼ 0.3±0.1/0.7±0.1 and σ f1

∼ 0.25±0.05 MHz match well to the data.
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Figure 7.S2: Comparison of the data to a simulation for Rabi oscillations at Bext = 763.287 mT. (a) The mea-
sured spin-up probability P↑ for a Rabi experiment. (b) The simulated spin-up probability P↑ using population

fractions ε(2)/ε(1) = 0.3 : 0.7, spread in Rabi frequencies σ f1
∼ 0.25 MHz, read-out fidelity parameters α= 0.06,

β= 0.05, γ= 0.04, and the two Rabi frequencies f (1)
1 = 3.1 MHz and f (2)

1 = 4.1 MHz.

Fig. 7.S2(a) shows the measured spin-up probability, P↑, as a function of fMW and
burst time tp , for Bext = 763.287 mT. At this magnetic field, the two resonances are sep-

arated by f (1)
0 − f (2)

0 = 2.838 MHz. Thus the individual chevron patterns produced by
two resonances are more easily distinguished than in Fig. 7.3(a). The numerical simu-
lations for P↑( fMW, tp ) for f (1)

0 − f (2)
0 = 2.838 MHz, taking into account the read-out and

initialization fidelities estimated in Sec. 7.S7, are shown in Fig. 7.S2(b).

7.S5. POPULATION AND TIME DEPENDENCE OF THE TWO RES-
ONANCES

Fig. 7.2(b) shows the average of the 86 traces shown in Fig. 7.S3. We see from Fig. 7.S3
that the center of the resonance frequency f0 fluctuates over time and the fluctuation
behaviour is the same for the two resonances.

For the measurement of Fig. 7.2(b), the applied microwave power is very low (σ f À
f1). Thus Eq. 4.30 is applied. If we can assume that the microwave burst time is short
compared to the Rabi frequency (tp À 1

ω1
), P↑0 ∝ω2

1. Assuming further that we can ne-
glect the unknown spread in f1 for low microwave power, the ratio of the spin up proba-
bility of two valley states at the respective center Larmor frequencies is

P (1)
↑0

P (2)
↑0

=
(
ω(1)

1

ω(2)
1

)2

. (7.S3)

If we assume that the ratio of the Rabi frequencies between two resonances at low MW
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Figure 7.S3: Measured spin-up probability P↑ as a function of applied microwave drive frequency fMW and
time (external field , power P = -33 dBm, microwave pulse duration tp =700 µs). The raw data on which Fig. 2(b)
is based are shown in Fig. S5. Each horizontal scan in the figure takes ∼2 minutes (200 cycles, which takes 2 s,
per datapoint), and the scan is repeated 86 times. Fig. 2(b) shows the average of the 86 horizontal scans.

power is the same as the ratio at high MW power determined in Sec. 7.S9 then
ω(2)

1

ω(1)
1

=
1.53±0.19. The ratio of the measured peak amplitudes in Fig. 7.2(b) is 1.4±0.3 and it is
the product of the ratio of the spin-up probabilities and the ratio of the populations:

P (2)
↑0

P (1)
↑0

ε(2)

ε(1)
= 1.4±0.3. (7.S4)

From Eq. 7.S3 and Eq. 8.S1, we get

ε(2)

ε(1)
= 1.4±0.3

(
ω(1)

1

ω(2)
1

)2

= 1.4±0.3

2.34±0.58
= 0.60±0.28. (7.S5)

From this relation, we get ε(2)/ε(1) ∼ 0.37/0.63, consistent with the rough estimate of
0.3/0.7 based on the Rabi oscillations in Sec. 7.S4.
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7.S6. π PULSE FIDELITY
According to Eq. 4.89, the π pulse fidelity for a spin-down state as an initial state is given
by

F (E (|↓〉〈↓|) |↑〉〈↑|) = Tr(E (|↓〉〈↓|) |↑〉〈↑|) = P↑0

(
fMW = f0, tp = 1

2 f1

)
. (7.S6)

The spin-up probability corresponds to the state fidelity of the output state relative to
the ideally expected spin up state. This fidelity is here estimated based on a numerical
model with input from the experiment. Quantum process tomography or randomized
benchmarking can be used to estimate the gate fidelity directly from the experiment. For
the lower transition, using the values f (2)

1 = 5 MHz, σ f = 0.268 MHz and σ f1 = 0.25 MHz,
we find a spin-up probability

P (2)
↑0

(
fMW = f (2)

0 , tp = 1

2 f (2)
1

= 100ns

)
= 0.99. (7.S7)

For the higher transition, using f (1)
1 = 3.1 MHz, σ f = 0.268 MHz and σ f1 = 0.25 MHz, we

find

P (1)
↑0

(
fMW = f (1)

0 , tp = 1

2 f (1)
1

= 160ns

)
= 0.97. (7.S8)

When we have a ε(2)/ε(1) = 0.3/0.7 contribution of the two resonances, P↑0(= 0.3×
P (2)
↑0 +0.7P (1)

↑0 ) reaches its maximum 0.79 when P (2)
↑0 = 0.53 and P (1)

↑0 = 0.90 at tp = 130 ns

and for fMW = f (1)
0 .

7.S7. INITIALIZATION FIDELITY AND READ-OUT FIDELITY
For applications in quantum information processing it is important to know the read-out
and initialization fidelities. These fidelities are usually characterized by three parameters
α,β and γ (Sec. 4.1).
Experimentally, the parameterα corresponds to the probability that the sensing dot cur-
rent exceeds the threshold even though the electron was actually spin-down, for instance
due to thermally activated tunneling or electrical noise. The parameter β corresponds
to the probability that the sensing dot current does not cross the threshold even though
the electron was actually spin-up at the end of the microwave burst time. The measure-
ment time (< 4 ms) we used is much shorter than T1 and so β is not affected by T1 decay
(Sec. 7.S3). It is limited by the bandwidth of the sensing dot current measurement (∼20
kHz). (1−β) can be directly measured as the probability that the step from the charge
sensor in correspondence of the electron jumping in during the initialization stage is
missed using the same threshold value as is used for detection of the electron jumping
out during the read-out stage. We find β∼ 0.05 (Fig. 7.S4). The parameter γ corresponds
to the probability that the electron is in spin-up instead of spin-down at the end of the
initialization stage. Here we assumed that initialization and read-out fidelities are the
same for the two valley states, i.e., α, β and γ are the same for the both two valley states.
The measured spin-up probability P↑ can be written as follows using the parametersα,β
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and γ and P↑0:

P↑ = AP↑0 +
(
B − A

2

)
(7.S9)

= (1−2γ)(1−β−α)P↑0 +γ(1−β)+ (1−γ)α (7.S10)

= P↑0(1−γ)(1−β)+ (1−P↑0)γ(1−β)+ (1−P↑0)(1−γ)α+P↑0γα. (7.S11)

When P↑0 = 0 (i.e. the microwaves are applied far off-resonance or not at all), the mea-
sured spin-up probability can be expressed as follows:

P↑(P↑0 = 0) = (1−γ)α+γ(1−β) (7.S12)

=α+γ(1− (α+β)). (7.S13)

P↑(P↑0 = 0) ∼ 0.1 is measured. From this and Eq. 7.S13, we get an upper bound on α.

P↑(P↑0 = 0) >α, 0.1 >α. (7.S14)

As discussed above, (1−β) ∼ 0.95 is measured (Fig. 7.S4). From this and Eq. 7.S13, we
get an upper bound on γ.

P↑(P↑0 = 0) > γ(1−β) ⇒ P↑(P↑0=0)

(1−β)
> γ⇒ 0.11 > γ. (7.S15)

By looking at Fig. 7.3(a), P↑( fMW = f (1)
0 ) reaches its maximum ∼0.72 when tp ∼130 ns.

Here, since P↑0 is expected to be large, the 2nd, 3rd and 4th terms of Eq. 7.S11 are much
smaller than the 1s t term (each of them contains two factors much smaller than 1, whereas
the 1st term contains no such small factors). So P↑ can be well approximated as follows:

P↑ ∼ P↑0(1−γ)(1−β) = 0.72 ⇒ P↑0(1−γ) = 0.72/(1−β) = 0.76. (7.S16)

Using the upper bound of γ (Eq. 7.S15), we can put bounds on P↑0( fMW = f (1)
0 , tp ∼

130ns):
0.76 < P↑0( fMW = f (1)

0 , tp ∼ 130ns) < 0.85. (7.S17)

Numerical simulation for σ f1 = 0.25 MHz gives P (1)
↑0 ( fMW = f (1)

0 , tp = 130ns) = 0.9 and

P (2)
↑0 ( fMW = f (1)

0 , tp = 130ns) = 0.53, where we note that the 130 ns burst time is longer
respectively shorter than the burst time for a π pulse for the lower and higher energy
resonance. Then, using ε(2)/ε(1) = 0.3/0.7, we obtain P↑0( fMW = f (1)

0 , tp = 130ns) = 0.53×
0.3+0.9×0.7 = 0.79, which is consistent with Eq. 7.S17. Now, using P↑0( fMW = f (1)

0 , tp =
130ns) = 0.79 and Eq. 7.S16, we can estimate γ= 0.04.
Then, from Eq. 7.S13, we can also extract α:

P↑(P↑0 = 0) = (1−γ)α+γ(1−β) = 0.10 ⇒ 0.96α+0.04×0.95 = 0.10 ⇒α= 0.06. (7.S18)

We useα= 0.06,β= 0.05 andγ= 0.04 in Eq. 7.S11 to compute the spin-up probability
P↑ that can be expected in the measurement, which is shown in Fig. 7.S1(b), Fig. 7.S2(b)
and Fig. 7.S5(b).
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Figure 7.S4: Measurement of fidelity parameter (1−β) (a) An example real time trace of the sensing dot cur-
rent. The black dashed lines indicate the start and end of one cycle. When the recorded current dips below the
threshold level indicated by the dotted red line during the detection stage, we conclude an electron tunneled
out from the dot to the reservoir. In this case, we infer the electron was spin up. When the signal remains above
the threshold, we conclude the electron was spin down (the lowest energy spin state). (b) Blue trace: Measured
probability that the sensing dot current passes below the threshold indicated by the red dotted line in panel
(A) during the initialization stage, as a function of Vgate3 (averaged over 1000 cycles). Since the dot is always
emptied during the previous stage, ideally we would always see the signal dip below the red threshold at the
start of the initialization stage (blue circle in (A)). However, because of the finite bandwidth of the measure-
ment, the dip will be missed if it is too fast. This occurs with the same probability as the probability of missing
dips in the detection stage, and is thus a good measure of (1−β). Green trace: Measured probability that the
current subsequently passes the green threshold from below during the initialization stage, as a function of
Vgate3 (green circle in (A)). When the green and blue traces coincide, the dot is filled during the initialization
stage. When the dot level is high (Vgate3 is low, see also the schematic in the inset), the time it takes for an
electron to tunnel in is long, and so (1−β) is high, but the dot is not always filled (the green line is low here).
As the dot level is lowered ((1−β) is raised, see also inset), the tunneling rate increases, and the dot is always
initialized, at the cost of a slightly lower value of (1−β), due to the finite measurement bandwidth. The vertical
red dashed line indicates the operating point used in the experiments.
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7.S8. NUMERICAL SIMULATION OF RAMSEY FRINGES
Here we give results of numerical simulations corresponding to the two-pulse Ramsey
interference measurements of Fig. 7.3(c). The overall procedure is analogous to that used
for the simulations of the Rabi oscillations. Instead of a single microwave burst, we now
have two bursts of duration tp = 1/(4 f (1)

1 ) separated by a wait time τ. Here we can neglect
the spread in f1 because tp is short and its effect is small. Then the spin flip probability
averaged over the Larmor frequency distribution is expressed as

P↑0( fMW, tp ) = ∑
n=1,2

ε(n)P (n)
↑0 ( fMW, tp ), (7.S19)

where P (n)
↑0 ( fMW, tp ) =

〈
p(n)
↑0

〉(
2π fMW,2π f (n)

0 ,2π f (n)
1 ,τ

)
and

〈
p(n)
↑0

〉
is given by Eq. 4.35.

Using α = 0.06, β = 0.05, and γ = 0.04 in Eq. 4.13, we compute the expected spin-up
probability P↑ at the end of the Ramsey sequence, see Fig. 7.S5(b). The corresponding
data is shown in Fig. 7.S5(a).
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Figure 7.S5: Comparison of the data to a simulation for Ramsey fringes. (a) The measured spin-up probability
P↑ for a two-pulse Ramsey style experiment. The data are those shown in Fig. 3c but taking a moving average

along tp over 5 points (79 ns). (b) The simulated spin-up probability P↑ using ε(2) : ε(1) = 0.3 : 0.7, σ f = 0.268

MHz, α = 0.06, β = 0.05, and γ = 0.04 as a function of τ and fMW − f (1)
0 , also taking a moving average over 79

ns. There is good agreement between the data and simulation.
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7.S9. POWER DEPENDENCE OF THE RABI FREQUENCY

Fig. 7.S6(a) shows the measured Rabi frequencies for the two resonance conditions, f (1)
1

and f (2)
1 , as a function of the microwave amplitude emitted from the source. f (1)

1 and f (2)
1

are determined by the fast Fourier transform (FFT) of Rabi oscillations, as in Fig. 7.3(b).
The error bars arise from the finite number of points in the FFT. The linear fits show that
the ratio of the Rabi frequencies of two resonance transitions is f (2)

1 / f (1)
1 = 1.53±0.19.

Fig. 7.S6(b) shows Rabi oscillations for a range of microwave amplitudes emitted
from the source. The scattering and the low spin-up probability around microwave am-
plitude 500 mV ∼ 800 mV may be due to a background charge switch that caused the
dot to move away from the electrochemical potential alignment that is best for read-out.
The measurement of Fig. 7.S6(b) took 20 hours.

0 500 1000 15000

2

4

6

8

 

 

0.5 1 1.5 2
400

600

800

1000

0.2
0.3
0.4
0.5
0.6
0.7

(a) (b)

Figure 7.S6: Rabi oscillations versus microwave amplitude (a) Rabi frequencies f (2)
1 (red circles) and f (1)

1 (blue
triangles) at Bext = 763.287 mT as a function of the microwave amplitude emitted from the source, as verified
with a spectrum analyzer. The solid lines are linear fits to the data. As expected, the Rabi frequency is linear
in the driving amplitude. (b) The measured spin-up probability P↑ as a function of the microwave burst time

tp and the microwave amplitude emitted from the source by applying microwave excitation at fMW = f (1)
0 =

12.885 GHz. (Bext = 763.287 mT) We see the pattern expected for Rabi oscillations.
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7.S10. DIFFERENCE IN G-FACTORS AND RABI FREQUENCIES BE-
TWEEN THE TWO RESONANCES

Here we discuss several possible explanations for the existence of two closely spaced
electron spin resonance conditions, characterized by g -factors that differ by 0.015% and
Rabi frequencies that differ by 50%.
As stated in the main text, we attribute the presence of two spin resonance signals to a
partial occupation of the two lowest valley states. We can estimate the valley splitting
EV from the 30/70 relative contributions of the two resonances, assuming it results from
thermal equilibration between the two valley states. This gives EV ∼ 0.85 kB Te , which for
Te = 150 mK yields EV = 11µeV. We note that the electron temperature may be somewhat
larger since we apply microwave excitation to the sample, so the valley splitting may be
larger as well.
We have identified two mechanisms that can explain a 0.015% relative difference in the
electron g factors between the two valleys, defined as 2(g (1) − g (2))/(g (1) + g (2)). The first
is valley-dependent g factor renormalization due to the transverse gradient magnetic
field; the other is valley-dependent penetration of the electron wavefunction into the
SiGe barrier region. We first discuss these two mechanisms. We then mention other
potential mechanisms that cannot explain the observed g factor shift.

(1) The unperturbed Zeeman splitting ε0z is renormalized in the presence of a mag-

netic field gradient by ∆εz =− 1
4

(gµB max(bsl)lor b )2

(∆or b )2−(ε0z )2 ε0z (Tokura et al., 2006) where lor b repre-

sents the electron wavefunction spread, ∆or b is the energy splitting between the ground
orbital state and the first excited orbital state and max(bsl) ∼ dB⊥

d x . We see that εz (=
ε0z +∆εz ) depends on the orbital energy splitting ∆ (energy level spacing to the first ex-
cited state). At lowest order in the valley-orbit coupling,∆or b depends only on the orbital
energy splitting, which can differ for the two valley states due to valley-orbit coupling
(Friesen and Coppersmith, 2010). Contributions to the renormalization of the g -factor
from differences in the lateral positions of the different valley states can also occur, but
are higher order in the valley-orbit coupling.
The difference in g -factors between the two valleys could then be explained if the two
valley states exhibit sufficiently different orbital splittings∆or b . Valley-dependent orbital
splitting arises from the valley-orbit interaction due to disorder at the interface, and can
have important effects. In (Gamble et al., 2013), it is estimated that the centers of the
charge distributions of the two valley states can be separated by as much as the dot di-
ameter, and differences in orbital splitting between the two valleys can be 20% or more.
Taking dB⊥/d x = 1 mT/nm, E0z ∼ 60 µeV,∆(1)

or b ∼ 400 µeV and∆(2)
or b ∼ 320 µeV (where the

superscripts refer to the two resonances as in the main text), we obtain∆εz /ε0z = 0.013%
and 0.010%. The difference between the two corresponds to a difference in g -factors of
0.003%, within a factor of 5 of the observed value.
A valley-dependent orbital splitting can also account for the observed difference in Rabi
frequencies for the two resonances. From (Pioro-Ladrière et al., 2008a; Tokura et al.,
2006), neglecting the contribution from spin-orbit interaction as it is small in Si/SiGe, we

roughly have f1 = gµB
2h eE AC

∣∣∣ dB⊥
d x

∣∣∣ l 2
or b
∆or b

, where the approximation is valid under the con-

dition ε0z ¿ ∆or b (Tokura et al., 2006). Given that lor b ∝ 1/
√
∆or b , it follows that f1 ∝
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1/∆2
or b . Then, we have that f (2)

1 / f (1)
1 =

(
∆(1)

or b/∆(2)
or b

)2
. Assuming that E AC is equal for the

two valley states, the factor 1.5 between the Rabi frequencies of the two resonances can

be explained by a∼ 20% difference in orbital level spacing, 2
(
∆(2)

or b −∆(1)
or b

)
/
(
∆(2)

or b +∆(1)
or b

)
.

This is consistent with the difference in orbital splitting needed to explain the g -factor
shifts.

(2) A second explanation for the g -factor shifts could be that the two valley states
penetrate differently into the SiGe barrier. This effect also gives rise to valley splitting.
For g -factors, the state with the largest probability in the barrier should have the g -factor
closest to SiGe. It is difficult to estimate the resulting g -factor shift because the g -factors
in SiGe alloys are not well known. Our rough estimate yields a g -factor shift of 0.0025%,
which is 6 times smaller than the experiment, but is still comparable. We view this mech-
anism as less likely than mechanism (1) above because observing the difference in Rabi
frequencies would require that the different valley states have significantly different di-
rection of wavefunction motion. In principle, further experiments have the potential
to distinguish these two mechanisms for g -factor shifts. Valley-dependent penetration
should be similar in similar devices, and its dependence on extrinsic parameters (e.g.,
accumulation gate voltages) should be systematic. On the other hand, valley-orbit renor-
malization should vary significantly from device to device.

We now briefly consider explanations for the g -factor shifts that yield less successful
agreement with experiment.

(3) In principle, the combination of valley-orbit coupling and spin-orbit coupling
could give rise to valley-dependent g -factor shifts. The renormalization in the g-factor
from this mechanism is proportional to the inverse square of the spin-orbit length (Borhani
and Hu, 2012). According to (Wilamowski et al., 2002) the spin-orbit coupling strength
in quantum well structures is three orders of magnitude smaller in Si than in III-V semi-
conductors. Since such g -factor renormalization effects are small already in GaAs, we
can conclude that the change in g-factor mediated by this mechanism in Si will be much
smaller than the 0.015% that is observed experimentally.

(4) As mentioned above, valley-orbit coupling may cause a lateral separation of the
centers of the charge distributions for the two valley states (Gamble et al., 2013). When
this effect is combined with local fluctuations of the Ge concentration in the SiGe al-
loy, it yields slightly different g -factor shifts for the two states. In general, the g-factor
shift described in (2) (above) would be expected to dominate over such a disorder ef-
fect. However, because valley-orbit coupling depends on the interference between valley
state (Friesen and Coppersmith, 2010), destructive interference could suppress the dom-
inant g -factor shift in (2). Our simulations (not reported here) indicate that it is possible
for the disorder-induced effect to dominate, though still smaller than the estimate given
in (2) above.

(5) Finally, we consider explanations for the two closely spaced spin resonance con-
ditions that do not invoke valley physics. A natural thought is that we may be driving
spin transitions in a two- or three-electron manifold, either in a single dot or in a double
dot. Under appropriate conditions, this could give rise to closely spaced spin resonance
frequencies with g -factors around 2. However, in this scenario, whenever microwave ex-
citation is applied at either one of the two resonance frequencies, spin transitions would
be induced 100% of the time. In the experiment, in contrast, when applying microwave
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excitations resonant with the lower (upper) resonance frequency, there is a contribution
to the signal only ∼ 30% (70%) of the time. If the dot location jumped between two po-
sitions, for instance due to a background charge that is hopping back and forth, a 30/70
occupation would be possible. Due to the magnetic field gradient, we can also expect
different spin splittings for different dot locations. However, the difference in spin split-
tings would be a fixed value set by the stray field from the micromagnet (as soon as it is
fully polarized). In contrast, in the measurements, the difference between the resonance
frequencies varies linearly with magnetic field (Fig. 7.2(a)).

We have not been able to come up with other plausible explanations except those
related to valley physics presented above.

7.S11. SOURCES OF RABI DECAY
Here we estimate how much random nuclear fields, instrumentation and charge noise
can contribute to the spread in the Rabi frequency. The Rabi frequency in the present

EDSR measurements can be expressed as f1 ∼ gµB
2h eE AC

∣∣∣ dB⊥
d x

∣∣∣ l 2
or b
∆or b

. We consider here

only fluctuations in the electric field E AC and in the traverse gradient dB⊥/d x, as we ex-
pect fluctuations in lor b and ∆or b to give smaller contributions. For each noise source,
we estimate whether it can account for the 5% spread in the Rabi frequency (rms) ob-
served in the experiment.

First, the transverse component of the nuclear field exhibits a gradient that adds to
the gradient from the micromagnet by a random amount that slowly fluctuates in time
over the course of the measurement. The lateral displacement of the electron induced
by the microwave excitation is estimated to be ∆xrms = 0.707 B1

dB⊥/d x = 0.707 0.18mT
0.27mT/nm =

0.47 nm. An approximate upper bound on the transverse nuclear field gradient is∆Bnucl/2r =
7.6 kHz/nm. To estimate this bound, we assume that the nuclear field is uncorrelated be-
tween two positions that are separated by the dot diameter, 2r ∼ lor b ∼ 50 nm. The mea-
sured spread in Larmor frequency is σ f = 0.268 MHz so the rms difference in nuclear

fields ∆Bnucl between these two positions becomes ∆Bnucl =
p

2σ f = 0.38 MHz. Then
the spread in the nuclear field gradient is ∆xrms(∆Bnucl/2r ) = 3.6 kHz, which is about 70
times smaller than σ f1 we measured.
An additional contribution of the random transverse nuclear field arises from a modu-
lation in the phase φ of the atomic scale oscillations of the electron wave function that
is present in Si/SiGe quantum dots (Zwanenburg et al., 2013). If an electric field changes
φ by 90 degrees, the electron wave function is in contact with a different ensemble of
nuclei. An AC electric field excitation at frequency f0 then leads to a (random) contri-
bution to the Rabi frequency. The effect of an out-of-plane electric field is small as φ
does not depend on this component to leading order in the ratio of the valley coupling
to the quantum well depth (for example, see Eqs. 10, 13 and 14 in (Friesen et al., 2007)).
The effect of an in-plane electric field is mediated by disorder at the quantum well in-
terface. We have found (see section S12 below) that φ varies over length scales of order
d = 10 ∼ 100 nm, which implies that the nuclear field would be uncorrelated for two po-
sitions 10 ∼ 100 nm. Taking d = 10 nm and following an analogous reasoning as above,
the estimated dot displacement∆xrms = 0.47 nm produces a random contribution to the
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Rabi frequency of order ∆xrms
d ∆Bnucl ∼ 0.02 MHz, 13 times smaller thanσ f1 we measured.

Second, low-frequency charge noise or gate voltage noise can cause random shifts
in the average dot position. If the transverse field gradient from the micromagnet it-
self changes with position, low-frequency charge noise leads to a low-frequency fluctu-
ation in the gradient strength, and thus to a spread in the Rabi frequency. As discussed
in the main text, the EDSR linewidth puts an upper bound on the electron micromo-
tion induced by low-frequency charge or voltage noise of δx = 50 pm (rms). Based on
simulations, the variation of the transverse gradient from the micromagnet with posi-

tion is d
d x

(
dB⊥
d x

)
∼ 2 µT/(nm)2 and so the spread in transverse field gradient due to low-

frequency noise is d
d x

(
dB⊥
d x

)
δx = 0.1 µT/(nm). This spread is 3000 times smaller than the

average transverse gradient of 0.3 mT/nm, and can thus not explain the 5% spread in the
Rabi frequency we observe.

Third, charge noise/instrumental noise that is resonant with the Larmor frequency
adds to E AC and can thus cause a spread in the Rabi frequency. The output amplitude of
the microwave source (Agilent Vector Signal Generator E8267D) could fluctuate, either
rapidly or in the form of a slow drift. We measured the drift in the output amplitude of
the vector source operating in vector modulation mode over twenty hours. We found
a variation in output amplitude, which correlates with the temperature in the room, of
about 0.2%. Thermal noise (and other broadband noise sources) also has some spec-
tral content at the resonance frequency, which is independent of the microwave power.
However, if this spectral content amounted to 5% in amplitude of the driving from the
vector source during Rabi experiments, it would overwhelm the driving amplitude of the
source during the CW measurements, where we applied about 50 dB less power than
during the Rabi experiments, corresponding to 300 times smaller amplitudes. In this
case, spin transitions would have been observed also when the applied microwave fre-
quency is applied off-resonance, which is clearly not the case. Fourth, fluctuations in
E AC are also introduced by the vector modulation whereby the microwave signal is mul-
tiplied by a 250 mV rectangular pulse generated by a Tektronix Arbitrary Wave function
Generator (AWG 5014C) and applied to the I and Q inputs of the vector source. Fluctua-
tions in the AWG pulse amplitude then translate to fluctuations in E AC . The twenty hour
measurement of the output amplitude of the vector source was done with the same 250
mV pulse amplitude from the AWG applied to the I and Q inputs, so this contribution is
already included in the 0.2% variation in output amplitude discussed above.

Finally, high frequency phase noise of the microwave source causes fluctuations in
the applied frequency. The specifications for the frequency stability of the source are
many orders of magnitude below the measured line width of 0.6 MHz. Finally, noise in
the amplitude of the AWG channels going into the I and Q inputs causes not only ampli-
tude fluctuations (discussed above) but also phase fluctuations. The noise of the AWG is
dominated by low-frequency noise, which thus translates to low-frequency phase noise
of the vector source output. When measuring Rabi oscillations, low-frequency phase
noise does not contribute to damping.
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7.S12. VALLEY PHASE RELAXATION LENGTH SCALE
Here we estimate the length scale over which the valley phase relaxes by considering a
quantum well interface that is not perfectly flat, but contains a single-atom step. Far
enough away from the step, a single-electron wavefunction does not feel the presence
of the step, and we wish to estimate the width d of the region near the step over which
the wavefunction is perturbed. We will estimate the perturbation to the energy of the
electron ground state due to this step, taking d as a variational parameter. Minimizing
this energy then provides an expression for the valley relaxation length scale d . A char-
acteristic length scale emerges because of the competition between the energy cost of
deforming the phase and the possible energy gain that deformation yields because of
the decrease of the valley splitting in the vicinity of the step.

The shift in the kinetic energy of the electron ground state is of order ħ2

2mt

(
dφ
d x

)2
d
L . Here,

mt = 0.19me is the transverse electronic effective mass in silicon, d is the lateral extent
of the disturbance, and L is a normalization constant that is essentially the lateral extent
of the wavefunction. (Note that L plays no role in our calculation if it is much larger than

the other length scales in the problem.) The quantity dφ
d x is the spatial rate of change of

the valley phase, which is given approximately by ∆φ
d , where ∆φ = k0a0/4 is the change

in the asymptotic values of the valley phase arising from a single step, k0 = 0.85 2π
a0

is the
position of the center of the valley in the Brillouin zone, and a0 = 0.54 nm is the length
of the Si cubic unit cell. If EV is the valley splitting for a flat quantum well, then the pres-
ence of a step suppresses the total valley splitting by an amount EV (d/L), and therefore
increases the ground state energy by EV (d/L). Minimizing the total energy shift of the

ground state with respect to d yields d =
√

ħ2

mt EV

0.85π
2 . For typical valley splittings in the

range 0.1-1 meV (Boykin et al., 2004; Goswami et al., 2007) this yields valley relaxation
lengths on the order of tens of nm. A 2D tight binding calculation using the model de-
scribed in (Saraiva, Koiller, and Friesen, 2010) corroborates these results.
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7.S13. VALLEY SCATTERING AS A SOURCE OF SPIN ECHO DECAY
We assume that the switching between valley (1) and valley (2) happens in a Poisson
process and the switching rate from valley (1) to valley (2) is Γ. When the first MW pulse
is applied (in the beginning of the manipulation stage), the electron is in valley (1) with
probability 70% and in valley (2) with probability 30%.
We consider the following 4 cases.
(I) The electron is in valley (1) when the first pulse is applied. It stays in valley (1) until
the third pulse is applied.
(II) The electron is in valley (1) when the first pulse is applied. It switches to valley (2)
before the third pulse is applied.
(III) The electron is in valley (2) when the first pulse is applied. It stays in valley (2) until
the third pulse is applied.
(IV) The electron is in valley (2) when the first pulse is applied. It switches to valley (1)
before the third pulse is applied.
The point is that Hahn echo works only for the case (I).
In the cases (II) and (IV), the phase information is lost as soon (∼500 ns knowing that the
difference in resonance frequency of two valleys is ∼2 MHz) as the valley switches. The
Hahn echo cannot recover the phase information, even if the valley switches back again
to the original valley later.
In case (III), the Hahn echo does not work because the second pulse acts as ∼ 2π pulse
instead of π pulse. We set the microwave burst time so that the second pulse acts as π
pulse for valley (1). The Rabi frequency of valleys (1) and (2) are f (1)

1 = 2.7 MHz and f (2)
1 =

4.3 MHz respectively. Since the microwave excitation is applied here∆ f = 2.9 MHz away
from the resonance frequency for valley (2), the effective Rabi frequency for valley (2) is

f (2)
1 eff =

√
∆ f 2 + f (2)

1
2 = 5.2 MHz. Then the second pulse acts as a

f (2)
1 eff

f (1)
1

×π = 96%×2π

pulse for valley (2). Thus we expect that the echo signal is very small in this case.
In case (I), the Hahn echo works. The probability that the electron stays in valley (1)
until the third pulse is applied is exp(−Γτ). Thus if Γ is faster than the other decoherence
mechanisms, we observe exp(−Γτ) as the spin echo decay.
The same reasoning applies to the four-pulse decoupling sequence (CPMG). As soon as
the valley switches, spin coherence is irreversibly lost. The probability that the valley has
not yet switched (and spin coherence is not yet lost) after a time τ goes as exp(−Γτ).
Finally, we note that valley switching on a 40 µs timescale cannot explain the decay of
the Rabi oscillations which occurs on a few µs timescale.
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SECOND HARMONIC COHERENT

DRIVING OF A SINGLE ELECTRON

SPIN IN SI-GE SINGLE QD

We demonstrate coherent driving of a single electron spin using second harmonic excita-
tion in a Si/SiGe quantum dot. Our estimates suggest that the anharmonic dot confining
potential combined with a gradient in the transverse magnetic field dominates the sec-
ond harmonic response. As expected, the Rabi frequency depends quadratically on the
driving amplitude and the periodicity with respect to the phase of the drive is twice that
of the fundamental harmonic. The maximum Rabi frequency observed for the second
harmonic is just a factor of two lower than that achieved for the first harmonic when
driving at the same power. Combined with the lower demands on microwave circuitry
when operating at half the qubit frequency, these observations indicate that second har-
monic driving can be a useful technique for future quantum computation architectures.

The work in this chapter has been published as: P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G.
Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Phys. Rev. Lett. 115,
106802 (2015).
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8. SECOND HARMONIC COHERENT DRIVING OF A SINGLE ELECTRON SPIN IN SI-GE SINGLE

QD

8.1. INTRODUCTION
Controlled two-level quantum systems are essential elements for quantum information
processing. A natural and archetypical controlled two-level system is the electron spin
doublet in the presence of an external static magnetic field (Hanson et al., 2007; Loss and
DiVincenzo, 1998). The common method for driving transitions between the two spin
states is magnetic resonance, whereby an a.c. magnetic field (B AC ) is applied transverse
to the static magnetic field (Bext), with a frequency, fMW, matching the spin Larmor pre-
cession frequency f0 = gµB Btot /h (h is Planck’s constant, µB is the Bohr magneton and
Btot the total magnetic field acting on the spin). When the driving rate is sufficiently
strong compared to the dephasing rates, coherent Rabi oscillations between the ground
and excited state are observed.

Both spin transitions and Rabi oscillations can be driven not just at the fundamental
harmonic but also at higher harmonics; i.e., where the frequency of the transverse a.c.
field is an integer fraction of the Larmor frequency, fMW = f0/n, with n an integer. Sec-
ond or higher harmonic generation involves non-linear phenomena. Such processes are
well known and explored in quantum optics using non-linear crystals (Franken et al.,
1961) and their selectivity for specific transitions is exploited in spectroscopy and mi-
croscopy (Denk, Strickler, and Webb, 1990; Heinz et al., 1982; Konig, 2000; Shen, 1989;
Xu et al., 1996). Two-photon coherent transitions have been extensively explored also for
biexcitons in (In,Ga)As quantum dots (Stufler et al., 2006) and in superconducting qubit
systems (Nakamura, Pashkin, and Tsai, 2001; Oliver et al., 2005; Shevchenko, Omelyan-
chouk, and Il’ichev, 2012; Wallraff et al., 2003). In cavity QED systems, a two-photon
process has the advantage that it allows the direct transition from the ground state to the
second excited state, which is forbidden in the dipole transition by the selection rules
(Poletto et al., 2012).

For electron spin qubits, it has been predicted that the non-linear dependence of the
g -tensor on applied electric fields should allow electric-dipole spin resonance (EDSR) at
subharmonics of the Larmor frequency for hydrogenic donors in a semiconductor (De,
Pryor, and Flatté, 2009; Pingenot, Pryor, and Flatté, 2011). For electrically driven spin
qubits confined in a (double) quantum dot, higher-harmonic driving has been proposed
that takes advantage of an anharmonic dot confining potential (Danon and Rudner,
2014; Nowak, Szafran, and Peeters, 2012; Osika, Mrenca, and Szafran, 2014; Rashba, 2011;
Romhányi, Burkard, and Pályi, 2015) or a spatially inhomogeneous magnetic field (Széchenyi
and Pályi, 2014). In order to use higher harmonic generation for coherent control of a
system, the corresponding driving rate must exceed the decoherence rate. This requires
a non-linearity that is sufficiently strong. Although weak non-linearities are easily ob-
tained and have allowed higher harmonics to be used in continuous wave (CW) spec-
troscopy for quantum dots hosted in GaAs, InAs, InSb and carbon nanotubes (Forster
et al., 2015; Laird et al., 2009; Laird, Pei, and Kouwenhoven, 2013; Nadj-Perge et al., 2012;
Pei et al., 2012; Stehlik et al., 2014), coherent spin manipulation using higher harmonics
has not been demonstrated previously.

In this chapter, we present experimental evidence of coherent second harmonic ma-
nipulation of an electron spin confined in a single quantum dot (QD) hosted in Si/SiGe
quantum well. We show that this second-harmonic driving can be used for universal
spin control, and we use it to measure the free-induction and Hahn-echo decay of the
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electron spin. Furthermore, we study how the second harmonic response varies with the
microwave amplitude and phase, and comment on the nature of the non-linearity that
mediates the second harmonic driving process in this system.

8.2. DEVICE AND MEASUREMENT TECHNIQUE
The quantum dot is electrostatically induced in an undoped Si/SiGe quantum well struc-
ture, through a combination of accumulation and depletion gates (see Sec. 5.3 for full
details). The sample and the settings are the same as those used in Ch. 7. A cobalt micro-
magnet next to the QD creates a local magnetic field gradient, enabling spin transitions
to be driven by electric fields (Kawakami et al., 2014; Obata et al., 2010). All measure-
ments shown here are performed using single-shot read-out via a QD charge sensor (Elz-
erman et al., 2004) (Sec. 7.2).

First we apply long, low-power microwave excitation to perform quasi-CW spec-
troscopy (Eq. 4.30). Fig. 8.1(a) shows four observed spin resonance frequencies, f (1)

0

through f (4)
0 , as a function of the external magnetic field. The resonances labeled (1)

and (2) represent the response at the fundamental frequency. As in Sec. 7.3, these two
closely spaced resonances correspond to the electron occupying either of the two lowest
valley states, both of which are thermally populated here. The other two resonances oc-
cur at exactly half the frequency of the first two, f (1)

0 = 2 f (3)
0 , f (2)

0 = 2 f (4)
0 , and represent

the second harmonic response.
The effective g -factors extracted from the slopes for the second harmonic response

are half those for the first harmonic response (see Fig. 8.1(a) inset). The relevant energy
levels and transitions as a function of the total magnetic field, Btot , are visualized in
Fig. 8.1(b), where the color scheme used for the resonances is the same as in Fig. 8.1(a).
We see two sets of Zeeman split doublets, separated by the splitting between the two
lowest-energy valleys, EV . The transition between the Zeeman sublevels within each
doublet can be driven by absorbing a single photon or two photons, as indicated by the
single and double arrows.

8.3. ORIGIN OF THE NON LINEARITY
To drive a transition using the second harmonic, a non-linearity is required. In princi-
ple, several mechanisms can introduce such a non-linearity in this system (see Sec. 8.S5).
First, as schematically shown in Fig. 8.1(c), if the confining potential is anharmonic, an
oscillating electric field of amplitude E AC . and angular frequencyω= 2π fMW induces ef-
fective displacements of the electron wavefunction with spectral components at angular
frequencies nω, with n an integer. In analogy with non-linear optical elements, we can
look at this process as generated by an effective non-linear susceptibility of the electron
bounded to the anharmonic QD confinement potential.

The gradient in the transverse magnetic field in the dot region (B⊥ in green) converts
the electron motion into an oscillating transverse magnetic field of the form

B AC
⊥ (t ) = Bω cos(ωt )+B2ω cos(2ωt )+ . . . (8.1)

that can drive the electron spin for ħω = Ez , 2ħω = Ez and so forth (Rashba, 2011). A
possible source of anharmonicity arises from the nonlinear dependence of the dipole
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Figure 8.1: (a) Measured resonance frequencies as a function of externally applied magnetic field Bext . The
long microwave burst time tp =700 µs À T∗

2 means that the applied excitation is effectively continuous wave
(CW). The microwave source output power was P =−33 dBm to −10 dBm (−20 dBm to −5 dBm) for the case of
fundamental (second) harmonic excitation, decreasing for lower microwave frequency in order to avoid power

broadening. The red and green lines represent fits with the relation h f = gµB

√
(Bext −B||)2 +B2

⊥ respectively

to the resonance data labeled (2) and (3) (we excluded points with Bext < 700 mT from the fit because the
micromagnet apparently begins to demagnetize there) (Kawakami et al., 2014). (b) Schematic of the energy
levels involved in the excitation process, as a function of the total magnetic field at the electron location. The
dashed arrows correspond to the four transitions in panel (a), using the same color code. (c) Schematic of an
anharmonic confinement potential, leading to higher harmonics in the electron oscillatory motion in response
to a sinusoidally varying excitation. (d) Measured spin-up probability, P↑, as a function of applied microwave
frequency, fMW, for Bext= 560.783 mT (P = −30 dBm for the fundamental response, P = −12 dBm for the
second harmonics), averaged over 150 repetitions per point times 80 repeated frequency sweeps (160 mins in
total). The frequency axis (in red on top) has been stretched by a factor of two for the second harmonic spin

response (red datapoints). From the linewidths, we extract a lower bound for the dephasing time T∗(1)
2 = 760

± 100 ns, T∗(2)
2 = 810 ± 50 ns, T∗(3)

2 = 750 ± 40 ns and T∗(4)
2 = 910 ± 80 ns. The Gaussian fits through the four

peaks use the same color code as in panels (a) and (b).
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Figure 8.2: Rabi oscillations. (a) Measured spin-up probability, P↑, as a function of microwave burst time
(Bext = 560.783 mT, fMW = 6.4455 GHz) at four different microwave powers, corresponding to a rms voltage
at the source of 998.8 mV, 1257.4 mV, 1410.9 mV, 1583.0 mV. (b) Rabi frequencies recorded at the fundamental

harmonic, f (1)
0 (blue triangles, the same as in Fig. 7.S6), and at the second harmonic, f (3)

0 (green squares), as a
function of the microwave amplitude emitted from the source (top axis shows the corresponding power). For
the second harmonic, the amplitude shown corresponds to a 5 dB higher power than the actual output power,
to compensate for the 5 dB lower attenuation of the transmission line at 6 GHz versus 12 GHz (Sec. 5.3.2).
The green solid (dashed black) line is a fit of the second harmonic data with the relation log( f R ) ∝ 2log(VAC )
(log( f R ) ∝ log(VAC )). The large error bars in the FFT of the data in Fig. 8.2(a) arise because we perform the
FFT on only a few oscillations. Bext= 560.783 mT.

moment between the valley (or valley-orbit) ground (υ−) and excited states (υ+) (Gamble
et al., 2013), as a function of E AC .

A second possible source of nonlinearity is a variation of the transverse field gradient,
dB⊥

d x,d y , with position (see Fig. 8.1(c)) Even if the confining potential were harmonic, this
would still lead to an effective transverse magnetic field containing higher harmonics, of
the same form as Eq. 8.1.

A third possibility is that not only the transverse magnetic field but also the longitu-
dinal magnetic field varies with position. This leads to an a.c. magnetic field which is not
strictly perpendicular to the static field, which is in itself sufficient to allow second har-
monic driving (Boscaino et al., 1971; Gromov and Schweiger, 2000; Romhányi, Burkard,
and Pályi, 2015), even when the confining potential is harmonic and the field gradients
are constant over the entire range of the electron motion.

However, simple estimates indicate that the second and third mechanisms are not
sufficiently strong in the present sample to allow the coherent spin manipulation we re-
port below (see Sec. 8.S5). We propose that the first mechanism is dominant in this sam-
ple, supported by our observation that the strength of the second harmonic response is
sensitive to the gate voltages defining the dot.

8.4. CW ANALYSIS
In Fig. 8.1(d) we zoom in on the four CW spin resonance peaks, recorded at low enough
power to avoid power broadening (see Sec. 8.2). Fitting those resonances with Gaus-
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sians, we extract the dephasing times T ∗,(1,2)
2 =

p
2ħ

πδ f (1,2)
FW H M

, T ∗,(3,4)
2 =

p
2ħ

2πδ f (3,4)
FW H M

, giving val-

ues in the range of 750 to 910 ns for all four resonances (see caption of Fig. 8.1(d)). This
directly shows that the linewidth (FWHM) extracted for the two-photon process is half
that for the one-photon process, as expected (De, Pryor, and Flatté, 2009; Gromov and
Schweiger, 2000; Széchenyi and Pályi, 2014).

From the relative peak heights in Fig. 8.1(d), we can estimate the ratio of the Rabi
frequencies between the two peaks in each pair (see Sec. 8.S1). In Sec. 7.S5 and Sec. 7.S4,
we found that the relative thermal populations of the two valleys (ε(2) : ε(1) = ε(4) : ε(3))
were about 0.3± 0.1 : 0.7± 0.1. Given this, the ratio between the Rabi frequencies, f1,
extracted from the peak heights is f (4)

1 / f (3)
1 = 0.9±0.2 for the second harmonics. This is

different from the ratio observed in for the fundamental harmonic, f (2)
1 / f (1)

1 = 1.53±0.19
(Sec. 7.S9) 1.

Such a difference is to be expected. The ratio f (4)
1 / f (3)

1 is affected by how the de-
gree of anharmonicity in the confining potential differs between the two valleys. In con-
trast, f (2)

1 / f (1)
1 depends on how the electrical susceptibility differs between the two val-

leys (Rahman et al., 2009). In addition, since the valleys have different charge distribu-
tions (Gamble et al., 2013), the microwave electric field couples differently to the two val-
ley states, and this difference can be frequency dependent (Kawakami et al., 2013; Oost-
erkamp et al., 1997). Because the second harmonic Rabi oscillations are driven at half the
frequency of the Rabi oscillations driven at the fundamental, this frequency dependence
also contributes to a difference between f (2)

1 / f (1)
1 and f (4)

1 / f (3)
1 . We note that the differ-

ence in Rabi frequency ratio between the 1-photon and 2-photon case demonstrates
that the second harmonic response is not just the result of a classical up-conversion of
the microwave frequency taking place before the microwave radiation impinges on the
dot, but takes place at the dot itself.

8.5. COHERENT SPIN OSCILLATIONS
The second harmonic response also permits coherent driving, for which a characteris-
tic power dependence is expected (Gromov and Schweiger, 2000; Strauch et al., 2007;
Széchenyi and Pályi, 2014). Fig. 8.2(a) shows Rabi oscillations, where the microwave
burst time is varied keeping fMW = f (3)

0 for different microwave powers. We note that
the contribution to the measured spin-up oscillations coming from the other resonance,
(4), is negligible because the respective spin Larmor frequencies are off-resonance by 2
MHz, f (3)

1 / f (4)
1 ≈ 1 and its population is ∼ three times smaller.

To analyze the dependence of the Rabi frequency on microwave power, we perform
a FFT of various sets of Rabi oscillations similar to those in Fig. 8.2(a). Fig. 8.2(b) shows
the Rabi frequency thus obtained versus microwave power for driving both at the sec-
ond harmonic (green) and at the fundamental (blue), taken for identical dot settings
(Kawakami et al., 2014). We see that for driving at the frequency of the second harmonic,
the Rabi frequency is quadratic in the applied electric field amplitude (linear in power),
as expected from theory (Gromov and Schweiger, 2000; Strauch et al., 2007; Széchenyi

1Note that the ratio between the two Rabi frequencies is independent of the microwave amplitude in both

cases, as we have f (2)
1 / f (1)

1 = m2E AC /m1E AC = m2/m1 and f (4)
1 / f (3)

1 = q4E AC 2
/q3E AC 2 = q4/q3, respec-

tively.
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Figure 8.3: Phase control of oscillations. (a) Probability P↑ measured after applying two π/2 rotations via
second harmonic excitation, as a function of the relative phase between the two microwave bursts, ∆φ. The
two rotations are separated by τ= 100 ns (black) and τ= 2 µs (red). (P = 16.0 dBm, Bext = 560.783 mT, fMW =
f (3)
0 = 6.44289 GHz). (b) Similar to panel (a), but now driving the fundamental harmonic for τ= 20 ns (black)

and τ = 2 µs (red). (P = 12.0 dBm, Bext = 560.783 mT, fMW = f (1)
0 = 12.88577 GHz). Inset: Microwave pulse

scheme used for this measurement. (c) Measured spin-up probability, P↑ (1000 repetitions for each point), as
a function of fMW and the relative phase ∆φ between two π/2 microwave bursts (130 ns, P = 16.0 dBm) for
second harmonic excitation, with τ= 50 ns. The measurement extends over more than 15 hours.
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and Pályi, 2014). When driving at the fundamental resonance, the Rabi frequency is lin-
ear in the driving amplitude, as usual. It is worth noting that at the highest power used in
this experiment the Rabi frequency obtained from driving the fundamental valley-orbit
ground state spin resonance is just a factor of two higher than the one from driving at the
second harmonic. This ratio indicates that the use of second harmonic driving is quite
efficient in our device. This result is consistent with (Széchenyi and Pályi, 2014), which
shows that Rabi frequencies at subharmonic resonances can be comparable to the Rabi
frequency at the fundamental resonance, and also with the theory and experiments in
(Danon and Rudner, 2014) and (Stehlik et al., 2014), which report resonant response at a
second harmonic that can exceed that at the fundamental.

8.6. UNIVERSAL PHASE CONTROL

A further peculiarity in coherent driving using second harmonics is seen when we vary
the phase of two consecutive microwave bursts. Fig. 8.3(a) shows the spin-up probabil-
ity following two π/2 microwave bursts with relative phase ∆φ, resonant with f (3)

0 and
separated by a fixed waiting time τ. For short τ, the signal oscillates sinusoidally in ∆φ
with a period that is half that for the single-photon case (compare the dashed and dotted
black traces in Figs. 8.3(a,b)).

Therefore, in order to rotate the electron spin around an axis in the rotating frame ro-
tated by 90 degrees with respect to a prior spin rotation axis (e.g. a ŷ rotation following an
x̂ rotation in the rotating frame), we need to set ∆φ to 45 degrees, instead of 90 degrees,
when driving via the second harmonic. Of course, for τ À T ∗

2 , the contrast has van-
ished, indicating that all phase information is lost during the waiting time (Fig. 8.3(a,b)
red traces). Fig. 8.3(c) shows two-pulse measurements as in Fig. 8.3(a) as a function of
frequency detuning and phase difference, where we can appreciate the extraordinary
stability of the undoped device.

To probe further the coherence properties of the spin, we perform a free induction
(Ramsey) decay measurement, see Fig. 8.4(a), as a function of frequency detuning and
delay time, τ, between the two bursts. The absence of a central frequency symmetry axis
is due to the presence of two superimposed oscillating patterns, originating from the
resonances at f (3)

0 and f (4)
0 . Figs. 8.4(c-e) show sections of the Ramsey measurement in

Fig. 8.4(a), corresponding to different waiting times τ (see the white dashed lines). The
visibility of the Ramsey fringes clearly decreases for longer waiting times between the
two π/2 pulses. Fitting the decay of the visibility of the fringes as a function of τ with a
Gaussian (∝ exp[−(t/T ∗

2 )2], see Sec. 8.S3) we find T ∗
2 = 780±110 ns, in agreement with

the value extracted from the linewidth.

Furthermore, and analogously to the observations of Fig. 8.3(a), we report a doubling
effect in the frequency of the Ramsey oscillations, fRamsey, as a function of the detuning

∆ fMW = fMW− f (3)
0 . Fig. 8.4(b) shows fRamsey(∆ fMW), extracted from the data in Fig. 8.4(a)

via a FFT over the waiting time τ. The black dashed line indicates the condition fRamsey =
2∆ fMW, closely overlapping with the position of the yellow peaks in the FFT. The black
dotted line indicates the condition fRamsey = 2( fMW − f (4)

0 ); this second resonance is not
very visible in the data, due to the lower population of the corresponding valley. For
comparison, the white dashed line indicates the condition fRamsey =∆ fMW, which is the
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Figure 8.4: Ramsey fringes. (a) Measured spin-up probability, P↑, as a function of fMW and waiting time τ
(Bext = 560.783 mT, P = 13.0 dBm) between two π/2 pulses (130 ns) with equal phase, showing Ramsey inter-
ference. Each data point is averaged over 300 cycles. Inset: Microwave pulse scheme used for this measure-
ment. (b) Fourier transform over the waiting time, τ, of the data in panel (a), showing a linear dependence

on the microwave frequency, with vertex at fMW = f (3)
0 and slope fRamsey = 2∆ fMW(black dashed lines). The

expected position of the FFT of the signal arising from resonance f (4)
0 is indicated by the dotted black line.

For comparison, the white dashed line represents the relation fRamsey = ∆ fMW. (c-e) Sections of the Ramsey
interference pattern in (a) along the three white dashed lines; the respective waiting times are indicated also
in the inset of each panel. (f) Measured spin-up probability as a function of the total free evolution time, τ,
in a Hahn echo experiment (pulse scheme shown in inset). The decay curve is fit well to a single exponential

(blue). Here, fMW = f (3)
0 , Bext= 560.783 mT.
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expected response when driving at the fundamental.

Finally, we perform a spin echo experiment via second harmonic driving. Fig. 8.4(f)
shows P↑ as a function of the total free evolution time τ, for a typical Hahn echo pulse
sequence (illustrated in the inset) consisting of π/2, π and π/2 pulses applied along the
same axis, separated by waiting times τ/2 (Hahn, 1950). A fit to a single exponential
yields T Hahn

2 = 20.6±6.5µs at Bext= 560.783 mT, compatible with the T Hahn
2 of 23.0 ±1.2

µs we observed at the same magnetic field when driving via the fundamental harmonic
(see Sec. 8.S4).

8.7. CONCLUSION
To summarize, we report coherent second harmonic driving of an electron spin qubit
defined in a Si/SiGe quantum dot, including universal single-spin rotations. The non-
linearity that permits second harmonic driving is likely related to the anharmonic con-
fining potential for the electron. This means that routine use of second harmonics for
spin control would be possible provided there is sufficient control over the degree of an-
harmonicity of the confining potential. This could be very useful since driving a spin
qubit at half its Larmor frequency would substantially simplify the microwave engineer-
ing required for high fidelity qubit control.

SUPPLEMENTARY INFORMATION

8.S1. ESTIMATION OF THE RATIO OF RABI FREQUENCIES FROM

CW MEASUREMENTS
A typical CW spin resonance measurement is reported in Fig. 8.S1, which shows the spin
excited state probability as a function of the applied microwave frequency, fMW, and
time. We note that the fluctuations of the two spin resonance frequencies, f (3) and f (4),
are highly correlated; this suggests that the two resonances are affected by the same low-
frequency source of noise (very likely hyperfine fluctuations) on the ∼minute timescale.
The trace for the second harmonic in Fig. 8.1(d) in the main text is obtained by averaging
the data in Fig. 8.S1 over the time axis.

As in Sec. 7.S5, the ratio of the steady-state spin-flip probability measured for the two

valley states converges at low driving power to
(

f (4)
1 / f (3)

1

)2
.

The ratio of the measured peak amplitudes between two valley states is the product of(
f (4)

1 / f (3)
1

)2
and the ratio of the respective populations at the end of the initialization

stage, ε(4)/ε(3). From a Gaussian fit to the spin resonance response for the two valleys in
Fig. 8.1(d), we extract the ratio of the measured peak amplitudes ∼ 0.35:

(
f (4)

1

f (3)
1

)2
ε(4)

ε(3)
∼ 0.35. (8.S1)

Furthermore, we assume that the ratio between the valley ground and excited state pop-
ulations after the initialization stage, is the same when driving via the second harmonic
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Figure 8.S1: The raw data on which Fig. 1(d) is based. Measured spin-up probability, P↑, as a function of
applied microwave drive frequency fMW and time (external field Bext = 560.783 mT, power P = -12 dBm, mi-
crowave pulse duration 700 µs). Each horizontal scan in the figure takes ∼2 minutes (200 cycles, in which each
data point takes 2s), and the scan is repeated ∼60 times. The time reported on the y-axis is counted from the
start of the measurement.

as when driving via the fundamental (Sec. 7.S5):

ε(4)

ε(3)
≡ ε(2)

ε(1)
∼ 0.3

0.7
(8.S2)

From eq. 8.S1 and eq. 8.S2 we obtain

f (4)
1

f (3)
1

∼ 0.90. (8.S3)

We remark that we also assume that the ratio of the Rabi frequencies between two valleys
is the same at high microwave power as it is at low microwave power.

8.S2. CHEVRON PATTERN USING SECOND HARMONIC DRIVING
In Fig. 8.S2(a) we report the spin excited state probability oscillations as a function of
the microwave burst time and detuning frequency (driving with PMW= 11.0 dBm at the
source). The quality of the data (stability of the measurement) is not high enough to
extract independently the Rabi frequencies for the two valley states directly from the su-
perimposed Chevron patterns (as was done in (Kawakami et al., 2014) for driving via the
fundamental harmonic). However, using the Rabi frequency ratio f (4)

1 / f (3)
1 ≈ 1 extracted

above, the ratio of initial populations of the two valleys of ε(4)/ε(3) ∼0.3/0.7 discussed
above as well, and a Rabi frequency of 1.05 MHz for the valley ground state (estimated
from a FFT along the MW burst time of Fig. 8.S2(a)), we can simulate the two superim-
posed Chevron patterns, see Fig. 8.S2(b). This simulation agrees qualitatively with the
data of Fig. 8.S2(a), in particular it captures the slight asymmetry along the detuning
axis, and the fact that mostly one Chevron pattern is visible.
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Figure 8.S2: (a) Measured spin-up probability, P↑, as a function of drive frequency fMW and microwave burst
time (Bext = 560.783 mT, P = 11.0 dBm). (b) Simulated spin-up probability using population fractions 0.3:0.7,
Rabi frequencies 1.0 MHz and 1.1 MHz for the υ+ and υ− valley states respectively, and the Larmor frequencies
separated by ∼1.04 MHz, extracted from low-power CW measurements in Fig. 8.1(d).

8.S3. T ∗
2 ESTIMATION FROM RAMSEY ENVELOPE DECAY AND RAM-

SEY SIMULATION

In order to get an alternative estimation of the dephasing time T ∗
2 , we can perform a

Ramsey measurement (see Fig. 8.4(a) of the main text) and record the amplitude of the
Ramsey oscillations as a function of the waiting time τ between the twoπ/2 pulses, keep-
ing fMW ≈ f (3)

0 . We show this data in Fig. 8.S3, with the blue dotted curve representing
the fitting relation P↑ = a exp[−(t/T ∗

2 )2]+ c. From this fit we get a T ∗
2 of 780 ± 110 ns,

compatible with what we estimated from the CW spin resonance linewidth in Fig. 8.1(d).
On the same figure we report in black for comparison a fit with the exponential relation
P↑ = a exp(−t/T ∗

2 )+ c.

8.S4. ECHO DECAY OF A QUBIT DRIVEN FUNDAMENTAL HAR-
MONIC AND COMPARISON TO RESULTS FOR DRIVING AT

SECOND HARMONIC

In Fig. 8.S4 we show a Hahn echo measurement realized driving spin resonance at the
fundamental harmonic, recorded at the same magnetic field Bext as the measurement
reported in Fig. 8.4(e) (driven by second harmonic). The T Hahn

2 (1ph) extracted from a fit
with a single exponential decay is similar to the T Hahn

2 (2ph) extracted from Fig. 8.4(e).
The decay obeys a single exponential similar to that observed in Sec. 7.5, indicating the
presence of a high-frequency decoherence process.
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8.S5. MECHANISMS MEDIATING SECOND HARMONIC GENERA-
TION

Here elaborate our discussion on the mechanism that can lead to a second harmonic
generation presented in the main text of this chapter and Ch. 3.1.3,

POSITION DEPENDENT MAGNETIC FIELD GRADIENT
From a simulation of the stray magnetic field of the micromagnet (Sec. 3.2, Appendix G),
we can put an upper bound on the second derivative of the stray magnetic field with
respect to the dot coordinates of d 2B⊥/d x2 < 1 µT/(nm)2. This is far too small to pro-
duce the measured second harmonic Rabi frequencies ∼ 1−5 MHz, which are as high as
the fundamental Rabi frequencies (the ratio is f (3)

1 / f (1)
1 ∼ 0.5 for the highest microwave

driving field used in the experiment, see Fig. 8.2(b)).

TILTED DRIVE FIELD
As discussed in Ch. 3.1.3 and Appendix. C.1, the second harmonic resonance can be gen-
erated by a magnetic field oscillating along the parallel axis to the spin quantization axis.
If the gradient of the stray magnetic field parallel to the external magnetic field along the
modulated direction is non-zero (dB||/d x 6= 0). In our system the magnetic field gradi-
ent has components in all three directions of space (Sec. 3.2, Appendix G). More specif-
ically, we have dB||/d x ≈ 0.2 mT/nm and dB⊥/d x ≈ 0.3 mT/nm. Given these magnetic
field gradients, the amplitude of the magnetic field oscillating along the parallel axis is
expected to be the same order of magnitude as the magnetic field oscillating along the
perpendicular axis. In this case, according to Eq. 3.23, f (3)

1 / f (1)
1 ∼ 0.5 cannot be achieved

with this mechanism.

ANHARMONIC CONFINING POTENTIAL
In the absence of detailed knowledge of the shape of the confining potential, it is diffi-
cult to quantitatively estimate the magnitude of this effect. However, what we can say
is that the details of the confining potential strongly influence the efficiency of second
harmonic driving: after tuning the same device into a new gate voltage configuration
for the experiments in Ch. 10 (for which the valley splitting is higher than it is here), it
has not been possible to observe again clear signatures of second harmonic driving. The
new settings will likely also shift the average dot position in the micromagnet stray field,
thereby altering the tilt of the effective driving field as well as the position dependent
field gradient. However, as discussed in the preceding sections, these two effects are
several orders of magnitude too small to explain the observed second harmonic driving.
If the degree of anharmonicity of the confining potential dominates second harmonic
driving, control of the anharmonicity will be required to make routine use of second
harmonic driving in future spin qubit experiments.



9
EDSR DETECTION OF DRESSED

ORBITAL STATES IN A QUANTUM

DOT

The valley degree of freedom strongly impacts the performance of electron spin qubits
in Si/SiGe quantum dots, in particular when the lowest valley-orbit splitting is small
compared to the thermal energy. A detailed understanding of these effects is crucial
for operating electron spin quantum bits in such systems. The valley degree of freedom
was also proposed as a potential quantum bit itself, which requires further experimen-
tal study. Here we present experiments on a single electron in a Si/SiGe quantum dot
in which microwave electric excitation induces transitions between states with both dif-
ferent electron spin and valley-orbit states. We find a tenfold increase in sensitivity to
electric fields and electrical noise compared to pure spin transitions, strongly impacting
phase coherence. This increased sensitivity is captured by theoretical modeling of the
valley-orbit splitting as a function of electron position in the presence of atomic steps in
the quantum well. The ability to drive such inter-valley spin transitions is described the-
oretically as the result of a non-adiabatic process whereby the valley-orbit state is excited
and simultaneously a spin flip is mediated by artificial spin-orbit coupling from a micro-
magnet next to the quantum dot. Pure spin transitions, whether arising from harmonic
or subharmonic generation, are shown to be adiabatic in the orbital sector. Finally, the
experiments show a dynamical anti-crossing that we describe theoretically in the form
of dressed eigenstates from hybridization of orbital, photon and spin states.

The work in this chapter is done with collaboration with P. Scarlino, T. Jullien, D. R. Ward, D. E. Savage, M. G.
Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson and L. M. K. Vandersypen and the manuscript is under
preparation.
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9.1. INTRODUCTION

A spin-1/2 particle is the canonical two-level quantum system. Its energy level structure
is extremely simple, consisting of just the spin-up and spin-down levels. Therefore, when
performing spectroscopy on an elementary spin-1/2 particle such as an electron spin,
only a single resonance is expected corresponding to the energy separation between the
two levels.

Recent measurements have shown that the spectroscopic response of a single elec-
tron spin in a quantum dot can be much more complex than this simple picture sug-
gests. This is particularly true when using electric-dipole spin resonance, where an os-
cillating electric field couples to the spin via spin-orbit coupling (Nowack et al., 2007).
First, due to non-linearities in the response to oscillating driving fields, subharmonics
can be observed (Forster et al., 2015; Laird et al., 2009; Laird, Pei, and Kouwenhoven,
2013; Nadj-Perge et al., 2012; Pei et al., 2012; Stehlik et al., 2014), and the non-linear re-
sponse can even be exploited for driving coherent spin rotations (Ch. 8). Second, due
to spin-orbit coupling, the exact electron spin resonance frequency in given magnetic
field depends on the orbital the electron occupies (Khaetskii and Nazarov, 2001). In sil-
icon or germanium quantum dots, the conduction band valley is an additional degree
of freedom (Friesen and Coppersmith, 2010; Friesen, Eriksson, and Coppersmith, 2006;
Goswami et al., 2007; Rančić and Burkard, 2016; Zwanenburg et al., 2013), and the elec-
tron spin resonance frequency should depend on the valley state as well (Hao et al., 2014;
Kawakami et al., 2014; Rančić and Burkard, 2016; Yang et al., 2013). As a result, when val-
ley or orbital energy splittings are comparable to or smaller than the thermal energy,
thermal occupation of the respective levels leads to the observation of multiple closely
spaced spin resonance frequencies (Ch. 7).

The picture becomes even richer when considering transitions in which not only the
spin state but also the orbital quantum number changes. Such phenomena are common
in optically active dots (Warburton, 2013), but have been observed also in electrostati-
cally defined (double) quantum dots in the form of relaxation from spin triplet to spin
singlet states (Fujisawa et al., 2002; Johnson et al., 2005) and spin-flip photon-assisted
tunneling (Braakman et al., 2014; Schreiber et al., 2011). However, transitions involving
the valley state have so far remained unexplored in experiment.

Here, we report transitions where both the spin and valley-orbit state flip in a Si/SiGe
quantum dot. We demonstrate that we can Stark shift the transition, and we compare the
sensitivity to electric fields to the case of pure spin transitions, including the impact on
phase coherence. From these measurements we can observe that the valley-orbit cou-
pling strongly affects the coherence properties of the inter-valley spin resonance. We
show that a theory incorporating a driven four-level system comprised of two valley-
orbit and two spin states subject to strong ac driving provides a consistent description of
these transitions, as well as all the previously reported transitions for this system. This
theory also explains the observation of a dynamic level repulsion, which can be under-
stood effectively and compactly using a dressed-state formalism.
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9.2. DEVICE AND SPECTROSCOPIC MEASUREMENTS
The sample and the settings are the same as those used in Ch. 7,8. A cobalt micromag-
net next to the QD creates a local magnetic field gradient, enabling spin transitions to
be driven by electric fields (Kawakami et al., 2014; Obata et al., 2010). All measurements
shown here are performed using single-shot read-out via a QD charge sensor (Elzerman
et al., 2004) (Sec. 7.2). The initialization and read-out procedures require a Zeeman split-
ting exceeding kB Tel (∼150 mK, electron temperature estimated from transport mea-
surements), which here restricts us to working at Btot > 450 mT.

When varying the applied microwave frequency and external magnetic field, we ob-
serve five distinct resonance peaks [Fig. 9.1(a)]1. The two resonances labeled (1) and (2),
not resolved on this scale, are two intra-valley spin resonances, one for each of the two
lowest-lying valley states that are thermally occupied (Ch. 7). They exhibit a T ∗

2 ∼ 1 µs
and Rabi frequencies of order MHz. The two resonances labeled (3) and (4), similarly
not resolved, arise from second harmonic driving of the two intra-valley spin flip transi-
tions. These transitions too can be driven coherently, with Rabi frequencies comparable
to those for the fundamental harmonic (Ch. 8).

The focus of the present work is the resonance labeled (5), which has not been dis-
cussed before. Its frequency, f (5)

0 , is ∼7 GHz lower than the fundamental intra-valley

spin resonance frequencies, f (1)
0 and f (2)

0 . From its magnetic field dependence mea-
sured above 500 mT, we extract a g -factor of about 1.971 ± 0.002, close to but different
from the g -factors for resonances (1) and (2) ∼ 1.99 (Ch. 7,8). The linewidth (Fig. 9.3(a))
is almost ten times larger than that for the intra-valley resonances, giving a correspond-
ingly shorter T ∗

2 of around 100 ns. Around 500 mT, the slope of resonance (5) changes
in a way reminiscent of level repulsions (see Fig. 9.1(b)). Without the change in slope,
resonance (5) would have crossed resonances (3) and (4), however the latter do not show
any sign of level repulsion and continue their linear dependence on magnetic field.

We interpret these puzzling observations starting with Fig. 9.1(d). Two sets of Zee-
man split levels are seen, separated by the energy of the first excited valley-orbit state.
The red (1) [(2)] and two blue (3) [(4)] arrows show driving of spin transitions via the fun-
damental and second harmonic respectively, for the valley-orbit ground [excited] state.
We identify resonance (5) with the transition indicated with the black arrows in which
both spin and valley(-orbit) flip. It has the same field dependence as resonance (1), but
(above 500 mT) it is offset from resonance (1) by a fixed amount, which as we can see
from Fig. 9.1(d), is a measure of the valley-orbit splitting, EV .

1Here, we present measurements realized for different magnetic field orientations. The components of the
external magnetic field are reported in each figure. The specific orientation of the external magnetic field
does not play any special role. It is our understanding that the results presented in this work are independent
from the specific magnetic field orientation.
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Figure 9.1: (a) Multiple resonance frequencies as a function of the external magnetic field, observed for a sin-
gle electron spin confined in a gate-defined Si/SiGe quantum dot, driven by low-power microwave excitation
applied to one of the quantum dot gates. Resonances (1) and (2) are indistinguishable on this scale, as are

resonances (3) and (4). On the horizontal axis, we plot Btot =
√

(B x
ext +B‖)2 +B2

⊥, with B‖ ∼ −120 mT and

B⊥ ∼ 50 mT the estimated components of the stray magnetic field from the micromagnet [magnetized, in this
measurement, along the x-direction (see Fig. S3)]. (b) Zoom-in of the region indicated by a red box in panel
(a). (c) Schematic energy level diagram of a generic two-level quantum system described by Eq. 9.S1, as a
function of detuning ε and with a harmonic driving around the central value ε0 with energy eigenvalues E±
and energy splitting E01 = E+ −E−. (d) The four energy levels considered in this work as a function of Btot ,
in the absence of photonic dressing, comprised of two valley-orbit states (|v−〉, (|v+〉) and two spin states (|↓〉,
|↑〉). EV represents the valley-orbit energy splitting. Vertical arrows indicate four processes observed in our
simulations, with the same labeling scheme as panel (a). (1) and (2) correspond to single-photon spin flips. (3)
and (4) correspond to two-photon spin flips. (5) corresponds to a combined spin flip, valley-orbit excitation,
and single-photon absorption. (6) is observed in simulations but not in the experiments, since the condition
EV É kB Tel makes the read-out process low-fidelity for this excitation., and corresponds to a nonadiabatic
valley-orbit excitation.

9.3. MODEL

We now introduce a simple model Hamiltonian that can be used to understand the ob-
served spectroscopic response. This model explains the presence of both the first and
second harmonic driven spin resonance as well as the observed inter-valley spin reso-
nance. We show that resonances such as those observed in experimental Fig. 9.1(a,b)
are generic features of a strongly driven four-level system composed of two orbital levels
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and two spin levels in which there is a coupling between the orbital levels, such as a tun-
nel coupling. For our case, it is natural to associate the orbital levels with two different
valley-orbit states (see Sec. 9.S1).

Our analysis builds upon the theory proposed by Rashba (Rashba, 2011). When a
spin qubit is driven at a frequency ω, it responds at one or more frequencies Ω, which
may be the same as ω, but may also be different (see Fig. 9.2(a)). Spin resonance is ob-
served if (i) the spin is flipped2, and (ii) ħΩ = EZ , where EZ = gµB Btot is the Zeeman
splitting, g is the Landé g -factor in silicon, µB is the Bohr magneton, and Btot is the
total magnetic field. In electric dipole spin resonance (EDSR), the spin flip requires a
physical mechanism for the electric field to couple to the spin, such as spin-orbit cou-
pling (Tokura et al., 2006). In our experiment, an effective spin-orbit coupling due to the
strong magnetic field gradient from the micromagnet is the mechanism responsible for
spin flips (Ch. 7). Hence, we can say that EDSR and its associated spin dynamics provide
a tool for observing the mapping ω→Ω. However, as discussed in (Rashba, 2011), EDSR
does not determine the mapping; determining the resonant frequencies Ω requires in-
cluding the essential non-linearity in the system, which in this case resides in the orbital
sector of the qubit Hamiltonian. We therefore focus on the dynamics of the orbital sec-
tor of the Hamiltonian; the mechanism for spin flips is included perturbatively after the
charge dynamics have been characterized.

The exact orbital Hamiltonian is difficult to write down from first principles, since it
likely involves both orbital and valley components (Ch. 7), and depends on the atomistic
details of the quantum well interface(Friesen and Coppersmith, 2010; Friesen, Eriksson,
and Coppersmith, 2006; Goswami et al., 2007). Nonetheless, the features of the reso-
nances in Fig. 9.1 emerge quite naturally using a model with one low-lying orbital ex-
cited state. Referring to Fig. 9.1(c), in this model, the Hamiltonian for the orbital sector
is described by a simple two-state Hamiltonian, which we write as

H = 1

2
(εσz +∆σx ). (9.1)

Here, ε is a detuning parameter,∆ is the tunnel coupling between the generic basis states
labeled |L〉 and |R〉, and σx and σz are Pauli matrices. We consider a classical ac drive,
applied to the detuning parameter:

ε(t ) = ε0 +ε1 sin(ωt ). (9.2)

If the quantum dot confinement were purely parabolic, then changing the detuning
would not affect the energy splitting between the eigenstates. However, any nonparabol-
icity in the dot, which is unavoidable in real devices, will cause the energy splitting to
depend on the detuning and will yield a nonlinear response to the driving term, Eq. 9.S4.
In our Hamiltonian, this effect enters via the tunnel coupling ∆, which causes the qubit
frequency to depend on ε(t ).

Our goal is to determine the response of the two-level system to this ε(t ). We assume
that the basis states are coupled by the applied electric field because they have different

2For resonance (5), the valley state must flip too; therefore, a spin-valley coupling mechanism is required (Hao
et al., 2014; Huang and Hu, 2014; Yang et al., 2013).
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Figure 9.2: Theoretical calculations of resonances in an ac-driven qubit with a low-lying orbital state induced
by adiabatic and non-adiabatic processes. (a) Schematic illustrating that an excitation at driving frequency
ω leads to several adiabatic (non-adiabatic) response frequencies of the electron dipole moment, p0(Ω) =
F F T [p0(t )], listed in green (blue). The time-dependent electron dipole moment in turn produces spin flips
due to the magnetic field gradient when ħΩmatches the Zeeman splitting. (b) Simulated resonance spectrum
of the ac-driven qubit model of Eqs. (9.S1) and (9.S4), setting ħ= 1. As described in the main text, the dynamics
of the dipole moment p0, defined in Eq. (9.S5), are solved in the time domain for the driving frequencyω, then
Fourier transformed to obtain the response frequency Ω. Here we use ε0 = ε1 = ∆ = 1. The dashed lines
indicate the positions of the fundamental resonance and its first two harmonics (top to bottom). The lower
inset shows the relation between the energy levels and the driving term. The upper inset shows the same
results as the main panel, with the experimentally relevant resonances highlighted (compare to Fig. 9.1). (c)
Resonance spectrum corresponding to the parameters ε0 = ∆ = 1 and ε1 = 0.5. Here, the shaded region was
normalized separately from the rest of the figure. The resonance features labeled 1-9 are discussed in the main
text (see also Sec. 9.S4 and Sec. 9.S2.2). (d) A blowup of the region shown in the center box of panel (b), using
the parameters ∆= ε0 = 1 and ε1 = 0.11, which gives good agreement with the level repulsion observed in the
experiments shown in Figs. 9.1(a) and 9.1(b). (e) The same as Fig. 9.1(d) but focusing on the region around

the point where the anti-crossing between the states |v− ↑〉 and |v+ ↓〉 occurs (Btot = EV
gµB

) and where the level

repulsion between resonance lines (5) and (5’) occurs (Btot = 2EV
gµB

). (5’) and (5”) corresponds to the three-

photon process and the two-photon process of the transition between |v− ↓〉 and |v+ ↑〉, respectively.
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spatial charge distributions, and study the time evolution of the dipole moment of the
ground state |0〉, defined as

p0 = eL

2

[|〈0 |L〉|2 −|〈0 |R〉|2 ]
. (9.3)

Here, L is the distance3 between the charge in states |L〉 and |R〉.
Rashba has studied Hamiltonian (Eq. 9.S1) perturbatively in the regime of weak driv-

ing and high excitation frequency (Rashba, 2011). In Sec. 9.S1-9.S2, we present a detailed
exposition of our extensions of these investigations into the strong driving regime rele-
vant to resonance (5). We find that driving this transition involves non-adiabatic pro-
cesses whereby the orbital state gets excited, in contrast to the subharmonics reported
in Ch. 8, which as we show here involve only adiabatic processes in the charge sector.

Here, we present the results of numerical simulations in this regime and show that
the results are consistent with the main features observed experimentally. The dynam-
ical simulations are performed by setting ħ = 1 and solving the Schrödinger equation
i∂

∣∣ψ〉
/∂t = H

∣∣ψ〉
for Eqs. (9.S1) and (9.S4) and computing p0(t ) as defined in Eq. (9.S5)

for a fixed driving frequency4 ω. The resulting p0(t ) is Fourier transformed, yielding
a p0(Ω) whose peaks reflect the resonant response. Finally, we smooth p0(Ω) by con-
volving it with a Gaussian of width 0.025 (in order to take into account noise, which is
averaged in the experiment). Because of the spin-orbit coupling, peaks in p0(Ω) corre-
spond to frequencies at which an ac magnetic field is generated, so spin flips will occur
at a Zeeman frequency given by EZ /ħ =Ω. The experiment measures the probability of
a spin flip as a function of magnetic field; via the EDSR mechanism, resonances in this
probability therefore occur when the peak locations in p0(Ω) satisfy gµB Btot =ħΩ.

Figs. 9.2(b) and (c) show the results of our simulations for p0(Ω) as a function of both
driving frequency ω and response frequency Ω over a range of parameters analogous
to those shown in Fig. 9.1. From top to bottom, the dashed blue lines correspond to
the fundamental resonance (1,2), and the first two subharmonics (3,4,7), which are all
visible in the simulations. We also see a resonance, labeled (5), running parallel to the
fundamental resonance (the other resonances are discussed in Sec. 9.S4). The upper
inset of Fig. 9.2(b) highlights the particular resonances in the main figure that should be
compared to the experimental data shown in Fig. 9.1(a,b).

An interesting feature of the resonances, observed both in the experiments and the-
ory (Figs. 9.2(b-d)), is the apparent ‘level repulsion’ between resonance lines (5) and
(5’) that takes place near Btot = 480 mT. This magnetic field value is much higher than
EV /gµB ∼ Btot = 250 mT, where the anti-crossing between the states |v−,↓〉 and |v+,↑〉
is expected to occur (Yang et al., 2013) (see the red dashed line in Fig. 9.1(d)), but which
is outside our measurement window, see above. Instead the observed ‘level repulsion’

3For a charge qubit, L is the lateral separation between the two sides of the double quantum dot. For an orbital
qubit, L is the lateral separation of the center of mass of the two orbital states. For a pure valley qubit, L is
the vertical separation of the even and odd states (∼0.16 nm). For a complicated system like a valley-orbit
qubit with interface disorder, L will have lateral and vertical components, with the lateral component being
usually much larger than the vertical one. In this last case the exact length L will depend on the specifics of
the interface disorder; a reasonable guess would be L ∼0.5-5 nm (see, e.g. Ref. [28]).

4For the Hamiltonian parameters indicated in the caption of Fig. 9.2(b), we use time steps in the range 0.061-
0.073.
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has a purely dynamical origin, as demonstrated by the fact that the anti-crossing is sup-
pressed in Fig. 9.2(c), where the simulation parameters are identical to Fig. 9.2(b), except
for a smaller driving amplitude ε1.

In Sec. 9.S2, we develop a dressed-state theory to describe these strong-driving ef-
fects. In this formalism, the quasiclassical driving field of Eq. 9.S4 is replaced by a fully
quantum description of the photon field and its coupling to the (valley)-orbital Hamil-
tonian of the quantum dot. The resulting dressed eigenstates describe the hybridized
photon-orbital levels, and more generally, the hybridization of orbital, photon, and spin
states. In this way, resonances (1) and (2) in Fig. 9.2(c) correspond to single-photon spin
flips, while resonances (3) and (4) correspond to two-photon spin flips. Resonance (5)
involves both a spin flip and a valley-orbit excitation. The right-most portion of reso-
nance (5) is parallel to resonance (1,2), indicating that it is a single-photon process. The
left-most portion of the resonance (5) (the resonance (5’)), is parallel to resonance (7),
indicating that it is a three-photon process. The physical mechanisms of the resonances
are also indicated in Fig. 9.1(d) and Fig. 9.2(e).

In principle, coupling occurs between all of the dressed states due to the effective
spin-orbit coupling in our EDSR experiment. In practice however, the orbital-Rabi fre-
quency is two orders of magnitude larger than the spin-Rabi frequency, so mode hy-
bridization is only observed in resonance (5′), resulting in the level repulsion. The mag-
nitude of this repulsion provides a convenient way to determine the orbital-Rabi fre-
quency, which cannot be measured directly due to the fast dephasing of the excited
valley-orbit state (see Sec. 9.S3). In Sec. 9.S2, we estimate this Rabi frequency to be about
0.2 GHz.

9.4. COHERENCE OF THE INTER-VALLEY SPIN TRANSITION

We now examine the possible origin of the ten times larger linewidth of resonance (5)
compared to that of the pure spin-flip resonances (1) and (2). Given the partial valley na-
ture of transition (5) and the strong valley-orbit coupling that is typical of Si/SiGe quan-
tum dots (Gamble et al., 2013; Hao et al., 2014; Yang et al., 2013), a plausible candidate
decoherence mechanism for this transition is electric field noise.

In order to study the sensitivity to electric fields of the respective transitions, we show
in Fig. 9.3(a) the dependence of the frequency of resonances (1) and (5) on the voltage
applied to one of the quantum dot gates, V3. Clearly, resonance (5) exhibits a much
greater sensitivity to gate voltage than resonance (1): ∼ 18.5 MHz/mV for f (5)

0 , versus

∼ 0.5 MHz/mV for f (1)
0 . We also notice that the two resonance shifts as a function of

V3 have opposite sign, which indicates that different mechanisms are responsible. For
resonance (1), we believe that the dominant effect of the electric field is the displace-
ment of the electron wave function in the magnetic field gradient from the micromag-
nets (see Sec. 9.S3.2). This effect also contributes to the frequency shift of resonance
(5), but presumably it is masked by the change in valley-orbit splitting (EV ) resulting
from the displacement of the electron wave function in the presence of interface disor-
der (Friesen and Coppersmith, 2010; Shi et al., 2012). For instance, moving the electron
towards or away from a simple atomic step at the Si/SiGe interface leads to a change of
the valley-orbit energy splitting, as shown by the results of numerical simulations shown



9.4. COHERENCE OF THE INTER-VALLEY SPIN TRANSITION

9

133

(b)

Offset

SiGe barrier

SiGe barrier

Si QW 

Atomic 
step

E
field

Step offset (nm)

0.10

-100 -50 0 50 100

0.02

0.06

(a)

(c)

R
es

on
an

ce
 fr

eq
ue

nc
y 

(G
H

z)

V3  (mV)

0.55 
MHz/mV

18.61 
MHz/mV 

-198-204

16.38

16.32

16.78

16.72

-364-370

-200-202

16.34

16.36

-368 -366

16.76

16.74

-6 -4 -2 0 2 4 6
0.05

0.15

0.25

 

 

= 110 ±10 ns

(kHz)

(d)
initialization

readout

detuning frequency (MHz) E
   

 (m
eV

)
V

S

(M
H

z)
f 0

IN

f0
(1)

f0
(5)

T2
*

P Δ

Γ

(5
)

1

-1

2

-2

0

-0.2 -0.1 0.2 0.10

Δ

Figure 9.3: Sensitivity of intra-valley and inter-valley spin transitions to electric fields. (a) Measured resonance

frequency for the inter-valley ( f (5)
0 at B

y
ext =792 mT, blue data and axes) and intra-valley ( f (1)

0 at B
y
ext =550 mT,

red data and axes) spin transition, as a function of gate voltage V3. Inset: low-power continuous wave response
of the inter-valley spin transition, with T∗

2 estimated from the linewidth (see also Fig. 9.S3). (b) Schematic rep-
resentation of an atomic step in a Si/SiGe quantum well and of a quantum dot parabolic confinement potential
(not to scale) laterally offset from the step. (c) Valley-orbit energy splitting found by a 2D tight binding calcu-
lation using the geometry shown in panel (b), a 13 nm wide quantum well barrier of 160 meV (corresponding

to 30% Ge), a parabolic confinement potential for the dot of size
√
〈x2〉 = 21.1 nm (corresponding to an orbital

energy splitting of ħω= 0.45 meV), and an electric field of 1.5×106 V/m (the experimental electric field is not
well known). In the plots, a positive step offset corresponds to a step on the right-hand side of the dot. (d)
Scatter plot showing two quantities measured every 400 s. The x axis shows the average rate, ΓI N , with which
an electron tunnels into the quantum dot during qubit initialization (in orange in the inset); on the y axis is
the frequency of resonance (5) relative to its value averaged over the entire measurement (see also Fig. 9.S5).
The continuous line represents a linear fit to the data through the point (0,0). The dashed lines represent the
95% confidence interval. The distribution of the points in the scatter plot indicates that the two quantities are

correlated. B x
ext = 590 mT, B

y
ext = 598.2 mT, ∆ f (5)

0 = f (5)
0 −15.6894 GHz, ∆ΓI N = ΓI N −1.0762 kHz.

in Fig. 9.3(b,c). As expected, the simulations predict a minimum in the valley-orbit split-
ting when the wave function is centered around the atomic step, but interestingly it does
not vanish, i.e. the opposite signs for the valley-orbit splitting left and right of the atomic
step do not lead to complete cancellation (see Sec. 9.S4).

The ∼35 times greater sensitivity of the spin-valley transition frequency to electric
fields may contribute to its ten times larger linewidth compared to the intra-valley spin
transition. The linewidth of the intra-valley spin transition is believed to be dominated
by the 4.7% 29Si nuclear spins in the host material (Ch. 7,10). The nuclear field also
affects the spin-valley transition, but obviously only accounts for a small part of the
linewidth here. We propose that the dominant contribution to the linewidth of reso-
nance (5) is low-frequency charge noise.

Although not definitive, some evidence for this interpretation is found in Fig. 9.3(d),
which shows a scatter plot of f (5)

0 and one of the dot-reservoir tunnel rates, simultane-
ously recorded over many hours (see Sec. 9.S3.3 for a more detailed description of the
measurement scheme). The dot-reservoir tunnel rate serves as a sensitive probe of lo-
cal electric fields, including those produced by charges that randomly hop around in the
vicinity of the quantum dot (see Fig. 9.S5) (Vandersypen et al., 2004). The plot shows a
modest correlation between the measured tunnel rate and f (5)

0 , suggesting that the shifts
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in time of both quantities may have a common origin, presumably low-frequency charge
noise.

In this case, we can also place an upper bound on T ∗
2 permitted by charge noise for

the intra-valley spin transitions (1,2) in the present sample. Indeed, due to the micro
magnet induced gradient in the local magnetic field parallel to Bext , the pure spin tran-
sitions are also sensitive to charge noise. Given that T ∗

2 ∼110 ns for transition (5) and
the ratio of ∼ 35 in sensitivity to electric fields5, charge noise in combination with this
magnetic field gradient would limit T ∗

2 to ∼ 3.8 µs for transitions (1,2). It is important to
note that this is not an intrinsic limitation, as the stray field of the micro magnet at the
dot location can be engineered to have zero gradient of the longitudinal component, so
that to first order charge noise does not affect the frequency and T ∗

2 of transitions (1,2).
At the same time, a strong gradient of the transverse component can be maintained, as
is necessary for driving spin transitions (Sec. 11.4).

Besides its strong sensitivity to static electric fields, we report a surprising depen-
dence of the frequency of resonance (5) on microwave driving power [Fig. 9.4(b,c)]. In-
creasing the driving power, the resonance not only broadens but also shifts in frequency,
as in an a.c. Stark shift (Brune et al., 1994). This dynamical evolution is very differ-
ent from the case of the intra-valley spin resonance, which is power broadened but
stays at fixed frequency (Ch. 7,10). This frequency shift is, at least for a limited mi-
crowave power range, in line with the dynamical level repulsion captured by Eq. S42,
where∆Easymp ∝ ε2

1 expresses the energy splitting between resonance (5) and its asymp-
tote, ħω= EZ −E01. This relation is verified in Fig. 9.4(c) for microwave powers of 9−17
dBm.

Finally, we attempt to drive coherent oscillations using resonance (5) at high applied
microwave power, recording the spin excited state probability as a function of the mi-
crowave burst time. Oscillations are not visible, indicating that the highest Rabi fre-
quency we can obtain for resonance (5) is well below the corresponding 1/T ∗

2 of 110
ns. This is consistent with our estimate that the Rabi frequency is of the order of 10 kHz,
based on the magnitude of the dynamical level repulsion seen in Fig. 9.1(a,b)) and the
derivation in Sec. 9.S2.2.

9.5. CONCLUSIONS
Despite its simplicity, the electrical driving of a single electron confined in a single quan-
tum dot can produce a complex spin resonance energy spectrum. This particularly ap-
plies for quantum dots realized in silicon, where the presence of the excited valley-orbit
state, close in energy and strongly coupled to the ground state, introduces a substantial
non-linearity in the system response to microwave electric fields. This allows us to ob-
serve a transition whereby both the spin and the valley state are flipped at the same time.
We demonstrate how both static external electric fields and electrical noise influence the
frequency of this inter-valley spin transition, dominating its coherence properties.

Much of the dynamics of the spin and valley transitions can be captured in a semi-
classical picture, including driving using higher harmonics exploiting non-linearities.
However, under intermediate or strong driving, new phenomena emerge that cannot be

5T∗
2 ∼110 ns was calculated by the standard deviation of the resonance peak σ f = 2.1 MHz using Eq. 4.41.



9.5. CONCLUSIONS

9

135

(a)

Microwave frequency (GHz)

0.15

0.3

0
17.8517.8317.81

- 4 dBm
0 dBm
4 dBm
8 dBm

12 dBm
16 dBm

=

(b)

Microwave power (dBm)
 (M

Hz
)

-5 0 5 1510 20

0

5

10

15

1
2
3
4

0.3

0.2

0.1

0

0

P

f 0(5
)

 (M
Hz

)
f 0(5

)
P

σ
Δ

0

5

10

15

0 1 2 3 4
Microwave power (a.u)

 (M
Hz

)
f 0(5

)
Δ

(c)

Figure 9.4: (a) Measured spin-up probability as a function of microwave power at B
y
ext = 846 mT for a fixed mi-

crowave burst time of 50µs, near the resonance condition for inter-valley spin-flip transition (5). For increasing
power, the line does not only become taller and wider but also moves towards higher frequencies. Panel (b)

summarizes from top to bottom the center frequency, width and height of the response. ∆ f (5)
0 = f (5)

0 −17.825

GHz. (c) Top panel of figure (b) replotted using a linear power scale (x-axis ∝ 10MW power(dBm)/5). The blue
line represents a linear fit to the black data points to the relation ∆Easymp ∝ ε2

1 (eq. S42). The points indicated
by the red crosses are excluded from the fit.

easily explained except in terms of pseudospins (dressed states) that fundamentally in-
volve a quantum mechanical coupling between photons and orbital or spin states. Here,
we have provided experimental and numerical evidence for the existence of such dressed
states of photons and valley-orbit states at strong driving. We have further estimated the
strength of this valley-orbit to photon coupling by comparing our analytical theory to
the experiments.

This work provides important experimental and theoretical insight in the role of inter-
valley transitions for controlling spin dynamics in silicon based quantum dots. It also
highlights the limitations of valley-based qubits in the presence of strong valley-orbit
coupling, due to their sensitivity to electrical noise.

SUPPLEMENTARY SECTIONS
This first section presents a theoretical discussion of the model used to understand the
electric dipole spin resonance experiments presented in the main text. We show that
experimental features are generic features of a driven four-level system, comprised of
two valley-orbit and two spin degrees of freedom, with a tunnel coupling between the
orbital states. The model exhibits conventional resonances, including both fundamen-
tal and higher harmonics, as well as novel resonances involving photonically dressed
orbital states. We develop an analytical model that describes the key features of the hy-
bridized dynamical states, based on a simple, 4D dressed-state Hamiltonian, and we use
this model to determine the Rabi frequency for orbital excitations by fitting to the exper-
imental data.

The main text reports EDSR measurements on an ac-driven spin qubit in a silicon
quantum dot. The system is driven in a microwave regime that is intermediate be-
tween weak and strong driving, allowing us to observe semiclassical phenomena, such
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as conventional spin resonances and spin-flip photon assisted tunneling (PAT) (Braak-
man et al., 2014; Schreiber et al., 2011), which have been observed previously in quan-
tum dots. However, the experiments also probe new and intriguing phenomena that
are purely quantum mechanical, involving the hybridization of photons, orbitals and
spin. Such effects are most conveniently described as dressed states. By developing a
formalism that is appropriate for our system, we can describe the photonically dressed
states as pseudospins, and explain the hybridization effects by means of simple 2D and
4D Hamiltonians. Moveover, although coherent oscillations of the photon-orbital-spin
pseudospins are not observed in our experiments (in contrast with photon-spin pseu-
dospins, whose coherent oscillations were reported in Ch. 7), the dressed-state theory
still allows us to extract the PAT Rabi frequency.

Our analysis is broken into two parts. In Sec. 9.S1, we describe a simple model for
EDSR, and provide an intuitive discussion and overview of the resonances observed in
the experiments.

In Sec. 9.S2, we develop a more technical, dressed-state formalism to describe the
photonic dressing of the orbital and spin states in our system, which we use to explain
and fit the experimental data.

9.S1. MODEL OF THE DYNAMICS
When a spin qubit is driven at a frequency ω, it responds at one or more frequencies
Ω, which may be the same as ω, but may also be different. Spin resonance is observed
if (i) the spin is flipped, and (ii) ħΩ = EZ , where EZ = gBµB B is the Zeeman splitting,
gB is the Landé g -factor in silicon, µB is the Bohr magneton, and B is the applied mag-
netic field. The spin flip requires a physical mechanism, such as spin-orbit coupling in
EDSR (Tokura et al., 2006). Indeed, the strong magnetic field gradient of the micromag-
net introduces such a coupling (Kawakami et al., 2014; Tokura et al., 2006). Rashba has
suggested that the mapping ω → Ω occurs entirely within the orbital sector, and that
EDSR simply provides a tool for observing this mapping (Rashba, 2011). In this Supple-
mental Section, we adopt Rashba’s orbital-based model as our starting point.

Several theoretical explanations have been put forth to explain strong-driving phe-
nomena in EDSR, such as the generation of higher harmonics (Braakman et al., 2014;
Rashba, 2011; Stehlik et al., 2014; Széchenyi and Pályi, 2014), and other, more exotic ef-
fects such as an even/odd harmonic structure (Stehlik et al., 2014). For silicon dots, the
exact orbital Hamiltonian is difficult to write down from first principles, since it involves
both orbital and valley components (Ch. 7) and depends on the atomistic details of the
quantum well interface (Friesen and Coppersmith, 2010; Friesen, Eriksson, and Copper-
smith, 2006; Goswami et al., 2007). Nonetheless, the dynamics can be understood using
a minimal model for investigating the physics of the orbital sector, given by the two-level
system

H = 1

2
(εσz +∆σx ), (9.S1)

where σx and σz are Pauli matrices. The basis states in this model may correspond
to excited orbitals in a single quantum dot (Tokura et al., 2006), valley states in a sin-
gle dot (Friesen, Eriksson, and Coppersmith, 2006), localized orbital states in a double
dot (Rashba, 2011), or a hybridized combination of these systems (Friesen and Copper-
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smith, 2010). In each case, the two basis states have distinct charge distributions that can
support EDSR through the mechanism described by Tokura et al. (Tokura et al., 2006)

Eq. (9.S1) is, in fact, the most general theoretical model of a two-level system. Map-
ping the theoretical model onto a real, experimental system requires specifying the de-
pendence of the effective detuning parameter ε and the effective tunnel coupling ∆ on
the voltages applied to the top gates for a given device. To take a simple example that is
relevant for silicon quantum dots, we consider such a mapping for the basis comprised
of valley states. In this case, ε represents a valley splitting, which can be tuned with a
vertical electric field, while ∆ represents a valley coupling, which can depend on the in-
terfacial roughness of the quantum well and other materials parameters (Gamble et al.,
2013). The centers of mass of the charge distributions of the basis states in this example
differ by about a lattice spacing in the vertical direction. It is likely that the silicon dots
in the experiments reported here experience an additional valley-orbit coupling, which
induces a lateral variation of the charge distributions. In this case, the gate voltage de-
pendence of ε and ∆ is quite nontrivial; however Eq. (9.S1) should still provide a useful
theoretical description. For convenience in the following analysis, we adopt the picture
of a charge qubit, for which the basis states correspond to “left" (|L〉) and “right" (|R〉).
The eigenstates of H are then given by

|0〉 = ∆√
∆2 + (ε+E01)2

|L〉− ε+E01√
∆2 + (ε+E01)2

|R〉 , (9.S2)

|1〉 = ∆√
∆2 + (ε−E01)2

|L〉− ε−E01√
∆2 + (ε−E01)2

|R〉 , (9.S3)

and the energy splitting is given by E01 =
p
∆2 +ε2.

To begin, we consider a classical ac driving field, applied to the detuning parameter:

ε(t ) = ε0 +ε1 sin(ωt ). (9.S4)

Our goal is to determine the response of the two-level system to this ε(t ). In contrast with
Rashba, we will not limit our analysis to the perturbative regime in which ε1,E01 ¿ħω,
since the experiments reported here are not in that regime. To proceed, we note that the
basis states couple differently to the applied electric field because they have different
spatial charge distributions. We specifically consider the time evolution of the dipole
moment of the ground state |0〉, defined as

p0 = eL

2
〈0|σz |0〉 = eL

2

[|〈0 |L〉|2 −|〈0 |R〉|2] , (9.S5)

where L is the distance between the center of mass of the charge in states |L〉 and |R〉.
Throughout the discussion that follows, when connecting the output of the model to the
experimental data, we will identify E01 with the valley-orbit splitting, EV .

9.S1.1. ADIABATIC EFFECTS
Two fundamentally different types of response to the driving are observed in p0(t ): adi-
abatic vs. nonadiabatic. We first consider adiabatic processes. The adiabatic eigenstates
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of the Hamiltonian, given in Eqs. (9.S2) and (9.S3) yield a corresponding dipole moment,
computed from Eq. (9.S5), of

p0 = eL

2

[
∆2 − (ε+E01)2

∆2 + (ε+E01)2

]
=− eLε

2E01
. (9.S6)

Substituting Eq. (9.S4) into Eq. (9.S6), we see that the adiabatic response of p0(t ) is a
nonlinear function of sin(ωt ). For example, in the weak driving limit, we can expand
Eq. (9.S6) to second order in the small parameter ε1/E01, giving

p0(t ) ' (const.)−
(

eL∆2

2Ē 3
01

)
ε1 sin(ωt ) (9.S7)

−
(

3eL∆2ε0

8Ē 5
01

)
ε2

1 cos(2ωt )+ . . . .

Here, Ē01 denotes the energy splitting when ε = ε0. We see that the nonlinear depen-
dence of the dipole moment on ε1 translates into a series of response terms at frequen-
ciesΩ=ω,2ω,3ω, . . . . Since spin resonances only occur when ħΩ= EZ , these should be
observed as subharmonics of the fundamental Zeeman frequency: ω= EZ /ħ,EZ /2ħ,
EZ /3ħ, . . . . For the two-level system defined by Eq. (9.S1), we note that all resonances
depend on the presence of a coupling between the basis states, ∆. In Fig. 9.1(d) of the
main text, the fundamental resonance condition and its first subharmonic are sketched
as the second and third sets of vertical arrows. We note that adiabatic resonances can be
observed in both the strong and weak driving regimes, although the higher harmonics
may be suppressed for weak driving, as consistent with Eq. (9.S7).

9.S1.2. NONADIABATIC EFFECTS

We next consider nonadiabatic, or Landau-Zener (LZ) processes (Zener, 1932), which al-
ways involve an excitation (or deexcitation) of an orbital state. For the two-state Hamil-
tonian of Eq. (9.S1), LZ excitations can arise in two ways: (i) a sudden pulse of a control
parameter (e.g., ε), or (ii) strong periodic driving of the control parameter [e.g., Eq. (9.S4)].
In the first case, the qubit is suddenly projected onto a new adiabatic eigenbasis, which
induces a Larmor response at the frequency Ω = ±E01/ħ. In the second case, fast peri-
odic excursions of ε(t ) at driving frequencies different than E01/ħ can achieve a similar
response. Such ‘conventional’ LZ excitation processes are indicated by the first vertical
arrow in Fig. 9.1(d) of the main text6.

In the experiments reported here, simple LZ orbital excitations are undetectable, be-
cause the excitation energy E01 is smaller than the Fermi level broadening. However, the
EDSR spin-flip mechanism allows us to generate and detect more complex processes at
higher energies. The resonance condition indicated by the fourth set of vertical arrows
in Fig. 9.1(d) is particularly important for these experiments; when combined with a spin

6In typical resonant driving experiments, the LZ process is actually more general than what is shown in the
figure, because it can occur at any B-field. The process indicated in the figure implies an orbital excitation
combined with a spin flip, which we discuss below.
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flip, it describes one portion of the “resonance (5)" detailed in Figs. 1(a) and (b). Reso-
nances of this type occur when ħΩ= mħω±E01, corresponding to the driving frequen-
ciesω= (EZ±E01)/ħ, (EZ±E01)/2ħ, (EZ±E01)/3ħ, . . . . Since these resonance lines are par-
allel to the conventional spin resonances, Rashba has called them “satellites" (Rashba,
2011), although he studied a different driving regime for which no satellites were ob-
served in the experiments.

There are two main theoretical approaches for describing such nonadiabatic phe-
nomena. Since the orbital excitation involves an LZ process, it must be described quan-
tum mechanically. However, the ac driving field can be described with a semiclassi-
cal, adiabatic theory like the one described in the previous section. In this approach,
the qubit gains a “Stückelberg phase" each time it passes through an energy level anti-
crossing, resulting in interference effects that can be described using standard LZS the-
ory (Shevchenko, Ashhab, and Nori, 2010)7. The alternative theoretical approach, de-
scribed below, uses a dressed state formalism that encompasses all of the same inter-
ference effects, and plays a key role in understanding the detailed behavior of the reso-
nance (5). In this case, the process can be described fully quantum mechanically as an
orbital excitation combined with a photon absorption. In either description, the orbital
excitation is followed by a spin-flip caused by the orbital dynamics.

9.S1.3. SIMULATION RESULTS
Results of numerical simulations of Eq. (9.S1) are presented in Fig. 9.2(b-d) of the main
text. Here, we discuss the physical interpretation of these results in more detail.

Fig. 9.2(b-d) in the main text shows the results of our simulations for p0(Ω) as a func-
tion of both driving frequency ω and response frequency Ω over a range of parameters
analogous to those in Fig. 9.1(a). Fig. 9.2(b-d) correspond to three different driving am-
plitudes, with panel (d) chosen to match the experimental results in Fig. 9.1(b). The
dashed blue lines correspond to the conventional ESR signals (the fundamental reso-
nance, and the first two subharmonics, top to bottom), which are all visible in the simu-
lations. In Fig. 9.2(c) (reproduced in Fig. 9.S1), these are labeled (1,2), (3,4), and (7). The
inset on the left-hand side of Fig. 9.2(b) highlights the particular resonances that should
be compared to the experimental data in Fig. 9.1(a).

In addition to conventional ESR resonances, several LZ resonances can be seen in the
simulations. Three LZ resonances, labeled (5), (5’) and (5”), are observed in Fig. 9.2(c).
These lines correspond to the resonance conditions given byω= (EZ −E01)/ħ,ω= (EZ +
E01)/3ħ and ω= (EZ +E01)/2ħ, respectively. The latter resonance is clearly visible in the
experiment, and corresponds to the resonance labeled (5) at high frequencies in Fig. 9.1.

An interesting feature of the LZ resonances is the apparent level repulsion between
the resonance peaks (see Fig. 9.1(b)). Several of these anticrossings are seen in Fig. 9.2.
The effect is purely dynamical, as demonstrated by the fact that the anticrossing is sup-
pressed in going from panels (b) to (d), as consistent with the smaller driving amplitudes.
In the dressed-state formalism, these dynamical modes correspond to resonances of the
hybridized photon-orbital states, where the state composition changes suddenly.

7Note that the standard theory assumes the qubit is driven all the way through the energy level anticrossing in
Eq. (9.S1); however, the interference effects observed in our simulations occur even without passing through
the anticrossing.
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Several excitations are observed in the simulations of Fig. 9.2 that are not also ob-
served in the experiments. For example, the vertical line labeled (6) in Fig. 9.2(c) corre-
sponds to the nonresonant (Larmor) LZ excitation discussed in Sec. 9.S1.2. This excita-
tion occurs at an energy ħΩ that is too small to be detected experimentally. Resonance
(5”) is suppressed in the simulations, compared to resonance (5), and it is not observed
at all in the experiments. A level anticrossing is observed between resonances (6) and
(5’) in the simulations, which also occurs outside the experimental measurement win-
dow. Resonance (5’) (highlighted with a dashed line) is somewhat faint in Fig. 9.2(c), but
more prominent in Fig. 9.2(b). Several other features can be observed in the lower-right
corner of Fig. 9.2(b), which are very faint, and can also be classified according to the
resonance scheme discussed above.

9.S2. DRESSED STATES
Previous approaches to strong driving have assumed that the driving amplitude ε1 and
the driving frequency ħω are both much larger than the minimum energy gap ∆ (Oliver
et al., 2005). However, the simulation results shown in Fig. 9.2, which provide a good de-
scrption of the experiments in Fig. 9.1, suggest that our system falls into an intermediate
regime, where the dimensionless parameters all have similar magnitudes, ∆,ε0,ħω ∼ 1,
and ε1 ∼ 0.1. Below, we develop a new dressed state formalism that is appropriate for
such an intermediate parameter regime, while treating ε1 as weakly perturbative. This
formalism successfully describes all the resonance features observed in Fig. 9.2. In keep-
ing with our emphasis on orbital physics, we will first consider only the charge and pho-
ton sectors, and introduce the spin afterwards.

9.S2.1. ORBITAL-PHOTON SYSTEM
The time-dependent Hamiltonian given by Eqs. (9.S1) and (9.S4) is semiclassical (i.e.,
the electric field is treated classically). The same Hamiltonian was investigated in (Oliver
et al., 2005), in the context of strong driving. A fully quantum version of the same prob-
lem was considered in (Nakamura, Pashkin, and Tsai, 2001) and (Wilson et al., 2007),
also in the context of strong driving. The solutions to the semiclassical and quantum
Hamiltonians are identical, suggesting that the two approaches are interchangeable. The
quantum version is more elegant however, and it is more directly compatible with the
dressed state formalism. We therefore adopt the quantum Hamiltonian as our starting
point, rather than Eq. (9.S1). The full quantum Hamiltonian is given by

H = 1

2
(ε0σz +∆σx )+ħωa†a + gσz (a +a†). (9.S8)

Here, a† and a are the creation and annihilation operators for microwave photons of fre-
quency ω, and g is the electron-photon coupling constant (we ignore the vacuum fluc-
tuations of the electric field). The semiclassical and quantum Hamiltonians are related
through the correspondence (Nakamura, Pashkin, and Tsai, 2001)

g = ε1/4
√
〈N〉, (9.S9)

where N = a†a is the photon number operator. We expect that 〈N〉 À 1 for gate-driven
microwave fields. The ac detuning amplitude can be related to the ac voltage applied
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to a top gate, Vac, through the relation ε1 = eVac(Cg /CΣ), where Cg is the capacitance
between the dot and the top gate and CΣ is the total capacitance of the dot.

It is important to note the form of the coupling term in Eq. (9.S8), which arises be-
cause the ac signal is applied to the detuning parameter. The resulting Hamiltonian
cannot be solved exactly, and several approaches have been used to simplify the prob-
lem. In the weak driving limit, it is common to combine a unitary transformation with
a rotating wave approximation to reduce the coupling in Eq. (9.S8) to a transverse form:
g (σ+a +σ−a†) (Childress, Sørensen, and Lukin, 2004). The latter has been used to de-
scribe the interactions between a dot and a microwave stripline (Frey et al., 2012). Alter-
natively, in the strong driving limit, it is common to retain the longitudinal coupling form
of Eq. (9.S8) while treating ∆ as a perturbation. This approach has been used to describe
the dynamics of a dot in a gate-driven microwave field (Nakamura, Pashkin, and Tsai,
2001; Wilson et al., 2007). In the intermediate driving regime, which is most relevant for
the experiments reported here, neither of these approaches is appropriate.

As discussed in Sec. 9.S1.2, the LZ satellite peaks in Fig. 9.2 are displaced vertically
from the conventional spin resonances (the center peaks) by E01/mħ. For example, the
satellite peak labeled (5) in Fig. 9.2(c) is displaced by8

p
2 from the fundamental reso-

nance (1,2), while the satellite labeled (5”) is displaced by
p

2/2 from the conventional
first harmonic (3,4). This suggests that we should first diagonalize the uncoupled (g = 0)
Hamiltonian, giving H̃0 =−E01

2 σ̃z +ħωa†a, where σ̃z is the Pauli matrix along the orbital
quantization axis. The eigenstates of H̃0 are labeled |c〉 |N〉, where (σ̃z /2) |c〉 = c |c〉 and
c = ±1/2, and the energy eigenvalues are given by −cE01 +Nħω. The full Hamiltonian
becomes

H̃ =−E01

2
σ̃z +ħωa†a + g (cosθ σ̃x − sinθ σ̃z )(a +a†), (9.S10)

where we have defined tanθ = ε0/∆.
To dress the orbital states, we consider the Hamiltonian H̃l = H̃0 − g sinθσ̃z (a +a†),

whose coupling is purely longitudinal. This Hamiltonian has exact solutions, given by (Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1998),

|c; N〉l = exp[−2cg sinθ(a† −a)/ħω] |c〉 |N〉 , (9.S11)

with the corresponding energies

E c
N =−cE01 +Nħω− (g sinθ)2

ħω . (9.S12)

Here, the subscript l indicates a longitudinal dressed state.
Evaluating the full Hamiltonian H̃ in the dressed state basis, we obtain diagonal

terms given by Eq. (9.S12), and off-diagonal terms given by

l 〈c; N |g cosθ σ̃x (a +a†) |c; N +m〉l = 0, (9.S13)

l 〈−c; N |g cosθ σ̃x (a +a†) |c; N〉l = 0, (9.S14)

l 〈−c; N |g cosθ σ̃x (a +a†) |c; N +m〉l = hνN ,m/2

(with m ≥ 1), (9.S15)

8The simulations are dimensionless and the corresponding energy splitting is given by E01 =
√
ε2

0 +∆2 =p
2.
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where

hνN ,m

2
= g cosθe−2α2

N∑
p=0

[
1+ 4α2(N −p)

(m +p)(m +p +1)

]
× (−1)m+p−1(2α)m+2p−1pN !(N +m)!

p !(m +p −1)!(N −p)!
,

(9.S16)
and

α=−2cg sinθ

ħω . (9.S17)

We note that Eq. (9.S13) follows from the facts that (i) the orbital character of |c; N〉l is the
same as |c〉 |N〉, and (ii) 〈c| σ̃x |c〉 = 0. Equations (9.S14) and (9.S15) are obtained using
standard techniques (Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1998).

We can obtain an approximate form for the Rabi frequency νN ,m for orbital oscilla-
tions. Since our simulations indicate that ε1 ¿ħω, and we have assumed that 〈N〉À 1,
Eqs. (9.S9) and (9.S17) imply that α¿ 1. Since the distribution of photon number states
comprising |c; N〉l is sharply peaked around 〈N〉, we can approximate N ' 〈N〉, yielding

hνN ,m

2
' g cosθ

[
1+ 4α2〈N〉

m(m +1)

]
(−2α)m−1

(m −1)!
〈N〉m/2. (9.S18)

Finally, in the limit α
p〈N〉¿ 1, we find

νN ,m ' ω/2π

(m −1)! tanθ

(
ε1 sinθ

2ħω
)m

. (9.S19)

Thus, ignoring geometrical factors, we obtain the general scaling relationνN ,m ' εm
1 /(ħω)m−1.

The dressed state formalism is convenient for identifying and analyzing resonant
phenomena. For example, the resonance condition for an m-photon orbital excitation
is simply given by E+1/2

N+m ' E−1/2
N , or mħω' E01. When this condition is satisfied, the full

Hamiltonian approximately decouples into a set of 2D manifolds given by

H2D =
(

E01
hνN ,m

2
hνN ,m

2 mħω

)
, (9.S20)

where we have subtracted a constant diagonal term. For a system initially in the orbital
state c = 1/2, Eq. (9.S20) describes oscillations between c = 1/2 and −1/2, with the Rabi
frequency νN ,m . These resonances are referred to as photon assisted tunneling (PAT),
and are well known in quantum dots (Kouwenhoven et al., 1994a). In the present con-
text, “tunneling" refers to the generalized tunneling parameter ∆ in Eq. (9.S1), which
represents the coupling between the different orbital states.

9.S2.2. SPIN-ORBITAL-PHOTON SYSTEM
Following Rashba, we have argued that the experimental EDSR spectrum can be ex-
plained entirely within the orbital sector. The argument is summarized as follows: (1)
the orbital (two-level) system is driven at a frequency ω; (2) nonlinearities in the orbital
system generate responses at multiples of ω, corresponding to multiphoton processes;
(3) strong driving modifies the response by generating additional satellite peaks at fre-
quencies ±E01/ħ; (4) the response frequencies in the orbital sector are transferred di-
rectly to the spin sector, where they become the driving frequencies for spin rotations
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via the EDSR mechanism. By associating the response frequencyΩ in the orbital system
with the characteristic frequency gµB B/ħ in the spin system, we were able to obtain ex-
cellent agreement with the experiments, without invoking any other assumptions about
the spin physics. In an alternative explanation of the spin harmonics, we could consider
unrelated nonlinearities in the spin sector, independent of the orbital sector. Two argu-
ments against such an approach are as follows. First, since nonlinearities occur in the
orbital system anyway, Occam’s razor suggests using the simplest, weak-driving model
for the spin dynamics. Second, while the spin Rabi frequencies obtained in our previ-
ous EDSR experiments are < 10 MHz (Ch. 7,8), the Rabi frequencies for orbital oscilla-
tions are > 100 MHz (see Sec. 9.S2.3); it is therefore very reasonable to consider strong,
photon-mediated driving for the orbital system, but weak driving for the spin system,
mediated by the orbital dynamics.

We can formalize such a “simple-spin" model by adopting a standard spin Hamilto-
nian,

Hspin =−1

2
gBµB B̂(r̂[σz ]) ·τ. (9.S21)

Here, B̂ is a superoperator representing the inhomogeneous magnetic field, r̂ is the elec-
tron position operator, which is related linearly to the dipole moment operator in Eq. (9.S5),
and τ is the Pauli operator for a (spin-1/2) electron. The explicit dependence of r̂ on σz

indicates that r̂ acts only on the orbital variables. We emphasize that there is no direct
coupling between spins and photons in this model.

The quantization axis for the spins is defined as the average of the magnetic field
operator:

Bavg = 〈B̂(r̂)〉, (9.S22)

with the corresponding Zeeman energy, EZ = gµB Bavg. The deviation of B̂(r̂) from its
average value (e.g., due to driving) is given by

δB̂(r̂) = B̂(r̂)−Bavg. (9.S23)

Clearly, δB̂(r̂) contains information about the magnetic field gradient, which is the source
of spin-orbit coupling in EDSR. Transforming τ to the quantization frame yields τ̃z =
τ ·Bavg/Bavg, where (τ̃z /2) |s〉 = s |s〉 and s =±1/2. Note that we have identified s =+1/2
as the low-energy spin state, in analogy with the orbital system.

In the simple-spin model, the photons dress the orbital state but not the spin state.
We may therefore simply extend the longitudinal dressed states to include the bare spin:
|c; s; N〉l ≡ |c; N〉l |s〉. In this basis, the diagonal elements of the full Hamiltonian are given
by

E c,s
N = Nħω− cE01 − sEZ . (9.S24)

Note that we have dropped the constant energy shift g 2/ħω from Eq. (9.S12) since it
is present for all the basis states and plays no role in a following analysis. In general,
δB̂ is neither parallel nor perpendicular to Bavg. Hence, our spin-orbit coupling terms
are of the form {σ̃x , σ̃z }⊗ {τ̃x , τ̃z }. The off-diagonal perturbation in the fully quantum
Hamiltonian is now given by

V = g cosθ σ̃x (a +a†)+
x,z∑
j ,k

f j ,k σ̃ j τ̃k , (9.S25)
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where the first term describes the orbital-photon coupling, and the second term de-
scribes the spin-orbit coupling. The spin-orbit coupling constants f j ,k depend, in part,
on geometrical factors such as the relative alignment of the magnetic field gradient with
respect to the dipole moment of the orbital states. The term fx,x σ̃x τ̃x is the conventional
EDSR matrix element (Tokura et al., 2006), describing the flip-flop transition between the
orbital and spin states. The constant fz,x is of particular interest for the resonance (5). It
describes a hybridization of spin states (τ̃x ), which depends on the orbital occupation,
but does not hybridize the orbital states (σ̃z ). These coupling constants arise through
the valley-orbit coupling mechanism, which depends on the local disorder realization at
the quantum well interface. Since we do not know the disorder potential for our device,
we do not attempt to calculate f j ,k here. However, we provide estimates for several of
these parameters below, based on our experimental measurements. The other contribu-
tions to the spin-orbit matrix elements can be evaluated using Eqs. (9.S13)-(9.S15), and
the additional results

l 〈c; N | σ̃x |c; N +m〉l =l 〈−c; N | σ̃z |c; N +m〉l = 0, (9.S26)

l 〈c; N | σ̃z |c; N +m〉l = 2c δm,0, (9.S27)

l 〈−c; N | σ̃x |c; N +m〉l '
(
2α

√
〈N〉

)2m
Jm

(
−4α

√
〈N〉

)
, (9.S28)

which are also obtained using standard techniques (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1998). Here, Jm(x) is an integer Bessel function.

In the simple-spin model, no photons are absorbed via spin-orbit coupling, so only
the m = 0 terms will be considered in Eqs. (9.S26)-(9.S28). There are therefore three
types of direct (i.e, first-order) transitions allowed by Eq. (9.S25): (i) PAT transitions, with
no spin flip, like those described in Eq. (9.S15), (ii) spontaneous flip-flops between the
spin and orbital states ( fx,x processes), or (iii) phase exchange ( fz,z ) processes, without
photon absorption or emission. Note that direct transitions of the fx,z or fz,x type are
also allowed; however, they do not conserve energy, and are therefore highly suppressed
in resonant transitions. The only relevant first-order matrix elements are therefore

l 〈−c; s; N |V |c; s; N +m〉l = hνN ,m/2 (m ≥ 1), (9.S29)

l 〈c; s; N |V |c; s; N〉l = 2c fz,z , (9.S30)

l 〈−c;−s; N |V |c; s; N〉l ' fx,x J0

(
4α

√
〈N〉

)
. (9.S31)

Note that Eq. (9.S29) corresponds to PAT, while Eqs. (9.S30) and (9.S31) describe pure
spin-orbit coupling, which hybridizes the spin and orbital states, even in the absence of
a driving term.

We now consider second-order processes in the perturbation, V . All photon-driven
processes with spin flips must be second-order, involving two distinct steps. In the first,
an orbital state is excited (deexcited) while absorbing (emitting) one or more photons;
this is a nonresonant LZ process. In the second, a spin flip occurs, accompanied by a sec-
ond orbital flip (an fx,x process), or a phase change of the orbital state (an fz,x process).
Processes of the fx,z and fz,z type are also allowed; however they do not cause spin flips,
and will not be considered in our EDSR analysis. We first consider a pure-spin resonance
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generated by the sequence |c; s; N +m〉→ |−c; s; N〉→ |c;−s; N〉. Here, the difference be-
tween the initial and final states involves a spin excitation and m absorbed photons. The
intermediate state |−c; s; N〉 is off-resonant, and may be eliminated to obtain an effec-
tive, second-order matrix element, given by

l 〈c;−s; N |V |c; s; N +m〉l '
hνN ,m fx,x

4(sEZ − cE01)
J0

(
4α

√
〈N〉

)
. (9.S32)

Here, we have evaluated the energy denominator at the resonant condition mħω= 2sEZ .
Similarly, we can consider a “resonance (5)" type process generated by the sequence
|c; s; N +m〉 → |−c; s; N〉 → |−c;−s; N〉. In this case, the difference between the initial
and final states involves a spin excitation, a charge excitation, and m absorbed photons.
The effective, second-order matrix element for this process is given by

l 〈−c;−s; N |V |c; s; N +m〉l '−hνN ,m fz,x c

2sEZ
, (9.S33)

corresponding to the resonance condition mħω= 2(sEZ +cE01). In the limitα
p〈N〉. 1,

which seems appropriate for our experiments (see below), we therefore obtain

l 〈c;−s; N |V |c; s; N +m〉l '
hνN ,m fx,x

4(sEZ − cE01)
≡ h fm

2
, (9.S34)

l 〈−c;−s; N |V |c; s; N +m〉l '−hνN ,m fz,x c

2sEZ
≡ h f ′

m

2
. (9.S35)

Here, fm represents the Rabi frequency for a pure-spin resonance, and f ′
m represents the

Rabi frequency for a combined spin-orbit resonance (like the resonance (5)).
Keeping all other parameters fixed, we can estimate the power scaling of the Rabi

frequencies (9.S34) and (9.S35) by using Eqs. (9.S9), (9.S17), and (9.S18). Assuming the
limit α

p〈N〉 → 0, we find that f1, f ′
1 ∝ ε1, f2, f ′

2 ∝ ε2
1, etc.; these theoretical results are

consistent with experimental results reported in Ch. 8. Based on Eq. (9.S34), we also
predict a simple form for the ratio

f2

f1
' νN ,2

νN ,1
'−2α

√
〈N〉. (9.S36)

Using the results for f1 and f2 in Ch. 8, we estimate this ratio to be in the range 2α
p〈N〉 '

1/3-1/2 for typical experiments, which confirms our previous assumptions.
We can estimate the ratio of the Rabi frequencies between different orbital states (i.e.,

different values of c), but the same EDSR mode (the same value of m). Taking c = ±1/2
in Eq. (9.S34), we obtain the ratio

f (1)
m

f (2)
m

' EZ +E01

EZ −E01
. (9.S37)

Here, we have adopted the notation of Ch. 8 where f (1)
1 ( f (2)

1 ) corresponds to c = 1/2

(c = −1/2) for the case m = 1. In Ch. 8, it was found that f (1)
1 / f (2)

1 = 1.7 when Bext =
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561 mT. Using these values, Eq. (9.S37) predicts that E01 = 17 µeV or 4 GHz. We note
that, although Ch. 8 used the same device as we do here, the gates were tuned differ-
ently, which could potentially yield to different values for the valley splitting. The spec-
troscopy shown in Fig. 9.1 of the main text gives a more direct estimate of E01 = 7 GHz.
The agreement is reasonable; however, Eq. (9.S37) also predicts that f (1)

m / f (2)
m should not

depend on m, while Ch. 8 estimates a ratio of f (1)
2 / f (2)

2 = 0.9 for the first subharmonic

resonance ( f (3)
1 / f (4)

1 in their notation). This experimental result is clearly inconsistent
with Eq. (9.S37), which should be greater than 1. We point out, however, that the er-
ror bars reported in Ch. 8 were large enough to permit f (1)

2 / f (2)
2 > 1. Moreover, we note

again that strong driving was employed in Ch. 8, so that the arguments leading to Eq.
(S37) could begin to break down.

The scaling behavior f1 ∼ fx,xε1/(EZ −E01) suggested by Eq. (9.S34) is consistent with
(Tokura et al., 2006). We can now obtain a rough estimate for the EDSR coupling con-
stant fx,x by combining the current experimental results with those reported in Ch. 8. In
Ch. 8, a typical value of f (1)

1 = 2.5 MHz was obtained (note that f (1)
1 should be smaller

in the current experiment, although we do not know its value). In the current experi-
ments, we find that EZ −E01 ' 7 GHz (see Fig. 9.1), and νN ,1 ' 0.2 GHz (see Sec. 9.S2.3,
below). From Eq. (9.S34), we then obtain the estimate fx,x ' 90 MHz. We can also es-
timate the parameter fz,x . As discussed above, this coupling constant describes the or-
bital (i.e., valley)-induced hybridization of the spin states, and determines the strength
of the resonance (5). Specifically, it arises from contributions to the g -factor tensor that
are transverse to the applied field, and which differ slightly between the two different
valley states. It is not possible to compute these valley-induced perturbations without
knowledge of the disorder potential. In general however, the disorder will not be aligned
with the magnetic field, so the transverse component of the perturbation in the g -factor
tensor should differ from the total perturbation by a simple geometrical factor of order
O[1]. In Ch. 7, the total difference in the g -factors for the two valley states was found to
be ∆g /g ' 0.015%. Hence, we can estimate the valley-dependent hybridization of the
spin states to be 2 fz,x = ∆gµB B . At the magnetic field corresponding to the kink in res-
onance (5) in Fig. 9.1 of the main text, we have Btot ' 480 mT, yielding fz,x ' 1 MHz,
or fz,x / fx,x ' 1%. Finally, we can estimate a typical Rabi frequency for the resonance
(5) from Eq. (9.S35), giving f ′

1 ' 10 kHz. This explains why it is not possible to observe
coherent oscillations of the resonance (5) in our experiments.

To close this section, we discuss the basic features of the simulation results shown in
Fig. 9.S1, in terms of the first and second-order matrix elements obtained in Eqs. (9.S29)-
(9.S31) and (9.S34)-(9.S35). First, it is helpful to recall how the spin enters this discussion,
since the orbital Hamiltonian used in the simulations, Eq. (9.S1), does not explicitly in-
clude spin. It is important to note that Fig. 9.S1 does not represent resonant phenomena;
it is simply the Fourier transform of the response of the orbital dipole moment to an ac
drive. In the simple-spin model, this response is converted into an ac magnetic signal,
with a strength determined by the spin-orbit coupling parameters f j ,k in Eqs. (9.S30) and
(9.S31), yielding an EDSR response in the spin sector. Since there is no spin-orbit cou-
pling in the simulations, we can learn nothing about the spin Rabi frequencies. However,
the response spectrum in Fig. 9.S1 should still provide an accurate mapping of the EDSR
spectrum.
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Figure 9.S1: Simulation results, reproduced from Fig. 9.2(c) in the main text. Here, the resonances labeled (1)
through (7) are described in Sec. 9.S4.

To take some examples, the features label (1,2) and (3,4) in Fig. 9.S1 correspond to
conventional EDSR, with spin excitations occurring at the resonance conditions E c,s

N+m =
E c,−s

N (or mħω= 2sEZ ) when m = 1 and 2, respectively. These features correspond to the
experimenal resonances labeled the same way in Fig. 1(a) of the main text. The corre-
sponding Rabi frequencies are given by fm in Eq. (9.S34), and were measured to be in
the range of a few MHz in Ch. 8. The feature labeled (7) in Fig. 9.S1 corresponds to a
3-photon spin resonance, with m = 3; this feature is not observed in the experiments.
The features labeled (5), (5’), and (5”) occur at the resonance conditions E c,s

N+m = E−c,−s
N

[or mħω= 2(sEZ +cE01)], and involve simultaneous spin and orbital excitations. In pre-
vious work, such processes were referred to as “spin-flip PAT" (Braakman et al., 2014;
Schreiber et al., 2011). In the current experiment, they are responsible for resonances (5)
and (5’). The corresponding Rabi frequencies are given by f ′

m in Eq. (9.S35), and have
not been measured yet experimentally. In principle, the PAT transitions, which occur
at the resonance condition E c,s

N+m = E−c,s
N (or mħω= 2cE01) in Eq. (9.S29), could also be

observed in the simulations. However, these transitions correspond to discrete points
along the line labeled (6) in Fig. 9.S1, which makes them difficult to detect. Moreover,
the response frequency for PAT (E01/h) is smaller than Fermi level broadening, so it can-
not be detected in our read-out scheme. It is therefore interesting that PAT plays a key
role in our understanding of the hybridization between dressed states, as discussed in
Sec. 9.S2.3, and that the repulsion between the dynamical modes allows us to estimate
the magnitude of the PAT Rabi frequency, νN ,m .

One of the most interesting features in Fig. 9.S1 is labeled (6), and corresponds to
a pure-LZ transition, with an orbital state excitation but no photon absorption. Since
m = 0, according to Eq. (9.S15), this cannot be described by a direct, first-order process.
Instead, it involves a combination of photon-mediated processes, with a net photon ab-
sorption of m = 0. A minimal process of this type must be third-order, since second-
order processes would involve an orbital excitation, followed by a deexcitation, leaving
the orbital in its initial state. Since the electrons in experiments have spins (in contrast
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with our simulations), there is also another mechanism that can cause feature (6): a spin-
orbit flip-flop occurring at the resonance condition E c,s

N = E−c,−s
N (or sEZ =−cE01). This

is the direct, first-order process, described by Eq. (9.S31), in which the orbital state spon-
taneously deexcites while causing a spin excitation. Feature (6) should therefore appear
in both the simulations and the experiments, but with different physical origins and dif-
ferent Rabi frequencies. This is a moot point for experiments however, since low-energy
processes cannot be resolved by our measurement scheme.
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Figure 9.S2: Two types of theory estimates for the EDSR resonance spectra. (a) Simulation results, reproduced
from Fig. 9.S1, with the resonances of interest labeled. To make contact with the dressed-state theory, we have
equated the response frequencyΩ to the Zeeman energy EZ . (b) Spin-state resonances obtained from the 4D
dressed-state Hamiltonian, Eq. (9.S39). Here, we use E01 = p

2 and hν1 = 0.22. (c) Orbital-state resonances
obtained for the same parameters.

9.S2.3. HYBRIDIZATION OF THE DRESSED STATES

Dressed states allow us to analyze one of the most intriguing features of the data: the
kink in the resonance (5), where the resonance line appears to switch between two well-
defined slopes, as shown in Fig. 9.1(b) of the main text. The two asymptotic resonance
lines correspond to the conditions E+1/2,+1/2

N+3 ' E−1/2,−1/2
N (or 3ħω ' EZ +E01) far to the

left of the kink, and E−1/2,+1/2
N ′+1 ' E+1/2,−1/2

N ′ (or ħω ' EZ −E01) far to the right. The inter-
section of these two resonance lines occurs when EZ = 2ħω = 2E01, or N ′ = N +1, and
defines a quadruple resonance. The Hamiltonian for this 4D manifold is given by

H4D =


E−1/2,−1/2

N
hνN ,1

2
h f2

2
h f ′

3
2

hνN ,1
2 E+1/2,−1/2

N+1
h f ′

1
2

h f2
2

h f2
2

h f ′
1

2 E−1/2,+1/2
N+2

hνN+2,1
2

h f ′
3

2
h f2

2
hνN+2,1

2 E+1/2,+1/2
N+3

 . (9.S38)

We can gain intuition about the experiments and simulations by considering a sim-
plified version of H4D. First, we note that νN ,1 ' νN+2,1 ≡ ν1 when 〈N〉 À 1. To inves-
tigate the dominant behavior, since ν1 À fm , f ′

m , we consider the limit fm , f ′
m = 0. The
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resulting Hamiltonian

H4D '


E01 +EZ

hν1
2 0 0

hν1
2 ħω+EZ 0 0

0 0 2ħω+E01
hν1

2
0 0 hν1

2 3ħω

− E01 +EZ

2
(9.S39)

does not permit any dynamical hybridization of spin states, and can therefore be used
to directly identify the spin resonance conditions.

We find that Eq. (9.S39) reproduces all the main features of the experimental and
simulation results near the kink in the resonance (5), as indicated in Fig. 9.S2. The fea-
tures observed in Figs. 9.S2(b) and (c) reflect sudden changes in the compositions of the
eigenstates. To obtain these plots, we first diagonalize H4D to obtain its four eigenstates
as a function of EZ . We then compute probability P ( j )(s) for the j th state to have spin
s. Here, the states are labeled according to their energy ordering, as they would be for
eigenstates of the full 4D Hamiltonian in Eq. (9.S38). Near a spin resonance, the spin-up
or spin-down character of the ordered eigenstates changes abruptly. To see these sud-
den changes in the simulations, we sum the numerical derivatives,

∑
j |∂P ( j )(s)/∂EZ |.

The resulting spectrum displays sharp peaks at the resonance locations, as illustrated in
Fig. 9.S2(b). Comparison with the simulation results, reproduced in Fig. 9.S2(a), shows
that only one parameter (hν1/E01 ' 0.16) is needed to capture the main features of the
resonance (5). Including the other off-diagonal terms in Eq. (9.S38) leads to small feature
changes, such as broadening of the resonance peaks, but does not change the underlying
spectrum.

The dynamically induced shifts of the dressed state energies (i.e., ac Stark shifts) are
dominated by the orbital coupling terms νN ,m , because νN ,m À fm . Hence, they are
easily computed from Eq. (9.S39) by diagonalizing the two 2D subsystems. Diagonalizing
the Hamiltonian in this way yields the four energies

EZ +ħω
2

±
√(

E01 −ħω
2

)2

+
(

hν1

2

)2

, (9.S40)

5ħω−EZ

2
±

√(
E01 −ħω

2

)2

+
(

hν1

2

)2

. (9.S41)

In particular, the energy splitting between the resonance (5) (i.e., the upper feature, in-
cluding the kink) and its asymptote, ħω= EZ −E01, is given by

∆Easymp ' (hν1)2

2(EZ −2E01)
, (9.S42)

and the energy splitting at the anticrossing between resonances (3,4) and (5) is given by
∆EX = hν1/

p
3. Using the asymptotic formula for the Rabi frequencies, Eq. (9.S19), and

in particular, ν1 ' ε1 cosθ/2h, we find that ∆EX ' ε1 cosθ/2
p

3 in the regime of experi-
mental interest. We can also obtain analytical expressions for the resonance conditions
by equating the energy expressions in Eqs. (9.S40) and (9.S41). For the resonant feature
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labeled (3,4) in Fig. 9.S2, we obtain the condition ħω= EZ /2. For the resonance features
labeled (5) and (5’), we obtain the conditions

ħω= 1
3 (2EZ −E01)± 1

3

√
(EZ −2E01)2 +3(hν1)2. (9.S43)

It is interesting to note that, while the parameters fm control the spin dynamics and
the EDSR Rabi frequencies, the dressed state energies E c,s

N determine the gross features
of the resonance spectrum, and the PAT Rabi frequency ν1 determines the fine features
of the resonance (5). From Eqs. (9.S38) and (9.S39), we see that the dynamical level re-
pulsion in the resonance (5) (i.e., the kink) occurs between dressed states with the same
spin but different orbital states. The kink is therefore caused by orbital physics. The cor-
respondence between Figs. 9.S2(a) and 9.S2(b) indicates that all of the resonances in this
manifold involve a spin flip. We have also computed the analogous orbital resonances
for the same 4D manifold, corresponding to sudden changes in the charge state, as ob-
tained from the expression

∑
j |∂P ( j )(c)/∂EZ |. The results are shown in Fig. 9.S2(c). In

this case, the central resonance (3,4) disappears, indicating that it is a pure-spin reso-
nance.

Although coherent EDSR oscillations were observed in Ch. 8, with Rabi frequencies
in the range f1, f2 ' 0.6-4 MHz, it was not possible to observe coherent PAT oscillations
because of their relatively low energy scale. However, we can now estimate the PAT Rabi
frequency by fitting the analytical theory of Eq. (9.S39) to the experimental resonance
spectrum in Fig. 9.1(b) of the main text, obtaining the result ν1 ' 0.2 GHz. This confirms
our previous assumption that f1 ¿ ν1. We can also estimate the remaining parameters
in the theoretical model of Eqs. (9.S1) and (9.S4). From Eqs. (9.S9) and (9.S18), we ob-
tain ε1 ' 0.5 GHz ' 2 µeV. Using the experimental result E01 ' 7 GHz ' 29 µeV and the
rough estimate ε0 '∆ (deduced from our simulations), we also obtain ε0 '∆' E01/

p
2 '

5 GHz ' 20 µeV. The parameters ε0 and ε1 that describe the detuning of the orbital basis
states due to the driving field are difficult to determine from first principles in silicon de-
vices because they are determined by the degree of valley-orbit mixing, which depends
sensitively on the details of the interfacial disorder (Gamble et al., 2013; Kharche et al.,
2007). In contrast, the energy splitting between the orbital states E01 and the PAT fre-
quency ν1 can be extracted directly from the experiments.

9.S3. ADDITIONAL MEASUREMENTS AND ANALYSIS
9.S3.1. VARIATIONS IN TIME OF THE SPIN-VALLEY TRANSITION FREQUENCY
In Fig. 9.S3 we report repeated measurements of resonance (5) recorded over time, in
order to investigate the low frequency noise fluctuations. In the main central panel we
report, in blue, the spin resonance peak obtained by averaging directly, over time, the
data of panel (a), inside the blue square frame. From its full width at half maximum
(FWHM) we can get a lower bound for T ∗

2 , in this case of 100 ns. Alternatively we can
also perform a Gaussian fit for each of the time traces in panel (a) and then shift the cen-
ter of each dataset in order to align the centers of each resonance peak on top of each
other, as reported in panel (b). If we now perform the averaging we get the red Gaussian,
reported in the main central panel(a), from which we can extract a T ∗

2 of 150 ns. This last
averaging strategy is equivalent to filtering out the very low frequency component of the
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Figure 9.S3: The main panel represents a CW (low MW power) measurement of the inter-valley spin resonance,
done for B

y
ext = 860 mT. The blue and red traces are obtained averaging over time the data reported respectively

in panels (a) and (b). Both panels report the CW resonance, away from 18.223 GHz, recorded over time (y-axis).
Each point is averaged over 10 ms and there are 150 points per trace. We observe that over time the resonance
shifts in frequency. Averaging the bare data in panel (a) we get the blue trace. Fitting with a Gaussian we can get
a lower bound for the T∗

2 of ∼110 ns. Furthermore, we can operate a different kind of averaging procedure: we
can fit each trace with a Gaussian, get the center of each fit, shift each set of data to center all of the resonance
traces (see panel (b)) and average all of them. In this way we get the red trace in the main panel, that gives us
a T∗

2 of ∼150 ns. In the first method, we average on a timescale of a few hours, in the second on a timescale
of tens of seconds only. The difference between the two average procedures points at the importance of very-
low-frequency noise.

noise (∼mHz), clearly visible in panel (a).

In what follows we report 3 different measurements realized in order to investigate
the sensitivity of resonance (5) to the electrostatic environment and to electrical noise.

9.S3.2. INFLUENCE OF THE STATIC AND PULSED GATE VOLTAGES
Controlling the electrostatic potential by the voltage applied to the gates defining the
QD confinement potential, we can systematically shift in frequency resonance (5) (see
Fig. 9.3). The inset of Fig. 9.S4(a) shows the peak of resonance (5) for five different voltage
configurations of the gate 3 (V3, represented by different colors). The main panel reports
a measurement of the g-factor in each of the gate voltage configurations reported in the
lower inset of Fig. 9.S4(a). The extracted g-factors are compatible with each other, con-
sidering their associated errors, as reported in Fig. 9.S4(b). This implies that, by chang-
ing the gate voltage we can modify the Larmor frequency of the 2-level system involved
in the resonance process, without appreciably modifying the Zeeman energy9. This sug-
gests that, in this case, we are directly modifying the valley splitting (modelled by moving
the QD towards a step defect in the QW, as schematically represented in Fig. 9.3(b)).

We can estimate the effective wave function displacement in space (mainly in the

9Changing the gate voltage also will result in a changing of QD position in the micromagnet magnetic field
gradient but the derivative of the gradient with respect to the position is quite small as we can estimate from
simulation and measure from the blue data in Fig. 9.S4.
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Figure 9.S4: (a) g-factor measurements for different voltage applied to gate 3 (V3), reported in mV with dif-
ferent colors in the inset; the extracted g-factors for each value of V3 are reported in panel (b). The fact that
the g-factor stays constant suggests that the mechanism responsible for the gate dependence of the Larmor

frequency f (5)
0 is not related to the shift of the electron wave function in the micromagnet stray field (see main

text). In panel (c) we show that it is possible to shift the resonance frequency also by changing the voltage am-
plitude during the manipulation stage. We keep the pulse shape symmetric, compensating by using the same
voltage pulse amplitude, but with opposite sign, during the initialization stage [see inset of panel (d)]. The
number reported on each resonance represents the voltage pulse amplitude (in V) at the output of the AWG.

(d) Shift in the resonance frequency f (5)
0 as a function of a gate voltage pulse applied to gate V2 (the color code

of the 6 voltage pulse levels corresponds to the first 6 resonances reported in panel (c)). Here, ∆ f (5)
0 = f (5)

0 −21
GHz and for the x-axis we used the conversion factor 32.5 mV/V extracted from calibration measurements.

QW plane) generated by modifying the voltage applied to the gate 3 by 1 mV, by using the
shift of the Larmor frequency of the intra-valley spin resonance (red trace in Fig. 9.3(a))
due to the magnetic field gradient. From the simulation of the magnetic field gradient
we can estimate an upper bound for the magnetic field gradient of ∼0.2 mT/nm (in the
y-direction ∼gate 3), equivalent to ∼56 MHz/nm in silicon. This energy gradient gives a
position lever-arm of ∼0.01 nm/mV, considering the slope of ∼0.55 MHz/mV of the red
curve in Fig. 9.3(a). Furthermore, by making use of the measured value 18.5 MHz/mV
for f (5)

0 (see blue trace in Fig. 9.3(a)) and of the estimation above ∼ 0.01 nm/mV, we can
conclude that ∆E01/∆|r| ∼ 1.8 GHz/nm (where r is the vector representing the motion of
the electron generated in the Si QW by the changing of the voltage on gate 3).

An equivalent way to explore this effect is reported in Figures 9.S4(c-d) where keep-
ing a constant static d.c. voltage configuration, we change the amplitude of the voltage
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Figure 9.S5: (a) Schematic representing the variation of the tunnel-in rate ΓI N , as a function of the relative
detuning between the electrochemical potential in the dot and the Fermi level in the reservoir, controlled by V3.
(b) Schematic of the effect of the magnetic noise and electrical noise, causing respectively a Larmor frequency
fluctuation (lower panel) and tunnel rate fluctuations (upper panel). (c) Tunnel-IN rate, ΓI N , recorded during
the initialization stage as a function of V3. We are operating around the read-out position indicated by the red

points in panel (c) (for which we can estimate a sensitivity of dΓI N
dV3

∼1.7 kHz/mV) (d) CW measurement of the

inter-valley resonance at low MW power (as in Fig 9.S3) over time, in order to study the low frequency (tens of
mHz) noise spectrum affecting the inter-valley spin resonance frequency. (B x

ext = 590 mT; B
y
ext = 598.2 mT).

pulse applied on gate 3 to bring the system in Coulomb Blockade during the manipu-
lation stage. As summarized in Fig. 9.S4(d), by increasing the pulse amplitude V p

2 , the
resonance peak systematically moves toward lower frequencies. The lever-arm of this
process (∆ f /∆V p

2 ) is around 9 MHz/mV. This measurement demonstrates the dynamic
Stark shifting of resonance (5) and creates opportunities for site-selective addressing
(voltage pulse induced addressability). The difference in ∆ f /∆V3 between the d.c. and
pulsed case can be ascribed to the fact that for the measurement reported in Fig. 9.3(a)
we have to compensate the change in V3 by changing the voltage on another gate, in
order to keep a good initialization and read-out fidelity. Instead, for the pulsed case we
just modify the voltage pulse amplitude on the gate 3 in the manipulation stage (and the
empty stage, to keep the symmetry of the pulse), without any further compensation.
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Figure 9.S6: (a) Tight binding simulations of the displacement of the electron center of mass respective to the
quantum dot for the ground (blue) and the first excited (red) valley states in the presence of an atomic step, for
the parameters discussed in the text. (b) A resonance spectrum for driving frequency vs. microwave amplitude,
obtained for a fixed value of the response frequency. The red arrows indicate the fundamental resonance (Ω)
and its first two subharmonics (Ω/2 and (Ω/3)), whose values are largely unaffected by the microwave power.
The green and black arrows indicate Landau-Zener-mediated, dynamical processes, which are highly sensitive
to the driving strength. The resonance at the green arrow evolves into ħω = (EZ +E01)/2 at larger response
frequencies. The resonance at the black arrow corresponds to the inter-valley spin resonance (5) and evolves
into ħω= (EZ −E01).

9.S3.3. INFLUENCE OF ELECTRIC FIELD NOISE

The measurements reported above reveal that the electrostatic configuration consider-
ably affects the inter-valley resonance frequency. Next we consider the effect of the elec-
trical noise on the coherence of the inter-valley spin resonance.

We already have clear evidence of the importance of the electric noise from the up-
per bound of T ∗

2 of resonance (5), estimated from the FWHM measurement reported in
in Fig. 9.S3, which is 10 times shorter than what it should be if just hyperfine fluctuations
dominated (Ch. 7). This results from the higher sensitivity of resonance (5) to the elec-
trical environment, so also to the electrical noise. In the hypothesis that the hyperfine
(hf) and the electric noise (el) are independent, we can write the total noise affecting this

resonance as δStot =
√

(δSh f )2 + (δSel )2, from which

[T ∗
2 ]el ∼ 1/

√
([T ∗

2 ]tot )−2 − ([T ∗
2 ]h f )−2 ∼ 100 ns. Therefore, we can deduce that the coher-

ence properties of the inter-valley spin resonance are almost completely dominated by
the electric noise (here for [T ∗

2 ]h f we use the value 950 ns extracted for the inter-valley
spin resonance in Ch. 7).

Now, we present a measurement realized to study the correlation between the low
frequency fluctuations of resonance (5) and low frequency electric noise (low with re-
spect to the electron tunnel rate during the read-out stage). In this respect we made use
of the following measurement technique (see Fig. 9.S5):
i) the tunnel rate for an electron jumping inside (or outside) a QD from (into) an elec-
tron reservoir is a sensitive function of the relative energy alignment between the Fermi
level of the electron reservoir and the electrochemical potential of the single electron in-
side the QD (Vandersypen et al., 2004). Fig. 9.S5(a) reports a schematic representation
of ΓI N (the single electron tunnel rate IN (y-axis)), as a function of the voltage on gate 3
(V3) that controls the relative alignment of the two levels (measured data represented in
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Fig. 9.S5(c)). Making V3 more positive the tunnel rate will increase, due to the participa-
tion of the excited state in the tunneling process. Each tunnel rate is extracted by record-
ing and processing on the fly (using an FPGA) the tunnel events during the initialization
stage (∼5 ms) and fitting an exponential to the histogram of the number of events versus
time τ (Fig. 9.S5(a)). Here τ is the time between the start of the initialization stage and
the actual tunnel-in event. For the experiment we used V3 around −196 mV (red points
in Fig. 9.S5(c)), which has been optimized for a good read-out and initialization process.
As schematically represented inside the orange frame of Fig. 9.S5(b), if we model the
electric noise from the environment as a relative fluctuation of V3 (δV3), we can write
δΓI N ∼ ∂ΓI N

∂V3
δV3. In this way we use δΓI N , the tunnel rate fluctuations during the initial-

ization stage (of the 4-stages pulse sequence), as a probe of electric noise.
ii) The same 4-stage voltage pulse scheme allows us to perform rotation of the electron
spin and to read it out in the last stage. Due to the coupling with the environmental
noise, the spin Larmor frequency, f (5)

0 , fluctuates (see blue frame of Fig. 9.S5(b)) over
time, as reported in the CW measurement over time in Fig. 9.S5(d). We fit each reso-
nance trace to a Gaussian in order to extract the center of it (Larmor frequency).
iii) We repeat this measurement over time (each trace takes tens of seconds), in order to
get enough statistics, and plot, as reported in Fig. 9.3(d), the extracted ΓI N (x-axis) and
Larmor frequency fluctuation ∆ f0 (y-axis) traces, for each measurement cycle.

A more rigorous estimate of the correlation in time between ΓI N (t ) and ∆ f0(t ), eval-
uated according to the Pearson product-moment correlation coefficient10 gives a value
∼−0.5 indicating a modest correlation in time.
The sensitivity of this procedure is related to the ability to distinguish small charge fluc-
tuations and it is a function of the static gate voltage configuration (V3) chosen for the
measurement. In fact, from Fig. 9.S5(c) we can clearly notice that we are not working
yet in the most sensitive gate voltage configuration (maximal ∂ΓI N /∂V3). Instead, the
specific electrostatic configuration has been chosen in order to optimize the spin initial-
ization and read-out.

9.S4. SIMULATION OF VALLEY-ORBIT SPLITTING VERSUS DOT

POSITION
The simulation reported in Fig. 9.3(c) of the main text represents the result of a 2D tight
binding calculation. The fact that the simulation is 2D rather than 3D affects just the
magnitude of E01, but not its qualitative dependence on the step offset. The quantum
well barrier has been chosen to be 160 meV, corresponding to 30% Ge. We assumed a
parabolic confinement potential for the dot (for simplicity) of size

√
〈x2〉 = 21.1 nm, cor-

responding to an orbital energy splitting of ħω= 0.45 meV (Ch. 7). The electric field and
the quantum well width have been chosen to be 1.5×106 V/m and 13 nm, respectively.
The experimental quantum well is nominally 12 nm and the experimental electric field
is not well known.

There are 3 competing effects that determine the energy splitting between the two

10It represents a measure of the linear correlation (dependence) between two variables X and Y, giving a value
between +1 and -1 inclusive, where +1 stands for total positive correlation, 0 no correlation, and -1 total
negative correlation.
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lowest eigenstates, which we usually refer as ‘valley splitting’, for simplicity. (i) The first
is the actual valley splitting, which is maximized when the electron sees no step. How-
ever, the ground and excited states move to the left or right differently as a function of
the step offset. (ii) The second effect is related to the electrostatic energy. When the
electron sits to the left of the step, it gains a little energy because the energy is given by
eE z, where z is the vertical position. For a single atom step with E = 1.5×106 V/m, this
energy scale is 0.20 meV, so it competes with the valley splitting, whose characteristic
value in the plots is about 0.22 meV. This competition is always present, for any value
of the electric field, because the electrostatic energy and the valley splitting both have
a linear dependence on E . (iii) The third competing effect is the confinement energy
of the parabolic dot: when the electron center of mass moves to the left or right, this
increases the average energy of the electron in the parabola. For the maximum shift of
∼20 nm shown in Fig. 9.S6(a), this confinement energy scale is ∼0.1 meV, so all the en-
ergy scales are comparable. The competition between these different effects causes the
left-right symmetry of the plots to be broken. The competition also makes it difficult to
gain much intuition about the final results. Without the competing effects, we would
expect the valley splitting to go to zero as the ground state changes from ‘even’ to ‘odd’
in the valley parameter. But the electron always wants to maximize the energy splitting
between the two eigenstates, and the competing effects (in particular, the shifting of the
electrons to the left and right) allow it to keep a nonzero energy splitting at all times. It
is interesting that this minimum valley splitting (∼25 µeV) is very close to the one we
observed in our experiments.

From Fig. 9.2(b-c) we notice that the first subharmonic resonance (3,4) seems to fade
for high response frequencies. In the simulations reported in Fig. 9.S6(b) we study the
visibility of the spin resonances as a function of the driving amplitude (for a fixed value
of the response frequency Ω). We notice that the subharmonic resonance (red arrow,
Ω/2) seems to fade when it crosses the Landau-Zener resonance (black arrow). This
can simply indicate entering the strong driving regime, where the Landau-Zener process
(which is a dynamical effect) dominates the regular harmonics (which are simply due to
the non-linearities in the Hamiltonian).
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GATE FIDELITY AND COHERENCE

TIME OF AN ELECTRON SPIN IN A

SI/SIGE QUANTUM DOT

The gate fidelity and the coherence time of a qubit are important benchmarks for quan-
tum computation. We construct a qubit using a single electron spin in a Si/SiGe quan-
tum dot and control it electrically via an artificial spin-orbit field from a micromagnet.
We measure an average single-qubit gate fidelity of ≈ 99% using randomized bench-
marking, which is consistent with dephasing from the slowly evolving nuclear spins in
the substrate. The coherence time measured using dynamical decoupling extends up to
≈ 400 µs for 128 decoupling pulses, with no sign of saturation. We find evidence that the
coherence time is limited by noise in the 10 kHz – 1 MHz range, possibly because charge
noise affects the spin via the micromagnet gradient. This work shows that an electron
spin in a Si/SiGe quantum dot is a good candidate for quantum information processing
as well as for a quantum memory, even without isotopic purification.

10.1. INTRODUCTION
The performance of a qubit is characterized by how accurately operations on the qubit
are implemented and for how long its state is preserved. For improving qubit perfor-
mance, it is important to identify the nature of the noise which introduces gate errors
and leads to loss of qubit coherence. Ultimately, what counts is to balance the ability to
drive fast qubit operations and the need for long coherence times (Fowler et al., 2012).

Electron spins in Si quantum dots are now known to be one of the most promising
qubit realizations for their potential to scale up and their long coherence times (Kawakami
et al., 2014; Kim et al., 2014; Maune et al., 2012; Morton et al., 2011; Muhonen et al.,

The work in this chapter has been published as: E. Kawakami, T. Jullien, P. Scarlino, D. R. Ward, D. E. Savage,
M. G. Lagally, V. V. Dobrovitski, Mark Friesen, S. N. Coppersmith, M. A. Eriksson and L. M. K. Vandersypen
arXiv:1492.0477.
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2014; Tyryshkin et al., 2012; Veldhorst et al., 2014, 2015b; Zwanenburg et al., 2013). Using
magnetic resonance on an electron spin bound to a phosphorus impurity in isotopically
purified 28Si (Muhonen et al., 2014) or confined in a 28Si MOS quantum dot (Veldhorst
et al., 2014) ≈ 0.3 MHz Rabi frequencies, gate fidelities over 99.5%, and spin memory
times of tens to hundreds of ms have been achieved. Also electrical control of an elec-
tron spin has been demonstrated in a (natural abundance) Si/SiGe quantum dot. This
was achieved by applying an AC electric field that oscillates the electron wave function
back and forth in the gradient magnetic field of a local micromagnet (Ch. 7). The advan-
tage of electrical control over magnetic control is that electric fields can be generated
without the need for microwave cavities or striplines and allows better spatial selectivity,
which simplifies individual addressing of qubits. However, the magnetic field gradient
also makes the qubit sensitive to electrical noise, so it is important to examine whether
the field gradient limits the spin coherence time and the gate fidelity.

In our previous work (Ch. 7), the effect of electrical noise on spin coherence and
gate fidelity was overwhelmed by transitions between the lowest two valley-orbit states.
Since different valley-orbit states have slightly different Larmor frequencies, such a tran-
sition will quickly randomize the phase of the electron spin. If valley-orbit transitions
can be (largely) avoided, then the question becomes what limits coherence and fidelities
instead.

Here we measure the gate fidelity and spin echo times for an electron spin in a Si/SiGe
quantum dot in a regime where the electron stably remains in the lowest valley-orbit
state for long times, and where the corresponding resonance condition is well separated
from that associated with the other valley-orbit state. In order to learn more about the
dominant noise sources in this new regime, we use dynamical decoupling experiments
to extract the noise spectrum in the range of 5 kHz -1 MHz, and we compare this spec-
trum with spectra derived from numerical simulations for various noise sources. We also
study the influence of the various noise sources on the gate fidelity.

10.2. DEVICE AND MEASUREMENT SETUP
The device used in this work is the same as in the previous work (Ch. 7-9) but the applied
gate voltages are set differently to obtain a higher valley-orbit splitting. A static external
magnetic field of 794.4 mT is applied along the direction as indicated in Fig. 10.1. Spin
rotations are achieved by applying microwave excitation to one of the gates, which oscil-
lates the electron wave function back and forth in the magnetic field gradient produced
by two cobalt micromagnets fabricated on top of the device. The measurement scheme
consists of 4 stages: initialization, manipulation, read-out and emptying, as shown in
Fig. 5.5. Differently from the measurements in Ch. 7-9, the 4-stage voltage pulse is ap-
plied to gate 8 and the microwave excitation is applied to gate 3 (Fig. 10.1). The initial-
ization and read-out stages take 4-5 ms and the manipulation and emptying stages last
1-1.5 ms.

10.3. HIGH-QUALITY RABI OSCILLATIONS
Rabi oscillations are recorded by varying the burst time and the microwave frequency.
With the present gate voltage settings, the spin resonance frequencies corresponding to
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Figure 10.1: False color device image showing a fabricated pattern of split gates, labeled 1-12. The region
shown is outlined with dotted lines in Fig. 5.1. For the experiments in this chapter, we used the same sample
as in Ch. 7-9 but we create a single quantum dot (QD) and a sensing dot (SD). The current I through the SD
is measured as a function of time for a fixed voltage bias of -600 µeV. The location of the QD is estimated to
be around the pink circle from the measurements of resonant frequencies as a function of the direction of the
external magnetic field (not shown in this thesis).

the two lowest valley-orbit states are separated by ≈ 5 MHz (at Bext = 794.4 mT), so that
two well separated chevron patterns characteristic for Rabi oscillations are observed [see
Fig. 10.2(a)]. This difference of ≈ 5 MHz results mainly from slightly different electron
g -factors between the two valley-orbit states. The population of the valley-orbit ground
state is estimated to be≈ 80% from Fig. 10.2(a), which is higher than in our previous work
(Ch. 7), and implies a higher valley-orbit splitting1. Fig. 10.2(b) shows a Rabi oscillation
of a single spin with the electron in the ground valley-orbit state. The Rabi frequency
extracted from the data is 1.345 MHz. The decay of the oscillation is what we would
expect assuming a statistical distribution of resonance conditions with a line width of
0.63 MHz (FWHM), which is the number extracted from the continuous wave response
(not shown). This line width corresponds to T ∗

2 ≈ 1 µs, and is presumably dominated by
the 4.7% 29Si spins in the substrate, similar to what reported in Ch. 7. Here there is no
evidence of additional decay mechanisms. In particular, we do not see any indication of
intervalley switching with or without spin flip, or the combined effects of electrical noise
and the magnetic field gradient.

10.4. DYNAMICAL DECOUPLING
Next we examine the spin memory time of this electrically controlled spin qubit. In our
previous work (Ch. 7,8), due to switching between the two valley-orbit states, the Hahn
echo decay was exponential with coherence time ≈ 40 µs. Furthermore, we were unable
to extend the coherence time using multiple echo pulses. Due to the difference in Lar-

1Due to many unknown parameters, it is difficult to obtain a reliable estimate of the valley-orbit splitting.
Nevertheless, assuming that the values of these parameters are equal between the previous work (Ch. 7), and
this work, the higher population of the ground valley-orbit state implies a higher valley-orbit splitting. See
Sec. 10.S11 for more details.
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Figure 10.2: (a) Measured spin-up probability, P↑, as a function of fMW and burst time tp (microwave power
at the source P = 18.85 dBm), showing two Rabi chevron patterns corresponding to the two valley-orbit states.
The resonance frequency of the valley-orbit ground state is 18.9795 GHz and that of the excited state is 18.9750
GHz. The signal coming from the excited state is much smaller due to its lower population. (b) Measured
spin-up probability, P↑, showing a Rabi oscillation for the ground valley-orbit state (blue circles). During the
manipulation stage, on-resonance microwave excitation (at fMW = 18.9795 GHz) was applied for a time tp and
off-resonance microwave ( fMW = 18.9195 GHz) was applied for a time t ′p = 10µs −tp , in order to keep the total
duration of the microwave bursts fixed to 10 µs for every data point. The black line shows a numerical fit with
a model that includes a constant driving field in the rotating frame (which is a fit parameter) and (quasi-)static
noise modeled by a Gaussian distribution of resonance offsets with width 0.63 MHz (FWHM).

mor frequency between two valley-orbit states, as soon as a switch from one to the other
valley-orbit state occurred, phase information could not be recovered by echo pulses. In
this work, we observe significantly extended coherence times presumably because the
switching between valleys is slower in the present gate voltage configuration.

We study the spin memory characteristics using two types of two-axis dynamical
decoupling sequences, based on the XY4 (Maudsley, 1986), (XY4)n (sometimes called
vCDD (Álvarez, Souza, and Suter, 2012)) and XY8 (Gullion, Baker, and Conradi, 1990)
protocols. The insets in Fig. 10.3(a,b) show the (XY4)n and XY8 pulse sequences for 16 π
pulses. We use X and Y to denote π rotations about x̂ and ŷ , and X̄ and Ȳ for rotations
about −x̂ and −ŷ . Such two-axis decoupling sequences are chosen in order to reduce
the effect of pulse imperfections and to equally preserve the spin components along all
directions in the x̂ − ŷ plane (de Lange et al., 2010), which is important for quantum in-
formation processing. One-axis decoupling sequences such as CPMG (Carr and Purcell,
1954; Meiboom and Gill, 1958) may artificially preserve a specific spin component for
a longer time than two-axis decoupling sequences, but with a reduced coherence time
of the orthogonal spin component (Bluhm et al., 2010b; Souza, Álvarez, and Suter, 2012;
Wang et al., 2012). The visibility of the echo amplitude decreases for larger numbers of
π pulses, Nπ, due to the pulse imperfections. Therefore, to facilitate direct comparison
of the decay rates with different numbers of π pulses, in Fig. 10.3(a,b) we show the data,
normalized to the echo amplitude at twait = 0, as a function of the total wait time twait for
(XY4)n and XY8, respectively.

To analyze these decay curves, we adopt a semiclassical approach, in which the decay
curve of the echo amplitude is written as

P (twait) = exp[−W (twait)] (10.1)
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with

W (twait) =
∫ ∞

−∞
S(ω)

2π

F (ω)

ω2 dω. (10.2)

S(ω) is the noise spectrum that produces an effective magnetic field fluctuation δb(t )
along the same direction as the quantization axis (de Sousa, 2009). More concretely, the
relation between S(ω) and δb(t ) is described as S(ω) = ∫ ∞

−∞γ2
e〈δb(0)δb(t )〉e iωt d t with γe

the gyro-magnetic ratio of the electron. F (ω) is the filter function of the pulse sequence
(Cywinski et al., 2008; Uhrig, 2007). First we assume that the noise spectrum dominating
the decoherence is described by a power law,

S(ω) = K

ωα−1 , (10.3)

as seen in GaAs quantum dots (Medford et al., 2012) and NV centers in diamond (de Lange
et al., 2010). Under this assumption, if the filter function F (ω) is sufficiently narrow
aroundω= πNπ

twait
(which we verified is the case for Nπ ≥ 4), the decay curve can be written

as (Bylander et al., 2011)

P (twait) = exp

[
−

(
twait

T2

)α]
, (10.4)

with T2 = T 0
2 N

(1− 1
α )

π and T 0
2 = ( 2

K

) 1
α π1− 1

α . Fig. 10.3(c) shows T2 as a function of the
number of π pulses obtained by fitting Eq. [4] to the decay curves. The longest T2

time reached is ≈ 400µs with XY8 and Nπ = 128 (data shown in Sec. 10.S9). We fitted

T2 = T 0
2 N

(1− 1
α )

π to the data (leaving out the case Nπ = 1, the Hahn echo) and the resulting
fit is shown in green in Fig. 10.3(c).

We can derive the noise spectrum from the decay curves in Fig. 10.3(a,b) using the
fact that the filter function is narrow aroundω= πNπ

twait
for Nπ ≥ 4, (de Sousa, 2009) (Sec. 10.S3).

The circles in Fig. 10.3(d) show the noise spectrum extracted from six decay curves in
Fig. 10.3(b). The colors of the circles in Fig. 10.3(d) correspond to the colors used in
Fig. 10.3(b) for different Nπ. The green solid line in Fig. 10.3(d) is based on Eq. (10.3)
with T 0

2 and α obtained from the fit (green line) to the data in Fig. 10.3(c). Its decay
is close to a 1/ f decay. Although this line shows an overall good agreement with the
noise spectrum extracted from the decay curves, it does not match with the flat region at
ω/2π. 30 kHz.

In order to capture both the flat and decaying parts of the spectrum and obtain more
insight into the nature of the noise spectrum, we now write the noise spectrum in the
form

S(ω) = A

1+ (ωτc )α−1 , (10.5)

where τc is the correlation time of the fluctuations in the environment that dominate
the dynamical decoupling decay. We fit Eq. (10.1) to the six decay curves (leaving out
Nπ = 1) in Fig. 10.3(b) simultaneously, using also Eq. (10.2) and Eq. (10.5), with A and
τc as the only fitting parameters. We first perform this fit (numerically) using α = 2,
close to the previously fitted value α= 1.8 obtained using Eq. (10.3), but the fits deviate
from the measured echo decays (see Fig. S5(e)). A better fit to the echo decay data using
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Eq. (10.5) is obtained for α = 3 (Fig. 10.3(b)), in which case Eq. (10.2) can be expressed
analytically (Wang et al., 2012). The fits in Fig. 10.3(b) yield A = (2.5±0.2) ·104 rad2s−1

and τc = 2.46±0.17µs. The resulting fit, plotted as a thick black line in Fig. 10.3(d), shows
reasonable agreement with S(ω) obtained from the experimental data.

Extrapolating the fitted noise spectrum to frequencies below 5 kHz, where we do not
have experimental data, the noise spectral density looks flat; this would result in an expo-
nential Ramsey decay with T ∗

2 ≈ 80 µs (de Sousa, 2009). However, the measured Ramsey
decay is Gaussian and has a much shorter T ∗

2 ≈ 1µs. Therefore the noise power at low
frequencies must exceed the solid horizontal black line in Fig. 10.3(d) (Sec. 10.S1).

We now turn to the noise mechanisms and examine whether the hyperfine coupling
of the electron spin with the evolving nuclear spins can explain the observed noise spec-
trum. Nuclear spin dynamics have two main mechanisms, hyperfine-mediated and
dipole-dipole interactions between nuclear spins. Decoherence due to the hyperfine-
mediated interactions is negligible in Si at B ≈ 800 mT (Cywinski, Witzel, and Das Sarma,
2009) (Sec. 10.S1). However, magnetic dipole-dipole induced nuclear spin dynamics
cannot be neglected. We performed numerical simulations of the spectrum of the nu-
clear spin noise and of the Hahn echo decay for a dot with 4.7% of 29Si nuclei (natu-
ral abundance) within the coupled pair-cluster expansion (Yang and Liu, 2009) for sev-
eral choices of the quantum dot parameters. A calculated spectrum is approximated

to an analytical expression:
2σ2

ωτn

1+(ωτn )2 with the correlation time of the nuclear spin bath

τn ∼ 104 ms and the amplitude σω ∼ 106 rad/s is shown by the dotted line in Fig. 10.3(d).
The measured Gaussian-shape Ramsey decay with T ∗

2 ∼ 1µs is consistent with this spec-
trum so presumably the randomly oriented 29Si nuclear spins dominate the noise at low
frequencies (Kawakami et al., 2014; de Sousa, 2009) (see Sec, 10.S1 for details). They
also dominate the gate fidelities discussed below. However, at higher frequencies, even
though the noise spectrum calculated from the nuclear spin dynamics has the same
shape as Eq. 10.5 with α = 3, the amplitude and the correlation time are significantly
different from the noise spectrum measured by the dynamical decoupling. With the cal-
culated correlation time and the amplitude for the nuclear spins, the Hahn echo decay
time T2 would be above 0.5 ms, which is much longer than the measured value of 70 µs.
Nuclear spin noise thus cannot explain the observed Hahn echo decay.

We therefore conclude that the noise spectrum consists of at least two contributions:
nuclear spin noise at low frequencies and another mechanism at higher frequencies. At
higher frequencies, the noise spectrum decays as 1/ f 2 taking α = 3, but we see that a
≈ 1/ f decay (green line) also fits the frequency dependence of the data points well. It is
possible that this part of the spectrum is dominated by charge noise, which couples to
the spin due to the magnetic field gradient from the micromagnets. Thus charge noise
may effectively induce magnetic 1/ f or 1/ f 2 noise. To give a feeling for numbers, a two-
level magnetic field fluctuation of ±0.4 µT, which given the micromagnet gradient cor-
responds to a ≈ 4 pm shift back and forth in the dot position, gives a Lorentzian noise
spectrum that matches the solid line in Fig. 10.3(d) (Eq. 10.5 withα= 3, A = (2.5±0.2)·104

rad2s−1 and τc = 2.46±0.17 µs.) (Bergli, Galperin, and Altshuler, 2009).
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Figure 10.3: (a) Normalized spin echo amplitude as a function of the total waiting time twait using the (XY4)n

pulse sequence for Nπ = 4 (orange points), 16 (blue points), and 64 (purple points) pulses (concatenated level
n =1, 2 and 3, respectively). The inset shows the (XY4)n pulse sequence for Nπ = 16 (n = 2). The first and the
last pulses are π/2 pulses and the 16 pulses in the middle are π pulses. X, X̄, Ȳ or Y indicate the phase of the
pulses. The solid lines present fits using Eq. (10.1) with Eq. (10.2) and Eq. (10.5) for α= 3. (b) Similar to (a) but
using a Hahn echo sequence for Nπ = 1 and a XY8 sequence for Nπ = 8,16,32,48,64,80. The inset shows XY8
pulse sequence for Nπ = 16. Fits as in (a), except that the solid line for Nπ = 1 is the decay curve with A and τc
obtained from the fit to the other 6 decay curves in (b). (c) Coherence time, T2, as a function of the number ofπ
pulses Nπ using XY8 (blue asterisks, blue squares and orange circles) and (XY4)n (purple circles). See Sec. 10.S9
for the pulse sequences used for pink open circles. The T2 values are obtained by fitting Eq. (10.4) to the decay
curves. The choice ofα did not much affect the extracted T2. The values shown are forα= 2 except for the blue
squares for which α is left as a fitting parameter. The green line presents a fit to the data (leaving out Nπ = 1)

using T2 = T 0
2 N (1−1/α)

π . From this fit, we obtained T 0
2 = 48± 8 µs and α = 1.81± 0.14. (d) Noise spectrum

extracted from Fig. 10.3(b). The green solid line corresponds to Eq. (10.3) with T 0
2 = 48 µs and α = 1.81. The

black line presents a fit using Eq. (10.5), see main text. The dotted black line represents the calculated noise
spectrum produced by the 29Si nuclear spin dynamics (see Sec. 10.S1 for the details of the calculation).

10.5. RANDOMIZED BENCHMARKING

We measured the average gate fidelity using Standard Randomized Benchmarking (SRB),
which is known as an efficient way to measure the gate fidelity without suffering from
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initialization and read-out errors (Knill et al., 2008; Magesan, Gambetta, and Emerson,
2012). The specific procedure is as follows. After initializing the electron to the spin-
down state, we apply randomized sequences of m Clifford gates and a final Clifford gate
Cm+1 that is chosen so that the final target state in the absence of errors is either spin-
up or spin-down. Every Clifford gate is implemented by composing π and π/2 rotations
around two axes, following (Barends et al., 2014). Applying randomized sequences of
imperfect Clifford gates acts as a depolarizing channel (Knill et al., 2008; Magesan, Gam-
betta, and Emerson, 2012). The depolarization parameter p reflects the imperfection of
the average of 24 Clifford gates. Under certain assumptions, for m successive Clifford
gates the depolarization parameter is pm .

We measure the spin-up probability both for the case where spin-up is the target
state, P |↑〉

↑ , and for the case where spin-down is the target state, P |↓〉
↑ , for 119 different

randomized sequences for each choice of m, and varying m from 2 to 220. The difference
of the measured spin-up probability for these two cases, P |↑〉

↑ −P |↓〉
↑ , is plotted with red

circles in Fig. 10.4(a). Theoretically, P |↑〉
↑ − P |↓〉

↑ is expressed as (Muhonen et al., 2015;
Veldhorst et al., 2014):

P |↑〉
↑ −P |↓〉

↑ = apm (10.6)

where a is a prefactor that does not depend on the gate error. As seen in Eq. (10.6), dif-
ferently from quantum process tomography (Chuang and Nielsen, 1997; Kim et al., 2014,
2015), the measurement of the gate fidelity is not affected by the initialization and read-
out infidelities, assuming these infidelities are constant throughout the measurement.
In order to keep the read-out and initialization fidelities constant for different m, we
kept the total microwave burst time tp + t ′p = 150 µs. Due to the longer total microwave
burst time, the read-out and initialization infidelities are higher than in Fig. 10.2. This is
the reason that initially P |↑〉

↑ −P |↓〉
↑ is 20% instead of 45%.

Fig. 10.4(a) shows that the measured decay does not follow a simple exponential pm .
This behavior is reproduced by numerical simulations of the randomized benchmark-
ing experiment, using the same set of randomized sequences as used in the experiments
and assuming that the magnetic field fluctuations are characterized by δb(t ), the com-
bination of the high-frequency noise δb′(t ) and the (quasi-)static noise δb0:

δb(t ) = δb0 +δb′(t ), (10.7)

where δb0 again has a Gaussian distribution with FWHM of 0.63 MHz and δb′(t ) is ex-
pressed by Eq. (10.5) usingα= 3, A = 2.5·104 rad2s−1, τc =2.46, µs. The simulation results
are shown in Fig. 10.4(b) and show good agreement with experiment.

To evaluate explicitly the relative contribution of δb0 and δb′(t ) to the randomized
benchmarking decay, we repeated the numerical simulation including at first only the
high-frequency noise δb′(t ), in which case the decay is extremely slow. Next we include
only the (quasi-)static noise δb0 and find almost exactly the same decay as with the com-
bination of the two noise contributions. This indicates that the (quasi-)static noise is
mainly responsible for the gate error while the contribution from the high-frequency
noise is small (Sec. 10.S7). This is consistent with an earlier report (Fogarty et al., 2015),
in which it was also shown that ensemble averaging over individual exponential decays
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can lead to a non-exponential decay. Repeated measurements in the presence of low-
frequency noise effectively lead to such ensemble averaging.

Since the measured SRB decay is not of the form apm , we should be cautious using
the fidelity numbers extracted from this procedure (Epstein et al., 2014). We see that
both in experiment and simulation, the decay begins to deviate from a single exponential
(straight line in the semi-log plot) for on-resonance microwave bursts with tp & 8µs.
These are the data points with open circles in Fig. 10.4. We fitted to the decay curves for
tp < 8 µs to apm and obtained p = 0.9620±0.0051. From this, the average fidelity of a
Clifford gate is 1− (1−p)/2 = 98.10±0.26% and the average fidelity for a single π or π/2
rotation around x̂ or ŷ is calculated to be 1− (1−p)/2/1.875 = 98.99±0.14%.

Sequence length m
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Figure 10.4: Randomized benchmarking. The difference between the spin-up probability with spin-up as the

target state and with spin-down as the target state, P |↑〉
↑ −P |↓〉

↑ , is plotted as a function of the number of Clifford

gates, m. The Standard Randomized Benchmarking curve (red circles) is measured after applying randomized
sequences of m Clifford gates and a final Clifford gate Cm+1. The Interleaved Randomized Benchmarking
curve is measured by interleaving the Hadamard gate with the same random sequence of Clifford gates (blue
circles). The experimental results are shown in (a) and the results of numerical simulations (see main text) are
shown in (b). The experiments and simulations use the same 119 random sequences from m =2 to 220. Each
experimental data point is the average of 250 single-shot cycles. For the numerical simulation, we averaged
over 1000 repetitions, and for each repetition we sample δb0 and include a different time-domain realization
of δb′(t ). In the simulation, the read-out and initialization fidelities are assumed to be perfect. The π rotation
time is 366 ns for the experiments and 360 ns for the simulation. The delay time between pulses is set to be 5
ns for both the measurements and the simulations. The red and blue curves present fits of the form Apm to
the data with tp < 8 µs. The gate fidelities extracted from the fits are shown in the insets. The first row (SRB)
and the second row (C) show the average fidelity per single gate and per Clifford gate, respectively, obtained
from the SRB measurements. The third row (H) shows the fidelity of the Hadamard gate obtained from IRB. e1
and e2 are as defined in Table 10.1.

We also characterized the fidelity of individual gates using interleaved randomized
benchmarking (IRB). In this procedure, a specific gate is interleaved between random-
ized Clifford gates. The depolarizing parameter now becomes bigger than in SRB due
to the imperfections of the interleaved gate. From the difference in the depolarizing



10

166
10. GATE FIDELITY AND COHERENCE TIME OF AN ELECTRON SPIN IN A SI/SIGE QUANTUM

DOT

experiment
gate fidelity e1 e2

T (     　　　　     　　  ) 0.9891 0.0282 0.0272
H (     　　　      　　    　      ) 0.9805 0.0215 0.0195

x (                                   ) 0.9893 0.0285 0.0368
z (                                   ) 0.9813 0.0198 0.0231
X (                               ) 0.9842 0.0622 0.0325
Z (                               ) 0.9917 0.0670 0.0401

rotation around
rotation around

rotation around
rotation around

rotation around
rotation around

Table 10.1: The measured gate fidelities for five representative gates, extracted using Interleaved Randomized
Benchmarking. e1 and e2 are errors in the fidelities. e1 is calculated from the 95% confidence interval on the
fit coefficient p and e2 is an upper bound arising from imperfect random gates, calculated according to the
formulas in (Magesan, Gambetta, and Emerson, 2012). As the T gate is not a Clifford gate, we interleaved 2
successive T gates, following (Barends et al., 2014).

parameter between SRB and IRB, the fidelity of the interleaved gate is extracted. In
Fig. 10.4(a), the blue circles show the case where the Hadamard gate is the interleaved
gate. The Hadamard gate is implemented by a π rotation around the x̂ axis and a π/2
rotation around the −ŷ axis. By fitting aHpH

m to the decay curve (again for tp < 8 µs),
pH = 0.9245±0.0197 is obtained. The fidelity of the Hadamard gate is calculated to be
1− (

1−pH/p
)

/2 = 98.05± 2.15%. In the same way, we measured the fidelities for sev-
eral other common gates (Table 10.1). While also for IRB, the decay is not exponential,
the gate fidelities extracted from IRB for the first 8 µs appear roughly consistent with the
fidelities extracted from SRB.

10.6. DISCUSSION AND CONCLUSION
We have shown that the average single gate fidelity for a single electron spin confined
in a natSi/SiGe quantum dot approaches the fault-tolerance threshold for surface codes
(Fowler et al., 2012). The low frequency noise that limits gate fidelity is well explained by
the nuclear spin randomness given the natural abundance of 29Si. Therefore we can
increase gate fidelities by reducing the abundance of 29Si using isotopically enriched
28Si (Muhonen et al., 2014; Veldhorst et al., 2014) or by using composite pulses (Vander-
sypen and Chuang, 2005). Also the read-out fidelity can be boosted to the fault-tolerance
threshold by using Pauli spin blockade read-out (Shulman et al., 2012) and RF reflectom-
etry (Baart et al., 2016d). The longest coherence time measured using dynamical decou-
pling is ≈ 400 µs. We revealed that the noise level is flat in the range of 5 kHz - 30 kHz
and decreases with frequency in the range of 30 kHz - 1 MHz. In this frequency range
(5 kHz - 1 MHz), the measured noise level is higher than expected from the dynamics of
the 29Si nuclear spins. Instead, charge noise in combination with a local magnetic field
gradient may be responsible. If charge noise is dominant, dynamical decoupling decay
times can be further extended by positioning the electron spin so that the gradient of
the longitudinal component of the magnetic field gradient vanishes, while keeping the
transverse component non-zero as needed for driving spin rotations. At that point, we
can reap the full benefits from moving to 28Si enriched material for maximal coherence
times as well.
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SUPPLEMENTARY SECTIONS

10.S1. MODELING OF DECOHERENCE AND NOISE PRODUCED

BY NUCLEAR SPINS
In order to analyze decoherence and noise produced by the nuclear spins, we performed
numerical modeling of the Hahn echo decay and of the spectrum of the nuclear spin
noise. To model the quantum dot we generate a crystallite of silicon by representing
the underlying diamond lattice as two fcc sublattices shifted with respect to each other
by the vector [1/4,1/4,1/4]. The size of the crystallite is (2Lx + 1)× (2Ly + 1)× (2Lz + 1)
along the x-, y-, and z-axis, respectively. For simulation results shown below we used
the external field directed along the x-axis as in the experiments and Lx = Ly = 18 and
Lz = 8 which is large enough, so that the results do not depend much on the crystallite
size; we also did not see any significant changes with changing the orientation of the dot
with respect to the external field directed along the z-axis. The sites inside the crystallite
are randomly populated with spins 1/2 (which represent 29Si nuclei) with abundance of
4.68%, so the total number of nuclear spins in the crystallite was about 8700. For conve-
nience, below we express the coordinates (x, y, z) in the units of d , where d = 0.543 nm
is the lattice constant of the cubic lattice.

FWHM 

FWHM 

Figure 10.S1: Schematic of the position of electron respect to the micromantes and surface gates. The shown
electron wavefunction spread represents Eq. 10.S1 for the case (i) x0 = 0.4·Lx , y0 = 0.4·Ly ,and z0 = 0.4·Lz . The
drawing of the electron wavefunction spread is scaled around 100 times larger than that of the micromagnets
and the surface gates. The estimated position of the center mass of the electron on the x − y plane is indicated
with a red circle ((x, y, z) = (xc , yc ,0)) and the dot is positionned around 150 nm below the surface gates (zc =
−147 nm, see Sec. 5.3).

The envelope of the electron density within the dot is modeled as a 3-dimensional
Gaussian distribution, centered at the central unit cell of the crystallite:

ρenv (x, y, z) = ρ0 exp

(
−(x −xc )2

2x2
0

)
exp

(
−(y − yc )2

2y2
0

)
exp

(
−(z − zc )2

2z2
0

)
, (10.S1)
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with various deviations x0, y0, and z0. Below, we present the results for two representa-
tive cases: (i) x0 = 0.4 ·Lx , y0 = 0.4 ·Ly , and z0 = 0.4 ·Lz , denoted as the larger dot, and
(ii) x0 = 0.2 ·Lx , y0 = 0.2 ·Ly , and z0 = 0.2 ·Lz , denoted as the smaller dot. The hyperfine
coupling constants are proportional to the electron density, so that the Hamiltonian of
the hyperfine coupling between nuclear spins and the electron spin is

H =
Nn∑
i=1

Ai Ii x Sx (10.S2)

with Ai = Asumρenv (x, y, z) = Asum|φ(xi , yi , zi )|2 where φ(xi , yi , zi ) is an envelope func-
tion (Eq. D.13) and xi , yi , and zi are the coordinates of the i -th nucleus, its spin oper-
ator is Ii x , while Sx is the electron spin operator (note that the external field is directed
along the x-axis), and Nn ∼ 8700 is the total number of 29Si nuclear spins in the crystal-
lite. The proportionality coefficient A0 is normalized to produce the standard deviation

in electron Larmor frequency σω =
√∑

i Ai
2/2 equal to 1.7 Mrad/s, i.e. approximately

2π·271 kHz, which corresponds to the measured line width (or, equivalently, to T ∗
2 = 800

µs or to a random static field of 9.6 µT). Calculated value of A0 for a larger dot is almost
consistent with a theoretically calculated A0 for natural silicon (Assali et al., 2011).

The nuclear spins are subjected to an external field Bext = 800 mT and a gradient stray
field from the micromagnet. The gradient field varies both in magnitude and in direc-
tion, and is much smaller than Bext. If the transverse part of the stray field is neglected
then the Zeeman part of the Hamiltonian of the i -th nuclear spin is

HZ ,i = γnħ Ii x B(xi ), (10.S3)

where γn is the gyromagnetic ratio of the 29Si nucleus, and B(xi ) = Bext + xi G∥, where
G∥ is the gradient of the longitudinal x–component of the stray magnetic field; in our
experiments γnG∥ = 5.78 krad/s (approximately 2π ·0.92 kHz) per unit cell.

The transverse part of the stray field, which varies from one nuclear spin to another,
may lead to decoherence in a manner similar to the electron spin echo envelope modula-
tion (ESEEM) mechanism (Schweiger and Jeschke, 2001). This decoherence mechanism
has been considered by Beaudoin and Coish (Beaudoin and Coish, 2013), and we show
below that for the parameters of our experiment the contribution of this decoherence
channel is negligible. Indeed, if we omit the coupling between the nuclear spins, then
the Hamiltonian of the electron spin coupled to a bath of nuclear spins in a gradient field
will be

H1 =
Nn∑
i=1

(ħAi Ii x Sx +γnħ Ii x B(xi )+γnħIi y By (xi )
)

, (10.S4)

where we omitted the Zeeman term for the electron spin by considering dynamics of the
electron spin in its rotating frame, and leaving only the secular terms (Schweiger and
Jeschke, 2001; Slichter, 1990). We also assumed for simplicity that the transverse part of
the gradient field is directed along the y-axis, and that the transverse field changes only
along the x-axis. Shortly we will see that these assumptions do not change the conclu-
sions, and only help clarify the arguments.

The motion of the nuclear spins under the Hamiltonian H1 above can be analyzed ex-
plicitly: Sx is a constant of motion, so that we can consider the subspaces with Sx =+1/2
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and Sx =−1/2 separately; in each subspace the Hamiltonian H1 becomes a sum of terms
describing individual nuclear spins. E.g., it can be shown that, under the standard as-
sumption of completely unpolarized initial state of the nuclear spins, the free decay of

the electron spin coherence is proportional to Trn

[
U1+(t )U †

1−(t )
]

,

and the Hahn echo decay for the electron spin is proportional to

Trn

[
U1+(twait/2)U1−(twait/2)U †

1+(twait/2)U †
1−(twait/2)

]
, where the evolution operators

U1±(t ) = exp(−i H1±t ); here the operators H1+ and H1− are the parts of the Hamiltonian
H1 corresponding to the subspaces Sx = +1/2 and Sx = −1/2 respectively, and Trn de-
notes trace over the nuclear spins.

In our experimental situation, where γnBext À Ak and Bext À By for a typical nu-
clear spin in the quantum dot, the Hahn echo signal decays from its initial value (nor-
malized to 1) to the minimum (Childress et al., 2006; Cywinski, Witzel, and Das Sarma,

2009) given by exp
[
−∑Nn

i=1(AiγnBy (xi ))2/(γnBext )4
]

, which can be evaluated as

exp[−σ2
ω(γn δBy )2/(γnBext )4], whereδBy is the typical spread of the transverse field over

the quantum dot, which is of the order of δBy ∼ l · (dB⊥/d x) ∼ 3 mT if we assume the
size of the dot l ∼ 10 nm and dB⊥/d x ∼ 0.3 mT/nm. Also taking into account the values
σω ∼ 1.7·106 rad/s and Bext ∼ 800 mT, we find that the overall decay of the Hahn echo due
to ESEEM-like mechanism is negligible: instead of decay, the Hahn echo experiences a
small modulation. Thus, the effect of the transverse field on the decoherence can be
neglected. The variations in the direction of the local quantization axes leads only to a
small renormalization of the hyperfine coupling constants Ai and of the dipole-dipole
couplings between the nuclear spins.

Thus, in order to analyze the decay of the electron spin Hahn echo, we should take
into account the dipolar interaction between the nuclear spins, which lead to pairwise
flip-flops of the nuclear spins, and present more efficient decoherence channel than the
individual flips of the nuclear spins caused by the transverse stray fields. The dipolar
coupling is given by the sum over the pairs

Hnn = ∑
i< j

bi j (1−3cos2θi j )

(
Ii x I j x − 1

2
Ii z I j z − 1

2
Ii y I j y

)
, (10.S5)

with bi j = µ0
4π

ħ2γ2
n

R3
i j

(Eq. 3.33), where Ri j = ri j d is the distance between the two nuclei,

and θi j is the angle between the line connecting the nuclei and the x-axis. The numer-
ical modeling of the nuclear spin dynamics was performed using the coupled cluster
expansion (CCE) (Yang and Liu, 2009) within second order (i.e., considering only the
clusters made of nuclear spin pairs). We have also included the electron spin-mediated
coupling between the nuclear spins (Cywinski, Witzel, and Das Sarma, 2009) in the nu-
merical modeling, of the form

H (2)
nn = ∑

i< j
βi j Sz

(
1

2

(
Ii z I j z + Ii y I j y

))
, (10.S6)

with βi j = Ai A j

2ω0
with ω0 the Larmor frequency of the electron spin. As expected, this

coupling did not produce any noticeable effect, since the magnitude of the electron spin-
mediated coupling is much smaller than the direct dipolar interaction between nuclei.
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Indeed we can roughly estimate the typical strength of the dipolar interaction between
nuclear spins as µ0

4πγ
2
nħ/R̄3 ≈ 66 rad/s where R̄−3 is the density of nuclear spins, while the

typical electron spin-mediated coupling is of the order of A2
k /(2ω0) ∼ 2σω/(Nsω0), which

is about 0.1-0.01 rad/s for Bext ∼ 500 mT; here Ns is the number of the nuclear spins
effectively coupled to the electron, which is about 4500 for the larger dot and 560 for
the smaller dot, so that the magnitude of the electron spin-mediated coupling is several
orders smaller than the dipolar coupling for such a large magnetic field. As expected
form this estimation, the electron spin-mediated coupling did not produce a noticeable
effect in the calculation result. The Hahn echo decays calculated within the pair-cluster
CCE are shown in Fig. 10.S2 for the larger and the smaller quantum dots (defined above).
The Hahn echo decay times are of order of 0.5–1 ms, which is much longer than the
experimentally measured T2 time. Similar results have been obtained for other system
parameters we explored.

0 1 2
(ms)

1

0

1

0
0 1 2 3 4 5

(ms)

(a) (b)

Figure 10.S2: Hahn Echo amplitudes P (twait) for the larger dot (a) and the smaller dot (b) as a function of the
total waiting time twait.

In order to gain deeper insight into the nature of the noise created by the nuclear
spins, we used the pair-cluster CCE to calculate the correlator of the nuclear spin noise.
Let us first note that the concept of the nuclear spin noise, which acts on the electron
spin and decoheres it, is a semi-classical concept. For instance, it presumes that the
properties of the nuclear spin noise (such as the correlation function) are well defined
and independent of the electron spin. This description is not always adequate: much
decoherence comes from the quantum back-action of the electron spin on the nuclear
bath, so that the motion of the nuclear spins depends on the electron spin state. Nev-
ertheless, the model of the random nuclear noise has its advantages, and often gives a
reasonable semi-quantitative description of decoherence for a range of experimentally
interesting situations (Reinhard et al., 2012).

Thus, we investigate the correlation function of the spin noise. Specifically, for a
given state of the electron spin s = +,− (along the x-axis or in the direction opposite to
the x-axis) we calculate the correlator

C (t ) = 〈ηs (0)ηs (t )〉 =∑
i ,k

Ai Ak〈Ii x Ikx (t )〉s (10.S7)

where 〈. . .〉s denotes the quantum-mechanical average with the completely disordered
initial state of the nuclear spin bath and the electron spin in the state s and
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η(t ) = ∑Nn
i Ai Ii x (t ) = γeδb(t ) with γe gyro-magnetic ratio of the electron and δb(t ) ef-

fective magnetic field fluctuation along the z axis due to the nuclear spin bath. We per-
formed simulations with the pair-cluster CCE method, using the Heisenberg represen-
tation for the nuclear spin operators Imx (t ). Since the correlation function C (t ) has the
value C (0) =σω2 at t = 0 (whereσω = 2π·271 kHz), it is convenient to plot the normalized
correlator CN (t ) =C (t )/σω2; these simulation results are plotted in Fig. 10.S3.

Time (ms)
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0 1 2 3
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Figure 10.S3: Normalized correlation functions CN (t ) for different orientations of the electron spin, for the two
quantum dots: (a) and (c) — for the larger quantum dots; (b) and (d) — for the smaller quantum dot. Panels
(a) and (c) show the same results, but for different time ranges, the same is true for the panels (b) and (d).

Our results show that the noise correlators corresponding to different electron spin
states can be very different, implying back-action of the electron spin on the nuclear spin
bath. Indeed, the hyperfine coupling constants, even for quite large quantum dots, are
large in comparison with the dipole-dipole couplings between the nuclear spins. How-
ever, the echo decay is determined by the noise dynamics at the timescale of the echo
decay, which is of the order of a few milliseconds. At this timescale the noise correlators
corresponding to different electron spin states do not differ too much, and give mean-
ingful semi-quantitative information about the properties of the nuclear spin bath.

In particular, we describe the nuclear bath as a classical Ornstein-Uhlenbeck (Gaus-
sian, Markovian, stationary) noise source (Wang et al., 2012) with amplitudeσω and cor-
relation time τn , so that its correlation function is C (t ) =σ2

ω exp(−t/τn). In this context,
the intuitive meaning of τn is thus the correlation time of the nuclear spin bath on short
timescales (< 1 ms). We use the notation τn when the correlation time refers specifi-
cally to correlation time of the nuclear spin bath in order to avoid the confusion with the
experimentally measured correlation time τc . The spectrum of this noise is

S(ω) = 2σ2
ωτn

1

1+ (ωτn)2 , (10.S8)

where for natural silicon the correlation time is of order of seconds to minutes. For such a
slow noise, satisfying the condition σωτn À 1, the free coherence decay (Ramsey decay)
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has Gaussian form. Indeed, as known from the statistical theory of the spin resonance
decay (Klauder and Anderson, 1962; Kubo, Toda, and Hashitsume, 1991), for the static
noise the shape of the Ramsey decay is given by the Fourier transform of the (instant)
distribution function of the random process η. For the electron spin coupled to a large
bath of nuclear spins via contact hyperfine coupling, this distribution function is Gaus-
sian, with the standard deviation σω:

P (η) = 1√
2πσ2

ω

exp[−η2/(2σ2
ω)]. (10.S9)

Correspondingly, the Ramsey decay has Gaussian form, with the decay time T ∗
2 =p

2/σω.
Furthermore, for the slow noise (satisfying the conditionσωτn À 1) the Hahn echo decay
time T2 is proportional to (σ2

ω/τn)−1/3 (Klauder and Anderson, 1962), so that

τn

T ∗
2

∼
(

T2

T ∗
2

)3

, (10.S10)

i.e. for the quantum dot under consideration, the correlation time of the nuclear noise is
of order of 2 ·108 times longer than T ∗

2 .
In other words, for the Ramsey decay of the electron spin the filter function F (ω, t )

in Eq. 2 of the main text involves the frequencies ranging from 0 to the frequencies of
order of 1/T ∗

2 . In this region the noise spectrum looks like a very sharp peak (its width is
of order of 1/τn , which is 10−8 times smaller than the whole range of relevant frequen-
cies), and can be approximated as a delta-function. The integral in Eq. 2 in this case
leads to the Ramsey decay of Gaussian shape with the decay time T ∗

2 =p
2/σω, which is

consistent with the measured Ramsey decay.
Due to extreme slowness of the noise, on the timescale of the Hahn echo decay, the

change in the correlation function 〈ηs (0)ηs (t )〉 is minuscule, and this is indeed what
is seen in Fig. S2: although the correlation functions C (t ) are quite irregular on the
timescales of order of 10–50 ms, the overall change in the noise amplitude over the ex-
perimentally relevant timescale, < 1 ms, is very small, and can be well approximated
by a decaying exponential CN (t ) = exp(−t/τn). From this fitting we extract the values
of τn , and substitute them into the simplified theoretical expression for the Hahn echo
decay(Klauder and Anderson, 1962)

P (twait) = exp

(
− t 3

waitσ
2
ω

12τn

)
. (10.S11)

Fig. 10.S4 illustrates the comparison between such estimates and the original CCE-simulated
echo curves (shown above in Fig. 10.S2). The values of τn were obtained from fitting the
curves CN (t ) to the decaying exponent in the region of 0 < t < 0.5 ms. This is the range
of times where the echo decay happens, and where the correlators for the electron spin
states "down" (s = −) and "up" (s = +) are close to each other and are well described
by decaying exponent. The resulting values are τn = 4.464 ·104 ms for the larger dot, and
τn = 8.475·104 ms for the smaller dot. The conditionσωτn À 1 is satisfied for both cases.
The red curves in Fig. S3 describe well the Hahn echo decay during the first millisecond,
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Figure 10.S4: Calculated Hahn echo amplitudes (black squares) for the larger dot (a) and for the smaller dot
(b), obtained from the CCE simulations, are compared with the theoretical estimates (Eq. 10.S11): shown as
red lines.

where the approximation of the nuclear noise is valid, and where the back-action from
the electron spin is not too strong.

Thus, we conclude that the model of the nuclear spin noise is semi-quantitatively ap-
plicable to the considered quantum dots. However, the experimentally measured Hahn
echo decay time is an order of magnitude shorter than the CCE simulations predict for
the nuclear spin-induced echo decay. Similarly, we can extract the noise spectrum us-
ing the exponential fittings of C (t ) described above: the result is shown in Fig. 10.3(d) of
the main text. Again, we see that the noise produced by the nuclear spins is too slow in
comparison with the experimentally measured one, and is unlikely to be an important
source of decoherence in the Hahn echo and the dynamical decoupling experiments in
our quantum dot system.

10.S2. HEATING OF THE ELECTRON RESERVOIR AS A FUNCTION

OF MICROWAVE BURST TIME
Fig. 10.S5(a) shows a Rabi oscillation of the ground valley-orbit state varying the mi-
crowave burst time up to≈ 160µs. We take the offset of a Rabi oscillation in the measured
spin-up probability as B and its amplitude as A as shown in Fig. 10.S5(b). The offset B
increases with longer microwave burst time, while in Fig. S4(a) there is no change in the
amplitude A other than the decrease expected by quasi-static noise, is observed. These
results indicate that the microwave bursts heat the electron reservoir.

To quantify this effect, we characterize the spin read-out and initialization fidelities
of the excited valley-orbit state (ground valley-orbit state) by three parameters, α1, β1

and γ1 (α2, β2 and γ2) Sec. 7.S7. By taking the population of two valley-orbit states as
ε1 : ε2, the amplitude, A, and the offset, B , are expressed with

A = ε2(1−2γ2)(1−β2 −α2) (10.S12)

and

B = B1 +B2, (10.S13)
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Figure 10.S5: (a) Measured spin-up probability, P↑, showing a Rabi oscillation for the ground valley-orbit state
(blue circles) without off-resonance microwaves applied. The black lines show fits with damped cosine curves
assuming that the offset, B , can be regarded constant for short time (1.5 µs). The insets show schematics of the
four energy levels (two spin states and two valley states) in the dot and the electron reservoir for a short mi-
crowave burst time and for a long microwave burst time. (b) The offset B and the amplitude A in the measured
spin-up probability of a Rabi oscillation. The deviation of the amplitude A from 1 and that of the offset B from
0.5 are due to the initialization and read-out infidelities. (c) The increase of the offset B(tp )−B(0) normalized
by the initial amplitude A(0) as a function of the microwave burst time tp , without off-resonance microwaves
(blue circles), and with off-resonance microwaves (green circles) so that the duration of the microwave bursts
is fixed to 162 µs.

with

B1 = ε1
[
(1−β1)γ1 +α1(1−γ1)

]
(10.S14)

and

B2 = ε2
1−β2 +α2

2
. (10.S15)

A is determined only by the parameters for the ground valley-orbit state. Since no change
in A is observed, we conclude that the read-out and initialization fidelities for the ground
valley-orbit state are not significantly affected by increased burst times. For the same
reason, B2 should not greatly change. Thus the increase in B1 is the dominant source for
the increase in B . As shown in the insets of Fig. 10.S5, we assume that the electron tem-
perature of the reservoir is increased with longer microwave burst time. The spin-down
excited valley-orbit state is the closest dot energy level to the Fermi level of the reservoir
and thus is affected the most by the increase of the electron temperature.

Fig. 10.S5(c) shows the change of the offset, B(tp )−B(0), normalized by the initial
amplitude, A(0), as a function of the microwave burst time. The blue circles are ex-
tracted from Fig. 10.S5(a) and green circles are extracted from a similar measurement
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as in (a) but with off-resonance microwave excitation applied in order to keep the total
duration of the microwave bursts fixed to 162 µs. The increase of the offset is heavily
suppressed by applying the off-resonance microwave but not completely suppressed.
This remaining increase may be due to a change in the population between the two
valley-orbit states with long microwave burst time. With the total microwave time < 8
µs (condition assumed for the evaluation of the gate fidelities with randomized bench-
marking), this remaining increase is small enough to be ignored. Therefore the measured
gate fidelities are not affected by this effect. Also for the dynamical decoupling measure-
ment, the longest total microwave duration used is ≈ 8 µs and we have not observed any
significant difference in the dynamical decoupling coherence time with versus without
off-resonance microwave excitation as discussed below.

10.S3. EXTRACT THE NOISE SPECTRAL DENSITY FROM THE ECHO

DECAYS
Here we show how the noise spectral density is extracted from the experimental echo
decay data. When a dynamical decoupling pulse sequence whose time separation be-
tween π pulses is fixed and symmetric i.e. the timing of kth π pulse is tk = twait

Nπ
), the filter

function F (ω, twait, Nπ) peaks at ω0 = 2π
4τ with τ= twait

2Nπ

(
k − 1

2

)
.

Following Bylander et al. (Bylander et al., 2011), if the filter function F (ω) is suffi-
ciently narrow around ω0, we can treat the noise as constant within the bandwidth of
the filter function and then Eq. 10.2 is reduced to

W (twait) ≈ S(ω0)
∫ ∞

−∞
1

2π

F (ω, twait, Nπ)

ω2 dω. (10.S16)

According to the numerical simulation we confirmed that Eq. (10.S16) is valid for N ≥ 4.
From Eq. 10.1 we know that

W (twait) =− logP (twait) (10.S17)

and so S(ω0) is determined by the logarithm of the normalized echo amplitude at time
twait = 2τNπ divided by the integral of the filter function:

S

(
ω0 = 2π

4τ

)
≈ − logP (twait)∫ ∞

−∞
1

2π
F (ω)
ω2 dω

= −2logP (twait)

twait
. (10.S18)

10.S4. FURTHER ANALYSIS OF THE ECHO DECAYS
The circles in Fig. 10.S6(a,b) and (d,e) show the echo decay curves using (XY4)n and XY8
pulse sequences, respectively (the same data as in Fig. 10.3(a)). In the main text, we fitted
the echo data to Eq. 10.1 with Eq. 10.2 and Eq. 10.5 keepingα fixed to 3. Here, we explore
alternative ways of fittings. The solid lines in Fig. 10.S6(a,d) are fits using Eq. 10.4 with
α and T2 as fitting parameters. In Fig. 10.S6(a), α = 1.14, 1.64 and 2.22 and T2 = 83.6,
149 and 320 µs are obtained for Nπ = 4, 16 and 64, respectively. In Fig. 10.S6(d), α=1.50,
1.59, 1.82, 1.85, 2.03, 2.31 and 2.38 and T2 = 72.7, 122, 159, 239, 280, 333 and 378 µs are
obtained for Nπ = 1, 8, 16, 32, 48, 64 and 80 respectively. α becomes larger with higher
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Figure 10.S6: Results of different fits of echo decay curves for (XY4)n and XY8 pulse sequences. The circles
in (a,b) and in (d,e) show the echo decay curves using (XY4)n and XY8 pulse sequences, the same data as
in Fig. 10.3(a) and (b), respectively. (a,d) The solid lines are the fits using Eq. 10.4 with α and T2 as fitting
parameters. The experimental data shown with circles in (a-d) are normalized according to these fits. (b,e)
The solid lines are the numerical fits using Eq. 10.1 with Eq. 10.2 and Eq. 10.5 for α = 2. See the text for the
fitting results. (c,f) The circles show the noise spectrum extracted from the experimental data of (XY4)n and
XY8, respectively. The blue solid lines present Eq. 10.5 for α = 2 with A and τc obtained from the fits in (b.e).
The black solid lines present Eq. 10.5 for α= 3 with A and τc obtained from the fits show in Fig. 10.3(a,b). (a-c)
The decay curve for Nπ = 4 and the noise spectrum extracted from this decay curve are showed with 3 different
colored circles: yellow, orange and strong orange for short, middle and long waiting time, respectively, in order
to demonstrate which parts of decay data correspond to the extracted spectrum noise.

numbers of π pulses because the echo decay curve becomes determined more by the
decaying parts of the noise spectrum rather than the flat part.

The solid lines in Fig. 10.S6(b,e) are fits using Eq. 10.1 with a numerical integration
of Eq. 10.2 and Eq. 10.5 for α = 2. The fits yield A = (9.8± 4.7) · 104 rad2s−1 in (b) and
τc = 17.4±8.29 µs and A = (124.5±827) ·104 rad2s−1 and τc = 280±18.7 µs in (e).

The circles in Fig. 10.S6(c) and (f) show the noise spectrum extracted from the ex-
perimental data of (XY4)n and XY8, respectively. The blue solid lines in Fig. 10.S6(c)
and (f) present Eq. 10.5 for α = 2 with A and τc obtained from fitting the decay curves
in Fig. 10.S6(b) and (e), respectively. The black solid line in Fig. 10.S6(c) (Fig. 10.S6(f))
shows Eq. 10.5 for α = 3 with A = 2.5 ± 0.2 · 104 rad2s−1 and τc = 2.46 ± 0.17 µs (A =
3.1 ± 0.2 · 104 rad2s−1 and τc = 2.64 ± 0.19 µs), which are obtained from the fitting of
the decay curves using the analytical expression as shown in Fig. 10.3(a) (Fig. 10.3(b)).
Furthermore we found that the result of the fitting using the numerical integration of
Eq. 10.5 for α = 3 coincides with that of the the fit using the analytical expression. We
conclude that Eq. 10.5 with α= 3 (Lorentian spectrum) captures the echo decay data for
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a wider frequency range than with α= 2.

10.S5. GENERATION OF NOISE FOR THE NUMERICAL SIMULA-
TIONS

In this section, we explain how the noise fluctuation, β(t ) = γeδb′(t ), which exhibits a
spectral density S(ω), is generated. We assume that β(t ) is constant for a short time
∆t . We first generate uα(ti ), discrete points of a noisy time trace corresponding to a
white noise spectrum, with the mean E = 0 and the standard deviation σ0 = 1, where α
indexes a different set of noise sequence (different set of measurement) and ti = i∆t (i =
1,2, ..., N ) using the Mathematica function RandomVariante[NormalDistribution[E ,σ0]].

The discrete Fourier transform of uα(ti ) is defined as

ũα(ω j ) = 1p
N

∑
i

uα(ti )exp(−iω j ti ) (10.S19)

with ω j = 2π j
∆t N .

To obtain a discrete time trace β(t ) corresponding to the spectrum density S(ω), we

take the inverse Fourier transform of the product of ũα(ω j ) and
√

S′(ω j ):

βαl =βα(tl ) =
N∑

j=1

1p
N

ũα(ω j )
√

S′(ω j )exp(iω j tl ), (10.S20)

where tl = l∆t and S′(ω j ) corresponds to S(ω j )/∆t folded about ω j = N /2+1:

S′(ω j ) =
{

S(ω j )/∆t j = 1,2...N /2+1

S(ωN+2− j )/∆t j = N /2+2...N
. (10.S21)

10.S6. METHOD OF THE NUMERICAL SIMULATION
In Sec. 10.S1, the quantization axis (∼ the direction of the external magnetic field) is
taken as x axis to be consistent with the coordinate on the device in Fig. 10.1 but in this
section we take the quantization axis as z axis, in the same way as Ch. 4.

The two-level Hamiltonian describing a single spin under microwave excitationω1 sin(ω0t+
φ), setting ħ= 1, can be written in the rotating frame of its Larmor frequency ω0 as

HR(t ) = ω1(t )
(σx

2
cosφ(t )− σy

2
sinφ(t )

)
+η(t )

σz

2
(10.S22)

with η(t ) = γeδb(t ) and δb(t ) a fluctuating magnetic field along the same direction as
the quantization axis, ẑ. We take ω1 and φ to be a function of time since we turn on
and turn off the microwave excitation and change the microwave phase according to the
quantum gates.

Here we treat the evolution of the density operator according to Eq. (10.S22) numer-
ically, assuming that HR(t ) can be considered as constant for a short time ∆t :

HR(ti ) = ω1i

(σx

2
cosφi −

σy

2
sinφi

)
+ηi

σz

2
, (10.S23)
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with ti = i∆t . Then the density operator at time t = n∆t becomes

ρ(n∆t ) = 〈©n
i=1Ui (ρ0)

〉
α
= 1

M

M∑
α

[©n
i=1U

α
i (ρ0)

]
, (10.S24)

where ρ0 is the initial state and Ui is the superoperator representation:

Ui (ρ) =UiρU †
i (10.S25)

©n
i=1Ui (ρ) =Un ◦ ...◦U3 ◦U2 ◦U1(ρ) =Un ...U3U2U1ρU †

1U †
2U †

3 ...U †
n (10.S26)

with

Ui = exp(−iHR(ti )∆t ) . (10.S27)

The ω1i is a step function with the value of the Rabi frequency ω1: it is set to ω1 when
microwaves are applied and 0 otherwise. φi is set depending on the phase of the applied
microwave. ηi is the sum of the static noise βα0 and the high-frequency noise βαi :

ηαi =βα0 +βαi , (10.S28)

where βα0 has a Gaussian distribution with standard deviation 0.268 MHz (FWHM = 0.63

MHz) and βαi is generated by Eq. (10.S20) with S(ω) = A
1+(ωτc )2 , A = 2.5 ·104rad2s−1 and

τc =2.46 µs as discussed in the main text. In Eq. 10.S28, we explicitly write that η gives
a different value with different α. The simulations for randomized benchmarking and
dynamical decoupling were performed with M = 1000, ∆t = 5 ns, N = 200000,ω1 = 2π

360ns
unless otherwise stated. From∆t = 5 ns, the highest frequency taken into account for βαi
is 200 MHz and from N ·∆t=1 ms, the lowest frequency is 1 kHz. The frequency range of
1 kHz-200 MHz is a larger range than the one explored with the dynamical decoupling
experimentally.

10.S7. NUMERICAL SIMULATION FOR RANDOMIZED BENCH-
MARKING

The main results of the simulation are shown in the main text.
Here the average gate fidelity for a single gate (m = 1) with the same noise used for

Fig. 10.4(b) is calculated. The initial quantum state ρ0, after undergoing a depolarizing
channel produced by applying one set of imperfect Clifford gates and perfect inverse
Cliffird gates, becomes

ρ = 1

24

24∑
i=1

C ideal
i

† ◦C real
i (ρ0) = pρ0 + (1−p)

1l

2
, (10.S29)

where C ideal
i is the superoperator of a perfect Clifford gate without noise and C real

i is the
superoperator of an imperfect Clifford gate affected by the noise described by Eq. (10.S28).
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By taking the POVM operator as E = |↑〉〈↑| and ρ0 = |↓〉〈↓| 2, the measured spin-up prob-
ability becomes

P↑ = Tr
[
Eρ

]= Tr

[
|↑〉〈↑|

(
p |↓〉〈↓|+ (1−p)

1l

2

)]
= 1−p

2
. (10.S30)

Finally the average gate fidelity for an isolated gate (m = 1) is calculated as 1−P↑/1.875 =
97.8 % (There are 45 single qubit gates used across 24 Cliffords (Barends et al., 2014).
In order to obtain the average gate fidelity of a single qubit gate, the error is divided by
45/24.), which is lower than the average gate fidelity per single gate ≈ 99 % obtained
by the fits to the curves in Fig. 10.4(a,b), which is the averaged gate fidelity when sev-
eral gates are concatenated (m = 2 to 10). The improvement of the gate fidelity with a
higher number of gates stems from the fact that some RB sequences have the effect of
partial error suppression of low-frequency noise (Ball et al., 2015; Epstein et al., 2014).
We consider the averaged gate fidelity over the gates for m = 2 to 10 as the fidelity of in-
terest because the average gate fidelity per single gate for m = 1 cannot be measured by
randomized benchmarking and since more than 2 gates are usually applied in the real
quantum computation.

Fig. 10.S7 shows the results of the numerical simulations of the spin-up probability
with spin-up as the target state P |↑〉

↑ including only the high-frequency noise δb′(t ) (red

circles), only the (quasi-)static noise δb0 (green squares), and both δb0 + δb′(t ) (blue
circles). With only the high-frequency noise, the decay is very slow. In this case, the
flat region of the Lorentian spectrum mainly contributes to the gate errors and thus the
noise can be regarded as uncorrelated, which results in the whole decay curve follow-
ing a single power law and the extracted average gate fidelity per single gate from the fit
of apm +0.5 is > 99.99%, which means that the high-frequency noise δb′(t ) would not
limit the gate fidelity with the isotopically purified Si sample. The decay curve with only
the (quasi-)static noise and that with the combination of two show almost the same de-
cay. It indicates that the (quasi-)static noise is mainly responsible for the simulated and
measured gate errors.

10.S8. NUMERICAL SIMULATION FOR DYNAMICAL DECOUPLING

We have used 3 different types of dynamical decoupling pulse sequences: XY4(Maudsley,
1986), XY8(Gullion, Baker, and Conradi, 1990) and (XY4)n(Álvarez, Souza, and Suter,
2012). CPMG timing is used as the time interval between pulses for all the three se-
quences and so their filter functions are the same, while the phases of the π pulses,

2In fact, not depending on how E and ρ0 are taken, the calculated gate fidelity should be the same.
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Figure 10.S7: Numerical simulation of randomized benchmarking on P |↑〉
↑ for 3 cases: considering only the

high-frequency noise (red circles), considering only the (quasi-)static noise (green squares) and considering
both (blue circles). The solid lines are fits to the simulation results using the form apm +0.5, with tp <8 µs for
the later two cases (filled red and blue circles). The extracted average gate fidelity per single gate are shown
using the same colors as data points.

shown in Eq. (10.S31-10.S33) for Nπ = 64, are different.

XY4 =X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y

X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y (10.S31)

XY8 =X Y X Y Y X Y X X Y X Y Y X Y X X Y X Y Y X Y X X Y X Y Y X Y X

X Y X Y Y X Y X X Y X Y Y X Y X X Y X Y Y X Y X X Y X Y Y X Y X (10.S32)

(XY4)3 =X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y

X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y (10.S33)

(XY4)n is built from the concatenation of XY4 pulse sequences. n stands for the con-
catenation level and n = 3 for Nπ = 64. (XY4)n is sometimes called virtual-CDD (vCDD).
(XY4)1 is equal to the XY4 pulse sequence. (XY4)n is made by concatenating (XY4)n−1

4 times with X or Y pulses inserted between (XY4)n−1. The inserted π pulses are re-
placed by virtual pulses by toggling the frame of Hamiltonian. This method is more ro-
bust against pulse imperfections (Álvarez, Souza, and Suter, 2012). Increasing Nπ, the
pulse errors are accumulated and so its effect becomes bigger. Both our experiment and
the simulation show that (XY4)n works better in terms of suppressing the effect of the
pulse imperfections than other pulse sequences (Fig. 10.S8). As discussed in the section
on randomized benchmarking, the quasi-static noise is the dominant source for the gate
errors. Such errors can be partly canceled out by applying an appropriate combination
of pulse sequences like (XY4)n .

Fig. 10.S8(a-c) show simulated echo decays with XY4, XY8 and (XY4)n for Nπ = 64.
As seen in Fig. 10.S8(a), the visibility for (XY4)n is much better than for XY4 and also
slightly better than for XY8. With XY4 and XY8, the decay curves exhibit oscillations in
the beginning in both simulation and experiment, while this does not happen for (XY4)n .
Fig. 10.S8(b) and (c) show the normalized decay curves at twait = 0 from the fits for the
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simulation and the experiment. The fitted lines to the decay curves for XY4, XY8 and
(XY4)n match with each other very well and the T2 time (see caption in Fig. 10.S8) is al-
most equal for all the sequences. This is expected given that the filter function is the
same. However the standard errors on the fitting parameters are more than 10 times
higher with XY4 than with (XY4)n , due to the reduced visibility and to the oscillations for
short twait. In conclusion, even if it is still possible to determine T2 in the presence of
pulse imperfections, one needs to use a pulse sequence which is robust to the pulse im-
perfections like (XY4)n in order to determine T2 with high accuracy. In addition, in terms
of quantum information processing, it is important to preserve a quantum state. (XY4)n

is the preferred pulse sequence in this sense since it succeeds in filtering out the high-
frequency noise while canceling out the pulse errors due to the low-frequency noise at
the same time.
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Figure 10.S8: (a-c) the echo decays with XY4, XY8 and (XY4)n for Nπ = 64 (a) echo decays calculated from
the numerical simulation. The solid lines are the fits with Eq. 10.4. T2 = 320±92, 325±12 and 319±7 µs and
α = 2.28± 1.78, 2.50± 0.30 and 2.53± 0.18 are obtained, for XY4, XY8 and (XY4)n , respectively. (b) The echo
decay data are normalized according to the fits with Eq. 10.4. (c) Measured echo decay normalized according
to the fits with Eq. 10.4.

In Fig. 10.S9(a), the simulated echo decays for Hahn (Nπ = 1), XY4 (Nπ = 4) and XY8
(Nπ = 8) are shown. Fig. 10.S9(b,c) show the noise spectrum extracted from the sim-
ulated echo decay curves presented in Fig. 10.S8(b) and Fig. 10.S9(a) using the same
methods as used in Fig. 10.3(d).

The solid black lines in Figs. S8(b) and (c) represents the noise spectrum used to
produce the echo decays in the numerical simulations in Fig. S8(a). The deviation of
the extracted noise spectrum from the input noise spectrum is due to the oscillations
seen in the echo decays and normalization problems. The noise spectrum extracted
form (XY4)n echo decay follows the input noise spectrum the best. In the region of 105 <
ω/2π, the deviations of the extracted noise for XY4 (Nπ = 4) and XY8 (Nπ = 8) are above
the input noise spectrum (Fig. 10.S9(b,c)). This is related to normalization problems.
The inset of Fig. 10.S9(a) shows that the data points for each echo decay are below each
respective fitted line for short waiting times. This results in an extracted noise spectrum
that is higher than the input noise spectrum, in particular for the high frequency range
(as seen in the shaded region in Fig. 10.S9(b)). This problem arises from the difficulty of
proper normalization of the simulated data points and for the artifact of the oscillations
at short twait. Thus even if at higher frequencies, Eq. [3] with α∼ 2 seems to work better
to capture the power spectrum in Fig. 10.3(d) of the main text, it happens due to this
normalization problem. Besides that, there is another normalization problem. When
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the echo decays are normalized, some data points where twait is short (for example, 4
points for XY4 (Nπ = 64) and 2 points for XY8 (Nπ = 64),) of Fig. 10.S8(b) go above 1.
In these cases, for the logarithmic plot in Fig. 10.S9(b), −logP (twait) in Eq. (10.S18) is
replaced with |− logP (twait)|. These points are not reliable.
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Figure 10.S9: (a) Simulated echo decays with Hahn (Nπ = 1), XY4 (Nπ = 4) and XY8 (Nπ = 8). The inset shows
the zoom-up of the beginning of the decays. The solid lines present the fits with Eq. 10.4. (b,c) Noise spectrum
extracted from numerical simulated echo decays using XY4 (Nπ = 4), XY8 (Nπ = 8), XY4 (Nπ = 64), XY8 (Nπ =
64) and (XY4)n (Nπ = 64) pulse sequences. The solid black line is the noise spectrum which is used in the
simulation to produce the echo decays. In (b), decimal logarithmic scales are used along x and y axis.

10.S9. ADDITIONAL DATA FOR DYNAMICAL DECOUPLING
Here we provide additional dynamical decoupling data. First, the blue circles in Fig. 10.S10
show data analogous to purple circles in Fig. 10.3(c) but with an off-resonance microwave
burst added in order to keep the total microwave burst time fixed. The T2 does not sig-
nificantly change when adding the off-resonance microwave. Second, we show as black
circles the echo decay using the XY4 pulse sequence. The green line and pink circles are
the same as in Fig. 10.3(c). The pink circles show T2 with the number of π pulses, 96, 112
and 128 for α= 2. In Fig. 10.S10(b), the red circles shows the decay curve with Nπ = 128
and the red line shows the fit with Eq. 10.4 for α = 2. From this fit, T2 = 404± 34 µs is
obtained. (•)R stands for applying the pulse sequence (•) in reverse order. We note that
extending the (XY4)n pulse sequence beyond Nπ = 64 would take us immediately to 256
pulses. The pulse sequences used for Nπ = 96 is (XY4)2+(XY4)3+((XY4)2)R , for Nπ = 112
is repeating (XY4)2 7 times, and for Nπ = 128 is (XY4)3+((XY4)3)R .

10.S10. ORIGIN OF THE HIGH-FREQUENCY NOISE SPECTRUM
In the main text, we state that the measured high-frequency noise can be explained by a
two-level magnetic field fluctuation of ±0.4 µT. If this fluctuation arises from a two-level
charge fluctuator that shifts the dot position in the micromagnet gradient, it would cor-
respond to a ±4 pm shift back and forth in the dot position. In this section, we consider
other possible descriptions for or origins of the measured high-frequency noise.

First, we consider whether noise from the voltage source can be responsible for the
measured high-frequency part of the noise spectrum. We consider this gate voltage noise
Gaussian. Gaussian noise with a Lorentzian spectrum gives the same noise spectrum as
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Figure 10.S10: (a) Coherence time, T2, as a function of the number of π pulses using XY8 without (black circles)
and with (blue circles) off-resonance microwave. The green line is the same as in Fig. 10.3(c). (b) Echo decay
with 128 π pulses. The fit with a Gaussian curve (red line) gives T2 ≈400 µs.

RTN if the standard deviation of the Gaussian noise equals half the amplitude of the
random telegraph noise (RTN). Thus, here we consider Gaussian noise with standard
deviation 0.4 µT. From a separate measurement, we measured 0.55 MHz/mV as the shift
in resonance frequency resulting from changing the voltage on the gate that is coupled
most strongly to the dot. Using this conversion factor, 0.4 µT corresponds to ∼ 20 µV
in this gate voltage. The specification of the voltage source fluctuations at room tem-
perature is 8 µV (standard deviation), which is of the same order of magnitude as the
estimated gate-voltage fluctuation. Furthermore, there is an additional effect of voltage
noise on the other gates. However, the wires connecting the sources to the gates are
heavily filtered, including with low-pass filters with a cut-off frequency of 20 Hz at the
20 mK stage. The standard deviation of the noise is considerably reduced after those fil-
ters. Thus we conclude that it is unlikely that the voltage source is responsible for the
measured high-frequency noise.

Secondly, we compare the measured high-frequency magnetic noise spectrum in this
work with the magnetic noise expected when combining the micromagnet gradient and
the high-frequency charge noise spectrum Sε(ω) reported for Si/SiGe quantum dots (Eng
et al., 2015) and GaAs/AlGaAs quantum dots (Dial et al., 2013). Using the conversion

factor d f
dV =0.55 MHz/mV, we plot S(ω) =

(
d f
dV

)2
Sε(ω) in Fig. 10.S11. For the case of (Eng

et al., 2015), this noise spectrum is only slightly smaller than that extracted in the present
work. It is thus conceivable that the dynamical decoupling decay is limited by high-
frequency charge noise in the presence of the (longitudinal) magnetic field gradient form
the micromagnet.

For completeness, the measured T ∗
2 translates to a 270 kHz (standard deviation)

quasi-static magnetic noise. In the main text, we stated that this could be explained by
the slowly varying nuclear spins. Following an analogous reasoning as for high-frequency
noise, we consider the role of low-frequency charge noise in explaining T ∗

2 . The stan-
dard deviation of the quasi-static charge noise is measured to be ∼ 5−300 µV depending
on the device (Dial et al., 2013; Eng et al., 2015; Petersson et al., 2010; Shi et al., 2013;
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Veldhorst et al., 2015b). This corresponds to ∼ 3−170 kHz magnetic noise using the con-

version factor d f
dV =0.55 MHz/mV. The highest values are almost high enough to be able

to explain the T ∗
2 as well.
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Figure 10.S11: The black line presents Eq. 10.5 for α = 3 with A and τc obtained from the fits show in
Fig. 10.3(a,b). The green line (the light blue line) presents the charge noise result measured in (Eng et al.,
2015) ((Dial et al., 2013)) translated into magnetic noise via 0.55 MHz/mV. The solid lines show the measured
frequency region and the dotted lines show the extrapolated frequency region.

10.S11. ESTIMATION OF THE VALLEY-ORBIT SPLITTING
It is difficult to estimate the valley-orbit splitting in the current work. We deduced that
the valley-orbit splitting became higher from the fact that the valley-scattering slowed
down and the population of the ground valley-orbit state increased compared to the pre-
vious work (Ch. 7-9).

We assume that the excited valley-orbit state is populated during the initialization
stage, i.e., electrons are initialized to the excited valley-orbit state with 20% probability. If
we can furthermore assume that only electron tunneling from the reservoir to the spin-
down ground and excited valley-orbit states are relevant (i.e., we can ignore electron
tunnelings from dot to the reservoir and from the reservoir to the spin-up states) and
that the spin-down ground and excited valley-orbit states are both deep in the Coulomb
blockade regime, we can estimate that the valley-orbit splitting is around 12 GHz (please
see below for the details of this estimate). However, this assumption may not be valid
for the initialization position used in the experiment. The electron temperature of the
reservoir is around 3 GHz (150 mK) and the Zeeman splitting is around 19 GHz. Given
these numbers together with the hypothetical valley-orbit splitting 12 GHz, all the three
numbers are very close and we can not find an initialization position where all the above
assumptions are satisfied.

In order to quantify the valley-orbit splitting correctly when the above assumption is
not valid, we need to solve the rate equations considering electron tunneling from the
reservoir to the excited valley-orbit state, from the reservoir to the ground valley-orbit
state, from the excited valley-orbit state to the reservoir and from the ground valley-orbit
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state to the reservoir. In this case, there are too many parameters which are difficult to
estimate from our measurements to obtain a reliable estimate of the valley-orbit split-
ting.

ESTIMATION OF THE VALLEY-ORBIT SPLITTING UNDER THE ASSUMPTION

THAT ONLY ELECTRON TUNNELINGS FROM THE RESERVOIR TO THE SPIN-
DOWN GROUND AND EXCITED VALLEY-ORBIT STATES ARE RELEVANT
If we can assume that only electron tunneling from the reservoir to the spin-down ground
and excited valley-orbit states are relevant, the rate equations for the populations of the
spin-down, ground and excited valley-orbit states become

ε↓ν+ = Γ↓ν+
Γ↓ν+ +Γ↓ν−

(
1−exp

(−(Γ↓ν+ +Γ↓ν− )t
))

, (10.S34)

ε↓ν+ = Γ↓ν+
Γ↓ν+ +Γ↓ν−

(
1−exp

(−(Γ↓ν+ +Γ↓ν− )t
))

, (10.S35)

where Γ↓νi is the tunneling rate from the reservoir to the spin-down excited valley-orbit
state (i = ν+) or to the spin-down ground valley-orbit state (i = ν−), and t is the time
spent during the initialization stage.

After spending a long enough time (t À 1
Γ↓ν++Γ↓ν− ) at the initialization stage, the pop-

ulation ratio of the excited valley-orbit state to the ground valley-orbit state is reduced
to

ε↓ν+
ε↓ν−

∼ Γ↓ν+
Γ↓ν−

. (10.S36)

The tunneling rate is given by the convolution of the Fermi-Dirac distribution, the energy
dependent tunneling function and transmission function (Amasha et al., 2008; Kawakami
et al., 2013; Simmons et al., 2011b). Assuming that the transmission function is approxi-
mated to be a delta function around the dot level, the tunneling rate is reduced to

Γ↓νi =
Γi exp

(
− V

Ei

)
1+exp

(
− V

kB T

) , (10.S37)

which is a function of the detuning of the dot level with respect to the Fermi level of
the reservoir V and, where i = ν+,ν−, Ei is the linearized energy dependent tunneling
coefficient that relates to the transparency of the barrier(Amasha et al., 2008; Simmons
et al., 2011b), and T is the electron temperature of the reservoir.

In the gate configuration used in Ch. 7-9, we have measured the valley-orbit splitting
to be EV ∼ 28 µeV (∼ 7 GHz). (In Ch. 9, we explain how we measured this valley-orbit
splitting. Please note that we were not able to measure the valley-orbit splitting in the
same way in the gate configuration of this work.) The population ratio was measured
to be

ε↓ν+
ε↓ν−

= 30
70 and the electron temperature of the reservoir was measured to be T ∼

150 mK (∼ 3 GHz).
If we assume that Γν− = Γν+ = Γ and Eν− = Eν+ = E , the equation above is reduced to

Γ↓ν+ (V ) = Γ↓ν− = Γ↓ =
Γexp

(−V
E

)
1+exp

(
− V

kB T

) . (10.S38)
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This assumption is validated by the fact that we were not able to distinguish two valley
states by measuring the electron tunneling rate from the reservoir to any dot level as a
function of a gate voltage. Using the equation above, the population ratio between two
valley-orbit states is simplified to

ε↓ν+
ε↓ν−

= Γ↓ν+ (v +EV )

Γ↓ν− (v)
. (10.S39)

If both the spin-down, ground and excited valley-orbit states are deep in the Coulomb
blockade (v À kB T ), it can be further approximated to be

ε↓ν+
ε↓ν−

∼ exp

((
1

E
− 1

kB T

)
EV

)
. (10.S40)

From this equation, we obtain a linearized energy dependent tunneling coefficient for
the gate configuration used in Ch. 7-9, E ∼ 21 µeV.

We assume that the linearized energy dependent tunneling coefficient is the same
for the gate configuration used in Ch. 7-9 and this work. This assumption is validated by
the fact that the electron tunneling rate from the reservoir to any dot level changes as a
function of a gate voltage in a similar way for both the gate configuration used in Ch. 7-9
and this work. Finally, in order to obtain

ε↓ν+
ε↓ν−

= 20
80 , using E ∼ 21 µeV and the equation

above, the valley-orbit splitting should be EV ∼ 47 µeV (∼ 12 GHz).
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CONCLUSIONS AND OUTLOOK

In this chapter we summarize the work presented in this thesis, together with the progress
the community as a whole has made recently towards the implementation of qubits us-
ing single electron spins in Si. Future directions and work to be done towards the real-
ization of a quantum computer using these qubits is also discussed.

11.1. CONCLUSION
The question we had 5 years ago was whether, given they are a promising candidate as
a qubit in theory, single electron spins in Si/SiGe quantum dots could be experimentally
implemented as qubits. The experiments shown in this thesis partially answered "yes".
At least we satisfied some of necessary conditions towards the realization of a quantum
computer. For example, the demonstration of a universal 1-qubit gate and its high fi-
delity shown in Ch. 7 and Ch. 10 is a major first step towards the achievement of a larger
scale Si quantum computer.

This achievement relies on the detection and read-out techniques of spin states de-
veloped in GaAs/AlGaAs quantum dots and newly developed defect-free and noise less
Si/SiGe devices. The last technical breakthrough that was needed after overcoming ear-
lier problems with leaky gates and unreliable contacts, was moving from doped Si/SiGe
heterostructures to undoped Si/SiGe heterostructures (Borselli et al., 2011). It dramat-
ically reduced charge noise in Si/SiGe heterostructures, which had been the main con-
cern for realizing qubits in Si/SiGe quantum dots.

Our experiments brought potential problems of using single electron spins in Si/SiGe
quantum dots as qubits to light. One example amongst others is leakage to an excited
valley state as discussed in Ch. 7 and Ch. 9.

We also explored the coherent manipulation of a spin state using second harmonic
driving in Ch. 8 and the inter-valley inter-spin transition in Ch. 9. The former showed as
high-quality coherent oscillations as the fundamental harmonic driving and thus it can
be used for a qubit manipulation if an anharmonicity can be engineered at our disposal.
However the latter did not show a coherent oscillation due to a large hybridization be-
tween valley states and orbital states. This result showed rich solid state physics in Si, but
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did not come up to the expectation of making use of valley states as qubit states instead
of regarding it as a nuisance (Culcer et al., 2012; Rohling and Burkard, 2012).

In the following section, we discuss more details on our achievements and outlooks
in terms of using single electron spins in Si/SiGe quantum dots as qubits.

11.2. DIVINCENZO CRITERIA
In this section, we interpret the experimental results shown in this thesis in light of the
DiVincenzo criteria which we introduced in Sec. 1.2.

(1) Scalable system with well-defined qubits
In Ch. 7 and Ch. 10, we demonstrated the realization of a qubit in an isotopically
natural Si/SiGe quantum dot using electrical control. As for the scalability, up to 3
Si/SiGe quantum dots in the few-electron regime (Eng et al., 2015) and individual
electrical control of 2 qubits (Takeda et al., 2016) are experimentally demonstrated.
In a similar system, in SiMOS quantum dots, individual control of 2 qubits with mag-
netic control and a 2-qubit gate using the exchange interaction between 2 electrons
is demonstrated (Veldhorst et al., 2015b).

We have observed leakage to valley excited states due to the small valley splitting
compared to the electron temperature of the Fermi reservoir, which makes the ef-
fective initialization fidelity lower (Ch. 7 and Ch. 10) and the coherence time shorter
(Ch. 7) than with the larger valley splitting. While we were not able to increase the
valley splitting in a systematic way, it has been experimentally demonstrated that the
valley splitting can be made larger by changing the voltages on the surface gates in
SiMOS (Yang et al., 2013) and in Si/SiGe (Takeda, 2015) (Ch. 10).

(2) Initialization to a pure state
In Ch. 7 we demonstrated that the initialization fidelity to a spin-down state is 95%.
Due to non-zero initialization to a valley excited state, the initialization fidelity to a
spin-down valley ground state is ∼70% for the experiment in Ch. 7 and ∼80% for the
experiment in Ch. 10. As discussed in Ch. 1, low purity of the initial state downgrades
the speed of quantum calculation. If the purity is so low that no entanglement exists
during the calculation, the quantum calculation cannot be faster than the classical
calculation.

Besides the purity, we should consider the initialization speed. The initialization
currently takes ∼4 to 5 ms. The initialization time should be shortened for the ancilla
qubits used in quantum error correction to a time shorter than the dephasing time.

(3) Universal set of quantum gates
We have demonstrated a universal 1-qubit gate (Ch. 7) and measured the average
1-qubit gate fidelity ∼99% for 1-qubit gate (Ch. 10), which is just above the threshold
for topological quantum error correction (Fowler et al., 2012).

Another group showed that, using an isotopically natural Si/SiGe quantum dot (Takeda
et al., 2016) as well, an average 1-qubit gate fidelity of ∼99.6% for 1-qubit gates was
measured with two times longer T ∗

2 time and 10 times faster Rabi frequency than in
our measurement. In an isotopically purified SiMOS quantum dot (Veldhorst et al.,
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2014), an average 1-qubit gate fidelity ∼99.6% for 1-qubit gate was reported with 100
times longer T ∗

2 and 4 times slower Rabi frequency than in our measurement.

A 2-qubit gate (CNOT) is also demonstrated in an isotopically purified SiMOS quan-
tum dots (Veldhorst et al., 2015b). The gate fidelity of a two-qubit gate is not mea-
sured yet but it is expected to be as high as 99%.

(4) Read-out of each qubit state
Our considerations for the read-out fidelity and speed are similar to the initialization
fidelity and speed.

In Ch. 7, we demonstrated a read-out fidelity of 95%. In this case, it costs 3 repetitions
of the measurement to obtain 99% fidelity.

As for the speed, the read-out takes ∼4 to 5 ms. This time should be shortened for
the ancilla qubits used in quantum error correction for the same reason as the ini-
tialization time needs to be shortened.

(5) Long coherence times
In Ch. 7, we measured the intrinsic coherence time in an isotopically natural Si/SiGe
quantum dot T ∗

2 ∼1 µs and it can be extended to T2 ∼40 µs with Hahn echo tech-
nique. Presumably, T2 time was limited by the switching between two valley states
(Sec. 7.S13) and Hahn echo decay was exponential. Later, in Ch. 10, we retuned the
configuration of the gate voltages of the same sample and presumably the switch-
ing between two valley states became slower. Thanks to this improvement, we suc-
ceeded in demonstrating that the coherence time can be extended up to T2 ∼400 µs
using dynamical decoupling techniques. In the new configuration, the experimental
demonstration of the extension of the coherence time was limited by the imperfec-
tion of microwave pulses. Takeda et al., found T ∗

2 ∼2 µs in an isotopically natural
Si/SiGe quantum (Takeda et al., 2016). Their dot size may be four times larger than
ours (Eq. 3.43). T ∗

2 in an isotopically purified SiMOS quantum dot was measured to
be 120 µs (Veldhorst et al., 2014). The 29Si isotopic ratio in the SiMOS device was re-
duced ∼60 times compared to the isotopic ratio in natural Si (reduced from 4.67% to
800ppm), which results in ∼60 times1 longer T ∗

2 . The coherence time was extended
up to T2 ∼ 28 ms using dynamical decoupling technique in this isotopically purified
sample.

(6) and (7) Transfer of a quantum state between stationary and flying qubits & Transmit
of flying qubits between specified locations
We did not work for these two criteria in this thesis but these two criteria are im-
portant for both the scalability of a quantum computer and the communication of
quantum information to build a quantum network.

It might be difficult to physically fit enough number of qubits for a quantum compu-
tation on one chip, but transferring a quantum state from a chip to another would
allow us to realize a scalable quantum computer. There are many recent theoretical
and experimental works towards the demonstration of the coherent quantum state

1In fact, according to Eq. 3.43, we expect that T∗
2 becomes

p
60 times longer with 60 times smaller 29Si isotopic

ratio instead of 60 times longer T∗
2 for a fixed dot size.
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transfer between a qubit on a chip to a photon via superconducting resonator using
cavity quantum electrodynamics (Cassidy et al., 2014; Deng et al., 2015; Frey et al.,
2012; Hu, Liu, and Nori, 2012; Petersson et al., 2012; Samkharadze et al., 2015).

For the quantum network, there is great interest in using photons to convey quan-
tum information over long distances. However, the photon absorption by fiber-optic
cables causes some loss of information. By using quantum repeaters, which can be
realized by trapped ions (Brumfiel, 2009) or NV centers in diamond (Bernien et al.,
2013), transfer of quantum information is essentially realized by quantum telepor-
tation and the distance that single photons travel can be shortened, which results in
less information loss.

11.3. HOW GOOD IS GOOD ENOUGH?
We claim that the control fidelity of a physical qubit should be higher than 99% and we
experimentally demonstrated that this condition can be already met for a 1-qubit gate
in Ch. 10. We would not have any hope to realize a quantum computer (i.e., any hope to
obtain a sufficiently low logical error rate in order to execute Shor’s factoring algorithm
with a reasonable chance of success (Fowler et al., 2012)) if we had a gate fidelity of 80%
unless a lower threshold quantum error correction method is invented, but at the same
time, we do not know if a gate fidelity 99% is already good enough. How can we know a
good enough number? The same question should be asked for initialization fidelity and
initialization speed, read-out fidelity and read-out speed, gate speed, coherence times
and e.t.c. A longer coherence time is preferable but how long should it be? How much
purity of a quantum state is required in order to avoid a serious slow down in the cal-
culation? In addition to that, these thresholds are correlated to each other (Fowler et al.,
2012). If we have a high read-out fidelity, the threshold for the gate fidelity can be relaxed.
Do we need to make more efforts to improve the read-out fidelity or the gate fidelity? If
we have a high gate fidelity, the number of required qubits is decreased. 104 physical
qubits are required in order to obtain a target logical error rate of 10−14 with the gate
fidelity 99%, while “only” 170 physical qubits with the gate fidelity 99.999% for the same
logical error rate. Do we need to make more efforts to increase the number of qubits or
to improve the gate fidelity? Answering these questions is beyond the scope of this thesis
but we hope that in the near future we can come up with a blueprint for a Si quantum
computer providing the threshold values for all the elements.

The selling point of a quantum computer is the ability to solve a certain problem
which cannot be tackled by a classical computer. The required number of logical qubits
depends on the size of the problem to be solved. Another question is what kind of prob-
lem should be targeted for the first blueprint of a Si quantum computer. We would pro-
pose the factorization of RSA-768. In the next paragraphs, we compare the factorization
of RSA-768 using a classical computer and using a quantum computer, while consider-
ing how many qubits and how high gate fidelity are required to solve this problem.

A large semiprime which has 232 decimal digits, or 768 bits, (RSA-768)2 was factored
classically over the span of 2 years (Kleinjung et al., 2010) with a collection of parallel
classical computers. In this demonstration, a total of 1020 operations were required to

2RSA is the name of one of the first practical public-key cryptosystems.
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factor RSA-768.
With a quantum computer not less than 1154 logical qubits are required to factor

RSA-768 (Zalka, 2006) without using oversimplifying quantum factoring (Smolin, Smith,
and Vargo, 2013). Combining with the fact that 170 physical qubits are required for the
physical qubit gate fidelity 99.999% for one logical qubit as discussed above, ∼ 2× 105

physical qubits are required. Once you prepare this number of high-fidelity qubits, only
106 operations are required to factor RSA-768 with a quantum computer, which means
that the problem can be solved in ∼ 3 ms with a 1 GHz clock speed and in one year with a
1010 times slower clock speed, ∼ 0.1 Hz, than that typically used in a nowadays classical
computer (see also Fig. 1 of (Van Meter and Horsman, 2013)). Fig. 11.1 shows how fast
the number of physical qubits and the average gate fidelity of physical qubits should be
increased in the future in order to factorize RSA-768 with a quantum computer within
30 years.
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Figure 11.1: Quantum Moore’s law required in order to achieve factorization of RSA-768 in 30 years. The red
line is the growing line of the number of qubits as a function of year. Two red circles present 1 physical qubit in
2014 (Kawakami et al., 2014) and 2 physical qubits in 2016. The blue line is the falling line of the average error
rate of one operation of physical qubits. The blue circle presents 10−2 error rate in 2015 (Ch. 10).

11.4. OUTLOOK
Even if, as discussed in the previous section, it is not clear yet which elements should
be improved to which extent, in the following we consider the options and difficulties in
improving each element.

• Isotopic purification
As already discussed above, the dephasing time T ∗

2 and T2 can be extended further
by the isotopic purification of the Si substrate to Si atoms which have non-zero nu-
clear spins (28Si or 30Si). Muhonen et al. (2014) reported that the coherence time
using the dynamical decoupling (i.e., high-frequency magnetic noise) is not deter-
mined by the residual 800ppm 29Si but presumably by the magnetic noise induced
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by the superconducting magnets. This experimental result implies that we may
also need to be careful with other magnetic noise or electric noise coming from
the experimental setup like microwave sources, d.c. electronics, dilution refriger-
ators, and substrates when we use an isotopically purified sample in order to get
maximum benefit from the low concentration of 29Si.

• Reduce the charge noise
As proposed in (Loss and DiVincenzo, 1998), a two-qubit gate is realized using
the exchange interaction between two electrons (Veldhorst et al., 2015b). The ex-
change interaction is very sensitive to the charge noise, which degrades a two-
qubit gate fidelity. The ratio of the exchange interaction J (ε) to the standard devia-
tion of the quasi-static charge noiseσε converted into a magnetic noiseσεd J (ε)/dε
is J (ε)

σεd J (ε)/dε ∼ 100 in GaAs quantum dots (Dial et al., 2013) and J (ε)
σεd J (ε)/dε ∼ 40 in

SiMOS quantum dots (Veldhorst et al., 2015b)3, where ε is the voltage on one of
the surface gates. The fidelity of a two-qubit gate has not been directly measured
yet but from this ratio, the fidelity of one operation of a two-qubit gate is expected
to be4 ∼ 99%. In order to increase this ratio for a better two-qubit gate fidelity, we
should decrease σε, or increase J (ε)

d J/dε .

GaAs quantum dot Si quantum dot
8 µV (Dial et al., 2013) 70 µV (Eng et al., 2015) (Si/SiGe)

∼ 100 µV, 4 µeV (Baart et al., 2016b) ∼ 230 µV (Ch. 9)5(Si/SiGe)
3.7 µeV (Petersson et al., 2012) 6.4 µeV (Wu et al., 2014) (Si/SiGe)

∼ 270 µV (Veldhorst et al., 2015b) (SiMOS)

Table 11.1: Various measured standard deviation of quasi-static charge noise σε. The values with the unit µeV
are scaled on the chemical potential of a dot and the values with the unit µV are scaled on the voltage on one of
the surface gates. The noise in SiMOS quantum dots (Veldhorst et al., 2015b), is slightly higher than the other
values in GaAs quantum dots or Si/SiGe quantum dots presumably because the surface gates are closer to the
electrons than the other devices.

Table 11.1 presents various measured quasi-static charge noises σε in GaAs quan-
tum dots, in SiMOS quantum dots and in Si/SiGe quantum dots. The charge noise
in Si quantum dots are not overall worse than that in GaAs quantum dots but it
rather depends on devices. The gate dielectric, donors in the substrate, and de-

3In GaAs quantum dots (Dial et al., 2013), J
d J/dε ∼ 1 mV, σε ∼ 8 µV and in SiMOS quantum dots (Veldhorst

et al., 2015b), J
d J/dε ∼ 10 mV, σε ∼ 270 µV.

4Contrary to the case of one-qubit gate as discussed in Ch. 10, we do not expect that the fidelity of a two-qubit
gate becomes better with a higher number of two-qubit gates but worse even for a correlated charge noise,
since the noise is along the same spin axis as the exchange interaction.

5According to Fig. 9.S3 and the discussions in Sec. 9.S3.3, the linewidth of the inter-valley spin-flip resonance
peak isσ f = 2.1 MHz, which corresponds to T∗

2 = 110 ns using Eq. 4.41. Assuming that this linewidth is deter-
mined by the resonance frequency fluctuation due to the valley splitting fluctuation caused by charge noise,

using the measured
d f
dε = 9.2 MHz/mV (Fig. 9.S4) and σ f = 2.1 MHz, we can translate it into an equivalent

standard deviation of the charge noise σε ∼ 230 µV (for the specific gate used to perform the measurement
reported in Fig. 9.S4).
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fects at the interface might be the origins of the charge noise. The improvement
on the heterostructure growth (for example, we can suppress the formation of de-
fects in the heterostructure by elastic strain engineering (Roberts et al., 2006) and
we may be able to reduce the defects in the dielectric by changing the material of
the dielectric (Zimmerman et al., 2014)) would remove these origins. So far the
charge noise coming from the setup seems much smaller than the charge noise
coming from the device itself (Sec. 10.S10) and thus can be ignored.

If we operate a single qubit operation when the exchange interaction is not com-
pletely off, single qubit gate fidelities are also degraded by the charge noise since
the resonance frequency is affected by the exchange interaction. We should op-
erate single qubit operations at the point where the differential of the exchange
interaction with respect to a gate voltage d J

dε is low enough or is at least lower than

the differential of the Larmor frequency with respect to the gate voltage d f
dε which

results from the gradient of the magnetic field component parallel to the exter-
nal magnetic field required for the addressability (see also the next paragraph), in
order not to degrade the single qubit gate fidelity due to the exchange interaction.

• Micromagnet design
As discussed in Sec. 2.4, we create the magnetic field gradients by micromagnets
for two purposes: to create (a) the gradient of the magnetic field parallel to the ex-
ternal magnetic field along the direction which the qubits line up for addressability
and (b) the gradient of the magnetic field perpendicular to the external magnetic
field along the direction which an electron is modulated by a microwave excitation
for EDSR.

(a) parallel magnetic field gradient

We need high enough parallel magnetic field gradient
dB∥
dr , where r defines the di-

rection in which qubits are lined up, for the addressability of different qubits.
dB∥
dr

induces d f
dε , which, together with the charge noise, generates magnetic noise. The

standard deviation of this magnetic noise is calculated to be σε
d f
dε , while the stan-

dard deviation of the magnetic noise due to the nuclear spins in the isotopically
purified SiMOS sample (with 800ppm residual concentration of 29Si) was mea-
sured to be σ f = 12 kHz (Veldhorst et al., 2015b). Thus, using σε = 100 µV (see Ta-

ble 11.1), the total magnetic field gradient should be d f
dε < 0.12 MHz/mV in order to

make maximum use of the low concentration of 29Si. There is an optimized point
for the magnetic field gradient considering the trade-off between the addressabil-
ity for a given Rabi frequency (Sec. E.1.2) and the magnetic noise for a given 29Si
concentration as discussed above. By designing the micromagnets to realize such
a magnetic field gradient, we can maximize the single qubit gate fidelity.

(b) perpendicular magnetic field gradient
In order to obtain a high Rabi frequency, we would like to have a high perpendicu-
lar magnetic field gradient ( dB⊥

dr , where r here is a modulation direction of the dot

position and dB⊥
d x in Eq. 3.15). In the experiments shown in this thesis, we applied

the external magnetic field along the x axis (Sec. 3.2, Fig. G.2). With this direc-
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tion of the external magnetic field, we obtain dB⊥
d x = 0.3 mT/nm at the dot position

which happened to be displaced from the intended position. The maximum mea-
sured Rabi frequency was ∼ 5 MHz.

The lateral positions and shapes of the micromagnets were designed so that when
the external magnetic field is applied along the y axis (Sec. G.2), the dot was cre-
ated on the intended position (in the middle of two micromagnets along the y
axis), and the electron is modulated along the y axis, the perpendicular magnetic
field gradient is maximized ( dB⊥

d y ∼ 1 mT/nm). In Sec. 6.6, we estimated the max-
imum reachable Rabi frequency in this situation is ∼ 50 MHz, and the measured
Rabi frequency in recent measurements by our group (not shown in this thesis) is
consistent with this estimation.

Besides playing with the lateral positions and shapes of the micromagnets, we can
also increase the perpendicular magnetic field gradient by placing the micromag-
nets closer to 2DEG, for example by making the dielectric layer thinner, or using a
different ferromagnetic material which has a larger saturated magnetization. For
example the saturated magnetization of CoFe, which depends on the composi-
tion ratio, can reach ∼2.5 T (Fu, Cheng, and Yang, 2005), while that of Co is 1.8 T
(Pioro-Ladrière et al., 2007). The saturated magnetization of CoFe is measured to
be 1.93 T in the context of using it as an ingredient for EDSR (Lachance-Quirion
et al., 2015).

• PSB read-out and RF read-out
The initialization and read-out infidelities using the Elzerman scheme (Elzerman
et al., 2004) are attributed to the three factors: finite electron temperature of the
reservoir, lifetime broadening of the quantum dot levels (linearized energy depen-
dent tunneling coefficient that relates to the transparency of the barrier; Amasha
et al. (2008); Simmons et al. (2011a)), and the noise on the signal. If (a) the Zee-
man splitting is much larger than the electron temperature of the reservoir or the
lifetime broadening: εz À kB Tel ,E↑,E↓, where εz is the Zeeman splitting, Tel is
the electron temperature of the reservoir, kB is Boltzmann constant, and E↑ (E↓)
is the linearized energy dependent tunneling coefficient that relates to the trans-
parency of the barrier of the spin-up state (spin-down state) (Amasha et al., 2008;
Simmons et al., 2011a), (b) the signal to noise ratio is large enough: S/NÀ 1 with
the reasonably wide signal bandwidth set around the tunneling rate and (c) the
initialization time and the read-out time are set much longer than the inverse of
the tunneling rates: tread À Γ−1

out, tinit À Γ−1
in , where Γout (Γin) is the tunneling out

rate of an electron from the dot to the reservoir (the tunneling in rate of an elec-
tron from the reservoir to the dot), the initialization and read-out fidelity can reach
∼ 100%. (A short T1 can degrade the read-out fidelity and a leakage to an excited
valley-orbit state can degrade the initialization fidelity. However we ignore these
two effects here since these two values can be tuned by perpendicular electric field
(Yang et al., 2013).)

How can we satisfy all the three conditions at the same time? For condition (a),
we can simply apply a higher magnetic field in order to obtain a high εz but then
Larmor frequency of the electron also becomes higher and we face difficulties in
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high-frequency microwave engineering. By using Pauli Spin Blockade (PSB) read-
out (Koppens et al., 2005; Ono et al., 2002; Shulman et al., 2012) (see also Sec. 2.4)
instead of Elzerman read-out (Elzerman et al., 2004), Zeeman splitting does not
have to be higher than the electron temperature since it uses a parity check of two
neighboring spins (Brunner et al., 2011; Koppens et al., 2006; Nowack et al., 2007;
Ono et al., 2002). In this case, the energy requirement is that single-dot singlet-
triplet splitting should be much larger than the phonon temperature. The disad-
vantage of this method is to sacrifice one dot, which otherwise can be used as one
of the physical qubits, for the read-out.

In the experiments shown in this thesis, in order to satisfy conditions (b,c), we
set the signal bandwidth DC-30 kHz, the tunneling rate around 10 kHz, and the
initialization and read-out time 4−5 ms. We had to choose this narrow bandwidth
in order to obtain a high enough S/N and had to wait long enough time so that an
electron jumps out/in with a high enough probability.

As discussed in the previous section, it is preferred to have a short initialization
and read-out time. In order to satisfy condition (c) with a short initialization and
read-out time, the tunneling rate should be high (the tunneling rate is, in principle,
tunable). In order to satisfy condition (b) with a high tunneling rate, we can use
radiofrequency (RF) reflectometry (Baart et al., 2016a; Barthel et al., 2010), which
allows to increase the signal bandwidth to around a higher frequency and to in-
crease the S/N since there are low-noise amplifiers available at RF frequencies.

• Long-distance qubit-qubit coupling
So far the number of quantum dots had been extended along a line (Baart et al.,
2016c; Shulman et al., 2012). In order to implement the surface code as a quan-
tum error correction, it is preferable to place quantum dots in a two-dimensional
lattice so that one qubit has the nearest-neighbor interaction with more than two
qubits. In (Thalineau et al., 2012), 4 quantum dots are placed in a square-like con-
figuration. However, there is not enough space in which to place a large number
of gates needed to define a further number of quantum dots. A strategy to meet
this challenge is to implement distant interactions between the qubits. It can be
realized via a photon using a superconducting resonator as discussed in DiVin-
cenzo criteria (6) but there are also other ideas for implementing long-distance
qubit-qubit coupling on a chip using a compact design compared to the coupling
scheme based on a superconducting resonator. For example, a long-distance cou-
pling between spin qubits can be generated by a long-range capacitive coupling
induced by a long floating metallic gate (Chan et al., 2002) combined with a spin-
orbit interaction (Trifunovic et al., 2012) or dipolar interactions with a long floating
ferromagnet (Trifunovic, Pedrocchi, and Loss, 2013).

• Smaller gate design
From our experiences of tuning the gate voltages to form dots, it is difficult to have
two quantum dots at the intended positions having a reasonable tunnel coupling
and a reasonable coupling between the dots which confine electrons serving as
qubits and sensing dots with the gate design used in the experiments presented in
this thesis. This difficulty of tunability can be a big problem to scale the number of
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qubits. Thus we propose to make the gate design smaller in order to place every-
thing in a smaller space (Eng et al., 2015; Veldhorst et al., 2014; Ward et al., 2016;
Zajac et al., 2015), which requires a further improvement on the nanofabrication
technique for a higher resolution of electron-beam lithography. By doing so, as
a side benefit, the size of the dots will also be decreased and it will increase the
possibility of obtaining a higher valley splitting, since the electron wave function
would overlap with a fewer number of atomic steps (see Sec. 2.5.2).



EPILOGUE

Even if, as shown in the previous chapter, there is still a lot of work to be completed, it
may not be a vacuity anymore to talk about the world with a quantum computer. When
I was working with field engineers from Oxford Instruments to install cryogenic systems,
I got the following imaginations.

10 years from now, Qutech sells Si quantum computers. In the section on specifi-
cations, in the brochure of the Qutech quantum computer, you will find the clock speed
for 1-qubit gate and 2-qubit gate, reliability of computation output (quantum efficiency),
etc. The price will vary depending on the number of qubits provided or the concentra-
tion of residual 29Si in the Si substrate. Clients can customize the layout of quantum dots
depending on their applications.

Tuning the configuration of gate voltages to define quantum dots will be part of the
job done by a field engineer (let’s name his name Phil) during the installation of the
quantum computer on site. Of course, Phil uses the automated tuning program (Baart
et al., 2016a). After successfully defining the same number of quantum dots as written
in the specification, now he finds the Larmor frequencies and the Rabi frequencies for
electrons in each dots. There should be also an automated program for that by that time.
The maximum Rabi frequencies should meet what is written in the specifications and
the Larmor frequencies of electrons in neighboring dots should be further apart, oth-
erwise clients may complain because it would degrade the clock speed and the 1-qubit
gate fidelity. Next, Phil moves to the characterization of exchange interactions between
electrons in neighboring dots. Again there will be an automated program for that. Ex-
change interactions should be higher than what is written in the specification and noise
on the exchange interaction should be lower than what is written in the specification,
otherwise clients may complain because it would degrade the clock speed and the 2-
qubit gate fidelity. If the exchange interaction is low, it may be because of the low valley
splitting. The low valley splitting may be due to the defects at the interface. Thus Phil
may contact headquarter to send him another sample with a smoother interface. At the
same time, he first tries to make the valley splitting higher by changing the gate volt-
ages, because the client does not like a delay in the schedule. If he changes the gate
voltages, the dot position moves and Larmor frequencies are shifted. He should repeat
all the calibrations again hoping that the Rabi frequencies are high enough and keeping
the exchange interactions high enough at the same time.

Phil’s work may be completed here after the calibration of physical qubits. However,
clients may also choose options that the calibrations of virtual qubits, logical qubits or
even a demonstration of a simple quantum algorithm is done by a field engineer.

I think it will really happen.
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SPIN OPERATORS

A.1. PAULI MATRICES

A.1.1. DEFINITION
Pauli matrices, σx , σy and σz are given by:

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.1)

In the case of spin-1/2, the spin operators are described as

Sx = ħ
2
σx , Sy = ħ

2
σy , Sz = ħ

2
σz , (A.2)

where ħ is the reduced plank constant. Hence, the eigenvectors of the Pauli matrices and
the spin operators are the same, which can be taken as follows:

|+σz〉 = |+Sz〉 =
(
1
0

)
≡ |1〉

|−σz〉 = |−Sz〉 =
(
0
1

)
≡ |0〉

|+σx〉 = |+Sx〉 = 1p
2

(
1
1

)
= 1p

2
(|1〉+ |0〉)

|−σx〉 = |−Sx〉 = 1p
2

(
1
−1

)
= 1p

2
(|1〉− |0〉)

∣∣+σy
〉= ∣∣+Sy

〉 = 1p
2

(
1
i

)
= 1p

2
(|1〉+ i |0〉)

∣∣−σy
〉= ∣∣−Sy

〉 = 1p
2

(
0
−i

)
= 1p

2
(|1〉− i |0〉) (A.3)
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The eigenvalues corresponding to |+σi 〉 (|+Si 〉) are +1 (+ħ
2 ) and for |−σi 〉 (|−Si 〉) they

are −1 (−ħ
2 ) for i = x, y, z.

A.1.2. COMMUTATION RELATIONS
The Pauli matrices satisfy the following commutation and anticommutaion relations:

[σa ,σb] =σaσb −σaσb = 2iεabc σc , (A.4)

{σa ,σb} =σaσb +σaσb = 2δab ·1l. (A.5)

where εabc is the Levi-Civita’s symbol, δab is the Kronecker’s delta, and 1l is the iden-
tity matrix.

These equations are summarized to:

σaσb = δab ·1l+ i
∑

c
εabcσc , (A.6)

σ1σ2 =−σ2σ1 = iσ3, (A.7)

σ2σ3 =−σ3σ2 = iσ1, (A.8)

σ3σ1 =−σ1σ3 = iσ2, , (A.9)

σ1σ1 = 1l. (A.10)

(A.11)

A.2. DENSITY OPERATOR

Any quantum state of a single spin (S = 1
2 )1 can be expressed with the density operator

as follows :

ρ = 1

2
1l+ 1

2
σ · r , (A.13)

where σ = (σx , σy , σz ), r = (rx , ry , rz ), and 1l is the identity matrix. ρ is a pure state
when |r | = 1 and can be rewritten as the outer product of state vectors: ρ = |Ψ〉〈Ψ|. ρ is
a statistical mixture of pure stats (simply called mixed state) when |r | < 1. A mixed state
cannot be rewritten as the outer product of any state vectors.

The expectation value (see Appendix A.3) of the observable Si is thus equal to 1
2 ri

< Si >= Tr(ρSi ) = 1

2
ri (A.14)

where i = x, y, z. 1
2 in Eq. A.14 comes from the eigenvalue of |Si 〉.

1For n-spin system, any state can be expressed with

ρ = 1

2n

(
1l⊗n +σ⊗n r⊗n)

(A.12)

whereσ⊗n is the Pauli matrix vector for n-spin system, whose 4n −1 components are all n−fold tensor prod-
ucts of single qubit Pauli matrices 1l,σx ,σy ,σz except for 1l⊗n
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A.3. EXPECTATION VALUE
In quantum theory, an experimental setup is described by the observable A to be mea-
sured, and the quantum state ρ of the system. The expectation value of A in the state ρ
is denoted as 〈A〉ρ and is given as the trace of A multiplied by ρ:

〈A〉ρ = Trace(ρA). (A.15)

When ρ is a pure state, it can be written as ρ = |Ψ〉〈Ψ|. In this case, the expectation
value of A in the state |Ψ〉 is defined as

〈A〉Ψ = 〈Ψ|A|Ψ〉. (A.16)

If one knows a complete set of eigenvectors a j for A, with eigenvalues Ea j , then Eq. A.16
can be expressed as

〈A〉Ψ =∑
j

Ea j |〈Ψ|a j 〉|2. (A.17)

The eigenvalues Ea j are the possible outcomes of each experiment, and the coefficient

|〈ψ|a j 〉|2 is the probability that this outcome will occur. The above formulas are valid for
pure states only.

A.4. TIME EVOLUTION OPERATOR
In the rotating frame (Appendix B.4), the microwave excitation with amplitudeω1, phase
φ, and carrier frequency ∆ω detuned from the Larmor frequency, can be represented by
the time-independent Hamiltonian

H∆ω,ω1,φ =ω1

(σx

2
cosφ− σy

2
sinφ

)
+∆ωσz

2
. (A.18)

Subsequently the spin system evolves according to the time evolution operator

R(∆ω,ω1,φ, t ) ≡ exp(−iH∆ω,ω1,φt )

=
{

cos
(
ωefft

2

)
1l− isin

(
ωefft

2

)
(czσz + cxσx + cyσy ) (ωeff 6= 0)

1l (ωeff = 0)
(A.19)

withωeff =
√
∆ω2 +ω2

1,ω1 = 2π f1, cz =∆ω/ωeff, cx =ω1 cos(φ)/ωeff and cy =ω1 sin(φ)/ωeff.

A.4.1. ROTATION OPERATOR AROUND x , y , AND z AXES

The rotation operators of a single S = 1/2 spin system2 are given as follows:

Rx (θ) ≡ exp(−iθSx ) = cos
θ

2
1l− i sin

θ

2
σx =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(A.21)

2For a 2-spin system,

Rαβ(θ) = exp(−iθS A
αSB

β ) = cos
θ

4
1lAB − i sin

θ

4
σA
ασ

B
β (A.20)

with α, β, γ= x, y, z.
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Ry (θ) ≡ exp(−iθSy ) = cos
θ

2
1l− i sin

θ

2
σy =

(
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

)
(A.22)

Rz (θ) ≡ exp(−iθSz ) = cos
θ

2
1l− i sin

θ

2
σz =

(
e−iθ/2 0

0 e iθ/2

)
(A.23)

Frequently used relations between the rotation and spin operators for a single3are given
below.

R†
z (θ)


Sz

Sx

Sy

S±

Rz (θ) = exp(iθSz )


Sz

Sx

Sy

S±

exp(−iθSz ) =


Sz

Sx cosθ−Sy sinθ

Sy cosθ+Sx sinθ

S± exp(±iθ)

(A.25)

R†
x (θ)


Sz

Sx

Sy

S±

Rx (θ) = exp(iθSx )


Sz

Sx

Sy

S±

exp(−iθSx ) =


Sz cosθ+Sy sinθ

Sx

Sy cosθ−Sz sinθ

i Sz sinθ+S± cos2θ/2−S∓ sin2θ/2
(A.26)

R†
y (θ)


Sz

Sx

Sy

S±

Ry (θ) = exp(iθSy )


Sz

Sx

Sy

S±

exp(−iθSy ) =


Sz cosθ−Sx sinθ

Sx cosθ+Sz sinθ

Sy

−Sz sinθ+S± cos2θ/2+S∓ sin2θ/2,
(A.27)

where S± = Sx ± i Sy are the raising and lowering operators, which satisfy the commuta-
tion relations:

[Sz ,S±] =±S±, [S+,S−] = 2Sz (A.28)

3For a 2-spin system,

exp(iθS A
αSB

β )S A
γ exp(−iθS A

αSB
β ) =

{
S A
γ cos θ2 +2[S A

γ ,S A
α ]SB

β
sin θ

2 (α 6= γ)

S A
γ (α= γ)

(A.24)

with α, β. γ= x, y, z and [S A
a ,S A

b ] = iεabc S A
c (Eq. A.4)



B
TIME EVOLUTION OF A QUANTUM

STATE

In this section, we present the the time evolution of a quantum state in the Schrödinger
picture.

B.1. EQUATION OF MOTION OF A QUANTUM STATE

B.1.1. CASE OF PURE STATE: SCHRÖDINGER EQUATION
The Schrödinger equation is an equation of motion that describes how the quantum
state of a physical system changes in time. The most general form, the time-dependent
Schrödinger equation (i.e., where the Hamiltonian is dependent on time), states

iħ ∂

∂t
|Ψ(t )〉 = H |Ψ(t )〉 , (B.1)

where ħ is the reduced plank constant and |Ψ(t )〉 is the wavefunction, representing the
probability amplitude of the quantum state, iħ ∂

∂t is the energy operator (i is the imagi-
nary unit and ħ is the reduced Planck constant (also known as Dirac constant)), and H
is the Hamiltonian operator.

Setting ħ= 1, Eq. B.1 becomes

i
∂

∂t
|Ψ(t )〉 = H |Ψ(t )〉 . (B.2)

We usually denote the time-evolution operator (also called propagator) from time t0

to t as U (t , t0), where
|Ψ(t )〉 =U (t , t0) |Ψ(t0)〉 , (B.3)

and so Eq. (B.1) becomes

i
∂

∂t
U (t , t0) = HU (t , t0). (B.4)
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B.1.2. GENERAL CASE: LIOUVILLE-VON NEUMANN EQUATION
Eq. (B.1) and Eq. (B.3) are only valid for a pure state. For general cases, the state may
be “mixed" and the Schrödinger equation Eq. (B.1) is replaced by the Liouville-von Neu-
mann equation

i
∂ρ

∂t
= [H ,ρ] (B.5)

This is the equation of motion of any quantum system (valid for both a pure state and a
mixed state). Note that all the arguments in this thesis are developed in the Schrödinger
picture.

In the same way, Eq. (B.3) is replaced by

ρ(t ) =U (t , t0)ρ(t0)U †(t , t0). (B.6)

B.2. TIME EVOLUTION OPERATOR FOR TIME-INDEPENDENT HAMIL-
TONIAN

If the Hamiltonian is time-independent, we can easily solve Eq. (B.4), and we get

U (t , t0) = exp(−iH(t − t0)) . (B.7)

In this case, Eq. (B.6) can also be rewritten in a simple form:

ρ(t ) = e−iH(t−t0)ρ(t0)e iH(t−t0). (B.8)

B.3. TIME EVOLUTION OPERATOR FOR TIME-DEPENDENT HAMIL-
TONIAN

In the case where the Hamiltonian is time-dependent, Eq. (B.7) is generalized down to

U (t , t0) = 1− i
∫ t

t0

H(t ′)U (t ′, t0)d t ′

= 1+ (−i)
∫ t

t0

d t1H(t1)+ (−i)2
∫ t

t0

d t1

∫ t2

t0

d t1H(t1)H(t2)+ ... (B.9)

Eq. (B.9) is converted into a simple form, using Wick-Dyson operator T ,

U (t , t0) = T

[
exp

(
−i

∫ t

t0

H(t ′)d t ′
)]

. (B.10)

B.4. ROTATING REFERENCE FRAME
Here, we introduce “rotating reference frame" Sakurai (1993) Haeberlen (1976). In what
follows, t0 is equal to 0 and U (t ,0) is simplified to U (t ).
Suppose that the total Hamiltonian can be divided into two parts:

H = H0 +H(t ) (B.11)
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H0 is a time-independent Hamiltonian while H(t ) can be any (time-dependent or time-
independent) Hamiltonian.

We now make the ansatz

ρR(t ) =U †
0ρ(t )U0, with U0 = exp(−iH0t ). (B.12)

Eq. (B.12) leads the left side of the equation of motion in Eq. (B.5) to

iρ̇ = iU̇0ρRU †
0 + iU0ρ̇RU−†

0 + iU0ρRU̇ †
0

= H0U0ρRU †
0 + iU0ρ̇RU †

0 −U0ρRU †
0 H0

= [H0,U0ρRU †
0 ]+ iU0ρ̇RU †

0 , (B.13)

and the right side to
[H ,ρ] = [H0 +H(t ),U0ρRU †

0 ]. (B.14)

Comparing Eq. (B.13) and Eq. (B.14), we get

iU0ρ̇RU †
0 = [H(t ),U0ρRU †

0 ]. (B.15)

Multiplying this equation from the left with U †
0 and from the right with U0 gives

iρ̇R = U †
0 H(t )U0ρRU †

0U0 −U †
0U0ρRU †

0 H(t )U0

= [HR(t ),ρR], (B.16)

with
HR(t ) ≡U †

0 H(t )U0. (B.17)

This represents the equation of motion of a quantum state (Liouville-Neumann equa-
tion) in the rotating reference frame.

B.5. ELECTRON SPIN RESONANCE

B.5.1. TWO LEVEL SYSTEM AS QUBIT
The two-level Hamiltonian describing a single spin which has a Zeeman splittingω0 un-
der the microwave excitation (frequency ωMW and the amplitude 2ω1 with the phase φ)
excitation perpendicular to the Zeeman splitting can be written as

H =−ω0Sz +2ω1
(
cos(ωMWt +φ)Sx

)
. (B.18)

B.5.2. ROTATING WAVE APPROXIMATION
In this section, the reference frame is changed to one which rotates with the microwave
frequency ωMW for the convenience of further analytic solution. By taking H0 and H(t )
in Eq. B.11 as

H0 =−ωMWSz (B.19)

and
H(t ) =∆ωSz +2ω1

(
cos(ωMWt +φ)Sx

)
(B.20)
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with ∆ω=−ω0 +ωMW, Eq. B.17 becomes

HR(t ) =U †
0 H(t )U0 = exp(iH0t )H(t )exp(−iH0t )

= R†
z (ωMWt )

(
2ω1

(
cos(ωMWt +φ)

)
Sx +∆ωSz

)
Rz (−ωMWt )

= R†
z (ωMWt )

(
2ω1

(
cos(ωMWt +φ)

)
Sx

)
Rz (−ωMWt )+∆ωSz

=ω1
e−iφS−+e iφS+

2
+ω1

e i(2ωMWt+φ)S−+e−i(2ωMWt+φ)S+
2

+∆ωSz . (B.21)

We have used the relation1

2ω1
(
cos(ωMWt +φ)

)
Sx =ω1(e i(ωMWt+φ) +e−i(ωMWt+φ))

S++S−
2

=ω1
e−i(ωMWt+φ)S−+e i(ωMWt+φ)S+

2
+ω1

e i(ωMWt+φ)S−+e−i(ωMWt+φ)S+
2

. (B.22)

The second term in Eq. B.21 oscillates much faster than the detuning (2ωMW >> ∆ω)
and thus can be ignored. Finally, the Hamiltonian on the rotating frame approximation
is

HR(t ) =ω1
(
cosφSx − sinφSy

)+∆ωSz . (B.23)

1 e−φ
2

σ+
2 +h.c. = cosφσx

2 + sinφ
σy
2



C
MULTIPHOTON ESR

Electron Spin Resonance (ESR) is a technique to flip or alter an electron spin state by ap-
plying a magnetic field oscillating along the orthogonal direction to the spin-quantization
axis. When the photon energy of the oscillating magnetic field matches the spin splitting,
the condition for ESR is satisfied. If there is a perpendicular oscillating magnetic field in
addition to the orthogonal oscillating magnetic field, an electron spin state can also be
changed when the the photon energy of the oscillating magnetic field matches the spin
splitting divided by whole numbers. In the following section, we demonstrate the mech-
anism of such a multiphoton electron spin resonance and derive the Rabi frequency of
the two-photon electron spin resonance.

C.1. MULTIPHOTON ELECTRON SPIN RESONANCE DUE TO A PER-
PENDICULAR OSCILLATING MAGNETIC FIELD

The conventional Hamiltonian for ESR (Eq. 3.13) along with the perpendicular oscillat-
ing magnetic field becomes

H =−ω0Sz +2ω1 cos(ωMWt +φ)Sx +2ω′
1 cos(ωMWt +φ)Sz . (C.1)

In the case of micromagnet EDSR in a quantum dot, the third term appears due to the
magnetic field gradient along the same direction as the external magnetic field (Sec. 3.1.1).

HR =∆ωSz +ω1
S++S−

2
+ω1

S−e i 2ωMWt +h.c.

2
+ω′

1 cos(ωMWt )Sz (C.2)
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with ∆ω = ω0 −ωMW. Now the reference frame is changed again to one which rotates1

with the frequency ω′
1 cos(ωMWt ):

HRR =W † (
HR −ω′

1 cos(ωMWt )Sz
)

W (C.3)

with W = exp

(
−iησ

spi n,or b
z

2

)
and η = ∫

ω′
1 cos(ωMWt )d t = ω′

1
ωMW

sin(ωMWt ) (Shevchenko,

Ashhab, and Nori, 2010).

HRR =W †
(
∆ωSz +ω1

S++S−
2

+ω1
S−e i 2ωMWt +h.c.

2

)
W (C.4)

=∆ωSz +ω1
S+e iη+h.c.

2
+ω1

S−e i2ωMWt e−iηt +h.c.

2
(C.5)

=∆ωSz +ω1

∑∞
n=−∞ Jn

(
ω′

1
ωMW

)
S+e inωMW +h.c.

2
+ω1

∑∞
n=−∞ Jn

(
ω′

1
ωMW

)
S−e i(2−n)ωMW +h.c.

2
,

(C.6)

where Jn(α) is a n−th kind Bessel function. Eq. C.6 describes the generation of higher
harmonic resonances. For example, for the second harmonic resonance, when ∆ω =
ωMW, i.e., ωMW = ω0

2 , the third term with n = 1 induces the resonance. The Rabi fre-

quency for the second harmonic resonance is ω2 =ω1 J1

(
ω′

1
ωMW

)
. When ω′

1 ¿ωMW, it can

be approximated toω2 ∼ ω1ω
′
1

2ωMW
. Thus the ratio in Rabi frequency between the fundamen-

tal resonance and the second harmonic resonance is

ω2

ω1
= ω′

1

2ωMW
. (C.7)

The same relation is derived in (Gromov and Schweiger, 2000) using Floquet theory. In
the case of micromagnet EDSR in a quantum dot, ω′

1 ω1 ¿ωMW.

1In Sec. B.4, we treated the case where the transformation into the rotating reference frame is generated by the
time evolution operator with a time-independent Hamiltonian. The discussion in Sec. B.4 still holds even if

H0 in Eq. B.11 is time-dependent. In this case, U0 in Eq. B.12 is replaced by U0 = T
[

exp
(
−i

∫ t
t0

H0d t ′
)]

. Here

the Wick-Dyson operator (Eq. B.10) can be omitted as the Hamiltonians inside the integral at different times
commute for all the time.



D
DECOHERENCE MECHANISM

D.1. DECOHERENE DUE TO THE OVERHAUSER FIELD

D.1.1. DECAY DUE TO QUASI-STATIC OVERHAUSER FIELD
First, we demonstrate the derivation of Eq. 3.40 (Eq. D.11) in more detail. We take a
superposition state ρ0 = 1

2 1l+ Sx and see how it evolves with HO (Eq. 3.30) over time.
From Eq. 4.3, Eq. 4.5 and Eq. A.24, we know that the evolution of ρ after time t is1

ρ(t ) = 1

2
1l+exp(i

∑
i

Ai Ii z Sz t )Sx exp(−i
∑

i
Ai Ii z Sz t ) (D.3)

= 1

2
1l+Sx cos

(∑
i

Ai Ii z t

)
− iSy sin

(∑
i

Ai Ii z t

)
. (D.4)

In order to extract the decay of a quantum state P (t ), which is introduced in Eq. 4.58,
only the second term, which contains Sx matters:

P (t ) = Tr

(
σx Sx cos

(∑
i

Ai Ii z t

))
=

Nn∏
i

cos

(
Ai

2
t

)
(D.5)

=
Nn∏

i

1

2

(
e

i
2 Ai t +e−

i
2 Ai t

)
(D.6)

= ∑
ξ1=±1,ξ2=±1,...,ξNn =±1

1

2
exp

(
i

2
t (ξ1 A1 +ξ2 A2 + ...+ξNn ANn )

)
.

(D.7)

1using the notation:

cos(aS A
z +bSB

z ) = cos
( a

2

)
cos

(
b

2

)
−2S A

z sin
( a

2

)
2SB

z sin

(
b

2

)
(D.1)

and

sin(aS A
z +bSB

z ) = 2S A
z sin

( a

2

)
cos

(
b

2

)
−2SB

z cos
( a

2

)
sin

(
b

2

)
. (D.2)
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Here we assumed that the nuclear spins are unpolarized (finite temperature approxima-
tion) and thus all the combinations of (ξi , ξi ,...,ξNn ) happen with the same probability.
The exponent of e in Eq. D.7 can be rewritten as i

2 tσz z by defining z as∑Nn
i ξi Ai

σz
≡ z (D.8)

(de Sousa, 2009) with

σz =
√√√√Nn∑

i
A2

i . (D.9)

Assuming that Nn →∞ with each individual Ai → 0, z is reduced to the sum of a large
number of random variables. The central limit theorem tells that the normalized random
variable z has a standard Normal distribution in the limit Nn →∞, so the decay is

P (t ) →
∫

1p
2π

e−
z2
2 e

i
2 tσz z d z (D.10)

= e−
1
8 z2t 2

. (D.11)

The decay shows a Gaussian shape. We denote the time constant of this decay induced
by quasi-static bath as the intrinsic decoherence time2and use the notation T ∗

2 :

T ∗
2 = 2

p
2

σz
. (D.12)

From Eq. D.11 and Eq. D.12, we can further infer that the quasi-static noise of η(t ) has a
Gaussian distribution with the standard deviation σz

2 (see Sec. 4.4).

D.1.2. RELATION BETWEEN QUASI-STATIC NUCLEAR SPIN NOISE DECAY AND

THE NUMBER OF NUCLEAR SPINS
Secondly, we demonstrate the derivation of Eq. 3.43 (Eq. D.21) in more detail.

In a periodic lattice, the electron wave function Ψ(R) is written as the product of an
envelope function φ(R) and a Bloch function u(R), so the hyperfine coupling constant
Eq. 3.29 is rewritten as

Ai = Asum|φ(R i )|2 (D.13)

with Asum = µ0
4π

8π
3 γeγnħ|u(R i )|2. Here we already introduce the notation Asum. Later

in Eq. D.18, it is demonstrated that Asum is equal to the sum of hyperfine coupling con-
stant between the electron and each Si atom overlapped with the electron wavefunction,
i.e., Asum = µ0

4π
8π
3 γeγnħ|u(R i )|2 =∑N

i Ai , where N is the number of overlapped Si atoms
with the electron wavefunction. The Bloch function u(R) varies on the atomic scale and
periodically on the unit cell. Thus |u(R i )|2 has the same value at any lattice position:
|u(R i )|2 = |u(R j )|2. We normalize u(R) as∫

v0

|u(R)|2d 3r = 1 (D.14)

2Eq. D.12 is valid for a quasi-static bath with a single nuclear species and its angular momentum quantum
number 1/2, so it is valid for Silicon but not for GaAs (Cywinski, 2011; de Sousa, 2009; Zhang et al., 2007). In
any case, 1/T∗

2 is given by ≈σz .
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with the volume of the unit cell3 v0. Here we introduce a parameter χ, the relative weight
of the electron wavefunction at a Si atomic site,∫

v0

|u(Ri )|2d 3r = v0|u(Ri )|2 =χ. (D.15)

From the necessity that
∫

V |Ψ(R)|2d 3r = 1 with all the space V and Eq. D.14, the evelope
fucntion is normalized as ∫

V
|φ(R)|d 3r = v0. (D.16)

Further assuming that the envelope function is smooth over one unit cell, Eq. D.16 can
be rewritten as

N∑
i
|φ(R i )|2v0 = v0. (D.17)

Applying Eq. D.17 to Eq. D.13, we can demonstrate that Asum is the sum of hyperfine
couplings of all the atoms overlapped with the electron wave function

N∑
i

Ai = Asum

N∑
i
|φ(R i )|2 = Asum. (D.18)

From Eq. D.15, Asum can be further rewritten then as

Asum = µ0

4π

8π

3
γeγnħ χ

v0
. (D.19)

We now see that Asum depends on only the characteristic of the crystalline structure but
not on how you confine the electron, as long as the electron wavefunction overlaps with
a large enough number of atoms. Eq. D.18 is further rewritten as (Merkulov, Efros, and
Rosen, 2002)

N∑
i

A2
i = A2

sum

N∑
i
|φ(R i )|4 = A2

sum

∑N
i |φ(R i )|2

N
= A2

sum

N
. (D.20)

Using Eq. D.20, σz is finally reduced to

σz =
√√√√Nn∑

i
A2

i =
√√√√c

N∑
i

A2
i =

p
c

Asump
N

= Ap
Nn

. (D.21)

c is the nuclear spin concentration and thus A = c Asum and Nn = cN . Asum depends
on the material. N is proportional to the size of the dot. The way to make T ∗

2 longer
is to make the dot size larger, change the material for smaller Asum or do the isotope
purification for smaller c (Abe et al., 2010).

3This normalization is different from (Assali et al., 2011; Nowack, 2009). We followed (Cywinski, 2011).





E
ANALYTIC EXPRESSION FOR RABI

OSCILLATION AND RAMSEY FRINGE

E.1. RABI OSCILLATION
In this section, we present additional information on analytic expressions of Rabi oscil-
lations.

E.1.1. RABI OSCILLATION WITH ON-RESONANCE MICROWAVE
We are first interested in the spin-up probability of Rabi oscillations when microwave
of which frequency is near the Larmor frequency is applied. The main discussion is in
Sec. 4.3. In this appendix section, we derive Eq. 4.27 (Eq. E.5) and Eq. 4.30 (Eq. E.10) as
analytic solutions of Eq. 4.25 in the case of ω1 Àσω and ω1 ¿σω, respectively.

ANALYTIC EXPRESSION FOR STRONG DRIVING ω1 Àσω
We consider the case ω1 À σω to demonstrate the derivation of Eq. 4.27 (Eq. E.5). We
restrict ourselves to the case where |ωMW −ω0| ¿ ω1 for simplicity. Thanks to this re-
striction we can take η¿ ω1, since G(η) is small otherwise and thus its contribution to
the integral can be ignored. By takingη¿ω1 and under the assumed conditionω1 Àσω,
the following approximation is valid:

T (η+ (ωMW −ω0)) = sin2
(

t

2

√
ω2

1 +
(
η+ (ωMW −ω0)

)2
)
≈ sin2

(
t

2

√
ω2

1 + (ωMW −ω0)2
)

.

(E.1)
Using this approximation, Eq. 4.25 can be rewritten as

P↑0 ≈ sin2
(

t

2

√
ω2

1 + (ωMW −ω0)2
)∫ ∞

−∞
1p

2πσω
exp

(
− η2

2σ2
ω

)
ω2

1

ω2
1 +

(
η+ (ωMW −ω0)

)2 dη

(E.2)

= T (ωMW −ω0)(G ∗L)(ωMW −ω0) (E.3)
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Under the assumed assumption ω1 À σω, G(η) has a sufficiently narrow peak around 0
compared to L(η) and thus

P↑0 ≈ T (ωMW −ω0)L(ωMW −ω0)
∫ ∞

−∞
G(η)η (E.4)

= sin2
(

t

2

√
ω2

1 + (ωMW −ω0)2
)

ω2
1

ω2
1 + (ωMW −ω0)2 . (E.5)

ANALYTIC EXPRESSION FOR WEAK DRIVING ω1 ¿σω
We consider the case ω1 ¿σω. Under this condition, L(η)T (η) has a sufficiently narrow
peak around 0 compared to G(η) and thus

P↑0 = (G ∗LT )(ωMW −ω0) (E.6)

≈G(ωMW −ω0)
∫ ∞

−∞
L(η)T (η)dη (E.7)

= 1p
2πσω

exp

(
− (ωMW −ω0)2

2σ2
ω

)∫ ∞

−∞
ω2

1

ω2
1 +η2

sin2
(

t

2

√
ω2

1 +η2

)
dη (E.8)

≈ 1p
2πσω

exp

(
− (ωMW −ω0)2

2σ2
ω

)
1

2

(∫ ∞

−∞
ω2

1

ω2
1 +η2

dη−
∫ ∞

−∞
ω2

1

ω2
1 +η2

cos
(
tη

)
dη

)
(E.9)

= 1p
2πσω

exp

(
− (ωMW −ω0)2

2σ2
ω

)
πω1

2

(
1−exp(−ω1|t |)

)
(E.10)

E.1.2. RABI OSCILLATION WITH OFF-RESONANCE MICROWAVE

Secondly, we are interested in a spin-up probability when microwave of which frequency
is detuned away from the Larmor frequency is applied. For individual addressing of mul-
tiple qubits, such a spin-up probability should be suppressed.

ANALYTIC EXPRESSION WITH |ωMW −ω0|Àω1 Àσω
We derive a spin-up probability when microwave frequency is detuned further away
from the Larmor frequency (|ωMW −ω0| À ω1) in the case of strong driving (ω1 À σω).
Differently from the main text, we also consider the case where a microwave pulse is not
only rectangular but has any shape f (t ).

In this subsection, we describe the Hamiltonian for a Rabi oscillation in the rotat-
ing reference frame at ω0 +η(t ) (Eq. 4.14 is the Hamiltonian for a Rabi oscillation in the
rotating reference frame at the microwave carrier frequencyωMW) for later convenience:

HRabi(t ) =ω1
(
cos

(
(ωMW −ω0 −η(t ))t

)
f (t )Sx + sin

(
(ωMW −ω0 −η(t ))t

)
f (t )Sy

)
(E.11)

∼ω1 cos((ωMW −ω0)t ) f (t )Sx , (E.12)

where the approximation is valid for |ωMW −ω0| Àσω and 1/(ωMW −ω0) À t . The spin-
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up probability is calculated to be

P↑0 = sin2
(

1

2

∫ ∞

−∞
ω1 cos((ωMW −ω0)t ) f (t )d t

)
(E.13)

= sin2
(ω1

2
F (ωMW −ω0)

)
(E.14)

∼ ω2
1

4
(F (ωMW −ω0))2 , (E.15)

where F (ω) is the Fourier transform of f (t ) and the approximation is valid when ω1
2 F (ωMW−

ω0) ∼ 0.
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Figure E.1: Spin-up probability as a function of microwave frequency detuning for a rectangular π pulse in (a)
and for a Gaussian π pulse in (b). (a,b) Purple, blue, red, and yellow lines represent Eq. E.14 for tp =1 ns, 10 ns,
100 ns, and 1 µs, respectively. Purple, blue, red and yellow dotted lines represent Eq. E.15 for tp =1 ns, 10 ns,
100 ns, and 1 µs, respectively. The data with tp =1 ns is not shown in (a). The black and green horizontal dashed

lines shows P↑0 = 10−5 and P↑0 = 10−3, respectively. (a) Light blue, pink, and light yellow lines represent

Eq. E.51for tp =10 ns, 100 ns, and 1 µs, respectively.
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We plotted the spin-up probability when ω1tp =π in the case of a rectangular pulse:

f (t ) = rect

(
t

tp

)
, (E.16)

F (ω) = tp

sin
(
ωtp

2

)
ωtp

2

, (E.17)

by setting tp =10 ns, 100 ns, and 1 µs in Fig. E.1(a) and in the case of a Gaussian pulse:

f (t ) = exp

(
−πt 2

t 2
p

)
, (E.18)

F (ω) = tp exp

(
−

t 2
pω

2

4π

)
, (E.19)

in Fig. E.1(b), by setting tp =1 ns, 10 ns, 100 ns, and 1 µs.
Fig. E.1 shows Gaussian shaped pulses can suppress unwanted spin-rotation better

than rectangular pulses in all the cases. The identity pulse fidelity for a spin-down state
as an initial state is given by

F (E (|↓〉〈↓|) |↓〉〈↓|) = Tr(E (|↓〉〈↓|) |↓〉〈↓|) = 1−P↑0 (E.20)

In order to obtain this fidelity higher than 99.999%, P↑0 should be lower than 10−5 (black
dashed line in Fig. E.1). Such conditions are directly applied for multiple qubits operated
by an a.c. magnetic field sent to a global antenna or when leakage outside the qubit man-
ifold is considered since the amplitude of a.c. magnetic field is the same order for untar-
geted qubits or untargeted transition. However, for multiple qubits operated by an a.c.
electric field sent to different gates for each qubit, as investigated in this thesis, the con-
dition is more relaxed since the amplitude of the electric field E AC on untargeted qubits
is much smaller than E AC on a targeted qubit. In the case of fundamental harmonic driv-
ing (Ch. 7), if E AC is 10 times smaller for untargeted qubits than for a targeted qubit, Rabi
frequencyω1 for untargeted qubits becomes 10 times smaller (Eq. 3.15). Thus, according
to Eq. E.15, P↑0 becomes 100 times smaller. In this case, in order to obtain the identity
pulse fidelity higher than 99.999%, we should look at the green dashed line in Fig. E.1.

E.2. RAMSEY FRINGE
In this section, we present additional information on analytic expressions of Ramsey
fringes.

We derive 4.39 and Eq. 4.44 as analytic solutions of Eq. 4.35 in the case of ω1 À σω
and ω1 ∼σω, respectively.

1Eq. E.5 is also valid for |ωMW −ω0|Àσω since the approximation in Eq. E.1 is also valid when |ωMW −ω0|À
σω.
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ω1 Àσω
First we consider the case ω1 À σω and we restrict ourselves to the case where |ωMW −
ω0| ¿ω1 for simplicity in the same way as done in the Rabi oscillation section. We can
take η¿ω1 again and thus sin

(
τ
2∆ω

)∼ 0. By taking the second term of Eq. 4.34 as 0, The
spin-up probability for a specific noise η becomes

p↑0 = 4sin2θ sin2
(

tp

2

√
ω2

1 +∆ω2

)[
cos

(τ
2
∆ω

)
cos

(
tp

2

√
ω2

1 +∆ω2

)]2

(E.21)

= ω2
1

ω2
1 +∆ω2

sin2
(

tp

√
ω2

1 +∆ω2

)
cos2

(τ
2
∆ω

)
(E.22)

and the spin-up probability including the effect of the time evolution of the noise be-
comes

P↑0 = (G ∗LT ′R)(ωMW −ω0) (E.23)

with T ′(η) = sin2
(
tp

√
ω2

1 +η2
)

and R(η) = cos2
(
τ
2η

)
.

In the same way as done in the Rabi oscillation section, Eq. E.1 is valid also here and
under the assumed assumption ω1 À σω, G(η) has a sufficiently narrow peak around 0
compared to L(η) and thus Eq. E.23 becomes

P↑0 = T ′(ωMW −ω0)L(ωMW −ω0)
∫ ∞

−∞
G(η)R(η)dη (E.24)

= ω2
1

ω2
1 + (ωMW −ω0)2 sin2

(
tp

√
ω2

1 + (ωMW −ω0)2
)

1+e−
σ2
ωτ

2

2

2
(E.25)

ω1 ∼σω
We consider the case ω1 ∼σω and we restrict ourselves to the case where ωMW ∼ω0 and
ω1tp = π

2 . We can take η¿ ω1 again and the spin-up probability for a specific noise η
can be written with Eq. E.22 and the spin-up probability including the effect of the time
evolution of the noise can be written with Eq. E.23.

P↑0 = (G ∗LT ′R)(ωMW −ω0) (E.26)

=
∫ ∞

−∞
1p

2πσω
exp

(
−

(
η+ (ωMW −ω0)

)2

2σ2
ω

)
ω2

1

ω2
1 +η2

sin2

π
2

√√√√ω2
1 +η2

ω2
1

cos2
(τ

2
η
)

dη

(E.27)

≈
∫ ∞

−∞
1p

2πσω
exp

(
−

(
η+ (ωMW −ω0)

)2

2σ2
ω

)
exp

(
− η

2

ω2
1

)
cos2

(τ
2
η
)

dη (E.28)

= 1

2

e
−

(
(ωMW−ω0)2

2σ2
ω

+ (ωMW−ω0)2

2(σ2
ω+ω̃1

2)

)
√

1+
(
σ2
ω

ω̃1
2

)
[

1+exp

(
−1

2

σ2
ωω̃1

2

σ2
ω+ ω̃1

2
τ2

)
cos

(
ω̃1

2

σ2
ω+ ω̃1

2
(ωMW −ω0)

)
τ

]

(E.29)
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with ω̃1 =ω1/
p

2. From Eq. E.27 to Eq. E.28, we used the approximation
ω2

1

ω2
1+η2 sin2

(
π
2

√
ω2

1+η2

ω2
1

)
∼ exp

(
− η2

ω2
1

)
(Lu et al., 2011). The time constant of the Gaussian

decay is T ∗
2 =

p
2

σω

√
1+ σ2

ω

ω̃1
2 . This equation shows that a small Rabi frequency induces an

artificial extension on the decay time.
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F.1. PHYSICAL CONSTANTS

Value of h (Plank constant) Unit
6.626068996×10−34 J·s
4.13566733×10−15 eV·s
6.62606896×10−27 erg·s

Value of ħ(=h/2π) (Dirac constant) Unit
1.054571628×10−34 J·s
6.58211899×10−16 eV·s
1.054571628×10−27 erg·s

Value of γe (gyro-magnetic ratio of the electron) Unit
−ge ·µB =−2 ·9.274×10−24 J/T
−2 ·9.274×10−24/ħ=−1.76×1011 rad· Hz/T
−28.0 GHz/T

Value of kB (Boltzmann constant) Unit
1.3806503×10−23 J/K
0.08614 µeV/mK
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F.2. ENERGY CONVERSION

for an electron (g = 2) for a 29Si nuclear spin

B (T) f (GHz) h f (µeV) T = h f
kB

(mK) f (GHz) h f (µeV) T = h f
kB

(mK)

1 28.0 116 1340 8.47 35.0 406
0.95 26.6 110 1280 8.04 33.3 386
0.9 25.2 104 1210 7.62 31.5 366
0.85 23.8 98.4 1140 7.2 29.8 345
0.8 22.4 92.6 1080 6.77 28.0 325
0.75 21.0 86.9 1010 6.35 26.3 305
0.7 19.6 81.1 941 5.93 24.5 285
0.65 18.2 75.3 874 5.50 22.8 264
0.6 16.8 69.5 807 5.08 21.0 244
0.55 15.4 63.7 739 4.66 19.3 224
0.5 14.0 57.9 672 4.23 17.5 203
0.45 12.6 52.1 605 3.81 15.8 183
0.4 11.2 46.3 538 3.39 14 163
0.35 9.80 40.5 471 2.96 12.3 142
0.3 8.40 34.7 403 2.54 10.5 122
0.25 7.00 29.0 336 2.12 8.75 102
0.2 5.60 23.2 269 1.69 7.00 81.3
0.15 4.20 17.4 202 1.27 5.25 61.0
0.1 2.80 11.6 134 0.847 3.50 40.6
0.05 1.40 5.79 67.2 0.423 1.75 20.3
0.118 1.00 4.14 48.0 0.302 1.25 14.5



G
MAGNETIC FIELD GRADIENT

CREATED BY MICRO-MAGNETS

In this appendix chapter, we first show the magnetic field gradient created by micro-
magnets when the external magnetic field is applied along the x axis or y axis. Here
we take the heterostructure growth direction as z axis and x and y axes as shown in the
figures below.
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G.1. MAGNETIC FIELD GRADIENTS THE EXTERNAL MAGNETIC

FIELD IS APPLIED ALONG THE x AXIS
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Figure G.1: Numerically computed x, y and z components of the magnetic field and their gradients along the x
and y axes induced by the micromagnets when the external magnetic field along the y axis in the plane of the Si
quantum well, for fully magnetized micromagnets. The black solid lines indicate the edges of the micromagnet
as simulated. The black rectangles shows the estimated position of the dot.
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G.2. MAGNETIC FIELD GRADIENTS THE EXTERNAL MAGNETIC

FIELD IS APPLIED ALONG THE y AXIS
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Figure G.2: The same as in Fig. G.1 when the external magnetic field along the x axis.
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